CINXE.COM

Search results for: jaws

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: jaws</title> <meta name="description" content="Search results for: jaws"> <meta name="keywords" content="jaws"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="jaws" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="jaws"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 20</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: jaws</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Ultrasonic Densitometry of Bone Tissue of Jaws and Phalanges of Fingers in Patients after Orthodontic Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Margarita%20Belousova">Margarita Belousova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ultrasonic densitometry (RU patent № 2541038) was used to assess the density of the bone tissue in the jaws of patients after orthodontic treatment. In addition, by ultrasonic densitometry assessed the state of the bone tissue in the region III phalanges of middle fingers in above mentioned patients. A comparative study was carried out in healthy volunteers of same age. It was established a significant decrease of the ultrasound wave speed and bone mineral density after active period of orthodontic treatment. Statistically, significant differences in bone mineral density of the fingers by ultrasonic densitometry in both groups of patients were not detected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intraoral%20ultrasonic%20densitometry" title="intraoral ultrasonic densitometry">intraoral ultrasonic densitometry</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20density%20of%20jaws" title=" bone tissue density of jaws"> bone tissue density of jaws</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20density%20of%20phalanges%20of%20fingers" title=" bone tissue density of phalanges of fingers"> bone tissue density of phalanges of fingers</a>, <a href="https://publications.waset.org/abstracts/search?q=orthodontic%20treatment" title=" orthodontic treatment"> orthodontic treatment</a> </p> <a href="https://publications.waset.org/abstracts/54572/ultrasonic-densitometry-of-bone-tissue-of-jaws-and-phalanges-of-fingers-in-patients-after-orthodontic-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Clinical and Radiological Features of Radicular Cysts: Case Series </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Recep%20Duzsoz">Recep Duzsoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Elif%20Bilgir"> Elif Bilgir</a>, <a href="https://publications.waset.org/abstracts/search?q=Derya%20Yildirim"> Derya Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozlem%20Gormez"> Ozlem Gormez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radicular cysts develop in the root apex of tooth that is devitalized. Cysts are pathologic lesions with an epithelial lining encapsulated by connective tissue. Radicular cysts originate from epithelial remnants of the periodontal ligament in the root apex as a result of inflammation. They are most commonly observed in the maxillary anterior region, among men and in the third decade of life. Radiographically, they are seen as ovoid radiolucent lesions surrounded by a thin radioopaque margin. In this case, series was carried out in 15 radicular cysts of the jaws diagnosed in individuals. The cysts were evaluated age, sex, and localization. 12 of the cysts were localized in the maxillae, 3 of them were localised in the mandible. The female/male ratio of the lesions was 1/2. In conclusion, we evaluated age, localization and sex distribution of radicular cysts in this study. The knowledge of the features of the jaw cysts is a basic aspect to achieve diagnosis, complications and proper treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radicular%20cyst" title="radicular cyst">radicular cyst</a>, <a href="https://publications.waset.org/abstracts/search?q=jaws" title=" jaws"> jaws</a>, <a href="https://publications.waset.org/abstracts/search?q=CBCT" title=" CBCT"> CBCT</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/64814/clinical-and-radiological-features-of-radicular-cysts-case-series" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Experimental Characterization of Anisotropic Mechanical Properties of Textile Woven Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rym%20Zouari">Rym Zouari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sami%20Ben%20Amar"> Sami Ben Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelwaheb%20Dogui"> Abdelwaheb Dogui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an experimental characterization of the anisotropic mechanical behavior of 4 textile woven fabrics with different weaves (Twill 3, Plain, Twill4 and Satin 4) by off-axis tensile testing. These tests are applied according seven directions oriented by 15° increment with respect to the warp direction. Fixed and articulated jaws are used. Analysis of experimental results is done through global (Effort/Elongation curves) and local scales. Global anisotropy was studied from the Effort/Elongation curves: shape, breaking load (Frup), tensile elongation (EMT), tensile energy (WT) and linearity index (LT). Local anisotropy was studied from the measurement of strain tensor components in the central area of the specimen as a function of testing orientation and effort: longitudinal strain ɛL, transverse strain ɛT and shearing ɛLT. The effect of used jaws is also analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title="anisotropy">anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=off-axis%20tensile%20test" title=" off-axis tensile test"> off-axis tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20fields" title=" strain fields"> strain fields</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20woven%20fabric" title=" textile woven fabric"> textile woven fabric</a> </p> <a href="https://publications.waset.org/abstracts/42667/experimental-characterization-of-anisotropic-mechanical-properties-of-textile-woven-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Students Competencies in the Use of Computer Assistive Technology at Akropong School for the Blind in the Eastern of Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Ampratwum">Joseph Ampratwum</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaw%20Nyadu%20Offei"> Yaw Nyadu Offei</a>, <a href="https://publications.waset.org/abstracts/search?q=Afua%20Ntoaduro"> Afua Ntoaduro</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Twum"> Frank Twum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of computer assistive technology has captured the attention of individuals with visual impairment. Children with visual impairments who are tactual learners have one unique need which is quite different from all other disability groups. They depend on the use of computer assistive technology for reading, writing, receiving information and sending information as well. The objective of the study was to assess students’ competencies in the use of computer assistive technology at Akropong School for the Blind in Ghana. This became necessary because little research has been conducted to document the competencies and challenges in the use of computer among students with visual impairments in Africa. A case study design with a mixed research strategy was adopted for the study. A purposive sampling technique was used to sample 35 students from Akropong School for the Blind in the eastern region of Ghana. The