CINXE.COM
Strongly Correlated Electrons
<!DOCTYPE html> <html lang="en"> <head> <title>Strongly Correlated Electrons </title> <meta name="viewport" content="width=device-width, initial-scale=1"> <link rel="apple-touch-icon" sizes="180x180" href="/static/browse/0.3.4/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="/static/browse/0.3.4/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="/static/browse/0.3.4/images/icons/favicon-16x16.png"> <link rel="manifest" href="/static/browse/0.3.4/images/icons/site.webmanifest"> <link rel="mask-icon" href="/static/browse/0.3.4/images/icons/safari-pinned-tab.svg" color="#5bbad5"> <meta name="msapplication-TileColor" content="#da532c"> <meta name="theme-color" content="#ffffff"> <link rel="stylesheet" type="text/css" media="screen" href="/static/browse/0.3.4/css/arXiv.css?v=20241206" /> <link rel="stylesheet" type="text/css" media="print" href="/static/browse/0.3.4/css/arXiv-print.css?v=20200611" /> <link rel="stylesheet" type="text/css" media="screen" href="/static/browse/0.3.4/css/browse_search.css" /> <script language="javascript" src="/static/browse/0.3.4/js/accordion.js" /></script> <script src="/static/browse/0.3.4/js/mathjaxToggle.min.js" type="text/javascript"></script> <script type="text/javascript" language="javascript">mathjaxToggle();</script> </head> <body class="with-cu-identity"> <div class="flex-wrap-footer"> <header> <a href="#content" class="is-sr-only">Skip to main content</a> <!-- start desktop header --> <div class="columns is-vcentered is-hidden-mobile" id="cu-identity"> <div class="column" id="cu-logo"> <a href="https://www.cornell.edu/"><img src="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg" alt="Cornell University" /></a> </div><div class="column" id="support-ack"> <span id="support-ack-url">We gratefully acknowledge support from the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors.</span> <a href="https://info.arxiv.org/about/donate.html" class="btn-header-donate">Donate</a> </div> </div> <div id="header" class="is-hidden-mobile"> <a aria-hidden="true" tabindex="-1" href="/IgnoreMe"></a> <div class="header-breadcrumbs"> <a href="/"><img src="/static/browse/0.3.4/images/arxiv-logo-one-color-white.svg" alt="arxiv logo" style="height:40px;"/></a> <span>></span> <a href="/list/cond-mat.str-el/recent">cond-mat.str-el</a> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div><!-- /end desktop header --> <div class="mobile-header"> <div class="columns is-mobile"> <div class="column logo-arxiv"><a href="https://arxiv.org/"><img src="/static/browse/0.3.4/images/arxiv-logomark-small-white.svg" alt="arXiv logo" style="height:60px;" /></a></div> <div class="column logo-cornell"><a href="https://www.cornell.edu/"> <picture> <source media="(min-width: 501px)" srcset="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg 400w" sizes="400w" /> <source srcset="/static/browse/0.3.4/images/icons/cu/cornell_seal_simple_black.svg 2x" /> <img src="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg" alt="Cornell University Logo" /> </picture> </a></div> <div class="column nav" id="toggle-container" role="menubar"> <button class="toggle-control"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-white"><title>open search</title><path d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"/></svg></button> <div class="mobile-toggle-block toggle-target"> <form class="mobile-search-form" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <input class="input" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <input type="hidden" name="source" value="header"> <input type="hidden" name="searchtype" value="all"> <button class="button">GO</button> </div> </form> </div> <button class="toggle-control"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-white" role="menu"><title>open navigation menu</title><path d="M16 132h416c8.837 0 16-7.163 16-16V76c0-8.837-7.163-16-16-16H16C7.163 60 0 67.163 0 76v40c0 8.837 7.163 16 16 16zm0 160h416c8.837 0 16-7.163 16-16v-40c0-8.837-7.163-16-16-16H16c-8.837 0-16 7.163-16 16v40c0 8.837 7.163 16 16 16zm0 160h416c8.837 0 16-7.163 16-16v-40c0-8.837-7.163-16-16-16H16c-8.837 0-16 7.163-16 16v40c0 8.837 7.163 16 16 16z"/ ></svg></button> <div class="mobile-toggle-block toggle-target"> <nav class="mobile-menu" aria-labelledby="mobilemenulabel"> <h2 id="mobilemenulabel">quick links</h2> <ul> <li><a href="https://arxiv.org/login">Login</a></li> <li><a href="https://info.arxiv.org/help">Help Pages</a></li> <li><a href="https://info.arxiv.org/about">About</a></li> </ul> </nav> </div> </div> </div> </div><!-- /end mobile-header --> </header> <main> <div id="content"> <div id='content-inner'> <div id='dlpage'> <h1>Strongly Correlated Electrons</h1> <ul> <li><a href="#item0">New submissions</a></li> <li><a href="#item12">Cross-lists</a></li> <li><a href="#item25">Replacements</a></li> </ul> <p>See <a id="recent-cond-mat.str-el" aria-labelledby="recent-cond-mat.str-el" href="/list/cond-mat.str-el/recent">recent</a> articles</p> <h3>Showing new listings for Friday, 28 March 2025</h3> <div class='paging'>Total of 35 entries </div> <div class='morefewer'>Showing up to 2000 entries per page: <a href=/list/cond-mat.str-el/new?skip=0&show=1000 rel="nofollow"> fewer</a> | <span style="color: #454545">more</span> | <span style="color: #454545">all</span> </div> <dl id='articles'> <h3>New submissions (showing 11 of 11 entries)</h3> <dt> <a name='item1'>[1]</a> <a href ="/abs/2503.20859" title="Abstract" id="2503.20859"> arXiv:2503.20859 </a> [<a href="/pdf/2503.20859" title="Download PDF" id="pdf-2503.20859" aria-labelledby="pdf-2503.20859">pdf</a>, <a href="https://arxiv.org/html/2503.20859v1" title="View HTML" id="html-2503.20859" aria-labelledby="html-2503.20859" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.20859" title="Other formats" id="oth-2503.20859" aria-labelledby="oth-2503.20859">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> BaCo$_2$(AsO$_4$)$_2$: Strong Kitaev, After All </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Maksimov,+P+A">Pavel A. Maksimov</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Jiang,+S">Shengtao Jiang</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Regnault,+L+P">L. P. Regnault</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Chernyshev,+A+L">A. L. Chernyshev</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 9+6 pages, 7+9 figures. 50-year-old mystery. Solved. Text of immense persuasive power </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span> </div> <p class='mathjax'> The inelastic neutron scattering results and their analysis unequivocally point to a dominant Kitaev interaction in the honeycomb-lattice cobaltate BaCo$_2$(AsO$_4$)$_2$. Our anisotropic-exchange model closely describes $all$ available neutron scattering data in the material's field-polarized phase. The density-matrix renormalization group results for our model are in close accord with the unusual double-zigzag magnetic order and the low in-plane saturation field of BaCo$_2$(AsO$_4$)$_2$. </p> </div> </dd> <dt> <a name='item2'>[2]</a> <a href ="/abs/2503.21093" title="Abstract" id="2503.21093"> arXiv:2503.21093 </a> [<a href="/pdf/2503.21093" title="Download PDF" id="pdf-2503.21093" aria-labelledby="pdf-2503.21093">pdf</a>, <a href="/format/2503.21093" title="Other formats" id="oth-2503.21093" aria-labelledby="oth-2503.21093">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Insulator-to-Metal Transition via Magnetic Reconstruction at Oxide Interfaces </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Lu,+Z">Zengxing Lu</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Feng,+J">Jiatai Feng</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Zheng,+X">Xuan Zheng</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Shi,+Y">You-guo Shi</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Li,+R">Run-Wei Li</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Autieri,+C">Carmine Autieri</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Cuoco,+M">Mario Cuoco</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Radovic,+M">Milan Radovic</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Wang,+Z">Zhiming Wang</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span>; Materials Science (cond-mat.mtrl-sci) </div> <p class='mathjax'> Ultrathin two-dimensional (2D) electronic systems at the interfaces of layered materials are highly desirable platforms for exploring of novel quantum phenomena and developing advanced device applications. Here, we investigate ultrathin heterostructures composed of SrIrO3 (SIO) and SrRuO3 (SRO) layers to uncover their emergent properties. Strikingly, despite the fact that both individual layers are antiferromagnetic insulators, the interfaced heterostructure exhibits emergent metallicity. Through transport measurements, magnetic characterization, and angle-resolved photoemission spectroscopy (ARPES), we analyze the underlying mechanisms governing this insulator-to-metal transition. Our findings reveal that the transition is driven by interface-induced magnetic reconstruction, which is further corroborated by density functional theory (DFT) calculations. The staggered Dzyaloshinskii-Moriya interaction at the SIO/SRO interface is identified as the key driving force for this spin reorganization, as it stabilizes ferromagnetism in the coupled antiferromagnetic insulating layers. These findings highlight the significant potential of engineering interfacial magnetic interactions as a powerful approach to generate and control emergent electronic properties, paving the way for novel functionalities that are unattainable in individual ultrathin films. </p> </div> </dd> <dt> <a name='item3'>[3]</a> <a href ="/abs/2503.21389" title="Abstract" id="2503.21389"> arXiv:2503.21389 </a> [<a href="/pdf/2503.21389" title="Download PDF" id="pdf-2503.21389" aria-labelledby="pdf-2503.21389">pdf</a>, <a href="https://arxiv.org/html/2503.21389v1" title="View HTML" id="html-2503.21389" aria-labelledby="html-2503.21389" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.21389" title="Other formats" id="oth-2503.21389" aria-labelledby="oth-2503.21389">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Electronic structure of the CuO monolayer in the paramagnetic phase considering the Coulomb interactions </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Makarov,+I+A">I. A. Makarov</a> (1), <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Slobodchikov,+A+A">A. A. Slobodchikov</a> (2), <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Nekrasov,+I+A">I. A. Nekrasov</a> (2,3), <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Orlov,+Y+S">Yu. S. Orlov</a> (1), <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Begunovich,+L+V">L. V. Begunovich</a> (4), <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Korshunov,+M+M">M. M. Korshunov</a> (1), <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Ovchinnikov,+S+G">S. G. Ovchinnikov</a> (1) ((1) Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036, Krasnoyarsk, Russia, (2) Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, 620016, Ekaterinburg, Russia, (3) P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991, Moscow, Russia, (4) Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, 660036, Krasnoyarsk, Russia)</div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 21 pages, 9 figures, 4 tables, 4 appendices </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span>; Superconductivity (cond-mat.supr-con) </div> <p class='mathjax'> The electronic structure of the CuO monolayer is investigated taking into account the intra- and interatomic Coulomb interactions on copper and oxygen atoms. Local Coulomb interactions and covalence effects are treated exactly when constructing quasiparticle excitations using the generalized tight-binding method (GTB). The electronic system is described in the hole representation within the eight-band p-d model including long-range hoppings up to four nearest neighbors with parameters obtained from calculations using the density functional theory. Using the multiband Hubbard model, we calculated the dependencies of the band structure of quasiparticle excitations, Fermi surfaces, constant energy maps at the top of the valence band, band gap values and contributions of different orbitals to states at the top of the valence band in the regime of strong intra-atomic Coulomb interactions on copper for different values of the intra-atomic interaction on oxygen $U_p$ and the interatomic copper-oxygen interaction $V_{pd}$. It is shown that the system goes from the insulating state with d-states at the top of the valence band to the metallic state in which the main contribution to low-energy excitations is made by oxygen orbitals depending on the values of the parameters $U_p$ and $V_{pd}$. </p> </div> </dd> <dt> <a name='item4'>[4]</a> <a href ="/abs/2503.21454" title="Abstract" id="2503.21454"> arXiv:2503.21454 </a> [<a href="/pdf/2503.21454" title="Download PDF" id="pdf-2503.21454" aria-labelledby="pdf-2503.21454">pdf</a>, <a href="https://arxiv.org/html/2503.21454v1" title="View HTML" id="html-2503.21454" aria-labelledby="html-2503.21454" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.21454" title="Other formats" id="oth-2503.21454" aria-labelledby="oth-2503.21454">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Dynamic scaling and Family-Vicsek universality in $SU(N)$ quantum spin chains </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Moca,+C+P">C膬t膬lin Pa艧cu Moca</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=D%C3%B3ra,+B">Bal谩zs D贸ra</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Sticlet,+D">Doru Sticlet</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Valli,+A">Angelo Valli</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Prosen,+T">Toma啪 Prosen</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Zar%C3%A1nd,+G">Gergely Zar谩nd</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 5 pages, 4 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span>; Statistical Mechanics (cond-mat.stat-mech) </div> <p class='mathjax'> The Family-Vicsek scaling is a fundamental framework for understanding surface growth in non-equilibrium classical systems, providing a universal description of temporal surface roughness evolution. While universal scaling laws are well established in quantum systems, the applicability of Family-Vicsek scaling in quantum many-body dynamics remains largely unexplored. Motivated by this, we investigate the infinite-temperature dynamics of one-dimensional $SU(N)$ spin chains, focusing on the well-known $SU(2)$ XXZ model and the $SU(3)$ Izergin-Korepin model. We compute the quantum analogue of classical surface roughness using the second cumulant of spin fluctuations and demonstrate universal scaling with respect to time and subsystem size. By systematically breaking global $SU(N)$ symmetry and integrability, we identify distinct transport regimes characterized by the dynamical exponent $z$: (i) ballistic transport with $z=1$, (ii) superdiffusive transport with the Kardar-Parisi-Zhang exponent $z=3/2$, and (iii) diffusive transport with the Edwards-Wilkinson exponent $z=2$. Notably, breaking integrability always drives the system into the diffusive regime. Our results demonstrate that Family-Vicsek scaling extends beyond classical systems, holding universally across quantum many-body models with $SU(N)$ symmetry. </p> </div> </dd> <dt> <a name='item5'>[5]</a> <a href ="/abs/2503.21561" title="Abstract" id="2503.21561"> arXiv:2503.21561 </a> [<a href="/pdf/2503.21561" title="Download PDF" id="pdf-2503.21561" aria-labelledby="pdf-2503.21561">pdf</a>, <a href="https://arxiv.org/html/2503.21561v1" title="View HTML" id="html-2503.21561" aria-labelledby="html-2503.21561" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.21561" title="Other formats" id="oth-2503.21561" aria-labelledby="oth-2503.21561">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> A double-spiral spin ordering in the helimagnet YBaCuFeO$_{5}$ </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Liang,+Y">Yu-Hui Liang</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Lai,+C">Chun-Hao Lai</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Wang,+C">Chin-Wei Wang</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Yano,+S">Shinichiro Yano</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Okuyama,+D">Daisuke Okuyama</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Sato,+T+J">Taku J. Sato</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Nambu,+Y">Yusuke Nambu</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Weng,+S">Shih-Chang Weng</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Lai,+Y">Yen-Chung Lai</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Chen,+W">Wei-Tin Chen</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Rule,+K+C">Kirrily C. Rule</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Du,+C">Chao-Hung Du</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 29 pages, 6 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span> </div> <p class='mathjax'> Materials with a spiral spin ordering always show a rich phase diagram and can be a playground for studying the exotic physical properties associated with spiral magnetism. Using neutron elastic and resonant x-ray scattering on a high-quality single crystal YBaCuFeO$_{5}$, we demonstrate YBaCuFeO$_{5}$ to be a helimagnet consisting of a double-spiral spin ordering. YBaCuFeO$_{5}$ undergoes a commensurate to incommensurate magnetic phase transition at $T_{N2}$$\sim$ 175 K, and the incommensurate phase consists of two spin-ordered components. Both components have different periodicities but with the same propagating direction along the {\it c}-axis below $T_{N2}$. Using resonant x-ray scattering at the Fe and Cu \textit{K}-edges, we further demonstrate that both spiral spin orderings result from the Fe$^{3+}$ and Cu$^{2+}$, respectively, forming a double-spiral spin ordering structure. This can be understood to be caused by the coupling between both sublattices of Fe$^{3+}$ and Cu$^{2+}$ with the atomic lattice. </p> </div> </dd> <dt> <a name='item6'>[6]</a> <a href ="/abs/2503.21573" title="Abstract" id="2503.21573"> arXiv:2503.21573 </a> [<a href="/pdf/2503.21573" title="Download PDF" id="pdf-2503.21573" aria-labelledby="pdf-2503.21573">pdf</a>, <a href="https://arxiv.org/html/2503.21573v1" title="View HTML" id="html-2503.21573" aria-labelledby="html-2503.21573" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.21573" title="Other formats" id="oth-2503.21573" aria-labelledby="oth-2503.21573">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Finite-temperature charge and spin transport in the one-dimensional Hubbard model accounting for its global [SU (2) X SU(2) X U(1)]/Z_2^2$ symmetry </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Carmelo,+J+M+P">J. M. P. Carmelo</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Carmelo,+J+E+C">J. E. C. Carmelo</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 25 pages, 1 figure </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Physical Review B 111, 115157 (2025) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span> </div> <p class='mathjax'> Using a general representation that accounts for the effects on finite-temperature spin and charge transport of the global [SU (2) X SU(2) X U(1)]/(Z2 X Z2) symmetry of the one-dimensional (1D) Hubbard model, we show that important finite-temperature transport quantities as the finite-field spin and finite-chemical potential charge stiffnesses and the zero-field spin and zero-chemical potential charge diffusion constants are controlled by microscopic processes associated with the spin and charge elementary currents carried by the spin and charge carriers, respectively. We describe the model finite-temperature transport properties in terms of the microscopic processes associated with the spin and charge elementary currents carried by the corresponding carriers. We expect that the general representation used in our study is that suitable to address the open problems on finite-temperature transport in the 1D Hubbard model also discussed in this paper. </p> </div> </dd> <dt> <a name='item7'>[7]</a> <a href ="/abs/2503.21586" title="Abstract" id="2503.21586"> arXiv:2503.21586 </a> [<a href="/pdf/2503.21586" title="Download PDF" id="pdf-2503.21586" aria-labelledby="pdf-2503.21586">pdf</a>, <a href="https://arxiv.org/html/2503.21586v1" title="View HTML" id="html-2503.21586" aria-labelledby="html-2503.21586" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.21586" title="Other formats" id="oth-2503.21586" aria-labelledby="oth-2503.21586">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Exploring the magnetic states in the one-band Hubbard model: Impact of long-range hoppings </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Mandal,+S">Sudip Mandal</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Halder,+S">Sandip Halder</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Pradhan,+K">Kalpataru Pradhan</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 16 Pages, 12 Figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span> </div> <p class='mathjax'> Correlated electron systems with competing interactions provide a valuable platform for examining exotic magnetic phases. Theoretical models often focus on nearest-neighbor interactions, although long-range interactions can have a considerable impact on the behavior of the system, creating distinct and complicated magnetic phases. We investigate the consequences of competing interactions in a half-filled one-band Hubbard model on a simple cubic lattice, incorporating hopping processes up to third-nearest-neighbors, to explore the underlying magnetotransport properties. Our magnetic phase diagrams at low temperatures, obtained using semi-classical Monte Carlo analysis, reveal that the long-range interactions can disrupt one form of magnetic phase while creating a new type of magnetic order. For the nonperturbative regime (on-site Hubbard repulsive strength $U \sim$ bandwidth) the C-type antiferromagnetic ground state is preferred over the G-type antiferromagnetic phase when the interaction between second-nearest neighbor sites becomes significant to the nearest-neighbor interactions. However, interactions beyond the second-nearest-neighbors are required to stabilize the A-type antiferromagnetic ground state. Remarkably, at low temperatures, a highly correlated paramagnetic insulating phase develops at the intersection between the antiferromagnetic phases, which might promote a three-dimensional spin-liquid state. </p> </div> </dd> <dt> <a name='item8'>[8]</a> <a href ="/abs/2503.21662" title="Abstract" id="2503.21662"> arXiv:2503.21662 </a> [<a href="/pdf/2503.21662" title="Download PDF" id="pdf-2503.21662" aria-labelledby="pdf-2503.21662">pdf</a>, <a href="https://arxiv.org/html/2503.21662v1" title="View HTML" id="html-2503.21662" aria-labelledby="html-2503.21662" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.21662" title="Other formats" id="oth-2503.21662" aria-labelledby="oth-2503.21662">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Electronic structure dimensionality of the quantum-critical ferromagnet YbNi$_4$P$_2$ </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Dai,+J">J. Dai</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Antezak,+A">A. Antezak</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Broad,+W">W. Broad</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Thees,+M">M. Thees</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Zatko,+V">V. Zatko</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Bouwmeester,+R+L">R. L. Bouwmeester</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Fortuna,+F">F. Fortuna</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=F%C3%A8vre,+P+L">P. Le