CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–29 of 29 results for author: <span class="mathjax">Frisch, H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Frisch%2C+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Frisch, H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Frisch%2C+H&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Frisch, H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09575">arXiv:2407.09575</a> <span> [<a href="https://arxiv.org/pdf/2407.09575">pdf</a>, <a href="https://arxiv.org/format/2407.09575">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Design of an 8-Channel 40 GS/s 20 mW/Ch Waveform Sampling ASIC in 65 nm CMOS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Park%2C+J">Jinseo Park</a>, <a href="/search/physics?searchtype=author&query=Angelico%2C+E">Evan Angelico</a>, <a href="/search/physics?searchtype=author&query=Arzac%2C+A">Andrew Arzac</a>, <a href="/search/physics?searchtype=author&query=Braga%2C+D">Davide Braga</a>, <a href="/search/physics?searchtype=author&query=Datta%2C+A">Ahan Datta</a>, <a href="/search/physics?searchtype=author&query=England%2C+T">Troy England</a>, <a href="/search/physics?searchtype=author&query=Ertley%2C+C">Camden Ertley</a>, <a href="/search/physics?searchtype=author&query=Fahim%2C+F">Farah Fahim</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H+J">Henry J. Frisch</a>, <a href="/search/physics?searchtype=author&query=Heintz%2C+M">Mary Heintz</a>, <a href="/search/physics?searchtype=author&query=Oberla%2C+E">Eric Oberla</a>, <a href="/search/physics?searchtype=author&query=Pastika%2C+N+J">Nathaniel J. Pastika</a>, <a href="/search/physics?searchtype=author&query=Rico-Aniles%2C+H+D">Hector D. Rico-Aniles</a>, <a href="/search/physics?searchtype=author&query=Rubinov%2C+P+M">Paul M. Rubinov</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiaoran Wang</a>, <a href="/search/physics?searchtype=author&query=Yeung%2C+Y+M+R">Yui Man Richmond Yeung</a>, <a href="/search/physics?searchtype=author&query=Zimmerman%2C+T+N">Tom N. Zimmerman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09575v2-abstract-short" style="display: inline;"> 1 ps timing resolution is the entry point to signature based searches relying on secondary/tertiary vertices and particle identification. We describe a preliminary design for PSEC5, an 8-channel 40 GS/s waveform-sampling ASIC in the TSMC 65 nm process targetting 1 ps resolution at 20 mW power per channel. Each channel consists of four fast and one slow switched capacitor arrays (SCA), allowing ps… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09575v2-abstract-full').style.display = 'inline'; document.getElementById('2407.09575v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09575v2-abstract-full" style="display: none;"> 1 ps timing resolution is the entry point to signature based searches relying on secondary/tertiary vertices and particle identification. We describe a preliminary design for PSEC5, an 8-channel 40 GS/s waveform-sampling ASIC in the TSMC 65 nm process targetting 1 ps resolution at 20 mW power per channel. Each channel consists of four fast and one slow switched capacitor arrays (SCA), allowing ps time resolution combined with a long effective buffer. Each fast SCA is 1.6 ns long and has a nominal sampling rate of 40 GS/s. The slow SCA is 204.8 ns long and samples at 5 GS/s. Recording of the analog data for each channel is triggered by a fast discriminator capable of multiple triggering during the window of the slow SCA. To achieve a large dynamic range, low leakage, and high bandwidth, the SCA sampling switches are implemented as 2.5 V nMOSFETs controlled by 1.2 V shift registers. Stored analog data are digitized by an external ADC at 10 bits or better. Specifications on operational parameters include a 4 GHz analog bandwidth and a dead time of 20 microseconds, corresponding to a 50 kHz readout rate, determined by the choice of the external ADC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09575v2-abstract-full').style.display = 'none'; document.getElementById('2407.09575v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16th Pisa Meeting on Advanced Detectors</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15621">arXiv:2310.15621</a> <span> [<a href="https://arxiv.org/pdf/2310.15621">pdf</a>, <a href="https://arxiv.org/ps/2310.15621">ps</a>, <a href="https://arxiv.org/format/2310.15621">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1080/23324309.2024.2393598">10.1080/23324309.2024.2393598 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exact solutions for radiative transfer with partial frequency redistribution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Frisch%2C+H">H茅l猫ne Frisch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15621v3-abstract-short" style="display: inline;"> The construction of exact solutions for radiative transfer in a plane-parallel medium has been addressed by Hemsch and Ferziger in 1972 for a partial frequency redistribution model of the formation of spectral lines consisting in a linear combination of frequency coherent and fully incoherent scattering. The method of solution is based on an eigenfunction expansion of the radiation field, leading… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15621v3-abstract-full').style.display = 'inline'; document.getElementById('2310.15621v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15621v3-abstract-full" style="display: none;"> The construction of exact solutions for radiative transfer in a plane-parallel medium has been addressed by Hemsch and Ferziger in 1972 for a partial frequency redistribution model of the formation of spectral lines consisting in a linear combination of frequency coherent and fully incoherent scattering. The method of solution is based on an eigenfunction expansion of the radiation field, leading to two singular integral equations with a Cauchy-type kernel, that have to be solved one after the other. We reconsider this problem, using as starting point the integral formulation of the radiative transfer equation, where the terms involving the coupling between the two scattering mechanisms are clearly displayed, as well as the primary source of photons. With an inverse Laplace transform, we recover the singular integral equations previously established and with Hilbert transforms, as in the previous work, recast them as boundary value problems in the complex plane. Their solutions are presented in detail for an infinite and a semi-infinite medium. The coupling terms are carefully analyzed and consistency with either the coherent or the incoherent limit is systematically checked. We recover the important results of the previous work that an exact solution exists for an infinite medium, whereas for a semi-infinite medium, which requires the introduction of half-space auxiliary functions, the solution is given by a Fredholm integral equation to be solved numerically. The solutions of the singular integral equations are used to construct explicit expressions providing the radiation field for an arbitrary primary source and for the Green function. An explicit expression is given for the radiation field emerging from a semi-infinite medium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15621v3-abstract-full').style.display = 'none'; document.getElementById('2310.15621v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 6 figures, to be published in the Journal of Computational and Theoretical Transport</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.02708">arXiv:2307.02708</a> <span> [<a href="https://arxiv.org/pdf/2307.02708">pdf</a>, <a href="https://arxiv.org/format/2307.02708">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168676">10.1016/j.nima.2023.168676 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-Dose TOF-PET Based on Surface Electron Production in Dielectric Laminar MCPs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Domurat-Sousa%2C+K">Kepler Domurat-Sousa</a>, <a href="/search/physics?searchtype=author&query=Poe%2C+C">Cameron Poe</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H+J">Henry J. Frisch</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+B+W">Bernhard W. Adams</a>, <a href="/search/physics?searchtype=author&query=Ertley%2C+C">Camden Ertley</a>, <a href="/search/physics?searchtype=author&query=Sullivan%2C+N">Neal Sullivan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.02708v3-abstract-short" style="display: inline;"> We present simulations of whole-body low-dose time-of-flight positron emission tomography (TOF-PET) based on the direct surface production [1] by 511 keV gamma rays of energetic electrons via the Photo-electric and Compton Effects, eliminating the scintillator and photodetector sub-systems in PET scanners. In Ref. [1] we described Microchannel Plates (MCP) constructed from thin dielectric laminae… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02708v3-abstract-full').style.display = 'inline'; document.getElementById('2307.02708v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.02708v3-abstract-full" style="display: none;"> We present simulations of whole-body low-dose time-of-flight positron emission tomography (TOF-PET) based on the direct surface production [1] by 511 keV gamma rays of energetic electrons via the Photo-electric and Compton Effects, eliminating the scintillator and photodetector sub-systems in PET scanners. In Ref. [1] we described Microchannel Plates (MCP) constructed from thin dielectric laminae containing heavy nuclei such as lead or tungsten (LMCP$^{\rm{TM}}$). The laminae surfaces are micro-patterned to form channels, which can then be functionalized to support secondary electron emission in the manner of conventional MCPs. We have simulated direct conversion using modifications to the TOPAS Geant4-based tool kit. A 20 $\times$ 20 $\times$ 2.54 cm$^3$ LMCP, composed of 150-micron thick lead-glass laminae, is predicted to have a $\ge 30$% conversion efficiency to a primary electron that penetrates an interior wall of a pore. The subsequent secondary electron shower is largely confined to one pore and can provide high space and time resolutions. In whole-body PET scanners the technique eliminates the scintillator and photodetector subsystems. The consequent absence of a photocathode allows assembly of large arrays at atmospheric pressure and less stringent vacuum requirements, including use of pumped and cycled systems. TOPAS simulations of the Derenzo and XCAT-brain phantoms are presented with dose reductions of factors of 100 and 1000 from a literature benchmark. New applications of PET at a significantly lower radiation dose include routine screening for early detection of pathologies, the use in diagnostics in previously unserved patient populations such as children, and a larger installed facility base in rural and under-served populations, where simpler gamma detectors and lower radiation doses may enable small low-cost portable PET scanners. