CINXE.COM
Search results for: geothermal
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: geothermal</title> <meta name="description" content="Search results for: geothermal"> <meta name="keywords" content="geothermal"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="geothermal" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="geothermal"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 138</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: geothermal</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Using Reservoir Models for Monitoring Geothermal Surface Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20P.%20O%E2%80%99Sullivan">John P. O’Sullivan</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20M.%20P.%20Ratouis"> Thomas M. P. Ratouis</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20J.%20O%E2%80%99Sullivan"> Michael J. O’Sullivan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the use of geothermal energy grows internationally more effort is required to monitor and protect areas with rare and important geothermal surface features. A number of approaches are presented for developing and calibrating numerical geothermal reservoir models that are capable of accurately representing geothermal surface features. The approaches are discussed in the context of cases studies of the Rotorua geothermal system and the Orakei-korako geothermal system, both of which contain important surface features. The results show that models are able to match the available field data accurately and hence can be used as valuable tools for predicting the future response of the systems to changes in use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal%20reservoir%20models" title="geothermal reservoir models">geothermal reservoir models</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20features" title=" surface features"> surface features</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=TOUGH2" title=" TOUGH2"> TOUGH2</a> </p> <a href="https://publications.waset.org/abstracts/25882/using-reservoir-models-for-monitoring-geothermal-surface-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Structured Tariff Calculation to Promote Geothermal for Energy Security</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Mariani">Siti Mariani</a>, <a href="https://publications.waset.org/abstracts/search?q=Arwin%20DW%20Sumari"> Arwin DW Sumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Retno%20Gumilang%20Dewi"> Retno Gumilang Dewi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper analyzes the necessity of a structured tariff calculation for geothermal electricity in Indonesia. Indonesia is blessed with abundant natural resources and a choices of energy resources to generate electricity among other are coal, gas, biomass, hydro to geothermal, creating a fierce competition in electricity tariffs. While geothermal is inline with energy security principle and green growth initiative, it requires a huge capital funding. Geothermal electricity development consists of phases of project with each having its own financial characteristics. The Indonesian government has set a support in the form of ceiling price of geothermal electricity tariff by 11 U.S cents / kWh. However, the government did not set a levelized cost of geothermal, as an indication of lower limit capacity class, to which support is given. The government should establish a levelized cost of geothermal energy to reflect its financial capability in supporting geothermal development. Aside of that, the government is also need to establish a structured tariff calculation to reflect a fair and transparent business cooperation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20fator" title="load fator">load fator</a>, <a href="https://publications.waset.org/abstracts/search?q=levelized%20cost%20of%20geothermal" title=" levelized cost of geothermal"> levelized cost of geothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20power%20plant" title=" geothermal power plant"> geothermal power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=structured%20tariff%20calculation" title=" structured tariff calculation"> structured tariff calculation</a> </p> <a href="https://publications.waset.org/abstracts/7923/structured-tariff-calculation-to-promote-geothermal-for-energy-security" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> A Worldwide Assessment of Geothermal Energy Policy: Systematic, Qualitative and Critical Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20Moya">Diego Moya</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Paredes"> Juan Paredes</a>, <a href="https://publications.waset.org/abstracts/search?q=Clay%20Aldas"> Clay Aldas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramiro%20Tite"> Ramiro Tite</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasad%20Kaparaju"> Prasad Kaparaju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Globally, energy policy for geothermal development is addressed in different forms, depending on the economy, resources, country-development, environment aspects and technology access. Although some countries have established strong regulations and standards for geothermal exploration, exploitation and sustainable use at the policy level (government departments and institutions), others have discussed geothermal laws at legal levels (congress – a national legislative body of a country). Appropriate regulations are needed not only to meet local and international funding requirements but also to avoid speculation in the use of the geothermal resource. In this regards, this paper presents the results of a systematic, qualitative and critical literature review of geothermal energy policy worldwide addressing two scenarios: policy and legal levels. At first, literature is collected and classified from scientific and government sources regarding geothermal energy policy of the most advanced geothermal producing countries, including Iceland, New Zealand, Mexico, the USA, Central America, Italy, Japan, Philippines, Indonesia, Kenia, and Australia. This is followed by a systematic review of the literature aiming to know the best geothermal practices and what remains uncertain regarding geothermal policy implementation. This analysis is made considering the stages of geothermal production. Furthermore, a qualitative analysis is conducted comparing the findings across geothermal policies in the countries mentioned above. Then, a critical review aims to identify significant items in the field to be applied in countries with geothermal potential but with no or weak geothermal policies. Finally, patterns and relationships are detected, and conclusions are drawn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal" title=" geothermal"> geothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20policy" title=" energy policy"> energy policy</a>, <a href="https://publications.waset.org/abstracts/search?q=worldwide" title=" worldwide"> worldwide</a> </p> <a href="https://publications.waset.org/abstracts/64100/a-worldwide-assessment-of-geothermal-energy-policy-systematic-qualitative-and-critical-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Magnetotelluric Method Approach for the 3-D Inversion of Geothermal System’s Dissemination in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pelangi%20Wiyantika">Pelangi Wiyantika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable energy is the main concern in According to solve any problems on energy sectors. One of the sustainable energy that has lack of presentation is Geothermal energy which has developed lately as the new promising sustainable energy. Indonesia as country that has been passed by the ring of fire zone has many geothermal sources. This is the good opportunity to elaborate and learn more about geothermal as sustainable and renewable energy. Geothermal systems have special characteristic whom the zone of sources can be detected by measuring the resistivity of the subsurface. There are many methods to measuring the anomaly of the systems. One of the best method is Magnetotelluric approchment. Magnetotelluric is the passive method which the resistivity is obtained by injecting the eddy current of rocks in the subsurface with the sources. The sources of Magnetotelluric method can be obtained from lightning or solar wind which has the frequencies each below 1 Hz and above 1 Hz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal" title="geothermal">geothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetotelluric" title=" magnetotelluric"> magnetotelluric</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20energy" title=" sustainable energy"> sustainable energy</a> </p> <a href="https://publications.waset.org/abstracts/61743/magnetotelluric-method-approach-for-the-3-d-inversion-of-geothermal-systems-dissemination-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Modelling and Optimization of Geothermal Energy in the Gulf of Suez</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20Abdelhafez">Amira Abdelhafez</a>, <a href="https://publications.waset.org/abstracts/search?q=Rufus%20Brunt"> Rufus Brunt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geothermal energy in Egypt represents a significant untapped renewable resource that can reduce reliance on conventional power generation. Exploiting these geothermal resources depends on depth, temperature range, and geological characteristics. The intracontinental rift setting of the Gulf of Suez (GoS)-Red Sea rift is a favourable tectonic setting for convection-dominated geothermal plays. The geothermal gradient across the GoS ranges from 24.9 to 86.66 °C/km, with a heat flow of 31-127.2 mW/m². Surface expressions of convective heat loss emerge along the gulf flanks as hot springs (e.g., Hammam