researcher gathered both quantitative and qualitative data to measure students’ competencies in keyboarding skills and Job Access with Speech (JAWS), as well as the other challenges. The findings indicated that comparatively students’ competency in keyboard skills was higher than JAWS application use. Thus students had reached higher stages in the conscious competencies matrix in the former than the latter. It was generally noted that challenges limiting effective use of students’ competencies in computer assistive technology in the School were more personal than external influences. This was because most of the challenges were due to the individual response to the training and familiarity in developing their competencies in using computer assistive technology. Base on this it was recommended that efforts should be made to stock up the laboratory with additional computers. Directly in line with the first recommendation, it was further suggested that more practice time should be created for the students to maximize computer use. Also Licensed JAWS must be acquired by the school to advance students’ competence in using computer assistive technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20assistive%20technology" title="computer assistive technology">computer assistive technology</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20access%20with%20speech" title=" job access with speech"> job access with speech</a>, <a href="https://publications.waset.org/abstracts/search?q=keyboard" title=" keyboard"> keyboard</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20impairment" title=" visual impairment"> visual impairment</a> </p> <a href="https://publications.waset.org/abstracts/57870/students-competencies-in-the-use-of-computer-assistive-technology-at-akropong-school-for-the-blind-in-the-eastern-of-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Development of Fixture for Pipe to Pipe Friction Stir Welding of Dissimilar Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aashutosh%20A.%20Tadse">Aashutosh A. Tadse</a>, <a href="https://publications.waset.org/abstracts/search?q=Kush%20Mehta"> Kush Mehta</a>, <a href="https://publications.waset.org/abstracts/search?q=Hardik%20Vyas"> Hardik Vyas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction Stir Welding is a process in which an FSW tool produces friction heat and thus penetrates through the junction and upon rotation carries out the weld by exchange of material within the 2 metals being welded. It involves holding the workpieces stiff enough to bear the force of the tool moving across the junction to carry out a successful weld. The weld that has flat plates as workpieces, has a quite simpler geometry in terms of fixture holding them. In the case of FSW of pipes, the pipes need to be held firm with the chucks and jaws according to the diameter of the pipes being welded; the FSW tool is then revolved around the pipes to carry out the weld. Machine requires a larger area and it becomes more costly because of such a setup. To carry out the weld on the Milling machine, the newly designed fixture must be set-up on the table of milling machine and must facilitate rotation of pipes by the motor being shafted to one end of the fixture, and the other end automatically rotated because of the rotating jaws held tight enough with the pipes. The set-up has tapered cones as the jaws that would go in the pipes thus holding it with the help of its knurled surface providing the required grip. The process has rotation of pipes with the stationary rotating tool penetrating into the junction. The FSW on pipes in this process requires a very low RPM of pipes to carry out a fine weld and the speed shall change with every combination of material and diameter of pipes, so a variable speed setting motor shall serve the purpose. To withstand the force of the tool, an attachment to the shaft is provided which will be diameter specific that will resist flow of material towards the center during the weld. The welded joint thus carried out will be proper to required standards and specifications. Current industrial requirements state the need of space efficient, cost-friendly and more generalized form of fixtures and set-ups of machines to be put up. The proposed design considers every mentioned factor and thus proves to be positive in the same. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=force%20of%20tool" title="force of tool">force of tool</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title=" friction stir welding"> friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=milling%20machine" title=" milling machine"> milling machine</a>, <a href="https://publications.waset.org/abstracts/search?q=rotation%20of%20pipes" title=" rotation of pipes"> rotation of pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=tapered%20cones" title=" tapered cones"> tapered cones</a> </p> <a href="https://publications.waset.org/abstracts/102914/development-of-fixture-for-pipe-to-pipe-friction-stir-welding-of-dissimilar-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Comparison of Leeway Space Predictions Using Moyers and Tanaka-Johnston Upper Jaw and Lower Jaw on Batak Tribe Between Male and Female in Elementary School Students in Medan City, Sumatera Utara, Indonesia: A Cross-sectional Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilda%20Fitria%20Lubis">Hilda Fitria Lubis</a>, <a href="https://publications.waset.org/abstracts/search?q=Erna%20Sulistyawati"> Erna Sulistyawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The study aims to compare Leeway space averages between Moyers and Tanaka-Johnston's analysis of elementary school students from the Batak tribe in Medan City. Material and Methods: The study involved 106 students from the Batak tribe elementary school in Medan, comprising 53 male and 53 female students. The samples obtained were then printed on both jaws to obtain a working model, and the mesiodistal width of the four permanent biting teeth of the lower jaw and the amount of space available on the canine-premolar region, as well as the predicted mesiodistal number of the canine-premolar on the Moyers probability table with a 75% degree of confidence and the Tanaka-Johnston formula. Results: Using Moyers analysis, students at Batak Elementary School in Medan City have an average Leeway space value of 2 mm on the upper jaw and 2.78 mm on the lower jaw. The average Leeway spatial value using Tanaka-Johnston analysis in the Batak tribe in elementary school in Medan City is 1.33 mm on the top jaw and 2.39 mm on the bottom jaw. Conclusion: According to Moyers and Tanaka-Johnsnton's analysis of both the upper and lower jaws in elementary school students of the Batak tribe in Medan City, there is a significant difference between Leeway's average space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leeways%20space" title="leeways space">leeways space</a>, <a href="https://publications.waset.org/abstracts/search?q=batak%20tribe" title=" batak tribe"> batak tribe</a>, <a href="https://publications.waset.org/abstracts/search?q=genders" title=" genders"> genders</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a> </p> <a href="https://publications.waset.org/abstracts/190017/comparison-of-leeway-space-predictions-using-moyers-and-tanaka-johnston-upper-jaw-and-lower-jaw-on-batak-tribe-between-male-and-female-in-elementary-school-students-in-medan-city-sumatera-utara-indonesia-a-cross-sectional-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">33</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> The Buccal Fat Pad for Closure of Oroantral Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefano%20A.