CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 837 results for author: <span class="mathjax">Liu, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Liu%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Liu, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Liu%2C+Z&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Liu, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Liu%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Z&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13747">arXiv:2411.13747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13747">pdf</a>, <a href="https://arxiv.org/ps/2411.13747">ps</a>, <a href="https://arxiv.org/format/2411.13747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Interfacial Water Polarization: A Critical Force for Graphene-based Electrochemical Interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P">Peiyao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+G">Gengping Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+Y">Yuan Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Qu%2C+L">Longbing Qu</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+X">Xiaoyang Du</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J+Z">Jefferson Zhe Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13747v1-abstract-short" style="display: inline;"> Water molecules predominantly act as solvents in electrochemical systems and are often modeled as a passive dielectric medium. In this work, we use molecular dynamics simulations and theoretical analysis to revisit this conventional view. We reveal that the interfacial polarized water overscreens the electrostatic potential between ions and the surface beyond being a passive dielectric medium. Thi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13747v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13747v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13747v1-abstract-full" style="display: none;"> Water molecules predominantly act as solvents in electrochemical systems and are often modeled as a passive dielectric medium. In this work, we use molecular dynamics simulations and theoretical analysis to revisit this conventional view. We reveal that the interfacial polarized water overscreens the electrostatic potential between ions and the surface beyond being a passive dielectric medium. This overscreening enables the interfacial water to dominate the electric potential spatial distribution, inverting the electrode surface potential polarity and dominating the capacitance. A model is then developed to incorporate this critical interfacial water polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13747v1-abstract-full').style.display = 'none'; document.getElementById('2411.13747v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13352">arXiv:2411.13352</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13352">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> New Insights on the High Reconnection Rate and the Diminishment of Ion Outflow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fan%2C+C">Cheng-Yu Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+X">Xu-Zhi Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+S">San Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Q">Quanming Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Pyakurel%2C+P+S">Prayash Sharma Pyakurel</a>, <a href="/search/physics?searchtype=author&amp;query=Zong%2C+Q">Qiugang Zong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhi-Yang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13352v1-abstract-short" style="display: inline;"> The recently discovered electron-only reconnection has drawn great interests due to abnormal features like lack of ion outflows and high reconnection rates. Using particle-in-cell simulations, we investigate their physical mechanisms. The reconnection rate, when normalized by ion parameters ($R_i$), may appear anomalously high, whereas that normalized by electron parameters ($R_e$) remains ~0.1. W&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13352v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13352v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13352v1-abstract-full" style="display: none;"> The recently discovered electron-only reconnection has drawn great interests due to abnormal features like lack of ion outflows and high reconnection rates. Using particle-in-cell simulations, we investigate their physical mechanisms. The reconnection rate, when normalized by ion parameters ($R_i$), may appear anomalously high, whereas that normalized by electron parameters ($R_e$) remains ~0.1. We propose that the essence of high $R_i$ is insufficient field line bending outside the electron diffusion region, indicating an incomplete development of the ion diffusion region. It may result from bursty reconnection in thin current sheets, or small system sizes. The ion outflow diminishes at high $尾_i$ when the gyroradius ($蟻_i$) exceeds the system size. Low-velocity ions still experience notable acceleration from Hall fields. However, a local distribution includes many high-velocity ions that experience random accelerations from different electric fields across $蟻_i$, resulting in near-zero bulk velocities. Our study helps understand reconnection structures and the underlying physics for transitions between different regimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13352v1-abstract-full').style.display = 'none'; document.getElementById('2411.13352v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12815">arXiv:2411.12815</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12815">pdf</a>, <a href="https://arxiv.org/format/2411.12815">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Multi-Mission Observations of Relativistic Electrons and High-Speed Jets Linked to Shock Generated Transients </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Raptis%2C+S">Savvas Raptis</a>, <a href="/search/physics?searchtype=author&amp;query=Lindberg%2C+M">Martin Lindberg</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T+Z">Terry Z. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Turner%2C+D+L">Drew L. Turner</a>, <a href="/search/physics?searchtype=author&amp;query=Lalti%2C+A">Ahmad Lalti</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Y">Yufei Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Kajdi%C4%8D%2C+P">Primo啪 Kajdi膷</a>, <a href="/search/physics?searchtype=author&amp;query=Kouloumvakos%2C+A">Athanasios Kouloumvakos</a>, <a href="/search/physics?searchtype=author&amp;query=Sibeck%2C+D+G">David G. Sibeck</a>, <a href="/search/physics?searchtype=author&amp;query=Vuorinen%2C+L">Laura Vuorinen</a>, <a href="/search/physics?searchtype=author&amp;query=Michael%2C+A">Adam Michael</a>, <a href="/search/physics?searchtype=author&amp;query=Shumko%2C+M">Mykhaylo Shumko</a>, <a href="/search/physics?searchtype=author&amp;query=Osmane%2C+A">Adnane Osmane</a>, <a href="/search/physics?searchtype=author&amp;query=Kr%C3%A4mer%2C+E">Eva Kr盲mer</a>, <a href="/search/physics?searchtype=author&amp;query=Turc%2C+L">Lucile Turc</a>, <a href="/search/physics?searchtype=author&amp;query=Karlsson%2C+T">Tomas Karlsson</a>, <a href="/search/physics?searchtype=author&amp;query=Katsavrias%2C+C">Christos Katsavrias</a>, <a href="/search/physics?searchtype=author&amp;query=Wilson%2C+L+B">Lynn B. Wilson III</a>, <a href="/search/physics?searchtype=author&amp;query=Madanian%2C+H">Hadi Madanian</a>, <a href="/search/physics?searchtype=author&amp;query=Blanco-Cano%2C+X">X贸chitl Blanco-Cano</a>, <a href="/search/physics?searchtype=author&amp;query=Cohen%2C+I+J">Ian J. Cohen</a>, <a href="/search/physics?searchtype=author&amp;query=Escoubet%2C+C+P">C. Philippe Escoubet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12815v1-abstract-short" style="display: inline;"> Shock-generated transients, such as hot flow anomalies (HFAs), upstream of planetary bow shocks, play a critical role in electron acceleration. Using multi-mission data from NASA&#39;s Magnetospheric Multiscale (MMS) and ESA&#39;s Cluster missions, we demonstrate the transmission of HFAs through Earth&#39;s quasi-parallel bow shock, associated with acceleration of electrons up to relativistic energies. Energe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12815v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12815v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12815v1-abstract-full" style="display: none;"> Shock-generated transients, such as hot flow anomalies (HFAs), upstream of planetary bow shocks, play a critical role in electron acceleration. Using multi-mission data from NASA&#39;s Magnetospheric Multiscale (MMS) and ESA&#39;s Cluster missions, we demonstrate the transmission of HFAs through Earth&#39;s quasi-parallel bow shock, associated with acceleration of electrons up to relativistic energies. Energetic electrons, initially accelerated upstream, are shown to remain broadly confined within the transmitted transient structures downstream, where betatron acceleration further boosts their energy due to elevated compression levels. Additionally, high-speed jets form at the compressive edges of HFAs, exhibiting a significant increase in dynamic pressure and potentially contributing to driving further localized compression. Our findings emphasize the efficiency of quasi-parallel shocks in driving particle acceleration far beyond the immediate shock transition region, expanding the acceleration region to a larger spatial domain. Finally, this study underscores the importance of multi-scale observational approach in understanding the convoluted processes behind collisionless shock physics and their broader implications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12815v1-abstract-full').style.display = 'none'; document.getElementById('2411.12815v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11905">arXiv:2411.11905</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11905">pdf</a>, <a href="https://arxiv.org/format/2411.11905">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Revisit of discrete energy bands in Galilean moon&#39;s footprint tails: remote signals of particle absorption </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+F">Fan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Xuzhi-Zhou"> Xuzhi-Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Y">Yi-Xin Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+Z">Ze-Fan Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+Y">Yi-Xin Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhi-Yang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Blanc%2C+M">Michel Blanc</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jiu-Tong Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+D">Dong-Wen He</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Ya-Ze Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+C">Chao Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Zong%2C+Q">Qiu-Gang Zong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11905v1-abstract-short" style="display: inline;"> Recent observations from the Juno spacecraft during its transit over flux tubes of the Galilean moons have identified sharp enhancements of particle fluxes at discrete energies. These banded structures have been suspected to originate from a bounce resonance between particles and standing Alfven waves generated by the moon-magnetospheric interaction. Here, we show that predictions from the above h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11905v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11905v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11905v1-abstract-full" style="display: none;"> Recent observations from the Juno spacecraft during its transit over flux tubes of the Galilean moons have identified sharp enhancements of particle fluxes at discrete energies. These banded structures have been suspected to originate from a bounce resonance between particles and standing Alfven waves generated by the moon-magnetospheric interaction. Here, we show that predictions from the above hypothesis are inconsistent with the observations, and propose an alternative interpretation that the banded structures are remote signals of particle absorption at the moons. In this scenario, whether a particle would encounter the moon before reaching Juno depends on the number of bounce cycles it experiences within a fixed section of drift motion determined by moon-spacecraft longitudinal separation. Therefore, the absorption bands are expected to appear at discrete, equally-spaced velocities consistent with the observations. This finding improves our understanding of moon-plasma interactions and provides a potential way to evaluate the Jovian magnetospheric models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11905v1-abstract-full').style.display = 'none'; document.getElementById('2411.11905v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09345">arXiv:2411.09345</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09345">pdf</a>, <a href="https://arxiv.org/format/2411.09345">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DarkSHINE Baseline Design Report: Physics Prospects and Detector Technologies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jing Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Ji-Yuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jun-Feng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xiang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+C">Chang-Bo Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+J">Jun Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Y">Yi-Han Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Khaw%2C+K+S">Kim Siang Khaw</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jia-Lin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Liang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Y">Yu-ming Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dan-Ning Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+K">Kang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+K">Kun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qi-Bin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Z">Ze-Jia Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+M">Meng Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+S">Si-Yuan Song</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+T">Tong Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Jian-Nan Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+W">Wei-Shi Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Dong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiao-Long Wang</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09345v1-abstract-short" style="display: inline;"> DarkSHINE is a newly proposed fixed-target experiment initiative to search for the invisible decay of Dark Photon via missing energy/momentum signatures, based on the high repetition rate electron beam to be deployed/delivered by the Shanghai High repetition rate XFEL and Extreme light facility (SHINE). This report elaborates the baseline design of DarkSHINE experiment by introducing the physics g&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09345v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09345v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09345v1-abstract-full" style="display: none;"> DarkSHINE is a newly proposed fixed-target experiment initiative to search for the invisible decay of Dark Photon via missing energy/momentum signatures, based on the high repetition rate electron beam to be deployed/delivered by the Shanghai High repetition rate XFEL and Extreme light facility (SHINE). This report elaborates the baseline design of DarkSHINE experiment by introducing the physics goals, experimental setups, details of each sub-detector system technical designs, signal and backgground modelings, expected search sensitivities and future prospects, which mark an important step towards the further prototyping and technical demonstrations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09345v1-abstract-full').style.display = 'none'; document.getElementById('2411.09345v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07145">arXiv:2411.07145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07145">pdf</a>, <a href="https://arxiv.org/format/2411.07145">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fspas.2024.1436916">10.3389/fspas.2024.1436916 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transient Upstream Mesoscale Structures: Drivers of Solar-Quiet Space Weather </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kajdi%C4%8D%2C+P">Primo啪 Kajdi膷</a>, <a href="/search/physics?searchtype=author&amp;query=Blanco-Cano%2C+X">X贸chitl Blanco-Cano</a>, <a href="/search/physics?searchtype=author&amp;query=Turc%2C+L">Lucile Turc</a>, <a href="/search/physics?searchtype=author&amp;query=Archer%2C+M">Martin Archer</a>, <a href="/search/physics?searchtype=author&amp;query=Raptis%2C+S">Savvas Raptis</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T+Z">Terry Z. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Pfau-Kempf%2C+Y">Yann Pfau-Kempf</a>, <a href="/search/physics?searchtype=author&amp;query=LaMoury%2C+A+T">Adrian T. LaMoury</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+Y">Yufei Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Escoubet%2C+P+C">Philippe C. Escoubet</a>, <a href="/search/physics?searchtype=author&amp;query=Omidi%2C+N">Nojan Omidi</a>, <a href="/search/physics?searchtype=author&amp;query=Sibeck%2C+D+G">David G. Sibeck</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+B">Boyi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hui Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Y">Yu Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07145v1-abstract-short" style="display: inline;"> In recent years, it has become increasingly clear that space weather disturbances can be triggered by transient upstream mesoscale structures (TUMS), independently of the occurrence of large-scale solar wind (SW) structures, such as interplanetary coronal mass ejections and stream interaction regions. Different types of magnetospheric pulsations, transient perturbations of the geomagnetic field an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07145v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07145v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07145v1-abstract-full" style="display: none;"> In recent years, it has become increasingly clear that space weather disturbances can be triggered by transient upstream mesoscale structures (TUMS), independently of the occurrence of large-scale solar wind (SW) structures, such as interplanetary coronal mass ejections and stream interaction regions. Different types of magnetospheric pulsations, transient perturbations of the geomagnetic field and auroral structures are often observed during times when SW monitors indicate quiet conditions, and have been found to be associated to TUMS. In this mini-review we describe the space weather phenomena that have been associated with four of the largest-scale and the most energetic TUMS, namely hot flow anomalies, foreshock bubbles, travelling foreshocks and foreshock compressional boundaries. The space weather phenomena associated with TUMS tend to be more localized and less intense compared to geomagnetic storms. However, the quiet time space weather may occur more often since, especially during solar minima, quiet SW periods prevail over the perturbed times. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07145v1-abstract-full').style.display = 'none'; document.getElementById('2411.07145v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1 figure, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Astron. Space Sci., (2024), Sec. Space Physics, Volume 11 - 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02966">arXiv:2411.02966</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02966">pdf</a>, <a href="https://arxiv.org/format/2411.02966">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5281/zenodo.13970100">10.5281/zenodo.13970100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MuCol Milestone Report No. 5: Preliminary Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Accettura%2C+C">Carlotta Accettura</a>, <a href="/search/physics?searchtype=author&amp;query=Adrian%2C+S">Simon Adrian</a>, <a href="/search/physics?searchtype=author&amp;query=Agarwal%2C+R">Rohit Agarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Ahdida%2C+C">Claudia Ahdida</a>, <a href="/search/physics?searchtype=author&amp;query=Aim%C3%A9%2C+C">Chiara Aim茅</a>, <a href="/search/physics?searchtype=author&amp;query=Aksoy%2C+A">Avni Aksoy</a>, <a href="/search/physics?searchtype=author&amp;query=Alberghi%2C+G+L">Gian Luigi Alberghi</a>, <a href="/search/physics?searchtype=author&amp;query=Alden%2C+S">Siobhan Alden</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+L">Luca Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Amapane%2C+N">Nicola Amapane</a>, <a href="/search/physics?searchtype=author&amp;query=Amorim%2C+D">David Amorim</a>, <a href="/search/physics?searchtype=author&amp;query=Andreetto%2C+P">Paolo Andreetto</a>, <a href="/search/physics?searchtype=author&amp;query=Anulli%2C+F">Fabio Anulli</a>, <a href="/search/physics?searchtype=author&amp;query=Appleby%2C+R">Rob Appleby</a>, <a href="/search/physics?searchtype=author&amp;query=Apresyan%2C+A">Artur Apresyan</a>, <a href="/search/physics?searchtype=author&amp;query=Asadi%2C+P">Pouya Asadi</a>, <a href="/search/physics?searchtype=author&amp;query=Mahmoud%2C+M+A">Mohammed Attia Mahmoud</a>, <a href="/search/physics?searchtype=author&amp;query=Auchmann%2C+B">Bernhard Auchmann</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+J">John Back</a>, <a href="/search/physics?searchtype=author&amp;query=Badea%2C+A">Anthony Badea</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+K+J">Kyu Jung Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Bahng%2C+E+J">E. J. Bahng</a>, <a href="/search/physics?searchtype=author&amp;query=Balconi%2C+L">Lorenzo Balconi</a>, <a href="/search/physics?searchtype=author&amp;query=Balli%2C+F">Fabrice Balli</a>, <a href="/search/physics?searchtype=author&amp;query=Bandiera%2C+L">Laura Bandiera</a> , et al. (369 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02966v1-abstract-short" style="display: inline;"> This document is comprised of a collection of updated preliminary parameters for the key parts of the muon collider. The updated preliminary parameters follow on from the October 2023 Tentative Parameters Report. Particular attention has been given to regions of the facility that are believed to hold greater technical uncertainty in their design and that have a strong impact on the cost and power&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02966v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02966v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02966v1-abstract-full" style="display: none;"> This document is comprised of a collection of updated preliminary parameters for the key parts of the muon collider. The updated preliminary parameters follow on from the October 2023 Tentative Parameters Report. Particular attention has been given to regions of the facility that are believed to hold greater technical uncertainty in their design and that have a strong impact on the cost and power consumption of the facility. The data is collected from a collaborative spreadsheet and transferred to overleaf. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02966v1-abstract-full').style.display = 'none'; document.getElementById('2411.02966v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01754">arXiv:2411.01754</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01754">pdf</a>, <a href="https://arxiv.org/format/2411.01754">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental demonstration of dark current mitigation by an over-inserted plug in a normal conducting VHF gun </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X+-">X. -H. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Shu%2C+G">G. Shu</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+H">H. Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">X. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Z. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Z">Z. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+H">H. Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Xing%2C+C">C. Xing</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Q">Q. Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+H">H. Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01754v1-abstract-short" style="display: inline;"> The room temperature continuous wave (CW) very-high-frequency (VHF) gun is one of the candidates for the electron gun of the high-repetition-rate free-electron lasers (FELs). The VHF gun operates with a cathode gradient of ~ 20 MV/m and an accelerating voltage of ~ 750 kV. The gun dark current emission leads to beam loss along the FEL machine, therefore is a critical parameter for the performance&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01754v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01754v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01754v1-abstract-full" style="display: none;"> The room temperature continuous wave (CW) very-high-frequency (VHF) gun is one of the candidates for the electron gun of the high-repetition-rate free-electron lasers (FELs). The VHF gun operates with a cathode gradient of ~ 20 MV/m and an accelerating voltage of ~ 750 kV. The gun dark current emission leads to beam loss along the FEL machine, therefore is a critical parameter for the performance of the CW gun. In this paper, we presents a systematic study of the dark current reduction of the VHF gun, including cathode region optimizations, dark current tracking simulations and measurements. Over-inserted cathode plugs were tested in two VHF guns of different acceleration gap sizes, and both demonstrated significant dark current reduction ratios of more than two orders of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01754v1-abstract-full').style.display = 'none'; document.getElementById('2411.01754v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23151">arXiv:2410.23151</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23151">pdf</a>, <a href="https://arxiv.org/format/2410.23151">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Shedding a Light on the Kinetics of the Carboxysulfitic Scenario </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=White%2C+S+B">S. B. White</a>, <a href="/search/physics?searchtype=author&amp;query=Rimmer%2C+P+B">P. B. Rimmer</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Z. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23151v1-abstract-short" style="display: inline;"> One way in which we can attempt to relate chemical pathways to geochemical environments is by studying the kinetics of a given sequence of reactions and identifying the conditions under which this chemistry is the most productive. Many prebiotic reactions rely on a source of fixed carbon, therefore chemical pathways that suggest prebiotically plausible ways of fixing carbon are of significant inte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23151v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23151v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23151v1-abstract-full" style="display: none;"> One way in which we can attempt to relate chemical pathways to geochemical environments is by studying the kinetics of a given sequence of reactions and identifying the conditions under which this chemistry is the most productive. Many prebiotic reactions rely on a source of fixed carbon, therefore chemical pathways that suggest prebiotically plausible ways of fixing carbon are of significant interest. One such pathway is the carboxysulfitic reaction network which uses solvated electrons, produced as a result of electron photodetachment from sulfite, to reduce carbon. In this work we explore carboxysulfitic chemistry at three different pH values: 6, 9, and 12. We utilise a new light source, that matches the broadband spectral shape of the young Sun, to irradiate a mixture of bicarbonate and sulfite. We determine the rate equation for the production of formate from these compounds and find the order to be 0.71 $\pm$ 0.12 with respect to bicarbonate and -0.60 $\pm$ 0.10 with respect to sulfite. Following this, we determine rate constants for the production of formate considering two different mechanisms. We find this chemistry to be feasible at all three of the pH values tested, with the magnitude of the rate constants being highly dependent on the assumed mechanism. We suggest that these results may have implications for Mars Sample Return owing to Jezero Crater having had lakes similar to those in which we propose carboxysulfitic chemistry to have been the most productive. Due to Mars&#39; relatively unaltered surface, we propose that Mars Sample Return missions could look for preserved tracers of this chemistry, shedding light on Mars&#39; past conditions and its potential for having hosted life. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23151v1-abstract-full').style.display = 'none'; document.getElementById('2410.23151v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages (+ 59 pages of SI), 5 figures (+ 42 figures in the SI). This is the Accepted Manuscript version of a work that was subsequently published in ACS Earth and Space Chemistry, published by the American Chemical Society after peer review and technical editing by the publisher. The final edited and published version can be accessed at DOI: 10.1021/acsearthspacechem.4c00083</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21327">arXiv:2410.21327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.21327">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cplett.2024.141668">10.1016/j.cplett.2024.141668 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of Nanopores with the Scanning Ion Conductance Microscopy: A Simulation Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+Y">Yinghua Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+L">Long Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhe Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hongwen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+B">Bowen Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Tu%2C+X">Xinman Tu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21327v1-abstract-short" style="display: inline;"> During the dielectric breakdown process of thin solid-state nanopores, the application of high voltages may cause the formation of multi-nanopores on one chip, which number and sizes are important for their applications. Here, simulations were conducted to mimic the investigation of in situ nanopore detection with scanning ion conductance microscopy (SICM). Results show that SICM can provide accur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21327v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21327v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21327v1-abstract-full" style="display: none;"> During the dielectric breakdown process of thin solid-state nanopores, the application of high voltages may cause the formation of multi-nanopores on one chip, which number and sizes are important for their applications. Here, simulations were conducted to mimic the investigation of in situ nanopore detection with scanning ion conductance microscopy (SICM). Results show that SICM can provide accurate nanopore location and relative pore size. Detection resolution is influenced by the dimensions of the applied probe and separation between the probe and membranes, which can be enhanced under large voltages or a concentration gradient. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21327v1-abstract-full').style.display = 'none'; document.getElementById('2410.21327v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figuers</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chemical Physics Letters, 2024, 856: 141668 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17934">arXiv:2410.17934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17934">pdf</a>, <a href="https://arxiv.org/format/2410.17934">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Retrieving snow depth distribution by downscaling ERA5 Reanalysis with ICESat-2 laser altimetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhihao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Filhol%2C+S">Simon Filhol</a>, <a href="/search/physics?searchtype=author&amp;query=Treichler%2C+D">D茅sir茅e Treichler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17934v1-abstract-short" style="display: inline;"> Estimating the variability of seasonal snow cover, in particular snow depth in remote areas, poses significant challenges due to limited spatial and temporal data availability. This study uses snow depth measurements from the ICESat-2 satellite laser altimeter, which are sparse in both space and time, and incorporates them with climate reanalysis data into a downscaling-calibration scheme to produ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17934v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17934v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17934v1-abstract-full" style="display: none;"> Estimating the variability of seasonal snow cover, in particular snow depth in remote areas, poses significant challenges due to limited spatial and temporal data availability. This study uses snow depth measurements from the ICESat-2 satellite laser altimeter, which are sparse in both space and time, and incorporates them with climate reanalysis data into a downscaling-calibration scheme to produce monthly gridded snow depth maps at microscale (10 m). Snow surface elevation measurements from ICESat-2 along profiles are compared to a digital elevation model to determine snow depth at each point. To efficiently turn sparse measurements into snow depth maps, a regression model is fitted to establish a relationship between the retrieved snow depth and the corresponding ERA5 Land snow depth. This relationship, referred to as subgrid variability, is then applied to downscale the monthly ERA5 Land snow depth data. The method can provide timeseries of monthly snow depth maps for the entire ERA5 time range (since 1950). The validation of downscaled snow depth data was performed at an intermediate scale (100 m x 500 m) using datasets from airborne laser scanning (ALS) in the Hardangervidda region of southern Norway. Results show that snow depth prediction achieved R2 values ranging from 0.74 to 0.88 (post-calibration). The method relies on globally available data and is applicable to other snow regions above the treeline. Though requiring area-specific calibration, our approach has the potential to provide snow depth maps in areas where no such data exist and can be used to extrapolate existing snow surveys in time and over larger areas. With this, it can offer valuable input data for hydrological, ecological or permafrost modeling tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17934v1-abstract-full').style.display = 'none'; document.getElementById('2410.17934v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17660">arXiv:2410.17660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17660">pdf</a>, <a href="https://arxiv.org/format/2410.17660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> The design of high-brightness ERL-FEL injector based on VHF electron gun </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xiuji Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zipeng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Si Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+D">Duan Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+X">Xuan Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+H">Houjun Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Dong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+H">Haixiao Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17660v1-abstract-short" style="display: inline;"> In the past decade, the fourth-generation light source based on the combination of Energy Recovery Linac (ERL) and Free-Electron Laser (FEL) using superconducting linear accelerators has garnered significant attention. It holds immense potential, particularly in generating high-power Extreme Ultraviolet (EUV) light sources. This article primarily focuses on the physical design of an injector for E&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17660v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17660v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17660v1-abstract-full" style="display: none;"> In the past decade, the fourth-generation light source based on the combination of Energy Recovery Linac (ERL) and Free-Electron Laser (FEL) using superconducting linear accelerators has garnered significant attention. It holds immense potential, particularly in generating high-power Extreme Ultraviolet (EUV) light sources. This article primarily focuses on the physical design of an injector for ERL-FEL, based on a Very High Frequency (VHF) electron gun with a charge of 100 pC. The beam energy is accelerated to 10 MeV using 3-cell superconducting cavity. The optimization of beam parameters is conducted through employment of BMad and ASTRA simulations, incorporating the concept of Merger optimization. The beam emittance is less than 0.6 mm mrad, and the peak current at the injector exit exceeds 18 A. We present a new method to evaluate the Longitudinal Space Charge (LSC) effects in merger sections, which can be readily applied in design work. Furthermore, we introduce a novel type of merger. The performance of this new merger is comparable to the previously known optimum, the zigzag