Faraun) accompanying deeper geothermal resources. These thermal anomalies are driven mainly by the local tectonic configuration. Characterizing the structural framework of major faults and their control on reservoir properties and subsurface hydrothermal fluid circulation is vital for geothermal applications in the gulf. The geothermal play systems of the GoS depend on structural and lithological properties that contribute to heat storage and vertical transport. Potential geothermal reservoirs include the Nubia sandstones, which, due to their thickness, continuity, and contact with hot basement rocks at a mean depth of 3 km, create an extensive reservoir for geothermal fluids. To develop these geothermal resources for energy production, defining the permeability anisotropy of the reservoir due to faults and facies variation is a crucial step in our study, particularly the evaluation of influence on thermal breakthrough and production rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal" title="geothermal">geothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=October%20field" title=" October field"> October field</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20specific%20study" title=" site specific study"> site specific study</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20modelling" title=" reservoir modelling"> reservoir modelling</a> </p> <a href="https://publications.waset.org/abstracts/193828/modelling-and-optimization-of-geothermal-energy-in-the-gulf-of-suez" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Optimization of Hydraulic Fracturing for Horizontal Wells in Enhanced Geothermal Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qudratullah%20Muradi">Qudratullah Muradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geothermal energy is a renewable energy source that can be found in abundance on our planet. Only a small fraction of it is currently converted to electrical power, though in recent years installed geothermal capacity has increased considerably all over the world. In this paper, we assumed a model for designing of Enhanced Geothermal System, EGS. We used computer modeling group, CMG reservoir simulation software to create the typical Hot Dry Rock, HDR reservoir. In this research two wells, one injection of cold water and one production of hot water are included in the model. There are some hydraulic fractures created by the mentioned software. And cold water is injected in order to produce energy from the reservoir. The result of injecting cold water to the reservoir and extracting geothermal energy is defined by some graphs at the end of this research. The production of energy is quantified in a period of 10 years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal%20energy" title="geothermal energy">geothermal energy</a>, <a href="https://publications.waset.org/abstracts/search?q=EGS" title=" EGS"> EGS</a>, <a href="https://publications.waset.org/abstracts/search?q=HDR" title=" HDR"> HDR</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20fracturing" title=" hydraulic fracturing"> hydraulic fracturing</a> </p> <a href="https://publications.waset.org/abstracts/103403/optimization-of-hydraulic-fracturing-for-horizontal-wells-in-enhanced-geothermal-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Assessment of a Coupled Geothermal-Solar Thermal Based Hydrogen Production System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Hamlehdar">Maryam Hamlehdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillermo%20A.%20Narsilio"> Guillermo A. Narsilio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To enhance the feasibility of utilising geothermal hot sedimentary aquifers (HSAs) for clean hydrogen production, one approach is the implementation of solar-integrated geothermal energy systems. This detailed modelling study conducts a thermo-economic assessment of an advanced Organic Rankine Cycle (ORC)-based hydrogen production system that uses low-temperature geothermal reservoirs, with a specific focus on hot sedimentary aquifers (HSAs) over a 30-year period. In the proposed hybrid system, solar-thermal energy is used to raise the water temperature extracted from the geothermal production well. This temperature increase leads to a higher steam output, powering the turbine and subsequently enhancing the electricity output for running the electrolyser. Thermodynamic modeling of a parabolic trough solar (PTS) collector is developed and integrated with modeling for a geothermal-based configuration. This configuration includes a closed regenerator cycle (CRC), proton exchange membrane (PEM) electrolyser, and thermoelectric generator (TEG). Following this, the study investigates the impact of solar energy use on the temperature enhancement of the geothermal reservoir. It assesses the resulting consequences on the lifecycle performance of the hydrogen production system in comparison with a standalone geothermal system. The results indicate that, with the appropriate solar collector area, a combined solar-geothermal hydrogen production system outperforms a standalone geothermal system in both cost and rate of production. These findings underscore a solar-assisted geothermal hybrid system holds the potential to generate lower-cost hydrogen with enhanced efficiency, thereby boosting the appeal of numerous low to medium-temperature geothermal sources for hydrogen production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clean%20hydrogen%20production" title="clean hydrogen production">clean hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20solar-geothermal" title=" integrated solar-geothermal"> integrated solar-geothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=low-temperature%20geothermal%20energy" title=" low-temperature geothermal energy"> low-temperature geothermal energy</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title=" numerical modelling"> numerical modelling</a> </p> <a href="https://publications.waset.org/abstracts/182662/assessment-of-a-coupled-geothermal-solar-thermal-based-hydrogen-production-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Geothermal Resources of Saudi Arabia: An Update</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aref%20Lashin">Aref Lashin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Saudi Arabia vision of 2030 calls for the diversification of energy sources in the Kingdom. Accordingly, Saudi Arabia has launched a promising plan aims to gradually power the major industrial activities in country by renewable and low carbon energy sources. The geothermal sources are among the promising renewable sources that can support the achievement of the country vision and energy mix plan. Saudi Arabia is enriched with several geothermal resources especially in the western and southwestern regions along the Red Sea region. This paper will give an overview on the different geothermal resources (Hydrothermal, Harrats volcanic eruptions and hot dry rocks) of Saudi Arabia, their categories and classifications as well as the different exploration (Geophysical, geological, geochemical, etc) and drilling enhanced during the last few decades. The economic viability and the possible contribution of geothermal resources in the future of renewable energy of Saudi Arabia is discussed. Some case studies from Jizan, Al-Lith, Harrats and Midyan areas are demonstrated. Scenarios of different low and high geothermal applications for possible power generations, as well as other low-grade utilizations, e.g. direct use, district heating & cooling, medical therapy, etc., are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=KSA%20vison%202023" title="KSA vison 2023">KSA vison 2023</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20mix" title=" energy mix"> energy mix</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20resources" title=" geothermal resources"> geothermal resources</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a> </p> <a href="https://publications.waset.org/abstracts/192169/geothermal-resources-of-saudi-arabia-an-update" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Geothermal Energy Evaluation of Lower Benue Trough Using Spectral Analysis of Aeromagnetic Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stella%20C.%20Okenu">Stella C. Okenu</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20O.%20Adikwu"> Stephen O. Adikwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Martins%20E.