%20Denes">Stefano A. Denes</a>, <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20Tieghi"> Riccardo Tieghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Elia"> Giovanni Elia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The buccal fat pad is a well-established tool in oral and maxillofacial surgery and its use has proved of value for the closure of oroantral communications. Oroantral communication may be a common complication after sequestrectomy in "Bisphosphonate-related osteonecrosis of the jaws". We report a clinical case of a 70-year-old female patient in bisphosphonate therapy presented with right maxillary sinusitis and oroantral communication after implants insertion. The buccal fat pad was used to close the defect. The case had an uneventful postoperative healing without dehiscence, infection and necrosis. We postulate that the primary closure of the site with buccal fat pad may ensure a sufficient blood supply and adequate protection for an effective bone-healing response to occur. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buccal%20fat%20pad" title="buccal fat pad">buccal fat pad</a>, <a href="https://publications.waset.org/abstracts/search?q=oroantral%20communication" title=" oroantral communication"> oroantral communication</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20surgery" title=" oral surgery"> oral surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=dehiscence" title=" dehiscence"> dehiscence</a> </p> <a href="https://publications.waset.org/abstracts/42870/the-buccal-fat-pad-for-closure-of-oroantral-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Monte Carlo Simulation Study on Improving the Flatting Filter-Free Radiotherapy Beam Quality Using Filters from Low- z Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Alfrihidi">H. M. Alfrihidi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.A.%20Albarakaty"> H.A. Albarakaty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flattening filter-free (FFF) photon beam radiotherapy has increased in the last decade, which is enabled by advancements in treatment planning systems and radiation delivery techniques like multi-leave collimators. FFF beams have higher dose rates, which reduces treatment time. On the other hand, FFF beams have a higher surface dose, which is due to the loss of beam hardening effect caused by the presence of the flatting filter (FF). The possibility of improving FFF beam quality using filters from low-z materials such as steel and aluminium (Al) was investigated using Monte Carlo (MC) simulations. The attenuation coefficient of low-z materials for low-energy photons is higher than that of high-energy photons, which leads to the hardening of the FFF beam and, consequently, a reduction in the surface dose. BEAMnrc user code, based on Electron Gamma Shower (EGSnrc) MC code, is used to simulate the beam of a 6 MV True-Beam linac. A phase-space (phosphor) file provided by Varian Medical Systems was used as a radiation source in the simulation. This phosphor file was scored just above the jaws at 27.88 cm from the target. The linac from the jaw downward was constructed, and radiation passing was simulated and scored at 100 cm from the target. To study the effect of low-z filters, steel and Al filters with a thickness of 1 cm were added below the jaws, and the phosphor file was scored at 100 cm from the target. For comparison, the FF beam was simulated using a similar setup. (BEAM Data Processor (BEAMdp) is used to analyse the energy spectrum in the phosphorus files. Then, the dose distribution resulting from these beams was simulated in a homogeneous water phantom using DOSXYZnrc. The dose profile was evaluated according to the surface dose, the lateral dose distribution, and the percentage depth dose (PDD). The energy spectra of the beams show that the FFF beam is softer than the FF beam. The energy peaks for the FFF and FF beams are 0.525 MeV and 1.52 MeV, respectively. The FFF beam's energy peak becomes 1.1 MeV using a steel filter, while the Al filter does not affect the peak position. Steel and Al's filters reduced the surface dose by 5% and 1.7%, respectively. The dose at a depth of 10 cm (D10) rises by around 2% and 0.5% due to using a steel and Al filter, respectively. On the other hand, steel and Al filters reduce the dose rate of the FFF beam by 34% and 14%, respectively. However, their effect on the dose rate is less than that of the tungsten FF, which reduces the dose rate by about 60%. In conclusion, filters from low-z material decrease the surface dose and increase the D10 dose, allowing for a high-dose delivery to deep tumors with a low skin dose. Although using these filters affects the dose rate, this effect is much lower than the effect of the FF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flattening%20filter%20free" title="flattening filter free">flattening filter free</a>, <a href="https://publications.waset.org/abstracts/search?q=monte%20carlo" title=" monte carlo"> monte carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotherapy" title=" radiotherapy"> radiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20dose" title=" surface dose"> surface dose</a> </p> <a href="https://publications.waset.org/abstracts/162793/monte-carlo-simulation-study-on-improving-the-flatting-filter-free-radiotherapy-beam-quality-using-filters-from-low-z-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Ultrasonic Densitometry of Alveolar Bone Jaw during Retention Period of Orthodontic Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Margarita%20A.%20Belousova">Margarita A. Belousova</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20N.%20Ermoliev"> Sergey N. Ermoliev</a>, <a href="https://publications.waset.org/abstracts/search?q=Nina%20K.%20Loginova"> Nina K. Loginova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The method of intraoral ultrasound densitometry developed to diagnose mineral density of alveolar bone jaws during retention period of orthodontic treatment (Patent of Russian Federation № 2541038). It was revealed significant decrease of the ultrasonic wave speed and bone mineral density in patients with relapses dentition anomalies during retention period of orthodontic treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intraoral%20ultrasonic%20densitometry" title="intraoral ultrasonic densitometry">intraoral ultrasonic densitometry</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20of%20sound" title=" speed of sound"> speed of sound</a>, <a href="https://publications.waset.org/abstracts/search?q=alveolar%20jaw%20bone" title=" alveolar jaw bone"> alveolar jaw bone</a>, <a href="https://publications.waset.org/abstracts/search?q=relapses%20of%20dentition%20anomalies" title=" relapses of dentition anomalies"> relapses of dentition anomalies</a>, <a href="https://publications.waset.org/abstracts/search?q=retention%20period%20of%20orthodontic%20treatment" title=" retention period of orthodontic treatment"> retention period of orthodontic treatment</a> </p> <a href="https://publications.waset.org/abstracts/22989/ultrasonic-densitometry-of-alveolar-bone-jaw-during-retention-period-of-orthodontic-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> A