CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 61 results for author: <span class="mathjax">Pinto, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Pinto%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Pinto, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Pinto%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Pinto, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Pinto%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Pinto%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Pinto%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.17754">arXiv:2501.17754</a> <span> [<a href="https://arxiv.org/pdf/2501.17754">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Analysis of the navigation of magnetic microrobots through cerebral bifurcations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Alves%2C+P+G">Pedro G. Alves</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M">Maria Pinto</a>, <a href="/search/physics?searchtype=author&query=Moreira%2C+R">Rosa Moreira</a>, <a href="/search/physics?searchtype=author&query=Sivakumaran%2C+D">Derick Sivakumaran</a>, <a href="/search/physics?searchtype=author&query=Landers%2C+F+C">Fabian C. Landers</a>, <a href="/search/physics?searchtype=author&query=Guix%2C+M">Maria Guix</a>, <a href="/search/physics?searchtype=author&query=Nelson%2C+B+J">Bradley J. Nelson</a>, <a href="/search/physics?searchtype=author&query=Flouris%2C+A+D">Andreas D. Flouris</a>, <a href="/search/physics?searchtype=author&query=Pan%C3%A9%2C+S">Salvador Pan茅</a>, <a href="/search/physics?searchtype=author&query=Puigmart%C3%AD-Luis%2C+J">Josep Puigmart铆-Luis</a>, <a href="/search/physics?searchtype=author&query=Mayor%2C+T+S">Tiago Sotto Mayor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.17754v1-abstract-short" style="display: inline;"> Local administration of thrombolytics in ischemic stroke could accelerate clot lysis and the ensuing reperfusion while minimizing the side effects of systemic administration. Medical microrobots could be injected into the bloodstream and magnetically navigated to the clot for administering the drugs directly to the target. The magnetic manipulation required to navigate medical microrobots will dep… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17754v1-abstract-full').style.display = 'inline'; document.getElementById('2501.17754v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.17754v1-abstract-full" style="display: none;"> Local administration of thrombolytics in ischemic stroke could accelerate clot lysis and the ensuing reperfusion while minimizing the side effects of systemic administration. Medical microrobots could be injected into the bloodstream and magnetically navigated to the clot for administering the drugs directly to the target. The magnetic manipulation required to navigate medical microrobots will depend on various parameters such as the microrobots size, the blood velocity, and the imposed magnetic field gradients. Numerical simulation was used to study the motion of magnetically controlled microrobots flowing through representative cerebral bifurcations, for predicting the magnetic gradients required to navigate the microrobots from the injection point until the target location. Upon thorough validation of the model against several independent analytical and experimental results, the model was used to generate maps and a predictive equation providing quantitative information on the required magnetic gradients, for different scenarios. The developed maps and predictive equation are crucial to inform the design, operation and optimization of magnetic navigation systems for healthcare applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17754v1-abstract-full').style.display = 'none'; document.getElementById('2501.17754v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16991">arXiv:2501.16991</a> <span> [<a href="https://arxiv.org/pdf/2501.16991">pdf</a>, <a href="https://arxiv.org/format/2501.16991">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Time-splitting methods for the cold-plasma model using Finite Element Exterior Calculus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E+M">Elena Moral S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+C">Martin Campos Pinto</a>, <a href="/search/physics?searchtype=author&query=G%C3%BC%C3%A7l%C3%BC%2C+Y">Yaman G眉莽l眉</a>, <a href="/search/physics?searchtype=author&query=Maj%2C+O">Omar Maj</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16991v1-abstract-short" style="display: inline;"> In this work we propose a high-order structure-preserving discretization of the cold plasma model which describes the propagation of electromagnetic waves in magnetized plasmas. By utilizing B-Splines Finite Elements Exterior Calculus, we derive a space discretization that preserves the underlying Hamiltonian structure of the model, and we study two stable time-splitting geometrical integrators. W… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16991v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16991v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16991v1-abstract-full" style="display: none;"> In this work we propose a high-order structure-preserving discretization of the cold plasma model which describes the propagation of electromagnetic waves in magnetized plasmas. By utilizing B-Splines Finite Elements Exterior Calculus, we derive a space discretization that preserves the underlying Hamiltonian structure of the model, and we study two stable time-splitting geometrical integrators. We approximate an incoming wave boundary condition in such a way that the resulting schemes are compatible with a time-harmonic / transient decomposition of the solution, which allows us to establish their long-time stability. This approach readily applies to curvilinear and complex domains. We perform a numerical study of these schemes which compares their cost and accuracy against a standard Crank-Nicolson time integrator, and we run realistic simulations where the long-term behaviour is assessed using frequency-domain solutions. Our solvers are implemented in the Python library Psydac which makes them memory-efficient, parallel and essentially three-dimensional. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16991v1-abstract-full').style.display = 'none'; document.getElementById('2501.16991v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07606">arXiv:2412.07606</a> <span> [<a href="https://arxiv.org/pdf/2412.07606">pdf</a>, <a href="https://arxiv.org/format/2412.07606">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Testbeam Characterization of a SiGe BiCMOS Monolithic Silicon Pixel Detector with Internal Gain Layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Paolozzi%2C+L">L. Paolozzi</a>, <a href="/search/physics?searchtype=author&query=Milanesio%2C+M">M. Milanesio</a>, <a href="/search/physics?searchtype=author&query=Moretti%2C+T">T. Moretti</a>, <a href="/search/physics?searchtype=author&query=Cardella%2C+R">R. Cardella</a>, <a href="/search/physics?searchtype=author&query=Kugathasan%2C+T">T. Kugathasan</a>, <a href="/search/physics?searchtype=author&query=Picardi%2C+A">A. Picardi</a>, <a href="/search/physics?searchtype=author&query=Elviretti%2C+M">M. Elviretti</a>, <a href="/search/physics?searchtype=author&query=R%C3%BCcker%2C+H">H. R眉cker</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cardarelli%2C+R">R. Cardarelli</a>, <a href="/search/physics?searchtype=author&query=Cecconi%2C+L">L. Cecconi</a>, <a href="/search/physics?searchtype=author&query=D%C3%A9bieux%2C+S">S. D茅bieux</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Fenoglio%2C+C+A">C. A. Fenoglio</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">D. Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">S. Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Iodice%2C+L">L. Iodice</a>, <a href="/search/physics?searchtype=author&query=Kotitsa%2C+R">R. Kotitsa</a>, <a href="/search/physics?searchtype=author&query=Magliocca%2C+C">C. Magliocca</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">M. Nessi</a>, <a href="/search/physics?searchtype=author&query=Pizarro-Medina%2C+A">A. Pizarro-Medina</a>, <a href="/search/physics?searchtype=author&query=Saidi%2C+J">J. Saidi</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+V+B">M. Vicente Barreto Pinto</a>, <a href="/search/physics?searchtype=author&query=Zambito%2C+S">S. Zambito</a>, <a href="/search/physics?searchtype=author&query=Iacobucci%2C+G">G. Iacobucci</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07606v1-abstract-short" style="display: inline;"> A monolithic silicon pixel ASIC prototype, produced in 2024 as part of the Horizon 2020 MONOLITH ERC Advanced project, was tested with a 120 GeV/c pion beam. The ASIC features a matrix of hexagonal pixels with a 100 渭m pitch, read by low-noise, high-speed front-end electronics built using 130 nm SiGe BiCMOS technology. It includes the PicoAD sensor, which employs a continuous, deep PN junction to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07606v1-abstract-full').style.display = 'inline'; document.getElementById('2412.07606v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07606v1-abstract-full" style="display: none;"> A monolithic silicon pixel ASIC prototype, produced in 2024 as part of the Horizon 2020 MONOLITH ERC Advanced project, was tested with a 120 GeV/c pion beam. The ASIC features a matrix of hexagonal pixels with a 100 渭m pitch, read by low-noise, high-speed front-end electronics built using 130 nm SiGe BiCMOS technology. It includes the PicoAD sensor, which employs a continuous, deep PN junction to generate avalanche gain. Data were taken across power densities from 0.05 to 2.6 W/cm2 and sensor bias voltages from 90 to 180 V. At the highest bias voltage, corresponding to an electron gain of 50, and maximum power density, an efficiency of (99.99 \pm 0.01)% was achieved. The time resolution at this working point was (24.3 \pm 0.2) ps before time-walk correction, improving to (12.1 \pm 0.3) ps after correction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07606v1-abstract-full').style.display = 'none'; document.getElementById('2412.07606v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07147">arXiv:2409.07147</a> <span> [<a href="https://arxiv.org/pdf/2409.07147">pdf</a>, <a href="https://arxiv.org/format/2409.07147">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.111.042003">10.1103/PhysRevD.111.042003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of ion-beam sputtered silicon nitride thin films for low-noise mirror coatings of gravitational-wave detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Amato%2C+A">A. Amato</a>, <a href="/search/physics?searchtype=author&query=Bazzan%2C+M">M. Bazzan</a>, <a href="/search/physics?searchtype=author&query=Cagnoli%2C+G">G. Cagnoli</a>, <a href="/search/physics?searchtype=author&query=Canepa%2C+M">M. Canepa</a>, <a href="/search/physics?searchtype=author&query=Coulon%2C+M">M. Coulon</a>, <a href="/search/physics?searchtype=author&query=Degallaix%2C+J">J. Degallaix</a>, <a href="/search/physics?searchtype=author&query=Demos%2C+N">N. Demos</a>, <a href="/search/physics?searchtype=author&query=Di+Michele%2C+A">A. Di Michele</a>, <a href="/search/physics?searchtype=author&query=Evans%2C+M">M. Evans</a>, <a href="/search/physics?searchtype=author&query=Fabrizi%2C+F">F. Fabrizi</a>, <a href="/search/physics?searchtype=author&query=Favaro%2C+G">G. Favaro</a>, <a href="/search/physics?searchtype=author&query=Forest%2C+D">D. Forest</a>, <a href="/search/physics?searchtype=author&query=Gras%2C+S">S. Gras</a>, <a href="/search/physics?searchtype=author&query=Hofman%2C+D">D. Hofman</a>, <a href="/search/physics?searchtype=author&query=Lemaitre%2C+A">A. Lemaitre</a>, <a href="/search/physics?searchtype=author&query=Maggioni%2C+G">G. Maggioni</a>, <a href="/search/physics?searchtype=author&query=Magnozzi%2C+M">M. Magnozzi</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+V">V. Martinez</a>, <a href="/search/physics?searchtype=author&query=Mereni%2C+L">L. Mereni</a>, <a href="/search/physics?searchtype=author&query=Michel%2C+C">C. Michel</a>, <a href="/search/physics?searchtype=author&query=Milotti%2C+V">V. Milotti</a>, <a href="/search/physics?searchtype=author&query=Montani%2C+M">M. Montani</a>, <a href="/search/physics?searchtype=author&query=Paolone%2C+A">A. Paolone</a>, <a href="/search/physics?searchtype=author&query=Pereira%2C+A">A. Pereira</a>, <a href="/search/physics?searchtype=author&query=Piergiovanni%2C+F">F. Piergiovanni</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07147v2-abstract-short" style="display: inline;"> Brownian thermal noise of thin-film coatings is a fundamental limit for high-precision experiments based on optical resonators such as gravitational-wave interferometers. Here we present the results of a research activity aiming to develop lower-noise ion-beam sputtered silicon nitride thin films compliant with the very stringent requirements on optical loss of gravitational-wave interferometers.