%20Okoro"> Martins E. Okoro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The geothermal energy resource potential of the Lower Benue Trough (LBT) in Nigeria was evaluated in this study using spectral analysis of high-resolution aeromagnetic (HRAM) data. The reduced to the equator aeromagnetic data was divided into sixteen (16) overlapping blocks, and each of the blocks was analyzed to obtain the radial averaged power spectrum which enabled the computation of the top and centroid depths to magnetic sources. The values were then used to assess the Curie Point Depth (CPD), geothermal gradients, and heat flow variations in the study area. Results showed that CPD varies from 7.03 to 18.23 km, with an average of 12.26 km; geothermal gradient values vary between 31.82 and 82.50°C/km, with an average of 51.21°C/km, while heat flow variations range from 79.54 to 206.26 mW/m², with an average of 128.02 mW/m². Shallow CPD zones that run from the eastern through the western and southwestern parts of the study area correspond to zones of high geothermal gradient values and high subsurface heat flow distributions. These areas signify zones associated with anomalous subsurface thermal conditions and are therefore recommended for detailed geothermal energy exploration studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal%20energy" title="geothermal energy">geothermal energy</a>, <a href="https://publications.waset.org/abstracts/search?q=curie-point%20depth" title=" curie-point depth"> curie-point depth</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20gradient" title=" geothermal gradient"> geothermal gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20flow" title=" heat flow"> heat flow</a>, <a href="https://publications.waset.org/abstracts/search?q=aeromagnetic%20data" title=" aeromagnetic data"> aeromagnetic data</a>, <a href="https://publications.waset.org/abstracts/search?q=LBT" title=" LBT"> LBT</a> </p> <a href="https://publications.waset.org/abstracts/174614/geothermal-energy-evaluation-of-lower-benue-trough-using-spectral-analysis-of-aeromagnetic-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Investigation of Enhanced Geothermal System with CO2 as Working Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruina%20Xu">Ruina Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Peixue%20Jiang"> Peixue Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Luo"> Feng Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The novel concept of enhanced geothermal system with CO2 instead of water as working fluid (CO2-EGS) has attracted wide attention due to additional benefit of CO2 geological storage during the power generation process. In this research, numerical investigation on a doublet CO2-EGS system is performed, focusing on the influence of the injection/production well perforation location in the targeted geothermal reservoir. Three different reservoir inlet and outlet boundary conditions are used in simulations since the well constrains are different in reality. The results show that CO2-EGS system performance of power generation and power cost vary greatly among cases of different wells perforation locations, and the optimum options under different boundary conditions are also different. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enhanced%20Geothermal%20System" title="Enhanced Geothermal System">Enhanced Geothermal System</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20CO2" title=" supercritical CO2"> supercritical CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2-EGS" title=" CO2-EGS"> CO2-EGS</a> </p> <a href="https://publications.waset.org/abstracts/2713/investigation-of-enhanced-geothermal-system-with-co2-as-working-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Geothermal Prospect Prediction at Mt. Ciremai Using Fault and Fracture Density Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rifqi%20Alfadhillah%20Sentosa">Rifqi Alfadhillah Sentosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasbi%20Fikru%20Syabi"> Hasbi Fikru Syabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen"> Stephen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> West Java is a province in Indonesia which has a number of volcanoes. One of those volcanoes is Mt. Ciremai, located administratively at Kuningan and Majalengka District, and is known for its significant geothermal potential in Java Island. This research aims to assume geothermal prospects at Mt. Ciremai using Fault and Fracture Density (FFD) Method, which is correlated to the geochemistry of geothermal manifestations around the mountain. This FFD method is using SRTM data to draw lineaments, which are assumed associated with fractures and faults in the research area. These faults and fractures were assumed as the paths for reservoir fluids to reached surface as geothermal manifestations. The goal of this method is to analyze the density of those lineaments found in the research area. Based on this FFD Method, it is known that area with high density of lineaments located on Mt. Kromong at the northern side of Mt. Ciremai. This prospect area is proven by its higher geothermometer values compared to geothermometer values calculated at the south area of Mt. Ciremai. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal%20prospect" title="geothermal prospect">geothermal prospect</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20and%20fracture%20density" title=" fault and fracture density"> fault and fracture density</a>, <a href="https://publications.waset.org/abstracts/search?q=Mt.%20Ciremai" title=" Mt. Ciremai"> Mt. Ciremai</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20manifestation" title=" surface manifestation"> surface manifestation</a> </p> <a href="https://publications.waset.org/abstracts/64285/geothermal-prospect-prediction-at-mt-ciremai-using-fault-and-fracture-density-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Geothermal Energy Potential Estimates of Niger Delta Basin from Recent Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olumide%20J.%20Adedapo">Olumide J. Adedapo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, geothermal energy resource maps of the Niger Delta Basin were constructed using borehole thermal log data from over 300 deep wells. Three major geothermal anomalies were delineated and quantitatively interpreted in both onshore and offshore parts of the Niger Delta. The geothermal maps present the distribution of geothermal energy stored in the sedimentary rock mass in two ways: the accessible resources in depth interval 0-4000 m and static geothermal energy resources stored in the complete sedimentary infill of the basin (from the ground surface to the basement). The first map shows two major onshore anomalies, one in the north (with maximum energy values, 800 GJ/m2), another in the east to northeastern part (maximum energy values of 1250–1500 GJ/m2). Another two major anomalies occur offshore, one in the south with values of 750-1000 GJ/m2, occurring at about 100 km seawards and the other, in the southwest offshore with values 750-1250 GJ/m2, still at about 100 km from the shore. A second map of the Niger Delta shows a small anomaly in the northern part with the maximum value of 1500 GJ/m2 and a major anomaly occurring in the eastern part of the basin, onshore, with values of 2000-3500 GJ/m2. Offshore in the south and southwest anomalies in the total sedimentary rock mass occur with highest values up to 4000GJ/m2, with the southwestern anomaly extending west to the shore. It is much of interest to note the seaward–westward extension of these anomalies both in size, configuration, and magnitude for the geothermal energy in the total sedimentary thickness to the underlying basement. These anomalous fields show the most favourable locations and areas for further work on geothermal energy resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal%20energy" title="geothermal energy">geothermal energy</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore" title=" offshore"> offshore</a>, <a href="https://publications.waset.org/abstracts/search?q=Niger%20delta" title=" Niger delta"> Niger delta</a>, <a href="https://publications.waset.org/abstracts/search?q=basin" title=" basin "> basin </a> </p> <a href="https://publications.waset.org/abstracts/56752/geothermal-energy-potential-estimates-of-niger-delta-basin-from-recent-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Adsorption Cooling Using Hybrid Energy Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Benelmir">R. Benelmir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20El%20Kadri"> M. El Kadri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Donnot"> A. Donnot</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Descieux"> D. Descieux</a> </p> <p class="card-text"><strong>Abstract:</strong></p> HVAC represents a significant part of energy needs in buildings. Integrating renewable energy in cooling processes contributes to reducing primary energy consumption. Sorption refrigeration allows cold production through the use of solar/biomass/geothermal energy or even valuation of waste heat. This work presents an analysis of an experimental bench incorporating an adsorption chiller driven by hybrid energy resources associating solar thermal collectors with a cogeneration gas engine and a geothermal heat pump. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20cooling" title="solar cooling">solar cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=cogeneration" title=" cogeneration"> cogeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20heat%20pump" title=" geothermal heat pump"> geothermal heat pump</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20energy%20resources" title=" hybrid energy resources"> hybrid energy resources</a> </p> <a href="https://publications.waset.org/abstracts/48750/adsorption-cooling-using-hybrid-energy-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Thermal Effects on Wellbore Stability and Fluid Loss in High-Temperature Geothermal Drilling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mubarek%20Alpkiray">Mubarek Alpkiray</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Nguyen"> Tan Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Arild%20Saasen"> Arild Saasen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geothermal drilling operations contain numerous challenges that are encountered to increase the well cost and nonproductive time. Fluid loss is one of the most undesirable troublesome that can cause well abandonment in geothermal drilling. Lost circulation can be seen due to natural fractures, high mud weight, and extremely high formation temperatures. This challenge may cause wellbore stability problems and lead to expensive drilling operations. Wellbore stability is the main domain that should be considered to mitigate or prevent fluid loss into the formation. This paper describes the causes of fluid loss in the Pamukoren geothermal field in Turkey. A geomechanics approach integration and assessment is applied to help the understanding of fluid loss problems. In geothermal drillings, geomechanics is primarily based on rock