F猫vre</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Rault,+J+E">J. E. Rault</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Horiba,+K">K. Horiba</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Vyalikh,+D+V">D. V. Vyalikh</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Kumigashira,+H">H. Kumigashira</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Kliemt,+K">K. Kliemt</a>, S., <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Friedemann">Friedemann</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Krellner,+C">C. Krellner</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Frantzeskakis,+E">E. Frantzeskakis</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Santander-Syro,+A+F">A. F. Santander-Syro</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 11 pages, 9 figures </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Phys. Rev. Lett.134, 126401 (2025) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span>; Materials Science (cond-mat.mtrl-sci); Quantum Physics (quant-ph) </div> <p class='mathjax'> YbNi$_4$P$_2$ is the first known ferromagnetic metal showing a second-order quantum phase transition. Current theoretical understanding rules out second order ferromagnetic quantum criticality in centrosymmetric 2D and 3D metals. Thus, studying the electronic structure of YbNi$_4$P$_2$ is of prime fundamental importance. Using angle-resolved photoemission spectroscopy, we experimentally prove the existence of 1D Fermi surface contours. In addition, our results demonstrate that part of the electronic structure of YbNi$_4$P$_2$ is made of states of higher dimensionality, thereby bringing into question the fact that ferromagnetic quantum criticality in centrosymmetric crystals, is exclusively found in 1D systems. Our experimental data show that the electronic structure of YbNi$_4$P$_2$ is a playground of mixed dimensionality, electron correlations, strong hybridization and spin-orbit coupling, all of them providing new insights in understanding the origin of ferromagnetic quantum criticality. </p> </div> </dd> <dt> <a name='item9'>[9]</a> <a href ="/abs/2503.21750" title="Abstract" id="2503.21750"> arXiv:2503.21750 </a> [<a href="/pdf/2503.21750" title="Download PDF" id="pdf-2503.21750" aria-labelledby="pdf-2503.21750">pdf</a>, <a href="https://arxiv.org/html/2503.21750v1" title="View HTML" id="html-2503.21750" aria-labelledby="html-2503.21750" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.21750" title="Other formats" id="oth-2503.21750" aria-labelledby="oth-2503.21750">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Optical control of orbital magnetism in magic angle twisted bilayer graphene </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Persky,+E">Eylon Persky</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=He,+M">Minhao He</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Cai,+J">Jiaqi Cai</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Taniguchi,+T">Takashi Taniguchi</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Watanabe,+K">Kenji Watanabe</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Xu,+X">Xiaodong Xu</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Kapitulnik,+A">Aharon Kapitulnik</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 16 pages, 9 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span>; Mesoscale and Nanoscale Physics (cond-mat.mes-hall) </div> <p class='mathjax'> Flat bands in graphene-based moir茅 structures host a wide range of emerging strongly correlated and topological phenomena. Optically probing and controlling them can reveal important information such as symmetry and dynamics, but have so far been challenging due to the small energy gap compared to optical wavelengths. Here, we report near infrared optical control of orbital magnetism and associated anomalous Hall effects (AHE) in a magic angle twisted bilayer graphene (MATBG) on monolayer WSe$_2$ device. We show that the properties of the AHE, such as hysteresis and amplitude, can be controlled by light near integer moir茅 fillings, where spontaneous ferromagnetism exists. By modulating the light helicity, we observe periodic modulation of the transverse resistance in a wide range of fillings, indicating light induced orbital magnetization through a large inverse Faraday effect. At the transition between metallic and AHE regimes, we also reveal large and random switching of the Hall resistivity, which are attributed to optical control of percolating cluster of magnetic domains. Our results open the door to optical manipulation of correlation and topology in MATBG and related structures. </p> </div> </dd> <dt> <a name='item10'>[10]</a> <a href ="/abs/2503.21764" title="Abstract" id="2503.21764"> arXiv:2503.21764 </a> [<a href="/pdf/2503.21764" title="Download PDF" id="pdf-2503.21764" aria-labelledby="pdf-2503.21764">pdf</a>, <a href="https://arxiv.org/html/2503.21764v1" title="View HTML" id="html-2503.21764" aria-labelledby="html-2503.21764" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.21764" title="Other formats" id="oth-2503.21764" aria-labelledby="oth-2503.21764">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Phases with non-invertible symmetries in 1+1D $\unicode{x2013}$ symmetry protected topological orders as duality automorphisms </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Aksoy,+%C3%96+M">脰mer M. Aksoy</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Wen,+X">Xiao-Gang Wen</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 22+14 pages, 3 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span> </div> <p class='mathjax'> We explore 1+1 dimensional (1+1D) gapped phases in systems with non-invertible symmetries, focusing on symmetry-protected topological (SPT) phases (defined as gapped phases with non-degenerate ground states), as well as SPT orders (defined as the differences between gapped/gapless phases with identical bulk excitations spectrum). For group-like symmetries, distinct SPT phases share identical bulk excitations and always differ by SPT orders. However, for certain non-invertible symmetries, we discover novel SPT phases that have different bulk excitations and thus do not differ by SPT orders. Additionally, we also study the spontaneous symmetry-breaking (SSB) phases of non-invertible symmetries. Unlike group-like symmetries, non-invertible symmetries lack the concept of subgroups, which complicates the definition of SSB phases as well as their identification. This challenge can be addressed by employing the symmetry-topological-order (symTO) framework for the symmetry. The Lagrangian condensable algebras and automorphisms of the symTO facilitate the classification of gapped phases in systems with such symmetries, enabling the analysis of both SPT and SSB phases (including those that differ by SPT orders). Finally, we apply this methodology to investigate gapless phases in symmetric systems and to study gapless phases differing by SPT orders. </p> </div> </dd> <dt> <a name='item11'>[11]</a> <a href ="/abs/2503.21769" title="Abstract" id="2503.21769"> arXiv:2503.21769 </a> [<a href="/pdf/2503.21769" title="Download PDF" id="pdf-2503.21769" aria-labelledby="pdf-2503.21769">pdf</a>, <a href="https://arxiv.org/html/2503.21769v1" title="View HTML" id="html-2503.21769" aria-labelledby="html-2503.21769" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.21769" title="Other formats" id="oth-2503.21769" aria-labelledby="oth-2503.21769">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Kondo-lattice phenomenology of twisted bilayer WSe$_2$ from compact molecular orbitals of topological bands </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Xie,+F">Fang Xie</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Li,+C">Chenyuan Li</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Cano,+J">Jennifer Cano</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Si,+Q">Qimiao Si</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 6 + 7 pages; 3 + 4 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span> </div> <p class='mathjax'> The discovery of superconductivity and correlated electronic phases in twisted bilayer WSe$_2$ (Xia et al., Nature 2024; Guo et al., Nature 2025) has generated considerable excitement. Accompanying the superconductivity and a correlated insulator phase is the Kondo-lattice-like phenomenology in transport properties. Here we consider how such phenomenology can develop when the combination of the active bands are topological. We advance a unique construction of compact molecular orbitals through a partial Wannierization that is symmetry preserving. The resulting Anderson lattice model provides the basis for a microscopic understanding of the experimental observation, including the involved energy scales. Our approach may apply to a broad range of settings where topology and correlations interplay. </p> </div> </dd> </dl> <dl id='articles'> <h3>Cross submissions (showing 13 of 13 entries)</h3> <dt> <a name='item12'>[12]</a> <a href ="/abs/2503.20861" title="Abstract" id="2503.20861"> arXiv:2503.20861 </a> (cross-list from cond-mat.supr-con) [<a href="/pdf/2503.20861" title="Download PDF" id="pdf-2503.20861" aria-labelledby="pdf-2503.20861">pdf</a>, <a href="https://arxiv.org/html/2503.20861v1" title="View HTML" id="html-2503.20861" aria-labelledby="html-2503.20861" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.20861" title="Other formats" id="oth-2503.20861" aria-labelledby="oth-2503.20861">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Inhomogeneity, Fluctuations, and Gap Filling in Overdoped Cuprates </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Sulangi,+M+A">Miguel Antonio Sulangi</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Farmilo,+W">Willem Farmilo</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Kreisel,+A">Andreas Kreisel</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Pal,+M">Mainak Pal</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Atkinson,+W+A">W. A. Atkinson</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Hirschfeld,+P+J">P. J. Hirschfeld</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 5 pages, 3 figures + supplementary material and references </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Superconductivity (cond-mat.supr-con)</span>; Strongly Correlated Electrons (cond-mat.str-el) </div> <p class='mathjax'> Several recent experiments have challenged the premise that cuprate high-temperature superconductors approach conventional Landau-BCS behavior in the high-doping limit. We argue, based on an analysis of their superconducting spectra, that anomalous properties seen in the most-studied overdoped cuprates require a pairing interaction that is strongly inhomogeneous on nm length scales. This is consistent with recent proposals that the "strange-metal" phase above $T_c$ in the same doping range arises from a spatially random interaction. We show, via mean-field Bogoliubov-de Gennes (BdG) calculations and time-dependent Ginzburg-Landau (TDGL) simulations, that key features of the observed tunneling spectra are reproduced when both inhomogeneity and thermal phase fluctuations are accounted for. In accord with experiments, BdG calculations find that low-$T$ spectra are highly inhomogeneous and exhibit a low-energy spectral shoulder and broad coherence peaks. However, the spectral gap in this approach becomes homogeneous at high $T$, in contrast to experiments. This is resolved when thermal fluctuations are included; in this case, global phase coherence is lost at the superconducting $T_c$ via a broadened BKT transition, while robust phase-coherent superconducting islands persist well above $T_c$. The local spectrum remains inhomogeneous at $T_c$. </p> </div> </dd> <dt> <a name='item13'>[13]</a> <a href ="/abs/2503.20863" title="Abstract" id="2503.20863"> arXiv:2503.20863 </a> (cross-list from hep-th) [<a href="/pdf/2503.20863" title="Download PDF" id="pdf-2503.20863" aria-labelledby="pdf-2503.20863">pdf</a>, <a href="https://arxiv.org/html/2503.20863v1" title="View HTML" id="html-2503.20863" aria-labelledby="html-2503.20863" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.20863" title="Other formats" id="oth-2503.20863" aria-labelledby="oth-2503.20863">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Additivity, Haag duality, and non-invertible symmetries </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Shao,+S">Shu-Heng Shao</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Sorce,+J">Jonathan Sorce</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Manu">Manu Srivastava</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 22 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Strongly Correlated Electrons (cond-mat.str-el); Operator Algebras (math.OA); Quantum Physics (quant-ph) </div> <p class='mathjax'> The algebraic approach to quantum field theory focuses on the properties of local algebras, whereas the study of (possibly non-invertible) global symmetries emphasizes global aspects of the theory and spacetime. We study connections between these two perspectives by examining how either of two core algebraic properties -- "additivity" or "Haag duality" -- is violated in a 1+1D CFT or lattice model restricted to the symmetric sector of a general global symmetry. For the Verlinde symmetry of a bosonic diagonal RCFT, we find that additivity is violated whenever the symmetry algebra contains an invertible element, while Haag duality is violated whenever it contains a non-invertible element. We find similar phenomena for the Kramers-Wannier and Rep(D$_8$) non-invertible symmetries on spin chains. </p> </div> </dd> <dt> <a name='item14'>[14]</a> <a href ="/abs/2503.20865" title="Abstract" id="2503.20865"> arXiv:2503.20865 </a> (cross-list from hep-th) [<a href="/pdf/2503.20865" title="Download PDF" id="pdf-2503.20865" aria-labelledby="pdf-2503.20865">pdf</a>, <a href="https://arxiv.org/html/2503.20865v1" title="View HTML" id="html-2503.20865" aria-labelledby="html-2503.20865" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.20865" title="Other formats" id="oth-2503.20865" aria-labelledby="oth-2503.20865">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Non-invertible symmetries of two-dimensional Non-Linear Sigma Models </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Arias-Tamargo,+G">Guillermo Arias-Tamargo</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Hull,+C">Chris Hull</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Hutt,+M+L+V+C">Maxwell L. Vel谩squez Cotini Hutt</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 54 pages + appendices, 3 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Strongly Correlated Electrons (cond-mat.str-el) </div> <p class='mathjax'> Global symmetries can be generalised to transformations generated by topological operators, including cases in which the topological operator does not have an inverse. A family of such topological operators are intimately related to dualities via the procedure of half-space gauging. In this work we discuss the construction of non-invertible defects based on T-duality in two dimensions, generalising the well-known case of the free compact boson to any Non-Linear Sigma Model with Wess-Zumino term which is T-dualisable. This requires that the target space has an isometry with compact orbits that acts without fixed points. Our approach allows us to include target spaces without non-trivial 1-cycles, does not require the NLSM to be conformal, and when it is conformal it does not need to be rational; moreover, it highlights the microscopic origin of the topological terms that are responsible for the non-invertibility of the defect. An interesting class of examples are Wess-Zumino-Witten models, which are self-dual under a discrete gauging of a subgroup of the isometry symmetry and so host a topological defect line with Tambara-Yamagami fusion. Along the way, we discuss how the usual 0-form symmetries match across T-dual models in target spaces without 1-cycles, and how global obstructions can prevent locally conserved currents from giving rise to topological operators. </p> </div> </dd> <dt> <a name='item15'>[15]</a> <a href ="/abs/2503.20870" title="Abstract" id="2503.20870"> arXiv:2503.20870 </a> (cross-list from quant-ph) [<a href="/pdf/2503.20870" title="Download PDF" id="pdf-2503.20870" aria-labelledby="pdf-2503.20870">pdf</a>, <a href="https://arxiv.org/html/2503.20870v1" title="View HTML" id="html-2503.20870" aria-labelledby="html-2503.20870" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.20870" title="Other formats" id="oth-2503.20870" aria-labelledby="oth-2503.20870">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Digital quantum magnetism at the frontier of classical simulations </div> <div class='list-authors'><a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Haghshenas,+R">Reza Haghshenas</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Chertkov,+E">Eli Chertkov</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Mills,+M">Michael Mills</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Kadow,+W">Wilhelm Kadow</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Lin,+S">Sheng-Hsuan Lin</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Chen,+Y">Yi-Hsiang Chen</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Cade,+C">Chris Cade</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Niesen,+I">Ido Niesen</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Begu%C5%A1i%C4%87,+T">Tomislav Begu拧i膰</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Rudolph,+M+S">Manuel S. Rudolph</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Cirstoiu,+C">Cristina Cirstoiu</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Hemery,+K">Kevin Hemery</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Keever,+C+M">Conor Mc Keever</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Lubasch,+M">Michael Lubasch</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Granet,+E">Etienne Granet</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Baldwin,+C+H">Charles H. Baldwin</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Bartolotta,+J+P">John P. Bartolotta</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Bohn,+M">Matthew Bohn</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Cline,+J">Julia Cline</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=DeCross,+M">Matthew DeCross</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Dreiling,+J+M">Joan M. Dreiling</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Foltz,+C">Cameron Foltz</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Francois,+D">David Francois</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Gaebler,+J+P">John P. Gaebler</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Gilbreth,+C+N">Christopher N. Gilbreth</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Gray,+J">Johnnie Gray</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Gresh,+D">Dan Gresh</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Hall,+A">Alex Hall</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Hankin,+A">Aaron Hankin</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Hansen,+A">Azure Hansen</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Hewitt,+N">Nathan Hewitt</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Hutson,+R+B">Ross B. Hutson</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Kotibhaskar,+N">Nikhil Kotibhaskar</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Lehman,+E">Elliot Lehman</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Lucchetti,+D">Dominic Lucchetti</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Madjarov,+I+S">Ivaylo S. Madjarov</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Mayer,+K">Karl Mayer</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Milne,+A+R">Alistair R. Milne</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Neyenhuis,+B">Brian Neyenhuis</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Park,+G">Gunhee Park</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Ponsioen,+B">Boris Ponsioen</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Siegfried,+P+E">Peter E. Siegfried</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Stephen,+D+T">David T. Stephen</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Tiemann,+B+G">Bruce G. Tiemann</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Urmey,+M+D">Maxwell D. Urmey</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Walker,+J">James Walker</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Potter,+A+C">Andrew C. Potter</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Hayes,+D">David Hayes</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Chan,+G+K">Garnet Kin-Lic Chan</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Pollmann,+F">Frank Pollmann</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Knap,+M">Michael Knap</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Dreyer,+H">Henrik Dreyer</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Foss-Feig,+M">Michael Foss-Feig</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 7 pages + Appendices </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Quantum Physics (quant-ph)</span>; Strongly Correlated Electrons (cond-mat.str-el) </div> <p class='mathjax'> The utility of near-term quantum computers for simulating realistic quantum systems hinges on the stability of digital quantum matter--realized when discrete quantum gates approximate continuous time evolution--and whether it can be maintained at system sizes and time scales inaccessible to classical simulations. Here, we use Quantinuum's H2 quantum computer to simulate digitized dynamics of the quantum Ising model and observe the emergence of Floquet prethermalization on timescales where accurate simulations using current classical methods are extremely challenging (if feasible at all). In addition to confirming the stability of dynamics subject to achievable digitization errors, we show direct evidence of the resultant local equilibration by computing diffusion constants associated with an emergent hydrodynamic description of the dynamics. Our results were enabled by continued advances in two-qubit gate quality (native partial entangler fidelities of 99.94(1)%) that allow us to access circuit volumes of over 2000 two-qubit gates. This work establishes digital quantum computers as powerful tools for studying continuous-time dynamics and demonstrates their potential to benchmark classical heuristics in a regime of scale and complexity where no known classical methods are both efficient and trustworthy. </p> </div> </dd> <dt> <a name='item16'>[16]</a> <a href ="/abs/2503.20874" title="Abstract" id="2503.20874"> arXiv:2503.20874 </a> (cross-list from quant-ph) [<a href="/pdf/2503.20874" title="Download PDF" id="pdf-2503.20874" aria-labelledby="pdf-2503.20874">pdf</a>, <a href="https://arxiv.org/html/2503.20874v1" title="View HTML" id="html-2503.20874" aria-labelledby="html-2503.20874" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.20874" title="Other formats" id="oth-2503.20874" aria-labelledby="oth-2503.20874">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Quantum Coherence of Topologically Frustrated Spin Chains </div> <div