merger, offering a potential alternative solution for injectors in ERLs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17660v1-abstract-full').style.display = 'none'; document.getElementById('2410.17660v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16420">arXiv:2410.16420</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16420">pdf</a>, <a href="https://arxiv.org/format/2410.16420">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> BI-EqNO: Generalized Approximate Bayesian Inference with an Equivariant Neural Operator Framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+X">Xu-Hui Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhuo-Ran Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+H">Heng Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16420v1-abstract-short" style="display: inline;"> Bayesian inference offers a robust framework for updating prior beliefs based on new data using Bayes&#39; theorem, but exact inference is often computationally infeasible, necessitating approximate methods. Though widely used, these methods struggle to estimate marginal likelihoods accurately, particularly due to the rigid functional structures of deterministic models like Gaussian processes and the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16420v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16420v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16420v1-abstract-full" style="display: none;"> Bayesian inference offers a robust framework for updating prior beliefs based on new data using Bayes&#39; theorem, but exact inference is often computationally infeasible, necessitating approximate methods. Though widely used, these methods struggle to estimate marginal likelihoods accurately, particularly due to the rigid functional structures of deterministic models like Gaussian processes and the limitations of small sample sizes in stochastic models like the ensemble Kalman method. In this work, we introduce BI-EqNO, an equivariant neural operator framework for generalized approximate Bayesian inference, designed to enhance both deterministic and stochastic approaches. BI-EqNO transforms priors into posteriors conditioned on observation data through data-driven training. The framework is flexible, supporting diverse prior and posterior representations with arbitrary discretizations and varying numbers of observations. Crucially, BI-EqNO&#39;s architecture ensures (1) permutation equivariance between prior and posterior representations, and (2) permutation invariance with respect to observational data. We demonstrate BI-EqNO&#39;s utility through two examples: (1) as a generalized Gaussian process (gGP) for regression, and (2) as an ensemble neural filter (EnNF) for sequential data assimilation. Results show that gGP outperforms traditional Gaussian processes by offering a more flexible representation of covariance functions. Additionally, EnNF not only outperforms the ensemble Kalman filter in small-ensemble settings but also has the potential to function as a &#34;super&#34; ensemble filter, capable of representing and integrating multiple ensemble filters for enhanced assimilation performance. This study highlights BI-EqNO&#39;s versatility and effectiveness, improving Bayesian inference through data-driven training while reducing computational costs across various applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16420v1-abstract-full').style.display = 'none'; document.getElementById('2410.16420v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15989">arXiv:2410.15989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15989">pdf</a>, <a href="https://arxiv.org/format/2410.15989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad8579">10.3847/1538-4357/ad8579 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interaction of the Prominence Plasma within the Magnetic Cloud of an ICME with the Earth&#39;s Bow Shock </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Madanian%2C+H">Hadi Madanian</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Li-Jen Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ng%2C+J">Jonathan Ng</a>, <a href="/search/physics?searchtype=author&amp;query=Starkey%2C+M+J">Michael J. Starkey</a>, <a href="/search/physics?searchtype=author&amp;query=Fuselier%2C+S+A">Stephen A. Fuselier</a>, <a href="/search/physics?searchtype=author&amp;query=Bessho%2C+N">Naoki Bessho</a>, <a href="/search/physics?searchtype=author&amp;query=Gershman%2C+D+J">Daniel J. Gershman</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T+Z">Terry Z. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15989v2-abstract-short" style="display: inline;"> The magnetic cloud within an interplanetary coronal mass ejection (ICME) is characterized by high magnetic field intensities. In this study, we investigate the interaction of a magnetic cloud carrying a density structure with the Earth&#39;s bow shock during the ICME event on 24 April 2023. Elevated abundances of cold protons and heavier ions, namely alpha particles and singly charged helium ions, ass&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15989v2-abstract-full').style.display = 'inline'; document.getElementById('2410.15989v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15989v2-abstract-full" style="display: none;"> The magnetic cloud within an interplanetary coronal mass ejection (ICME) is characterized by high magnetic field intensities. In this study, we investigate the interaction of a magnetic cloud carrying a density structure with the Earth&#39;s bow shock during the ICME event on 24 April 2023. Elevated abundances of cold protons and heavier ions, namely alpha particles and singly charged helium ions, associated with the prominence plasma are observed within this structure. The plasma downstream of the bow shock exhibits an irregular compression pattern which could be due to the presence of heavy ions. Heavy ions carry a significant fraction of the upstream flow energy; however, due to their different charge per mass ratio and rigidity, they are less scattered by the electromagnetic and electrostatic waves at the shock. We find that downstream of the shock, while the thermal ion energy is only a small fraction of the background magnetic energy density, nevertheless increased ion fluxes reduce the characteristic wave speeds in the that region. As such, we observe a transition state of an unstable bow shock layer across which the plasma flow is super Alfv茅nic in both upstream and downstream regions. Our findings help with understanding the intense space weather impacts of such events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15989v2-abstract-full').style.display = 'none'; document.getElementById('2410.15989v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15779">arXiv:2410.15779</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15779">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Piezoelectric Manipulation and Engineering for Layertronics in Two-Dimensional Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tian%2C+J">Jianke Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jia Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Hengbo Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Ze Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Linyang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+G">Guodong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Junjie Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15779v1-abstract-short" style="display: inline;"> The electronic transport characteristics of two-dimensional (2D) systems have widespread application prospects in the fabrication of multifunctional nanodevices. However, the current research for basic transport phenomena, such as anomalous valley Hall effect (AVHE) and piezoelectric response, is limited to discrete discussion. Here, we theoretically propose a valley-piezoelectricity coupling stra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15779v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15779v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15779v1-abstract-full" style="display: none;"> The electronic transport characteristics of two-dimensional (2D) systems have widespread application prospects in the fabrication of multifunctional nanodevices. However, the current research for basic transport phenomena, such as anomalous valley Hall effect (AVHE) and piezoelectric response, is limited to discrete discussion. Here, we theoretically propose a valley-piezoelectricity coupling strategy beyond the existing paradigm to realize AVHE and layer Hall effect (LHE) in ferrovalley (FV) systems, and its essential principle can be extended to general valleytronic materials. Through first-principles calculations, we demonstrate that the large polarized electric field of 2.8*106 (1.67*107) V/m can be induced by 0.1% uniaxial strain in FV 2H-LaHF (1T-LaHF) monolayers. In addition, the microscopic mechanism of interlayer antiferromagnetic (AFM) state of 2H-LaHF bilayer is uncovered by the spin Hamiltonian and super-superexchange (SSE) interaction. Our findings pave the way for new explorations of valley Hall-related effect involving piezoelectricity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15779v1-abstract-full').style.display = 'none'; document.getElementById('2410.15779v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15769">arXiv:2410.15769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15769">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spin-layer coupling in altermagnets multilayer: a design principle for spintronics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tian%2C+J">Jianke Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jia Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Hengbo Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Ze Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Linyang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+G">Guodong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Junjie Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15769v1-abstract-short" style="display: inline;"> The discovery of collinear symmetric-compensated altermagnets (AM) with intrinsic spin splitting provides a route towards energy-efficient and ultrafast device applications. Here, using first-principles calculations and symmetry analysis, we propose a series of AM Cr2SX (X=O, S, Se) monolayer and explore the spin splitting in Cr2SX multilayer. A general design principle for realizing the spin-laye&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15769v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15769v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15769v1-abstract-full" style="display: none;"> The discovery of collinear symmetric-compensated altermagnets (AM) with intrinsic spin splitting provides a route towards energy-efficient and ultrafast device applications. Here, using first-principles calculations and symmetry analysis, we propose a series of AM Cr2SX (X=O, S, Se) monolayer and explore the spin splitting in Cr2SX multilayer. A general design principle for realizing the spin-layer coupling in odd/even-layer is mapped out based on the comprehensive analysis of spin group symmetry. The spin splitting behavior related with the MzUt, Mz and ML symmetries in AM multilayer can be significantly modulated by magnetic orders, crystal symmetry and external perpendicular gate field (Ez). Due to the spin-compensated bands of sublayers linked by overall Mz and interlayers ML symmetries, the Cr2S2 odd-layer exhibits the unique coexistence of spin splitting and spin degeneracy at high symmetric paths and X/Y valley, respectively. Furthermore, owing to the higher priority of overall ML symmetry compared to interlayers ML symmetry in AM even-layer, the spin-layer coupling of AM multilayer shows strong odd/even-layer dependence. Our work not only offer a new direction for manipulating spin splitting, but also greatly enrich the research on AM monolayer and multilayer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15769v1-abstract-full').style.display = 'none'; document.getElementById('2410.15769v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14952">arXiv:2410.14952</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14952">pdf</a>, <a href="https://arxiv.org/format/2410.14952">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> A Fast AI Surrogate for Coastal Ocean Circulation Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Z">Zelin Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+J">Jie Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yupu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ondina%2C+J+M+G">Jose Maria Gonzalez Ondina</a>, <a href="/search/physics?searchtype=author&amp;query=Olabarrieta%2C+M">Maitane Olabarrieta</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+T">Tingsong Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+W">Wenchong He</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zibo Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Shigang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Smith%2C+K">Kaleb Smith</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Z">Zhe Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14952v1-abstract-short" style="display: inline;"> Nearly 900 million people live in low-lying coastal zones around the world and bear the brunt of impacts from more frequent and severe hurricanes and storm surges. Oceanographers simulate ocean current circulation along the coasts to develop early warning systems that save lives and prevent loss and damage to property from coastal hazards. Traditionally, such simulations are conducted using coasta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14952v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14952v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14952v1-abstract-full" style="display: none;"> Nearly 900 million people live in low-lying coastal zones around the world and bear the brunt of impacts from more frequent and severe hurricanes and storm surges. Oceanographers simulate ocean current circulation along the coasts to develop early warning systems that save lives and prevent loss and damage to property from coastal hazards. Traditionally, such simulations are conducted using coastal ocean circulation models such as the Regional Ocean Modeling System (ROMS), which usually runs on an HPC cluster with multiple CPU cores. However, the process is time-consuming and energy expensive. While coarse-grained ROMS simulations offer faster alternatives, they sacrifice detail and accuracy, particularly in complex coastal environments. Recent advances in deep learning and GPU architecture have enabled the development of faster AI (neural network) surrogates. This paper introduces an AI surrogate based on a 4D Swin Transformer to simulate coastal tidal wave propagation in an estuary for both hindcast and forecast (up to 12 days). Our approach not only accelerates simulations but also incorporates a physics-based constraint to detect and correct inaccurate results, ensuring reliability while minimizing manual intervention. We develop a fully GPU-accelerated workflow, optimizing the model training and inference pipeline on NVIDIA DGX-2 A100 GPUs. Our experiments demonstrate that our AI surrogate reduces the time cost of 12-day forecasting of traditional ROMS simulations from 9,908 seconds (on 512 CPU cores) to 22 seconds (on one A100 GPU), achieving over 450$\times$ speedup while maintaining high-quality simulation results. This work contributes to oceanographic modeling by offering a fast, accurate, and physically consistent alternative to traditional simulation models, particularly for real-time forecasting in rapid disaster response. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14952v1-abstract-full').style.display = 'none'; document.getElementById('2410.14952v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14428">arXiv:2410.14428</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14428">pdf</a>, <a href="https://arxiv.org/format/2410.14428">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Beam dynamics induced by the quantum metric of exceptional rings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhaoyang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Septembre%2C+I">Isma毛l Septembre</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhenzhi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Kokhanchik%2C+P">Pavel Kokhanchik</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+S">Shun Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+F">Fu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Changbiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hongxing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+M">Maochang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yanpeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+M">Min Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Malpuech%2C+G">Guillaume Malpuech</a>, <a href="/search/physics?searchtype=author&amp;query=Solnyshkov%2C+D">Dmitry Solnyshkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14428v1-abstract-short" style="display: inline;"> Topological physics has broadened its scope from the study of topological insulating phases to include nodal phases containing band structure singularities. The geometry of the corresponding quantum states is described by the quantum metric which provides a theoretical framework for explaining phenomena that conventional approaches fail to address. The field has become even broader by encompassing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14428v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14428v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14428v1-abstract-full" style="display: none;"> Topological physics has broadened its scope from the study of topological insulating phases to include nodal phases containing band structure singularities. The geometry of the corresponding quantum states is described by the quantum metric which provides a theoretical framework for explaining phenomena that conventional approaches fail to address. The field has become even broader by encompassing non-Hermitian singularities: in addition to Dirac, Weyl nodes, or nodal lines, it is now common to encounter exceptional points, exceptional or Weyl rings, and even Weyl spheres. They give access to fascinating effects that cannot be reached within the Hermitian picture. However, the quantum geometry of non-Hermitian singularities is not a straightforward extension of the Hermitian one, remaining far less understood. Here, we study experimentally and theoretically the dynamics of wave packets at exceptional rings stemming from Dirac points in a photonic honeycomb lattice. First, we demonstrate a transition between conical diffraction and non-Hermitian broadening in real space. Next, we predict and demonstrate a new