properties, in-situ stress characterization, the temperature of the rock, determination of stresses around the wellbore, and rock failure criteria. Since a high-temperature difference between the wellbore wall and drilling fluid is presented, temperature distribution through the wellbore is estimated and implemented to the wellbore stability approach. This study reviewed geothermal drilling data to analyze temperature estimation along the wellbore, the cause of fluid loss and stored electric capacity of the reservoir. Our observation demonstrates the geomechanical approach's significant role in understanding safe drilling operations on high-temperature wells. Fluid loss is encountered due to thermal stress effects around the borehole. This paper provides a wellbore stability analysis for a geothermal drilling operation to discuss the causes of lost circulation resulting in nonproductive time and cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal%20wells" title="geothermal wells">geothermal wells</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=wellbore%20stresses" title=" wellbore stresses"> wellbore stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling%20fluid%20loss" title=" drilling fluid loss"> drilling fluid loss</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stress" title=" thermal stress"> thermal stress</a> </p> <a href="https://publications.waset.org/abstracts/143311/thermal-effects-on-wellbore-stability-and-fluid-loss-in-high-temperature-geothermal-drilling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Integrating Circular Economy Framework into Life Cycle Analysis: An Exploratory Study Applied to Geothermal Power Generation Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jingyi%20Li">Jingyi Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurence%20Stamford"> Laurence Stamford</a>, <a href="https://publications.waset.org/abstracts/search?q=Alejandro%20Gallego-Schmid"> Alejandro Gallego-Schmid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Renewable electricity has become an indispensable contributor to achieving net-zero by the mid-century to tackle climate change. Unlike solar, wind, or hydro, geothermal was stagnant in its electricity production development for decades. However, with the significant breakthrough made in recent years, especially the implementation of enhanced geothermal systems (EGS) in various regions globally, geothermal electricity could play a pivotal role in alleviating greenhouse gas emissions. Life cycle assessment has been applied to analyze specific geothermal power generation technologies, which proposed suggestions to optimize its environmental performance. For instance, selecting a high heat gradient region enables a higher flow rate from the production well and extends the technical lifespan. Although such process-level improvements have been made, the significance of geothermal power generation technologies so far has not explicitly displayed its competitiveness on a broader horizon. Therefore, this review-based study integrates a circular economy framework into life cycle assessment, clarifying the underlying added values for geothermal power plants to complete the sustainability profile. The derived results have provided an enlarged platform to discuss geothermal power generation technologies: (i) recover the heat and electricity from the process to reduce the fossil fuel requirements; (ii) recycle the construction materials, such as copper, steel, and aluminum for future projects; (iii) extract the lithium ions from geothermal brine and make geothermal reservoir become a potential supplier of the lithium battery industry; (iv) repurpose the abandoned oil and gas wells to build geothermal power plants; (v) integrate geothermal energy with other available renewable energies (e.g., solar and wind) to provide heat and electricity as a hybrid system at different weather; (vi) rethink the fluids used in stimulation process (EGS only), replace water with CO2 to achieve negative emissions from the system. These results provided a new perspective to the researchers, investors, and policymakers to rethink the role of geothermal in the energy supply network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate" title="climate">climate</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=R%20strategies" title=" R strategies"> R strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/143531/integrating-circular-economy-framework-into-life-cycle-analysis-an-exploratory-study-applied-to-geothermal-power-generation-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Investigation of Geothermal Gradient of the Niger Delta from Recent Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adedapo%20Jepson%20Olumide">Adedapo Jepson Olumide</a>, <a href="https://publications.waset.org/abstracts/search?q=Kurowska%20Ewa"> Kurowska Ewa</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Schoeneich"> K. Schoeneich</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikpokonte%20A.%20Enoch"> Ikpokonte A. Enoch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, subsurface temperature measured from continuous temperature logs were used to determine the geothermal gradient of NigerDelta sedimentary basin. The measured temperatures were corrected to the true subsurface temperatures by applying the American Association of Petroleum Resources (AAPG) correction factor, borehole temperature correction factor with La Max’s correction factor and Zeta Utilities borehole correction factor. Geothermal gradient in this basin ranges from 1.20C to 7.560C/100m. Six geothermal anomalies centres were observed at depth in the southern parts of the Abakaliki anticlinorium around Onitsha, Ihiala, Umuaha area and named A1 to A6 while two more centre appeared at depth of 3500m and 4000m named A7 and A8 respectively. Anomaly A1 describes the southern end of the Abakaliki anticlinorium and extends southwards, anomaly A2 to A5 were found associated with a NW-SE structural alignment of the Calabar hinge line with structures describing the edge of the Niger Delta basin with the basement block of the Oban massif. Anomaly A6 locates in the south-eastern part of the basin offshore while A7 and A8 are located in the south western part of the basin offshore. At the average exploratory depth of 3500m, the geothermal gradient values for these anomalies A1, A2, A3, A4, A5, A6, A7, and A8 are 6.50C/100m, 1.750C/100m, 7.50C/100m, 1.250C/100m, 6.50C/100m, 5.50C/100m, 60C/100m, and 2.250C/100m respectively. Anomaly A8 area may yield higher thermal value at greater depth than 3500m. These results show that anomalies areas of A1, A3, A5, A6 and A7 are potentially prospective and explorable for geothermal energy using abandoned oil wells in the study area. Anomalies A1, A3.A5, A6 occur at areas where drilled boreholes were not exploitable for oil and gas but for the remaining areas where wells are so exploitable there appears no geothermal anomaly. Geothermal energy is environmentally friendly, clean and reversible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temperature%20logs" title="temperature logs">temperature logs</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20gradient%20anomalies" title=" geothermal gradient anomalies"> geothermal gradient anomalies</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20energy" title=" alternative energy"> alternative energy</a>, <a href="https://publications.waset.org/abstracts/search?q=Niger%20delta%20basin" title=" Niger delta basin"> Niger delta basin</a> </p> <a href="https://publications.waset.org/abstracts/56754/investigation-of-geothermal-gradient-of-the-niger-delta-from-recent-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> Potential Opportunity and Challenge of Developing Organic Rankine Cycle Geothermal Power Plant in China Based on an Energy-Economic Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiachen%20Wang">Jiachen Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongxu%20Ji"> Dongxu Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geothermal power generation is a mature technology with zero carbon emission and stable power output, which could play a vital role as an optimum substitution of base load technology in China’s future decarbonization society. However, the development of geothermal power plants in China is stagnated for a decade due to the underestimation of geothermal energy and insufficient favoring policy. Lack of understanding of the potential value of base-load technology and environmental benefits is the critical reason for disappointed policy support. This paper proposed a different energy-economic model to uncover the potential benefit of developing a geothermal power plant in Puer, including the value of base-load power generation, and environmental and economic benefits. Optimization of the Organic Rankine Cycle (ORC) for maximum power output and minimum Levelized cost of electricity was first conducted. This process aimed at finding the optimum working fluid, turbine inlet pressure, pinch point temperature difference and superheat degrees. Then the optimal ORC model was sent to the energy-economic model to simulate the potential economic and environmental benefits. Impact of geothermal power plants based on the scenarios of implementing carbon trade market, the direct subsidy per electricity generation and nothing was tested. In addition, a requirement of geothermal reservoirs, including geothermal temperature and mass flow rate for a competitive power generation technology with other renewables, was listed. The result indicated that the ORC power plant has a significant economic and environmental benefit over other renewable power generation technologies when implementing carbon trading market and subsidy support. At the same time, developers