class='list-authors'><a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Ko%C5%BEi%C4%87,+S+B">S. B. Ko啪i膰</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Torre,+G">G. Torre</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Deli%C4%87,+K">K. Deli膰</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Franchini,+F">F. Franchini</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Giampaolo,+S+M">S. M. Giampaolo</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 7 pages, three figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Quantum Physics (quant-ph)</span>; Statistical Mechanics (cond-mat.stat-mech); Strongly Correlated Electrons (cond-mat.str-el) </div> <p class='mathjax'> The study of entanglement and magic properties in topologically frustrated systems suggests that, in the thermodynamic limit, these quantities decompose into two distinct contributions. One is determined by the specific nature of the model and its Hamiltonian, and another arises from topological frustration itself, resulting in being independent of the Hamiltonian's parameters. In this work, we test the generality of this picture by investigating an additional quantum resource, namely quantum coherence, in two different models where topological frustration is induced through an appropriate choice of boundary conditions. Our findings reveal a perfect analogy between the behavior of quantum coherence and that of other quantum resources, particularly magic, providing further evidence in support of the universality of this picture and the topological nature of this source of frustration. </p> </div> </dd> <dt> <a name='item17'>[17]</a> <a href ="/abs/2503.21038" title="Abstract" id="2503.21038"> arXiv:2503.21038 </a> (cross-list from cond-mat.mes-hall) [<a href="/pdf/2503.21038" title="Download PDF" id="pdf-2503.21038" aria-labelledby="pdf-2503.21038">pdf</a>, <a href="https://arxiv.org/html/2503.21038v1" title="View HTML" id="html-2503.21038" aria-labelledby="html-2503.21038" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.21038" title="Other formats" id="oth-2503.21038" aria-labelledby="oth-2503.21038">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Competing Many-Body Phases at Small Fillings in Ultrahigh-Quality GaAs 2D Hole Systems: Role of Landau Level Mixing </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Wang,+C">Chengyu Wang</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Gupta,+A">A. Gupta</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Singh,+S+K">S. K. Singh</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Pfeiffer,+L+N">L. N. Pfeiffer</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Baldwin,+K+W">K. W. Baldwin</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Winkler,+R">R. Winkler</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Shayegan,+M">M. Shayegan</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 17 pages, 15 figures </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Phys. Rev. B 111, 085429 (2025) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Mesoscale and Nanoscale Physics (cond-mat.mes-hall)</span>; Strongly Correlated Electrons (cond-mat.str-el) </div> <p class='mathjax'> The fractional quantum Hall state (FQHS), an incompressible liquid state hosting anyonic excitations with fractional charge and statistics, represents a compelling many-body phase observed in clean two-dimensional (2D) carrier systems. The expected non-Abelian nature of the FQHSs at even-denominator Landau level (LL) fillings has particularly sparked considerable recent interest. At sufficiently small fillings, another exotic phase, namely a quantum Wigner crystal (WC) state, dominates. Here we report magneto-transport measurements in an ultrahigh-quality GaAs 2D \textit{hole} system where the large hole effective mass leads to a significant LL mixing (LLM) even at very high magnetic fields and affects the many-body states at very small fillings. We observe numerous developing FQHSs at both even- and odd-denominator fillings, deep in the insulating regime at $\nu \lesssim$ 1/3 where WC states dominate. The FQHSs we observe at odd-denominator fillings on the flanks of $\nu=$ 1/4 and 1/6 are consistent with the Abelian Jain sequence of four-flux and six-flux composite fermions, while the ones at even-denominator fillings $\nu=$ 1/4 and 1/6 are likely non-Abelian states emerging from the pairing of these quasiparticles induced by severe LLM. Our results demonstrate that the competition between the FQHSs and WC phases is close at very small fillings even in the presence of severe LLM. We also measure activation energies of WC states near $\nu=$ 1/6, and find that they are substantially larger than what has been reported for ultrahigh-quality GaAs 2D electrons. A moderate LLM is believed to lower the activation energy associated to the formation of WC intrinsic defects. The surprisingly large activation energy for our 2DHS with significant LLM is therefore puzzling, and may suggest a different type of intrinsic WC defect compared to that in 2D electrons. </p> </div> </dd> <dt> <a name='item18'>[18]</a> <a href ="/abs/2503.21041" title="Abstract" id="2503.21041"> arXiv:2503.21041 </a> (cross-list from quant-ph) [<a href="/pdf/2503.21041" title="Download PDF" id="pdf-2503.21041" aria-labelledby="pdf-2503.21041">pdf</a>, <a href="https://arxiv.org/html/2503.21041v1" title="View HTML" id="html-2503.21041" aria-labelledby="html-2503.21041" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.21041" title="Other formats" id="oth-2503.21041" aria-labelledby="oth-2503.21041">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Exponential quantum speedups in quantum chemistry with linear depth </div> <div class='list-authors'><a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Leimkuhler,+O">Oskar Leimkuhler</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Whaley,+K+B">K. Birgitta Whaley</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 17 pages, 5 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Quantum Physics (quant-ph)</span>; Strongly Correlated Electrons (cond-mat.str-el); Chemical Physics (physics.chem-ph) </div> <p class='mathjax'> We prove classical simulation hardness, under the generalized $\mathsf{P}\neq\mathsf{NP}$ conjecture, for quantum circuit families with applications in near-term quantum chemical ground state estimation. The proof exploits a connection to particle number conserving matchgate circuits with fermionic magic state inputs, which are shown to be universal for quantum computation under post-selection, and are therefore not classically simulable in the worst case, in either the strong (multiplicative) or weak (sampling) sense. We apply this result to quantum multi-reference methods designed for near-term quantum hardware by ruling out certain dequantization strategies for computing the off-diagonal matrix elements. We demonstrate these quantum speedups for two choices of reference state that incorporate both static and dynamic correlations to model the electronic eigenstates of molecular systems: orbital-rotated matrix product states, which are preparable in linear depth, and unitary coupled-cluster with single and double excitations. In each case we discuss the implications for achieving exponential quantum advantage in quantum chemistry on near-term hardware. </p> </div> </dd> <dt> <a name='item19'>[19]</a> <a href ="/abs/2503.21063" title="Abstract" id="2503.21063"> arXiv:2503.21063 </a> (cross-list from cond-mat.other) [<a href="/pdf/2503.21063" title="Download PDF" id="pdf-2503.21063" aria-labelledby="pdf-2503.21063">pdf</a>, <a href="https://arxiv.org/html/2503.21063v1" title="View HTML" id="html-2503.21063" aria-labelledby="html-2503.21063" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.21063" title="Other formats" id="oth-2503.21063" aria-labelledby="oth-2503.21063">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Topological Peierls instabilities in more than one dimension </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Palumbo,+S">Santiago Palumbo</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Cornaglia,+P+S">Pablo S. Cornaglia</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Facio,+J+I">Jorge I. Facio</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> Comments are welcome </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Other Condensed Matter (cond-mat.other)</span>; Strongly Correlated Electrons (cond-mat.str-el); Superconductivity (cond-mat.supr-con) </div> <p class='mathjax'> A periodic lattice distortion that reduces the translational symmetry folds electron bands into a reduced Brillouin zone, leading to band mixing and a tendency to gap formation, as in the Peierls transition in one-dimensional systems. However, in higher dimensions, the resulting phase can present topological obstructions preventing a complete gap opening. We discuss two different mechanisms for such obstructions, emergent Weyl nodes and symmetry protected band crossings. Based on density-functional calculations, we show these mechanisms are at play in trigonal PtBi$_2$. </p> </div> </dd> <dt> <a name='item20'>[20]</a> <a href ="/abs/2503.21314" title="Abstract" id="2503.21314"> arXiv:2503.21314 </a> (cross-list from cond-mat.mes-hall) [<a href="/pdf/2503.21314" title="Download PDF" id="pdf-2503.21314" aria-labelledby="pdf-2503.21314">pdf</a>, <a href="https://arxiv.org/html/2503.21314v1" title="View HTML" id="html-2503.21314" aria-labelledby="html-2503.21314" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.21314" title="Other formats" id="oth-2503.21314" aria-labelledby="oth-2503.21314">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Symmetry broken states at high displacement fields in ABA trilayer graphene </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Kaur,+S">Simrandeep Kaur</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Ghorai,+U">Unmesh Ghorai</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Samanta,+A">Abhisek Samanta</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Watanabe,+K">Kenji Watanabe</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Taniguchi,+T">Takashi Taniguchi</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Sensarma,+R">Rajdeep Sensarma</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Bid,+A">Aveek Bid</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 27 pages, comments/suggestions are welcome </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Mesoscale and Nanoscale Physics (cond-mat.mes-hall)</span>; Strongly Correlated Electrons (cond-mat.str-el) </div> <p class='mathjax'> In this Letter, we present a comprehensive study of magnetotransport in high-mobility trilayer graphene (TLG) devices under a transverse displacement field, focusing on symmetry-broken Landau levels (LLs) from monolayer-like and bilayer-like bands. A striking displacement-field-induced enhancement of the Land茅 g-factor is observed in the zeroth Landau level of the monolayer-like band, highlighting the role of strong electron-electron interactions. Additionally, we find a rich landscape of LL crossings in the Dirac gully region, accompanied by phase transitions between spin-, gully-, and valley-polarized LLs. These experimental observations are successfully modeled using calculations based on optimized tight-binding parameters. Furthermore, our results reveal significant particle-hole asymmetry in the sequence of LLs in the Dirac gullies, attributed to differing g-factor values for electrons and holes. This asymmetry underscores the limitations of non-interacting models in capturing the complexities of strongly correlated multiband systems. This work provides new insights into the interplay of symmetry-breaking mechanisms and strong correlations in Bernal-stacked trilayer graphene, advancing our understanding of quantum transport phenomena in multiband systems. </p> </div> </dd> <dt> <a name='item21'>[21]</a> <a href ="/abs/2503.21327" title="Abstract" id="2503.21327"> arXiv:2503.21327 </a> (cross-list from cond-mat.mtrl-sci) [<a href="/pdf/2503.21327" title="Download PDF" id="pdf-2503.21327" aria-labelledby="pdf-2503.21327">pdf</a>, <a href="https://arxiv.org/html/2503.21327v1" title="View HTML" id="html-2503.21327" aria-labelledby="html-2503.21327" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.21327" title="Other formats" id="oth-2503.21327" aria-labelledby="oth-2503.21327">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Tailoring non-collinear magnetism and 3d $-$ 4f exchange interactions in RVO$_3$ epitaxial thin films </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Copie,+O">O. Copie</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Varignon,+J">J. Varignon</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Infante,+I+C">I. C. Infante</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Martirosyan,+M">M. Martirosyan</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Choueikani,+F">F. Choueikani</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Ohresser,+P">P. Ohresser</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Janolin,+P">P.