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07147v2-abstract-full').style.display = 'inline'; document.getElementById('2409.07147v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07147v2-abstract-full" style="display: none;"> Brownian thermal noise of thin-film coatings is a fundamental limit for high-precision experiments based on optical resonators such as gravitational-wave interferometers. Here we present the results of a research activity aiming to develop lower-noise ion-beam sputtered silicon nitride thin films compliant with the very stringent requirements on optical loss of gravitational-wave interferometers. In order to test the hypothesis of a correlation between the synthesis conditions of the films and their elemental composition and optical and mechanical properties, we varied the voltage, current intensity and composition of the sputtering ion beam, and we performed a broad campaign of characterizations. While the refractive index was found to monotonically depend on the beam voltage and linearly vary with the N/Si ratio, the optical absorption appeared to be strongly sensitive to other factors, as yet unidentified. However, by systematically varying the deposition parameters, an optimal working point was found. Thus we show that the loss angle and extinction coefficient of our thin films can be as low as $(1.0 \pm 0.1) \times 10^{-4}$ rad at $\sim$2.8 kHz and $(6.4 \pm 0.2) \times 10^{-6}$ at 1064 nm, respectively, after thermal treatment at 900 $^{\circ}$C. To the best of our knowledge, such loss angle value is the lowest ever measured on this class of thin films. We then used our silicon nitride thin films to design and produce a multi-material mirror coating showing a thermal noise amplitude of $(10.3 \pm 0.2) \times 10^{-18}$ m Hz$^{-1/2}$ at 100 Hz, which is 25\% lower than in current mirror coatings of the Advanced LIGO and Advanced Virgo interferometers, and an optical absorption as low as $(1.6 \pm 0.5)$ parts per million at 1064 nm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07147v2-abstract-full').style.display = 'none'; document.getElementById('2409.07147v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A. Amato et al., Development of ion-beam sputtered silicon nitride thin films for low-noise mirror coatings of gravitational-wave detectors, Phys. Rev. D 111, 042003 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12885">arXiv:2404.12885</a> <span> [<a href="https://arxiv.org/pdf/2404.12885">pdf</a>, <a href="https://arxiv.org/format/2404.12885">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Testbeam results of irradiated SiGe BiCMOS monolithic silicon pixel detector without internal gain layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Moretti%2C+T">T. Moretti</a>, <a href="/search/physics?searchtype=author&query=Milanesio%2C+M">M. Milanesio</a>, <a href="/search/physics?searchtype=author&query=Cardella%2C+R">R. Cardella</a>, <a href="/search/physics?searchtype=author&query=Kugathasan%2C+T">T. Kugathasan</a>, <a href="/search/physics?searchtype=author&query=Picardi%2C+A">A. Picardi</a>, <a href="/search/physics?searchtype=author&query=Semendyaev%2C+I">I. Semendyaev</a>, <a href="/search/physics?searchtype=author&query=Elviretti%2C+M">M. Elviretti</a>, <a href="/search/physics?searchtype=author&query=R%C3%BCcker%2C+H">H. R眉cker</a>, <a href="/search/physics?searchtype=author&query=Nakamura%2C+K">K. Nakamura</a>, <a href="/search/physics?searchtype=author&query=Takubo%2C+Y">Y. Takubo</a>, <a href="/search/physics?searchtype=author&query=Togawa%2C+M">M. Togawa</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cardarelli%2C+R">R. Cardarelli</a>, <a href="/search/physics?searchtype=author&query=Cecconi%2C+L">L. Cecconi</a>, <a href="/search/physics?searchtype=author&query=D%C3%A9bieux%2C+S">S. D茅bieux</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Fenoglio%2C+C+A">C. A. Fenoglio</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">D. Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">S. Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Iodice%2C+L">L. Iodice</a>, <a href="/search/physics?searchtype=author&query=Kotitsa%2C+R">R. Kotitsa</a>, <a href="/search/physics?searchtype=author&query=Magliocca%2C+C">C. Magliocca</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">M. Nessi</a>, <a href="/search/physics?searchtype=author&query=Pizarro-Medina%2C+A">A. Pizarro-Medina</a>, <a href="/search/physics?searchtype=author&query=Iglesias%2C+J+S">J. Sabater Iglesias</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12885v3-abstract-short" style="display: inline;"> Samples of the monolithic silicon pixel ASIC prototype produced in 2022 within the framework of the Horizon 2020 MONOLITH ERC Advanced project were irradiated with 70 MeV protons up to a fluence of 1 x 1016 neq/cm2, and then tested using a beam of 120 GeV/c pions. The ASIC contains a matrix of 100 渭m pitch hexagonal pixels, readout out by low noise and very fast frontend electronics produced in a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12885v3-abstract-full').style.display = 'inline'; document.getElementById('2404.12885v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12885v3-abstract-full" style="display: none;"> Samples of the monolithic silicon pixel ASIC prototype produced in 2022 within the framework of the Horizon 2020 MONOLITH ERC Advanced project were irradiated with 70 MeV protons up to a fluence of 1 x 1016 neq/cm2, and then tested using a beam of 120 GeV/c pions. The ASIC contains a matrix of 100 渭m pitch hexagonal pixels, readout out by low noise and very fast frontend electronics produced in a 130 nm SiGe BiCMOS technology process. The dependence on the proton fluence of the efficiency and the time resolution of this prototype was measured with the frontend electronics operated at a power density between 0.13 and 0.9 W/cm2. The testbeam data show that the detection efficiency of 99.96% measured at sensor bias voltage of 200 V before irradiation becomes 96.2% after a fluence of 1 x 1016 neq/cm2. An increase of the sensor bias voltage to 300 V provides an efficiency to 99.7% at that proton fluence. The timing resolution of 20 ps measured before irradiation rises for a proton fluence of 1 x 1016 neq/cm2 to 53 and 45 ps at HV = 200 and 300 V, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12885v3-abstract-full').style.display = 'none'; document.getElementById('2404.12885v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05309">arXiv:2401.05309</a> <span> [<a href="https://arxiv.org/pdf/2401.05309">pdf</a>, <a href="https://arxiv.org/format/2401.05309">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/swsc/2024001">10.1051/swsc/2024001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved modelling of SEP event onset within the WSA-Enlil-SEPMOD framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Palmerio%2C+E">Erika Palmerio</a>, <a href="/search/physics?searchtype=author&query=Luhmann%2C+J+G">Janet G. Luhmann</a>, <a href="/search/physics?searchtype=author&query=Mays%2C+M+L">M. Leila Mays</a>, <a href="/search/physics?searchtype=author&query=Caplan%2C+R+M">Ronald M. Caplan</a>, <a href="/search/physics?searchtype=author&query=Lario%2C+D">David Lario</a>, <a href="/search/physics?searchtype=author&query=Richardson%2C+I+G">Ian G. Richardson</a>, <a href="/search/physics?searchtype=author&query=Whitman%2C+K">Kathryn Whitman</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+C+O">Christina O. Lee</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez-Cano%2C+B">Beatriz S谩nchez-Cano</a>, <a href="/search/physics?searchtype=author&query=Wijsen%2C+N">Nicolas Wijsen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yan Li</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+C">Carlota Cardoso</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M">Marco Pinto</a>, <a href="/search/physics?searchtype=author&query=Heyner%2C+D">Daniel Heyner</a>, <a href="/search/physics?searchtype=author&query=Schmid%2C+D">Daniel Schmid</a>, <a href="/search/physics?searchtype=author&query=Auster%2C+H">Hans-Ulrich Auster</a>, <a href="/search/physics?searchtype=author&query=Fischer%2C+D">David Fischer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05309v1-abstract-short" style="display: inline;"> Multi-spacecraft observations of solar energetic particle (SEP) events not only enable a deeper understanding and development of particle acceleration and transport theories, but also provide important constraints for model validation efforts. However, because of computational limitations, a given physics-based SEP model is usually best-suited to capture a particular phase of an SEP event, rather… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05309v1-abstract-full').style.display = 'inline'; document.getElementById('2401.05309v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05309v1-abstract-full" style="display: none;"> Multi-spacecraft observations of solar energetic particle (SEP) events not only enable a deeper understanding and development of particle acceleration and transport theories, but also provide important constraints for model validation efforts. However, because of computational limitations, a given physics-based SEP model is usually best-suited to capture a particular phase of an SEP event, rather than its whole development from onset through decay. For example, magnetohydrodynamic (MHD) models of the heliosphere often incorporate solar transients only at the outer boundary of their so-called coronal domain -- usually set at a heliocentric distance of 20-30 $R_{\odot}$. This means that particle acceleration at CME-driven shocks is also computed from this boundary onwards, leading to simulated SEP event onsets that can be many hours later than observed, since shock waves can form much lower in the solar corona. In this work, we aim to improve the modelled onset of SEP events by inserting a "fixed source" of particle injection at the outer boundary of the coronal domain of the coupled WSA-Enlil 3D MHD model of the heliosphere. The SEP model that we employ for this effort is SEPMOD, a physics-based test-particle code based on a field line tracer and adiabatic invariant conservation. We apply our initial tests and results of SEPMOD's fixed-source option to the 2021 October 9 SEP event, which was detected at five well-separated locations in the inner heliosphere -- Parker Solar Probe, STEREO-A, Solar Orbiter, BepiColombo, and near-Earth spacecraft. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05309v1-abstract-full').style.display = 'none'; document.getElementById('2401.05309v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 8 figures, 4 tables, accepted for publication in Journal of Space Weather and Space Climate</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01229">arXiv:2401.01229</a> <span> [<a href="https://arxiv.org/pdf/2401.01229">pdf</a>, <a href="https://arxiv.org/format/2401.01229">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Time Resolution of a SiGe BiCMOS Monolithic Silicon Pixel Detector without Internal Gain Layer with a Femtosecond Laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Milanesio%2C+M">M. Milanesio</a>, <a href="/search/physics?searchtype=author&query=Paolozzi%2C+L">L. Paolozzi</a>, <a href="/search/physics?searchtype=author&query=Moretti%2C+T">T. Moretti</a>, <a href="/search/physics?searchtype=author&query=Latshaw%2C+A">A. Latshaw</a>, <a href="/search/physics?searchtype=author&query=Bonacina%2C+L">L. Bonacina</a>, <a href="/search/physics?searchtype=author&query=Cardella%2C+R">R. Cardella</a>, <a href="/search/physics?searchtype=author&query=Kugathasan%2C+T">T. Kugathasan</a>, <a href="/search/physics?searchtype=author&query=Picardi%2C+A">A. Picardi</a>, <a href="/search/physics?searchtype=author&query=Elviretti%2C+M">M. Elviretti</a>, <a href="/search/physics?searchtype=author&query=R%C3%BCcker%2C+H">H. R眉cker</a>, <a href="/search/physics?searchtype=author&query=Cardarelli%2C+R">R. Cardarelli</a>, <a href="/search/physics?searchtype=author&query=Cecconi%2C+L">L. Cecconi</a>, <a href="/search/physics?searchtype=author&query=Fenoglio%2C+C+A">C. A. Fenoglio</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">D. Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">S. Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Iodice%2C+L">L. Iodice</a>, <a href="/search/physics?searchtype=author&query=Kotitsa%2C+R">R. Kotitsa</a>, <a href="/search/physics?searchtype=author&query=Magliocca%2C+C">C. Magliocca</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">M. Nessi</a>, <a href="/search/physics?searchtype=author&query=Pizarro-Medina%2C+A">A. Pizarro-Medina</a>, <a href="/search/physics?searchtype=author&query=Iglesias%2C+J+S">J. Sabater Iglesias</a>, <a href="/search/physics?searchtype=author&query=Semendyaev%2C+I">I. Semendyaev</a>, <a href="/search/physics?searchtype=author&query=Saidi%2C+J">J. Saidi</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+V+B">M. Vicente Barreto Pinto</a>, <a href="/search/physics?searchtype=author&query=Zambito%2C+S">S. Zambito</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01229v2-abstract-short" style="display: inline;"> The time resolution of the second monolithic silicon pixel prototype produced for the MONOLITH H2020 ERC Advanced project was studied using a femtosecond laser. The ASIC contains a matrix of hexagonal pixels with 100 渭m pitch, readout by low-noise and very fast SiGe HBT frontend electronics. Silicon wafers with 50 渭m thick epilayer with a resistivity of 350 惟cm were used to produce a fully deplete… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01229v2-abstract-full').style.display = 'inline'; document.getElementById('2401.01229v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01229v2-abstract-full" style="display: none;"> The time resolution of the second monolithic silicon pixel prototype produced for the MONOLITH H2020 ERC Advanced project was studied using a femtosecond laser. The ASIC contains a matrix of hexagonal pixels with 100 渭m pitch, readout by low-noise and very fast SiGe HBT frontend electronics. Silicon wafers with 50 渭m thick epilayer with a resistivity of 350 惟cm were used to produce a fully depleted sensor. At the highest frontend power density tested of 2.7 W/cm2, the time resolution with the femtosecond laser pulses was found to be 45 ps for signals generated by 1200 electrons, and 3 ps in the case of 11k electrons, which corresponds approximately to 0.4 and 3.5 times the most probable value of the charge generated by a minimum-ionizing particle. The results were compared with testbeam data taken with the same prototype to evaluate the time jitter produced by the fluctuations of the charge collection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01229v2-abstract-full').style.display = 'none'; document.getElementById('2401.01229v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to JINST</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09883">arXiv:2312.09883</a> <span> [<a href="https://arxiv.org/pdf/2312.09883">pdf</a>, <a href="https://arxiv.org/format/2312.09883">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Pixel detector hybridization and integration with anisotropic conductive adhesives </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Volker%2C+A">Alexander Volker</a>, <a href="/search/physics?searchtype=author&query=Schmidt%2C+J+V">Janis Viktor Schmidt</a>, <a href="/search/physics?searchtype=author&query=Dannheim%2C+D">Dominik Dannheim</a>, <a href="/search/physics?searchtype=author&query=Svihra%2C+P">Peter Svihra</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+V+B">Mateus Vicente Barreto Pinto</a>, <a href="/search/physics?searchtype=author&query=de+Oliveira%2C+R">Rui de Oliveira</a>, <a href="/search/physics?searchtype=author&query=Braach%2C+J">Justus Braach</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+X">Xiao Yang</a>, <a href="/search/physics?searchtype=author&query=Ruat%2C+M">Marie Ruat</a>, <a href="/search/physics?searchtype=author&query=Magalhaes%2C+D">D茅bora Magalhaes</a>, <a href="/search/physics?searchtype=author&query=Vignali%2C+M+C">Matteo Centis Vignali</a>, <a href="/search/physics?searchtype=author&query=Calderini%2C+G">Giovanni Calderini</a>, <a href="/search/physics?searchtype=author&query=Kristiansen%2C+H">Helge Kristiansen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09883v2-abstract-short" style="display: inline;"> A reliable and cost-effective interconnect technology is required for the development of hybrid pixel detectors. The interconnect technology needs to be adapted for the pitch and die sizes of the respective applications. For small-scale applications and during the ASIC and sensor development phase, interconnect technologies must also be suitable for the assembly of single-dies typically available… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09883v2-abstract-full').style.display = 'inline'; document.getElementById('2312.09883v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09883v2-abstract-full" style="display: none;"> A reliable and cost-effective interconnect technology is required for the development of hybrid pixel detectors. The interconnect technology needs to be adapted for the pitch and die sizes of the respective applications. For small-scale applications and during the ASIC and sensor development phase, interconnect technologies must also be suitable for the assembly of single-dies typically available from Multi-Project-Wafer submissions. Within the CERN EP R&D program and the AIDAinnova collaboration, innovative and scalable hybridization concepts are under development for pixel-detector applications in future colliders. This contribution presents recent results of a newly developed in-house single-die interconnection process based on Anisotropic Conductive Adhesives (ACA). The ACA interconnect technology replaces solder bumps with conductive micro-particles embedded in an epoxy layer applied as either film or paste. The electro-mechanical connection between the sensor and ASIC is achieved via thermocompression of the ACA using a flip-chip device bonder. A specific pixel-pad topology is required to enable the connection via micro-particles and create cavities into which excess epoxy can flow. This pixel-pad topology is achieved with an in-house Electroless Nickel Immersion Gold process that is also under development within the project. The ENIG and ACA processes are qualified with a variety of different ASICs, sensors, and dedicated test structures, with pad diameters ranging from 12 渭m to 140 渭m and pitches between 20 渭m and 1.3 mm. The produced assemblies are characterized electrically, with radioactive-source exposures, and in tests with high-momentum particle beams. A focus is placed on recent optimization of the plating and interconnect processes, resulting in an improved plating uniformity and interconnect yield. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09883v2-abstract-full').style.display = 'none'; document.getElementById('2312.09883v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Procceding to IPRD23 conference in Siena 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.19398">arXiv:2310.19398</a> <span> [<a href="https://arxiv.org/pdf/2310.19398">pdf</a>, <a href="https://arxiv.org/format/2310.19398">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/01/P01014">10.1088/1748-0221/19/01/P01014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiation Tolerance of SiGe BiCMOS Monolithic Silicon Pixel Detectors without Internal Gain Layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Milanesio%2C+M">M. Milanesio</a>, <a href="/search/physics?searchtype=author&query=Paolozzi%2C+L">L. Paolozzi</a>, <a href="/search/physics?searchtype=author&query=Moretti%2C+T">T. Moretti</a>, <a href="/search/physics?searchtype=author&query=Cardella%2C+R">R. Cardella</a>, <a href="/search/physics?searchtype=author&query=Kugathasan%2C+T">T. Kugathasan</a>, <a href="/search/physics?searchtype=author&query=Martinelli%2C+F">F. Martinelli</a>, <a href="/search/physics?searchtype=author&query=Picardi%2C+A">A. Picardi</a>, <a href="/search/physics?searchtype=author&query=Semendyaev%2C+I">I. Semendyaev</a>, <a href="/search/physics?searchtype=author&query=Zambito%2C+S">S. Zambito</a>, <a href="/search/physics?searchtype=author&query=Nakamura%2C+K">K. Nakamura</a>, <a href="/search/physics?searchtype=author&query=Tabuko%2C+Y">Y. Tabuko</a>, <a href="/search/physics?searchtype=author&query=Togawa%2C+M">M. Togawa</a>, <a href="/search/physics?searchtype=author&query=Elviretti%2C+M">M. Elviretti</a>, <a href="/search/physics?searchtype=author&query=R%C3%BCcker%2C+H">H. R眉cker</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cardarelli%2C+R">R. Cardarelli</a>, <a href="/search/physics?searchtype=author&query=D%C3%A9bieux%2C+S">S. D茅bieux</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Fenoglio%2C+C+A">C. A. Fenoglio</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">D. Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">S. Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Iodice%2C+L">L. Iodice</a>, <a href="/search/physics?searchtype=author&query=Kotitsa%2C+R">R. Kotitsa</a>, <a href="/search/physics?searchtype=author&query=Magliocca%2C+C">C. Magliocca</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">M. Nessi</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.19398v1-abstract-short" style="display: inline;"> A monolithic silicon pixel prototype produced for the MONOLITH ERC Advanced project was irradiated with 70 MeV protons up to a fluence of 1 x 10^16 1 MeV n_eq/cm^2. The ASIC contains a matrix of hexagonal pixels with 100 渭m pitch, readout by low-noise and very fast SiGe HBT frontend electronics. Wafers with 50 渭m thick epilayer with a resistivity of 350 惟cm were used to produce a fully depleted se… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19398v1-abstract-full').style.display = 'inline'; document.getElementById('2310.19398v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.19398v1-abstract-full" style="display: none;"> A monolithic silicon pixel prototype produced for the MONOLITH ERC Advanced project was irradiated with 70 MeV protons up to a fluence of 1 x 10^16 1 MeV n_eq/cm^2. The ASIC contains a matrix of hexagonal pixels with 100 渭m pitch, readout by low-noise and very fast SiGe HBT frontend electronics. Wafers with 50 渭m thick epilayer with a resistivity of 350 惟cm were used to produce a fully depleted sensor. Laboratory tests conducted with a 90Sr source show that the detector works satisfactorily after irradiation. The signal-to-noise ratio is not seen to change up to fluence of 6 x 10^14 n_eq /cm^2 . The signal time jitter was estimated as the ratio between the voltage noise and the signal slope at threshold. At -35 {^\circ}C, sensor bias voltage of 200 V and frontend power consumption of 0.9 W/cm^2, the time jitter of the most-probable signal amplitude was estimated to be 21 ps for proton fluence up to 6 x 10 n_eq/cm^2 and 57 ps at 1 x 10^16 n_eq/cm^2 . Increasing the sensor bias to 250 V and the analog voltage of the preamplifier from 1.8 to 2.0 V provides a time jitter of 40 ps at 1 x 10^16 n_eq/cm^2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19398v1-abstract-full').style.display = 'none'; document.getElementById('2310.19398v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to JINST</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12818">arXiv:2307.12818</a> <span> [<a href="https://arxiv.org/pdf/2307.12818">pdf</a>, <a href="https://arxiv.org/format/2307.12818">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/proc/202477002">10.1051/proc/202477002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Splitting scheme for gyro-kinetic equations with Semi-Lagrangian and Arakawa substeps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bell%2C+D">Dominik Bell</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+C">Martin Campos Pinto</a>, <a href="/search/physics?searchtype=author&query=Kumozec%2C+D">Davor Kumozec</a>, <a href="/search/physics?searchtype=author&query=Schnack%2C+F">Frederik Schnack</a>, <a href="/search/physics?searchtype=author&query=Bourne%2C+E">Emily Bourne</a>, <a href="/search/physics?searchtype=author&query=Sonnendr%C3%BCcker%2C+E">Eric Sonnendr眉cker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12818v2-abstract-short" style="display: inline;"> The gyro-kinetic model is an approximation of the Vlasov-Maxwell system in a strongly magnetized magnetic field. We propose a new algorithm for solving it combining the Semi-Lagrangian (SL) method and the Arakawa (AKW) scheme with a time-integrator. Both methods are successfully used in practice for different kinds of applications, in our case, we combine them by first decomposing the problem into… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12818v2-abstract-full').style.display = 'inline'; document.getElementById('2307.12818v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12818v2-abstract-full" style="display: none;"> The gyro-kinetic model is an approximation of the Vlasov-Maxwell system in a strongly magnetized magnetic field. We propose a new algorithm for solving it combining the Semi-Lagrangian (SL) method and the Arakawa (AKW) scheme with a time-integrator. Both methods are successfully used in practice for different kinds of applications, in our case, we combine them by first decomposing the problem into a fast (parallel) and a slow (perpendicular) dynamical system. The SL approach and the AKW scheme will be used to solve respectively the fast and the slow subsystems. Compared to the scheme in [1], where the entire model is solved using only the SL method, our goal is to replace the method used in the slow subsystem by the AKW scheme, in order to improve the conservation of the physical constants. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12818v2-abstract-full').style.display = 'none'; document.getElementById('2307.12818v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.13778">arXiv:2306.13778</a> <span> [<a href="https://arxiv.org/pdf/2306.13778">pdf</a>, <a href="https://arxiv.org/format/2306.13778">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Mass, momentum and energy preserving FEEC and broken-FEEC schemes for the incompressible Navier-Stokes equations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Carlier%2C+V">Valentin Carlier</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+C">Martin Campos Pinto</a>, <a href="/search/physics?searchtype=author&query=Fambri%2C+F">Francesco Fambri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.13778v1-abstract-short" style="display: inline;"> In this article we propose two finite element schemes for the Navier-Stokes equations, based on a reformulation that involves differential operators from the de Rham sequence and an advection operator with explicit skew-symmetry in weak form. Our first scheme is obtained by discretizing this formulation with conforming FEEC (Finite Element Exterior Calculus) spaces: it preserves the pointwise dive… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13778v1-abstract-full').style.display = 'inline'; document.getElementById('2306.13778v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.13778v1-abstract-full" style="display: none;"> In this article we propose two finite element schemes for the Navier-Stokes equations, based on a reformulation that involves differential operators from the de Rham sequence and an advection operator with explicit skew-symmetry in weak form. Our first scheme is obtained by discretizing this formulation with conforming FEEC (Finite Element Exterior Calculus) spaces: it preserves the pointwise divergence free constraint of the velocity, its total momentum and its energy, in addition to being pressure robust. Following the broken-FEEC approach, our second scheme uses fully discontinuous spaces and local conforming projections to define the discrete differential operators. It preserves the same invariants up to a dissipation of energy to stabilize numerical discontinuities. For both schemes we use a middle point time discretization which preserve these invariants at the fully discrete level and we analyse its well-posedness in terms of a CFL condition. Numerical test cases performed with spline finite elements allow us to verify the high order accuracy of the resulting numerical methods, as well as their ability to handle general boundary conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13778v1-abstract-full').style.display = 'none'; document.getElementById('2306.13778v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> G.1; J.2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09770">arXiv:2306.09770</a> <span> [<a href="https://arxiv.org/pdf/2306.09770">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Analysis of Mumbai Floods in recent Years with Crowdsourced Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tripathy%2C+S+S">Shrabani Sailaja Tripathy</a>, <a href="/search/physics?searchtype=author&query=Chaudhuri%2C+S">Sautrik Chaudhuri</a>, <a href="/search/physics?searchtype=author&query=Murtugudde%2C+R">Raghu Murtugudde</a>, <a href="/search/physics?searchtype=author&query=Mharte%2C+V">Vedant Mharte</a>, <a href="/search/physics?searchtype=author&query=Parmar%2C+D">Dulari Parmar</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M">Manasi Pinto</a>, <a href="/search/physics?searchtype=author&query=Zope%2C+P+E">P. E. Zope</a>, <a href="/search/physics?searchtype=author&query=Dixit%2C+V">Vishal Dixit</a>, <a href="/search/physics?searchtype=author&query=Ghosh%2C+S">Subimal Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09770v1-abstract-short" style="display: inline;"> Mumbai, a densely populated city, experiences frequent extreme rainfall events leading to floods and waterlogging. However, the lack of real-time flood monitoring and detailed past flooding data limits the scientific analysis to extreme rainfall assessment. To address this, we explore the usability of crowdsourced data for identifying flood hotspots and extracting reliable flood information from t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09770v1-abstract-full').style.display = 'inline'; document.getElementById('2306.09770v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09770v1-abstract-full" style="display: none;"> Mumbai, a densely populated city, experiences frequent extreme rainfall events leading to floods and waterlogging. However, the lack of real-time flood monitoring and detailed past flooding data limits the scientific analysis to extreme rainfall assessment. To address this, we explore the usability of crowdsourced data for identifying flood hotspots and extracting reliable flood information from the past. Through an automated program, we filter and retrieve flood-related data from Twitter, using location information to generate flood maps for past heavy rainfall events. The validity of the retrieved data is confirmed by comparing it with volunteered geographic information (VGI) which is more accurate but less abundant. In the absence of direct flood information, Twitter data is cross-verified with the Height above the Nearest Drainage (HAND) map, which serves as a proxy for elevation. Interestingly, while extreme rainfall events are increasing in frequency, recent Twitter-based information shows a decrease in flood reporting, attributed to effective mitigation measures implemented at various flood hotspots. Local surveys support this finding and highlight measures such as underground storage tanks and pumping stations that have reduced flood severity. Our study demonstrates the value of crowdsourced data in identifying urban flood hotspots and its potential for real-time flood monitoring and forecasting. This approach can be adapted for data-sparse urban regions to generate location-specific warnings, contributing to improved early warnings and mitigating the impact on lives and property. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09770v1-abstract-full').style.display = 'none'; document.getElementById('2306.09770v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.09525">arXiv:2305.09525</a> <span> [<a href="https://arxiv.org/pdf/2305.09525">pdf</a>, <a href="https://arxiv.org/format/2305.09525">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acd1ed">10.3847/1538-4357/acd1ed <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The effect of the ambient solar wind medium on a CME-driven shock and the associated gradual solar energetic particle event </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wijsen%2C+N">Nicolas Wijsen</a>, <a href="/search/physics?searchtype=author&query=Lario%2C+D">David Lario</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez-Cano%2C+B">Beatriz S谩nchez-Cano</a>, <a href="/search/physics?searchtype=author&query=Jebaraj%2C+I+C">Immanuel C. Jebaraj</a>, <a href="/search/physics?searchtype=author&query=Dresing%2C+N">Nina Dresing</a>, <a href="/search/physics?searchtype=author&query=Richardson%2C+I+G">Ian G. Richardson</a>, <a href="/search/physics?searchtype=author&query=Aran%2C+A">Angels Aran</a>, <a href="/search/physics?searchtype=author&query=Kouloumvakos%2C+A">Athanasios Kouloumvakos</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+Z">Zheyi Ding</a>, <a href="/search/physics?searchtype=author&query=Niemela%2C+A">Antonio Niemela</a>, <a href="/search/physics?searchtype=author&query=Palmerio%2C+E">Erika Palmerio</a>, <a href="/search/physics?searchtype=author&query=Carcaboso%2C+F">Fernando Carcaboso</a>, <a href="/search/physics?searchtype=author&query=Vainio%2C+R">Rami Vainio</a>, <a href="/search/physics?searchtype=author&query=Afanasiev%2C+A">Alexandr Afanasiev</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M">Marco Pinto</a>, <a href="/search/physics?searchtype=author&query=Pacheco%2C+D">Daniel Pacheco</a>, <a href="/search/physics?searchtype=author&query=Poedts%2C+S">Stefaan Poedts</a>, <a href="/search/physics?searchtype=author&query=Heyner%2C+D">Daniel Heyner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.09525v1-abstract-short" style="display: inline;"> We present simulation results of a gradual solar energetic particle (SEP) event detected on 2021 October 9 by multiple spacecraft, including BepiColombo (Bepi) and near-Earth spacecraft such as the Advanced Composition Explorer (ACE). A peculiarity of this event is that the presence of a high speed stream (HSS) affected the low-energy ion component ($\lesssim 5$ MeV) of the gradual SEP event at bo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09525v1-abstract-full').style.display = 'inline'; document.getElementById('2305.09525v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.09525v1-abstract-full" style="display: none;"> We present simulation results of a gradual solar energetic particle (SEP) event detected on 2021 October 9 by multiple spacecraft, including BepiColombo (Bepi) and near-Earth spacecraft such as the Advanced Composition Explorer (ACE). A peculiarity of this event is that the presence of a high speed stream (HSS) affected the low-energy ion component ($\lesssim 5$ MeV) of the gradual SEP event at both Bepi and ACE, despite the HSS having only a modest solar wind speed increase. Using the EUHFORIA (European Heliospheric FORecasting Information Asset) magnetohydrodynamic model, we replicate the solar wind during the event and the coronal mass ejection (CME) that generated it. We then combine these results with the energetic particle transport model PARADISE (PArticle Radiation Asset Directed at Interplanetary Space Exploration). We find that the structure of the CME-driven shock was affected by the non-uniform solar wind, especially near the HSS, resulting in a shock wavefront with strong variations in its properties such as its compression ratio and obliquity. By scaling the emission of energetic particles from the shock to the solar wind compression at the shock, an excellent match between the PARADISE simulation and in-situ measurements of $\lesssim 5$ MeV ions is obtained. Our modelling shows that the intricate intensity variations observed at both ACE and Bepi were influenced by the non-uniform emission of energetic particles from the deformed shock wave and demonstrates the influence of even modest background solar wind structures on the development of SEP events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09525v1-abstract-full').style.display = 'none'; document.getElementById('2305.09525v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, accepted for publication in The Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01891">arXiv:2304.01891</a> <span> [<a href="https://arxiv.org/pdf/2304.01891">pdf</a>, <a href="https://arxiv.org/format/2304.01891">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Geometric Particle-In-Cell discretizations of a plasma hybrid model with kinetic ions and mass-less fluid electrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yingzhe Li</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+C">Martin Campos Pinto</a>, <a href="/search/physics?searchtype=author&query=Holderied%2C+F">Florian Holderied</a>, <a href="/search/physics?searchtype=author&query=Possanner%2C+S">Stefan Possanner</a>, <a href="/search/physics?searchtype=author&query=Sonnendr%C3%BCcker%2C+E">Eric Sonnendr眉cker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01891v1-abstract-short" style="display: inline;"> We explore the possibilities of applying structure-preserving numerical methods to a plasma hybrid model with kinetic ions and mass-less fluid electrons satisfying the quasi-neutrality relation. The numerical schemes are derived by finite element methods in the framework of