Remedy for the Confusing Occlusal Principles - An Approach to a Passionate, In-Depth Understanding of Tooth Surfaces Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kariem%20Elhelow">Kariem Elhelow</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The task of optimizing teeth surface relations remains perplexing for many dental practitioners. The well-being of teeth, periodontium, and the musculoskeletal system is closely associated with occlusal stability. Dental occlusion is rather far beyond the simple contact of the occlusal surfaces of the opposite jaws, a fact that turned the word “Occlusion” into one of the most complicated puzzles in dentistry. The literature describing the pathological approaches made the practice of occlusion even more intimidating. Understanding the biomechanics of teeth and jaw movements makes the goals of occlusal rehabilitation very lively and simple to practice. The purpose of this article is to establish a path for understanding and practicing the fundamental occlusal principles in a simple yet in depth way. Relying of the evidence based core would deliver a context for showing that occlusion is not as complicated as literatures might reflect. Conclusion: Maintaining a well-defined picture of what a healthy occlusion should be like is very gratifying to both the operator and the patient, with added worth of predictability, esthetics, and function to the whole treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=occlusal" title="occlusal">occlusal</a>, <a href="https://publications.waset.org/abstracts/search?q=temporomandibular%20joint" title=" temporomandibular joint"> temporomandibular joint</a>, <a href="https://publications.waset.org/abstracts/search?q=prosthetic" title=" prosthetic"> prosthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=dentition" title=" dentition"> dentition</a> </p> <a href="https://publications.waset.org/abstracts/149443/a-remedy-for-the-confusing-occlusal-principles-an-approach-to-a-passionate-in-depth-understanding-of-tooth-surfaces-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Audit of TPS photon beam dataset for small field output factors using OSLDs against RPC standard dataset</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asad%20Yousuf">Asad Yousuf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The aim of the present study was to audit treatment planning system beam dataset for small field output factors against standard dataset produced by radiological physics center (RPC) from a multicenter study. Such data are crucial for validity of special techniques, i.e., IMRT or stereotactic radiosurgery. Materials/Method: In this study, multiple small field size output factor datasets were measured and calculated for 6 to 18 MV x-ray beams using the RPC recommend methods. These beam datasets were measured at 10 cm depth for 10 × 10 cm2 to 2 × 2 cm2 field sizes, defined by collimator jaws at 100 cm. The measurements were made with a Landauer’s nanoDot OSLDs whose volume is small enough to gather a full ionization reading even for the 1×1 cm2 field size. At our institute the beam data including output factors have been commissioned at 5 cm depth with an SAD setup. For comparison with the RPC data, the output factors were converted to an SSD setup using tissue phantom ratios. SSD setup also enables coverage of the ion chamber in 2×2 cm2 field size. The measured output factors were also compared with those calculated by Eclipse™ treatment planning software. Result: The measured and calculated output factors are in agreement with RPC dataset within 1% and 4% respectively. The large discrepancies in TPS reflect the increased challenge in converting measured data into a commissioned beam model for very small fields. Conclusion: OSLDs are simple, durable, and accurate tool to verify doses that delivered using small photon beam fields down to a 1x1 cm2 field sizes. The study emphasizes that the treatment planning system should always be evaluated for small field out factors for the accurate dose delivery in clinical setting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20field%20dosimetry" title="small field dosimetry">small field dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=optically%20stimulated%20luminescence" title=" optically stimulated luminescence"> optically stimulated luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=audit%20treatment" title=" audit treatment"> audit treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=radiological%20physics%20center" title=" radiological physics center"> radiological physics center</a> </p> <a href="https://publications.waset.org/abstracts/7998/audit-of-tps-photon-beam-dataset-for-small-field-output-factors-using-oslds-against-rpc-standard-dataset" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Evaluating the Dosimetric Performance for 3D Treatment Planning System for Wedged and Off-Axis Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nashaat%20A.%20Deiab">Nashaat A. Deiab</a>, <a href="https://publications.waset.org/abstracts/search?q=Aida%20Radwan"> Aida Radwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Yahiya"> Mohamed S. Yahiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elnagdy"> Mohamed Elnagdy</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasha%20Moustafa"> Rasha Moustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is to evaluate the dosimetric performance of our institution's 3D treatment planning system for wedged and off-axis 6MV photon beams, guided by the recommended QA tests documented in the AAPM TG53; NCS report 15 test packages, IAEA TRS 430 and ESTRO booklet no.7. The study was performed for Elekta Precise linear accelerator designed for clinical range of 4, 6 and 15 MV photon beams with asymmetric jaws and fully integrated multileaf collimator that enables high conformance to target with sharp field edges. Ten tests were applied on solid water equivalent phantom along with 2D array dose detection system. The calculated doses using 3D treatment planning system PrecisePLAN were compared with measured doses to make sure that the dose calculations are accurate for simple situations such as square and elongated fields, different SSD, beam modifiers e.g. wedges, blocks, MLC-shaped fields and asymmetric collimator settings. The QA results showed dosimetric accuracy of the TPS within the specified tolerance limits. Except for large elongated wedged field, the central axis and outside central axis have errors of 0.2% and 0.5%, respectively, and off- planned and off-axis elongated fields the region outside the central axis of the beam errors are 0.2% and 1.1%, respectively. The dosimetric investigated results yielded differences within the accepted tolerance level as recommended. Differences between dose values predicted by the TPS and measured values at the same point are the result from limitations of the dose calculation, uncertainties in the measurement procedure, or fluctuations in the output of the accelerator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quality%20assurance" title="quality assurance">quality assurance</a>, <a href="https://publications.waset.org/abstracts/search?q=dose%20calculation" title=" dose calculation"> dose calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=wedged%20fields" title=" wedged fields"> wedged fields</a>, <a href="https://publications.waset.org/abstracts/search?q=off-axis%20fields" title=" off-axis