must locate the geothermal reservoirs with minimum temperature and mass flow rate of 130 degrees and 50 m/s to guarantee a profitable project under nothing scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal%20power%20generation" title="geothermal power generation">geothermal power generation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20model" title=" energy model"> energy model</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/164980/potential-opportunity-and-challenge-of-developing-organic-rankine-cycle-geothermal-power-plant-in-china-based-on-an-energy-economic-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Response Surface Methodology to Optimize the Performance of a Co2 Geothermal Thermosyphon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Badache%20Messaoud">Badache Messaoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geothermal thermosyphons (GTs) are increasingly used in many heating and cooling geothermal applications owing to their high heat transfer performance. This paper proposes a response surface methodology (RSM) to investigate and optimize the performance of a CO2 geothermal thermosyphon. The filling ratio (FR), temperature, and flow rate of the heat transfer fluid are selected as the designing parameters, and heat transfer rate and effectiveness are adopted as response parameters (objective functions). First, a dedicated experimental GT test bench filled with CO2 was built and subjected to different test conditions. An RSM was used to establish corresponding models between the input parameters and responses. Various diagnostic tests were used to assess evaluate the quality and validity of the best-fit models, which explain respectively 98.9% and 99.2% of the output result’s variability. Overall, it is concluded from the RSM analysis that the heat transfer fluid inlet temperatures and the flow rate are the factors that have the greatest impact on heat transfer (Q) rate and effectiveness (εff), while the FR has only a slight effect on Q and no effect on εff. The maximal heat transfer rate and effectiveness achieved are 1.86 kW and 47.81%, respectively. Moreover, these optimal values are associated with different flow rate levels (mc level = 1 for Q and -1 for εff), indicating distinct operating regions for maximizing Q and εff within the GT system. Therefore, a multilevel optimization approach is necessary to optimize both the heat transfer rate and effectiveness simultaneously. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal%20thermosiphon" title="geothermal thermosiphon">geothermal thermosiphon</a>, <a href="https://publications.waset.org/abstracts/search?q=co2" title=" co2"> co2</a>, <a href="https://publications.waset.org/abstracts/search?q=Response%20surface%20methodology" title=" Response surface methodology"> Response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20performance" title=" heat transfer performance"> heat transfer performance</a> </p> <a href="https://publications.waset.org/abstracts/168575/response-surface-methodology-to-optimize-the-performance-of-a-co2-geothermal-thermosyphon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Case Study: The Analysis of Maturity of West Buru Basin and the Potential Development of Geothermal in West Buru Island</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kefi%20Rahmadio">Kefi Rahmadio</a>, <a href="https://publications.waset.org/abstracts/search?q=Filipus%20Armando%20Ginting"> Filipus Armando Ginting</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Nainggolan"> Richard Nainggolan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research shows the formation of the West Buru Basin and the potential utilization of this West Buru Basin as a geothermal potential. The research area is West Buru Island which is part of the West Buru Basin. The island is located in Maluku Province, with its capital city named Namlea. The island is divided into 10 districts, namely District Kepalamadan, Airbuaya District, Wapelau District, Namlea District, Waeapo District, Batabual District, Namrole District, Waesama District, Leksula District, and Ambalau District. The formation in this basin is Permian-Quarter. They start from the Formation Ghegan, Dalan Formation, Mefa Formation, Kuma Formation, Waeken Formation, Wakatin Formation, Ftau Formation and Leko Formation. These formations are composing this West Buru Basin. Determination of prospect area in the geothermal area with preliminary investigation stage through observation of manifestation, topographic shape and structure are found around prospect area. This is done because there is no data of earth that support the determination of prospect area more accurately. In Waepo area, electric power generated based on field observation and structural analysis, geothermal area of Waeapo was approximately 6 km², with reference to the SNI 'Classification of Geothermal Potential' (No.03-5012-1999), an area of 1 km² is assumed to be 12.5 MWe. The speculative potential of this area is (Q) = 6 x 12.5 MWe = 75 MWe. In the Bata Bual area, the geothermal prospect projected 4 km², the speculative potential of the Bata Bual area is worth (Q) = 4 x 12.5 MWe = 50 MWe. In Kepala Madan area, based on the estimation of manifestation area, there is a wide area of prospect in Kepala Madan area about 4 km². The geothermal energy potential of the speculative level in Kepala Madan district is (Q) = 4 x 12.5 MWe = 50 MWe. These three areas are the largest geothermal potential on the island of West Buru. From the above research, it can be concluded that there is potential in West Buru Island. Further exploration is needed to find greater potential. Therefore, researchers want to explain the geothermal potential contained in the West Buru Basin, within the scope of West Buru Island. This potential can be utilized for the community of West Buru Island. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=West%20Buru%20basin" title="West Buru basin">West Buru basin</a>, <a href="https://publications.waset.org/abstracts/search?q=West%20Buru%20island" title=" West Buru island"> West Buru island</a>, <a href="https://publications.waset.org/abstracts/search?q=potential" title=" potential"> potential</a>, <a href="https://publications.waset.org/abstracts/search?q=Waepo" title=" Waepo"> Waepo</a>, <a href="https://publications.waset.org/abstracts/search?q=Bata%20Bual" title=" Bata Bual"> Bata Bual</a>, <a href="https://publications.waset.org/abstracts/search?q=Kepala%20Madan" title=" Kepala Madan"> Kepala Madan</a> </p> <a href="https://publications.waset.org/abstracts/83714/case-study-the-analysis-of-maturity-of-west-buru-basin-and-the-potential-development-of-geothermal-in-west-buru-island" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Detecting Potential Geothermal Sites by Using Well Logging, Geophysical and Remote Sensing Data at Siwa Oasis, Western Desert, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amr%20S.%20Fahil">Amr S. Fahil</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20Ghoneim"> Eman Ghoneim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Egypt made significant efforts during the past few years to discover significant renewable energy sources. Regions in Egypt that have been identified for geothermal potential investigation include the Gulf of Suez and the Western Desert. One of the most promising sites for the development of Egypt's Northern Western Desert is Siwa Oasis. The geological setting of the oasis, a tectonically generated depression situated in the northernmost region of the Western desert, supports the potential for substantial geothermal resources. Field data obtained from 27 deep oil wells along the Western Desert included bottom-hole temperature (BHT) depth to basement measurements, and geological maps; data were utilized in this study. The major lithological units, elevation, surface gradient, lineaments density, and remote sensing multispectral and topographic were mapped together to generate the related physiographic variables. Eleven thematic layers were integrated in a geographic information system (GIS) to create geothermal maps to aid in the detection of significant potential geothermal spots along the Siwa Oasis and its vicinity. The contribution of total magnetic intensity data with reduction to the pole (RTP) to the first investigation of the geothermal potential in Siwa Oasis is applied in this work. The integration of geospatial data with magnetic field measurements showed a clear correlation between areas of high heat flow and magnetic anomalies. Such anomalies can be interpreted as related to the existence of high geothermal energy and dense rock, which also have high magnetic susceptibility. The outcomes indicated that the study area has a geothermal gradient ranging from 18 to 42 °C/km, a heat flow ranging from 24.7 to 111.3 m.W. k−1, a thermal conductivity of 1.3–2.65 W.m−1.k−1 and a measured amplitude temperature maximum of 100.7 °C. The southeastern part of the Siwa Oasis, and some sporadic locations on the eastern section of the oasis were found to have significant geothermal potential; consequently, this location is suitable for future geothermal investigation. The adopted method might be applied to identify significant prospective geothermal energy locations in other regions of Egypt and East Africa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20data" title="magnetic data">magnetic data</a>, <a href="https://publications.waset.org/abstracts/search?q=SRTM" title=" SRTM"> SRTM</a>, <a href="https://publications.waset.org/abstracts/search?q=depth%20to%20basement" title=" depth to basement"> depth to basement</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20gradient" title=" geothermal gradient"> geothermal gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20flow" title=" heat