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02708v3-abstract-full').style.display = 'none'; document.getElementById('2307.02708v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version 10a is the published manuscript in NIM-A. 22 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instrum. Meth. Vol. 1057 (Dec 2023) 168676 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07173">arXiv:2305.07173</a> <span> [<a href="https://arxiv.org/pdf/2305.07173">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Simulation of a Compton-based detector for low-dose high-resolution time-of-flight positron emission tomography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Domurat-Sousa%2C+K">Kepler Domurat-Sousa</a>, <a href="/search/physics?searchtype=author&query=Poe%2C+C+M">Cameron M. Poe</a>, <a href="/search/physics?searchtype=author&query=McDaniel%2C+M+S">Maya S. McDaniel</a>, <a href="/search/physics?searchtype=author&query=Spieglan%2C+E">Eric Spieglan</a>, <a href="/search/physics?searchtype=author&query=Shida%2C+J+F">Joao F. Shida</a>, <a href="/search/physics?searchtype=author&query=Angelico%2C+E">Evan Angelico</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+B+W">Bernhard W. Adams</a>, <a href="/search/physics?searchtype=author&query=La+Riviere%2C+P+J">Patrick J. La Riviere</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H+J">Henry J. Frisch</a>, <a href="/search/physics?searchtype=author&query=Squires%2C+A+H">Allison H. Squires</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07173v2-abstract-short" style="display: inline;"> Two major challenges in time-of-flight positron emission tomography (TOF-PET) are low spatial resolution and high radioactive dose to the patient, both of which result from limitations in detection technology rather than fundamental physics. A new type of TOF-PET detector employing low-atomic number (low-Z) scintillation media and large-area, high-resolution photodetectors to record Compton scatte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07173v2-abstract-full').style.display = 'inline'; document.getElementById('2305.07173v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07173v2-abstract-full" style="display: none;"> Two major challenges in time-of-flight positron emission tomography (TOF-PET) are low spatial resolution and high radioactive dose to the patient, both of which result from limitations in detection technology rather than fundamental physics. A new type of TOF-PET detector employing low-atomic number (low-Z) scintillation media and large-area, high-resolution photodetectors to record Compton scattering locations in the detector has been proposed as a promising alternative, but the minimum technical requirements for such a system have not yet been established. Here we present a simulation study evaluating the potential of a proposed low-Z detection medium, linear alkylbenzene (LAB) doped with a switchable molecular recorder, for next-generation TOF-PET detection. We developed a custom Monte Carlo simulation of full-body TOF-PET using the TOPAS Geant4 software package. By quantifying contributions and tradeoffs for energy, spatial, and timing resolution of the detector, we show that at reasonable combination of specifications, our likelihood-based identification of pairs of first interaction locations in the simulated detector identifies 87.1% of pairs with zero or negligible error, and correctly rejects 90% of all in-patient scatters. The same specifications give TOF-PET sensitivity of ~66.7% and PSF width 4.6 mm with clear contrast. A detector with these specifications provides a clear image of a brain phantom simulated at less than 1% of a standard radiotracer dose. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07173v2-abstract-full').style.display = 'none'; document.getElementById('2305.07173v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09524">arXiv:2212.09524</a> <span> [<a href="https://arxiv.org/pdf/2212.09524">pdf</a>, <a href="https://arxiv.org/format/2212.09524">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Adding Stroboscopic Muon Information For Reduction of Systematic Uncertainties in DUNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Frisch%2C+H+J">Henry J. Frisch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09524v1-abstract-short" style="display: inline;"> Muons have a similar latency/energy correlation from pion decay as do the neutrinos, and hence in each time-slice in a stroboscopic analysis measurements of their momentum spectra can reduce systematic uncertainties due to flux. There are, however, unique issues for muons: 1) during standard neutrino data-taking muon measurements in the forward direction must be in formidable high-flux high-radiat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09524v1-abstract-full').style.display = 'inline'; document.getElementById('2212.09524v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09524v1-abstract-full" style="display: none;"> Muons have a similar latency/energy correlation from pion decay as do the neutrinos, and hence in each time-slice in a stroboscopic analysis measurements of their momentum spectra can reduce systematic uncertainties due to flux. There are, however, unique issues for muons: 1) during standard neutrino data-taking muon measurements in the forward direction must be in formidable high-flux high-radiation environments; 2) because of the very high incident hadron flux in the Absorber Hall, muons must be detected after a thick absorber, imposing a range cutoff at a momentum much above the minimum neutrino momentum of interest; 3) the muon velocity, unlike that of neutrinos, differs from $c$, and so the muon detected time will require correction for the muon flight path, requiring measurement of the muon momentum; 4) multiple scattering is significant for low-momentum muons, and so a `good geometry' is essential for precision muon flux measurements; and 5) developments in psec timing allow muon momenta in the momentum region of interest to be measured precisely by time-of-flight over short distances with photodetectors of a few-psec resolution. Here we advocate that a program of extensive precise low-intensity muon momentum spectrum measurements be carried out early in the LBNF program before the Absorber Hall becomes too hot. The low-momentum muon spectra taken in this experiment would be cross-normalized to the high-intensity neutrino data through the currently planned muon monitors which can operate in both the low and high intensity geometries. While beyond the scope of uniquely muon-related issues, the note includes a proposal for an long-base-line oscillation analysis strategy that exploits stroboscopic information for both neutrinos and muons to reduce systematic uncertainties on the neutrino fluxes and event selection in Far and Near detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09524v1-abstract-full').style.display = 'none'; document.getElementById('2212.09524v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01715">arXiv:2108.01715</a> <span> [<a href="https://arxiv.org/pdf/2108.01715">pdf</a>, <a href="https://arxiv.org/format/2108.01715">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165801">10.1016/j.nima.2021.165801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-Dose High-Resolution TOF-PET Using Ionization-activated Multi-State Low-Z Detector Media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shida%2C+J+F">Joao Francisco Shida</a>, <a href="/search/physics?searchtype=author&query=Spieglan%2C+E">Eric Spieglan</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+B+W">Bernhard W. Adams</a>, <a href="/search/physics?searchtype=author&query=Angelico%2C+E">Evan Angelico</a>, <a href="/search/physics?searchtype=author&query=Domurat-Sousa%2C+K">Kepler Domurat-Sousa</a>, <a href="/search/physics?searchtype=author&query=Elagin%2C+A">Andrey Elagin</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H+J">Henry J. Frisch</a>, <a href="/search/physics?searchtype=author&query=La+Riviere%2C+P">Patrick La Riviere</a>, <a href="/search/physics?searchtype=author&query=Squires%2C+A+H">Allison H. Squires</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01715v1-abstract-short" style="display: inline;"> We propose PET scanners using low atomic number media that undergo a persistent local change of state along the paths of the Compton recoil electrons. Measurement of the individual scattering locations and angles, deposited energies, and recoil electron directions allows using the kinematical constraints of the 2-body Compton scattering process to perform a statistical time-ordering of the scatter… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01715v1-abstract-full').style.display = 'inline'; document.getElementById('2108.01715v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01715v1-abstract-full" style="display: none;"> We propose PET scanners using low atomic number media that undergo a persistent local change of state along the paths of the Compton recoil electrons. Measurement of the individual scattering locations and angles, deposited energies, and recoil electron directions allows using the kinematical constraints of the 2-body Compton scattering process to perform a statistical time-ordering of the scatterings, with a high probability of precisely identifying where the gamma first interacted in the detector. In these cases the Line-of-Response is measured with high resolution, determined by the underlying physics processes and not the detector segmentation. There are multiple such media that act through different mechanisms. As an example in which the change of state is quantum-mechanical through a change in molecular configuration, rather than thermodynamic, as in a bubble chamber, we present simulations of a two-state photoswitchable organic dye, a `Switchillator', that is activated to a fluorescent-capable state by the ionization of the recoil electrons. The activated state is persistent, and can be optically excited multiple times to image individual activated molecules. Energy resolution is provided by counting the activated molecules. Location along the LOR is implemented by large-area time-of-flight MCP-PMT photodetectors with single photon time resolution in the tens of ps and sub-mm spatial resolution. Simulations indicate a large reduction of dose. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01715v1-abstract-full').style.display = 'none'; document.getElementById('2108.01715v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07973">arXiv:2007.07973</a> <span> [<a href="https://arxiv.org/pdf/2007.07973">pdf</a>, <a href="https://arxiv.org/format/2007.07973">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.164702">10.1016/j.nima.2020.164702 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Segmented Anodes with Sub-millimeter Spatial Resolution for MCP-Based Photodetectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Park%2C+J">Jinseo Park</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+F">Fangjian Wu</a>, <a href="/search/physics?searchtype=author&query=Angelico%2C+E">Evan Angelico</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H+J">Henry J. Frisch</a>, <a href="/search/physics?searchtype=author&query=Spieglan%2C+E">Eric Spieglan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07973v2-abstract-short" style="display: inline;"> Micro-channel-plate-based photo-detectors are unique in being capable of covering areas of many square-meters while providing sub-millimeter space resolution, time resolutions of less than 10 picoseconds for charged particles, time resolutions of 30-50 psec for single photons. Incorporating a capacitively-coupled anode allows for the use of external pickup electrodes optimized for occupancy, rate,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07973v2-abstract-full').style.display = 'inline'; document.getElementById('2007.07973v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07973v2-abstract-full" style="display: none;"> Micro-channel-plate-based photo-detectors are unique in being capable of covering areas of many square-meters while providing sub-millimeter space resolution, time resolutions of less than 10 picoseconds for charged particles, time resolutions of 30-50 psec for single photons. Incorporating a capacitively-coupled anode allows for the use of external pickup electrodes optimized for occupancy, rate, and time/space resolution. The signal pickup antenna can be implemented as a printed circuit card with a pattern chosen to match the specific application needs. The electrode elements are typically either a 2-dimensional array of pads for high-occupancy/high-rate applications, or a 1-dimensional array of strips for low-occupancy/low-rate, and a lower channel count. Here we present pad patterns that enhance charge-sharing between pads to significantly lower the required channel count/area while maintaining spatial resolutions of 100 to 200 microns for charged particles and 400 microns to 1 mm for single photons. Patterns that use multiple signal layers in the capacitively-coupled printed circuit signal pickup board can lower the channel count even further, moving the scaling behavior in the number of pads versus total area from quadratic to linear. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07973v2-abstract-full').style.display = 'none'; document.getElementById('2007.07973v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.00580">arXiv:2004.00580</a> <span> [<a href="https://arxiv.org/pdf/2004.00580">pdf</a>, <a href="https://arxiv.org/format/2004.00580">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Measuring the Neutrino Event Time in Liquid Argon by a Post-Reconstruction One-parameter Fit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Angelico%2C+E">Evan Angelico</a>, <a href="/search/physics?searchtype=author&query=Elagin%2C+A">Andrey Elagin</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H+J">Henry J. Frisch</a>, <a href="/search/physics?searchtype=author&query=Wetstein%2C+M">Matthew Wetstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.00580v1-abstract-short" style="display: inline;"> We propose a relatively simple method to measure the event time in liquid Argon (LAr) TPC-based neutrino detectors that takes advantage of the topological reconstruction of each event from the TPC data prior to performing a one-parameter fit. Measured times and positions of detected photons are fit to the expected pattern of light from the tracks as reconstructed using the electron drift. The even… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.00580v1-abstract-full').style.display = 'inline'; document.getElementById('2004.00580v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.00580v1-abstract-full" style="display: none;"> We propose a relatively simple method to measure the event time in liquid Argon (LAr) TPC-based neutrino detectors that takes advantage of the topological reconstruction of each event from the TPC data prior to performing a one-parameter fit. Measured times and positions of detected photons are fit to the expected pattern of light from the tracks as reconstructed using the electron drift. The event can be treated as a rigid body with only the neutrino interaction time as a free parameter. The optical properties of LAr are comparable to those of water for Cherenkov light in visible wavelengths. Data-Monte Carlo comparisons of the light patterns, given the known track topology from electron drift, enable in situ calibration of the optical model and further optimization of the timing. A back-of-the-envelope calculation predicts that the single parameter fit for the interaction time requires a significantly lower photodetector coverage than needed for the same precision in conventional warm-liquid detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.00580v1-abstract-full').style.display = 'none'; document.getElementById('2004.00580v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.06491">arXiv:2003.06491</a> <span> [<a href="https://arxiv.org/pdf/2003.06491">pdf</a>, <a href="https://arxiv.org/format/2003.06491">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0008606">10.1063/5.0008606 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Air-Transfer Production Method for Large-Area Picosecond Photodetectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Angelico%2C+E">E. Angelico</a>, <a href="/search/physics?searchtype=author&query=Elagin%2C+A">A. Elagin</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H+J">H. J. Frisch</a>, <a href="/search/physics?searchtype=author&query=Spieglan%2C+E">E. Spieglan</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+B+W">B. W. Adams</a>, <a href="/search/physics?searchtype=author&query=Foley%2C+M+R">M. R. Foley</a>, <a href="/search/physics?searchtype=author&query=Minot%2C+M+J">M. J. Minot</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.06491v1-abstract-short" style="display: inline;"> We have designed and prototyped the process steps for the batch production of large-area micro-channel-plate photomultipliers (MCP-PMT) using the "air-transfer" assembly process developed with single $LAPPD^{\text{TM}}$ modules. Results are presented addressing the challenges of designing a robust package that can transmit large numbers of electrical signals for pad or strip readout from inside th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.06491v1-abstract-full').style.display = 'inline'; document.getElementById('2003.06491v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.06491v1-abstract-full" style="display: none;"> We have designed and prototyped the process steps for the batch production of large-area micro-channel-plate photomultipliers (MCP-PMT) using the "air-transfer" assembly process developed with single $LAPPD^{\text{TM}}$ modules. Results are presented addressing the challenges of designing a robust package that can transmit large numbers of electrical signals for pad or strip readout from inside the vacuum tube and hermetically sealing the large-perimeter window-body interface. We have also synthesized a photocathode in a large-area low-aspect-ratio volume, and shown that the micro-channel plates recover their functionality after cathode synthesis. The steps inform a design for a multi-module batch facility employing dual nested low-vacuum (LV) and ultra-high-vacuum (UHV) systems in a small-footprint. The facility design provides full access to multiple MCP-PMT modules prior to hermetic pinch-off for leak-checking and real-time photocathode optimization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.06491v1-abstract-full').style.display = 'none'; document.getElementById('2003.06491v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages; 13 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.10399">arXiv:1909.10399</a> <span> [<a href="https://arxiv.org/pdf/1909.10399">pdf</a>, <a href="https://arxiv.org/format/1909.10399">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2019.162834">10.1016/j.nima.2019.162834 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance of Large Area Picosecond Photo-Detectors (LAPPD) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lyashenko%2C+A+V">A. V. Lyashenko</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+B+W">B. W. Adams</a>, <a href="/search/physics?searchtype=author&query=Aviles%2C+M">M. Aviles</a>, <a href="/search/physics?searchtype=author&query=Cremer%2C+T">T. Cremer</a>, <a href="/search/physics?searchtype=author&query=Ertley%2C+C+D">C. D. Ertley</a>, <a href="/search/physics?searchtype=author&query=Foley%2C+M+R">M. R. Foley</a>, <a href="/search/physics?searchtype=author&query=Minot%2C+M+J">M. J. Minot</a>, <a href="/search/physics?searchtype=author&query=Popecki%2C+M+A">M. A. Popecki</a>, <a href="/search/physics?searchtype=author&query=Stochaj%2C+M+E">M. E. Stochaj</a>, <a href="/search/physics?searchtype=author&query=Worstell%2C+W+A">W. A. Worstell</a>, <a href="/search/physics?searchtype=author&query=Elam%2C+J+W">J. W. Elam</a>, <a href="/search/physics?searchtype=author&query=Mane%2C+A+U">A. U. Mane</a>, <a href="/search/physics?searchtype=author&query=Siegmund%2C+O+H+W">O. H. W. Siegmund</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H+J">H. J. Frisch</a>, <a href="/search/physics?searchtype=author&query=Elagin%2C+A+L">A. L. Elagin</a>, <a href="/search/physics?searchtype=author&query=Angelico%2C+E">E. Angelico</a>, <a href="/search/physics?searchtype=author&query=Spieglan%2C+E">E. Spieglan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.10399v1-abstract-short" style="display: inline;"> We report on performance results achieved for recently produced LAPPDs - largest comercially available planar geometry photodetectors based on microchannel plates. These results include electron gains of up to $10^{7}$, low dark noise rates ($\sim$100 Hz/cm$^{2}$ at a gain of $6\cdot10^6$), single photoelectron (PE) timing resolution of $\sim$50 picoseconds RMS (electronics limited), and single ph… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.10399v1-abstract-full').style.display = 'inline'; document.getElementById('1909.10399v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.10399v1-abstract-full" style="display: none;"> We report on performance results achieved for recently produced LAPPDs - largest comercially available planar geometry photodetectors based on microchannel plates. These results include electron gains of up to $10^{7}$, low dark noise rates ($\sim$100 Hz/cm$^{2}$ at a gain of $6\cdot10^6$), single photoelectron (PE) timing resolution of $\sim$50 picoseconds RMS (electronics limited), and single photoelectron spatial resolution along and across strips of 3.2mm (electronics limited) and 0.8 mm RMS respectively and high (about 25\% or higher in some units) QE uniform bi-alkali photocathodes. LAPPDs is a good candidate to be employed in neutrino experiments (e.g. ANNIE, WATCHMAN, DUNE), particle collider experiments (e.g. EIC), neutrinoless double-beta decay experiments (e.g. THEIA), medical and nuclear non-proliferation applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.10399v1-abstract-full').style.display = 'none'; document.getElementById('1909.10399v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication at NIMA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.01611">arXiv:1904.01611</a> <span> [<a href="https://arxiv.org/pdf/1904.01611">pdf</a>, <a href="https://arxiv.org/format/1904.01611">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.032008">10.1103/PhysRevD.100.032008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy and Flavor Discrimination Using Precision Time Structure in On-Axis Neutrino Beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Angelico%2C+E">Evan Angelico</a>, <a href="/search/physics?searchtype=author&query=Eisch%2C+J">Jonathan Eisch</a>, <a href="/search/physics?searchtype=author&query=Elagin%2C+A">Andrey Elagin</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H">Henry Frisch</a>, <a href="/search/physics?searchtype=author&query=Nagaitsev%2C+S">Sergei Nagaitsev</a>, <a href="/search/physics?searchtype=author&query=Wetstein%2C+M">Matthew Wetstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.01611v3-abstract-short" style="display: inline;"> We propose to use a higher-frequency RF bunch structure for the primary