fields"> off-axis fields</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20treatment%0D%0Aplanning%20system" title=" 3D treatment planning system"> 3D treatment planning system</a>, <a href="https://publications.waset.org/abstracts/search?q=photon%20beam" title=" photon beam"> photon beam</a> </p> <a href="https://publications.waset.org/abstracts/11134/evaluating-the-dosimetric-performance-for-3d-treatment-planning-system-for-wedged-and-off-axis-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> The Mouth and Gastrointestinal Tract of the African Lung Fish Protopterus annectens in River Niger at Agenebode, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marian%20Agbugui">Marian Agbugui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The West African Lung fishes are fishes rich in protein and serve as an important source of food supply for man. The kind of food ingested by this group of fishes is dependent on the alimentary canal as well as the fish&rsquo;s digestive processes which provide suitable modifications for maximum utilization of food taken. A study of the alimentary canal of <em>P. annectens</em> will expose the best information on the anatomy and histology of the fish. Samples of <em>P. annectens</em> were dissected to reveal the liver, pancreas and entire gut wall. Digital pictures of the mouth, jaws and the Gastrointestinal Tract (GIT) were taken. The entire gut was identified, sectioned and micro graphed. <em>P. annectens</em> was observed to possess a terminal mouth that opens up to 10% of its total body length, an adaptive feature to enable the fish to swallow the whole of its pry. Its dentition is made up of incisors- scissor-like teeth which also help to firmly grip, seize and tear through the skin of prey before swallowing. A short, straight and longitudinal GIT was observed in <em>P. annectens </em>which is known to be common feature in lungfishes, though it is thought to be a primitive characteristic similar to the lamprey. The oesophagus is short and distensible similar to other predatory and carnivorous species. Food is temporarily stored in the stomach before it is passed down into the intestine. A pyloric aperture is seen at the end of the double folded pyloric valve which leads into an intestine that makes up 75% of the whole GIT. The intestine begins at the posterior end of the pyloric aperture and winds down in six coils through the whole length intestine and ends at the cloaca. From this study it is concluded that <em>P. annectens</em> possess a composite GIT with organs similar to other lung fishes; it is a detritor with carnivorous abilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gastrointestinal%20tract" title="gastrointestinal tract">gastrointestinal tract</a>, <a href="https://publications.waset.org/abstracts/search?q=incisors%20scissor-like%20teeth" title=" incisors scissor-like teeth"> incisors scissor-like teeth</a>, <a href="https://publications.waset.org/abstracts/search?q=intestine" title=" intestine"> intestine</a>, <a href="https://publications.waset.org/abstracts/search?q=mucus" title=" mucus"> mucus</a>, <a href="https://publications.waset.org/abstracts/search?q=Protopterus%20annectens" title=" Protopterus annectens"> Protopterus annectens</a>, <a href="https://publications.waset.org/abstracts/search?q=serosa" title=" serosa"> serosa</a> </p> <a href="https://publications.waset.org/abstracts/100663/the-mouth-and-gastrointestinal-tract-of-the-african-lung-fish-protopterus-annectens-in-river-niger-at-agenebode-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Characterization of a Dentigerous Cyst Cell Line and Its Secretion of Metalloproteinases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mu%C3%B1iz-Lino%20Marcos%20A.">Muñiz-Lino Marcos A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ectomesenchymal tissues involved in tooth development and their remnants are the origin of different odontogenic lesions, including tumors and cysts of the jaws, with a wide range of clinical behaviors. A dentigerous cyst (DC) represents approximately 20% of all cases of odontogenic cysts, and it has been demonstrated that it can develop benign and malignant odontogenic tumors. DC is characterized by bone destruction of the area surrounding the crown of a tooth that has not erupted and contains liquid. The treatment of odontogenic tumors and cysts usually involves a partial or total removal of the jaw, causing important secondary co-morbidities. However, molecules implicated in DC pathogenesis, as well as in its development into odontogenic tumors, remain unknown. A cellular model may be useful to study these molecules, but that model has not been established yet. Here, we reported the establishment of a cell culture derived from a dentigerous cyst. This cell line was named DeCy-1. In spite of its ectomesenchymal morphology, DeCy-1 cells express epithelial markers such as cytokeratins 5, 6, and 8. Furthermore, these cells express the ODAM protein, which is present in odontogenesis and in dental follicles, indicating that DeCy-1 cells are derived from odontogenic epithelium. Analysis by electron microscopy of this cell line showed that it has a high vesicular activity, suggesting that DeCy-1 could secrete molecules that may be involved in DC pathogenesis. Thus, secreted proteins were analyzed by PAGE-SDS where we observed approximately 11 bands. In addition, the capacity of these secretions to degrade proteins was analyzed by gelatin substrate zymography. A degradation band of about 62 kDa was found in these assays. Western blot assays suggested that the matrix metalloproteinase 2 (MMP-2) is responsible for this protease activity. Thus, our results indicate that the establishment of a cell line derived from DC is a useful in vitro model to study the biology of this odontogenic lesion and its participation in the development of odontogenic tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dentigerous%20cyst" title="dentigerous cyst">dentigerous cyst</a>, <a href="https://publications.waset.org/abstracts/search?q=ameloblastoma" title=" ameloblastoma"> ameloblastoma</a>, <a href="https://publications.waset.org/abstracts/search?q=MMP-2" title=" MMP-2"> MMP-2</a>, <a href="https://publications.waset.org/abstracts/search?q=odontogenic%20tumors" title=" odontogenic tumors"> odontogenic tumors</a> </p> <a href="https://publications.waset.org/abstracts/188383/characterization-of-a-dentigerous-cyst-cell-line-and-its-secretion-of-metalloproteinases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Establishment and Characterization of a Dentigerous Cyst Cell Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mu%C3%B1iz-Lino%20Marcos%20Agust%C3%ADn">Muñiz-Lino Marcos Agustín</a>, <a href="https://publications.waset.org/abstracts/search?q=Vazquez%20Borbolla%20Jessica"> Vazquez Borbolla Jessica</a>, <a href="https://publications.waset.org/abstracts/search?q=Lic%C3%A9aga-Escalera%20Carlos"> Licéaga-Escalera Carlos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ectomesenchymal tissues involved in tooth development and their remnants are the origin of different odontogenic lesions, including tumors and cysts of the jaws, with a wide range of clinical behaviors. Dentigerous cyst (DC) represents approximately 20% of all cases of odontogenic cysts, and it has been demonstrated that it can develop benign and malignant odontogenic tumors. DC is characterized by bone