-E. Janolin</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Pautrat,+A">A. Pautrat</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=David,+A">A. David</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Ghosez,+P">P. Ghosez</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Prellier,+W">W. Prellier</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Materials Science (cond-mat.mtrl-sci)</span>; Strongly Correlated Electrons (cond-mat.str-el) </div> <p class='mathjax'> In orthorhombic perovskite oxides (RMO$_3$), substituting R$^{3+}$ rare-earth cations tailors the spin, orbital, and charge degrees of freedom of the central M$^{3+}$ transition metal cations through lattice distortions. In turn, these modify also the surrounding environment of R$^{3+}$. When both R$^{3+}$ and M$^{3+}$ exhibit magnetic properties, phenomena such as spin reorientation and magnetization reversal can occur. In fact, the underlying exchange interactions between M-$3d$ spins and R-$4f$ magnetic moments enrich the multifunctional character of RMO$_3$, particularly when combined with structural distortions. They play a crucial role in achieving appealing properties such as robust magnetoelectricity with non-collinear magnetic orders. Here, we explore the exchange coupling in epitaxial PrVO$_3$ thin films, selectively probing the magnetism of cation sublattices, and uncovering simultaneous V$^{3+}$ $3d$ spin reorientation and Pr$^{3+}$ $4f$ magnetization reversal using spectroscopy techniques. By strain engineering, we manipulate the lattice distortions to rationalize their role in coupling $3d$ spins and $4f$ magnetic moments. Theorectical calculations show that octahedral rotations and Jahn-Teller distortions act as tuning mechanisms, promoting competition between orbital and spin orders. The observed coupling between magnetic cations and lattice distortions can be extended to other orthorhombic RMO$_3$ systems, advancing the understanding of controlling spins in engineered perovskite heterostructures and superlattices. </p> </div> </dd> <dt> <a name='item22'>[22]</a> <a href ="/abs/2503.21524" title="Abstract" id="2503.21524"> arXiv:2503.21524 </a> (cross-list from hep-th) [<a href="/pdf/2503.21524" title="Download PDF" id="pdf-2503.21524" aria-labelledby="pdf-2503.21524">pdf</a>, <a href="https://arxiv.org/html/2503.21524v1" title="View HTML" id="html-2503.21524" aria-labelledby="html-2503.21524" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.21524" title="Other formats" id="oth-2503.21524" aria-labelledby="oth-2503.21524">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Gauging $\mathbb{Z}_N$ symmetries of Narain CFTs </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Ando,+K">Keiichi Ando</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Kawabata,+K">Kohki Kawabata</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Nishioka,+T">Tatsuma Nishioka</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 47 pages, 2 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Strongly Correlated Electrons (cond-mat.str-el); Quantum Physics (quant-ph) </div> <p class='mathjax'> We investigate the gauging of a $\mathbb{Z}_N$ symmetry in lattice conformal field theories (CFTs), also known as Narain CFTs. For prime $N$, we derive a spin selection rule for operators in a $\mathbb{Z}_N$ charge-twisted sector of a general bosonic CFT. Using this result, we formulate the gauging procedures in lattice CFTs as modifications of the momentum lattices by a lattice vector that specifies a non-anomalous $\mathbb{Z}_N$ symmetry. Applying this formulation to code CFTs, i.e., Narain CFTs constructed from error-correcting codes, we express the torus partition functions of the orbifolded and parafermionized theories in terms of the weight enumerator polynomials of the underlying codes. As an application, we identify a class of codes that yield self-dual bosonic CFTs under the orbifolding by a $\mathbb{Z}_N$ symmetry. </p> </div> </dd> <dt> <a name='item23'>[23]</a> <a href ="/abs/2503.21660" title="Abstract" id="2503.21660"> arXiv:2503.21660 </a> (cross-list from hep-th) [<a href="/pdf/2503.21660" title="Download PDF" id="pdf-2503.21660" aria-labelledby="pdf-2503.21660">pdf</a>, <a href="https://arxiv.org/html/2503.21660v1" title="View HTML" id="html-2503.21660" aria-labelledby="html-2503.21660" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.21660" title="Other formats" id="oth-2503.21660" aria-labelledby="oth-2503.21660">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Fracton and Non-Lorentzian Particle Duality: Gauge Field Couplings and Geometric Implications </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Ahmadi-Jahmani,+M">M.M. Ahmadi-Jahmani</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Parvizi,+A">A. Parvizi</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 43 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Strongly Correlated Electrons (cond-mat.str-el); General Relativity and Quantum Cosmology (gr-qc) </div> <p class='mathjax'> Fractons, characterized by restricted mobility and governed by higher-moment conservation laws, represent a novel phase of matter with deep connections to tensor gauge theories and emergent gravity. This work systematically explores the duality between fractons and non-Lorentzian particles -- Carroll and Galilean -- within electromagnetic (EM) fields. By constructing canonical actions for fractons in rank-2 gauge fields, we derive their equations of motion and demonstrate that static fractons exhibit duality with electric-sector of Carroll particles, while mobile fracton dipoles correspond to both electric and magnetic sectors of Galilean particles. The algebraic underpinnings of these dualities are clarified through symmetry analyses, revealing structural parallels between the fracton and Carroll/Galilean algebras. Furthermore, by gauging the fracton algebra, we develop a geometric framework for fracton gravity, linking it to non-Lorentzian spacetime geometries. These results unify fracton dynamics with non-relativistic and ultra-relativistic limits of physics, offering insights into emergent gravity and exotic condensed matter systems. </p> </div> </dd> <dt> <a name='item24'>[24]</a> <a href ="/abs/2503.21741" title="Abstract" id="2503.21741"> arXiv:2503.21741 </a> (cross-list from quant-ph) [<a href="/pdf/2503.21741" title="Download PDF" id="pdf-2503.21741" aria-labelledby="pdf-2503.21741">pdf</a>, <a href="https://arxiv.org/html/2503.21741v1" title="View HTML" id="html-2503.21741" aria-labelledby="html-2503.21741" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.21741" title="Other formats" id="oth-2503.21741" aria-labelledby="oth-2503.21741">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Adiabatic quantum state preparation in integrable models </div> <div class='list-authors'><a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Lutz,+M">Maximilian Lutz</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Piroli,+L">Lorenzo Piroli</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Styliaris,+G">Georgios Styliaris</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Cirac,+J+I">J. Ignacio Cirac</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 6+11 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Quantum Physics (quant-ph)</span>; Statistical Mechanics (cond-mat.stat-mech); Strongly Correlated Electrons (cond-mat.str-el) </div> <p class='mathjax'> We propose applying the adiabatic algorithm to prepare high-energy eigenstates of integrable models on a quantum computer. We first review the standard adiabatic algorithm to prepare ground states in each magnetization sector of the prototypical XXZ Heisenberg chain. Based on the thermodynamic Bethe ansatz, we show that the algorithm circuit depth is polynomial in the number of qubits $N$, outperforming previous methods explicitly relying on integrability. Next, we propose a protocol to prepare arbitrary eigenstates of integrable models that satisfy certain conditions. For a given target eigenstate, we construct a suitable parent Hamiltonian written in terms of a complete set of local conserved quantities. We propose using such Hamiltonian as an input for an adiabatic algorithm. After benchmarking this construction in the case of the non-interacting XY spin chain, where we can rigorously prove its efficiency, we apply it to prepare arbitrary eigenstates of the Richardson-Gaudin models. In this case, we provide numerical evidence that the circuit depth of our algorithm is polynomial in $N$ for all eigenstates, despite the models being interacting. </p> </div> </dd> </dl> <dl id='articles'> <h3>Replacement submissions (showing 11 of 11 entries)</h3> <dt> <a name='item25'>[25]</a> <a href ="/abs/2405.17348" title="Abstract" id="2405.17348"> arXiv:2405.17348 </a> (replaced) [<a href="/pdf/2405.17348" title="Download PDF" id="pdf-2405.17348" aria-labelledby="pdf-2405.17348">pdf</a>, <a href="https://arxiv.org/html/2405.17348v3" title="View HTML" id="html-2405.17348" aria-labelledby="html-2405.17348" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2405.17348" title="Other formats" id="oth-2405.17348" aria-labelledby="oth-2405.17348">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Kondo-Zeno crossover in the dynamics of a monitored quantum dot </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Vanhoecke,+M">Matthieu Vanhoecke</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Schir%C3%B2,+M">Marco Schir貌</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 24 pages, 11 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span>; Quantum Physics (quant-ph) </div> <p class='mathjax'> Continuously monitoring a quantum system can strongly affect its properties and even suppress its coherent evolution via the Quantum Zeno effect. Well understood for few body quantum systems, the role of quantum measurements on entangled many-body states is still largely unexplored. Here we focus on one of the simplest entangled many-body state, arising via the Kondo effect in a strongly interacting quantum dot coupled to a metallic bath, and investigate the effect of continuous monitoring of the dot total charge. We show that the decay rate of an initially polarized spin displays a crossover from Kondo screening, with a decay rate controlled by interactions, to Quantum Zeno effect, with a decay rate which decreases with bare dissipation as the monitoring rate is increased. Remarkably we show that the long-lived Kondo state is robust to weak dissipation, as further confirmed by the dot spectral function which features a clear Kondo peak at finite dissipation, even in a regime where charge fluctuations and the associated