non-Hermitian effect in the reciprocal space, induced by the non-orthogonality of the eigenstates. We call it transverse non-Hermitian drift, and its description requires biorthogonal quantum metric. The non-Hermitian drift can be used for applications in beam steering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14428v1-abstract-full').style.display = 'none'; document.getElementById('2410.14428v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13074">arXiv:2410.13074</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13074">pdf</a>, <a href="https://arxiv.org/format/2410.13074">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Differential Shape Optimization with Image Representation for Photonic Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhaocheng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Bonar%2C+J">Jim Bonar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13074v1-abstract-short" style="display: inline;"> We propose a general framework for differentiating shapes represented in binary images with respect to their parameters. This framework functions as an automatic differentiation tool for shape parameters, generating both binary density maps for optical simulations and computing gradients when the simulation provides a gradient of the density map. Our algorithm enables robust gradient computation t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13074v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13074v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13074v1-abstract-full" style="display: none;"> We propose a general framework for differentiating shapes represented in binary images with respect to their parameters. This framework functions as an automatic differentiation tool for shape parameters, generating both binary density maps for optical simulations and computing gradients when the simulation provides a gradient of the density map. Our algorithm enables robust gradient computation that is insensitive to the image&#39;s pixel resolution and is compatible with all density-based simulation methods. We demonstrate the accuracy, effectiveness, and generalizability of our differential shape algorithm using photonic designs with different shape parametrizations across several differentiable optical solvers. We also demonstrate a substantial reduction in optimization time using our gradient-based shape optimization framework compared to traditional black-box optimization methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13074v1-abstract-full').style.display = 'none'; document.getElementById('2410.13074v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10891">arXiv:2410.10891</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10891">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> The Scope 4 Emission: Neutralized Carbon Emissions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+G">Guangqian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10891v1-abstract-short" style="display: inline;"> Assessing carbon negative and carbon neutrality is critical for mitigating and adapting global climate change. Here we proposed a new framework to account for carbon-negative and carbon-neutral actions by introducing the definition of Carbon Negative (C0),Carbon Neutrality Stock (C1), Carbon Supply (C2) and carbon-neutral emissions or Scope 4 emissions, which refers to the avoided emission due to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10891v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10891v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10891v1-abstract-full" style="display: none;"> Assessing carbon negative and carbon neutrality is critical for mitigating and adapting global climate change. Here we proposed a new framework to account for carbon-negative and carbon-neutral actions by introducing the definition of Carbon Negative (C0),Carbon Neutrality Stock (C1), Carbon Supply (C2) and carbon-neutral emissions or Scope 4 emissions, which refers to the avoided emission due to use of non-fossil energy or C1 products. For the first time, we calculated the global neutralized carbon emissions or Scope 4 emission by renewable electricity generation, and the results indicating the significant contributions by China, with total neutralized carbon emissions (2.15 Mt C/day ) much higher than the U.S. (0.85 Mt C/day)and EU27 &amp; UK (1.25 Mt C/day) together. We show that China contributed to more than 36% of global neutralized CO2 emissions, and such contributions are still increasing. This new framework reflects remarkable contributions for China to the global climate mitigation through the development of carbon neutrality energy system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10891v1-abstract-full').style.display = 'none'; document.getElementById('2410.10891v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09752">arXiv:2410.09752</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09752">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Beam Pointing of Relativistic High-order Harmonics Genrated on a Nonuniform Pre-plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+C">Chaoneng Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yiming Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Kalouguine%2C+A">Andre Kalouguine</a>, <a href="/search/physics?searchtype=author&amp;query=Kaur%2C+J">Jaismenn Kaur</a>, <a href="/search/physics?searchtype=author&amp;query=Cavagna%2C+A">Antoine Cavagna</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zuoye Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lopez-Martens%2C+R">Rodrigo Lopez-Martens</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+C">Cangtao Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Zeitoun%2C+P">Philippe Zeitoun</a>, <a href="/search/physics?searchtype=author&amp;query=Haessler%2C+S">Stefan Haessler</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Lu Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09752v2-abstract-short" style="display: inline;"> The use of tunable pre-pulse is a common technique to enhance the high-order harmonic generation from surface plasma. The shape and dynamic of the electron density, the degree of ionization and its rate, and the plasma heating are influenced by the pre-pulse properties. Non-uniform pre-pulse could cause a spatially varying density map to the pre-plasma region, which serves as the spectrally up-con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09752v2-abstract-full').style.display = 'inline'; document.getElementById('2410.09752v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09752v2-abstract-full" style="display: none;"> The use of tunable pre-pulse is a common technique to enhance the high-order harmonic generation from surface plasma. The shape and dynamic of the electron density, the degree of ionization and its rate, and the plasma heating are influenced by the pre-pulse properties. Non-uniform pre-pulse could cause a spatially varying density map to the pre-plasma region, which serves as the spectrally up-conversion and reflection surface. The corresponding geometrical feature and plasma nature under laser field will affect the harmonic emission properties. In this study, the variation in harmonic beam pointing due to the electron density shape was investigated. Particle-in-cell simulations demonstrated that both plasma hydrodynamics and geometrical optical effect induce the deviation of harmonic beam from specular reflection. This research contributes to the understanding of the surface plasma dynamics during high harmonic generation process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09752v2-abstract-full').style.display = 'none'; document.getElementById('2410.09752v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05976">arXiv:2410.05976</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05976">pdf</a>, <a href="https://arxiv.org/format/2410.05976">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Observation of Rydberg excitons in monolayer MoS2 at room temperature by Imbert-Fedorov shift spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiaofeng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Tu%2C+J">Jiaxing Tu</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+Z">Zhanyunxin Du</a>, <a href="/search/physics?searchtype=author&amp;query=Zha%2C+M">Mingjie Zha</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhibo Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05976v1-abstract-short" style="display: inline;"> Rydberg excitons in transition metal dichalcogenides (TMDs) have emerged as a promising platform for investigating the properties of open quantum systems, thanks to their large binding energies(hundreds of meV). However, the study of Rydberg excitons in TMDs has been hindered by sample quality limitations, strong background signals from ground excitons, and broadening at room temperature. In this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05976v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05976v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05976v1-abstract-full" style="display: none;"> Rydberg excitons in transition metal dichalcogenides (TMDs) have emerged as a promising platform for investigating the properties of open quantum systems, thanks to their large binding energies(hundreds of meV). However, the study of Rydberg excitons in TMDs has been hindered by sample quality limitations, strong background signals from ground excitons, and broadening at room temperature. In this work, we report the first observation of multiple Rydberg exciton states in monolayer MoS2 at room temperature using Imbert-Fedorov (IF) shift spectroscopy. By numerically solving the Schrodinger equation, we extracted the quasiparticle band gaps for A and B excitons, confirming the temperature-induced redshift of the band gap, in excellent agreement with previous results. Our findings establish IF shift spectroscopy as a powerful tool for characterizing Rydberg excitons in TMDs, paving the way for potential applications in quantum manipulation and control. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05976v1-abstract-full').style.display = 'none'; document.getElementById('2410.05976v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04358">arXiv:2410.04358</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04358">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Enabling Clinical Use of Linear Energy Transfer in Proton Therapy for Head and Neck Cancer -- A Review of Implications for Treatment Planning and Adverse Events Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jingyuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yunze Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+H">Hongying Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chenbin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lian Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Holmes%2C+J+M">Jason M. Holmes</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhengliang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+H">Haibo Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tianming Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Simone%2C+C+B">Charles B. Simone II</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+N+Y">Nancy Y. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Frank%2C+S+E">Steven E. Frank</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+D+J">Daniel J. Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Patel%2C+S+H">Samir H. Patel</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04358v1-abstract-short" style="display: inline;"> Proton therapy offers significant advantages due to its unique physical and biological properties, particularly the Bragg peak, enabling precise dose delivery to tumors while sparing healthy tissues. However, the clinical implementation is challenged by the oversimplification of the relative biological effectiveness (RBE) as a fixed value of 1.1, which does not account for the complex interplay be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04358v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04358v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04358v1-abstract-full" style="display: none;"> Proton therapy offers significant advantages due to its unique physical and biological properties, particularly the Bragg peak, enabling precise dose delivery to tumors while sparing healthy tissues. However, the clinical implementation is challenged by the oversimplification of the relative biological effectiveness (RBE) as a fixed value of 1.1, which does not account for the complex interplay between dose, linear energy transfer (LET), and biological endpoints. Lack of heterogeneity control or the understanding of the complex interplay may result in unexpected adverse events and suboptimal patient outcomes. On the other hand, expanding our knowledge of variable tumor RBE and LET optimization may provide a better management strategy for radioresistant tumors. This review examines recent advancements in LET calculation methods, including analytical models and Monte Carlo simulations. The integration of LET into plan evaluation is assessed to enhance plan quality control. LET-guided robust optimization demonstrates promise in minimizing high-LET exposure to organs at risk, thereby reducing the risk of adverse events. Dosimetric seed spot analysis is discussed to show its importance in revealing the true LET-related effect upon the adverse event initialization by finding the lesion origins and eliminating the confounding factors from the biological processes. Dose-LET volume histograms (DLVH) are discussed as effective tools for correlating physical dose and LET with clinical outcomes, enabling the derivation of clinically relevant dose-LET volume constraints without reliance on uncertain RBE models. Based on DLVH, the dose-LET volume constraints (DLVC)-guided robust optimization is introduced to upgrade conventional dose-volume constraints-based robust optimization, which optimizes the joint distribution of dose and LET simultaneously. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04358v1-abstract-full').style.display = 'none'; document.getElementById('2410.04358v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03803">arXiv:2410.03803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.03803">pdf</a>, <a href="https://arxiv.org/format/2410.03803">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Text-guided Diffusion Model for 3D Molecule Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yanchen Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+J">Junfeng Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Sihang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhiyuan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Jiancan Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+A">An Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+W">Wenjie Du</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03803v1-abstract-short" style="display: inline;"> The de novo generation of molecules with targeted properties is crucial in biology, chemistry, and drug discovery. Current generative models are limited to using single property values as conditions, struggling with complex customizations described in detailed human language. To address this, we propose the text guidance instead, and introduce TextSMOG, a new Text-guided Small Molecule Generation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03803v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03803v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03803v1-abstract-full" style="display: none;"> The de novo generation of molecules with targeted properties is crucial in biology, chemistry, and drug discovery. Current generative models are limited to using single property values as conditions, struggling with complex customizations described in detailed human language. To address this, we propose the text guidance instead, and introduce TextSMOG, a new Text-guided Small Molecule Generation Approach via 3D Diffusion Model which integrates language and diffusion models for text-guided small molecule generation. This method uses textual conditions to guide molecule generation, enhancing both stability and diversity. Experimental results show TextSMOG&#39;s proficiency in capturing and utilizing information from textual descriptions, making it a powerful tool for generating 3D molecular structures in response to complex textual customizations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03803v1-abstract-full').style.display = 'none'; document.getElementById('2410.03803v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00832">arXiv:2410.00832</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.00832">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> On Energization and Loss of the Ionized Heavy Atom and Molecule in Mars&#39; Atmosphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J+-">J. -T. Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Zong%2C+Q+-">Q. -G. Zong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z+-">Z. -Y. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+X+-">X. -Z. Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">S. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ip%2C+W+-">W. -H. Ip</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+C">C. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J+-">J. -H. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+Y+-">Y. -X. Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Rankin%2C+R">R. Rankin</a>, <a href="/search/physics?searchtype=author&amp;query=Degeling%2C+A">A. Degeling</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+S+-">S. -Y. Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+H">H. Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y+-">Y. -F. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00832v1-abstract-short" style="display: inline;"> The absence of global magnetic fields is often cited to explain why Mars lacks a dense atmosphere. This line of thought is based on a prevailing theory that magnetic fields can shield the atmosphere from solar wind erosion. However, we present observations here to demonstrate a counterintuitive understanding: unlike the global intrinsic magnetic field, the remnant crustal magnetic fields can enhan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00832v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00832v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00832v1-abstract-full" style="display: none;"> The absence of global magnetic fields is often cited to explain why Mars lacks a dense atmosphere. This line of thought is based on a prevailing theory that magnetic fields can shield the atmosphere from solar wind erosion. However, we present observations here to demonstrate a counterintuitive understanding: unlike the global intrinsic magnetic field, the remnant crustal magnetic fields can enhance atmosphere loss when considering loss induced by plasma wave-particle interactions. An analysis of MAVEN data, combined with observation-based simulations, reveals that the bulk of O+ ions would be in resonance with ultra-low frequency (ULF) waves when the latter were present. This interaction then results in significant particle energization, thus enhancing ion escaping. A more detailed analysis attributes the occurrence of the resonance to the presence of Mars&#39; crustal magnetic fields, which cause the majority of nearby ions to gyrate at a frequency matching the resonant condition (蠅-k_{\parallel} v_{\parallel}=惟_i) of the waves. The ULF waves, fundamental drivers of this entire process, are excited and propelled by the upstream solar wind. Consequently, our findings offer a plausible explanation for the mysterious changes in Mars&#39; climate, suggesting that the ancient solar wind imparted substantially more energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00832v1-abstract-full').style.display = 'none'; document.getElementById('2410.00832v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages &amp; 5 figures &amp; Supplementary Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.20076">arXiv:2409.20076</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.20076">pdf</a>, <a href="https://arxiv.org/format/2409.20076">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Three-dimensional Simulation of Surface Charging in Meteorite Craters on Rotating Asteroids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Song%2C+Z">Zhiying Song</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhigui Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Quan%2C+R">Ronghui Quan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.20076v1-abstract-short" style="display: inline;"> Meteorite craters on the asteroid surface obstruct the horizontal flow of solar wind, forming a plasma wake that modulates the particle fluxes and the electrostatic environment far downstream. In this study, surface charging properties of asteroids with nontrivial terrain are simulated based on neural network and the finite element method. Key factors such as the location, size and depth-to-width&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20076v1-abstract-full').style.display = 'inline'; document.getElementById('2409.20076v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.20076v1-abstract-full" style="display: none;"> Meteorite craters on the asteroid surface obstruct the horizontal flow of solar wind, forming a plasma wake that modulates the particle fluxes and the electrostatic environment far downstream. In this study, surface charging properties of asteroids with nontrivial terrain are simulated based on neural network and the finite element method. Key factors such as the location, size and depth-to-width ratio of craters are all considered. Under normal conditions, as the latitude of the crater increases, the potential variation at its floor during a rotation gradually becomes smoother, finally stabilizing around -3V with minor fluctuations as the crater approaches the poles. For craters with a depth-to-width ratio greater than 0.5, because of the diverging motions of electrons and the less deflected trajectories of ions, completely different charging results are observed under parallel and perpendicular solar wind incidence, the potential around the crater floor decreases and increases with the rising depth-to-width ratio, respectively. While the surface potential appears indifferent to changes in crater size, only during solar storms, the floor of large-scale craters, such as those with a diameter of 800m, perform a 9.13V decrease in potential compared to small craters of 50m. Both studies of localized plasma flow field and the surface charging phenomenon of asteroids have substantial influence on the future safe landing and exploration missions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20076v1-abstract-full').style.display = 'none'; document.getElementById('2409.20076v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17772">arXiv:2409.17772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17772">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> An Experimental Configuration to Study High-Enthalpy Radiating Flows Under Nonequilibrium De-excitation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhuo Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+S">Sangdi Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+T">Tiantian Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+J">Jiaao Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+C">Chih-yung Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Q">Qiu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17772v1-abstract-short" style="display: inline;"> This paper presents an experimental configuration to study high-enthalpy radiating flows under nonequilibrium de-excitation. A general design method is introduced, combiningtheoretical analysis and numerical simulations to tailor the flow conditions for various research objectives. The implementation involves considerations of the shock tube condition, the arrangement configuration, and the effect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17772v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17772v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17772v1-abstract-full" style="display: none;"> This paper presents an experimental configuration to study high-enthalpy radiating flows under nonequilibrium de-excitation. A general design method is introduced, combiningtheoretical analysis and numerical simulations to tailor the flow conditions for various research objectives. The implementation involves considerations of the shock tube condition, the arrangement configuration, and the effective measurement zone. The interplay between shock tube condition and aerofoil geometry generates diverse de-excitation patterns. The shock tube test time, transition onset location, and radiance intensity determine the effective measurement zone. An example utilizing N2 as the test gas demonstrates the method, achieving one-dimensional flow with thermal nonequilibrium and chemical freezing along the centerline, validating the method&#39;s effectiveness. An effective measurement zone of 200 mm is obtained under this condition, and the primary constraint under high-enthalpy conditions is the limited shock tube test time due to the high shock velocity and low fill pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17772v1-abstract-full').style.display = 'none'; document.getElementById('2409.17772v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15034">arXiv:2409.15034</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.15034">pdf</a>, <a href="https://arxiv.org/format/2409.15034">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Tracing Rayleigh-Taylor instability from measured periodic modulation in laser driven proton beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Z. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+M+K">M. K. Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+P+L">P. L. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+X+J">X. J. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Qi%2C+R">R. Qi</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Y. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J+W">J. W. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Leng%2C+Y+X">Y. X. Leng</a>, <a href="/search/physics?searchtype=author&amp;query=Bin%2C+J+H">J. H. Bin</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+R+X">R. X. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15034v1-abstract-short" style="display: inline;"> Rayleigh-Taylor (RT) instability occurs in a variety of scenario as a consequence of fluids of different densities pushing against the density gradient. For example, it is expected to occur in the ion acceleration of solid density targets driven by high intensity lasers and is crucial for the acceleration process. Yet, it is essential to understand the dynamics of the RT instability, a typical way&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15034v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15034v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15034v1-abstract-full" style="display: none;"> Rayleigh-Taylor (RT) instability occurs in a variety of scenario as a consequence of fluids of different densities pushing against the density gradient. For example, it is expected to occur in the ion acceleration of solid density targets driven by high intensity lasers and is crucial for the acceleration process. Yet, it is essential to understand the dynamics of the RT instability, a typical way to measure this phenomenon requires sophisticated diagnostics such as streak X ray radiography. Here, we report on experimental observation on periodic modulation in the energy spectrum of laser accelerated proton beams. Interestingly, theoretical model and two-dimensional particle-in-cell simulations, in good agreement with the experimental finding, indicated that such modulation is associated with periodic modulated electron density induced by transverse Rayleigh-Taylor-like instability. Furthermore, the correlation between the RT instability and the ion acceleration provides an interpretation to trace the development of the RT instability from the modulated proton spectrum. Our results thus suggest a possible tool to diagnose the evolution of the RT instability, and may have implications for further understanding for the accelerating mechanisms as well as optimization strategies for laser driven ion acceleration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15034v1-abstract-full').style.display = 'none'; document.getElementById('2409.15034v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14328">arXiv:2409.14328</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14328">pdf</a>, <a href="https://arxiv.org/format/2409.14328">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental observation of ballistic to diffusive transition in AlN thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hoque%2C+M+S+B">Md Shafkat Bin Hoque</a>, <a href="/search/physics?searchtype=author&amp;query=Liao%2C+M+E">Michael E. Liao</a>, <a href="/search/physics?searchtype=author&amp;query=Zare%2C+S">Saman Zare</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zeyu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Koh%2C+Y+R">Yee Rui Koh</a>, <a href="/search/physics?searchtype=author&amp;query=Huynh%2C+K">Kenny Huynh</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jingjing Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Graham%2C+S">Samuel Graham</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+T">Tengfei Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+H">Habib Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Doolittle%2C+W+A">W. Alan Doolittle</a>, <a href="/search/physics?searchtype=author&amp;query=Goorsky%2C+M+S">Mark S. Goorsky</a>, <a href="/search/physics?searchtype=author&amp;query=Hopkins%2C+P+E">Patrick E. Hopkins</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14328v1-abstract-short" style="display: inline;"> Bulk AlN possesses high thermal conductivity due to long phonon mean-free-paths, high group velocity, and long lifetimes. However, the thermal transport scenario becomes very different in a thin AlN film due to phonon-defect and phonon-boundary scattering. Herein, we report experimental observation of ballistic to diffusive transition in a series of AlN thin films (1.6 - 2440 nm) grown on sapphire&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14328v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14328v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14328v1-abstract-full" style="display: none;"> Bulk AlN possesses high thermal conductivity due to long phonon mean-free-paths, high group velocity, and long lifetimes. However, the thermal transport scenario becomes very different in a thin AlN film due to phonon-defect and phonon-boundary scattering. Herein, we report experimental observation of ballistic to diffusive transition in a series of AlN thin films (1.6 - 2440 nm) grown on sapphire substrates. The ballistic transport is characterized by constant thermal resistance as a function of film thickness due to phonon scattering by defects and boundaries. In this transport regime, phonons possess very small group velocities and lifetimes. The lifetime of the optical phonons increases by more than an order of magnitude in the diffusive regime, however, remains nearly constant afterwards. Our study is important for understanding the details of nano and microscale thermal transport in a highly conductive material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14328v1-abstract-full').style.display = 'none'; document.getElementById('2409.14328v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13989">arXiv:2409.13989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13989">pdf</a>, <a href="https://arxiv.org/format/2409.13989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yuqing Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rongyang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+X">Xuesong He</a>, <a href="/search/physics?searchtype=author&amp;query=Zhi%2C+X">Xuyang Zhi</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feiyang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Deguang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+H">Huadong Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jian Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zimu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shijin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+G">Guoping Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+G">Guiquan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lian%2C+D">Defu Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+E">Enhong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13989v1-abstract-short" style="display: inline;"> There is a growing interest in the role that LLMs play in chemistry which lead to an increased focus on the development of LLMs benchmarks tailored to chemical domains to assess the performance of LLMs across a spectrum of chemical tasks varying in type and complexity. However, existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13989v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13989v1-abstract-full" style="display: none;"> There is a growing interest in the role that LLMs play in chemistry which lead to an increased focus on the development of LLMs benchmarks tailored to chemical domains to assess the performance of LLMs across a spectrum of chemical tasks varying in type and complexity. However, existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals. To this end, we propose \textbf{\textit{ChemEval}}, which provides a comprehensive assessment of the capabilities of LLMs across a wide range of chemical domain tasks. Specifically, ChemEval identified 4 crucial progressive levels in chemistry, assessing 12 dimensions of LLMs across 42 distinct chemical tasks which are informed by open-source data and the data meticulously crafted by chemical experts, ensuring that the tasks have practical value and can effectively evaluate the capabilities of LLMs. In the experiment, we evaluate 12 mainstream LLMs on ChemEval under zero-shot and few-shot learning contexts, which included carefully selected demonstration examples and carefully designed prompts. The results show that while general LLMs like GPT-4 and Claude-3.5 excel in literature understanding and instruction following, they fall short in tasks demanding advanced chemical knowledge. Conversely, specialized LLMs exhibit enhanced chemical competencies, albeit with reduced literary comprehension. This suggests that LLMs have significant potential for enhancement when tackling sophisticated tasks in the field of chemistry. We believe our work will facilitate the exploration of their potential to drive progress in chemistry. Our benchmark and analysis will be available at {\color{blue} \url{https://github.com/USTC-StarTeam/ChemEval}}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13989v1-abstract-full').style.display = 'none'; document.getElementById('2409.13989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09301">arXiv:2409.09301</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09301">pdf</a>, <a href="https://arxiv.org/format/2409.09301">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Cryogenic microwave performance of silicon nitride and amorphous silicon deposited using low-temperature ICPCVD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sun%2C+J">Jiamin Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Shu%2C+S">Shibo Shu</a>, <a href="/search/physics?searchtype=author&amp;query=Chai%2C+Y">Ye Chai</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+L">Lin Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lingmei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yongping Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhouhui Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhengwei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yu Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+D">Daikang Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+W">Weijie Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yiwen Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Congzhan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09301v1-abstract-short" style="display: inline;"> Fabrication of dielectrics at low temperature is required for temperature-sensitive detectors. For superconducting detectors, such as transition edge sensors and kinetic inductance detectors, AlMn is widely studied due to its variable superconducting transition temperature at different baking temperatures. Experimentally only the highest baking temperature determines AlMn transition temperature, s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09301v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09301v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09301v1-abstract-full" style="display: none;"> Fabrication of dielectrics at low temperature is required for temperature-sensitive detectors. For superconducting detectors, such as transition edge sensors and kinetic inductance detectors, AlMn is widely studied due to its variable superconducting transition temperature at different baking temperatures. Experimentally only the highest baking temperature determines AlMn transition temperature, so we need to control the wafer temperature during the whole process. In general, the highest process temperature happens during dielectric fabrication. Here, we present the cryogenic microwave performance of Si$_{3}$N$_{4}$, SiN$_{x}$ and $伪$-Si using ICPCVD at low temperature of 75 $^{\circ}$C. The dielectric constant, internal quality factor