flow"> heat flow</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/162551/detecting-potential-geothermal-sites-by-using-well-logging-geophysical-and-remote-sensing-data-at-siwa-oasis-western-desert-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Formation of Mg-Silicate Scales and Inhibition of Their Scale Formation at Injection Wells in Geothermal Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Abebe%20Ebebo">Samuel Abebe Ebebo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scale precipitation causes a major issue for geothermal power plants because it reduces the production rate of geothermal energy. Each geothermal power plant's different chemical and physical conditions can cause the scale to precipitate under a particular set of fluid-rock interactions. Depending on the mineral, it is possible to have scale in the production well, steam separators, heat exchangers, reinjection wells, and everywhere in between. The scale consists mainly of smectite and trace amounts of chlorite, magnetite, quartz, hematite, dolomite, aragonite, and amorphous silica. The smectite scale is one of the difficult scales at injection wells in geothermal power plants. X-ray diffraction and chemical composition identify this smectite as Stevensite. The characteristics and the scale of each injection well line are different depending on the fluid chemistry. The smectite scale has been widely distributed in pipelines and surface plants. Mineral water equilibrium showed that the main factors controlling the saturation indices of smectite increased pH and dissolved Mg concentration due to the precipitate on the equipment surface. This study aims to characterize the scales and geothermal fluids collected from the Onuma geothermal power plant in Akita Prefecture, Japan. Field tests were conducted on October 30–November 3, 2021, at Onuma to determine the pH control methods for preventing magnesium silicate scaling, and as exemplified, the formation of magnesium silicate hydrates (M-S-H) with MgO to SiO2 ratios of 1.0 and pH values of 10 for one day has been studied at 25 °C. As a result, M-S-H scale formation could be suppressed, and stevensite formation could also be suppressed when we can decrease the pH of the fluid by less than 8.1, 7.4, and 8 (at 97 °C) in the fluid from O-3Rb and O-6Rb, O-10Rg, and O-12R, respectively. In this context, the scales and fluids collected from injection wells at a geothermal power plant in Japan were analyzed and characterized to understand the formation conditions of Mg-silicate scales with on-site synthesis experiments. From the results of the characterizations and on-site synthesis experiments, the inhibition method of their scale formation is discussed based on geochemical modeling in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium%20silicate" title="magnesium silicate">magnesium silicate</a>, <a href="https://publications.waset.org/abstracts/search?q=scaling" title=" scaling"> scaling</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitor" title=" inhibitor"> inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20power%20plant" title=" geothermal power plant"> geothermal power plant</a> </p> <a href="https://publications.waset.org/abstracts/184320/formation-of-mg-silicate-scales-and-inhibition-of-their-scale-formation-at-injection-wells-in-geothermal-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> The Influence of Bentonite on the Rheology of Geothermal Grouts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Ghafar">A. N. Ghafar</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Chaudhari"> O. A. Chaudhari</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Oettel"> W. Oettel</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Fontana"> P. Fontana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is a part of the EU project GEOCOND-Advanced materials and processes to improve performance and cost-efficiency of shallow geothermal systems and underground thermal storage. In heat exchange boreholes, to improve the heat transfer between the pipes and the surrounding ground, the space between the pipes and the borehole wall is normally filled with geothermal grout. Traditionally, bentonite has been a crucial component in most commercially available geothermal grouts to assure the required stability and impermeability. The investigations conducted in the early stage of this project during the benchmarking tests on some commercial grouts showed considerable sensitivity of the rheological properties of the tested grouts to the mixing parameters, i.e., mixing time and velocity. Further studies on this matter showed that bentonite, which has been one of the important constituents in most grout mixes, was probably responsible for such behavior. Apparently, proper amount of shear should be applied during the mixing process to sufficiently activate the bentonite. The higher the amount of applied shear the more the activation of bentonite, resulting in change in the grout rheology. This explains why, occasionally in the field applications, the flow properties of the commercially available geothermal grouts using different mixing conditions (mixer type, mixing time, mixing velocity) are completely different than expected. A series of tests were conducted on the grout mixes, with and without bentonite, using different mixing protocols. The aim was to eliminate/reduce the sensitivity of the rheological properties of the geothermal grouts to the mixing parameters by replacing bentonite with polymeric (non-clay) stabilizers. The results showed that by replacing bentonite with a proper polymeric stabilizer, the sensitivity of the grout mix on mixing time and velocity was to a great extent diminished. This can be considered as an alternative for the developers/producers of geothermal grouts to provide enhanced materials with less uncertainty in obtained results in the field applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20properties" title="flow properties">flow properties</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20grout" title=" geothermal grout"> geothermal grout</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20time" title=" mixing time"> mixing time</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20velocity" title=" mixing velocity"> mixing velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a> </p> <a href="https://publications.waset.org/abstracts/110317/the-influence-of-bentonite-on-the-rheology-of-geothermal-grouts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Reconnaissance Investigation of Thermal Springs in the Middle Benue Trough, Nigeria by Remote Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Tochukwu">N. Tochukwu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mukhopadhyay"> M. Mukhopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohamed"> A. Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is no new that Nigeria faces a continual power shortage problem due to its vast population power demand and heavy reliance on nonrenewable forms of energy such as thermal power or fossil fuel. Many researchers have recommended using geothermal energy as an alternative; however, Past studies focus on the geophysical & geochemical investigation of this energy in the sedimentary and basement complex; only a few studies incorporated the remote sensing methods. Therefore, in this study, the preliminary examination of geothermal resources in the Middle Benue was carried out using satellite imagery in ArcMap. Landsat 8 scene (TIR, NIR, Red spectral bands) was used to estimate the Land Surface Temperature (LST). The Maximum Likelihood Classification (MLC) technique was used to classify sites with very low, low, moderate, and high LST. The intermediate and high classification happens to be possible geothermal zones, and they occupy 49% of the study area (38077km2). Riverline were superimposed on the LST layer, and the identification tool was used to locate high temperate sites. Streams that overlap on the selected sites were regarded as geothermal springs as. Surprisingly, the LST results show lower temperatures (<36°C) at the famous thermal springs (Awe & Wukari) than some unknown rivers/streams found in Kwande (38°C), Ussa, (38°C), Gwer East (37°C), Yola Cross & Ogoja (36°C). Studies have revealed that temperature increases with depth. However, this result shows excellent geothermal resources potential as it is expected to exceed the minimum geothermal gradient of 25.47 with an increase in depth. Therefore, further investigation is required to estimate the depth of the causative body, geothermal gradients, and the sustainability of the reservoirs by geophysical and field exploration. This method has proven to be cost-effective in locating geothermal resources in the study area. Consequently, the same procedure is recommended to be applied in other regions of the Precambrian basement complex and the sedimentary basins in Nigeria to save a preliminary field survey cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ArcMap" title="ArcMap">ArcMap</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20resources" title=" geothermal resources"> geothermal resources</a>, <a href="https://publications.waset.org/abstracts/search?q=Landsat%208" title=" Landsat 8"> Landsat 8</a>, <a href="https://publications.waset.org/abstracts/search?q=LST" title=" LST"> LST</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20springs" title=" thermal springs"> thermal springs</a>, <a href="https://publications.waset.org/abstracts/search?q=MLC" title=" MLC"> MLC</a> </p> <a href="https://publications.waset.org/abstracts/142625/reconnaissance-investigation-of-thermal-springs-in-the-middle-benue-trough-nigeria-by-remote-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Development