Hubbard bands have been quenched by the monitoring protocol. We derive an effective model for the long-time dynamics which is described, at weak dissipation, by a non-Hermitian Kondo model with complex-valued spin exchange which is known to host exotic low-energy physics and a dissipative phase transition between Kondo and non-Kondo steady-state. Finally, as the dephasing is increased heating due to doublon production takes over and control the spin decay. </p> </div> </dd> <dt> <a name='item26'>[26]</a> <a href ="/abs/2407.01699" title="Abstract" id="2407.01699"> arXiv:2407.01699 </a> (replaced) [<a href="/pdf/2407.01699" title="Download PDF" id="pdf-2407.01699" aria-labelledby="pdf-2407.01699">pdf</a>, <a href="https://arxiv.org/html/2407.01699v2" title="View HTML" id="html-2407.01699" aria-labelledby="html-2407.01699" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2407.01699" title="Other formats" id="oth-2407.01699" aria-labelledby="oth-2407.01699">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Resilience of the quantum critical line in the Schmid transition </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Paris,+N">Nicolas Paris</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Giacomelli,+L">Luca Giacomelli</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Daviet,+R">Romain Daviet</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Ciuti,+C">Cristiano Ciuti</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Dupuis,+N">Nicolas Dupuis</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Mora,+C">Christophe Mora</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 11+5 pages, 7+2 figures Published 14 February, 2025 </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Phys. Rev. B 111, 064509 (2025) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span>; Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Superconductivity (cond-mat.supr-con); Quantum Physics (quant-ph) </div> <p class='mathjax'> Schmid predicted that a single Josephson junction coupled to a resistive environment undergoes a quantum phase transition to an insulating phase when the shunt resistance $R$ exceeds the resistance quantum $h/(4 e^ 2)$. Recent measurements and theoretical studies have sparked a debate on whether the location of this transition depends on the ratio between the Josephson and the charging energies. We employ a combination of multiple innovative analytical and numerical techniques, never before explicitly applied to this problem, to decisively demonstrate that the transition line between superconducting and insulating behavior is indeed independent of this energy ratio. First, we apply field-theory renormalization group methods and find that the $\beta$ function vanishes along the critical line up to the third order in the Josephson energy. We then identify a simple fermionic model that precisely captures the low-energy physics on the critical line, regardless of the energy ratio. This conformally invariant fermionic model is verified by comparing the expected spectrum with exact diagonalization calculations of the resistively shunted Josephson junction, showing excellent agreement even for moderate system sizes. Importantly, this identification provides a rigorous non-perturbative proof that the transition line is maintained at $R=h/(4 e^ 2)$ for all ratios of Josephson to charging energies. The line is further resilient to other ultraviolet cutoffs such as the plasma frequency of the resistive environment. Finally, we implement an adiabatic approach to validate the duality at large Josephson energy. </p> </div> </dd> <dt> <a name='item27'>[27]</a> <a href ="/abs/2407.03415" title="Abstract" id="2407.03415"> arXiv:2407.03415 </a> (replaced) [<a href="/pdf/2407.03415" title="Download PDF" id="pdf-2407.03415" aria-labelledby="pdf-2407.03415">pdf</a>, <a href="https://arxiv.org/html/2407.03415v2" title="View HTML" id="html-2407.03415" aria-labelledby="html-2407.03415" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2407.03415" title="Other formats" id="oth-2407.03415" aria-labelledby="oth-2407.03415">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Theory of quasiparticle interference in Kitaev quantum spin liquids </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Jahin,+A">Ammar Jahin</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Zhang,+H">Hao Zhang</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Hal%C3%A1sz,+G+B">G谩bor B. Hal谩sz</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Lin,+S">Shi-Zeng Lin</a></div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Phys. Rev. Lett. 134, 126501 (2025) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span> </div> <p class='mathjax'> We study quasiparticle interference (QPI) in the Kitaev quantum spin liquid (QSL) for electrons tunneling into the QSL. The local tunneling conductance around a spin vacancy or localized vison reveals unique features associated with fractionalized Majorana fermions, chargons, and visons. In certain parameter regimes, the single-spinon density of states and momentum dispersion can both be directly extracted from the tunneling conductance. Our results suggest that QPI is a promising tool for identifying the Kitaev QSL and its fractionalized excitations. </p> </div> </dd> <dt> <a name='item28'>[28]</a> <a href ="/abs/2410.18747" title="Abstract" id="2410.18747"> arXiv:2410.18747 </a> (replaced) [<a href="/pdf/2410.18747" title="Download PDF" id="pdf-2410.18747" aria-labelledby="pdf-2410.18747">pdf</a>, <a href="https://arxiv.org/html/2410.18747v2" title="View HTML" id="html-2410.18747" aria-labelledby="html-2410.18747" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2410.18747" title="Other formats" id="oth-2410.18747" aria-labelledby="oth-2410.18747">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Monopole excitations in the $U(1)$ Dirac spin liquid on the triangular lattice </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Budaraju,+S">Sasank Budaraju</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Parola,+A">Alberto Parola</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Iqbal,+Y">Yasir Iqbal</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Becca,+F">Federico Becca</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Poilblanc,+D">Didier Poilblanc</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 10 pages, 7 figures, 1 table </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Phys. Rev. B 111, 125150 (2025) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span> </div> <p class='mathjax'> The $U(1)$ Dirac spin liquid might realize an exotic phase of matter whose low-energy properties are described by quantum electrodynamics in $2+1$ dimensions, where gapless modes exists but spinons and gauge fields are strongly coupled. Its existence has been proposed in frustrated Heisenberg models in presence of frustrating super-exchange interactions, by the (Abrikosov) fermionic representation of the spin operators [X.-G. Wen, \href{<a href="https://doi.org/10.1103/PhysRevB.65.165113" rel="external noopener nofollow" class="link-external link-https">this https URL</a>}{Phys. Rev. B {\bf 65}, 165113 (2002)}], supplemented by the Gutzwiller projection. Here, we construct charge-$Q$ monopole excitations in the Heisenberg model on the triangular lattice with nearest- ($J_1$) and next-neighbor ($J_2$) couplings. In the highly frustrated regime, singlet and triplet monopoles with $Q=1$ become gapless in the thermodynamic limit; in addition, the energies for generic $Q$ agree with field-theoretical predictions, obtained for a large number of gapless fermion modes. Finally, we consider localized gauge excitations, in which magnetic $\pi$-fluxes are concentrated in the triangular plaquettes (in analogy with $\mathbb{Z}_2$ visons), showing that these kind of states do not play a relevant role at low energies. All our findings lend support to a stable $U(1)$ Dirac spin liquid in the $J_1-J_2$ Heisenberg model on the triangular lattice. </p> </div> </dd> <dt> <a name='item29'>[29]</a> <a href ="/abs/2412.04322" title="Abstract" id="2412.04322"> arXiv:2412.04322 </a> (replaced) [<a href="/pdf/2412.04322" title="Download PDF" id="pdf-2412.04322" aria-labelledby="pdf-2412.04322">pdf</a>, <a href="https://arxiv.org/html/2412.04322v2" title="View HTML" id="html-2412.04322" aria-labelledby="html-2412.04322" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2412.04322" title="Other formats" id="oth-2412.04322" aria-labelledby="oth-2412.04322">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Strange metal transport from coupling to fluctuating spins </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Fratini,+S">Simone Fratini</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Ralko,+A">Arnaud Ralko</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Ciuchi,+S">Sergio Ciuchi</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 20 pages, 4 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span> </div> <p class='mathjax'> Metals hosting strong electronic interactions, including high-temperature superconductors, behave in ways that do not conform to the normal Fermi liquid theory. To pinpoint the microscopic origin of this "strange metal" behavior, here we reexamine the d.c. and frequency-dependent conductivity of the two-dimensional t-J model taking advantage of recent improvements made on the finite temperature Lanczos method, enabling numerically exact calculations at unprecedentedly low temperatures and high spectral resolution. We find that strange metallicity is pervasive in the temperature-doping phase diagram wherever anti-ferromagnetic correlations are suppressed, being instead driven by paramagnetic spin fluctuations and unrelated to quantum criticality. Our results precisely characterize the Planckian carriers responsible for both the strange metal resistivities and the unconventional optical conductivities seen in experiments, highlighting striking similarities with the universal relaxation of glasses and dielectrics. </p> </div> </dd> <dt> <a name='item30'>[30]</a> <a href ="/abs/2412.14413" title="Abstract" id="2412.14413"> arXiv:2412.14413 </a> (replaced) [<a href="/pdf/2412.14413" title="Download PDF" id="pdf-2412.14413" aria-labelledby="pdf-2412.14413">pdf</a>, <a href="https://arxiv.org/html/2412.14413v2" title="View HTML" id="html-2412.14413" aria-labelledby="html-2412.14413" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2412.14413" title="Other formats" id="oth-2412.14413" aria-labelledby="oth-2412.14413">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Quantum Fisher Information Reveals UV-IR Mixing in the Strange Metal </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Ba%C5%82ut,+D">David Ba艂ut</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Guo,+X">Xuefei Guo</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=de+Vries,+N">Niels de Vries</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Chaudhuri,+D">Dipanjan Chaudhuri</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Bradlyn,+B">Barry Bradlyn</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Abbamonte,+P">Peter Abbamonte</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Phillips,+P+W">Philip W. Phillips</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> For an issue of Physica C dedicated to Jan Zaanen </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span>; High Energy Physics - Theory (hep-th); Quantum Physics (quant-ph) </div> <p class='mathjax'> The density-density response in optimally doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ has recently been shown to exhibit conformal symmetry. Using, the experimentally inferred conformal dynamic susceptibility, we compute the resultant quantum Fisher information (QFI), a witness to multi-partite entanglement. For a Fermi liquid, we find that