and TLS properties are studied using Al parallel plate resonators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09301v1-abstract-full').style.display = 'none'; document.getElementById('2409.09301v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06996">arXiv:2409.06996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06996">pdf</a>, <a href="https://arxiv.org/format/2409.06996">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Diverse Transient Chiral Dynamics in Evolutionary distinct Photosynthetic Reaction Centers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yonglei Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zihui Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+F">Fulu Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+P">Panpan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+H">Hongxing He</a>, <a href="/search/physics?searchtype=author&amp;query=Jha%2C+A">Ajay Jha</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+H">Hong-Guang Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06996v1-abstract-short" style="display: inline;"> The evolution of photosynthetic reaction centers (RCs) from anoxygenic bacteria to oxygenic cyanobacteria and plants reflects their structural and functional adaptation to environmental conditions. Chirality plays a significant role in influencing the arrangement and function of key molecules in these RCs. This study investigates chirality-related energy transfer in two distinct RCs: Thermochromat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06996v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06996v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06996v1-abstract-full" style="display: none;"> The evolution of photosynthetic reaction centers (RCs) from anoxygenic bacteria to oxygenic cyanobacteria and plants reflects their structural and functional adaptation to environmental conditions. Chirality plays a significant role in influencing the arrangement and function of key molecules in these RCs. This study investigates chirality-related energy transfer in two distinct RCs: Thermochromatium tepidum (BRC) and Thermosynechococcus vulcanus (PSII RC) using two-dimensional electronic spectroscopy (2DES). Circularly polarized laser pulses reveal transient chiral dynamics, with 2DCD spectroscopy highlighting chiral contributions. BRC displays more complex chiral behavior, while PSII RC shows faster coherence decay, possibly as an adaptation to oxidative stress. Comparing the chiral dynamics of BRC and PSII RC provides insights into photosynthetic protein evolution and function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06996v1-abstract-full').style.display = 'none'; document.getElementById('2409.06996v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05419">arXiv:2409.05419</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.05419">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Super-bunching light with giant high-order correlations and extreme multi-photon events </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Qin%2C+C">Chengbing Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yuanyuan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+Y">Yu Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jiamin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiangdong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y">Yunrui Song</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xuedong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+S">Shuangping Han</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zihua Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Y">Yanqiang Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+G">Guofeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+R">Ruiyun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Jianyong Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Zhichun Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xinhui Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+L">Liantuan Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+S">Suotang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05419v3-abstract-short" style="display: inline;"> Non-classical light sources emitting bundles of N-photons with strong correlation represent versatile resources of interdisciplinary importance with applications ranging from fundamental tests of quantum mechanics to quantum information processing. Yet, high-order correlations, gN(0),quantifying photon correlation, are still limited to hundreds. Here, we report the generation of a super-bunching l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05419v3-abstract-full').style.display = 'inline'; document.getElementById('2409.05419v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05419v3-abstract-full" style="display: none;"> Non-classical light sources emitting bundles of N-photons with strong correlation represent versatile resources of interdisciplinary importance with applications ranging from fundamental tests of quantum mechanics to quantum information processing. Yet, high-order correlations, gN(0),quantifying photon correlation, are still limited to hundreds. Here, we report the generation of a super-bunching light source in photonic crystal fiber with g2(0) reaching 5.86*104 and g5(0) up to 2.72*108, through measuring its photon number probability distributions. under giant g2(0) values, the super-bunching light source presents upturned-tail photon distributions and ubiquitous extreme multi-photon events, where 31 photons from a single light pulse at a mean of 1.99*10-4 photons per pulse have been determined. The probability of this extreme event has been enhanced by 10139 folds compared to a coherent laser with Poissonian distribution. By varying the power of the pumping laser, both photon number distributions and corresponding high-order correlations of this light source can be substantially tailored from Poissonian to super-bunching distributions. These phenomena are attributed to the synchronized nonlinear interactions in photonic crystal fibers pumping by bright squeezed light, and the theoretical simulations agree well with the experimental results. Our research showcases the ability to achieve non-classical light sources with giant high-order correlations and extreme multi-photon events, paving the way for high-order correlation imaging, extreme nonlinear optical effects, quantum information processing, and exploring light-matter interactions with multi-photon physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05419v3-abstract-full').style.display = 'none'; document.getElementById('2409.05419v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02240">arXiv:2409.02240</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.02240">pdf</a>, <a href="https://arxiv.org/format/2409.02240">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Computational Methods to Investigate Intrinsically Disordered Proteins and their Complexes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z+H">Zi Hao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tsanai%2C+M">Maria Tsanai</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+O">Oufan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Forman-Kay%2C+J">Julie Forman-Kay</a>, <a href="/search/physics?searchtype=author&amp;query=Head-Gordon%2C+T">Teresa Head-Gordon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02240v1-abstract-short" style="display: inline;"> In 1999 Wright and Dyson highlighted the fact that large sections of the proteome of all organisms are comprised of protein sequences that lack globular folded structures under physiological conditions. Since then the biophysics community has made significant strides in unraveling the intricate structural and dynamic characteristics of intrinsically disordered proteins (IDPs) and intrinsically dis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02240v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02240v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02240v1-abstract-full" style="display: none;"> In 1999 Wright and Dyson highlighted the fact that large sections of the proteome of all organisms are comprised of protein sequences that lack globular folded structures under physiological conditions. Since then the biophysics community has made significant strides in unraveling the intricate structural and dynamic characteristics of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs). Unlike crystallographic beamlines and their role in streamlining acquisition of structures for folded proteins, an integrated experimental and computational approach aimed at IDPs/IDRs has emerged. In this Perspective we aim to provide a robust overview of current computational tools for IDPs and IDRs, and most recently their complexes and phase separated states, including statistical models, physics-based approaches, and machine learning methods that permit structural ensemble generation and validation against many solution experimental data types. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02240v1-abstract-full').style.display = 'none'; document.getElementById('2409.02240v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00963">arXiv:2409.00963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.00963">pdf</a>, <a href="https://arxiv.org/format/2409.00963">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42254-024-00745-w">10.1038/s42254-024-00745-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological thermal transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhoufei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+P">Peng Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Lei%2C+M">Min Lei</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chengmeng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Marchesoni%2C+F">Fabio Marchesoni</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+J">Jian-Hua Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">Jiping Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00963v1-abstract-short" style="display: inline;"> Thermal transport is a fundamental mechanism of energy transfer process quite distinct from wave propagation phenomena. It can be manipulated well beyond the possibilities offered by natural materials with a new generation of artificial metamaterials: thermal metamaterials. Topological physics, a focal point in contemporary condensed matter physics, is closely intertwined with thermal metamaterial&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00963v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00963v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00963v1-abstract-full" style="display: none;"> Thermal transport is a fundamental mechanism of energy transfer process quite distinct from wave propagation phenomena. It can be manipulated well beyond the possibilities offered by natural materials with a new generation of artificial metamaterials: thermal metamaterials. Topological physics, a focal point in contemporary condensed matter physics, is closely intertwined with thermal metamaterials in recent years. Inspired by topological photonics and topological acoustics in wave metamaterials, a new research field emerged recently, which we dub `topological thermotics&#39;, which encompasses three primary branches: topological thermal conduction, convection, and radiation. For topological thermal conduction, we discuss recent advances in both 1D and higher-dimensional thermal topological phases. For topological thermal convection, we discuss the implementation of thermal exceptional points with their unique properties and non-Hermitian thermal topological states. Finally, we review the most recent demonstration of topological effects in the near-field and far-field radiation. Anticipating future developments, we conclude by discussing potential directions of topological thermotics, including the expansion into other diffusion processes such as particle dynamics and plasma physics, and the integration with machine learning techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00963v1-abstract-full').style.display = 'none'; document.getElementById('2409.00963v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This perpective summarizes the topological physics in thermal metamaterials and proposes a new research field, &#34;topological thermotics&#34;</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Rev. Phys. 6, 554-565 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16943">arXiv:2408.16943</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.16943">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Molecular interaction volume model of mixing enthalpy for molten salt system: An integrated calorimetry-model case study of LaCl$_3$-(LiCl-KCl) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Goncharov%2C+V+G">Vitaliy G. Goncharov</a>, <a href="/search/physics?searchtype=author&amp;query=Smith%2C+W">William Smith</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jiahong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Eakin%2C+J+A">Jeffrey A. Eakin</a>, <a href="/search/physics?searchtype=author&amp;query=Reinhart%2C+E+D">Erik D. Reinhart</a>, <a href="/search/physics?searchtype=author&amp;query=Boncella%2C+J">James Boncella</a>, <a href="/search/physics?searchtype=author&amp;query=Gibson%2C+L+D">Luke D. Gibson</a>, <a href="/search/physics?searchtype=author&amp;query=Bryantsev%2C+V+S">Vyacheslav S. Bryantsev</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+R">Rushi Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Shang%2C+S">Shun-Li Shang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zi-Kui Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+H">Hongwu Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A">Aurora Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xiaofeng Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16943v1-abstract-short" style="display: inline;"> Calorimetric determination of enthalpies of mixing ($螖$H$_{\rm mix}$) of multicomponent molten salts often employs empirical models that lack parameters with clear physical interpretation (e.g., coordination numbers, molar volumes, and pair potentials). Although such physics informed models are not always needed, a thermodynamic understanding of the relationships between excess energies of mixing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16943v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16943v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16943v1-abstract-full" style="display: none;"> Calorimetric determination of enthalpies of mixing ($螖$H$_{\rm mix}$) of multicomponent molten salts often employs empirical models that lack parameters with clear physical interpretation (e.g., coordination numbers, molar volumes, and pair potentials). Although such physics informed models are not always needed, a thermodynamic understanding of the relationships between excess energies of mixing and local to intermediate solvation structures is particularly important for pyrochemical separation, as is the case for lanthanides (Ln), which are common neutron poisons and critical industrial elements found in spent nuclear fuels. Here we implement the molecular interaction volume model (MIVM) to synthesize information from experimentally measured $螖$H$_{\rm mix}$ (using high temperature melt drop calorimetry) and the distribution of solvation structures from ab initio molecular dynamics (AIMD) simulations. This was demonstrated by a case study of molten salt system consisted of LaCl$_3$ mixing with a eutectic LiCl-KCl (58mol% to 42mol%) at 873 K and 1133 K. The parameters modelled from MIVM were used to extrapolate excess Gibbs energy ($螖$G$_{\rm mix}$), and compositional dependence of La$^{3+}$ activity in the LaCl$_3$-(LiCl-KCl) system. In contrast, by AIMD or polarizable ion model (PIM) simulations, a significant deviation regarding the predicted $螖$H$_{\rm mix}$ was seen if computed directly from the molecular dynamic trajectories. The integrated experimental and simulation data within the MIVM formalism are generalizable to a wide variety of molten salts and demonstrate a significant improvement over currently employed methods to study molten salts for nuclear and separations sciences. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16943v1-abstract-full').style.display = 'none'; document.getElementById('2408.16943v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15512">arXiv:2408.15512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15512">pdf</a>, <a href="https://arxiv.org/format/2408.15512">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Towards Fully Autonomous Research Powered by LLMs: Case Study on Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhihan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chai%2C+Y">Yubo Chai</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jianfeng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15512v2-abstract-short" style="display: inline;"> The advent of Large Language Models (LLMs) has created new opportunities for the automation of scientific research, spanning both experimental processes and computational simulations. This study explores the feasibility of constructing an autonomous simulation agent (ASA) powered by LLM, through sophisticated API integration, to automate the entire research process, from experimental design, remot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15512v2-abstract-full').style.display = 'inline'; document.getElementById('2408.15512v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15512v2-abstract-full" style="display: none;"> The advent of Large Language Models (LLMs) has created new opportunities for the automation of scientific research, spanning both experimental processes and computational simulations. This study explores the feasibility of constructing an autonomous simulation agent (ASA) powered by LLM, through sophisticated API integration, to automate the entire research process, from experimental design, remote upload and simulation execution, data analysis, to report compilation. Using a simulation problem of polymer chain conformations as a case study, we assessed the performance of ASAs powered by different LLMs including GPT-4-Turbo. Our findings revealed that ASA-GPT-4o achieved near-flawless execution on designated research missions, underscoring the potential of LLMs to manage complete scientific investigations autonomously. The outlined automation can be iteratively performed up to twenty cycles without human intervention, illustrating the potential of LLMs for large-scale autonomous research endeavors. Additionally, we discussed the intrinsic traits of ASAs in managing extensive tasks, focusing on self-validation mechanisms and the balance between local attention and global oversight. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15512v2-abstract-full').style.display = 'none'; document.getElementById('2408.15512v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">For additional code and data, please visit our GitHub repository: https://github.com/zokaraa/autonomous_simulation_agent</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14685">arXiv:2408.14685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14685">pdf</a>, <a href="https://arxiv.org/format/2408.14685">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Model-Based Reinforcement Learning for Control of Strongly-Disturbed Unsteady Aerodynamic Flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhecheng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Beckers%2C+D">Diederik Beckers</a>, <a href="/search/physics?searchtype=author&amp;query=Eldredge%2C+J+D">Jeff D. Eldredge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14685v1-abstract-short" style="display: inline;"> The intrinsic high dimension of fluid dynamics is an inherent challenge to control of aerodynamic flows, and this is further complicated by a flow&#39;s nonlinear response to strong disturbances. Deep reinforcement learning, which takes advantage of the exploratory aspects of reinforcement learning (RL) and the rich nonlinearity of a deep neural network, provides a promising approach to discover feasi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14685v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14685v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14685v1-abstract-full" style="display: none;"> The intrinsic high dimension of fluid dynamics is an inherent challenge to control of aerodynamic flows, and this is further complicated by a flow&#39;s nonlinear response to strong disturbances. Deep reinforcement learning, which takes advantage of the exploratory aspects of reinforcement learning (RL) and the rich nonlinearity of a deep neural network, provides a promising approach to discover feasible control strategies. However, the typical model-free approach to reinforcement learning requires a significant amount of interaction between the flow environment and the RL agent during training, and this high training cost impedes its development and application. In this work, we propose a model-based reinforcement learning (MBRL) approach by incorporating a novel reduced-order model as a surrogate for the full environment. The model consists of a physics-augmented autoencoder, which compresses high-dimensional CFD flow field snaphsots into a three-dimensional latent space, and a latent dynamics model that is trained to accurately predict the long-time dynamics of trajectories in the latent space in response to action sequences. The robustness and generalizability of the model is demonstrated in two distinct flow environments, a pitching airfoil in a highly disturbed environment and a vertical-axis wind turbine in a disturbance-free environment. Based on the trained model in the first problem, we realize an MBRL strategy to mitigate lift variation during gust-airfoil encounters. We demonstrate that the policy learned in the reduced-order environment translates to an effective control strategy in the full CFD environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14685v1-abstract-full').style.display = 'none'; document.getElementById('2408.14685v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14404">arXiv:2408.14404</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14404">pdf</a>, <a href="https://arxiv.org/format/2408.14404">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Application of Neural Ordinary Differential Equations for ITER Burning Plasma Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zefang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Stacey%2C+W+M">Weston M. Stacey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14404v1-abstract-short" style="display: inline;"> The dynamics of burning plasmas in tokamaks are crucial for advancing controlled thermonuclear fusion. This study introduces the NeuralPlasmaODE, a multi-region multi-timescale transport model to simulate the complex energy transfer processes in ITER deuterium-tritium (D-T) plasmas. Our model captures the interactions between energetic alpha particles, electrons, and ions, which are vital for unde&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14404v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14404v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14404v1-abstract-full" style="display: none;"> The dynamics of burning plasmas in tokamaks are crucial for advancing controlled thermonuclear fusion. This study introduces the NeuralPlasmaODE, a multi-region multi-timescale transport model to simulate the complex energy transfer processes in ITER deuterium-tritium (D-T) plasmas. Our model captures the interactions between energetic alpha particles, electrons, and ions, which are vital for understanding phenomena such as thermal runaway instability. We employ neural ordinary differential equations (Neural ODEs) for the numerical derivation of diffusivity parameters, enabling precise modeling of energy interactions between different plasma regions. By leveraging transfer learning, we utilize model parameters derived from DIII-D experimental data, enhancing the efficiency and accuracy of our simulations without training from scratch. Applying this model to ITER&#39;s inductive and non-inductive operational scenarios, our results demonstrate that radiation and transport processes effectively remove excess heat from the core plasma, preventing thermal runaway instability. This study underscores the potential of machine learning in advancing our understanding and control of burning plasma dynamics in fusion reactors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14404v1-abstract-full').style.display = 'none'; document.getElementById('2408.14404v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12859">arXiv:2408.12859</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12859">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Programmable Jumping-Droplet Condensation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gao%2C+S">Shan Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Qu%2C+J">Jian Qu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Dehui Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhichun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+W">Weigang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12859v1-abstract-short" style="display: inline;"> Self-propelled droplet jumping during condensation has attractive prospects for energy harvesting, water collection and thermal management, but its real-life applications are greatly limited to the challenge of enabling a sustainable control on the entire droplet lifecycle. Herein, we propose a programmable jumping-droplet condensation that evolves along an artificially designed pathway without ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12859v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12859v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12859v1-abstract-full" style="display: none;"> Self-propelled droplet jumping during condensation has attractive prospects for energy harvesting, water collection and thermal management, but its real-life applications are greatly limited to the challenge of enabling a sustainable control on the entire droplet lifecycle. Herein, we propose a programmable jumping-droplet condensation that evolves along an artificially designed pathway without external stimulations, where the droplets can uniformly form at specific sites, spontaneously migrate and coalesce with their neighboring droplets, and jump off effectively to continuously refresh surface, significantly enhancing the heat transfer performance and durability of condensation. The programmable jumping-droplet condensation is achieved using a wedge-walled rhombus lattice structure surface inspired from the structures and functions of Namib desert beetle skin, shorebird beak and setaria viridis leaf vein. This surface integrates wetting contrast patterns with dual-gradient hierarchical structures, providing persistent and multidimensional droplet rectifications and thus realizing a sustainable control on the entire droplet lifecycle. Furthermore, we systematically investigate the morphology and behavior evolutions of droplets throughout their entire lifecycle, and fully elucidate the programmable control mechanisms of the lattice structure determined by its topology and wettability features. This work not only serves as theoretical foundations and reference framework to realize a durable jumping-droplet condensation and achieve its performance ceiling in a controlled manner, but also promotes the design and fabrication of functional structured surfaces for droplet manipulation and delivery, self-cleaning and anti-fogging/icing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12859v1-abstract-full').style.display = 'none'; document.getElementById('2408.12859v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11872">arXiv:2408.11872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11872">pdf</a>, <a href="https://arxiv.org/ps/2408.11872">ps</a>, <a href="https://arxiv.org/format/2408.11872">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Two points are enough </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Hao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yanbin Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+H">Huarong Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+X">Xiulin Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Zhihua Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Mengchi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xingkai Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhiyang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+J">Jianguo Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jian Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11872v1-abstract-short" style="display: inline;"> Prognosis and diagnosis play an important role in accelerating the development of lithium-ion batteries, as well as reliable and long-life operation. In this work, we answer an important question: What is the minimum amount of data required to extract features for accurate battery prognosis and diagnosis? Based on the first principle, we successfully extracted the best two-point feature (BTPF) for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11872v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11872v1-abstract-full" style="display: none;"> Prognosis and diagnosis play an important role in accelerating the development of lithium-ion batteries, as well as reliable and long-life operation. In this work, we answer an important question: What is the minimum amount of data required to extract features for accurate battery prognosis and diagnosis? Based on the first principle, we successfully extracted the best two-point feature (BTPF) for accurate battery prognosis and diagnosis using the fewest data points (only two) and the simplest feature selection method (Pearson correlation coefficient). The BTPF extraction method is tested on 820 cells from 6 open-source datasets (covering five different chemistry types, seven manufacturers, and three data types). It achieves comparable accuracy to state-of-the-art features in both prognosis and diagnosis tasks. This work challenges the cognition of existing studies on the difficulty of battery prognosis and diagnosis tasks, subverts the fixed pattern of establishing prognosis and diagnosis methods for complex dynamic systems through deliberate feature engineering, highlights the promise of data-driven methods for field battery prognosis and diagnosis applications, and provides a new benchmark for future studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11872v1-abstract-full').style.display = 'none'; document.getElementById('2408.11872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11379">arXiv:2408.11379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11379">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High quality epitaxial piezoelectric and ferroelectric wurtzite Al$_{1-x}$Sc$_x$N thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+Y">Yang Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Lei%2C+Y">Yihan Lei</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yanghe Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+M">Mingqiang Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Liao%2C+L">Luocheng Liao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xuyang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+J">Jinxin Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhenghao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ming%2C+W">Wenjie Ming</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+S">Shuhong Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jiangyu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Changjian Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11379v1-abstract-short" style="display: inline;"> Piezoelectric and ferroelectric wurtzite are promising to reshape modern microelectronics because they can be easily integrated with mainstream semiconductor technology. Sc doped AlN (Al$_{1-x}$Sc$_x$N) has attracted much attention for its enhanced piezoelectric and emerging ferroelectric properties, yet the commonly used sputtering results in polycrystalline Al$_{1-x}$Sc$_x$N films with high leak&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11379v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11379v1-abstract-full" style="display: none;"> Piezoelectric and ferroelectric wurtzite are promising to reshape modern microelectronics because they can be easily integrated with mainstream semiconductor technology. Sc doped AlN (Al$_{1-x}$Sc$_x$N) has attracted much attention for its enhanced piezoelectric and emerging ferroelectric properties, yet the commonly used sputtering results in polycrystalline Al$_{1-x}$Sc$_x$N films with high leakage current. Here we report the pulsed laser deposition of single crystalline epitaxial Al$_{1-x}$Sc$_x$N thin films on sapphire and 4H-SiC substrates. Pure wurtzite phase is maintained up to $x = 0.3$ with minimal oxygen contamination. Polarization is estimated to be 140 $渭$C/cm$^2$ via atomic scale microscopy imaging and found to be switchable via a scanning probe. The piezoelectric coefficient is found to be 5 times of undoped one when $x = 0.3$, making it desirable for high frequency radiofrequency (RF) filters and three-dimensional nonvolatile memories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11379v1-abstract-full').style.display = 'none'; document.getElementById('2408.11379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10854">arXiv:2408.10854</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10854">pdf</a>, <a href="https://arxiv.org/format/2408.10854">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zili Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Hao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+L">Lei Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenyuan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ouyang%2C+W">Wanli Ouyang</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+Z">Zhengxia Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Z">Zhenwei Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10854v1-abstract-short" style="display: inline;"> In an era of frequent extreme weather and global warming, obtaining precise, fine-grained near-surface weather forecasts is increasingly essential for human activities. Downscaling (DS), a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions from global-scale forecast results. Previous downscaling methods, inspired by CN&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10854v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10854v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10854v1-abstract-full" style="display: none;"> In an era of frequent extreme weather and global warming, obtaining precise, fine-grained near-surface weather forecasts is increasingly essential for human activities. Downscaling (DS), a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions from global-scale forecast results. Previous downscaling methods, inspired by CNN and Transformer-based super-resolution models, lacked tailored designs for meteorology and encountered structural limitations. Notably, they failed to efficiently integrate topography, a crucial prior in the downscaling process. In this paper, we address these limitations by pioneering the selective state space model into the meteorological field downscaling and propose a novel model called MambaDS. This model enhances the utilization of multivariable correlations and topography information, unique challenges in the downscaling process while retaining the advantages of Mamba in long-range dependency modeling and linear computational complexity. Through extensive experiments in both China mainland and the continental United States (CONUS), we validated that our proposed MambaDS achieves state-of-the-art results in three different types of meteorological field downscaling settings. We will release the code subsequently. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10854v1-abstract-full').style.display = 'none'; document.getElementById('2408.10854v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10205">arXiv:2408.10205</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10205">pdf</a>, <a href="https://arxiv.org/format/2408.10205">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> KAN 2.0: Kolmogorov-Arnold Networks Meet Science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Ziming Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+P">Pingchuan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yixuan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Matusik%2C+W">Wojciech Matusik</a>, <a href="/search/physics?searchtype=author&amp;query=Tegmark%2C+M">Max Tegmark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10205v1-abstract-short" style="display: inline;"> A major challenge of AI + Science lies in their inherent incompatibility: today&#39;s AI is primarily based on connectionism, while science depends on symbolism. To bridge the two worlds, we propose a framework to seamlessly synergize Kolmogorov-Arnold Networks (KANs) and science. The framework highlights KANs&#39; usage for three aspects of scientific discovery: identifying relevant features, revealing m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10205v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10205v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10205v1-abstract-full" style="display: none;"> A major challenge of AI + Science lies in their inherent incompatibility: today&#39;s AI is primarily based on connectionism, while science depends on symbolism. To bridge the two worlds, we propose a framework to seamlessly synergize Kolmogorov-Arnold Networks (KANs) and science. The framework highlights KANs&#39; usage for three aspects of scientific discovery: identifying relevant features, revealing modular structures, and discovering symbolic formulas. The synergy is bidirectional: science to KAN (incorporating scientific knowledge into KANs), and KAN to science (extracting scientific insights from KANs). We highlight major new functionalities in the pykan package: (1) MultKAN: KANs with multiplication nodes. (2) kanpiler: a KAN compiler that compiles symbolic formulas into KANs. (3) tree converter: convert KANs (or any neural networks) to tree graphs. Based on these tools, we demonstrate KANs&#39; capability to discover various types of physical laws, including conserved quantities, Lagrangians, symmetries, and constitutive laws. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10205v1-abstract-full').style.display = 'none'; document.getElementById('2408.10205v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09447">arXiv:2408.09447</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09447">pdf</a>, <a href="https://arxiv.org/format/2408.09447">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Deconvoluting Thermomechanical Effects in X-ray Diffraction Data using Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lim%2C+R+E">Rachel E. Lim</a>, <a href="/search/physics?searchtype=author&amp;query=Shang%2C+S">Shun-Li Shang</a>, <a href="/search/physics?searchtype=author&amp;query=Chuang%2C+C">Chihpin Chuang</a>, <a href="/search/physics?searchtype=author&amp;query=Phan%2C+T+Q">Thien Q. Phan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zi-Kui Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Pagan%2C+D+C">Darren C. Pagan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09447v2-abstract-short" style="display: inline;"> X-ray diffraction is ideal for probing sub-surface state during complex or rapid thermomechanical loading of crystalline materials. However, challenges arise as the size of diffraction volumes increases due to spatial broadening and inability to deconvolute the effects of different lattice deformation mechanisms. Here, we present a novel approach to use combinations of physics-based modeling and m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09447v2-abstract-full').style.display = 'inline'; document.getElementById('2408.09447v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09447v2-abstract-full" style="display: none;"> X-ray diffraction is ideal for probing sub-surface state during complex or rapid thermomechanical loading of crystalline materials. However, challenges arise as the size of diffraction volumes increases due to spatial broadening and inability to deconvolute the effects of different lattice deformation mechanisms. Here, we present a novel approach to use combinations of physics-based modeling and machine learning to deconvolve thermal and mechanical elastic strains for diffraction data analysis. The method builds on a previous effort to extract thermal strain distribution information from diffraction data. The new approach is applied to extract the evolution of thermomechanical state during laser melting of an Inconel 625 wall specimen which produces significant residual stress upon cooling. A combination of heat transfer and fluid flow, elasto-plasticity, and X-ray diffraction simulations are used to generate training data for machine-learning (Gaussian Process Regression, GPR) models that map diffracted intensity distributions to underlying thermomechanical strain fields. First-principles density functional theory is used to determine accurate temperature-dependent thermal expansion and elastic stiffness used for elasto-plasticity modeling. The trained GPR models are found to be capable of deconvoluting the effects of thermal and mechanical strains, in addition to providing information about underlying strain distributions, even from complex diffraction patterns with irregularly shaped peaks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09447v2-abstract-full').style.display = 'none'; document.getElementById('2408.09447v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08509">arXiv:2408.08509</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08509">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Fundamental scaling laws of water window X-rays from free electron-driven van der Waals structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pramanik%2C+N">Nikhil Pramanik</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S">Sunchao Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+R">Ruihuan Duan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhai%2C+Q">Qingwei Zhai</a>, <a href="/search/physics?searchtype=author&amp;query=Go%2C+M">Michael Go</a>, <a href="/search/physics?searchtype=author&amp;query=Boothroyd%2C+C">Chris Boothroyd</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+L+J">Liang Jie Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08509v1-abstract-short" style="display: inline;"> Water-window X-rays are crucial in medical and biological applications, enabling natural contrast imaging of biological cells in their near-native states without external staining. However, water-window X-ray sources whose output photon energy can be arbitrarily specified - a crucial feature in many high-contrast imaging applications - are still challenging to obtain except at large synchrotron fa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08509v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08509v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08509v1-abstract-full" style="display: none;"> Water-window X-rays are crucial in medical and biological applications, enabling natural contrast imaging of biological cells in their near-native states without external staining. However, water-window X-ray sources whose output photon energy can be arbitrarily specified - a crucial feature in many high-contrast imaging applications - are still challenging to obtain except at large synchrotron facilities. Here, we present a solution to this challenge by demonstrating table-top, water-window X-ray generation from free electron-driven van der Waals materials, resulting in output photon energies that can be continuously tuned across the entire water window regime. In addition, we present a truly predictive theoretical framework that combines first-principles electromagnetism with Monte Carlo simulations to accurately predict the photon flux and brightness in absolute numbers. Using this framework, we theoretically obtain fundamental scaling laws for the tunable photon flux, showing good agreement with experimental results and providing a path to the design of powerful emitters based on free electron-driven quantum materials. We show that we can achieve photon fluxes needed for imaging and spectroscopy applications (over 1E8 photons per second on sample) where compactness is important, and the ultrahigh fluxes of synchrotron sources are not needed. Importantly, our theory highlights the critical role played by the large mean free paths and interlayer atomic spacings unique to van der Waals structures, showing the latter&#39;s advantages over other materials in generating water window X-rays. Our results should pave the way to advanced techniques and new modalities in water-window X-ray generation and high-resolution biological imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08509v1-abstract-full').style.display = 'none'; document.getElementById('2408.08509v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07374">arXiv:2408.07374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07374">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Coupling Between Local and Global Oscillations in Palladium-Catalysed Methane Oxidation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Yuxiong Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Jianyu Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+M">Mengzhao Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+A">Aowen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+S">Shucheng Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+P+J">P. J. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+W">Wu Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Willinger%2C+M">Marc-Georg Willinger</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+D">Dan Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei-Xue Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhu-Jun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07374v1-abstract-short" style="display: inline;"> The interplay between order and disorder is crucial across various fields, especially in understanding oscillatory phenomena. Periodic oscillations are frequently observed in heterogeneous catalysis, yet their underlying mechanisms need deeper exploration. Here, we investigate how periodic oscillations arise during methane oxidation catalysed by palladium nanoparticles (Pd NPs), utilizing a suite&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07374v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07374v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07374v1-abstract-full" style="display: none;"> The interplay between order and disorder is crucial across various fields, especially in understanding oscillatory phenomena. Periodic oscillations are frequently observed in heterogeneous catalysis, yet their underlying mechanisms need deeper exploration. Here, we investigate how periodic oscillations arise during methane oxidation catalysed by palladium nanoparticles (Pd NPs), utilizing a suite of complementary operando techniques across various spatial scales. We found that reaction intensity and collective dynamic modes can be tuned by the reactant gas-flow rate. At lower gas-flow rates, we observed periodic facet reconstruction of Pd NPs correlated with repeated bubbling behaviour at the Pd/PdO interface, without evident global oscillatory responses. Conversely, at higher gas-flow rates, Pd NPs undergo chaotic transformations between metallic and oxidized states, resulting in overall oscillation. Integrating our observations at different gas-flow rates, we attributed the emergence of global oscillation to thermal coupling regulated by gas flow and connected local and global dynamics through a weak synchronization mechanism. This work demonstrates the correlations between open surfaces and interfaces, chaos and regularity, and dissipative processes and coupling behaviour. Our findings offer critical insights into the complexity behind catalytic oscillations and provide guidance for modulating oscillatory behaviours in catalytic processes, with significant implications for both science and industry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07374v1-abstract-full').style.display = 'none'; document.getElementById('2408.07374v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07346">arXiv:2408.07346</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07346">pdf</a>, <a href="https://arxiv.org/format/2408.07346">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Enabling microrobotic chemotaxis via reset-free hierarchical reinforcement learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+T">Tongzhao Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhaorong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ong%2C+C+J">Chong Jin Ong</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+L">Lailai Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07346v1-abstract-short" style="display: inline;"> Microorganisms have evolved diverse strategies to propel in viscous fluids, navigate complex environments, and exhibit taxis in response to stimuli. This has inspired the development of synthetic microrobots, where machine learning (ML) is playing an increasingly important role. Can ML endow these robots with intelligence resembling that developed by their natural counterparts over evolutionary ti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07346v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07346v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07346v1-abstract-full" style="display: none;"> Microorganisms have evolved diverse strategies to propel in viscous fluids, navigate complex environments, and exhibit taxis in response to stimuli. This has inspired the development of synthetic microrobots, where machine learning (ML) is playing an increasingly important role. Can ML endow these robots with intelligence resembling that developed by their natural counterparts over evolutionary timelines? Here, we demonstrate chemotactic navigation of a multi-link articulated microrobot using two-level hierarchical reinforcement learning (RL). The lower-level RL allows the robot -- featuring either a chain or ring topology -- to acquire topology-specific swimming gaits: wave propagation characteristic of flagella or body oscillation akin to an ameboid. Such flagellar and ameboid microswimmers, further enabled by the higher-level RL, accomplish chemotactic navigation in prototypical biologically-relevant scenarios that feature conflicting chemoattractants, pursuing a swimming bacterial mimic, steering in vortical flows, and squeezing through tight constrictions. Additionally, we achieve reset-free, partially observable RL, where the robot observes only its joint angles and local scalar quantities. This advancement illuminates solutions for overcoming the persistent challenges of manual resets and partial observability in real-world microrobotic RL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07346v1-abstract-full').style.display = 'none'; document.getElementById('2408.07346v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07211">arXiv:2408.07211</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07211">pdf</a>, <a href="https://arxiv.org/format/2408.07211">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Experimental Investigation into Split Nonlinearity Compensation in Single and Multi-channel WDM Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sohanpal%2C+R">Ronit Sohanpal</a>, <a href="/search/physics?searchtype=author&amp;query=Sillekens%2C+E">Eric Sillekens</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jiaqian Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Aparecido%2C+R">R么mulo Aparecido</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhixin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Killey%2C+R">Robert Killey</a>, <a href="/search/physics?searchtype=author&amp;query=Bayvel%2C+P">Polina Bayvel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07211v1-abstract-short" style="display: inline;"> We experimentally investigated the performance of split nonlinearity compensation schemes for single and multi-channel WDM systems. We show that split NLC SNR gains of more than 0.4 dB at 5540 km can be achieved compared to transmitter- or receiver-side DBP alone when signal-ASE beating limits transmission performance. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07211v1-abstract-full" style="display: none;"> We experimentally investigated the performance of split nonlinearity compensation schemes for single and multi-channel WDM systems. We show that split NLC SNR gains of more than 0.4 dB at 5540 km can be achieved compared to transmitter- or receiver-side DBP alone when signal-ASE beating limits transmission performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07211v1-abstract-full').style.display = 'none'; document.getElementById('2408.07211v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2024 European Conference on Optical Communication (ECOC)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05695">arXiv:2408.05695</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05695">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Advancements in Programmable Lipid Nanoparticles: Exploring the Four-Domain Model for Targeted Drug Delivery </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhaoyu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jingxun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+M">Mingkun Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Gracias%2C+D+H">David H. Gracias</a>, <a href="/search/physics?searchtype=author&amp;query=Yong%2C+K">Ken-Tye Yong</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+Y">Yuanyuan Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Ho%2C+H">Ho-Pui Ho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05695v3-abstract-short" style="display: inline;"> Programmable lipid nanoparticles, or LNPs, represent a breakthrough in the realm of targeted drug delivery, offering precise spatiotemporal control essential for the treatment of complex diseases such as cancer and genetic disorders. In order to provide a more modular perspective and a more balanced analysis of the mechanism, this review presents a novel Four-Domain Model that consists of Architec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05695v3-abstract-full').style.display = 'inline'; document.getElementById('2408.05695v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05695v3-abstract-full" style="display: none;"> Programmable lipid nanoparticles, or LNPs, represent a breakthrough in the realm of targeted drug delivery, offering precise spatiotemporal control essential for the treatment of complex diseases such as cancer and genetic disorders. In order to provide a more modular perspective and a more balanced analysis of the mechanism, this review presents a novel Four-Domain Model that consists of Architecture, Interface, Payload, and Dispersal Domain. We explored the dynamical equilibrium between LNPs components and the surroundings throughout their destiny, from formulation to release. On the basis of this, we delve deep into manufacturing challenges, scalability issues, and regulatory hurdles, associated with the clinical translation of LNP technology. Within the framework focusing on the programmability in each domain, we prioritized patient-centric factors like dosing regimens, administration techniques, and potential consequences. Notably, this review expands to innovative anatomical routes, such as intranasal and intraocular administration, offering a thorough examination of the advantages and disadvantages of each route. We also offered a comprehensive comparison between artificial LNPs and natural exosomes in terms of functionality, biocompatibility, and therapeutic potential. Ultimately, this review highlights the potential of programmable LNPs to evolve into more intelligent, naturally integrated systems, achieving optimal biocompatibility and functionality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05695v3-abstract-full').style.display = 'none'; document.getElementById('2408.05695v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 8 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Liu%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Z&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10