and Analysis of Multigeneration System by Using Combined Solar and Geothermal Energy Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umar%20Khan">Muhammad Umar Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Kumar"> Mahesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Faraz%20Neakakhtar"> Faraz Neakakhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although industrialization marks to the economy of a country yet it increases the pollution and temperature of the environment. The world is now shifting towards green energy because the utilization of fossil fuels is resulting in global warming. So we need to develop systems that can operate on renewable energy resources and have low heat losses. The combined solar and geothermal multigeneration system can solve this issue. Rather than making rankine cycle purely a solar-driven, heat from solar is used to drive vapour absorption cycle and reheated to generate power using geothermal reservoir. The results are displayed by using Engineering Equation Solver software, where inputs are varied to optimize the energy and exergy efficiencies of the system. The cooling effect is 348.2 KW, while the network output is 23.8 MW and reducing resultant emission of 105553 tons of CO₂ per year. This eco-friendly multigeneration system is capable of eliminating the use of fossil fuels and increasing the geothermal energy efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20effect" title="cooling effect">cooling effect</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly" title=" eco-friendly"> eco-friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title=" green energy"> green energy</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20loses" title=" heat loses"> heat loses</a>, <a href="https://publications.waset.org/abstracts/search?q=multigeneration%20system" title=" multigeneration system"> multigeneration system</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20output" title=" work output"> work output</a> </p> <a href="https://publications.waset.org/abstracts/92439/development-and-analysis-of-multigeneration-system-by-using-combined-solar-and-geothermal-energy-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> A Comparative Study on Supercritical C02 and Water as Working Fluids in a Heterogeneous Geothermal Reservoir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musa%20D.%20Aliyu">Musa D. Aliyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouahid%20Harireche"> Ouahid Harireche</a>, <a href="https://publications.waset.org/abstracts/search?q=Colin%20D.%20Hills"> Colin D. Hills</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The incapability of supercritical C02 to transport and dissolve mineral species from the geothermal reservoir to the fracture apertures and other important parameters in heat mining makes it an attractive substance for Heat extraction from hot dry rock. In other words, the thermodynamic efficiency of hot dry rock (HDR) reservoirs also increases if supercritical C02 is circulated at excess temperatures of 3740C without the drawbacks connected with silica dissolution. Studies have shown that circulation of supercritical C02 in homogenous geothermal reservoirs is quite encouraging; in comparison to that of the water. This paper aims at investigating the aforementioned processes in the case of the heterogeneous geothermal reservoir located at the Soultz site (France). The MultiPhysics finite element package COMSOL with an interface of coupling different processes encountered in the geothermal reservoir stimulation is used. A fully coupled numerical model is developed to study the thermal and hydraulic processes in order to predict the long-term operation of the basic reservoir parameters that give optimum energy production. The results reveal that the temperature of the SCC02 at the production outlet is higher than that of water in long-term stimulation; as the temperature is an essential ingredient in rating the energy production. It is also observed that the mass flow rate of the SCC02 is far more favourable compared to that of water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEM" title="FEM">FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=HDR" title=" HDR"> HDR</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20reservoir" title=" heterogeneous reservoir"> heterogeneous reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=stimulation" title=" stimulation"> stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20C02" title=" supercritical C02"> supercritical C02</a> </p> <a href="https://publications.waset.org/abstracts/37222/a-comparative-study-on-supercritical-c02-and-water-as-working-fluids-in-a-heterogeneous-geothermal-reservoir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Hg Anomalies and Soil Temperature Distribution to Delineate Upflow and Outflow Zone in Bittuang Geothermal Prospect Area, south Sulawesi, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adhitya%20Mangala">Adhitya Mangala</a>, <a href="https://publications.waset.org/abstracts/search?q=Yobel"> Yobel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bittuang geothermal prospect area located at Tana Toraja district, South Sulawesi. The geothermal system of the area related to Karua Volcano eruption product. This area has surface manifestation such as fumarole, hot springs, sinter silica and mineral alteration. Those prove that there are hydrothermal activities in the subsurface. However, the project and development of the area have not implemented yet. One of the important elements in geothermal exploration is to determine upflow and outflow zone. This information very useful to identify the target for geothermal wells and development which it is a risky task. The methods used in this research were Mercury (Hg) anomalies in soil, soil and manifestation temperature distribution and fault fracture density from 93 km² research area. Hg anomalies performed to determine the distribution of hydrothermal alteration. Soil and manifestation temperature distribution were conducted to estimate heat distribution. Fault fracture density (FFD) useful to determine fracture intensity and trend from surface observation. Those deliver Hg anomaly map, soil and manifestation temperature map that combined overlayed to fault fracture density map and geological map. Then, the conceptual model made from north – south, and east – west cross section to delineate upflow and outflow zone in this area. The result shows that upflow zone located in northern – northeastern of the research area with the increase of elevation and decrease of Hg anomalies and soil temperature. The outflow zone located in southern - southeastern of the research area which characterized by chloride, chloride - bicarbonate geothermal fluid type, higher soil temperature, and Hg anomalies. The range of soil temperature distribution from 16 – 19 °C in upflow and 19 – 26.5 °C in the outflow. The range of Hg from 0 – 200 ppb in upflow and 200 – 520 ppb in the outflow. Structural control of the area show northwest – southeast trend. The boundary between upflow and outflow zone in 1550 – 1650 m elevation. This research delivers the conceptual model with innovative methods that useful to identify a target for geothermal wells, project, and development in Bittuang geothermal prospect area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bittuang%20geothermal%20prospect%20area" title="Bittuang geothermal prospect area">Bittuang geothermal prospect area</a>, <a href="https://publications.waset.org/abstracts/search?q=Hg%20anomalies" title=" Hg anomalies"> Hg anomalies</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20temperature" title=" soil temperature"> soil temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=upflow%20and%20outflow%20zone" title=" upflow and outflow zone"> upflow and outflow zone</a> </p> <a href="https://publications.waset.org/abstracts/72738/hg-anomalies-and-soil-temperature-distribution-to-delineate-upflow-and-outflow-zone-in-bittuang-geothermal-prospect-area-south-sulawesi-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> LWD Acquisition of Caliper and Drilling Mechanics in a Geothermal Well, A Case Study in Sorik Marapi Field – Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinda%20B.%20Manurung">Vinda B. Manurung</a>, <a href="https://publications.waset.org/abstracts/search?q=Laila%20Warkhaida"> Laila Warkhaida</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Hutabarat"> David Hutabarat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sentanu%20Wisnuwardhana"> Sentanu Wisnuwardhana</a>, <a href="https://publications.waset.org/abstracts/search?q=Christovik%20Simatupang"> Christovik Simatupang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhani%20Sanjaya"> Dhani Sanjaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashadi"> Ashadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Redha%20B.