destruction of the area surrounding the crown of a tooth which has not erupted and it contain is liquid. The treatment of odontogenic tumors and cysts usually are partial or total removal of the jaw, causing important secondary co-morbidities. However, molecules implicated in DC pathogenesis as well in its development to odontogenic tumors remains unknown. A cellular model may be useful to study these molecules, but that model has not been established yet. Here, we reported the establishment of a cell culture derived from a dentigerous cyst. This cell line was named DeCy-1. In spite of its ectomesenchymal morphology, DeCy-1 cells express epithelial markers such as cytokeratins 5, 6, and 8. Furthermore, these cells express the ODAM protein, which is present in odontogenesis and in dental follicle, indicating that DeCy-1 cells derived from odontogenic epithelium. Analysis by electron microscopy of this cell line showed that it has a high vesicular activity, suggesting that DeCy-1 could secrete molecules that may be involved in DC pathogenesis. Thus, secreted proteins were analyzed by PAGE-SDS, where we observed approximately 11 bands. In addition, the capacity of these secretions to degrade proteins was analyzed by gelatin substrate zymography. A degradation band of about 62 kDa was found in these assays. Western blot assays suggested that the matrix metalloproteinase 2 (MMP-2) is responsible of this protease activity. Thus, our results indicate that the establishment of a cell line derived from DC is a useful in vitro model to study the biology of this odontogenic lesion and its participation in the development of odontogenic tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dentigerous%20cyst" title="dentigerous cyst">dentigerous cyst</a>, <a href="https://publications.waset.org/abstracts/search?q=MMP20" title=" MMP20"> MMP20</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20culture" title=" cell culture"> cell culture</a> </p> <a href="https://publications.waset.org/abstracts/149311/establishment-and-characterization-of-a-dentigerous-cyst-cell-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Open Fields&#039; Dosimetric Verification for a Commercially-Used 3D Treatment Planning System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nashaat%20A.%20Deiab">Nashaat A. Deiab</a>, <a href="https://publications.waset.org/abstracts/search?q=Aida%20Radwan"> Aida Radwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elnagdy"> Mohamed Elnagdy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Yahiya"> Mohamed S. Yahiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasha%20Moustafa"> Rasha Moustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is to evaluate and investigate the dosimetric performance of our institution's 3D treatment planning system, Elekta PrecisePLAN, for open 6MV fields including square, rectangular, variation in SSD, centrally blocked, missing tissue, square MLC and MLC shaped fields guided by the recommended QA tests prescribed in AAPM TG53, NCS report 15 test packages, IAEA TRS 430 and ESTRO booklet no.7. The study was performed for Elekta Precise linear accelerator designed for clinical range of 4, 6 and 15 MV photon beams with asymmetric jaws and fully integrated multileaf collimator that enables high conformance to target with sharp field edges. Seven different tests were done applied on solid water equivalent phantom along with 2D array dose detection system, the calculated doses using 3D treatment planning system PrecisePLAN, compared with measured doses to make sure that the dose calculations are accurate for open fields including square, rectangular, variation in SSD, centrally blocked, missing tissue, square MLC and MLC shaped fields. The QA results showed dosimetric accuracy of the TPS for open fields within the specified tolerance limits. However large square (25cm x 25cm) and rectangular fields (20cm x 5cm) some points were out of tolerance in penumbra region (11.38 % and 10.9 %, respectively). For the test of SSD variation, the large field resulted from SSD 125 cm for 10cm x 10cm filed the results recorded an error of 0.2% at the central axis and 1.01% in penumbra. The results yielded differences within the accepted tolerance level as recommended. Large fields showed variations in penumbra. These differences between dose values predicted by the TPS and the measured values at the same point may result from limitations of the dose calculation, uncertainties in the measurement procedure, or fluctuations in the output of the accelerator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quality%20assurance" title="quality assurance">quality assurance</a>, <a href="https://publications.waset.org/abstracts/search?q=dose%20calculation" title=" dose calculation"> dose calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20treatment%20planning%20system" title=" 3D treatment planning system"> 3D treatment planning system</a>, <a href="https://publications.waset.org/abstracts/search?q=photon%20beam" title=" photon beam"> photon beam</a> </p> <a href="https://publications.waset.org/abstracts/11429/open-fields-dosimetric-verification-for-a-commercially-used-3d-treatment-planning-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Incidental Findings in the Maxillofacial Region Detected on Cone Beam Computed Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeena%20Dcosta">Zeena Dcosta</a>, <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Ahmed"> Junaid Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ceena%20Denny"> Ceena Denny</a>, <a href="https://publications.waset.org/abstracts/search?q=Nandita%20Shenoy"> Nandita Shenoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of dentistry, there are many conditions which warrant the requirement of three-dimensional imaging that can aid in diagnosis and therapeutic management. Cone beam computed tomography (CBCT) is considered highly accurate in producing a three-dimensional image of an object and provides a complete insight of various findings in the captured volume. But, most of the clinicians focus primarily on the teeth and jaws and numerous unanticipated clinically significant incidental findings may be missed out. Rapid integration of CBCT into the practice of dentistry has led to the detection of various incidental findings. However, the prevalence of these incidental findings is still unknown. Thus, the study aimed to discern the reason for referral and to identify incidental findings on the referred CBCT scans. Patient’s demographic data such as age and gender was noted. CBCT scans of multiple fields of views (FOV) were considered. The referral for CBCT scans was broadly classified into two major categories: diagnostic scan and treatment planning scan. Any finding on the CBCT volumes, other than the area of concern was recorded as incidental finding which was noted under airway, developmental, pathological, endodontics, TMJ, bone, soft tissue calcifications and others. Few of the incidental findings noted under airway were deviated nasal septum, nasal turbinate hypertrophy, mucosal thickening and pneumatization of sinus. Developmental incidental findings included dilaceration, impaction, pulp stone and gubernacular canal. Resorption of teeth and periapical pathologies were noted under pathological incidental findings. Root fracture along with over and under obturation was noted under endodontics. Incidental findings under TMJ were