proton beam on target and precision timing to select different energy and flavor spectra from a wide-band neutrino beam, based on the relative arrival times of the neutrinos with respect to the RF bunch structure. This `stroboscopic' approach is complementary to techniques that select different neutrino energy spectra based on… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.01611v3-abstract-full').style.display = 'inline'; document.getElementById('1904.01611v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.01611v3-abstract-full" style="display: none;"> We propose to use a higher-frequency RF bunch structure for the primary proton beam on target and precision timing to select different energy and flavor spectra from a wide-band neutrino beam, based on the relative arrival times of the neutrinos with respect to the RF bunch structure. This `stroboscopic' approach is complementary to techniques that select different neutrino energy spectra based on the angle with respect to the beam axis. A timing-based approach allows for the selection of varying energy spectra from the same on-axis detector, and applies equally to both the near and far detectors in an oscillation experiment. Energy and flavor discrimination of neutrinos produced by hadrons in-flight will require proton bunch lengths on the order of 100 ps and commensurate time resolution in the detector. Correlating neutrino events with the parent proton interaction is currently limited by the nanosecond-scale width of the proton bunches impinging on the target. We show that these limitations can be addressed by using a superconducting RF cavity to rebunch the present 53.1 MHz RF bunch structure with a factor of 10 higher RF frequency, thus attaining the required shorter bunch length. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.01611v3-abstract-full').style.display = 'none'; document.getElementById('1904.01611v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 032008 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.06688">arXiv:1808.06688</a> <span> [<a href="https://arxiv.org/pdf/1808.06688">pdf</a>, <a href="https://arxiv.org/format/1808.06688">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="History and Philosophy of Physics">physics.hist-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Pisa and the Collider Detector at Fermilab: a History of the Establishment of Precision Physics With a Calorimetric Spectrometer at a Hadron Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Frisch%2C+H+J">Henry J. Frisch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.06688v1-abstract-short" style="display: inline;"> This is a personal and admittedly US-centric attempt to summarize the foundational impact of the Pisa CDF Group on the conceptual design, construction, and early operation of the CDF Detector at Fermilab. I have tried to go back to original documents where possible. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.06688v1-abstract-full" style="display: none;"> This is a personal and admittedly US-centric attempt to summarize the foundational impact of the Pisa CDF Group on the conceptual design, construction, and early operation of the CDF Detector at Fermilab. I have tried to go back to original documents where possible. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.06688v1-abstract-full').style.display = 'none'; document.getElementById('1808.06688v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited talk at Fisica e Fisici a Pisa nel Novecento, Nov. 7-9, 2017</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.05251">arXiv:1807.05251</a> <span> [<a href="https://arxiv.org/pdf/1807.05251">pdf</a>, <a href="https://arxiv.org/format/1807.05251">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Drifting Photons on Optical Paths: Mirrors, Sub-mm Resolution in 4 Dimensions, and Transverse/Longitudinal Phase Space: Exploiting Time Resolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Frisch%2C+H+J">Henry J. Frisch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.05251v1-abstract-short" style="display: inline;"> I discuss the status of MCP-based photo-detector amplification sections and Cherenkov light sources for precise timing measurements of charged particles and gamma rays. Sub-psec resolution is predicted for the large pulses such as those produced by a charged particle or electromagnetic shower traversing a photo-detector entrance window. Measuring events with sub-mm resolution in each of the 4 dime… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.05251v1-abstract-full').style.display = 'inline'; document.getElementById('1807.05251v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.05251v1-abstract-full" style="display: none;"> I discuss the status of MCP-based photo-detector amplification sections and Cherenkov light sources for precise timing measurements of charged particles and gamma rays. Sub-psec resolution is predicted for the large pulses such as those produced by a charged particle or electromagnetic shower traversing a photo-detector entrance window. Measuring events with sub-mm resolution in each of the 4 dimensions expands the optical phase space from 4 dimensions, allowing emittance transformations that can minimize expensive instrumented photo-sensitive area. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.05251v1-abstract-full').style.display = 'none'; document.getElementById('1807.05251v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited Talk at the 5th International Conference on Micro-Pattern Gas Detectors (MPGD2017); Temple University, Philadelphia; May 2017</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.01434">arXiv:1610.01434</a> <span> [<a href="https://arxiv.org/pdf/1610.01434">pdf</a>, <a href="https://arxiv.org/format/1610.01434">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2016.12.008">10.1016/j.nima.2016.12.008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Capacitively coupled pickup in MCP-based photodetectors using a conductive metallic anode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Angelico%2C+E">Evan Angelico</a>, <a href="/search/physics?searchtype=author&query=Seiss%2C+T">Todd Seiss</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+B">Bernhard Adams</a>, <a href="/search/physics?searchtype=author&query=Elagin%2C+A">Andrey Elagin</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H">Henry Frisch</a>, <a href="/search/physics?searchtype=author&query=Spieglan%2C+E">Eric Spieglan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.01434v1-abstract-short" style="display: inline;"> We have designed and tested a robust 20 $\times$ 20 cm$^2$ thin metal film internal anode capacitively coupled to an external array of signal pads or micro-strips for use in fast microchannel plate photodetectors. The internal anode, in this case a 10nm-thick NiCr film deposited on a 96% pure Al$_2$O$_3$ 3mm-thick ceramic plate and connected to HV ground, provides the return path for the electron… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.01434v1-abstract-full').style.display = 'inline'; document.getElementById('1610.01434v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.01434v1-abstract-full" style="display: none;"> We have designed and tested a robust 20 $\times$ 20 cm$^2$ thin metal film internal anode capacitively coupled to an external array of signal pads or micro-strips for use in fast microchannel plate photodetectors. The internal anode, in this case a 10nm-thick NiCr film deposited on a 96% pure Al$_2$O$_3$ 3mm-thick ceramic plate and connected to HV ground, provides the return path for the electron cascade charge. The multi-channel pickup array consists of a printed-circuit card or glass plate with metal signal pickups on one side and the signal ground plane on the other. The pickup can be put in close proximity to the bottom outer surface of the sealed photodetector, with no electrical connections through the photodetector hermetic vacuum package other than a single ground connection to the internal anode. Two pickup patterns were tested using a small commercial MCP-PMT as the signal source: 1) parallel 50$惟$ 25-cm-long micro-strips with an analog bandwidth of 1.5 GHz, and 2) a 20 $\times$ 20 cm$^2$ array of 2-dimensional square `pads' with sides of 1.27 cm or 2.54 cm. The rise-time of the fast input pulse is maintained for both pickup patterns. For the pad pattern, we observe 80% of the directly coupled amplitude. For the strip pattern we measure 34% of the directly coupled amplitude on the central strip of a broadened signal. The physical decoupling of the photodetector from the pickup pattern allows easy customization for different applications while maintaining high analog bandwidth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.01434v1-abstract-full').style.display = 'none'; document.getElementById('1610.01434v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.09865">arXiv:1609.09865</a> <span> [<a href="https://arxiv.org/pdf/1609.09865">pdf</a>, <a href="https://arxiv.org/format/1609.09865">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2016.12.033">10.1016/j.nima.2016.12.033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Separating Double-Beta Decay Events from Solar Neutrino Interactions in a Kiloton-Scale Liquid Scintillator Detector By Fast Timing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Elagin%2C+A">Andrey Elagin</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H">Henry Frisch</a>, <a href="/search/physics?searchtype=author&query=Naranjo%2C+B">Brian Naranjo</a>, <a href="/search/physics?searchtype=author&query=Ouellet%2C+J">Jonathan Ouellet</a>, <a href="/search/physics?searchtype=author&query=Winslow%2C+L">Lindley Winslow</a>, <a href="/search/physics?searchtype=author&query=Wongjirad%2C+T">Taritree Wongjirad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.09865v1-abstract-short" style="display: inline;"> We present a technique for separating nuclear double beta decay ($尾尾$-decay) events from background neutrino interactions due to $^{8}$B decays in the sun. This background becomes dominant in a kiloton-scale liquid-scintillator detector deep underground and is usually considered as irreducible due to an overlap in deposited energy with the signal. However, electrons from 0$谓尾尾$-decay often exceed… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.09865v1-abstract-full').style.display = 'inline'; document.getElementById('1609.09865v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.09865v1-abstract-full" style="display: none;"> We present a technique for separating nuclear double beta decay ($尾尾$-decay) events from background neutrino interactions due to $^{8}$B decays in the sun. This background becomes dominant in a kiloton-scale liquid-scintillator detector deep underground and is usually considered as irreducible due to an overlap in deposited energy with the signal. However, electrons from 0$谓尾尾$-decay often exceed the Cherenkov threshold in liquid scintillator, producing photons that are prompt and correlated in direction with the initial electron direction. The use of large-area fast photodetectors allows some separation of these prompt photons from delayed isotropic scintillation light and, thus, the possibility of reconstructing the event topology. Using a simulation of a 6.5~m radius liquid scintillator detector with 100~ps resolution photodetectors, we show that a spherical harmonics analysis of early-arrival