%20Putra"> Redha B. Putra</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiki%20Yustendi"> Kiki Yustendi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The geothermal drilling environment presents many obstacles that have limited the use of directional drilling and logging-while-drilling (LWD) technologies, such as borehole washout, mud losses, severe vibration, and high temperature. The case study presented in this paper demonstrates a practice to enhance data logging in geothermal drilling by deploying advanced telemetry and LWD technologies. This operation is aiming continuous improvement in geothermal drilling operations. The case study covers a 12.25-in. hole section of well XX-05 in Pad XX of the Sorik Marapi Geothermal Field. LWD string consists of electromagnetic (EM) telemetry, pressure while drilling (PWD), vibration (DDSr), and acoustic calliper (ACAL). Through this tool configuration, the operator acquired drilling mechanics and caliper logs in real-time and recorded mode, enabling effective monitoring of wellbore stability. Throughout the real-time acquisition, EM-PPM telemetry had provided a three times faster data rate to the surface unit. With the integration of Caliper data and Drilling mechanics data (vibration and ECD -equivalent circulating density), the borehole conditions were more visible to the directional driller, allowing for better control of drilling parameters to minimize vibration and achieve optimum hole cleaning in washed-out or tight formation sequences. After reaching well TD, the recorded data from the caliper sensor indicated an average of 8.6% washout for the entire 12.25-in. interval. Washout intervals were compared with loss occurrence, showing potential for the caliper to be used as an indirect indicator of fractured intervals and validating fault trend prognosis. This LWD case study has given added value in geothermal borehole characterization for both drilling operation and subsurface. Identified challenges while running LWD in this geothermal environment need to be addressed for future improvements, such as the effect of tool eccentricity and the impact of vibration. A perusal of both real-time and recorded drilling mechanics and caliper data has opened various possibilities for maximizing sensor usage in future wells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal%20drilling" title="geothermal drilling">geothermal drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20formation" title=" geothermal formation"> geothermal formation</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20technologies" title=" geothermal technologies"> geothermal technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=logging-while-drilling" title=" logging-while-drilling"> logging-while-drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=caliper" title=" caliper"> caliper</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a> </p> <a href="https://publications.waset.org/abstracts/148960/lwd-acquisition-of-caliper-and-drilling-mechanics-in-a-geothermal-well-a-case-study-in-sorik-marapi-field-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Thermal and Radon-222 Appraisal in Geothermal Aquifer System, Southeastern Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agoubi%20Belgacem">Agoubi Belgacem</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Kharroubi"> Adel Kharroubi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geothermal groundwater is the main water source to supply various sectors in El Hamma city, southeastern Tunisia. This region was long the destination of thousands of people from Tunisia and neighboring countries for care and bathing. The main objective of this study is to understand the groundwater mineralization origins and factors that control. The second goal is the appraisal of radon in geothermal groundwater in the study area. For this aim, geothermal groundwater was sampled and collected from different locations (thermal baths and deep wells). Physical parameters were measured and major ions were analyzed. Results reveal three water types. The water first type has Na-Mg-Ca-SO4-Cl facies and T>55°C. The second water type dominated by Na-Ca-Cl-SO4 facies with a temperature < 45 °C. However the third water type is dominated by Ca-SO4-Na-Cl-Mg. The three water types may be controlled by depth and geology. The first represent groundwater from deep aquifer (lower cretaceous), the second type was the shallow aquifer and the first is mixed water from deep and shallow water with a temperature ranging from 45 to 55°C. Measured Radon shows that shallow aquifer has a higher 222Rn concentration (677 to 2903 Bq.m-3) than deep water (203 to 1100 Bq.m-3). R-222 in El Hamma thermal aquifer was controlled by structures, porosity and permeability of aquifers. Geostatistical analyses of hydrogeological data and radon activities confirm the vertical flow and communication between deep and shallow aquifers through vertical faults system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radon-222" title="Radon-222">Radon-222</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal" title=" geothermal"> geothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunisia" title=" Tunisia"> Tunisia</a> </p> <a href="https://publications.waset.org/abstracts/36998/thermal-and-radon-222-appraisal-in-geothermal-aquifer-system-southeastern-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Control of the Pest Bemisia tabaci With the Entomopathogenic Fungus Beauveria bassiana in a Geothermal Greenhouse in Southern Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Besma%20Hamrouni%20Assadi">Besma Hamrouni Assadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sadok%20Belkadhi"> Mohamed Sadok Belkadhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The whitefly Bemisia tabaci is a cosmopolitan insect that causes serious damage to greenhouse crops. It is increasingly recognized that the use of biological control means such as entomopathogenic fungi presents a sustainable solution to integrated pest management programs. In order to reduce the use of chemical pesticides, Beauveria bassiana strain R444 was tested against eggs and second, third and fourth instar larvae of B. tabaci in a geothermal tomato greenhouse in southern Tunisia. This entomopathogenic fungus was compared to a chemical pesticide Imidacloprid and an untreated control. We found significant mortality of individuals caused by B. bassiana comparable to that caused by the chemical pesticide. After four weeks of follow-up, this fungus causes a mortality of eggs and larvae of B. tabaci that exceeds 60%. It shows that the use of entomopathogenic fungi can help reduce the use of pesticides to control B. tabaci on geothermal crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entomopathogenic%20fungi" title="entomopathogenic fungi">entomopathogenic fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bemisia%20tabaci" title=" Bemisia tabaci"> Bemisia tabaci</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20greenhouse" title=" geothermal greenhouse"> geothermal greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20pest%20management%20programs" title=" integrated pest management programs"> integrated pest management programs</a> </p> <a href="https://publications.waset.org/abstracts/157560/control-of-the-pest-bemisia-tabaci-with-the-entomopathogenic-fungus-beauveria-bassiana-in-a-geothermal-greenhouse-in-southern-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Seismic Inversion for Geothermal Exploration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20N.%20Masri">E. N. Masri</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Tak%C3%A1cs"> E. Takács</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amplitude Versus Offset (AVO) and simultaneous model-based impedance inversion techniques have not been utilized for geothermal exploration commonly; however, some recent publications called the attention that they can be very useful in the geothermal investigations. In this study, we present rock physical attributes obtained from 3D pre-stack seismic data and well logs collected in a study area of the NW part of Pannonian Basin where the geothermal reservoir is located in the fractured zones of Triassic basement and it was hit by three productive-injection well pairs. The holes were planned very successfully based on the conventional 3D migrated stack volume prior to this study. Subsequently, the available geophysical-geological datasets provided a great opportunity to test modern inversion procedures in the same area. In this presentation, we provide a summary of the theory and application of the most promising seismic inversion techniques from the viewpoint of geothermal exploration. We demonstrate P- and S-wave impedance, as well as the velocity (Vp and Vs), the density, and the Vp/Vs ratio attribute volumes calculated from the seismic and well-logging data sets. After a detailed discussion, we conclude that P-wave impedance and Vp/Vp ratio are the most helpful parameters for lithology discrimination in the study area. They detect the hot water saturated fracture zone very well thus they can be very useful in mapping the investigated reservoir. Integrated interpretation of all the obtained rock-physical parameters is essential. We are extending the above discussed pre-stack seismic tools by studying the possibilities of Elastic Impedance Inversion (EII) for geothermal exploration. That procedure provides two other useful rock-physical properties, the compressibility and the rigidity (Lamé parameters). Results of those newly created elastic parameters will also be demonstrated in the presentation. Geothermal extraction is of great interest nowadays; and we can adopt several methods have been successfully applied in the hydrocarbon exploration for decades to discover new reservoirs and reduce drilling risk and cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractured%20zone" title="fractured zone">fractured zone</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=well-logging" title=" well-logging"> well-logging</a>, <a href="https://publications.waset.org/abstracts/search?q=inversion" title=" inversion"> inversion</a> </p> <a href="https://publications.waset.org/abstracts/155865/seismic-inversion-for-geothermal-exploration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geothermal&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geothermal&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geothermal&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geothermal&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geothermal&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>