flattening, erosion and bifid condyle. Enostosis and exostosis were noted under bone lesions. Tonsillolth, sialolith and calcified styloid ligament were noted under soft tissue calcifications. Incidental findings under others included foreign body, fused C1- C2 vertebrae, nutrient canals, and pneumatocyst. Maxillofacial radiologists should be aware of possible incidental findings and should be vigilant about comprehensively evaluating the entire captured volume, which can help in early diagnosis of any potential pathologies that may go undetected. Interpretation of CBCT is truly an art and with the experience, we can unravel the secrets hidden in the grey shades of the radiographic image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cone%20beam%20computed%20tomography" title="cone beam computed tomography">cone beam computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=incidental%20findings" title=" incidental findings"> incidental findings</a>, <a href="https://publications.waset.org/abstracts/search?q=maxillofacial%20region" title=" maxillofacial region"> maxillofacial region</a>, <a href="https://publications.waset.org/abstracts/search?q=radiologist" title=" radiologist"> radiologist</a> </p> <a href="https://publications.waset.org/abstracts/53923/incidental-findings-in-the-maxillofacial-region-detected-on-cone-beam-computed-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Evaluation of the Photo Neutron Contamination inside and outside of Treatment Room for High Energy Elekta Synergy® Linear Accelerator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharib%20Ahmed">Sharib Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansoor%20Rafi"> Mansoor Rafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Ali%20Awan"> Kamran Ali Awan</a>, <a href="https://publications.waset.org/abstracts/search?q=Faraz%20Khaskhali"> Faraz Khaskhali</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Maqbool"> Amir Maqbool</a>, <a href="https://publications.waset.org/abstracts/search?q=Altaf%20Hashmi"> Altaf Hashmi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical linear accelerators (LINAC’s) used in radiotherapy treatments produce undesired neutrons when they are operated at energies above 8 MeV, both in electron and photon configuration. Neutrons are produced by high-energy photons and electrons through electronuclear (e, n) a photonuclear giant dipole resonance (GDR) reactions. These reactions occurs when incoming photon or electron incident through the various materials of target, flattening filter, collimators, and other shielding components in LINAC’s structure. These neutrons may reach directly to the patient, or they may interact with the surrounding materials until they become thermalized. A work has been set up to study the effect of different parameter on the production of neutron around the room by photonuclear reactions induced by photons above ~8 MeV. One of the commercial available neutron detector (Ludlum Model 42-31H Neutron Detector) is used for the detection of thermal and fast neutrons (0.025 eV to approximately 12 MeV) inside and outside of the treatment room. Measurements were performed for different field sizes at 100 cm source to surface distance (SSD) of detector, at different distances from the isocenter and at the place of primary and secondary walls. Other measurements were performed at door and treatment console for the potential radiation safety concerns of the therapists who must walk in and out of the room for the treatments. Exposures have taken place from Elekta Synergy® linear accelerators for two different energies (10 MV and 18 MV) for a given 200 MU’s and dose rate of 600 MU per minute. Results indicates that neutron doses at 100 cm SSD depend on accelerator characteristics means jaw settings as jaws are made of high atomic number material so provides significant interaction of photons to produce neutrons, while doses at the place of larger distance from isocenter are strongly influenced by the treatment room geometry and backscattering from the walls cause a greater doses as compare to dose at 100 cm distance from isocenter. In the treatment room the ambient dose equivalent due to photons produced during decay of activation nuclei varies from 4.22 mSv.h−1 to 13.2 mSv.h−1 (at isocenter),6.21 mSv.h−1 to 29.2 mSv.h−1 (primary wall) and 8.73 mSv.h−1 to 37.2 mSv.h−1 (secondary wall) for 10 and 18 MV respectively. The ambient dose equivalent for neutrons at door is 5 μSv.h−1 to 2 μSv.h−1 while at treatment console room it is 2 μSv.h−1 to 0 μSv.h−1 for 10 and 18 MV respectively which shows that a 2 m thick and 5m longer concrete maze provides sufficient shielding for neutron at door as well as at treatment console for 10 and 18 MV photons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalent%20doses" title="equivalent doses">equivalent doses</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20contamination" title=" neutron contamination"> neutron contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20detector" title=" neutron detector"> neutron detector</a>, <a href="https://publications.waset.org/abstracts/search?q=photon%20energy" title=" photon energy "> photon energy </a> </p> <a href="https://publications.waset.org/abstracts/23969/evaluation-of-the-photo-neutron-contamination-inside-and-outside-of-treatment-room-for-high-energy-elekta-synergy-linear-accelerator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> DH-Students Promoting Underage Asylum Seekers&#039; Oral Health in Finland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eeva%20Wallenius-Nareneva">Eeva Wallenius-Nareneva</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuula%20Toivanen-Labiad"> Tuula Toivanen-Labiad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Oral health promotion event was organised for forty Afghanistan, Iraqi and Bangladeshi underage asylum seekers in Finland. The invitation to arrange this coaching occasion was accepted in the Degree Programme in Oral Hygiene in Metropolia. The personnel in the reception center found the need to improve oral health among the youngsters. The purpose was to strengthen the health literacy of the boys in their oral self-care and to reduce dental fears. The Finnish studies, especially the terminology of oral health was integrated to coaching with the help of interpreters. Cooperative learning was applied. Methods: Oral health was interactively discussed in four study group sessions: 1. The importance of healthy eating habits; - Good and bad diets, - Regular meals, - Acid attack o Xylitol. 2. Oral diseases − connection to general health; - Aetiology of gingivitis, periodontitis and caries, - Harmfulness of smoking 3. Tools and techniques for oral self-care; - Brushing and inter dental cleaning. 