light can discriminate between 0$谓尾尾$-decay signal and $^{8}$B solar neutrino background events on a statistical basis. Good separation will require the development of a slow scintillator with a 5 nsec risetime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.09865v1-abstract-full').style.display = 'none'; document.getElementById('1609.09865v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.02395">arXiv:1607.02395</a> <span> [<a href="https://arxiv.org/pdf/1607.02395">pdf</a>, <a href="https://arxiv.org/format/1607.02395">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/RTC.2016.7543167">10.1109/RTC.2016.7543167 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Modular Data Acquisition System using the 10 GSa/s PSEC4 Waveform Recording Chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bogdan%2C+M">M. Bogdan</a>, <a href="/search/physics?searchtype=author&query=Oberla%2C+E">E. Oberla</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H+J">H. J. Frisch</a>, <a href="/search/physics?searchtype=author&query=Wetstein%2C+M">M. Wetstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.02395v1-abstract-short" style="display: inline;"> We describe a modular multi-channel data acquisition system based on the 5-15 Gigasample-per-second waveform-recording PSEC4 chip. The system architecture incorporates two levels of hardware with FPGA-embedded system control and in-line data processing. The front-end unit is a 30-channel circuit board that holds five PSEC4 ASICs, a clock jitter cleaner, and a control FPGA. The analog bandwidth of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02395v1-abstract-full').style.display = 'inline'; document.getElementById('1607.02395v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.02395v1-abstract-full" style="display: none;"> We describe a modular multi-channel data acquisition system based on the 5-15 Gigasample-per-second waveform-recording PSEC4 chip. The system architecture incorporates two levels of hardware with FPGA-embedded system control and in-line data processing. The front-end unit is a 30-channel circuit board that holds five PSEC4 ASICs, a clock jitter cleaner, and a control FPGA. The analog bandwidth of the front-end signal path is 1.5 GHz. Each channel has an on-chip threshold-level discriminator that is monitored in the FPGA, from which a flexible on-board trigger decision can be formed. To instrument larger channel counts, a `back-end' 6U VME32 control card has been designed. Called the 'Central Card', it incorporates an Altera Arria-V FPGA that manages up to 8 front-end cards using one or two CAT5 network cables per board, which transmits the clock and communicates data packets over a custom serial protocol. Data can be read from the Central Card via USB, Ethernet, or dual SFP links, in addition to the VME interface. The Central Card can be configured as either Master or Slave, allowing one Master to receive data from up to 8 Slaves, with each Slave managing 8 30-channel front-end cards, allowing a single VME crate to control up to 1920 channels of the PSEC4 chip. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02395v1-abstract-full').style.display = 'none'; document.getElementById('1607.02395v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 4 figures, proceedings for the 2016 IEEE-NPSS Real-Time conference in Padova</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.01843">arXiv:1603.01843</a> <span> [<a href="https://arxiv.org/pdf/1603.01843">pdf</a>, <a href="https://arxiv.org/format/1603.01843">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> A Brief Technical History of the Large-Area Picosecond Photodetector (LAPPD) Collaboration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adams%2C+B+W">Bernhard W. Adams</a>, <a href="/search/physics?searchtype=author&query=Attenkofer%2C+K">Klaus Attenkofer</a>, <a href="/search/physics?searchtype=author&query=Bogdan%2C+M">Mircea Bogdan</a>, <a href="/search/physics?searchtype=author&query=Byrum%2C+K">Karen Byrum</a>, <a href="/search/physics?searchtype=author&query=Elagin%2C+A">Andrey Elagin</a>, <a href="/search/physics?searchtype=author&query=Elam%2C+J+W">Jeffrey W. Elam</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H+J">Henry J. Frisch</a>, <a href="/search/physics?searchtype=author&query=Genat%2C+J">Jean-Francois Genat</a>, <a href="/search/physics?searchtype=author&query=Grabas%2C+H">Herve Grabas</a>, <a href="/search/physics?searchtype=author&query=Gregar%2C+J">Joseph Gregar</a>, <a href="/search/physics?searchtype=author&query=Hahn%2C+E">Elaine Hahn</a>, <a href="/search/physics?searchtype=author&query=Heintz%2C+M">Mary Heintz</a>, <a href="/search/physics?searchtype=author&query=Insepov%2C+Z">Zinetula Insepov</a>, <a href="/search/physics?searchtype=author&query=Ivanov%2C+V">Valentin Ivanov</a>, <a href="/search/physics?searchtype=author&query=Jelinsky%2C+S">Sharon Jelinsky</a>, <a href="/search/physics?searchtype=author&query=Jokely%2C+S">Slade Jokely</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+S+W">Sun Wu Lee</a>, <a href="/search/physics?searchtype=author&query=Mane%2C+A+U">Anil. U. Mane</a>, <a href="/search/physics?searchtype=author&query=McPhate%2C+J">Jason McPhate</a>, <a href="/search/physics?searchtype=author&query=Minot%2C+M+J">Michael J. Minot</a>, <a href="/search/physics?searchtype=author&query=Murat%2C+P">Pavel Murat</a>, <a href="/search/physics?searchtype=author&query=Nishimura%2C+K">Kurtis Nishimura</a>, <a href="/search/physics?searchtype=author&query=Northrop%2C+R">Richard Northrop</a>, <a href="/search/physics?searchtype=author&query=Obaid%2C+R">Razib Obaid</a>, <a href="/search/physics?searchtype=author&query=Oberla%2C+E">Eric Oberla</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.01843v1-abstract-short" style="display: inline;"> The Large Area Picosecond PhotoDetector (LAPPD) Collaboration was formed in 2009 to develop large-area photodetectors capable of time resolutions measured in pico-seconds, with accompanying sub-millimeter spatial resolution. During the next three and one-half years the Collaboration developed the LAPPD design of 20 x 20 cm modules with gains greater than $10^7$ and non-uniformity less than $15\%$,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.01843v1-abstract-full').style.display = 'inline'; document.getElementById('1603.01843v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.01843v1-abstract-full" style="display: none;"> The Large Area Picosecond PhotoDetector (LAPPD) Collaboration was formed in 2009 to develop large-area photodetectors capable of time resolutions measured in pico-seconds, with accompanying sub-millimeter spatial resolution. During the next three and one-half years the Collaboration developed the LAPPD design of 20 x 20 cm modules with gains greater than $10^7$ and non-uniformity less than $15\%$, time resolution less than 50 psec for single photons and spatial resolution of 700~microns in both lateral dimensions. We describe the R\&D performed to develop large-area micro-channel plate glass substrates, resistive and secondary-emitting coatings, large-area bialkali photocathodes, and RF-capable hermetic packaging. In addition, the Collaboration developed the necessary electronics for large systems capable of precise timing, built up from a custom low-power 15-GigaSample/sec waveform sampling 6-channel integrated circuit and supported by a two-level modular data acquisition system based on Field-Programmable Gate Arrays for local control, data-sparcification, and triggering. We discuss the formation, organization, and technical successes and short-comings of the Collaboration. The Collaboration ended in December 2012 with a transition from R\&D to commercialization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.01843v1-abstract-full').style.display = 'none'; document.getElementById('1603.01843v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.00947">arXiv:1510.00947</a> <span> [<a href="https://arxiv.org/pdf/1510.00947">pdf</a>, <a href="https://arxiv.org/format/1510.00947">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2016.01.030">10.1016/j.nima.2016.01.030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The design and performance of a prototype water Cherenkov optical time-projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Oberla%2C+E">E. Oberla</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H+J">H. J. Frisch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.00947v1-abstract-short" style="display: inline;"> A first experimental test of tracking relativistic charged particles by `drifting' Cherenkov photons in a water-based optical time-projection chamber (OTPC) has been performed at the Fermilab Test Beam Facility. The prototype OTPC detector consists of a 77~cm long, 28~cm diameter, 40~kg cylindrical water mass instrumented with a combination of commercial $5.1\times5.1$~cm$^2$ micro-channel plate p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.00947v1-abstract-full').style.display = 'inline'; document.getElementById('1510.00947v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.00947v1-abstract-full" style="display: none;"> A first experimental test of tracking relativistic charged particles by `drifting' Cherenkov photons in a water-based optical time-projection chamber (OTPC) has been performed at the Fermilab Test Beam Facility. The prototype OTPC detector consists of a 77~cm long, 28~cm diameter, 40~kg cylindrical water mass instrumented with a combination of commercial $5.1\times5.1$~cm$^2$ micro-channel plate photo-multipliers (MCP-PMT) and $6.7\times6.7$~cm$^2$ mirrors. Five MCP-PMTs are installed in two columns along the OTPC cylinder in a small-angle stereo configuration. A mirror is mounted opposite each MCP-PMT on the far side of the detector cylinder, effectively doubling the photo-detection efficiency and providing a time-resolved image of the Cherenkov light on the opposing wall. Each MCP-PMT is coupled to an anode readout consisting of thirty 50 Ohm microstrips. A 180-channel data acquisition system digitizes the MCP-PMT signals on one end of the microstrips using the PSEC4 waveform sampling-and-digitizing chip operating at a sampling rate of 10.24~Gigasamples-per-second. The single-ended microstrip readout determines the time and position of a photon arrival at the face of the MCP-PMT by recording both the direct signal and the pulse reflected from the unterminated far end of the strip. The detector was installed on the Fermilab MCenter secondary beam-line behind a steel absorber where the primary flux is multi-GeV muons. Approximately 80 Cherenkov photons are detected for a through-going muon track in a total event duration of ~2 ns. By measuring the time-of-arrival and the position of individual photons at the surface of the detector to $\le$100~ps and a few mm, respectively, we have measured a spatial resolution of $\sim$ 15~mm for each MCP-PMT track segment, and, from linear fits over the entire track length of $\sim40$~cm, an angular resolution on the track direction of $\sim60$~mrad. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.00947v1-abstract-full').style.display = 'none'; document.getElementById('1510.00947v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.01480">arXiv:1504.01480</a> <span> [<a href="https://arxiv.org/pdf/1504.01480">pdf</a>, <a href="https://arxiv.org/format/1504.01480">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Letter of Intent: The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Anghel%2C+I">I. Anghel</a>, <a href="/search/physics?searchtype=author&query=Beacom%2C+J+F">J. F. Beacom</a>, <a href="/search/physics?searchtype=author&query=Bergevin%2C+M">M. Bergevin</a>, <a href="/search/physics?searchtype=author&query=Blanco%2C+C">C. Blanco</a>, <a href="/search/physics?searchtype=author&query=Catano-Mur%2C+E">E. Catano-Mur</a>, <a href="/search/physics?searchtype=author&query=Di+Lodovico%2C+F">F. Di Lodovico</a>, <a href="/search/physics?searchtype=author&query=Elagin%2C+A">A. Elagin</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H">H. Frisch</a>, <a href="/search/physics?searchtype=author&query=Griskevich%2C+J">J. Griskevich</a>, <a href="/search/physics?searchtype=author&query=Hill%2C+R">R. Hill</a>, <a href="/search/physics?searchtype=author&query=Jocher%2C+G">G. Jocher</a>, <a href="/search/physics?searchtype=author&query=Katori%2C+T">T. Katori</a>, <a href="/search/physics?searchtype=author&query=Krennrich%2C+F">F. Krennrich</a>, <a href="/search/physics?searchtype=author&query=Learned%2C+J">J. Learned</a>, <a href="/search/physics?searchtype=author&query=Malek%2C+M">M. Malek</a>, <a href="/search/physics?searchtype=author&query=Northrop%2C+R">R. Northrop</a>, <a href="/search/physics?searchtype=author&query=Pilcher%2C+C">C. Pilcher</a>, <a href="/search/physics?searchtype=author&query=Ramberg%2C+E">E. Ramberg</a>, <a href="/search/physics?searchtype=author&query=Repond%2C+J">J. Repond</a>, <a href="/search/physics?searchtype=author&query=Sacco%2C+R">R. Sacco</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+M+C">M. C. Sanchez</a>, <a href="/search/physics?searchtype=author&query=Smy%2C+M">M. Smy</a>, <a href="/search/physics?searchtype=author&query=Sobel%2C+H">H. Sobel</a>, <a href="/search/physics?searchtype=author&query=Svoboda%2C+R">R. Svoboda</a>, <a href="/search/physics?searchtype=author&query=Usman%2C+S+M">S. M. Usman</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.01480v1-abstract-short" style="display: inline;"> Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.01480v1-abstract-full').style.display = 'inline'; document.getElementById('1504.01480v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.01480v1-abstract-full" style="display: none;"> Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.01480v1-abstract-full').style.display = 'none'; document.getElementById('1504.01480v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FNAL P1063 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.6411">arXiv:1402.6411</a> <span> [<a href="https://arxiv.org/pdf/1402.6411">pdf</a>, <a href="https://arxiv.org/format/1402.6411">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Anghel%2C+I">I. Anghel</a>, <a href="/search/physics?searchtype=author&query=Beacom%2C+J+F">J. F. Beacom</a>, <a href="/search/physics?searchtype=author&query=Bergevin%2C+M">M. Bergevin</a>, <a href="/search/physics?searchtype=author&query=Davies%2C+G">G. Davies</a>, <a href="/search/physics?searchtype=author&query=Di+Lodovico%2C+F">F. Di Lodovico</a>, <a href="/search/physics?searchtype=author&query=Elagin%2C+A">A. Elagin</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H">H. Frisch</a>, <a href="/search/physics?searchtype=author&query=Hill%2C+R">R. Hill</a>, <a href="/search/physics?searchtype=author&query=Jocher%2C+G">G. Jocher</a>, <a href="/search/physics?searchtype=author&query=Katori%2C+T">T. Katori</a>, <a href="/search/physics?searchtype=author&query=Learned%2C+J">J. Learned</a>, <a href="/search/physics?searchtype=author&query=Northrop%2C+R">R. Northrop</a>, <a href="/search/physics?searchtype=author&query=Pilcher%2C+C">C. Pilcher</a>, <a href="/search/physics?searchtype=author&query=Ramberg%2C+E">E. Ramberg</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+M+C">M. C. Sanchez</a>, <a href="/search/physics?searchtype=author&query=Smy%2C+M">M. Smy</a>, <a href="/search/physics?searchtype=author&query=Sobel%2C+H">H. Sobel</a>, <a href="/search/physics?searchtype=author&query=Svoboda%2C+R">R. Svoboda</a>, <a href="/search/physics?searchtype=author&query=Usman%2C+S">S. Usman</a>, <a href="/search/physics?searchtype=author&query=Vagins%2C+M">M. Vagins</a>, <a href="/search/physics?searchtype=author&query=Varner%2C+G">G. Varner</a>, <a href="/search/physics?searchtype=author&query=Wagner%2C+R">R. Wagner</a>, <a href="/search/physics?searchtype=author&query=Wetstein%2C+M">M. Wetstein</a>, <a href="/search/physics?searchtype=author&query=Winslow%2C+L">L. Winslow</a>, <a href="/search/physics?searchtype=author&query=Yeh%2C+M">M. Yeh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.6411v1-abstract-short" style="display: inline;"> Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6411v1-abstract-full').style.display = 'inline'; document.getElementById('1402.6411v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.6411v1-abstract-full" style="display: none;"> Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6411v1-abstract-full').style.display = 'none'; document.getElementById('1402.6411v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted for the January 2014 Fermilab Physics Advisory Committee meeting</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.6116">arXiv:1401.6116</a> <span> [<a href="https://arxiv.org/pdf/1401.6116">pdf</a>, <a href="https://arxiv.org/ps/1401.6116">ps</a>, <a href="https://arxiv.org/format/1401.6116">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 8: Instrumentation Frontier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Demarteau%2C+M">M. Demarteau</a>, <a href="/search/physics?searchtype=author&query=Lipton%2C+R">R. Lipton</a>, <a href="/search/physics?searchtype=author&query=Nicholson%2C+H">H. Nicholson</a>, <a href="/search/physics?searchtype=author&query=Shipsey%2C+I">I. Shipsey</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D">D. Akerib</a>, <a href="/search/physics?searchtype=author&query=Albayrak-Yetkin%2C+A">A. Albayrak-Yetkin</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+J">J. Alexander</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Artuso%2C+M">M. Artuso</a>, <a href="/search/physics?searchtype=author&query=Asner%2C+D">D. Asner</a>, <a href="/search/physics?searchtype=author&query=Ball%2C+R">R. Ball</a>, <a href="/search/physics?searchtype=author&query=Battaglia%2C+M">M. Battaglia</a>, <a href="/search/physics?searchtype=author&query=Bebek%2C+C">C. Bebek</a>, <a href="/search/physics?searchtype=author&query=Beene%2C+J">J. Beene</a>, <a href="/search/physics?searchtype=author&query=Benhammou%2C+Y">Y. Benhammou</a>, <a href="/search/physics?searchtype=author&query=Bentefour%2C+E">E. Bentefour</a>, <a href="/search/physics?searchtype=author&query=Bergevin%2C+M">M. Bergevin</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Bilki%2C+B">B. Bilki</a>, <a href="/search/physics?searchtype=author&query=Blucher%2C+E">E. Blucher</a>, <a href="/search/physics?searchtype=author&query=Bolla%2C+G">G. Bolla</a>, <a href="/search/physics?searchtype=author&query=Bortoletto%2C+D">D. Bortoletto</a>, <a href="/search/physics?searchtype=author&query=Bowden%2C+N">N. Bowden</a>, <a href="/search/physics?searchtype=author&query=Brooijmans%2C+G">G. Brooijmans</a>, <a href="/search/physics?searchtype=author&query=Byrum%2C+K">K. Byrum</a> , et al. (189 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.6116v1-abstract-short" style="display: inline;"> These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 8, on the Instrumentation Frontier, discusses the instrumentation needs of future experiments in the Energy, Intensity, and Cosmic Frontiers, promising new technologies for particle physics research, and iss… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.6116v1-abstract-full').style.display = 'inline'; document.getElementById('1401.6116v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.6116v1-abstract-full" style="display: none;"> These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 8, on the Instrumentation Frontier, discusses the instrumentation needs of future experiments in the Energy, Intensity, and Cosmic Frontiers, promising new technologies for particle physics research, and issues of gathering resources for long-term research in this area. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.6116v1-abstract-full').style.display = 'none'; document.getElementById('1401.6116v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">50 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.5158">arXiv:1310.5158</a> <span> [<a href="https://arxiv.org/pdf/1310.5158">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Sensor Compendium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Artuso%2C+M">M. Artuso</a>, <a href="/search/physics?searchtype=author&query=Battaglia%2C+M">M. Battaglia</a>, <a href="/search/physics?searchtype=author&query=Bolla%2C+G">G. Bolla</a>, <a href="/search/physics?searchtype=author&query=Bortoletto%2C+D">D. Bortoletto</a>, <a href="/search/physics?searchtype=author&query=Cabrera%2C+B">B. Cabrera</a>, <a href="/search/physics?searchtype=author&query=Carlstrom%2C+J+E">J. E. Carlstrom</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+C+L">C. L. Chang</a>, <a href="/search/physics?searchtype=author&query=Cooper%2C+W">W. Cooper</a>, <a href="/search/physics?searchtype=author&query=Da+Via%2C+C">C. Da Via</a>, <a href="/search/physics?searchtype=author&query=Demarteau%2C+M">M. Demarteau</a>, <a href="/search/physics?searchtype=author&query=Fast%2C+J">J. Fast</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H">H. Frisch</a>, <a href="/search/physics?searchtype=author&query=Garcia-Sciveres%2C+M">M. Garcia-Sciveres</a>, <a href="/search/physics?searchtype=author&query=Golwala%2C+S">S. Golwala</a>, <a href="/search/physics?searchtype=author&query=Haber%2C+C">C. Haber</a>, <a href="/search/physics?searchtype=author&query=Hall%2C+J">J. Hall</a>, <a href="/search/physics?searchtype=author&query=Hoppe%2C+E">E. Hoppe</a>, <a href="/search/physics?searchtype=author&query=Irwin%2C+K+D">K. D. Irwin</a>, <a href="/search/physics?searchtype=author&query=Kagan%2C+H">H. Kagan</a>, <a href="/search/physics?searchtype=author&query=Kenney%2C+C">C. Kenney</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+A+T">A. T. Lee</a>, <a href="/search/physics?searchtype=author&query=Lynn%2C+D">D. Lynn</a>, <a href="/search/physics?searchtype=author&query=Orrell%2C+J">J. Orrell</a>, <a href="/search/physics?searchtype=author&query=Pyle%2C+M">M. Pyle</a>, <a href="/search/physics?searchtype=author&query=Rusack%2C+R">R. Rusack</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.5158v2-abstract-short" style="display: inline;"> Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.5158v2-abstract-full').style.display = 'inline'; document.getElementById('1310.5158v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.5158v2-abstract-full" style="display: none;"> Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.5158v2-abstract-full').style.display = 'none'; document.getElementById('1310.5158v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">66 pages, Prepared for the Snowmass 2013 Community Summer Study</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Fermilab--?FN--?0971--?PPD, ANL--?HEP--?TR--?13--?51 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.4397">arXiv:1309.4397</a> <span> [<a href="https://arxiv.org/pdf/1309.4397">pdf</a>, <a