finite element exterior calculus (FEEC) for field variables, particle-in-cell (PIC) methods for the Vlasov equation, and spli… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01891v1-abstract-full').style.display = 'inline'; document.getElementById('2304.01891v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01891v1-abstract-full" style="display: none;"> We explore the possibilities of applying structure-preserving numerical methods to a plasma hybrid model with kinetic ions and mass-less fluid electrons satisfying the quasi-neutrality relation. The numerical schemes are derived by finite element methods in the framework of finite element exterior calculus (FEEC) for field variables, particle-in-cell (PIC) methods for the Vlasov equation, and splitting methods in time based on an anti-symmetric bracket proposed. Conservation properties of energy, quasi-neutrality relation, positivity of density, and divergence-free property of the magnetic field are given irrespective of the used resolution and metric. Local quasi-interpolation is used for dealing with the current terms in order to make the proposed methods more efficient. The implementation has been done in the framework of the Python package STRUPHY [1], and has been verified by extensive numerical experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01891v1-abstract-full').style.display = 'none'; document.getElementById('2304.01891v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 65M75 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> G.1.8 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.10969">arXiv:2303.10969</a> <span> [<a href="https://arxiv.org/pdf/2303.10969">pdf</a>, <a href="https://arxiv.org/format/2303.10969">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202345938">10.1051/0004-6361/202345938 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The 17 April 2021 widespread solar energetic particle event </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dresing%2C+N">N. Dresing</a>, <a href="/search/physics?searchtype=author&query=Rodr%C3%ADguez-Garc%C3%ADa%2C+L">L. Rodr铆guez-Garc铆a</a>, <a href="/search/physics?searchtype=author&query=Jebaraj%2C+I+C">I. C. Jebaraj</a>, <a href="/search/physics?searchtype=author&query=Warmuth%2C+A">A. Warmuth</a>, <a href="/search/physics?searchtype=author&query=Wallace%2C+S">S. Wallace</a>, <a href="/search/physics?searchtype=author&query=Balmaceda%2C+L">L. Balmaceda</a>, <a href="/search/physics?searchtype=author&query=Podladchikova%2C+T">T. Podladchikova</a>, <a href="/search/physics?searchtype=author&query=Strauss%2C+R+D">R. D. Strauss</a>, <a href="/search/physics?searchtype=author&query=Kouloumvakos%2C+A">A. Kouloumvakos</a>, <a href="/search/physics?searchtype=author&query=Palmroos%2C+C">C. Palmroos</a>, <a href="/search/physics?searchtype=author&query=Krupar%2C+V">V. Krupar</a>, <a href="/search/physics?searchtype=author&query=Gieseler%2C+J">J. Gieseler</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Z">Z. Xu</a>, <a href="/search/physics?searchtype=author&query=Mitchell%2C+J+G">J. G. Mitchell</a>, <a href="/search/physics?searchtype=author&query=Cohen%2C+C+M+S">C. M. S. Cohen</a>, <a href="/search/physics?searchtype=author&query=de+Nolfo%2C+G+A">G. A. de Nolfo</a>, <a href="/search/physics?searchtype=author&query=Palmerio%2C+E">E. Palmerio</a>, <a href="/search/physics?searchtype=author&query=Carcaboso%2C+F">F. Carcaboso</a>, <a href="/search/physics?searchtype=author&query=Kilpua%2C+E+K+J">E. K. J. Kilpua</a>, <a href="/search/physics?searchtype=author&query=Trotta%2C+D">D. Trotta</a>, <a href="/search/physics?searchtype=author&query=Auster%2C+U">U. Auster</a>, <a href="/search/physics?searchtype=author&query=Asvestari%2C+E">E. Asvestari</a>, <a href="/search/physics?searchtype=author&query=da+Silva%2C+D">D. da Silva</a>, <a href="/search/physics?searchtype=author&query=Dr%C3%B6ge%2C+W">W. Dr枚ge</a>, <a href="/search/physics?searchtype=author&query=Getachew%2C+T">T. Getachew</a> , et al. (24 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.10969v1-abstract-short" style="display: inline;"> Context. A solar eruption on 17 April 2021 produced a widespread Solar Energetic Particle (SEP) event that was observed by five longitudinally well-separated observers in the inner heliosphere at heliocentric distances of 0.42 to 1 au: BepiColombo, Parker Solar Probe, Solar Orbiter, STEREO A, and near-Earth spacecraft. The event produced relativistic electrons and protons. It was associated with a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10969v1-abstract-full').style.display = 'inline'; document.getElementById('2303.10969v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.10969v1-abstract-full" style="display: none;"> Context. A solar eruption on 17 April 2021 produced a widespread Solar Energetic Particle (SEP) event that was observed by five longitudinally well-separated observers in the inner heliosphere at heliocentric distances of 0.42 to 1 au: BepiColombo, Parker Solar Probe, Solar Orbiter, STEREO A, and near-Earth spacecraft. The event produced relativistic electrons and protons. It was associated with a long-lasting solar hard X-ray flare and a medium fast Coronal Mass Ejection (CME) with a speed of 880 km/s driving a shock, an EUV wave as well as long-lasting radio burst activity showing four distinct type III burst. Methods. A multi-spacecraft analysis of remote-sensing and in-situ observations is applied to attribute the SEP observations at the different locations to the various potential source regions at the Sun. An ENLIL simulation is used to characterize the interplanetary state and its role for the energetic particle transport. The magnetic connection between each spacecraft and the Sun is determined. Based on a reconstruction of the coronal shock front we determine the times when the shock establishes magnetic connections with the different observers. Radio observations are used to characterize the directivity of the four main injection episodes, which are then employed in a 2D SEP transport simulation. Results. Timing analysis of the inferred SEP solar injection suggests different source processes being important for the electron and the proton event. Comparison among the characteristics and timing of the potential particle sources, such as the CME-driven shock or the flare, suggests a stronger shock contribution for the proton event and a more likely flare-related source of the electron event. Conclusions. We find that in this event an important ingredient for the wide SEP spread was the wide longitudinal range of about 110 degrees covered by distinct SEP injections. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10969v1-abstract-full').style.display = 'none'; document.getElementById('2303.10969v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 674, A105 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05792">arXiv:2303.05792</a> <span> [<a href="https://arxiv.org/pdf/2303.05792">pdf</a>, <a href="https://arxiv.org/format/2303.05792">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/04/C04003">10.1088/1748-0221/18/04/C04003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of novel low-mass module concepts based on MALTA monolithic pixel sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Weick%2C+J">J Weick</a>, <a href="/search/physics?searchtype=author&query=Dachs%2C+F">F Dachs</a>, <a href="/search/physics?searchtype=author&query=Riedler%2C+P">P Riedler</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+V+B">M Vicente Barreto Pinto</a>, <a href="/search/physics?searchtype=author&query=Zoubir%2C+A+M">A M. Zoubir</a>, <a href="/search/physics?searchtype=author&query=de+Acedo%2C+L+F+S">L Flores Sanz de Acedo</a>, <a href="/search/physics?searchtype=author&query=Tortajada%2C+I+A">I Asensi Tortajada</a>, <a href="/search/physics?searchtype=author&query=Dao%2C+V">V Dao</a>, <a href="/search/physics?searchtype=author&query=Dobrijevic%2C+D">D Dobrijevic</a>, <a href="/search/physics?searchtype=author&query=Pernegger%2C+H">H Pernegger</a>, <a href="/search/physics?searchtype=author&query=Van+Rijnbach%2C+M">M Van Rijnbach</a>, <a href="/search/physics?searchtype=author&query=Sharma%2C+A">A Sharma</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+C+S">C Solans Sanchez</a>, <a href="/search/physics?searchtype=author&query=de+Oliveira%2C+R">R de Oliveira</a>, <a href="/search/physics?searchtype=author&query=Dannheim%2C+D">D Dannheim</a>, <a href="/search/physics?searchtype=author&query=Schmidt%2C+J+V">J V Schmidt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05792v1-abstract-short" style="display: inline;"> The MALTA CMOS monolithic silicon pixel sensors has been developed in the Tower 180 nm CMOS imaging process. It includes an asynchronous readout scheme and complies with the ATLAS inner tracker requirements for the HL-LHC. Several 4-chip MALTA modules have been built using Al wedge wire bonding to demonstrate the direct transfer of data from chip-to-chip and to read out the data of the entire modu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05792v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05792v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05792v1-abstract-full" style="display: none;"> The MALTA CMOS monolithic silicon pixel sensors has been developed in the Tower 180 nm CMOS imaging process. It includes an asynchronous readout scheme and complies with the ATLAS inner tracker requirements for the HL-LHC. Several 4-chip MALTA modules have been built using Al wedge wire bonding to demonstrate the direct transfer of data from chip-to-chip and to read out the data of the entire module via one chip only. Novel technologies such as Anisotropic Conductive Films (ACF) and nanowires have been investigated to build a compact module. A lightweight flex with 17 渭m trace spacing has been designed, allowing compact packaging with a direct attachment of the chip connection pads to the flex using these interconnection technologies. This contribution shows the current state of our work towards a flexible, low material, dense and reliable packaging and modularization of pixel detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05792v1-abstract-full').style.display = 'none'; document.getElementById('2303.05792v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages + 1 page references,8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.01195">arXiv:2303.01195</a> <span> [<a href="https://arxiv.org/pdf/2303.01195">pdf</a>, <a href="https://arxiv.org/format/2303.01195">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Verification of the Fourier-enhanced 3D finite element Poisson solver of the gyrokinetic full-f code PICLS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Stier%2C+A">Annika Stier</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+A">Alberto Bottino</a>, <a href="/search/physics?searchtype=author&query=Boesl%2C+M">Mathias Boesl</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+C">Martin Campos Pinto</a>, <a href="/search/physics?searchtype=author&query=Hayward-Schneider%2C+T">Thomas Hayward-Schneider</a>, <a href="/search/physics?searchtype=author&query=Coster%2C+D">David Coster</a>, <a href="/search/physics?searchtype=author&query=Bergmann%2C+A">Andreas Bergmann</a>, <a href="/search/physics?searchtype=author&query=Murugappan%2C+M">Moahan Murugappan</a>, <a href="/search/physics?searchtype=author&query=Brunner%2C+S">Stephan Brunner</a>, <a href="/search/physics?searchtype=author&query=Villard%2C+L">Laurent Villard</a>, <a href="/search/physics?searchtype=author&query=Jenko%2C+F">Frank Jenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.01195v1-abstract-short" style="display: inline;"> We introduce and derive the Fourier-enhanced 3D electrostatic field solver of the gyrokinetic full-f PIC code PICLS. The solver makes use of a Fourier representation in one periodic direction of the domain to make the solving of the system easily parallelizable and thus save run time. The presented solver is then verified using two different approaches of manufactured solutions. The test setup use… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01195v1-abstract-full').style.display = 'inline'; document.getElementById('2303.01195v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.01195v1-abstract-full" style="display: none;"> We introduce and derive the Fourier-enhanced 3D electrostatic field solver of the gyrokinetic full-f PIC code PICLS. The solver makes use of a Fourier representation in one periodic direction of the domain to make the solving of the system easily parallelizable and thus save run time. The presented solver is then verified using two different approaches of manufactured