4. Sharing earlier dental care experiences; - Cultural differences, - Dental fear, - Regular check-ups. Results: During coaching deficiencies appeared in brushing and inter dental cleaning techniques. Some boys were used to wash their mouth with salt justifying it by salt’s antiseptic properties. Many brushed their teeth by vertical movements. The boys took feedback positively when a demonstration with model jaws revealed the inefficiency of the technique. The advantages of fluoride tooth paste were advised. Dental care procedures were new and frightening for many boys. Finnish dental care system was clarified. The safety and indolence of the treatments and informed consent were highlighted. Video presentations and the dialog lowered substantially the threshold to visit dental clinic. The occasion gave the students means for meeting patients from different cultural and language backgrounds. The information hidden behind the oral health problems of the asylum seekers was valuable. Conclusions: Learning dental care practices used in different cultures is essential for dental professionals. The project was a good start towards multicultural oral health care. More experiences are needed before graduation. Health education themes should be held simple regardless of the target group. The heterogeneity of the group does not pose a problem. Open discussion with questions leading to the theme works well in clarifying the target group’s knowledge level. Sharing own experiences strengthens the sense of equality among the participants and encourages them to express own opinions. Motivational interview method turned out to be successful. In the future coaching occasions must confirm active participation of everyone. This could be realized by dividing the participants to even smaller groups. The different languages impose challenges but they can be solved by using more interpreters. Their presence ensures that everyone understands the issues properly although the use of plain and sign languages are helpful. In further development, it would be crucial to arrange a rehearsal occasion to the same participants in two/three months’ time. This would strengthen the adaption of self-care practices and give the youngsters opportunity to pose more open questions. The students would gain valuable feedback regarding the effectiveness of their work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooperative%20learning" title="cooperative learning">cooperative learning</a>, <a href="https://publications.waset.org/abstracts/search?q=interactive%20methods" title=" interactive methods"> interactive methods</a>, <a href="https://publications.waset.org/abstracts/search?q=motivational%20interviewing" title=" motivational interviewing"> motivational interviewing</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20health%20promotion" title=" oral health promotion"> oral health promotion</a>, <a href="https://publications.waset.org/abstracts/search?q=underage%20asylum%20seekers" title=" underage asylum seekers"> underage asylum seekers</a> </p> <a href="https://publications.waset.org/abstracts/51228/dh-students-promoting-underage-asylum-seekers-oral-health-in-finland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> The Pro-Reparative Effect of Vasoactive Intestinal Peptide in Chronic Inflammatory Osteolytic Periapical Lesions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michelle%20C.%20S.%20Azevedo">Michelle C. S. Azevedo</a>, <a href="https://publications.waset.org/abstracts/search?q=Priscila%20M.%20Colavite"> Priscila M. Colavite</a>, <a href="https://publications.waset.org/abstracts/search?q=Carolina%20F.%20Francisconi"> Carolina F. Francisconi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20P.%20Trombone"> Ana P. Trombone</a>, <a href="https://publications.waset.org/abstracts/search?q=Gustavo%20P.%20Garlet"> Gustavo P. Garlet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> VIP (vasoactive intestinal peptide) know as a potential protective factor in the view of its marked immunosuppressive properties. In this work, we investigated a possible association of VIP with the clinical status of experimental periapical granulomas and the association with expression markers in the lesions potentially associated with periapical lesions pathogenesis. C57BL/6WT mice were treated or not with recombinant VIP. Animals with active/progressive (N=40), inactive/stable (N=70) periapical granulomas and controls (N=50) were anesthetized and the right mandibular first molar was surgically opened, allowing exposure of dental pulp. Endodontic pathogenic bacterial strains were inoculated: Porphyromonas gingivalis, Prevotella nigrescens, Actinomyces viscosus, and Fusobacterium nucleatum subsp. polymorphum. The cavity was not sealed after bacterial inoculation. During lesion development, animals were treated or not with recombinant VIP 3 days post infection. Animals were killed after 3, 7, 14, and 21 days of infection and the jaws were dissected. The extraction of total RNA from periodontal tissues was performed and the integrity of samples was checked. qPCR reaction using TaqMan chemistry with inventoried primers were performed in ViiA7 equipment. The results, depicted as the relative levels of gene expression, were calculated in reference to GAPDH and β-actin expression. Periodontal tissues from upper molars were vested and incubated supplemented RPMI, followed by processing with 0.05% DNase. Cell viability and couting were determined by Neubauer chamber analysis. For flow cytometry analysis, after cell counting the cells were stained with the optimal dilution of each antibody; (PE)-conjugated and (FITC)-conjugated antibodies against CD4, CD25, FOXP3, IL-4, IL-17 and IFN-γ antibodies, as well their respective isotype controls. Cells were analyzed by FACScan and CellQuest software. Results are presented as the number of cells in the periodontal tissues or the number of positive cells for each marker in the CD4+FOXp3+, CD4+IL-4+, CD4+IFNg+ and CD4+IL-17+ subpopulations. The levels mRNA were measured by qPCR. The VIP expression was predominated in inactive lesions, as well part of the clusters of cytokine/Th markers identified as protective factors and a negative correlation between VIP expression and lesion evolution was observed. A quantitative analysis of IL1β, IL17, TNF, IFN, MMP2, RANKL, OPG, IL10, TGFβ, CTLA4, COL5A1, CTGF, CXCL11, FGF7, ITGA4, ITGA5, SERP1 and VTN expression was measured in experimental periapical lesions treated with VIP 7 and 14 days after lesion induction and healthy animals. After 7 days, all targets presented a significate increase in comparison to untreated animals. About migration kinetics, profile of chemokine receptors expression of TCD4+ subsets and phenotypic analysis of Tregs, Th1, Th2 and Th17 cells during the course of experimental periodontal disease evaluated by flow cytometry and depicted as the number of positive cells for each marker. CD4+IFNg+ and CD4+FOXp3+ cells migration were significate increased 7 days post VIP treatment. CD4+IL17+ cells migration were significate increased 7 and 14 days post VIP treatment, CD4+IL4+ cells migration were significate increased 14 and 21 days post VIP treatment compared to the control group. In conclusion, our experimental data support VIP involvement in determining the inactivity of periapical lesions. Financial support: FAPESP #2015/25618-2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20inflammation" title="chronic inflammation">chronic inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokines" title=" cytokines"> cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=osteolytic%20lesions" title=" osteolytic lesions"> osteolytic lesions</a>, <a href="https://publications.waset.org/abstracts/search?q=VIP%20%28Vasoactive%20Intestinal%20Peptide%29" title=" VIP (Vasoactive Intestinal Peptide)"> VIP (Vasoactive Intestinal Peptide)</a> </p> <a href="https://publications.waset.org/abstracts/76218/the-pro-reparative-effect-of-vasoactive-intestinal-peptide-in-chronic-inflammatory-osteolytic-periapical-lesions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10