CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 183 results for author: <span class="mathjax">Hardy, W N</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Hardy%2C+W+N">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Hardy, W N"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Hardy%2C+W+N&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Hardy, W N"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Hardy%2C+W+N&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Hardy%2C+W+N&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hardy%2C+W+N&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hardy%2C+W+N&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hardy%2C+W+N&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02508">arXiv:2402.02508</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.02508">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Deconstructing the spin susceptibility of a cuprate superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+R">R. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vinograd%2C+I">I. Vinograd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirata%2C+M">M. Hirata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">T. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayaffre%2C+H">H. Mayaffre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kr%C3%A4mer%2C+S">S. Kr盲mer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loew%2C+T">T. Loew</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Porras%2C+J">J. Porras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Julien%2C+M+-">M. -H. Julien</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02508v1-abstract-short" style="display: inline;"> A major obstacle to understanding high-Tc cuprates is that superconductivity precludes observing normal-state properties at low temperatures. One prime example is the normal-state spin susceptibility: although its decrease upon cooling far above Tc typifies pseudogap behavior, its behavior at low temperatures is generally unknown. Here, our measurements in high magnetic fields expose the spin susc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02508v1-abstract-full').style.display = 'inline'; document.getElementById('2402.02508v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02508v1-abstract-full" style="display: none;"> A major obstacle to understanding high-Tc cuprates is that superconductivity precludes observing normal-state properties at low temperatures. One prime example is the normal-state spin susceptibility: although its decrease upon cooling far above Tc typifies pseudogap behavior, its behavior at low temperatures is generally unknown. Here, our measurements in high magnetic fields expose the spin susceptibility of YBa2Cu3Oy down to low temperatures. Even though superconductivity is suppressed by the field, we uncover two thermally-activated contributions alongside a residual susceptibility at T=0 due to gapless excitations. We relate these two distinct gaps to short-range charge-density waves and to the formation of spin singlets similar to those found in certain quantum spin systems. These phenomena thus collectively contribute to the pseudogap in the spin susceptibility at low temperature, supplementing short-lived antiferromagnetism known to initiate pseudogap behavior at high temperatures. We therefore propose that the pseudogap should be regarded as a composite property. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02508v1-abstract-full').style.display = 'none'; document.getElementById('2402.02508v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01439">arXiv:2312.01439</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.01439">pdf</a>, <a href="https://arxiv.org/format/2312.01439">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Absence of Fermi surface reconstruction in pressure-driven overdoped YBCO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tozer%2C+S+W">Stanley W. Tozer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coniglio%2C+W+A">William A. Coniglio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%B6rster%2C+T">Tobias F枚rster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">Doug A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">Walter N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kampert%2C+E">Erik Kampert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grockowiak%2C+A+D">Audrey D. Grockowiak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01439v1-abstract-short" style="display: inline;"> The evolution of the critical superconducting temperature and field, quantum oscillation frequencies and effective mass $m^{*}$ in underdoped YBa$_2$Cu$_3$O$_{7-未}$ (YBCO) crystals ($p$ = 0.11, with $p$ the hole concentration per Cu atom) points to a partial suppression of the charge orders with increasing pressure up to 7 GPa, mimicking doping. Application of pressures up to 25 GPa pushes the sam&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01439v1-abstract-full').style.display = 'inline'; document.getElementById('2312.01439v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01439v1-abstract-full" style="display: none;"> The evolution of the critical superconducting temperature and field, quantum oscillation frequencies and effective mass $m^{*}$ in underdoped YBa$_2$Cu$_3$O$_{7-未}$ (YBCO) crystals ($p$ = 0.11, with $p$ the hole concentration per Cu atom) points to a partial suppression of the charge orders with increasing pressure up to 7 GPa, mimicking doping. Application of pressures up to 25 GPa pushes the sample to the overdoped side of the superconducting dome. Contrary to other cuprates, or to doping studies on YBCO, the frequency of the quantum oscillations measured in that pressure range do not support the picture of a Fermi-surface reconstruction in the overdoped regime, but possibly point to the existence of a new charge order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01439v1-abstract-full').style.display = 'none'; document.getElementById('2312.01439v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.18302">arXiv:2310.18302</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.18302">pdf</a>, <a href="https://arxiv.org/format/2310.18302">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Searching for the signature of a pair density wave in YBa$_2$Cu$_3$O$_{6.67}$ using high energy X-ray diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Blackburn%2C+E">Elizabeth Blackburn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ivashko%2C+O">Oleh Ivashko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campillo%2C+E">Emma Campillo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=von+Zimmermann%2C+M">Martin von Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">Douglas A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">Walter N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">Johan Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forgan%2C+E+M">Edward M. Forgan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayden%2C+S+M">Stephen M. Hayden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.18302v1-abstract-short" style="display: inline;"> We have carried out a search for a pair density wave signature using high-energy X-ray diffraction in fields up to 16 T. We do not see evidence for a signal at the predicted wavevector. This is a report on the details of our experiment, with information on where in reciprocal space we looked. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.18302v1-abstract-full" style="display: none;"> We have carried out a search for a pair density wave signature using high-energy X-ray diffraction in fields up to 16 T. We do not see evidence for a signal at the predicted wavevector. This is a report on the details of our experiment, with information on where in reciprocal space we looked. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18302v1-abstract-full').style.display = 'none'; document.getElementById('2310.18302v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, report on experimental results</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07696">arXiv:2310.07696</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.07696">pdf</a>, <a href="https://arxiv.org/format/2310.07696">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.14.041011">10.1103/PhysRevX.14.041011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Planar thermal Hall effect from phonons in cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roux%2C+L+L">L茅na Le Roux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">Ga毛l Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boulanger%2C+M">Marie-Eve Boulanger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Th%C3%A9riault%2C+S">Steven Th茅riault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pyon%2C+S">S. Pyon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takayama%2C+T">T. Takayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+K">Kejun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07696v2-abstract-short" style="display: inline;"> A surprising &#34;planar&#34; thermal Hall effect, whereby the field is parallel to the current, has recently been observed in a few magnetic insulators, and this has been attributed to exotic excitations such as Majorana fermions or chiral magnons. Here we investigate the possibility of a planar thermal Hall effect in three different cuprate materials, in which the conventional thermal Hall conductivity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07696v2-abstract-full').style.display = 'inline'; document.getElementById('2310.07696v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07696v2-abstract-full" style="display: none;"> A surprising &#34;planar&#34; thermal Hall effect, whereby the field is parallel to the current, has recently been observed in a few magnetic insulators, and this has been attributed to exotic excitations such as Majorana fermions or chiral magnons. Here we investigate the possibility of a planar thermal Hall effect in three different cuprate materials, in which the conventional thermal Hall conductivity $魏_{\rm {xy}}$ (with an out-of-plane field perpendicular to the current) is dominated by either electrons or phonons. Our measurements show that the planar $魏_{\rm {xy}}$ from electrons in cuprates is zero, as expected from the absence of a Lorentz force in the planar configuration. By contrast, we observe a sizable planar $魏_{\rm {xy}}$ in those samples where the thermal Hall response is due to phonons, even though it should in principle be forbidden by the high crystal symmetry. Our findings call for a careful re-examination of the mechanisms responsible for the phonon thermal Hall effect in insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07696v2-abstract-full').style.display = 'none'; document.getElementById('2310.07696v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 14, 041011 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.05233">arXiv:2205.05233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.05233">pdf</a>, <a href="https://arxiv.org/format/2205.05233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.13.031010">10.1103/PhysRevX.13.031010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> No nematicity at the onset temperature of the pseudogap phase in the cuprate superconductor YBCO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choini%C3%A8re%2C+O">O. Cyr-Choini猫re</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+J">J. Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.05233v2-abstract-short" style="display: inline;"> Electronic nematicity is the spontaneous loss of rotational symmetry in a metal, without breaking translational symmetry. In the cuprate superconductors, there is experimental evidence for nematicity, but its origin remains unclear. Here we investigate the onset of nematicity in the transport of charge by means of electric and thermoelectric measurements in underdoped YBa$_{\rm 2}$Cu$_{\rm 3}$O&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05233v2-abstract-full').style.display = 'inline'; document.getElementById('2205.05233v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.05233v2-abstract-full" style="display: none;"> Electronic nematicity is the spontaneous loss of rotational symmetry in a metal, without breaking translational symmetry. In the cuprate superconductors, there is experimental evidence for nematicity, but its origin remains unclear. Here we investigate the onset of nematicity in the transport of charge by means of electric and thermoelectric measurements in underdoped YBa$_{\rm 2}$Cu$_{\rm 3}$O$_{\rm y}$, performed by passing the current (electrical or thermal) first along the $a$ axis then the $b$ axis of the orthorhombic structure in the same crystal, with a hole doping $p = 0.12$. Upon cooling, we observe no additional in-plane anisotropy -- beyond the background anisotropy due to the CuO chains -- in either the resistivity $蟻$ or the Seebeck coefficient $S$ as the temperature $T^{\star}$~for the onset of the pseudogap phase is crossed. We conclude that the pseudogap phase of cuprates is not nematic. However, at temperatures much lower than $T^{\star}$, a strong additional anisotropy is observed, most clearly in the Peltier coefficient $伪= S / 蟻$. We interpret it as nematicity associated with the development of charge order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05233v2-abstract-full').style.display = 'none'; document.getElementById('2205.05233v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review X 13, 031010 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.13276">arXiv:2109.13276</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.13276">pdf</a>, <a href="https://arxiv.org/format/2109.13276">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.155142">10.1103/PhysRevB.105.155142 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Three-Dimensional Electronic Structure of LiFeAs: Strong-coupling Superconductivity and Topology in the Iron Pnictides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+R+P">Ryan P. Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+M">MengXing Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zingl%2C+M">Manuel Zingl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zwartsenberg%2C+B">Berend Zwartsenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">Matteo Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">Giorgio Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+D">Doug Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dosanjh%2C+P">Pinder Dosanjh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pedersen%2C+T+M">Tor M. Pedersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorovikov%2C+S">Sergey Gorovikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Shun Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">Walter N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">Douglas A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elfimov%2C+I+S">Ilya S. Elfimov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.13276v1-abstract-short" style="display: inline;"> Amongst the iron-based superconductors, LiFeAs is unrivalled in the simplicity of its crystal structure and phase diagram. However, our understanding of this canonical compound suffers from conflict between mutually incompatible descriptions of the material&#39;s electronic structure, as derived from contradictory interpretations of the photoemission record. Here, we explore the challenge of interpret&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.13276v1-abstract-full').style.display = 'inline'; document.getElementById('2109.13276v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.13276v1-abstract-full" style="display: none;"> Amongst the iron-based superconductors, LiFeAs is unrivalled in the simplicity of its crystal structure and phase diagram. However, our understanding of this canonical compound suffers from conflict between mutually incompatible descriptions of the material&#39;s electronic structure, as derived from contradictory interpretations of the photoemission record. Here, we explore the challenge of interpretation in such experiments. By combining comprehensive photon energy- and polarization- dependent angle-resolved photoemission spectroscopy (ARPES) measurements with numerical simulations, we establish the providence of several contradictions in the present understanding of this and related materials. We identify a confluence of surface-related issues which have precluded unambiguous identification of both the number and dimensionality of the Fermi surface sheets. Ultimately, we arrive at a scenario which supports indications of topologically non-trivial states, while also being incompatible with superconductivity as a spin-fluctuation driven Fermi surface instability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.13276v1-abstract-full').style.display = 'none'; document.getElementById('2109.13276v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Phys. Rev. B 105, 155142 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.16825">arXiv:2103.16825</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.16825">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature07095">10.1038/nature07095 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sebastian%2C+S+E">Suchitra E. Sebastian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harrison%2C+N">N. Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Palm%2C+E">E. Palm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murphy%2C+T+P">T. P. Murphy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mielke%2C+C+H">C. H. Mielke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lonzarich%2C+G+G">G. G. Lonzarich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.16825v1-abstract-short" style="display: inline;"> In order to understand the origin of superconductivity, it is crucial to ascertain the nature and origin of the primary carriers available to participate in pairing. Recent quantum oscillation experiments on high Tc cuprate superconductors have revealed the existence of a Fermi surface akin to normal metals, comprising fermionic carriers that undergo orbital quantization. However, the unexpectedly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.16825v1-abstract-full').style.display = 'inline'; document.getElementById('2103.16825v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.16825v1-abstract-full" style="display: none;"> In order to understand the origin of superconductivity, it is crucial to ascertain the nature and origin of the primary carriers available to participate in pairing. Recent quantum oscillation experiments on high Tc cuprate superconductors have revealed the existence of a Fermi surface akin to normal metals, comprising fermionic carriers that undergo orbital quantization. However, the unexpectedly small size of the observed carrier pocket leaves open a variety of possibilities as to the existence or form of any underlying magnetic order, and its relation to d-wave superconductivity. Here we present quantum oscillations in the magnetisation (the de Haas-van Alphen or dHvA effect) observed in superconducting YBa2Cu3O6.51 that reveal more than one carrier pocket. In particular, we find evidence for the existence of a much larger pocket of heavier mass carriers playing a thermodynamically dominant role in this hole-doped superconductor. Importantly, characteristics of the multiple pockets within this more complete Fermi surface impose constraints on the wavevector of any underlying order and the location of the carriers in momentum space. These constraints enable us to construct a possible density-wave scenario with spiral or related modulated magnetic order, consistent with experimental observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.16825v1-abstract-full').style.display = 'none'; document.getElementById('2103.16825v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">archiving older manuscript</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 454, 200-203 (2008) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.13215">arXiv:2103.13215</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.13215">pdf</a>, <a href="https://arxiv.org/format/2103.13215">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-23140-w">10.1038/s41467-021-23140-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Locally commensurate charge-density wave with three-unit-cell periodicity in YBCO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vinograd%2C+I">I. Vinograd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+R">R. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirata%2C+M">M. Hirata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">T. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayaffre%2C+H">H. Mayaffre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kr%C3%A4mer%2C+S">S. Kr盲mer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Julien%2C+M+-">M. -H. Julien</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.13215v1-abstract-short" style="display: inline;"> In order to identify the mechanism responsible for the formation of charge-density waves (CDW) in cuprate superconductors, it is important to understand which aspects of the CDW&#39;s microscopic structure are generic and which are material-dependent. Here, we show that, at the local scale probed by NMR, long-range CDW order in YBa2Cu3Oy is unidirectional with a commensurate period of three unit cells&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13215v1-abstract-full').style.display = 'inline'; document.getElementById('2103.13215v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.13215v1-abstract-full" style="display: none;"> In order to identify the mechanism responsible for the formation of charge-density waves (CDW) in cuprate superconductors, it is important to understand which aspects of the CDW&#39;s microscopic structure are generic and which are material-dependent. Here, we show that, at the local scale probed by NMR, long-range CDW order in YBa2Cu3Oy is unidirectional with a commensurate period of three unit cells (lambda = 3b), implying that the incommensurability found in X-ray scattering is ensured by phase slips (discommensurations). Furthermore, NMR spectra reveal a predominant oxygen character of the CDW with an out-of-phase relationship between certain lattice sites but no specific signature of a secondary CDW with lambda = 6b associated with a putative pair-density wave. These results shed light on universal aspects of the cuprate CDW. In particular, its spatial profile appears to generically result from the interplay between an incommensurate tendency at long length scales, possibly related to properties of the Fermi surface, and local commensuration effects, due to electron-electron interactions or lock-in to the lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13215v1-abstract-full').style.display = 'none'; document.getElementById('2103.13215v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Original submission (revised version available upon request)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 12, 3274 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.05088">arXiv:2007.05088</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.05088">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-18881-z">10.1038/s41467-020-18881-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal Hall conductivity in the cuprate Mott insulators Nd$_2$CuO$_4$ and Sr$_2$CuO$_2$Cl$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Boulanger%2C+M">Marie-Eve Boulanger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">Ga毛l Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">Sven Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allaire%2C+A">Andr茅anne Allaire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lefran%C3%A7ois%2C+%C3%89">脡tienne Lefran莽ois</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legros%2C+A">Ana毛lle Legros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gourgout%2C+A">Adrien Gourgout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dion%2C+M">Maxime Dion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C+H">C. H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X+H">X. H. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.05088v1-abstract-short" style="display: inline;"> The heat carriers responsible for the unexpectedly large thermal Hall conductivity of the cuprate Mott insulator La$_2$CuO$_4$ were recently shown to be phonons. However, the mechanism by which phonons in cuprates acquire chirality in a magnetic field is still unknown. Here, we report a similar thermal Hall conductivity in two cuprate Mott insulators with significantly different crystal structures&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.05088v1-abstract-full').style.display = 'inline'; document.getElementById('2007.05088v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.05088v1-abstract-full" style="display: none;"> The heat carriers responsible for the unexpectedly large thermal Hall conductivity of the cuprate Mott insulator La$_2$CuO$_4$ were recently shown to be phonons. However, the mechanism by which phonons in cuprates acquire chirality in a magnetic field is still unknown. Here, we report a similar thermal Hall conductivity in two cuprate Mott insulators with significantly different crystal structures and magnetic orders - Nd$_2$CuO$_4$ and Sr$_2$CuO$_2$Cl$_2$ - and show that two potential mechanisms can be excluded - the scattering of phonons by rare-earth impurities and by structural domains. Our comparative study further reveals that orthorhombicity, apical oxygens, the tilting of oxygen octahedra and the canting of spins out of the CuO$_2$ planes are not essential to the mechanism of chirality. Our findings point to a chiral mechanism coming from a coupling of acoustic phonons to the intrinsic excitations of the CuO$_2$ planes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.05088v1-abstract-full').style.display = 'none'; document.getElementById('2007.05088v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 11, 5325 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.09359">arXiv:1909.09359</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.09359">pdf</a>, <a href="https://arxiv.org/format/1909.09359">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-14536-1">10.1038/s41467-020-14536-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatially Inhomogeneous Competition between Superconductivity and the Charge Density Wave in YBa$_2$Cu$_3$O$_{6.67}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">J. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ivashko%2C+O">O. Ivashko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blackburn%2C+E">E. Blackburn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holmes%2C+A+T">A. T. Holmes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+N+B">N. B. Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%BCcker%2C+M">M. H眉cker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerber%2C+S">S. Gerber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutowski%2C+O">O. Gutowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%BCtt%2C+U">U. R眉tt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zimmermann%2C+M+v">M. v. Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forgan%2C+E+M">E. M. Forgan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayden%2C+S+M">S. M. Hayden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.09359v2-abstract-short" style="display: inline;"> The charge density wave in the high-temperature superconductor YBa$_2$Cu$_3$O$_{7-x}$ (YBCO) is now known to have two different ordering tendencies differentiated by their $c$-axis correlations. These correspond to ferro- (F-CDW) and antiferro- (AF-CDW) couplings between CDW in neighbouring CuO$_2$ bilayers. This discovery has prompted a number of fundamental questions. For example, how does super&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09359v2-abstract-full').style.display = 'inline'; document.getElementById('1909.09359v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.09359v2-abstract-full" style="display: none;"> The charge density wave in the high-temperature superconductor YBa$_2$Cu$_3$O$_{7-x}$ (YBCO) is now known to have two different ordering tendencies differentiated by their $c$-axis correlations. These correspond to ferro- (F-CDW) and antiferro- (AF-CDW) couplings between CDW in neighbouring CuO$_2$ bilayers. This discovery has prompted a number of fundamental questions. For example, how does superconductivity adjust to two competing orders and are either of these orders responsible for the electronic reconstruction? Here we use high-energy x-ray diffraction to study YBa$_2$Cu$_3$O$_{6.67}$ as a function of magnetic field and temperature. We show that regions of the sample with F-CDW correlations suppress superconductivity more strongly than those with AF-CDW correlations. This implies that an inhomogeneous superconducting state exists, in which some regions show a weak or fragile form of superconductivity. By comparison of F-CDW and AF-CDW correlation lengths, it is furthermore concluded that F-CDW ordering is sufficiently long-range to modify the electronic structure. Our study thus suggests that F-CDW correlations have an important impact on superconducting and normal state properties of underdoped YBCO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09359v2-abstract-full').style.display = 'none'; document.getElementById('1909.09359v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, and supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 11, 990 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.00389">arXiv:1909.00389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.00389">pdf</a>, <a href="https://arxiv.org/format/1909.00389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.094502">10.1103/PhysRevB.100.094502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> NMR study of charge density waves under hydrostatic pressure in YBa2Cu3Oy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vinograd%2C+I">I. Vinograd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+R">R. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayaffre%2C+H">H. Mayaffre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kr%C3%A4mer%2C+S">S. Kr盲mer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Julien%2C+M+-">M. -H. Julien</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.00389v1-abstract-short" style="display: inline;"> The effect of hydrostatic pressure (P) on charge density waves (CDW) in YBa2Cu3Oy has recently been controversial. Using NMR, we find that both the short-range CDW in the normal state and the long-range CDW in high fields are, at most, slightly weakened at P=1.9 GPa. This result is in contradiction with x-ray scattering results finding complete suppression of the CDW at ~1 GPa and we discuss possi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.00389v1-abstract-full').style.display = 'inline'; document.getElementById('1909.00389v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.00389v1-abstract-full" style="display: none;"> The effect of hydrostatic pressure (P) on charge density waves (CDW) in YBa2Cu3Oy has recently been controversial. Using NMR, we find that both the short-range CDW in the normal state and the long-range CDW in high fields are, at most, slightly weakened at P=1.9 GPa. This result is in contradiction with x-ray scattering results finding complete suppression of the CDW at ~1 GPa and we discuss possible explanations of this discrepancy. Quantitative analysis, however, shows that the NMR data is not inconsistent with a disappearance of the CDW on a larger pressure scale, typically ~10-20 GPa. We also propose a simple model reconciling transport data with such a hypothesis, provided the pressure-induced change in doping is taken into account. We conclude that it is therefore possible that most of the spectacular increase in Tc upon increasing pressure up to ~15~GPa arises from a concomitant decrease of CDW strength. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.00389v1-abstract-full').style.display = 'none'; document.getElementById('1909.00389v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 094502 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.12929">arXiv:1904.12929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.12929">pdf</a>, <a href="https://arxiv.org/format/1904.12929">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.aay0345">10.1126/sciadv.aay0345 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital Symmetries of Charge Density Wave Order in YBa2Cu3O6+x </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=McMahon%2C+C">Christopher McMahon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Achkar%2C+A+J">A. J. Achkar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Djianto%2C+I">I. Djianto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Menard%2C+J">J. Menard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">R. Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawthorn%2C+D+G">D. G. Hawthorn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.12929v2-abstract-short" style="display: inline;"> Charge density wave (CDW) order has been shown to compete and coexist with superconductivity in underdoped cuprates. Theoretical proposals for the CDW order include an unconventional $d$-symmetry form factor CDW, evidence for which has emerged from measurements, including resonant soft x-ray scattering (RSXS) in YBa$_2$Cu$_3$O$_{6+x}$ (YBCO). Here, we revisit RSXS measurements of the CDW symmetry&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12929v2-abstract-full').style.display = 'inline'; document.getElementById('1904.12929v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.12929v2-abstract-full" style="display: none;"> Charge density wave (CDW) order has been shown to compete and coexist with superconductivity in underdoped cuprates. Theoretical proposals for the CDW order include an unconventional $d$-symmetry form factor CDW, evidence for which has emerged from measurements, including resonant soft x-ray scattering (RSXS) in YBa$_2$Cu$_3$O$_{6+x}$ (YBCO). Here, we revisit RSXS measurements of the CDW symmetry in YBCO, using a variation in the measurement geometry to provide enhanced sensitivity to orbital symmetry. We show that the $(0\ 0.31\ L)$ CDW peak measured at the Cu $L$ edge is dominated by an $s$ form factor rather than a $d$ form factor as was reported previously. In addition, by measuring both $(0.31\ 0\ L)$ and $(0\ 0.31\ L)$ peaks, we identify a pronounced difference in the orbital symmetry of the CDW order along the $a$ and $b$ axes, with the CDW along the $a$ axis exhibiting orbital order in addition to charge order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12929v2-abstract-full').style.display = 'none'; document.getElementById('1904.12929v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures + supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances, 6 (45), eaay0345 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.06583">arXiv:1901.06583</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.06583">pdf</a>, <a href="https://arxiv.org/format/1901.06583">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.045105">10.1103/PhysRevB.99.045105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resolving the nature of electronic excitations in resonant inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+M">M. Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krockenberger%2C+Y">Y. Krockenberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McNally%2C+D+E">D. E. McNally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">E. Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamamoto%2C+H">H. Yamamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">R. Comin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.06583v1-abstract-short" style="display: inline;"> The study of elementary bosonic excitations is essential toward a complete description of quantum electronic solids. In this context, resonant inelastic X-ray scattering (RIXS) has recently risen to becoming a versatile probe of electronic excitations in strongly correlated electron systems. The nature of the radiation-matter interaction endows RIXS with the ability to resolve the charge, spin and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06583v1-abstract-full').style.display = 'inline'; document.getElementById('1901.06583v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.06583v1-abstract-full" style="display: none;"> The study of elementary bosonic excitations is essential toward a complete description of quantum electronic solids. In this context, resonant inelastic X-ray scattering (RIXS) has recently risen to becoming a versatile probe of electronic excitations in strongly correlated electron systems. The nature of the radiation-matter interaction endows RIXS with the ability to resolve the charge, spin and orbital nature of individual excitations. However, this capability has been only marginally explored to date. Here, we demonstrate a systematic method for the extraction of the character of excitations as imprinted in the azimuthal dependence of the RIXS signal. Using this novel approach, we resolve the charge, spin, and orbital nature of elastic scattering, (para-)magnon/bimagnon modes, and higher energy dd excitations in magnetically-ordered and superconducting copper-oxide perovskites (Nd2CuO4 and YBa2Cu3O6.75). Our method derives from a direct application of scattering theory, enabling us to deconstruct the complex scattering tensor as a function of energy loss. In particular, we use the characteristic tensorial nature of each excitation to precisely and reliably disentangle the charge and spin contributions to the low energy RIXS spectrum. This procedure enables to separately track the evolution of spin and charge spectral distributions in cuprates with doping. Our results demonstrate a new capability that can be integrated into the RIXS toolset, and that promises to be widely applicable to materials with intertwined spin, orbital, and charge excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06583v1-abstract-full').style.display = 'none'; document.getElementById('1901.06583v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 045105 (2019), https://link.aps.org/doi/10.1103/PhysRevB.99.045105 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.12348">arXiv:1811.12348</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.12348">pdf</a>, <a href="https://arxiv.org/format/1811.12348">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.267004">10.1103/PhysRevLett.121.267004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Logarithmic Upturn in Low-Temperature Electronic Transport as a Signature of d-Wave Order in Cuprate Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoqing Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peets%2C+D+C">D. C. Peets</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morgan%2C+B">Benjamin Morgan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huttema%2C+W+A">W. A. Huttema</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murphy%2C+N+C">N. C. Murphy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thewalt%2C+E">E. Thewalt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Truncik%2C+C+J+S">C. J. S. Truncik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turner%2C+P+J">P. J. Turner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koenig%2C+A+J">A. J. Koenig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Waldram%2C+J+R">J. R. Waldram</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hosseini%2C+A">A. Hosseini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broun%2C+D+M">D. M. Broun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.12348v1-abstract-short" style="display: inline;"> In cuprate superconductors, high magnetic fields have been used extensively to suppress superconductivity and expose the underlying normal state. Early measurements revealed insulating-like behavior in underdoped material versus temperature $T$, in which resistivity increases on cooling with a puzzling $\log(1/T)$ form. We instead use microwave measurements of flux-flow resistivity in YBa$_2$Cu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.12348v1-abstract-full').style.display = 'inline'; document.getElementById('1811.12348v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.12348v1-abstract-full" style="display: none;"> In cuprate superconductors, high magnetic fields have been used extensively to suppress superconductivity and expose the underlying normal state. Early measurements revealed insulating-like behavior in underdoped material versus temperature $T$, in which resistivity increases on cooling with a puzzling $\log(1/T)$ form. We instead use microwave measurements of flux-flow resistivity in YBa$_2$Cu$_3$O$_{6+y}$ and Tl$_2$Ba$_2$CuO$_{6+未}$ to study charge transport deep inside the superconducting phase, in the low temperature and low field regime. Here, the transition from metallic low-temperature resistivity ($d蟻/dT&gt;0$) to a $\log(1/T)$ upturn persists throughout the superconducting doping range, including a regime at high carrier dopings in which the field-revealed normal-state resistivity is Fermi-liquid-like. The $\log(1/T)$ form is thus likely a signature of $d$-wave superconducting order, and the field-revealed normal state&#39;s $\log(1/T)$ resistivity may indicate the free-flux-flow regime of a phase-disordered $d$-wave superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.12348v1-abstract-full').style.display = 'none'; document.getElementById('1811.12348v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures + Supplementary Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.06250">arXiv:1807.06250</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.06250">pdf</a>, <a href="https://arxiv.org/format/1807.06250">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.016502">10.1103/PhysRevB.98.016502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reply to &#34;Comment on `No evidence for orbital loop currents in charge-ordered YBa$_2$Cu$_3$O$_{6+x}$ from polarized neutron diffraction&#39; &#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Croft%2C+T+P">T. P. Croft</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blackburn%2C+E">E. Blackburn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kulda%2C+J">J. Kulda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayden%2C+S+M">S. M. Hayden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.06250v1-abstract-short" style="display: inline;"> The issues raised in the preceding comment of Bourges et al. [arXiv:1710.08173, Phys. Rev. B 98, 016501 (2018)] are shown to be unfounded. We highlight the complications caused by inhomogeneous beam polarization that can occur when using polarized neutron diffraction to detect small magnetic moments. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.06250v1-abstract-full" style="display: none;"> The issues raised in the preceding comment of Bourges et al. [arXiv:1710.08173, Phys. Rev. B 98, 016501 (2018)] are shown to be unfounded. We highlight the complications caused by inhomogeneous beam polarization that can occur when using polarized neutron diffraction to detect small magnetic moments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06250v1-abstract-full').style.display = 'none'; document.getElementById('1807.06250v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, supplementary material included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 016502 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.05019">arXiv:1802.05019</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.05019">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-018-04909-y">10.1038/s41467-018-04909-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of a strain-stabilised smectic electronic order in LiFeAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yim%2C+C+M">Chi Ming Yim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trainer%2C+C">Christopher Trainer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aluru%2C+R">Ramakrishna Aluru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Shun Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">Walter N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D">Doug Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wahl%2C+P">Peter Wahl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.05019v2-abstract-short" style="display: inline;"> In many high temperature superconductors, small orthorhombic distortions of the lattice structure result in surprisingly large symmetry breaking of the electronic states and macroscopic properties, an effect often referred to as nematicity. To directly study the impact of symmetry-breaking lattice distortions on the electronic states, using low-temperature scanning tunnelling microscopy we image a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.05019v2-abstract-full').style.display = 'inline'; document.getElementById('1802.05019v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.05019v2-abstract-full" style="display: none;"> In many high temperature superconductors, small orthorhombic distortions of the lattice structure result in surprisingly large symmetry breaking of the electronic states and macroscopic properties, an effect often referred to as nematicity. To directly study the impact of symmetry-breaking lattice distortions on the electronic states, using low-temperature scanning tunnelling microscopy we image at the atomic scale the influence of strain-tuned lattice distortions on the correlated electronic states in the iron-based superconductor LiFeAs, a material which in its ground state is tetragonal, with four-fold ($C_4$) symmetry. Our experiments uncover a new strain-stabilised modulated phase which exhibits a smectic order in LiFeAs, an electronic state which not only breaks rotational symmetry but also reduces translational symmetry. We follow the evolution of the superconducting gap from the unstrained material with $C_4$ symmetry through the new nematic phase with two-fold ($C_2$) symmetry and charge-density-wave order to a state where superconductivity is completely suppressed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.05019v2-abstract-full').style.display = 'none'; document.getElementById('1802.05019v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">replaced with published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 9, 2602 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.06686">arXiv:1711.06686</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.06686">pdf</a>, <a href="https://arxiv.org/format/1711.06686">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.076401">10.1103/PhysRevLett.121.076401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Influence of Spin Orbit Coupling in the Iron-Based Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+R+P">R. P. Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">G. Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">M. Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zwartsenberg%2C+B">B. Zwartsenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">M. Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+F">F. Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Razzoli%2C+E">E. Razzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">F. Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">S. Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+P+K">P. K. Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vobornik%2C+I">I. Vobornik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujii%2C+J">J. Fujii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elfimov%2C+I+S">I. S. Elfimov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.06686v3-abstract-short" style="display: inline;"> We report on the influence of spin-orbit coupling (SOC) in the Fe-based superconductors (FeSCs) via application of circularly-polarized spin and angle-resolved photoemission spectroscopy. We combine this technique in representative members of both the Fe-pnictides and Fe-chalcogenides with ab initio density functional theory and tight-binding calculations to establish an ubiquitous modification of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.06686v3-abstract-full').style.display = 'inline'; document.getElementById('1711.06686v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.06686v3-abstract-full" style="display: none;"> We report on the influence of spin-orbit coupling (SOC) in the Fe-based superconductors (FeSCs) via application of circularly-polarized spin and angle-resolved photoemission spectroscopy. We combine this technique in representative members of both the Fe-pnictides and Fe-chalcogenides with ab initio density functional theory and tight-binding calculations to establish an ubiquitous modification of the electronic structure in these materials imbued by SOC. The influence of SOC is found to be concentrated on the hole pockets where the superconducting gap is generally found to be largest. This result contests descriptions of superconductivity in these materials in terms of pure spin-singlet eigenstates, raising questions regarding the possible pairing mechanisms and role of SOC therein. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.06686v3-abstract-full').style.display = 'none'; document.getElementById('1711.06686v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">For supplementary information, see http://qmlab.ubc.ca/ARPES/PUBLICATIONS/articles.html</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 076401 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.00109">arXiv:1711.00109</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.00109">pdf</a>, <a href="https://arxiv.org/format/1711.00109">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.1711445114">10.1073/pnas.1711445114 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin susceptibility of charge ordered YBa2Cu3Oy across the upper critical field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+R">R. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirata%2C+M">M. Hirata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">T. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vinograd%2C+I">I. Vinograd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayaffre%2C+H">H. Mayaffre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kr%C3%A4mer%2C+S">S. Kr盲mer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyes%2C+A+P">A. P. Reyes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuhns%2C+P+L">P. L. Kuhns</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Julien%2C+M+-">M. -H. Julien</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.00109v1-abstract-short" style="display: inline;"> The value of the upper critical field Hc2, a fundamental characteristic of the superconducting state, has been subject to strong controversy in high-Tc copper-oxides. Since the issue has been tackled almost exclusively by macroscopic techniques so far, there is a clear need for local-probe measurements. Here, we use 17O NMR to measure the spin susceptibility $蠂_{spin}$ of the CuO2 planes at low te&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00109v1-abstract-full').style.display = 'inline'; document.getElementById('1711.00109v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.00109v1-abstract-full" style="display: none;"> The value of the upper critical field Hc2, a fundamental characteristic of the superconducting state, has been subject to strong controversy in high-Tc copper-oxides. Since the issue has been tackled almost exclusively by macroscopic techniques so far, there is a clear need for local-probe measurements. Here, we use 17O NMR to measure the spin susceptibility $蠂_{spin}$ of the CuO2 planes at low temperature in charge ordered YBa2Cu3Oy. We find that $蠂_{spin}$ increases (most likely linearly) with magnetic field H and saturates above field values ranging from 20 to 40 T. This result is consistent with Hc2 values claimed by G. Grissonnanche et al. [Nat. Commun. 5, 3280 (2014)] and with the interpretation that the charge-density-wave (CDW) reduces Hc2 in underdoped YBa2Cu3Oy. Furthermore, the absence of marked deviation in $蠂_{spin}(H)$ at the onset of long-range CDW order indicates that this Hc2 reduction and the Fermi-surface reconstruction are primarily rooted in the short-range CDW order already present in zero field, not in the field-induced long-range CDWorder. Above Hc2, the relatively low values of $蠂_{spin}$ at T=2 K show that the pseudogap is a ground-state property, independent of the superconducting gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00109v1-abstract-full').style.display = 'none'; document.getElementById('1711.00109v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS 114, 13148 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.09089">arXiv:1710.09089</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.09089">pdf</a>, <a href="https://arxiv.org/format/1710.09089">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Determination of the Superconducting Order Parameter from Defect Bound State Quasiparticle Interference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Shun Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dosanjh%2C+P">P. Dosanjh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wahl%2C+P">Peter Wahl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burke%2C+S+A">S. A. Burke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.09089v1-abstract-short" style="display: inline;"> The superconducting order parameter is directly related to the pairing interaction, with the amplitude determined by the interaction strength, while the phase reflects the spatial structure of the interaction. However, given the large variety of materials and their rich physical properties within the iron-based high-Tc superconductors, the structure of the order parameter remains controversial in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09089v1-abstract-full').style.display = 'inline'; document.getElementById('1710.09089v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.09089v1-abstract-full" style="display: none;"> The superconducting order parameter is directly related to the pairing interaction, with the amplitude determined by the interaction strength, while the phase reflects the spatial structure of the interaction. However, given the large variety of materials and their rich physical properties within the iron-based high-Tc superconductors, the structure of the order parameter remains controversial in many cases. Here, we introduce Defect Bound State Quasi Particle Interference (DBS-QPI) as a new method to determine the superconducting order parameter. Using a low-temperature scanning tunneling microscope, we image in-gap bound states in the stoichiometric iron-based superconductor LiFeAs and show that the bound states induced by defect scattering are formed from Bogoliubov quasiparticles that have significant spatial extent. Quasiparticle interference from these bound states has unique signatures from which one can determine the phase of the order parameter as well as the nature of the defect, i.e. whether it is better described as a magnetic vs a nonmagnetic scatterer. DBS-QPI provides an easy but general method to characterize the pairing symmetry of superconducting condensates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09089v1-abstract-full').style.display = 'none'; document.getElementById('1710.09089v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.09088">arXiv:1710.09088</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.09088">pdf</a>, <a