the QFI grows quadratically as the temperature increases, consistent then with the phase space available for scattering in the standard theory of metals. By contrast, the QFI in a strange metal increases as a power law at as the temperature decreases, but ultimately extrapolates to a constant at $T=0$. The constant is of the form, $\omega_g^{2\Delta}$, where $\Delta$ is the conformal dimension and $\omega_g$ is the UV cutoff which is on the order of the pseudogap. As this constant {depends on both UV and IR properties}, it illustrates that multipartite entanglement in a strange metal exhibits UV-IR mixing, a benchmark feature of doped Mott insulators as exemplified by dynamical spectral weight transfer. We conclude with a discussion of the implication of our results for low-energy reductions of the Hubbard model. </p> </div> </dd> <dt> <a name='item31'>[31]</a> <a href ="/abs/2503.06801" title="Abstract" id="2503.06801"> arXiv:2503.06801 </a> (replaced) [<a href="/pdf/2503.06801" title="Download PDF" id="pdf-2503.06801" aria-labelledby="pdf-2503.06801">pdf</a>, <a href="https://arxiv.org/html/2503.06801v3" title="View HTML" id="html-2503.06801" aria-labelledby="html-2503.06801" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.06801" title="Other formats" id="oth-2503.06801" aria-labelledby="oth-2503.06801">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Angular Dependence of Specific Heat and Magnetization Effects in the Kitaev Model </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Morinari,+T">Takao Morinari</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Takegami,+H">Hibiki Takegami</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 11 pages, 11 figures. This manuscript is a revised and corrected version of a previously withdrawn paper. Errors in the original calculations have been addressed, and the results have been carefully re-examined </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span> </div> <p class='mathjax'> We investigate the effect of a magnetic field on the Kitaev model using the equation of motion approach for the spin Green's function. Our study considers both cases: suppressed magnetization and finite magnetization in the paramagnetic phase of the Kitaev model. When magnetization is suppressed, the specific heat exhibits a $60^\circ$ periodicity in its angular dependence, with maxima and minima aligning with recent experimental observations in $\alpha$-RuCl$_3$. Furthermore, a qualitative difference emerges in the temperature dependence of the maxima and minima: the maxima exhibit behavior characteristic of a gapless feature, while the minima suggest a gapful feature. This behavior can be interpreted as a signature of Majorana fermion gap formation. When magnetization is included, the angular dependence of the specific heat remains similar; however, both the maxima and minima show similar temperature dependence, suggesting that the Majorana fermion gap behavior is smeared out by the presence of magnetization. Our results indicate that the suppression of magnetization is essential for observing features associated with Majorana fermions, suggesting that a nearest-neighbor antiferromagnetic interaction could contribute to this suppression. </p> </div> </dd> <dt> <a name='item32'>[32]</a> <a href ="/abs/2503.18885" title="Abstract" id="2503.18885"> arXiv:2503.18885 </a> (replaced) [<a href="/pdf/2503.18885" title="Download PDF" id="pdf-2503.18885" aria-labelledby="pdf-2503.18885">pdf</a>, <a href="https://arxiv.org/html/2503.18885v2" title="View HTML" id="html-2503.18885" aria-labelledby="html-2503.18885" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.18885" title="Other formats" id="oth-2503.18885" aria-labelledby="oth-2503.18885">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> A brief note on the G$_2$ Affleck-Kennedy-Lieb-Tasaki chain </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Katsura,+H">Hosho Katsura</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Schuricht,+D">Dirk Schuricht</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> In memory of Ian Affleck </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span>; Mathematical Physics (math-ph) </div> <p class='mathjax'> We consider the valence bond solid (VBS) state built of singlet pairs of fundamental representations and projected onto adjoint representations of the exceptional Lie group G$_2$. The two-point correlation function in the VBS state is non-vanishing only for nearest neighbours, but possesses finite string order. We construct a parent Hamiltonian for the VBS state, which constitutes the G$_2$ analog of the famous AKLT chain. </p> </div> </dd> <dt> <a name='item33'>[33]</a> <a href ="/abs/2503.19614" title="Abstract" id="2503.19614"> arXiv:2503.19614 </a> (replaced) [<a href="/pdf/2503.19614" title="Download PDF" id="pdf-2503.19614" aria-labelledby="pdf-2503.19614">pdf</a>, <a href="https://arxiv.org/html/2503.19614v2" title="View HTML" id="html-2503.19614" aria-labelledby="html-2503.19614" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2503.19614" title="Other formats" id="oth-2503.19614" aria-labelledby="oth-2503.19614">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Floquet control of topological phases and Hall effects in Z2 nodal line semimetals </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Liu,+P">Pu Liu</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Cui,+C">Chaoxi Cui</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Li,+L">Lei Li</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Li,+R">Runze Li</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Xu,+D">Dong-Hui Xu</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Yu,+Z">Zhi-Ming Yu</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 9 pages, 5 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Strongly Correlated Electrons (cond-mat.str-el)</span> </div> <p class='mathjax'> Dynamic control of topological properties in materials is central to modern condensed matter physics, and Floquet engineering, utilizing periodic light fields, provides a promising avenue. Here, we use Floquet theory to theoretically study the topological response of a Z2 nodal line semimetal (NLSM) when driven by circularly polarized light (CPL). We demonstrate that the direction of CPL irradiation critically dictates the resulting topological phase transitions. Specifically, when light is incident perpendicular to the nodal line plane, increasing the light amplitude induces two successive topological phase transitions: first, from the Z2 NLSM to a vortex NLSM, a rare and intriguing topological state; and second, a transition from the vortex NLSM to a semimetal with a pair of Weyl points (WPs). In stark contrast, irradiation along other directions directly transforms the Z2 nodal line into a pair of WPs. We further investigate the transport properties of the Floquet Z2 NLSM, focusing on the anomalous and planar Hall effects. The anomalous Hall effect exhibits a direction-dependent amplitude variation, deviating from conventional two-band NLSM behavior. Importantly, we reveal a significant and tunable planar Hall effect, a phenomenon largely unexplored in Floquet topological materials, which is highly sensitive to both light amplitude and direction. Our findings not only present a novel route to realize the vortex NLSM, but also establish an efficient way to control Hall transport phenomena in Z2 NLSMs. </p> </div> </dd> <dt> <a name='item34'>[34]</a> <a href ="/abs/2410.04262" title="Abstract" id="2410.04262"> arXiv:2410.04262 </a> (replaced) [<a href="/pdf/2410.04262" title="Download PDF" id="pdf-2410.04262" aria-labelledby="pdf-2410.04262">pdf</a>, <a href="https://arxiv.org/html/2410.04262v3" title="View HTML" id="html-2410.04262" aria-labelledby="html-2410.04262" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2410.04262" title="Other formats" id="oth-2410.04262" aria-labelledby="oth-2410.04262">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Thermal Bootstrap of Matrix Quantum Mechanics </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Cho,+M">Minjae Cho</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Gabai,+B">Barak Gabai</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Sandor,+J">Joshua Sandor</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Yin,+X">Xi Yin</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 31 pages, 8 figures, v2: references added, v3: a reference added </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Strongly Correlated Electrons (cond-mat.str-el); Optimization and Control (math.OC) </div> <p class='mathjax'> We implement a bootstrap method that combines stationary state conditions, thermal inequalities, and semidefinite relaxations of matrix logarithm in the ungauged one-matrix quantum mechanics, at finite rank N as well as in the large N limit, and determine finite temperature observables that interpolate between available analytic results in the low and high temperature limits respectively. We also obtain bootstrap bounds on thermal phase transition as well as preliminary results in the ungauged two-matrix quantum mechanics. </p> </div> </dd> <dt> <a name='item35'>[35]</a> <a href ="/abs/2410.06655" title="Abstract" id="2410.06655"> arXiv:2410.06655 </a> (replaced) [<a href="/pdf/2410.06655" title="Download PDF" id="pdf-2410.06655" aria-labelledby="pdf-2410.06655">pdf</a>, <a href="https://arxiv.org/html/2410.06655v2" title="View HTML" id="html-2410.06655" aria-labelledby="html-2410.06655" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2410.06655" title="Other formats" id="oth-2410.06655" aria-labelledby="oth-2410.06655">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Ring-exchange physics in a chain of three-level ions </div> <div class='list-authors'><a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Biswas,+S">Sourav Biswas</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Rico,+E">E. Rico</a>, <a href="https://arxiv.org/search/cond-mat?searchtype=author&query=Grass,+T">Tobias Grass</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 13 pages, 9 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Quantum Gases (cond-mat.quant-gas)</span>; Strongly Correlated Electrons (cond-mat.str-el); Quantum Physics (quant-ph) </div> <p class='mathjax'> In the presence of ring exchange interactions, bosons in a ladder-like lattice may form the bosonic analogon of a correlated metal, known as the d-wave Bose liquid (DBL). In this paper, we show that a chain of trapped ions with three internal levels can mimic a ladder-like system constrained to a maximum occupation of one boson per rung. The setup enables tunable ring exchange interactions, transitioning between a polarized regime with all bosons confined to one leg and the DBL regime. The latter state is characterized by a splitting of the peak in the momentum distribution and an oscillating pair correlation function. </p> </div> </dd> </dl> <div class='paging'>Total of 35 entries </div> <div class='morefewer'>Showing up to 2000 entries per page: <a href=/list/cond-mat.str-el/new?skip=0&show=1000 rel="nofollow"> fewer</a> | <span style="color: #454545">more</span> | <span style="color: #454545">all</span> </div> </div> </div> </div> </main> <footer style="clear: both;"> <div class="columns is-desktop" role="navigation" aria-label="Secondary" style="margin: -0.75em -0.75em 0.75em -0.75em"> <!-- Macro-Column 1 --> <div class="column" style="padding: 0;"> <div class="columns"> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- End Macro-Column 1 --> <!-- Macro-Column 2 --> <div class="column" style="padding: 0;"> <div class="columns"> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> <!-- End Macro-Column 2 --> </div> </footer> </div> <script src="/static/base/1.0.1/js/member_acknowledgement.js"></script> </body> </html>