href="https://arxiv.org/format/1309.4397">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2013.09.042">10.1016/j.nima.2013.09.042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A 15 GSa/s, 1.5 GHz Bandwidth Waveform Digitizing ASIC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Oberla%2C+E">E. Oberla</a>, <a href="/search/physics?searchtype=author&query=Genat%2C+J+-">J. -F. Genat</a>, <a href="/search/physics?searchtype=author&query=Grabas%2C+H">H. Grabas</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H">H. Frisch</a>, <a href="/search/physics?searchtype=author&query=Nishimura%2C+K">K. Nishimura</a>, <a href="/search/physics?searchtype=author&query=Varner%2C+G">G. Varner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.4397v1-abstract-short" style="display: inline;"> The PSEC4 custom integrated circuit was designed for the recording of fast waveforms for use in large-area time-of-flight detector systems. The ASIC has been fabricated using the IBM-8RF 0.13 micron CMOS process. On each of 6 analog channels, PSEC4 employs a switched capacitor array (SCA) 256 samples deep, a ramp-compare ADC with 10.5 bits of DC dynamic range, and a serial data readout with the ca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.4397v1-abstract-full').style.display = 'inline'; document.getElementById('1309.4397v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.4397v1-abstract-full" style="display: none;"> The PSEC4 custom integrated circuit was designed for the recording of fast waveforms for use in large-area time-of-flight detector systems. The ASIC has been fabricated using the IBM-8RF 0.13 micron CMOS process. On each of 6 analog channels, PSEC4 employs a switched capacitor array (SCA) 256 samples deep, a ramp-compare ADC with 10.5 bits of DC dynamic range, and a serial data readout with the capability of region-of-interest windowing to reduce dead time. The sampling rate can be adjusted between 4 and 15 Gigasamples/second [GSa/s] on all channels and is servo-controlled on-chip with a low-jitter delay-locked loop (DLL). The input signals are passively coupled on-chip with a -3 dB analog bandwidth of 1.5 GHz. The power consumption in quiescent sampling mode is less than 50 mW/chip; at a sustained trigger and readout rate of 50 kHz the chip draws 100 mW. After fixed-pattern pedestal subtraction, the uncorrected integral non-linearity is 0.15% over an 750 mV dynamic range. With a linearity correction, a full 1 V signal voltage range is available.The sampling timebase has a fixed-pattern non-linearity with an RMS of 13%, which can be corrected for precision waveform feature extraction and timing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.4397v1-abstract-full').style.display = 'none'; document.getElementById('1309.4397v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 18 figures, preliminary draft from paper submitted to NIM-A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.5813">arXiv:1307.5813</a> <span> [<a href="https://arxiv.org/pdf/1307.5813">pdf</a>, <a href="https://arxiv.org/format/1307.5813">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/9/06/P06012">10.1088/1748-0221/9/06/P06012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring Directionality in Double-Beta Decay and Neutrino Interactions with Kiloton-Scale Scintillation Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aberle%2C+C">C. Aberle</a>, <a href="/search/physics?searchtype=author&query=Elagin%2C+A">A. Elagin</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H+J">H. J. Frisch</a>, <a href="/search/physics?searchtype=author&query=Wetstein%2C+M">M. Wetstein</a>, <a href="/search/physics?searchtype=author&query=Winslow%2C+L">L. Winslow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.5813v3-abstract-short" style="display: inline;"> Large liquid-scintillator-based detectors have proven to be exceptionally effective for low energy neutrino measurements due to their good energy resolution and scalability to large volumes. The addition of directional information using Cherenkov light and fast timing would enhance the scientific reach of these detectors, especially for searches for neutrino-less double-beta decay. In this paper,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.5813v3-abstract-full').style.display = 'inline'; document.getElementById('1307.5813v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.5813v3-abstract-full" style="display: none;"> Large liquid-scintillator-based detectors have proven to be exceptionally effective for low energy neutrino measurements due to their good energy resolution and scalability to large volumes. The addition of directional information using Cherenkov light and fast timing would enhance the scientific reach of these detectors, especially for searches for neutrino-less double-beta decay. In this paper, we develop a technique for extracting particle direction using the difference in arrival times for Cherenkov and scintillation light, and evaluate several detector advances in timing, photodetector spectral response, and scintillator emission spectra that could be used to make direction reconstruction a reality in a kiloton-scale detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.5813v3-abstract-full').style.display = 'none'; document.getElementById('1307.5813v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">version 3, JINST format and expanded discussion especially at additional energies</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0810.5590">arXiv:0810.5590</a> <span> [<a href="https://arxiv.org/pdf/0810.5590">pdf</a>, <a href="https://arxiv.org/ps/0810.5590">ps</a>, <a href="https://arxiv.org/format/0810.5590">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2009.05.193">10.1016/j.nima.2009.05.193 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signal Processing for Pico-second Resolution Timing Measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Genat%2C+J">Jean-Francois Genat</a>, <a href="/search/physics?searchtype=author&query=Varner%2C+G">Gary Varner</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+F">Fukun Tang</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H">Henry Frisch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0810.5590v1-abstract-short" style="display: inline;"> The development of large-area homogeneous photo-detectors with sub-millimeter path lengths for direct Cherenkov light and for secondary-electrons opens the possibility of large time-of-flight systems for relativistic particles with resolutions in the pico-second range. Modern ASIC techniques allow fast multi-channel front-end electronics capable of sub-pico-second resolution directly integrated… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0810.5590v1-abstract-full').style.display = 'inline'; document.getElementById('0810.5590v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0810.5590v1-abstract-full" style="display: none;"> The development of large-area homogeneous photo-detectors with sub-millimeter path lengths for direct Cherenkov light and for secondary-electrons opens the possibility of large time-of-flight systems for relativistic particles with resolutions in the pico-second range. Modern ASIC techniques allow fast multi-channel front-end electronics capable of sub-pico-second resolution directly integrated with the photo-detectors. However, achieving resolution in the pico-second range requires a precise knowledge of the signal generation process in order to understand the pulse waveform, the signal dynamics, and the noise induced by the detector itself, as well as the noise added by the processing electronics. Using the parameters measured for fast photo-detectors such as micro-channel plates photo-multipliers, we have simulated and compared the time-resolutions for four signal processing techniques: leading edge discriminators, constant fraction discriminators, multiple-threshold discriminators and pulse waveform sampling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0810.5590v1-abstract-full').style.display = 'none'; document.getElementById('0810.5590v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures. submitted to Nucl. Instr. Meth. A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Instrum.Meth.A607:387-393,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0810.3738">arXiv:0810.3738</a> <span> [<a href="https://arxiv.org/pdf/0810.3738">pdf</a>, <a href="https://arxiv.org/format/0810.3738">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Level-3 Calorimetric Resolution available for the Level-1 and Level-2 CDF Triggers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Canepa%2C+A">A. Canepa</a>, <a href="/search/physics?searchtype=author&query=Casarsa%2C+M">M. Casarsa</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+T">T. Liu</a>, <a href="/search/physics?searchtype=author&query=Cortiana%2C+G">G. Cortiana</a>, <a href="/search/physics?searchtype=author&query=Flanagan%2C+G">G. Flanagan</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H">H. Frisch</a>, <a href="/search/physics?searchtype=author&query=Krop%2C+D">D. Krop</a>, <a href="/search/physics?searchtype=author&query=Pilcher%2C+C">C. Pilcher</a>, <a href="/search/physics?searchtype=author&query=Rusu%2C+V">V. Rusu</a>, <a href="/search/physics?searchtype=author&query=Cavaliere%2C+V">V. Cavaliere</a>, <a href="/search/physics?searchtype=author&query=Greco%2C+V">V. Greco</a>, <a href="/search/physics?searchtype=author&query=Giannetti%2C+P">P. Giannetti</a>, <a href="/search/physics?searchtype=author&query=Piendibene%2C+M">M. Piendibene</a>, <a href="/search/physics?searchtype=author&query=Sartori%2C+L">L. Sartori</a>, <a href="/search/physics?searchtype=author&query=Vidal%2C+M">M. Vidal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0810.3738v1-abstract-short" style="display: inline;"> As the Tevatron luminosity increases sophisticated selections are required to be efficient in selecting rare events among a very huge background. To cope with this problem, CDF has pushed the offline calorimeter algorithm reconstruction resolution up to Level 2 and, when possible, even up to Level 1, increasing efficiency and, at the same time, keeping under control the rates. The CDF Run II L… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0810.3738v1-abstract-full').style.display = 'inline'; document.getElementById('0810.3738v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0810.3738v1-abstract-full" style="display: none;"> As the Tevatron luminosity increases sophisticated selections are required to be efficient in selecting rare events among a very huge background. To cope with this problem, CDF has pushed the offline calorimeter algorithm reconstruction resolution up to Level 2 and, when possible, even up to Level 1, increasing efficiency and, at the same time, keeping under control the rates. The CDF Run II Level 2 calorimeter trigger is implemented in hardware and is based on a simple algorithm that was used in Run I. This system has worked well for Run II at low luminosity. As the Tevatron instantaneous luminosity increases, the limitation due to this simple algorithm starts to become clear: some of the most important jet and MET (Missing ET) related triggers have large growth terms in cross section at higher luminosity. In this paper, we present an upgrade of the Level 2 Calorimeter system which makes the calorimeter trigger tower information available directly to a CPU allowing more sophisticated algorithms to be implemented in software. Both Level 2 jets and MET can be made nearly equivalent to offline quality, thus significantly improving the performance and flexibility of the jet and MET related triggers. However in order to fully take advantage of the new L2 triggering capabilities having at Level 1 the same L2 MET resolution is necessary. The new Level-1 MET resolution is calculated by dedicated hardware. This paper describes the design, the hardware and software implementation and the performance of the upgraded calorimeter trigger system both at Level 2 and Level 1. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0810.3738v1-abstract-full').style.display = 'none'; document.getElementById('0810.3738v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures,34th International Conference on High Energy Physics, Philadelphia, 2008</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0512171">arXiv:physics/0512171</a> <span> [<a href="https://arxiv.org/pdf/physics/0512171">pdf</a>, <a href="https://arxiv.org/ps/physics/0512171">ps</a>, <a href="https://arxiv.org/format/physics/0512171">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2006.06.011">10.1016/j.nima.2006.06.011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Timing System for the CDF Electromagnetic Calorimeters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Goncharov%2C+M">M. Goncharov</a>, <a href="/search/physics?searchtype=author&query=Kamon%2C+T">T. Kamon</a>, <a href="/search/physics?searchtype=author&query=Khotilovich%2C+V">V. Khotilovich</a>, <a href="/search/physics?searchtype=author&query=Krutelyov%2C+V">V. Krutelyov</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+S+W">S. W. Lee</a>, <a href="/search/physics?searchtype=author&query=Toback%2C+D">D. Toback</a>, <a href="/search/physics?searchtype=author&query=Wagner%2C+P">P. Wagner</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H">H. Frisch</a>, <a href="/search/physics?searchtype=author&query=Sanders%2C+H">H. Sanders</a>, <a href="/search/physics?searchtype=author&query=Cordelli%2C+M">M. Cordelli</a>, <a href="/search/physics?searchtype=author&query=Happacher%2C+F">F. Happacher</a>, <a href="/search/physics?searchtype=author&query=Miscetti%2C+S">S. Miscetti</a>, <a href="/search/physics?searchtype=author&query=Wagner%2C+R">R. Wagner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0512171v1-abstract-short" style="display: inline;"> We report on the design and performance of the electromagnetic calorimeter timing readout system (EMTiming) for the Collider Detector at Fermilab (CDF). The system will be used in searches for rare events with high energy photons to verify that the photon is in time with the event collision, to reject cosmic ray and beam halo backgrounds, and to allow direct searches for new heavy long-lived par… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0512171v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0512171v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0512171v1-abstract-full" style="display: none;"> We report on the design and performance of the electromagnetic calorimeter timing readout system (EMTiming) for the Collider Detector at Fermilab (CDF). The system will be used in searches for rare events with high energy photons to verify that the photon is in time with the event collision, to reject cosmic ray and beam halo backgrounds, and to allow direct searches for new heavy long-lived particles that decay to photons. The installation and commissioning of all 862 channels was completed in Fall 2004 as part of an upgrade to the Run II version of the detector. Using in-situ data, including electrons from W=>e nu and Z => ee decays, we measure the energy threshold for a time to be recorded to be 3.8 \pm 0.3GeV in the central portion of the detector and 1.9 \pm 0.1 GeV in the plug portion. Similarly, we measure a timing resolution of 600 \pm 10 ps and 610 \pm 10 ps for electrons above 10 GeV and 6 GeV respectively. There are very few system pathologies such as recording a time when no energy is deposited, or recording a second, fake time for a single energy deposit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0512171v1-abstract-full').style.display = 'none'; document.getElementById('physics/0512171v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures. Submitted to Nuclear Instruments and Methods. Cross listed on hep-ex</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-05-543-E </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Instrum.Meth.A565:543-550,2006 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0502062">arXiv:physics/0502062</a> <span> [<a href="https://arxiv.org/pdf/physics/0502062">pdf</a>, <a href="https://arxiv.org/ps/physics/0502062">ps</a>, <a href="https://arxiv.org/format/physics/0502062">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2005.08.071">10.1016/j.nima.2005.08.071 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A 96-Channel FPGA-based Time-to-Digital Converter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bogdan%2C+M">Mircea Bogdan</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H">Henry Frisch</a>, <a href="/search/physics?searchtype=author&query=Heintz%2C+M">Mary Heintz</a>, <a href="/search/physics?searchtype=author&query=Paramonov%2C+A">Alexander Paramonov</a>, <a href="/search/physics?searchtype=author&query=Sanders%2C+H">Harold Sanders</a>, <a href="/search/physics?searchtype=author&query=Chappa%2C+S">Steve Chappa</a>, <a href="/search/physics?searchtype=author&query=DeMaat%2C+R">Robert DeMaat</a>, <a href="/search/physics?searchtype=author&query=Klein%2C+R">Rod Klein</a>, <a href="/search/physics?searchtype=author&query=Miao%2C+T">Ting Miao</a>, <a href="/search/physics?searchtype=author&query=Wilson%2C+P">Peter Wilson</a>, <a href="/search/physics?searchtype=author&query=Phillips%2C+T+J">Thomas J. Phillips</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0502062v1-abstract-short" style="display: inline;"> We describe an FPGA-based, 96-channel, time-to-digital converter (TDC) intended for use with the Central Outer Tracker (COT) in the CDF Experiment at the Fermilab Tevatron. The COT system is digitized and read out by 315 TDC cards, each serving 96 wires of the chamber. The TDC is physically configured as a 9U VME card. The functionality is almost entirely programmed in firmware in two Altera Str… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0502062v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0502062v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0502062v1-abstract-full" style="display: none;"> We describe an FPGA-based, 96-channel, time-to-digital converter (TDC) intended for use with the Central Outer Tracker (COT) in the CDF Experiment at the Fermilab Tevatron. The COT system is digitized and read out by 315 TDC cards, each serving 96 wires of the chamber. The TDC is physically configured as a 9U VME card. The functionality is almost entirely programmed in firmware in two Altera Stratix FPGA's. The special capabilities of this device are the availability of 840 MHz LVDS inputs, multiple phase-locked clock modules, and abundant memory. The TDC system operates with an input resolution of 1.2 ns. Each input can accept up to 7 hits per collision. The time-to-digital conversion is done by first sampling each of the 96 inputs in 1.2-ns bins and filling a circular memory; the memory addresses of logical transitions (edges) in the input data are then translated into the time of arrival and width of the COT pulses. Memory pipelines with a depth of 5.5 $渭$s allow deadtime-less operation in the first-level trigger. The TDC VME interface allows a 64-bit Chain Block Transfer of multiple boards in a crate with transfer-rates up to 47 Mbytes/sec. The TDC also contains a separately-programmed data path that produces prompt trigger data every Tevatron crossing. The full TDC design and multi-card test results are described. The physical simplicity ensures low-maintenance; the functionality being in firmware allows reprogramming for other applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0502062v1-abstract-full').style.display = 'none'; document.getElementById('physics/0502062v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> EFI-04-42 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Instrum.Meth.A554:444-457,2005 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0310155">arXiv:physics/0310155</a> <span> [<a href="https://arxiv.org/pdf/physics/0310155">pdf</a>, <a href="https://arxiv.org/ps/physics/0310155">ps</a>, <a href="https://arxiv.org/format/physics/0310155">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2003.10.018">10.1016/j.nima.2003.10.018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The CDF Calorimetry Upgrade for Run IIb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kuhlmann%2C+S">S. Kuhlmann</a>, <a href="/search/physics?searchtype=author&query=Frisch%2C+H">H. Frisch</a>, <a href="/search/physics?searchtype=author&query=Cordelli%2C+M">M. Cordelli</a>, <a href="/search/physics?searchtype=author&query=Huston%2C+J">J. Huston</a>, <a href="/search/physics?searchtype=author&query=Miller%2C+R">R. Miller</a>, <a href="/search/physics?searchtype=author&query=Lami%2C+S">S. Lami</a>, <a href="/search/physics?searchtype=author&query=Paoletti%2C+R">R. Paoletti</a>, <a href="/search/physics?searchtype=author&query=Turini%2C+N">N. Turini</a>, <a href="/search/physics?searchtype=author&query=Iori%2C+M">M. Iori</a>, <a href="/search/physics?searchtype=author&query=Toback%2C+D">D. Toback</a>, <a href="/search/physics?searchtype=author&query=Ukegawa%2C+T">T. Ukegawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0310155v1-abstract-short" style="display: inline;"> The physics program at the Fermilab Tevatron Collider will continue to explore the high energy frontier of particle physics until the commissioning of the LHC at CERN. The luminosity increase provided by the Main Injector will require upgrades beyond those implemented for the first stage (Run IIa) of the Tevatron's Run II physics program. The upgrade of the CDF calorimetry includes: 1) the repla… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0310155v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0310155v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0310155v1-abstract-full" style="display: none;"> The physics program at the Fermilab Tevatron Collider will continue to explore the high energy frontier of particle physics until the commissioning of the LHC at CERN. The luminosity increase provided by the Main Injector will require upgrades beyond those implemented for the first stage (Run IIa) of the Tevatron's Run II physics program. The upgrade of the CDF calorimetry includes: 1) the replacement of the slow gas detectors on the front face of the Central Calorimeter with a faster scintillator version which has a better segmentation, and 2) the addition of timing information to both the Central and EndPlug Electromagnetic Calorimeters to filter out cosmic ray and beam related backgrounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0310155v1-abstract-full').style.display = 'none'; document.getElementById('physics/0310155v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at `Frontier Detectors for Frontier Physics; 9th Pisa Meeting on Advanced Detectors', Biodola, Italy, 25-31 May 2003. 2 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Instrum.Meth.A518:39-41,2004 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>