href="https://arxiv.org/format/1710.09088">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Extracting phase information about the superconducting order parameter from defect bound states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Shun Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dosanjh%2C+P">P. Dosanjh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wahl%2C+P">Peter Wahl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burke%2C+S+A">S. A. Burke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.09088v1-abstract-short" style="display: inline;"> Impurity bound states and quasi-particle scattering from these can serve as sensitive probes for identifying the pairing state of a superconducting condensate. We introduce and discuss defect bound state quasi-particle interference (DBS-QPI) imaging as a tool to extract information about the symmetry of the order parameter from spatial maps of the density of states around magnetic and non-magnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09088v1-abstract-full').style.display = 'inline'; document.getElementById('1710.09088v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.09088v1-abstract-full" style="display: none;"> Impurity bound states and quasi-particle scattering from these can serve as sensitive probes for identifying the pairing state of a superconducting condensate. We introduce and discuss defect bound state quasi-particle interference (DBS-QPI) imaging as a tool to extract information about the symmetry of the order parameter from spatial maps of the density of states around magnetic and non-magnetic impurities. We show that the phase information contained in the scattering patterns around impurities can provide valuable information beyond what is obtained through conventional QPI imaging. Keeping track of phase, rather than just magnitudes, in the Fourier transforms is achieved through phase-referenced Fourier transforms that preserve both real and imaginary parts of the QPI images. We further compare DBS-QPI to other approaches which have been proposed to use either QPI or defect scattering to distinguish different symmetries of the order parameter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09088v1-abstract-full').style.display = 'none'; document.getElementById('1710.09088v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.06128">arXiv:1709.06128</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.06128">pdf</a>, <a href="https://arxiv.org/ps/1709.06128">ps</a>, <a href="https://arxiv.org/format/1709.06128">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.214504">10.1103/PhysRevB.96.214504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> No Evidence for Orbital Loop Currents in Charge Ordered YBa$_2$Cu$_3$O$_{6+x}$ from Polarized Neutron Diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Croft%2C+T+P">T. P. Croft</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blackburn%2C+E">E. Blackburn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kulda%2C+J">J. Kulda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayden%2C+S+M">S. M. Hayden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.06128v3-abstract-short" style="display: inline;"> It has been proposed that the pseudogap state of underdoped cuprate superconductors may be due to a transition to a phase which has circulating currents within each unit cell. Here, we use polarized neutron diffraction to search for the corresponding orbital moments in two samples of underdoped YBa$_2$Cu$_3$O$_{6+x}$ with doping levels $p=0.104$ and 0.123. In contrast to some other reports using p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.06128v3-abstract-full').style.display = 'inline'; document.getElementById('1709.06128v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.06128v3-abstract-full" style="display: none;"> It has been proposed that the pseudogap state of underdoped cuprate superconductors may be due to a transition to a phase which has circulating currents within each unit cell. Here, we use polarized neutron diffraction to search for the corresponding orbital moments in two samples of underdoped YBa$_2$Cu$_3$O$_{6+x}$ with doping levels $p=0.104$ and 0.123. In contrast to some other reports using polarized neutrons, but in agreement with nuclear magnetic resonance and muon spin rotation measurements, we find no evidence for the appearance of magnetic order below 300 K. Thus, our experiment suggests that such order is not an intrinsic property of high-quality cuprate superconductor single crystals. Our results provide an upper bound for a possible orbital loop moment which depends on the pattern of currents within the unit cell. For example, for the CC-$胃_{II}$ pattern proposed by Varma, we find that the ordered moment per current loop is less than 0.013 $渭_B$ for $p=0.104$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.06128v3-abstract-full').style.display = 'none'; document.getElementById('1709.06128v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Comments in arXiv:1710.08173v1 fully addressed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 214504 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.03829">arXiv:1704.03829</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.03829">pdf</a>, <a href="https://arxiv.org/format/1704.03829">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.7.031042">10.1103/PhysRevX.7.031042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropy of the Seebeck Coefficient in the Cuprate Superconductor YBa$_{2}$Cu$_{3}$O$_{y}$: Fermi-Surface Reconstruction by Bidirectional Charge Order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choini%C3%A8re%2C+O">O. Cyr-Choini猫re</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michon%2C+B">B. Michon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Afshar%2C+S+A+A">S. A. A. Afshar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fortier%2C+S">S. Fortier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBoeuf%2C+D">D. LeBoeuf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">D. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+J">J. Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.03829v1-abstract-short" style="display: inline;"> The Seebeck coefficient $S$ of the cuprate YBa$_{2}$Cu$_{3}$O$_{y}$ was measured in magnetic fields large enough to suppress superconductivity, at hole dopings $p = 0.11$ and $p = 0.12$, for heat currents along the $a$ and $b$ directions of the orthorhombic crystal structure. For both directions, $S/T$ decreases and becomes negative at low temperature, a signature that the Fermi surface undergoes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.03829v1-abstract-full').style.display = 'inline'; document.getElementById('1704.03829v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.03829v1-abstract-full" style="display: none;"> The Seebeck coefficient $S$ of the cuprate YBa$_{2}$Cu$_{3}$O$_{y}$ was measured in magnetic fields large enough to suppress superconductivity, at hole dopings $p = 0.11$ and $p = 0.12$, for heat currents along the $a$ and $b$ directions of the orthorhombic crystal structure. For both directions, $S/T$ decreases and becomes negative at low temperature, a signature that the Fermi surface undergoes a reconstruction due to broken translational symmetry. Above a clear threshold field, a strong new feature appears in $S_{\rm b}$, for conduction along the $b$ axis only. We attribute this feature to the onset of 3D-coherent unidirectional charge-density-wave modulations seen by x-ray diffraction, also along the $b$ axis only. Because these modulations have a sharp onset temperature well below the temperature where $S/T$ starts to drop towards negative values, we infer that they are not the cause of Fermi-surface reconstruction. Instead, the reconstruction must be caused by the quasi-2D bidirectional modulations that develop at significantly higher temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.03829v1-abstract-full').style.display = 'none'; document.getElementById('1704.03829v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 7, 031042 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.07002">arXiv:1703.07002</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.07002">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms15996">10.1038/ncomms15996 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Imaging the Real Space Structure of the Spin Fluctuations in an Iron-based superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Shun Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aluru%2C+R">Ramakrishna Aluru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grothe%2C+S">Stephanie Grothe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kreisel%2C+A">A. Kreisel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+U+R">Udai Raj Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+B+M">Brian M. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burke%2C+S+A">S. A. Burke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wahl%2C+P">Peter Wahl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.07002v2-abstract-short" style="display: inline;"> Spin fluctuations are a leading candidate for the pairing mechanism in high temperature superconductors, supported by the common appearance of a distinct resonance in the spin susceptibility across the cuprates, iron-based superconductors and many heavy fermion materials. The information we have about the spin resonance comes almost exclusively from neutron scattering. Here we demonstrate that by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07002v2-abstract-full').style.display = 'inline'; document.getElementById('1703.07002v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.07002v2-abstract-full" style="display: none;"> Spin fluctuations are a leading candidate for the pairing mechanism in high temperature superconductors, supported by the common appearance of a distinct resonance in the spin susceptibility across the cuprates, iron-based superconductors and many heavy fermion materials. The information we have about the spin resonance comes almost exclusively from neutron scattering. Here we demonstrate that by using low-temperature scanning tunnelling microscopy and spectroscopy we can characterize the spin resonance in real space. We show that inelastic tunnelling leads to the characteristic dip-hump feature seen in tunnelling spectra in high temperature superconductors and that this feature arises from excitations of the spin fluctuations. Spatial mapping of this feature near defects allows us to probe non-local properties of the spin susceptibility and to image its real space structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07002v2-abstract-full').style.display = 'none'; document.getElementById('1703.07002v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published version (7 pages, 5 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NBI CMT 2017 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 8, 15996 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.06927">arXiv:1703.06927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.06927">pdf</a>, <a href="https://arxiv.org/format/1703.06927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.064502">10.1103/PhysRevB.97.064502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pseudogap temperature $T^\star$ of cuprate superconductors from the Nernst effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choini%C3%A8re%2C+O">O. Cyr-Choini猫re</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Daou%2C+R">R. Daou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalibert%C3%A9%2C+F">F. Lalibert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collignon%2C+C">C. Collignon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBoeuf%2C+D">D. LeBoeuf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramshaw%2C+B+J">B. J. Ramshaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J+-">J. -Q. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J+-">J. -G. Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J+-">J. -S. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodenough%2C+J+B">J. B. Goodenough</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pyon%2C+S">S. Pyon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takayama%2C+T">T. Takayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.06927v2-abstract-short" style="display: inline;"> We use the Nernst effect to delineate the boundary of the pseudogap phase in the temperature-doping phase diagram of cuprate superconductors. New data for the Nernst coefficient $谓(T)$ of YBa$_{2}$Cu$_{3}$O$_{y}$ (YBCO), La$_{1.8-x}$Eu$_{0.2}$Sr$_x$CuO$_4$ (Eu-LSCO) and La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ (Nd-LSCO) are presented and compared with previous data including La$_{2-x}$Sr$_x$CuO$_4$ (LS&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.06927v2-abstract-full').style.display = 'inline'; document.getElementById('1703.06927v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.06927v2-abstract-full" style="display: none;"> We use the Nernst effect to delineate the boundary of the pseudogap phase in the temperature-doping phase diagram of cuprate superconductors. New data for the Nernst coefficient $谓(T)$ of YBa$_{2}$Cu$_{3}$O$_{y}$ (YBCO), La$_{1.8-x}$Eu$_{0.2}$Sr$_x$CuO$_4$ (Eu-LSCO) and La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ (Nd-LSCO) are presented and compared with previous data including La$_{2-x}$Sr$_x$CuO$_4$ (LSCO). The temperature $T_谓$ at which $谓/T$ deviates from its high-temperature behaviour is found to coincide with the temperature at which the resistivity deviates from its linear-$T$ dependence, which we take as the definition of the pseudogap temperature $T^\star$- in agreement with gap opening detected in ARPES data. We track $T^\star$ as a function of doping and find that it decreases linearly vs $p$ in all four materials, having the same value in the three LSCO-based cuprates, irrespective of their different crystal structures. At low $p$, $T^\star$ is higher than the onset temperature of the various orders observed in underdoped cuprates, suggesting that these orders are secondary instabilities of the pseudogap phase. A linear extrapolation of $T^\star(p)$ to $p=0$ yields $T^\star(p\to 0)\simeq T_N(0)$, the N茅el temperature for the onset of antiferromagnetic order at $p=0$, suggesting that there is a link between pseudogap and antiferromagnetism. With increasing $p$, $T^\star(p)$ extrapolates linearly to zero at $p\simeq p_{\rm c2}$, the critical doping below which superconductivity emerges at high doping, suggesting that the conditions which favour pseudogap formation also favour pairing. We also use the Nernst effect to investigate how far superconducting fluctuations extend above $T_{\rm c}$, as a function of doping, and find that a narrow fluctuation regime tracks $T_{\rm c}$, and not $T^\star$. This confirms that the pseudogap phase is not a form of precursor superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.06927v2-abstract-full').style.display = 'none'; document.getElementById('1703.06927v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages and 26 figures including Appendix</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 064502 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.08603">arXiv:1611.08603</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.08603">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys3962">10.1038/nphys3962 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A global inversion-symmetry-broken phase inside the pseudogap region of YBa$_2$Cu$_3$O$_y$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">L. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belvin%2C+C+A">C. A. Belvin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Armitage%2C+N+P">N. P. Armitage</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsieh%2C+D">D. Hsieh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.08603v1-abstract-short" style="display: inline;"> The phase diagram of cuprate high-temperature superconductors features an enigmatic pseudogap region that is characterized by a partial suppression of low energy electronic excitations. Polarized neutron diffraction, Nernst effect, THz polarimetery and ultrasound measurements on YBa$_2$Cu$_3$O$_y$ suggest that the pseudogap onset below a temperature T* coincides with a bona fide thermodynamic phas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.08603v1-abstract-full').style.display = 'inline'; document.getElementById('1611.08603v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.08603v1-abstract-full" style="display: none;"> The phase diagram of cuprate high-temperature superconductors features an enigmatic pseudogap region that is characterized by a partial suppression of low energy electronic excitations. Polarized neutron diffraction, Nernst effect, THz polarimetery and ultrasound measurements on YBa$_2$Cu$_3$O$_y$ suggest that the pseudogap onset below a temperature T* coincides with a bona fide thermodynamic phase transition that breaks time-reversal, four-fold rotation and mirror symmetries respectively. However, the full point group above and below T* has not been resolved and the fate of this transition as T* approaches the superconducting critical temperature T$_c$ is poorly understood. Here we reveal the point group of YBa$_2$Cu$_3$O$_y$ inside its pseudogap and neighboring regions using high sensitivity linear and second harmonic optical anisotropy measurements. We show that spatial inversion and two-fold rotational symmetries are broken below T* while mirror symmetries perpendicular to the Cu-O plane are absent at all temperatures. This transition occurs over a wide doping range and persists inside the superconducting dome, with no detectable coupling to either charge ordering or superconductivity. These results suggest that the pseudogap region coincides with an odd-parity order that does not arise from a competing Fermi surface instability and exhibits a quantum phase transition inside the superconducting dome. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.08603v1-abstract-full').style.display = 'none'; document.getElementById('1611.08603v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages main text, 4 figures, 11 pages supplementary information, Nature Physics (2016)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 13, 250-254 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.05845">arXiv:1610.05845</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.05845">pdf</a>, <a href="https://arxiv.org/format/1610.05845">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.1703416114">10.1073/pnas.1703416114 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous Thermal Diffusivity in Underdoped YBa$_2$Cu$_3$O$_{6+x}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J+-">J. -C. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levenson-Falk%2C+E+M">E. M. Levenson-Falk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramshaw%2C+B+J">B. J. Ramshaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hartnoll%2C+S+A">S. A. Hartnoll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kapitulnik%2C+A">A. Kapitulnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.05845v2-abstract-short" style="display: inline;"> We present local optical measurements of thermal diffusivity in the $ab$ plane of underdoped YBCO crystals. We find that the diffusivity anisotropy is comparable to reported values of the electrical resistivity anisotropy, suggesting that the anisotropies have the same origin. The anisotropy drops sharply below the charge order transition. We interpret our results through a strong electron-phonon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.05845v2-abstract-full').style.display = 'inline'; document.getElementById('1610.05845v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.05845v2-abstract-full" style="display: none;"> We present local optical measurements of thermal diffusivity in the $ab$ plane of underdoped YBCO crystals. We find that the diffusivity anisotropy is comparable to reported values of the electrical resistivity anisotropy, suggesting that the anisotropies have the same origin. The anisotropy drops sharply below the charge order transition. We interpret our results through a strong electron-phonon scattering picture and find that both electronic and phononic contributions to the diffusivity saturate a proposed bound. Our results suggest that neither well-defined electron nor phonon quasiparticles are present in this material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.05845v2-abstract-full').style.display = 'none'; document.getElementById('1610.05845v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages + 4 pages supporting information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.00619">arXiv:1610.00619</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.00619">pdf</a>, <a href="https://arxiv.org/format/1610.00619">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.224518">10.1103/PhysRevB.94.224518 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards a quantitative description of tunneling conductance of superconductors: application to LiFeAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kreisel%2C+A">A. Kreisel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+R">R. Nelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berlijn%2C+T">T. Berlijn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ku%2C+W">W. Ku</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aluru%2C+R">Ramakrishna Aluru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Shun Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Haibiao Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+U+R">Udai Raj Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wahl%2C+P">Peter Wahl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">Walter N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirschfeld%2C+P+J">P. J. Hirschfeld</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+B+M">Brian M. Andersen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.00619v2-abstract-short" style="display: inline;"> Since the discovery of iron-based superconductors, a number of theories have been put forward to explain the qualitative origin of pairing, but there have been few attempts to make quantitative, material-specific comparisons to experimental results. The spin-fluctuation theory of electronic pairing, based on first-principles electronic structure calculations, makes predictions for the superconduct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.00619v2-abstract-full').style.display = 'inline'; document.getElementById('1610.00619v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.00619v2-abstract-full" style="display: none;"> Since the discovery of iron-based superconductors, a number of theories have been put forward to explain the qualitative origin of pairing, but there have been few attempts to make quantitative, material-specific comparisons to experimental results. The spin-fluctuation theory of electronic pairing, based on first-principles electronic structure calculations, makes predictions for the superconducting gap. Within the same framework, the surface wave functions may also be calculated, allowing, e.g., for detailed comparisons between theoretical results and measured scanning tunneling topographs and spectra. Here we present such a comparison between theory and experiment on the Fe-based superconductor LiFeAs. Results for the homogeneous surface as well as impurity states are presented as a benchmark test of the theory. For the homogeneous system, we argue that the maxima of topographic image intensity may be located at positions above either the As or Li atoms, depending on tip height and the setpoint current of the measurement. We further report the experimental observation of transitions between As and Li-registered lattices as functions of both tip height and setpoint bias, in agreement with this prediction. Next, we give a detailed comparison between the simulated scanning tunneling microscopy images of transition-metal defects with experiment. Finally, we discuss possible extensions of the current framework to obtain a theory with true predictive power for scanning tunneling microscopy in Fe-based systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.00619v2-abstract-full').style.display = 'none'; document.getElementById('1610.00619v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 15 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NBI CMT 2016 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 224518 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.03539">arXiv:1609.03539</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.03539">pdf</a>, <a href="https://arxiv.org/format/1609.03539">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.017001">10.1103/PhysRevLett.118.017001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of electronic bound states in charge-ordered YBa$_2$Cu$_3$O$_y$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+R">R. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirata%2C+M">M. Hirata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">T. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vinograd%2C+I">I. Vinograd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayaffre%2C+H">H. Mayaffre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kr%C3%A4mer%2C+S">S. Kr盲mer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Horvati%C4%87%2C+M">M. Horvati膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berthier%2C+C">C. Berthier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyes%2C+A+P">A. P. Reyes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuhns%2C+P+L">P. L. Kuhns</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Julien%2C+M+-">M. -H. Julien</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.03539v1-abstract-short" style="display: inline;"> Observing how electronic states in solids react to a local symmetry breaking provides insight into their microscopic nature. A striking example is the formation of bound states when quasiparticles are scattered off defects. This is known to occur, under specific circumstances, in some metals and superconductors but not, in general, in the charge-density-wave (CDW) state. Here, we report the unfore&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.03539v1-abstract-full').style.display = 'inline'; document.getElementById('1609.03539v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.03539v1-abstract-full" style="display: none;"> Observing how electronic states in solids react to a local symmetry breaking provides insight into their microscopic nature. A striking example is the formation of bound states when quasiparticles are scattered off defects. This is known to occur, under specific circumstances, in some metals and superconductors but not, in general, in the charge-density-wave (CDW) state. Here, we report the unforeseen observation of bound states when a magnetic field quenches superconductivity and induces long-range CDW order in YBa$_2$Cu$_3$O$_y$. Bound states indeed produce an inhomogeneous pattern of the local density of states $N(E_F)$ that leads to a skewed distribution of Knight shifts which is detected here through an asymmetric profile of $^{17}$O NMR lines. We argue that the effect arises most likely from scattering off defects in the CDW state, which provides a novel case of disorder-induced bound states in a condensed-matter system and an insightful window into charge ordering in the cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.03539v1-abstract-full').style.display = 'none'; document.getElementById('1609.03539v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 017001 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.07145">arXiv:1607.07145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.07145">pdf</a>, <a href="https://arxiv.org/format/1607.07145">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Broken rotational symmetry on the Fermi surface of a high-T$_\mathrm{c}$ superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ramshaw%2C+B+J">B. J. Ramshaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harrison%2C+N">N. Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sebastian%2C+S+E">S. E. Sebastian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghannadzadeh%2C+S">S. Ghannadzadeh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Modic%2C+K+A">K. A. Modic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goddard%2C+P+A">P. A. Goddard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.07145v1-abstract-short" style="display: inline;"> Broken fourfold rotational (C$_4$) symmetry is observed in the experimental properties of several classes of unconventional superconductors. It has been proposed that this symmetry breaking is important for superconducting pairing in these materials, but in the high superconducting transition temperature (high-T$_{\mathrm{c}}$) cuprates this broken symmetry has never been observed on the Fermi sur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.07145v1-abstract-full').style.display = 'inline'; document.getElementById('1607.07145v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.07145v1-abstract-full" style="display: none;"> Broken fourfold rotational (C$_4$) symmetry is observed in the experimental properties of several classes of unconventional superconductors. It has been proposed that this symmetry breaking is important for superconducting pairing in these materials, but in the high superconducting transition temperature (high-T$_{\mathrm{c}}$) cuprates this broken symmetry has never been observed on the Fermi surface. We have measured a pronounced anisotropy in the angle dependence of the interlayer magnetoresistance of the underdoped high-T$_{\mathrm{c}}$) superconductor YBa$_2$Cu$_3$O$_{6.58}$, directly revealing broken C$_4$ symmetry on the Fermi surface. Moreover, we demonstrate that this Fermi surface has C$_2$ symmetry of the type produced by a uniaxial or anisotropic density-wave phase. This establishes the central role of C$_4$ symmetry breaking in the Fermi surface reconstruction of YBa$_2$Cu$_3$O$_{6+未}$, and suggests a striking degree of universality among unconventional superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.07145v1-abstract-full').style.display = 'none'; document.getElementById('1607.07145v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.05359">arXiv:1607.05359</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.05359">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.1612849113">10.1073/pnas.1612849113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ideal charge density wave order in the high-field state of superconducting YBCO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jang%2C+H">H. Jang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W+-">W. -S. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nojiri%2C+H">H. Nojiri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuzawa%2C+S">S. Matsuzawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yasumura%2C+H">H. Yasumura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+L">L. Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maharaj%2C+A+V">A. V. Maharaj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerber%2C+S">S. Gerber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mehta%2C+A">A. Mehta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burns%2C+C+A">C. A. Burns</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+Z">Z. Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">S. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hastings%2C+J">J. Hastings</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+-">Z. -X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kivelson%2C+S+A">S. A. Kivelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kao%2C+C+-">C. -C. Kao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">D. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+-">J. -S. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.05359v1-abstract-short" style="display: inline;"> The existence of charge density wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the ground state order has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to a dozen unit cells or less. Here we explore the CDW correlations in YBa2Cu3Ox (YBCO) ortho-II and ortho-VIII crystals, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.05359v1-abstract-full').style.display = 'inline'; document.getElementById('1607.05359v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.05359v1-abstract-full" style="display: none;"> The existence of charge density wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the ground state order has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to a dozen unit cells or less. Here we explore the CDW correlations in YBa2Cu3Ox (YBCO) ortho-II and ortho-VIII crystals, which belong to the cleanest available cuprate family, at magnetic fields in excess of the resistive upper critical field (Hc2) where the superconductivity is heavily suppressed. We find an incommensurate, unidirectional CDW with a well-defined onset at a critical field strength that is proportional to Hc2. It is related to but distinct from the short-range bidirectional CDW that exists at zero magnetic field. The unidirectional CDW possesses a long inplane correlation length as well as significant correlations between neighboring CuO2 planes, yielding a correlation volume that is at least 2 - 3 orders of magnitude larger than that of the zero-field CDW. This is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground-state of an &#34;ideal&#34; disorder-free cuprate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.05359v1-abstract-full').style.display = 'none'; document.getElementById('1607.05359v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.03192">arXiv:1607.03192</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.03192">pdf</a>, <a href="https://arxiv.org/format/1607.03192">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.134515">10.1103/PhysRevB.94.134515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of Iron-site defects on Superconductivity in LiFeAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Shun Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aluru%2C+R">Ramakrishna Aluru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+U+R">Udai Raj Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">Walter N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kreisel%2C+A">A. Kreisel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+B+M">Brian M. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+R">R. Nelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berlijn%2C+T">T. Berlijn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ku%2C+W">W. Ku</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirschfeld%2C+P+J">P. J. Hirschfeld</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wahl%2C+P">Peter Wahl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.03192v1-abstract-short" style="display: inline;"> In conventional s-wave superconductors, only magnetic impurities exhibit impurity bound states, whereas for an s+- order parameter they can occur for both magnetic and non-magnetic impurities. Impurity bound states in superconductors can thus provide important insight into the order parameter. Here, we present a combined experimental and theoretical study of native and engineered iron-site defects&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.03192v1-abstract-full').style.display = 'inline'; document.getElementById('1607.03192v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.03192v1-abstract-full" style="display: none;"> In conventional s-wave superconductors, only magnetic impurities exhibit impurity bound states, whereas for an s+- order parameter they can occur for both magnetic and non-magnetic impurities. Impurity bound states in superconductors can thus provide important insight into the order parameter. Here, we present a combined experimental and theoretical study of native and engineered iron-site defects in LiFeAs. Detailed comparison of tunneling spectra measured on impurities with spin fluctuation theory reveals a continuous evolution from negligible impurity bound state features for weaker scattering potential to clearly detectable states for somewhat stronger scattering potentials. All bound states for these intermediate strength potentials are pinned at or close to the gap edge of the smaller gap, a phenomenon that we explain and ascribe to multi-orbital physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.03192v1-abstract-full').style.display = 'none'; document.getElementById('1607.03192v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NBI CMT 2016 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 134515 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.04865">arXiv:1606.04865</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.04865">pdf</a>, <a href="https://arxiv.org/ps/1606.04865">ps</a>, <a href="https://arxiv.org/format/1606.04865">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.134514">10.1103/PhysRevB.94.134514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigation of potential fluctuating intra-unit cell magnetic order in cuprates by muon spin relaxation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pal%2C+A">A. Pal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Akintola%2C+K">K. Akintola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Potma%2C+M">M. Potma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishikado%2C+M">M. Ishikado</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">H. Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sonier%2C+J+E">J. E. Sonier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.04865v2-abstract-short" style="display: inline;"> We report low temperature muon spin relaxation (muSR) measurements of the high-transition-temperature (Tc) cuprate superconductors Bi{2+x}Sr{2-x}CaCu2O{8+未} and YBa2Cu3O6.57, aimed at detecting the mysterious intra-unit cell (IUC) magnetic order that has been observed by spin polarized neutron scattering in the pseudogap phase of four different cuprate families. A lack of confirmation by local mag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.04865v2-abstract-full').style.display = 'inline'; document.getElementById('1606.04865v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.04865v2-abstract-full" style="display: none;"> We report low temperature muon spin relaxation (muSR) measurements of the high-transition-temperature (Tc) cuprate superconductors Bi{2+x}Sr{2-x}CaCu2O{8+未} and YBa2Cu3O6.57, aimed at detecting the mysterious intra-unit cell (IUC) magnetic order that has been observed by spin polarized neutron scattering in the pseudogap phase of four different cuprate families. A lack of confirmation by local magnetic probe methods has raised the possibility that the magnetic order fluctuates slowly enough to appear static on the time scale of neutron scattering, but too fast to affect $渭$SR or nuclear magnetic resonance (NMR) signals. The IUC magnetic order has been linked to a theoretical model for the cuprates, which predicts a long-range ordered phase of electron-current loop order that terminates at a quantum crictical point (QCP). Our study suggests that lowering the temperature to T ~ 25 mK and moving far below the purported QCP does not cause enough of a slowing down of fluctuations for the IUC magnetic order to become detectable on the time scale of muSR. Our measurements place narrow limits on the fluctuation rate of this unidentified magnetic order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.04865v2-abstract-full').style.display = 'none'; document.getElementById('1606.04865v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 134514 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.05407">arXiv:1605.05407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.05407">pdf</a>, <a href="https://arxiv.org/format/1605.05407">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/18/8/082001">10.1088/1367-2630/18/8/082001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superfluid density and microwave conductivity of FeSe superconductor: ultra-long-lived quasiparticles and extended s-wave energy gap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Meng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee-Hone%2C+N+R">N. R. Lee-Hone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Shun Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Girt%2C+E">E. Girt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broun%2C+D+M">D. M. Broun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.05407v1-abstract-short" style="display: inline;"> FeSe is an iron-based superconductor of immense current interest due to the large enhancements of Tc that occur when it is pressurized or grown as a single layer on an insulating substrate. Here we report precision measurements of its superconducting electrodynamics, at frequencies of 202 and 658 MHz and at temperatures down to 0.1 K. The quasiparticle conductivity reveals a rapid collapse in scat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.05407v1-abstract-full').style.display = 'inline'; document.getElementById('1605.05407v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.05407v1-abstract-full" style="display: none;"> FeSe is an iron-based superconductor of immense current interest due to the large enhancements of Tc that occur when it is pressurized or grown as a single layer on an insulating substrate. Here we report precision measurements of its superconducting electrodynamics, at frequencies of 202 and 658 MHz and at temperatures down to 0.1 K. The quasiparticle conductivity reveals a rapid collapse in scattering on entering the superconducting state that is strongly reminiscent of unconventional superconductors such as cuprates, organics and the heavy fermion material CeCoIn5. At the lowest temperatures the quasiparticle mean free path exceeds 50 micron, a record for a compound superconductor. From the superfluid response we confirm the importance of multiband superconductivity and reveal strong evidence for a finite energy-gap minimum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.05407v1-abstract-full').style.display = 'none'; document.getElementById('1605.05407v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 18, 082001 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.03436">arXiv:1604.03436</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.03436">pdf</a>, <a href="https://arxiv.org/format/1604.03436">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.134518">10.1103/PhysRevB.93.134518 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cu-NMR study of oxygen disorder in ortho-II YBa2Cu3Oy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">T. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+R">R. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirata%2C+M">M. Hirata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vinograd%2C+I">I. Vinograd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayaffre%2C+H">H. Mayaffre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loew%2C+T">T. Loew</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Porras%2C+J">J. Porras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haug%2C+D">D. Haug</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+C+T">C. T. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hinkov%2C+V">V. Hinkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Julien%2C+M+-">M. -H. Julien</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.03436v1-abstract-short" style="display: inline;"> We show that 63Cu NMR spectra place strong constraints on both the nature and the concentration of oxygen defects in ortho-II YBa2Cu3Oy. Systematic deviation from ideal ortho-II order is revealed by the presence of inequivalent Cu sites in either full or empty chains. The results can be explained by two kinds of defects: oxygen clustering into additional chains, or fragments thereof, most likely p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.03436v1-abstract-full').style.display = 'inline'; document.getElementById('1604.03436v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.03436v1-abstract-full" style="display: none;"> We show that 63Cu NMR spectra place strong constraints on both the nature and the concentration of oxygen defects in ortho-II YBa2Cu3Oy. Systematic deviation from ideal ortho-II order is revealed by the presence of inequivalent Cu sites in either full or empty chains. The results can be explained by two kinds of defects: oxygen clustering into additional chains, or fragments thereof, most likely present at all concentrations (6.4&lt;y&lt;6.6) and oxygen vacancies randomly distributed in the full chains for y&lt;6.50 only. Furthermore, the remarkable reproducibility of the spectra in different samples with optimal ortho-II order (y=6.55) shows that chain-oxygen disorder, known to limit electronic coherence, is ineluctable because it is inherent to these compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.03436v1-abstract-full').style.display = 'none'; document.getElementById('1604.03436v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 134518 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.06917">arXiv:1603.06917</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.06917">pdf</a>, <a href="https://arxiv.org/format/1603.06917">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.097003">10.1103/PhysRevLett.117.097003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal Conductivity of the Iron-Based Superconductor FeSe : Nodeless Gap with Strong Two-Band Character </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bourgeois-Hope%2C+P">P. Bourgeois-Hope</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">S. Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolf%2C+T">T. Wolf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meingast%2C+C">C. Meingast</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.06917v1-abstract-short" style="display: inline;"> The thermal conductivity of the iron-based superconductor FeSe was measured at temperatures down to 50 mK in magnetic fields up to 17 T. In zero magnetic field, the electronic residual linear term in the T = 0 limit, 魏_0/T, is vanishingly small. Application of a magnetic field H causes no increase in 魏_0/T initially. Those two observations show that there are no zero-energy quasiparticles that car&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.06917v1-abstract-full').style.display = 'inline'; document.getElementById('1603.06917v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.06917v1-abstract-full" style="display: none;"> The thermal conductivity of the iron-based superconductor FeSe was measured at temperatures down to 50 mK in magnetic fields up to 17 T. In zero magnetic field, the electronic residual linear term in the T = 0 limit, 魏_0/T, is vanishingly small. Application of a magnetic field H causes no increase in 魏_0/T initially. Those two observations show that there are no zero-energy quasiparticles that carry heat and therefore no nodes in the superconducting gap of FeSe. The full field dependence of 魏_0/T has the classic shape of a two-band superconductor, such as MgB2: it rises exponentially at very low field, with a characteristic field H* &lt;&lt; Hc2, and then more slowly up to the upper critical field Hc2. This shows that the superconducting gap is very small on one of the pockets in the Fermi surface of FeSe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.06917v1-abstract-full').style.display = 'none'; document.getElementById('1603.06917v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 097003 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.01471">arXiv:1602.01471</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.01471">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aac4778">10.1126/science.aac4778 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Response to comment on &#34;Broken translational and rotational symmetry via charge stripe order in underdoped YBa2Cu3O6+y&#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">R. Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chauviere%2C+L">L. Chauviere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">G. A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.01471v1-abstract-short" style="display: inline;"> Fine questions our interpretation of unidirectional-stripes over bidirectional-checkerboard, and illustrates his criticism by simulating a momentum space structure consistent with our data and corresponding to a checkerboard-looking real space density. Here we use a local rotational-symmetry analysis to demonstrate that the simulated image is in actuality composed of locally unidirectional modulat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01471v1-abstract-full').style.display = 'inline'; document.getElementById('1602.01471v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.01471v1-abstract-full" style="display: none;"> Fine questions our interpretation of unidirectional-stripes over bidirectional-checkerboard, and illustrates his criticism by simulating a momentum space structure consistent with our data and corresponding to a checkerboard-looking real space density. Here we use a local rotational-symmetry analysis to demonstrate that the simulated image is in actuality composed of locally unidirectional modulations of the charge density, consistent with our original conclusions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01471v1-abstract-full').style.display = 'none'; document.getElementById('1602.01471v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Response to original comment: B.V. Fine, Science 351, 235 (2016) (arxiv version at http://arxiv.org/abs/1602.00888)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 351, 235 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.05224">arXiv:1601.05224</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.05224">pdf</a>, <a href="https://arxiv.org/format/1601.05224">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hinton%2C+J+P">J. P. Hinton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thewalt%2C+E">E. Thewalt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alpichshev%2C+Z">Z. Alpichshev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahmood%2C+F">F. Mahmood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koralek%2C+J+D">J. D. Koralek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+M+K">M. K. Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veit%2C+M+J">M. J. Veit</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dorow%2C+C+J">C. J. Dorow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barisic%2C+N">N. Barisic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kemper%2C+A+F">A. F. Kemper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gedik%2C+N">N. Gedik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greven%2C+M">M. Greven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lanzara%2C+A">A. Lanzara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orenstein%2C+J">J. Orenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.05224v1-abstract-short" style="display: inline;"> The condensation of an electron superfluid from a conventional metallic state at a critical temperature $T_c$ is described well by the BCS theory. In the underdoped copper-oxides, high-temperature superconductivity condenses instead from a nonconventional metallic &#34;pseudogap&#34; phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.05224v1-abstract-full').style.display = 'inline'; document.getElementById('1601.05224v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.05224v1-abstract-full" style="display: none;"> The condensation of an electron superfluid from a conventional metallic state at a critical temperature $T_c$ is described well by the BCS theory. In the underdoped copper-oxides, high-temperature superconductivity condenses instead from a nonconventional metallic &#34;pseudogap&#34; phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime, appearing at a temperature $T_{CDW}$ just above $T_c$. The near coincidence of $T_c$ and $T_{CDW}$, as well the coexistence and competition of CDW and superconducting order below $T_c$, suggests that they are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, $蟿_{qp}$, as a function of temperature and magnetic field in underdoped HgBa$_{2}$CuO$_{4+未}$ (Hg-1201) and YBa$_{2}$Cu$_{3}$O$_{6+x}$ (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that $蟿_{qp}(T)$ exhibits a local maximum in a small temperature window near $T_c$ that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that $T_c$ marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.05224v1-abstract-full').style.display = 'none'; document.getElementById('1601.05224v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.08162">arXiv:1511.08162</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.08162">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature16983">10.1038/nature16983 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Change of carrier density at the pseudogap critical point of a cuprate superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tabis%2C+W">W. Tabis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalibert%C3%A9%2C+F">F. Lalibert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vignolle%2C+B">B. Vignolle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vignolles%2C+D">D. Vignolles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%A9ard%2C+J">J. B茅ard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Proust%2C+C">Cyril Proust</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.08162v1-abstract-short" style="display: inline;"> The pseudogap is a central puzzle of cuprate superconductors. Its connection to the Mott insulator at low doping $p$ remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate $p$ is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 T to show that Fermi-surface reconstruction by charge order in YBa$_2$Cu$_3$O&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.08162v1-abstract-full').style.display = 'inline'; document.getElementById('1511.08162v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.08162v1-abstract-full" style="display: none;"> The pseudogap is a central puzzle of cuprate superconductors. Its connection to the Mott insulator at low doping $p$ remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate $p$ is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 T to show that Fermi-surface reconstruction by charge order in YBa$_2$Cu$_3$O$_y$ ends sharply at a critical doping $p = 0.16$, distinctly lower than the pseudogap critical point at $p^* = 0.19$. This shows that pseudogap and charge order are separate phenomena. We then find that the change of carrier density from $n = 1 + p$ in the conventional metal at high p to $n = p$ at low $p$ - a signature of the lightly doped cuprates - starts at $p^*$. This shows that pseudogap and antiferromagnetic Mott insulator are linked. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.08162v1-abstract-full').style.display = 'none'; document.getElementById('1511.08162v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 531, 210 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.06092">arXiv:1511.06092</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.06092">pdf</a>, <a href="https://arxiv.org/ps/1511.06092">ps</a>, <a href="https://arxiv.org/format/1511.06092">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms11494">10.1038/ncomms11494 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic field controlled charge density wave coupling in underdoped YBa$_2$Cu$_3$O$_{6+x}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blackburn%2C+E">E. Blackburn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ivashko%2C+O">O. Ivashko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holmes%2C+A+T">A. T. Holmes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+N+B">N. B. Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%BCcker%2C+M">M. H眉cker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%BCtt%2C+U">U. R眉tt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zimmermann%2C+M+v">M. v. Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forgan%2C+E+M">E. M. Forgan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayden%2C+S+M">S. M. Hayden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.06092v1-abstract-short" style="display: inline;"> The application of large magnetic fields ($B \sim B_{c2}$) to layered cuprates suppresses their high temperature superconducting behaviour and reveals competing ground states. In the widely-studied material YBa$_2$Cu$_3$O$_{6+x}$ (YBCO), underdoped ($p \sim 1/8$) samples show signatures of field-induced electronic and structural changes at low temperatures. However, the microscopic nature of the f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.06092v1-abstract-full').style.display = 'inline'; document.getElementById('1511.06092v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.06092v1-abstract-full" style="display: none;"> The application of large magnetic fields ($B \sim B_{c2}$) to layered cuprates suppresses their high temperature superconducting behaviour and reveals competing ground states. In the widely-studied material YBa$_2$Cu$_3$O$_{6+x}$ (YBCO), underdoped ($p \sim 1/8$) samples show signatures of field-induced electronic and structural changes at low temperatures. However, the microscopic nature of the field-induced reconstruction and the high-field state are unclear. Here we report an x-ray study of the high-field charge density wave (CDW) in YBCO, for doping, $0.1 \lesssim p \lesssim 0.13$. For $p \sim 0.123$, we find that a field ($B \sim 10$~T) induces new CDW correlations along the CuO chain ($b$) direction only, leading to a 3-D ordered state along this direction at $B \sim 15$~T. The CDW signal along the $a$-direction is also enhanced by field, but does not develop a new pattern of correlations. We find that field modifies the coupling between the CuO$_2$ bilayers in the YBCO structure, and causes the sudden appearance of 3D CDW order. The mirror symmetry of individual bilayers is broken by the CDW at low and high fields, allowing recently suggested Fermi surface reconstruction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.06092v1-abstract-full').style.display = 'none'; document.getElementById('1511.06092v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Comm. 7, 11494 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.06206">arXiv:1509.06206</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.06206">pdf</a>, <a href="https://arxiv.org/ps/1509.06206">ps</a>, <a href="https://arxiv.org/format/1509.06206">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.180509">10.1103/PhysRevB.92.180509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetization of underdoped YBa$_2$Cu$_3$O$_{y}$ above the irreversibility field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J+F">Jing Fei Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramshaw%2C+B+J">B. J. Ramshaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kokanovi%C4%87%2C+I">I. Kokanovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Modic%2C+K+A">K. A. Modic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harrison%2C+N">N. Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+J">James Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McCollam%2C+A">A. McCollam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Julian%2C+S+R">S. R. Julian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cooper%2C+J+R">J. R. Cooper</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.06206v1-abstract-short" style="display: inline;"> Torque magnetization measurements on YBa$_2$Cu$_3$O$_{y}$ (YBCO) at doping $y=6.67$($p=0.12$), in DC fields ($B$) up to 33 T and temperatures down to 4.5 K, show that weak diamagnetism persists above the extrapolated irreversibility field $H_{\rm irr} (T=0) \approx 24$ T. The differential susceptibility $dM/dB$, however, is more rapidly suppressed for $B\gtrsim 16$ T than expected from the propert&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.06206v1-abstract-full').style.display = 'inline'; document.getElementById('1509.06206v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.06206v1-abstract-full" style="display: none;"> Torque magnetization measurements on YBa$_2$Cu$_3$O$_{y}$ (YBCO) at doping $y=6.67$($p=0.12$), in DC fields ($B$) up to 33 T and temperatures down to 4.5 K, show that weak diamagnetism persists above the extrapolated irreversibility field $H_{\rm irr} (T=0) \approx 24$ T. The differential susceptibility $dM/dB$, however, is more rapidly suppressed for $B\gtrsim 16$ T than expected from the properties of the low field superconducting state, and saturates at a low value for fields $B \gtrsim 24$ T. In addition, torque measurements on a $p=0.11$ YBCO crystal in pulsed field up to 65 T and temperatures down to 8 K show similar behaviour, with no additional features at higher fields. We discuss several candidate scenarios to explain these observations: (a) superconductivity survives but is heavily suppressed at high field by competition with CDW order; (b) static superconductivity disappears near 24 T and is followed by a region of fluctuating superconductivity, which causes $dM/dB$ to saturate at high field; (c) the stronger 3D ordered CDW that sets in above 15 T may suppress the normal state spin susceptibility sufficiently to give an apparent diamagnetism of the magnitude observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.06206v1-abstract-full').style.display = 'none'; document.getElementById('1509.06206v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.05486">arXiv:1508.05486</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.05486">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Onset field for Fermi-surface reconstruction in the cuprate superconductor YBCO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laliberte%2C+F">F. Laliberte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dufour-Beausejour%2C+S">S. Dufour-Beausejour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riopel%2C+A">A. Riopel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caouette-Mansour%2C+M">M. Caouette-Mansour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matusiak%2C+M">M. Matusiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Juneau-Fecteau%2C+A">A. Juneau-Fecteau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourgeois-Hope%2C+P">P. Bourgeois-Hope</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choiniere%2C+O">O. Cyr-Choiniere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baglo%2C+J+C">J. C. Baglo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramshaw%2C+B+J">B. J. Ramshaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kramer%2C+S">S. Kramer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBoeuf%2C+D">D. LeBoeuf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">D. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.05486v1-abstract-short" style="display: inline;"> Quantum oscillations and negative Hall and Seebeck coefficients at low temperature and high magnetic field have shown the Fermi surface of underdoped cuprates to contain a small closed electron pocket. It is thought to result from a reconstruction by charge order, but whether it is the order seen by NMR and ultrasound above a threshold field or the short-range modulations seen by X-ray diffraction&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05486v1-abstract-full').style.display = 'inline'; document.getElementById('1508.05486v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.05486v1-abstract-full" style="display: none;"> Quantum oscillations and negative Hall and Seebeck coefficients at low temperature and high magnetic field have shown the Fermi surface of underdoped cuprates to contain a small closed electron pocket. It is thought to result from a reconstruction by charge order, but whether it is the order seen by NMR and ultrasound above a threshold field or the short-range modulations seen by X-ray diffraction in zero field is unclear. Here we use measurements of the thermal Hall conductivity in YBCO to show that Fermi-surface reconstruction occurs only above a sharply defined onset field, equal to the transition field seen in ultrasound. This reveals that electrons do not experience long-range broken translational symmetry in the zero-field ground state, and hence in zero field there is no quantum critical point for the onset of charge order as a function of doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05486v1-abstract-full').style.display = 'none'; document.getElementById('1508.05486v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages and 5 figures in Main text + 9 pages and 6 figures in Supplementary material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.01195">arXiv:1507.01195</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.01195">pdf</a>, <a href="https://arxiv.org/format/1507.01195">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature13326">10.1038/nature13326 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Normal-state nodal electronic structure in underdoped high-Tc copper oxides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sebastian%2C+S+E">Suchitra E. Sebastian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harrison%2C+N">N. Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakirev%2C+F+F">F. F. Balakirev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Altarawneh%2C+M+M">M. M. Altarawneh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goddard%2C+P+A">P. A. Goddard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lonzarich%2C+G+G">G. G. Lonzarich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.01195v1-abstract-short" style="display: inline;"> An outstanding problem in the field of high-transition-temperature (high Tc) superconductivity is the identification of the normal state out of which superconductivity emerges in the mysterious underdoped regime. The normal state uncomplicated by thermal fluctuations is effectively accessed by the use of applied magnetic fields sufficiently strong to suppress long-range superconductivity at low te&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.01195v1-abstract-full').style.display = 'inline'; document.getElementById('1507.01195v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.01195v1-abstract-full" style="display: none;"> An outstanding problem in the field of high-transition-temperature (high Tc) superconductivity is the identification of the normal state out of which superconductivity emerges in the mysterious underdoped regime. The normal state uncomplicated by thermal fluctuations is effectively accessed by the use of applied magnetic fields sufficiently strong to suppress long-range superconductivity at low temperatures. Proposals in which the normal ground state is characterised by small Fermi surface pockets that exist in the absence of symmetry breaking have been superseded by models based on the existence of a superlattice that breaks the translational symmetry of the underlying lattice. Recently, a charge superlattice model that positions a small electron-like Fermi pocket in the vicinity of the nodes (where the superconducting gap is minimum) has been proposed a replacement for the prevalent superlattice models that position the Fermi pocket in the vicinity of the pseudogap at the antinodes (where the superconducting gap is maximum). Although some ingredients of symmetry breaking have been recently revealed by crystallographic studies, their relevance to the electronic structure remains unresolved. Here we report angle-resolved quantum oscillation measurements in the underdoped copper oxide YBa2Cu3O6+x. These measurements reveal a normal ground state comprising electron-like Fermi surface pockets located in the vicinity of the superconducting gap minima (or nodes), and further point to an underlying superlattice structure of low frequency and long wavelength with features in common with the charge order identified recently by complementary spectroscopic techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.01195v1-abstract-full').style.display = 'none'; document.getElementById('1507.01195v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 511 (2014) 61-64 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.07910">arXiv:1506.07910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.07910">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aac6257">10.1126/science.aac6257 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-Dimensional Charge Density Wave Order in YBa2Cu3O6.67 at High Magnetic Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gerber%2C+S">S. Gerber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jang%2C+H">H. Jang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nojiri%2C+H">H. Nojiri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuzawa%2C+S">S. Matsuzawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yasumura%2C+H">H. Yasumura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+Z">Z. Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mehta%2C+A">A. Mehta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">S. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sikorski%2C+M">M. Sikorski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stefanescu%2C+D">D. Stefanescu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Y">Y. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kivelson%2C+S+A">S. A. Kivelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+-">Z. -X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kao%2C+C+-">C. -C. Kao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W+-">W. -S. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">D. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+-">J. -S. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.07910v1-abstract-short" style="display: inline;"> Charge density wave (CDW) correlations have recently been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured by x-ray scattering at zero and low fields. Here we combine a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa2Cu3O6.67 via x-ray scattering in fiel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.07910v1-abstract-full').style.display = 'inline'; document.getElementById('1506.07910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.07910v1-abstract-full" style="display: none;"> Charge density wave (CDW) correlations have recently been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured by x-ray scattering at zero and low fields. Here we combine a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa2Cu3O6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below T ~ 150 K, is essentially two-dimensional, at lower temperature and beyond 15 Tesla, another three-dimensionally ordered CDW emerges. The field-induced CDW onsets around the zero-field superconducting transition temperature, yet the incommensurate in-plane ordering vector is field-independent. This implies that the two forms of CDW and high-temperature superconductivity are intimately linked. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.07910v1-abstract-full').style.display = 'none'; document.getElementById('1506.07910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 350, 949 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.07942">arXiv:1504.07942</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.07942">pdf</a>, <a href="https://arxiv.org/format/1504.07942">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.134427">10.1103/PhysRevB.91.134427 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Separation of magnetic and superconducting behaviour in YBCO6.33 (Tc=8.4 K) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yamani%2C+Z">Zahra Yamani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buyers%2C+W+J+L">W. J. L. Buyers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">F. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Y-J. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chung%2C+J+-">J. -H. Chung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+S">S. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gehring%2C+P+M">P. M. Gehring</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gasparovic%2C+G">G. Gasparovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stock%2C+C">C. Stock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broholm%2C+C+L">C. L. Broholm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baglo%2C+J+C">J. C. Baglo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.07942v1-abstract-short" style="display: inline;"> Neutron scattering from high-quality YBa2Cu3O6.33 (YBCO6.33) single crystals with a Tc of 8.4 K shows no evidence of a coexistence of superconductivity with long-range antiferromagnetic order at this very low, near-critical doping of p~0.055. However, we find short-range three dimensional spin correlations that develop at temperatures much higher than Tc. Their intensity increases smoothly on cool&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.07942v1-abstract-full').style.display = 'inline'; document.getElementById('1504.07942v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.07942v1-abstract-full" style="display: none;"> Neutron scattering from high-quality YBa2Cu3O6.33 (YBCO6.33) single crystals with a Tc of 8.4 K shows no evidence of a coexistence of superconductivity with long-range antiferromagnetic order at this very low, near-critical doping of p~0.055. However, we find short-range three dimensional spin correlations that develop at temperatures much higher than Tc. Their intensity increases smoothly on cooling and shows no anomaly that might signify a Neel transition. The system remains subcritical with spins correlated over only one and a half unit cells normal to the planes. At low energies the short-range spin response is static on the microvolt scale. The excitations out of this ground state give rise to an overdamped spectrum with a relaxation rate of 3 meV. The transition to the superconducting state below Tc has no effect on the spin correlations. The elastic interplanar spin response extends over a length that grows weakly but fails to diverge as doping is moved towards the superconducting critical point. Any antiferromagnetic critical point likely lies outside the superconducting dome. The observations suggest that conversion from Neel long-range order to a spin glass texture is a prerequisite to formation of paired superconducting charges. We show that while pc =0.052 is a critical doping for superconducting pairing, it is not for spin order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.07942v1-abstract-full').style.display = 'none'; document.getElementById('1504.07942v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 134427 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.06972">arXiv:1504.06972</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.06972">pdf</a>, <a href="https://arxiv.org/format/1504.06972">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.224502">10.1103/PhysRevB.92.224502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two types of nematicity in the phase diagram of the cuprate superconductor YBa$_2$Cu$_3$O$_y$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choini%C3%A8re%2C+O">O. Cyr-Choini猫re</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+J">J. Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.06972v3-abstract-short" style="display: inline;"> Nematicity has emerged as a key feature of cuprate superconductors, but its link to other fundamental properties such as superconductivity, charge order and the pseudogap remains unclear. Here we use measurements of transport anisotropy in YBa$_2$Cu$_3$O$_y$ to distinguish two types of nematicity. The first is associated with short-range charge-density-wave modulations in a doping region near&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.06972v3-abstract-full').style.display = 'inline'; document.getElementById('1504.06972v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.06972v3-abstract-full" style="display: none;"> Nematicity has emerged as a key feature of cuprate superconductors, but its link to other fundamental properties such as superconductivity, charge order and the pseudogap remains unclear. Here we use measurements of transport anisotropy in YBa$_2$Cu$_3$O$_y$ to distinguish two types of nematicity. The first is associated with short-range charge-density-wave modulations in a doping region near $p = 0.12$. It is detected in the Nernst coefficient, but not in the resistivity. The second type prevails at lower doping, where there are spin modulations but no charge modulations. In this case, the onset of in-plane anisotropy - detected in both the Nernst coefficient and the resistivity - follows a line in the temperature-doping phase diagram that tracks the pseudogap energy. We discuss two possible scenarios for the latter nematicity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.06972v3-abstract-full').style.display = 'none'; document.getElementById('1504.06972v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages and 7 figures. Main text and supplementary material now combined into single article</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 224502 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.01585">arXiv:1504.01585</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.01585">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> The nature of the charge density waves in under-doped YBa$_2$Cu$_3$O$_{6.54}$ revealed by X-ray measurements of the ionic displacements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Forgan%2C+E+M">E. M. Forgan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blackburn%2C+E">E. Blackburn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holmes%2C+A+T">A. T. Holmes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Briffa%2C+A">A. Briffa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouchenoire%2C+L">L. Bouchenoire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brown%2C+S+D">S. D. Brown</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D">D. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+N+B">N. B. Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zimmermann%2C+M+v">M. v. Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huecker%2C+M">M. Huecker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayden%2C+S+M">S. M. Hayden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.01585v2-abstract-short" style="display: inline;"> All underdoped high-temperature cuprate superconductors appear to exhibit charge density wave (CDW) order, but both the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDW in an archetypical cuprate YBa$_2$Cu$_3$O$_{6.54}$ at its superconducting transition temperature Tc ~ 60 K. We find that the CDWs pres&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.01585v2-abstract-full').style.display = 'inline'; document.getElementById('1504.01585v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.01585v2-abstract-full" style="display: none;"> All underdoped high-temperature cuprate superconductors appear to exhibit charge density wave (CDW) order, but both the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDW in an archetypical cuprate YBa$_2$Cu$_3$O$_{6.54}$ at its superconducting transition temperature Tc ~ 60 K. We find that the CDWs present in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in a CDW have two components: one perpendicular to the CuO$_2$ planes, and another parallel to these planes, which is out of phase with the first. The largest displacements are those of the planar oxygen atoms and are perpendicular to the CuO$_2$ planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For instance, the CDW will lead to local variations in the doping (or electronic structure) giving an explicit explanation of the appearance of density-wave states with broken symmetry in scanning tunnelling microscopy (STM) and soft X-ray measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.01585v2-abstract-full').style.display = 'none'; document.getElementById('1504.01585v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.08209">arXiv:1503.08209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.08209">pdf</a>, <a href="https://arxiv.org/format/1503.08209">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.1258399">10.1126/science.1258399 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broken translational and rotational symmetry via charge stripe order in underdoped YBCO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">R. Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chauviere%2C+L">L. Chauviere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">G. A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.08209v1-abstract-short" style="display: inline;"> Following the early discovery of stripe-like order in La-based copper-oxide superconductors, charge ordering instabilities were observed in all cuprate families. However, it has proven difficult to distinguish between uni- (stripes) and bi-directional (checkerboard) charge order in Y- and Bi-based materials. Here we use resonant x-ray scattering (RXS) to measure the two-dimensional structure facto&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08209v1-abstract-full').style.display = 'inline'; document.getElementById('1503.08209v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.08209v1-abstract-full" style="display: none;"> Following the early discovery of stripe-like order in La-based copper-oxide superconductors, charge ordering instabilities were observed in all cuprate families. However, it has proven difficult to distinguish between uni- (stripes) and bi-directional (checkerboard) charge order in Y- and Bi-based materials. Here we use resonant x-ray scattering (RXS) to measure the two-dimensional structure factor in YBCO, in reciprocal space. Our data reveal the presence of charge stripe order, i.e. locally unidirectional density waves, suggesting it as the true microscopic nature of charge modulations in cuprates. At the same time, we find that the well-established competition between charge order and superconductivity is stronger for charge correlations across than along the stripes, which provides additional evidence for the intrinsic unidirectional nature of the charge order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08209v1-abstract-full').style.display = 'none'; document.getElementById('1503.08209v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 347, 1335-1339 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.07572">arXiv:1503.07572</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.07572">pdf</a>, <a href="https://arxiv.org/format/1503.07572">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.064513">10.1103/PhysRevB.93.064513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wiedemann-Franz law in the underdoped cuprate superconductor YBa2Cu3Oy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Grissonnanche%2C+G">G. Grissonnanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laliberte%2C+F">F. Laliberte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dufour-Beausejour%2C+S">S. Dufour-Beausejour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matusiak%2C+M">M. Matusiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tafti%2C+F+F">F. F. Tafti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michon%2C+B">B. Michon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riopel%2C+A">A. Riopel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choiniere%2C+O">O. Cyr-Choiniere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baglo%2C+J+C">J. C. Baglo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramshaw%2C+B+J">B. J. Ramshaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kramer%2C+S">S. Kramer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBoeuf%2C+D">D. LeBoeuf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">D. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">L. Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.07572v2-abstract-short" style="display: inline;"> The recent detection of charge-density modulations in YBa2Cu3Oy and other cuprate superconductors raises new questions about the normal state of underdoped cuprates. In one class of theories, the modulations are intertwined with pairing in a dual state, expected to persist up to high magnetic fields as a vortex liquid. In support of such a state, specific heat and magnetisation data on YBa2Cu3Oy h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.07572v2-abstract-full').style.display = 'inline'; document.getElementById('1503.07572v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.07572v2-abstract-full" style="display: none;"> The recent detection of charge-density modulations in YBa2Cu3Oy and other cuprate superconductors raises new questions about the normal state of underdoped cuprates. In one class of theories, the modulations are intertwined with pairing in a dual state, expected to persist up to high magnetic fields as a vortex liquid. In support of such a state, specific heat and magnetisation data on YBa2Cu3Oy have been interpreted in terms of a vortex liquid persisting above the vortex-melting field Hvs at T = 0. Here we report high-field measurements of the electrical and thermal Hall conductivities in YBa2Cu3O6.54 that allow us to probe the Wiedemann-Franz law, a sensitive test of the presence of superconductivity in a metal. In the T = 0 limit, we find that the law is satisfied for fields immediately above Hvs. This rules out the existence of a vortex liquid and it places strict constraints on the nature of the normal state in underdoped cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.07572v2-abstract-full').style.display = 'none'; document.getElementById('1503.07572v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, includes main text and supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 064513 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.02033">arXiv:1503.02033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.02033">pdf</a>, <a href="https://arxiv.org/format/1503.02033">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.064513">10.1103/PhysRevB.98.064513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitivity of $T_{\rm c}$ to pressure and magnetic field in the cuprate superconductor YBa$_{2}$Cu$_{3}$O$_{y}$: evidence of charge order suppression by pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cyr-Choini%C3%A8re%2C+O">O. Cyr-Choini猫re</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LeBoeuf%2C+D">D. LeBoeuf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badoux%2C+S">S. Badoux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dufour-Beaus%C3%A9jour%2C+S">S. Dufour-Beaus茅jour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">D. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doiron-Leyraud%2C+N">N. Doiron-Leyraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taillefer%2C+L">Louis Taillefer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.02033v2-abstract-short" style="display: inline;"> Cuprate superconductors have a universal tendency to form charge density-wave (CDW) order which competes with superconductivity and is strongest at a doping $p \simeq 0.12$. Here we show that in the archetypal cuprate YBa$_{2}$Cu$_{3}$O$_{y}$ (YBCO) pressure suppresses charge order, but does not affect the pseudogap phase. This is based on transport measurements under pressure, which reveal that t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.02033v2-abstract-full').style.display = 'inline'; document.getElementById('1503.02033v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.02033v2-abstract-full" style="display: none;"> Cuprate superconductors have a universal tendency to form charge density-wave (CDW) order which competes with superconductivity and is strongest at a doping $p \simeq 0.12$. Here we show that in the archetypal cuprate YBa$_{2}$Cu$_{3}$O$_{y}$ (YBCO) pressure suppresses charge order, but does not affect the pseudogap phase. This is based on transport measurements under pressure, which reveal that the onset of the pseudogap at $T^*$ is independent of pressure, while the negative Hall effect, a clear signature of CDW order in YBCO, is suppressed by pressure. We also find that pressure and magnetic field shift the superconducting transition temperature $T_{\rm c}$ of YBCO in the same way as a function of doping - but in opposite directions - and most effectively at $p \simeq 0.12$. This shows that the competition between superconductivity and CDW order can be tuned in two ways, either by suppressing superconductivity with field or suppressing CDW order by pressure. Based on existing high-pressure data and our own work, we observe that when CDW order is fully suppressed at high pressure, the so-called &#34;1/8 anomaly&#34; in the superconducting dome vanishes, revealing a smooth $T_{\rm c}$ dome which now peaks at $p \simeq 0.13$. We propose that this $T_{\rm c}$ dome is shaped by the competing effects of the pseudogap phase below its critical point $p^{\star} \sim 0.19$ and spin order at low doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.02033v2-abstract-full').style.display = 'none'; document.getElementById('1503.02033v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">New Hall data added. 11 pages, 9 figures and 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 064513 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.6787">arXiv:1409.6787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.6787">pdf</a>, <a href="https://arxiv.org/format/1409.6787">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nmat4568">10.1038/nmat4568 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital symmetry of charge density wave order in La1.875Ba0.125CuO4 and YBa2Cu3O6.67 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Achkar%2C+A+J">A. J. Achkar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMahon%2C+C">Christopher McMahon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zwiebler%2C+M">M. Zwiebler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hucker%2C+M">M. Hucker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">Ruixing Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geck%2C+J">J. Geck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawthorn%2C+D+G">D. G. Hawthorn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.6787v2-abstract-short" style="display: inline;"> Recent theories of charge density wave (CDW) order in high temperature superconductors have predicted a primarily d CDW orbital symmetry. Here, we report on the orbital symmetry of CDW order in the canonical cuprate superconductors La1.875Ba0.125CuO4 (LBCO) and YBa2Cu3O6.67 (YBCO), using resonant soft x-ray scattering and a model mapped to the CDW orbital symmetry. From measurements sensitive to t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.6787v2-abstract-full').style.display = 'inline'; document.getElementById('1409.6787v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.6787v2-abstract-full" style="display: none;"> Recent theories of charge density wave (CDW) order in high temperature superconductors have predicted a primarily d CDW orbital symmetry. Here, we report on the orbital symmetry of CDW order in the canonical cuprate superconductors La1.875Ba0.125CuO4 (LBCO) and YBa2Cu3O6.67 (YBCO), using resonant soft x-ray scattering and a model mapped to the CDW orbital symmetry. From measurements sensitive to the O sublattice, we conclude that LBCO has predominantly s&#39; CDW orbital symmetry, in contrast to the d orbital symmetry recently reported in other cuprates. Additionally, we show for YBCO that the CDW orbital symmetry differs along the a and b crystal axes and that these both differ from LBCO. This work highlights CDW orbital symmetry as an additional key property that distinguishes the different cuprate families. We discuss how the CDW symmetry may be related to the &#34;1/8--anomaly&#34; and to static spin ordering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.6787v2-abstract-full').style.display = 'none'; document.getElementById('1409.6787v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures + supplementary (16 pages, 14 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials, advanced online publication (2016) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Hardy%2C+W+N&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Hardy%2C+W+N&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hardy%2C+W+N&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hardy%2C+W+N&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hardy%2C+W+N&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10