solutions. The test setup used for this effort is a pinch geometry with ITG-like electric potential, containing one non-periodic and two periodic directions, one of which will be discrete Fourier transformed. The results of these tests show that in all three dimensions the L2-error decreases with a constant rate close to the ideal prediction, depending on the degree of the chosen basis functions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01195v1-abstract-full').style.display = 'none'; document.getElementById('2303.01195v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 65N30 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.12244">arXiv:2301.12244</a> <span> [<a href="https://arxiv.org/pdf/2301.12244">pdf</a>, <a href="https://arxiv.org/format/2301.12244">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/03/P03047">10.1088/1748-0221/18/03/P03047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 20 ps Time Resolution with a Fully-Efficient Monolithic Silicon Pixel Detector without Internal Gain Layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zambito%2C+S">S. Zambito</a>, <a href="/search/physics?searchtype=author&query=Milanesio%2C+M">M. Milanesio</a>, <a href="/search/physics?searchtype=author&query=Moretti%2C+T">T. Moretti</a>, <a href="/search/physics?searchtype=author&query=Paolozzi%2C+L">L. Paolozzi</a>, <a href="/search/physics?searchtype=author&query=Munker%2C+M">M. Munker</a>, <a href="/search/physics?searchtype=author&query=Cardella%2C+R">R. Cardella</a>, <a href="/search/physics?searchtype=author&query=Kugathasan%2C+T">T. Kugathasan</a>, <a href="/search/physics?searchtype=author&query=Martinelli%2C+F">F. Martinelli</a>, <a href="/search/physics?searchtype=author&query=Picardi%2C+A">A. Picardi</a>, <a href="/search/physics?searchtype=author&query=Elviretti%2C+M">M. Elviretti</a>, <a href="/search/physics?searchtype=author&query=R%C3%BCcker%2C+H">H. R眉cker</a>, <a href="/search/physics?searchtype=author&query=Trusch%2C+A">A. Trusch</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cardarelli%2C+R">R. Cardarelli</a>, <a href="/search/physics?searchtype=author&query=D%C3%A9bieux%2C+S">S. D茅bieux</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Fenoglio%2C+C+A">C. A. Fenoglio</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">D. Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">S. Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Iodice%2C+L">L. Iodice</a>, <a href="/search/physics?searchtype=author&query=Kotitsa%2C+R">R. Kotitsa</a>, <a href="/search/physics?searchtype=author&query=Magliocca%2C+C">C. Magliocca</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">M. Nessi</a>, <a href="/search/physics?searchtype=author&query=Pizarro-Medina%2C+A">A. Pizarro-Medina</a>, <a href="/search/physics?searchtype=author&query=Iglesias%2C+J+S">J. Sabater Iglesias</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.12244v1-abstract-short" style="display: inline;"> A second monolithic silicon pixel prototype was produced for the MONOLITH project. The ASIC contains a matrix of hexagonal pixels with 100 渭m pitch, readout by a low-noise and very fast SiGe HBT frontend electronics. Wafers with 50 渭m thick epilayer of 350 惟cm resistivity were used to produce a fully depleted sensor. Laboratory and testbeam measurements of the analog channels present in the pixel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12244v1-abstract-full').style.display = 'inline'; document.getElementById('2301.12244v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.12244v1-abstract-full" style="display: none;"> A second monolithic silicon pixel prototype was produced for the MONOLITH project. The ASIC contains a matrix of hexagonal pixels with 100 渭m pitch, readout by a low-noise and very fast SiGe HBT frontend electronics. Wafers with 50 渭m thick epilayer of 350 惟cm resistivity were used to produce a fully depleted sensor. Laboratory and testbeam measurements of the analog channels present in the pixel matrix show that the sensor has a 130 V wide bias-voltage operation plateau at which the efficiency is 99.8%. Although this prototype does not include an internal gain layer, the design optimised for timing of the sensor and the front-end electronics provides a time resolutions of 20 ps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12244v1-abstract-full').style.display = 'none'; document.getElementById('2301.12244v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04740">arXiv:2211.04740</a> <span> [<a href="https://arxiv.org/pdf/2211.04740">pdf</a>, <a href="https://arxiv.org/format/2211.04740">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20$-$300 GeV/c </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Acar%2C+B">B. Acar</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adloff%2C+C">C. Adloff</a>, <a href="/search/physics?searchtype=author&query=Afanasiev%2C+S">S. Afanasiev</a>, <a href="/search/physics?searchtype=author&query=Akchurin%2C+N">N. Akchurin</a>, <a href="/search/physics?searchtype=author&query=Akg%C3%BCn%2C+B">B. Akg眉n</a>, <a href="/search/physics?searchtype=author&query=Alhusseini%2C+M">M. Alhusseini</a>, <a href="/search/physics?searchtype=author&query=Alison%2C+J">J. Alison</a>, <a href="/search/physics?searchtype=author&query=de+Almeida%2C+J+P+F+d+s+S">J. P. Figueiredo de sa Sousa de Almeida</a>, <a href="/search/physics?searchtype=author&query=de+Almeida%2C+P+G+D">P. G. Dias de Almeida</a>, <a href="/search/physics?searchtype=author&query=Alpana%2C+A">A. Alpana</a>, <a href="/search/physics?searchtype=author&query=Alyari%2C+M">M. Alyari</a>, <a href="/search/physics?searchtype=author&query=Andreev%2C+I">I. Andreev</a>, <a href="/search/physics?searchtype=author&query=Aras%2C+U">U. Aras</a>, <a href="/search/physics?searchtype=author&query=Aspell%2C+P">P. Aspell</a>, <a href="/search/physics?searchtype=author&query=Atakisi%2C+I+O">I. O. Atakisi</a>, <a href="/search/physics?searchtype=author&query=Bach%2C+O">O. Bach</a>, <a href="/search/physics?searchtype=author&query=Baden%2C+A">A. Baden</a>, <a href="/search/physics?searchtype=author&query=Bakas%2C+G">G. Bakas</a>, <a href="/search/physics?searchtype=author&query=Bakshi%2C+A">A. Bakshi</a>, <a href="/search/physics?searchtype=author&query=Banerjee%2C+S">S. Banerjee</a>, <a href="/search/physics?searchtype=author&query=DeBarbaro%2C+P">P. DeBarbaro</a>, <a href="/search/physics?searchtype=author&query=Bargassa%2C+P">P. Bargassa</a>, <a href="/search/physics?searchtype=author&query=Barney%2C+D">D. Barney</a>, <a href="/search/physics?searchtype=author&query=Beaudette%2C+F">F. Beaudette</a> , et al. (435 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04740v2-abstract-short" style="display: inline;"> The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing med… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04740v2-abstract-full').style.display = 'inline'; document.getElementById('2211.04740v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04740v2-abstract-full" style="display: none;"> The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly readout by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04740v2-abstract-full').style.display = 'none'; document.getElementById('2211.04740v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication by JINST</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.13046">arXiv:2210.13046</a> <span> [<a href="https://arxiv.org/pdf/2210.13046">pdf</a>, <a href="https://arxiv.org/format/2210.13046">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/01/C01040">10.1088/1748-0221/18/01/C01040 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pixel detector hybridisation with Anisotropic Conductive Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schmidt%2C+J+V">J. V. Schmidt</a>, <a href="/search/physics?searchtype=author&query=Braach%2C+J">J. Braach</a>, <a href="/search/physics?searchtype=author&query=Dannheim%2C+D">D. Dannheim</a>, <a href="/search/physics?searchtype=author&query=De+Oliveira%2C+R">R. De Oliveira</a>, <a href="/search/physics?searchtype=author&query=Svihra%2C+P">P. Svihra</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+V+B">M. Vicente Barreto Pinto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.13046v1-abstract-short" style="display: inline;"> Hybrid pixel detectors require a reliable and cost-effective interconnect technology adapted to the pitch and die sizes of the respective applications. During the ASIC and sensor R&D phase, and in general for small-scale applications, such interconnect technologies need to be suitable for the assembly of single-dies, typically available from Multi-Project-Wafer submissions. Within the CERN EP R&D… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13046v1-abstract-full').style.display = 'inline'; document.getElementById('2210.13046v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.13046v1-abstract-full" style="display: none;"> Hybrid pixel detectors require a reliable and cost-effective interconnect technology adapted to the pitch and die sizes of the respective applications. During the ASIC and sensor R&D phase, and in general for small-scale applications, such interconnect technologies need to be suitable for the assembly of single-dies, typically available from Multi-Project-Wafer submissions. Within the CERN EP R&D programme and the AIDAinnova collaboration, innovative hybridisation concepts targeting vertex-detector applications at future colliders are under development. This contribution presents recent results of a newly developed in-house single-die interconnection process based on Anisotropic Conductive Film (ACF). The ACF interconnect technology replaces the solder bumps with conductive particles embedded in an adhesive film. The electro-mechanical connection between the sensor and the read-out chip is achieved via thermo-compression of the ACF using a flip-chip device bonder. A specific pad topology is required to enable the connection via conductive particles and create cavities into which excess epoxy can flow. This pixel-pad topology is achieved with an in-house Electroless Nickel Immersion Gold (ENIG) plating process that is also under development within the project. The ENIG and ACF processes are qualified with the Timepix3 ASIC and sensors, with 55 um pixel pitch and 14 um pad diameter. The ACF technology can also be used for ASIC-PCB/FPC integration, replacing wire bonding or large-pitch solder bumping techniques. This contribution introduces the ENIG plating and ACF processes and presents recent results on Timepix3 hybrid assemblies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13046v1-abstract-full').style.display = 'none'; document.getElementById('2210.13046v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 18 C01040 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.03726">arXiv:2210.03726</a> <span> [<a href="https://arxiv.org/pdf/2210.03726">pdf</a>, <a href="https://arxiv.org/format/2210.03726">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0129989">10.1063/5.0129989 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A $未f$ PIC method with Forward-Backward Lagrangian reconstructions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pinto%2C+M+C">Martin Campos Pinto</a>, <a href="/search/physics?searchtype=author&query=Pelz%2C+M">Merlin Pelz</a>, <a href="/search/physics?searchtype=author&query=Tournier%2C+P">Pierre-Henri Tournier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.03726v2-abstract-short" style="display: inline;"> In this work we describe a $未f$ particle simulation method where the bulk density is periodically remapped on a coarse spline grid using a Forward-Backward Lagrangian (FBL) approach. This method is designed to handle plasma regimes where the densities strongly deviate from their initial state and may evolve into general profiles. We describe the method in the case of an electrostatic particle-in-c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03726v2-abstract-full').style.display = 'inline'; document.getElementById('2210.03726v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.03726v2-abstract-full" style="display: none;"> In this work we describe a $未f$ particle simulation method where the bulk density is periodically remapped on a coarse spline grid using a Forward-Backward Lagrangian (FBL) approach. This method is designed to handle plasma regimes where the densities strongly deviate from their initial state and may evolve into general profiles. We describe the method in the case of an electrostatic particle-in-cell scheme and validate its qualitative properties using a classical two-stream instability subject to a uniform oscillating drive. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03726v2-abstract-full').style.display = 'none'; document.getElementById('2210.03726v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.02132">arXiv:2210.02132</a> <span> [<a href="https://arxiv.org/pdf/2210.02132">pdf</a>, <a href="https://arxiv.org/format/2210.02132">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/03/C03008">10.1088/1748-0221/18/03/C03008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of novel single-die hybridisation processes for small-pitch pixel detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Svihra%2C+P">Peter Svihra</a>, <a href="/search/physics?searchtype=author&query=Braach%2C+J">Justus Braach</a>, <a href="/search/physics?searchtype=author&query=Buschmann%2C+E">Eric Buschmann</a>, <a href="/search/physics?searchtype=author&query=Dannheim%2C+D">Dominik Dannheim</a>, <a href="/search/physics?searchtype=author&query=Dort%2C+K">Katharina Dort</a>, <a href="/search/physics?searchtype=author&query=Fritzsch%2C+T">Thomas Fritzsch</a>, <a href="/search/physics?searchtype=author&query=Kristiansen%2C+H">Helge Kristiansen</a>, <a href="/search/physics?searchtype=author&query=Rothermund%2C+M">Mario Rothermund</a>, <a href="/search/physics?searchtype=author&query=Schmidt%2C+J+V">Janis Viktor Schmidt</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+V+B">Mateus Vicente Barreto Pinto</a>, <a href="/search/physics?searchtype=author&query=Williams%2C+M">Morag Williams</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.02132v1-abstract-short" style="display: inline;"> Hybrid pixel detectors require a reliable and cost-effective interconnect technology adapted to the pitch and die sizes of the respective applications. During the ASIC and sensor R\&D phase, especially for small-scale applications, such interconnect technologies need to be suitable for the assembly of single dies, typically available from Multi-Project-Wafer submissions. Within the CERN EP R&D pro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02132v1-abstract-full').style.display = 'inline'; document.getElementById('2210.02132v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.02132v1-abstract-full" style="display: none;"> Hybrid pixel detectors require a reliable and cost-effective interconnect technology adapted to the pitch and die sizes of the respective applications. During the ASIC and sensor R\&D phase, especially for small-scale applications, such interconnect technologies need to be suitable for the assembly of single dies, typically available from Multi-Project-Wafer submissions. Within the CERN EP R&D programme and the AIDAinnova collaboration, innovative hybridisation concepts targeting vertex-detector applications at future colliders are under development. Recent results of two novel interconnect methods for pixel pitches of 25um and 55um are presented in this contribution -- an industrial fine-pitch SnAg solder bump-bonding process adapted to single-die processing using support wafers, as well as a newly developed in-house single-die interconnection process based on ACF. The fine-pitch bump-bonding process is qualified with hybrid assemblies from a recent bonding campaign at Frauenhofer IZM. Individual CLICpix2 ASICs with 25um pixel pitch were bump-bonded to active-edge silicon sensors with thicknesses ranging from 50um to 130um. The device characterisation was conducted in the laboratory as well as during a beam test campaign at the CERN SPS beam-line, demonstrating an interconnect yield of about 99.7%. The ACF interconnect technology replaces the solder bumps by conductive micro-particles embedded in an epoxy film. The electro-mechanical connection between the sensor and ASIC is achieved via thermocompression of the ACF using a flip-chip device bonder. The required pixel pad topology is achieved with an in-house ENIG plating process. This newly developed ACF hybridisation process is first qualified with the Timepix3 ASICs and sensors with 55um pixel pitch. The technology can be also used for ASIC-PCB/FPC integration, replacing wire bonding or large-pitch solder bumping techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02132v1-abstract-full').style.display = 'none'; document.getElementById('2210.02132v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23rd iWoRiD proceedings</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2023_JINST_18_C03008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.11019">arXiv:2208.11019</a> <span> [<a href="https://arxiv.org/pdf/2208.11019">pdf</a>, <a href="https://arxiv.org/format/2208.11019">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/10/P10040">10.1088/1748-0221/17/10/P10040 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testbeam Results of the Picosecond Avalanche Detector Proof-Of-Concept Prototype </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Iacobucci%2C+G">G. Iacobucci</a>, <a href="/search/physics?searchtype=author&query=Zambito%2C+S">S. Zambito</a>, <a href="/search/physics?searchtype=author&query=Milanesio%2C+M">M. Milanesio</a>, <a href="/search/physics?searchtype=author&query=Moretti%2C+T">T. Moretti</a>, <a href="/search/physics?searchtype=author&query=Saidi%2C+J">J. Saidi</a>, <a href="/search/physics?searchtype=author&query=Paolozzi%2C+L">L. Paolozzi</a>, <a href="/search/physics?searchtype=author&query=Munker%2C+M">M. Munker</a>, <a href="/search/physics?searchtype=author&query=Cardella%2C+R">R. Cardella</a>, <a href="/search/physics?searchtype=author&query=Martinelli%2C+F">F. Martinelli</a>, <a href="/search/physics?searchtype=author&query=Picardi%2C+A">A. Picardi</a>, <a href="/search/physics?searchtype=author&query=R%C3%BCcker%2C+H">H. R眉cker</a>, <a href="/search/physics?searchtype=author&query=Trusch%2C+A">A. Trusch</a>, <a href="/search/physics?searchtype=author&query=Valerio%2C+P">P. Valerio</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cardarelli%2C+R">R. Cardarelli</a>, <a href="/search/physics?searchtype=author&query=D%C3%A9bieux%2C+S">S. D茅bieux</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Fenoglio%2C+C+A">C. A. Fenoglio</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">D. Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">S. Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Gurimskaya%2C+Y">Y. Gurimskaya</a>, <a href="/search/physics?searchtype=author&query=Kotitsa%2C+R">R. Kotitsa</a>, <a href="/search/physics?searchtype=author&query=Magliocca%2C+C">C. Magliocca</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">M. Nessi</a>, <a href="/search/physics?searchtype=author&query=Pizarro-Medina%2C+A">A. Pizarro-Medina</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.11019v1-abstract-short" style="display: inline;"> The proof-of-concept prototype of the Picosecond Avalanche Detector, a multi-PN junction monolithic silicon detector with continuous gain layer deep in the sensor depleted region, was tested with a beam of 180 GeV pions at the CERN SPS. The prototype features low noise and fast SiGe BiCMOS frontend electronics and hexagonal pixels with 100 渭m pitch. At a sensor bias voltage of 125 V, the detector… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11019v1-abstract-full').style.display = 'inline'; document.getElementById('2208.11019v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.11019v1-abstract-full" style="display: none;"> The proof-of-concept prototype of the Picosecond Avalanche Detector, a multi-PN junction monolithic silicon detector with continuous gain layer deep in the sensor depleted region, was tested with a beam of 180 GeV pions at the CERN SPS. The prototype features low noise and fast SiGe BiCMOS frontend electronics and hexagonal pixels with 100 渭m pitch. At a sensor bias voltage of 125 V, the detector provides full efficiency and average time resolution of 30, 25 and 17 ps in the overall pixel area for a power consumption of 0.4, 0.9 and 2.7 W/cm^2, respectively. In this first prototype the time resolution depends significantly on the distance from the center of the pixel, varying at the highest power consumption measured between 13 ps at the center of the pixel and 25 ps in the inter-pixel region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11019v1-abstract-full').style.display = 'none'; document.getElementById('2208.11019v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05238">arXiv:2208.05238</a> <span> [<a href="https://arxiv.org/pdf/2208.05238">pdf</a>, <a href="https://arxiv.org/format/2208.05238">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> A broken FEEC framework for electromagnetic problems on mapped multipatch domains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=G%C3%BC%C3%A7l%C3%BC%2C+Y">Yaman G眉莽l眉</a>, <a href="/search/physics?searchtype=author&query=Hadjout%2C+S">Said Hadjout</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+C">Martin Campos Pinto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05238v2-abstract-short" style="display: inline;"> We present a framework for the structure-preserving approximation of partial differential equations on mapped multipatch domains, extending the classical theory of finite element exterior calculus (FEEC) to discrete de Rham sequences which are broken, i.e., fully discontinuous across the patch interfaces. Following the Conforming/Nonconforming Galerkin (CONGA) schemes developed in [http://dx.doi.o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05238v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05238v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05238v2-abstract-full" style="display: none;"> We present a framework for the structure-preserving approximation of partial differential equations on mapped multipatch domains, extending the classical theory of finite element exterior calculus (FEEC) to discrete de Rham sequences which are broken, i.e., fully discontinuous across the patch interfaces. Following the Conforming/Nonconforming Galerkin (CONGA) schemes developed in [http://dx.doi.org/10.1090/mcom/3079, arXiv:2109.02553, our approach is based on: (i) the identification of a conforming discrete de Rham sequence with stable commuting projection operators, (ii) the relaxation of the continuity constraints between patches, and (iii) the construction of conforming projections mapping back to the conforming subspaces, allowing to define discrete differentials on the broken sequence. This framework combines the advantages of conforming FEEC discretizations (e.g. commuting projections, discrete duality and Hodge-Helmholtz decompositions) with the data locality and implementation simplicity of interior penalty methods for discontinuous Galerkin discretizations. We apply it to several initial- and boundary-value problems, as well as eigenvalue problems arising in electromagnetics. In each case our formulations are shown to be well posed thanks to an appropriate stabilization of the jumps across the interfaces, and the solutions are extremely robust with respect to the stabilization parameter. Finally we describe a construction using tensor-product splines on mapped cartesian patches, and we detail the associated matrix operators. Our numerical experiments confirm the accuracy and stability of this discrete framework, and they allow us to verify that expected structure-preserving properties such as divergence or harmonic constraints are respected to floating-point accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05238v2-abstract-full').style.display = 'none'; document.getElementById('2208.05238v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 65M60; 65N30; 65N25 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.07952">arXiv:2206.07952</a> <span> [<a href="https://arxiv.org/pdf/2206.07952">pdf</a>, <a href="https://arxiv.org/format/2206.07952">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Picosecond Avalanche Detector -- working principle and gain measurement with a proof-of-concept prototype </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Paolozzi%2C+L">L. Paolozzi</a>, <a href="/search/physics?searchtype=author&query=Munker%2C+M">M. Munker</a>, <a href="/search/physics?searchtype=author&query=Cardella%2C+R">R. Cardella</a>, <a href="/search/physics?searchtype=author&query=Milanesio%2C+M">M. Milanesio</a>, <a href="/search/physics?searchtype=author&query=Gurimskaya%2C+Y">Y. Gurimskaya</a>, <a href="/search/physics?searchtype=author&query=Martinelli%2C+F">F. Martinelli</a>, <a href="/search/physics?searchtype=author&query=Picardi%2C+A">A. Picardi</a>, <a href="/search/physics?searchtype=author&query=R%C3%BCcker%2C+H">H. R眉cker</a>, <a href="/search/physics?searchtype=author&query=Trusch%2C+A">A. Trusch</a>, <a href="/search/physics?searchtype=author&query=Valerio%2C+P">P. Valerio</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cardarelli%2C+R">R. Cardarelli</a>, <a href="/search/physics?searchtype=author&query=D%C3%A9bieux%2C+S">S. D茅bieux</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Fenoglio%2C+C+A">C. A. Fenoglio</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">D. Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">S. Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Kotitsa%2C+R">R. Kotitsa</a>, <a href="/search/physics?searchtype=author&query=Magliocca%2C+C">C. Magliocca</a>, <a href="/search/physics?searchtype=author&query=Moretti%2C+T">T. Moretti</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">M. Nessi</a>, <a href="/search/physics?searchtype=author&query=Medina%2C+A+P">A. Pizarro Medina</a>, <a href="/search/physics?searchtype=author&query=Iglesias%2C+J+S">J. Sabater Iglesias</a>, <a href="/search/physics?searchtype=author&query=Saidi%2C+J">J. Saidi</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+V+B">M. Vicente Barreto Pinto</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.07952v2-abstract-short" style="display: inline;"> The Picosecond Avalanche Detector is a multi-junction silicon pixel detector based on a $\mathrm{(NP)_{drift}(NP)_{gain}}$ structure, devised to enable charged-particle tracking with high spatial resolution and picosecond time-stamp capability. It uses a continuous junction deep inside the sensor volume to amplify the primary charge produced by ionizing radiation in a thin absorption layer. The si… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07952v2-abstract-full').style.display = 'inline'; document.getElementById('2206.07952v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.07952v2-abstract-full" style="display: none;"> The Picosecond Avalanche Detector is a multi-junction silicon pixel detector based on a $\mathrm{(NP)_{drift}(NP)_{gain}}$ structure, devised to enable charged-particle tracking with high spatial resolution and picosecond time-stamp capability. It uses a continuous junction deep inside the sensor volume to amplify the primary charge produced by ionizing radiation in a thin absorption layer. The signal is then induced by the secondary charges moving inside a thicker drift region. A proof-of-concept monolithic prototype, consisting of a matrix of hexagonal pixels with 100 $渭$m pitch, has been produced using the 130 nm SiGe BiCMOS process by IHP microelectronics. Measurements on probe station and with a $^{55}$Fe X-ray source show that the prototype is functional and displays avalanche gain up to a maximum electron gain of 23. A study of the avalanche characteristics, corroborated by TCAD simulations, indicates that space-charge effects due to the large primary charge produced by the conversion of X-rays from the $^{55}$Fe source limits the effective gain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07952v2-abstract-full').style.display = 'none'; document.getElementById('2206.07952v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.05111">arXiv:2205.05111</a> <span> [<a href="https://arxiv.org/pdf/2205.05111">pdf</a>, <a href="https://arxiv.org/format/2205.05111">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.461457">10.1364/OL.461457 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Frozen spatial coherence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pinto%2C+M+A">M. A. Pinto</a>, <a href="/search/physics?searchtype=author&query=Brand%C3%A3o%2C+P+A">P. A. Brand茫o</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.05111v2-abstract-short" style="display: inline;"> Inspired by the concept of coherent frozen waves, this paper introduces one possible theoretical framework of its partially coherent version, a frozen spatial coherence, in which a desired two-point correlation structure of an optical field is created on the propagation axis by superposing partially coherent zero-order Bessel beams. It is shown that the cross-spectral density can be given a descri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05111v2-abstract-full').style.display = 'inline'; document.getElementById('2205.05111v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.05111v2-abstract-full" style="display: none;"> Inspired by the concept of coherent frozen waves, this paper introduces one possible theoretical framework of its partially coherent version, a frozen spatial coherence, in which a desired two-point correlation structure of an optical field is created on the propagation axis by superposing partially coherent zero-order Bessel beams. It is shown that the cross-spectral density can be given a description in terms of a two-dimensional Fourier series, analogous to the one-dimensional approach of coherent frozen waves. The formalism is applied to the design of a partially coherent field which is highly coherent only if the pair of points in the propagation axis belong to a predetermined and finite range and highly incoherent outside that range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05111v2-abstract-full').style.display = 'none'; document.getElementById('2205.05111v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.08999">arXiv:2112.08999</a> <span> [<a href="https://arxiv.org/pdf/2112.08999">pdf</a>, <a href="https://arxiv.org/format/2112.08999">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/02/P02019">10.1088/1748-0221/17/02/P02019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficiency and time resolution of monolithic silicon pixel detectors in SiGe BiCMOS technology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Iacobucci%2C+G">G. Iacobucci</a>, <a href="/search/physics?searchtype=author&query=Paolozzi%2C+L">L. Paolozzi</a>, <a href="/search/physics?searchtype=author&query=Valerio%2C+P">P. Valerio</a>, <a href="/search/physics?searchtype=author&query=Moretti%2C+T">T. Moretti</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cardarelli%2C+R">R. Cardarelli</a>, <a href="/search/physics?searchtype=author&query=Cardella%2C+R">R. Cardella</a>, <a href="/search/physics?searchtype=author&query=D%C3%A9bieux%2C+S">S. D茅bieux</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">D. Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">S. Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Gurimskaya%2C+Y">Y. Gurimskaya</a>, <a href="/search/physics?searchtype=author&query=Kotitsa%2C+R">R. Kotitsa</a>, <a href="/search/physics?searchtype=author&query=Magliocca%2C+C">C. Magliocca</a>, <a href="/search/physics?searchtype=author&query=Martinelli%2C+F">F. Martinelli</a>, <a href="/search/physics?searchtype=author&query=Milanesio%2C+M">M. Milanesio</a>, <a href="/search/physics?searchtype=author&query=M%C3%BCnker%2C+M">M. M眉nker</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">M. Nessi</a>, <a href="/search/physics?searchtype=author&query=Picardi%2C+A">A. Picardi</a>, <a href="/search/physics?searchtype=author&query=Saidi%2C+J">J. Saidi</a>, <a href="/search/physics?searchtype=author&query=R%C3%BCcker%2C+H">H. R眉cker</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+V+B">M. Vicente Barreto Pinto</a>, <a href="/search/physics?searchtype=author&query=Zambito%2C+S">S. Zambito</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.08999v2-abstract-short" style="display: inline;"> A monolithic silicon pixel detector prototype has been produced in the SiGe BiCMOS SG13G2 130 nm node technology by IHP. The ASIC contains a matrix of hexagonal pixels with pitch of approximately 100 $渭$m. Three analog pixels were calibrated in laboratory with radioactive sources and tested in a 180 GeV/c pion beamline at the CERN SPS. A detection efficiency of $\left(99.9^{+0.1}_{-0.2}\right)$% w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.08999v2-abstract-full').style.display = 'inline'; document.getElementById('2112.08999v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.08999v2-abstract-full" style="display: none;"> A monolithic silicon pixel detector prototype has been produced in the SiGe BiCMOS SG13G2 130 nm node technology by IHP. The ASIC contains a matrix of hexagonal pixels with pitch of approximately 100 $渭$m. Three analog pixels were calibrated in laboratory with radioactive sources and tested in a 180 GeV/c pion beamline at the CERN SPS. A detection efficiency of $\left(99.9^{+0.1}_{-0.2}\right)$% was measured together with a time resolution of $(36.4 \pm 0.8)$ps at the highest preamplifier bias current working point of 150 $渭$A and at a sensor bias voltage of 160 V. The ASIC was also characterized at lower bias voltage and preamplifier current. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.08999v2-abstract-full').style.display = 'none'; document.getElementById('2112.08999v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.06855">arXiv:2111.06855</a> <span> [<a href="https://arxiv.org/pdf/2111.06855">pdf</a>, <a href="https://arxiv.org/format/2111.06855">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/05/P05022">10.1088/1748-0221/17/05/P05022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Acar%2C+B">B. Acar</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adloff%2C+C">C. Adloff</a>, <a href="/search/physics?searchtype=author&query=Afanasiev%2C+S">S. Afanasiev</a>, <a href="/search/physics?searchtype=author&query=Akchurin%2C+N">N. Akchurin</a>, <a href="/search/physics?searchtype=author&query=Akg%C3%BCn%2C+B">B. Akg眉n</a>, <a href="/search/physics?searchtype=author&query=Khan%2C+F+A">F. Alam Khan</a>, <a href="/search/physics?searchtype=author&query=Alhusseini%2C+M">M. Alhusseini</a>, <a href="/search/physics?searchtype=author&query=Alison%2C+J">J. Alison</a>, <a href="/search/physics?searchtype=author&query=Alpana%2C+A">A. Alpana</a>, <a href="/search/physics?searchtype=author&query=Altopp%2C+G">G. Altopp</a>, <a href="/search/physics?searchtype=author&query=Alyari%2C+M">M. Alyari</a>, <a href="/search/physics?searchtype=author&query=An%2C+S">S. An</a>, <a href="/search/physics?searchtype=author&query=Anagul%2C+S">S. Anagul</a>, <a href="/search/physics?searchtype=author&query=Andreev%2C+I">I. Andreev</a>, <a href="/search/physics?searchtype=author&query=Aspell%2C+P">P. Aspell</a>, <a href="/search/physics?searchtype=author&query=Atakisi%2C+I+O">I. O. Atakisi</a>, <a href="/search/physics?searchtype=author&query=Bach%2C+O">O. Bach</a>, <a href="/search/physics?searchtype=author&query=Baden%2C+A">A. Baden</a>, <a href="/search/physics?searchtype=author&query=Bakas%2C+G">G. Bakas</a>, <a href="/search/physics?searchtype=author&query=Bakshi%2C+A">A. Bakshi</a>, <a href="/search/physics?searchtype=author&query=Bannerjee%2C+S">S. Bannerjee</a>, <a href="/search/physics?searchtype=author&query=Bargassa%2C+P">P. Bargassa</a>, <a href="/search/physics?searchtype=author&query=Barney%2C+D">D. Barney</a>, <a href="/search/physics?searchtype=author&query=Beaudette%2C+F">F. Beaudette</a> , et al. (364 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.06855v3-abstract-short" style="display: inline;"> The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06855v3-abstract-full').style.display = 'inline'; document.getElementById('2111.06855v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.06855v3-abstract-full" style="display: none;"> The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm$^2$ are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06855v3-abstract-full').style.display = 'none'; document.getElementById('2111.06855v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.02106">arXiv:2102.02106</a> <span> [<a href="https://arxiv.org/pdf/2102.02106">pdf</a>, <a href="https://arxiv.org/format/2102.02106">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> On Geometric Fourier Particle In Cell Methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pinto%2C+M+C">Martin Campos Pinto</a>, <a href="/search/physics?searchtype=author&query=Ameres%2C+J">Jakob Ameres</a>, <a href="/search/physics?searchtype=author&query=Kormann%2C+K">Katharina Kormann</a>, <a href="/search/physics?searchtype=author&query=Sonnendr%C3%BCcker%2C+E">Eric Sonnendr眉cker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.02106v1-abstract-short" style="display: inline;"> In this article we describe a unifying framework for variational electromagnetic particle schemes of spectral type, and we propose a novel spectral Particle-In-Cell (PIC) scheme that preserves a discrete Hamiltonian structure. Our work is based on a new abstract variational derivation of particle schemes which builds on a de Rham complex where Low's Lagrangian is discretized using a particle appro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02106v1-abstract-full').style.display = 'inline'; document.getElementById('2102.02106v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.02106v1-abstract-full" style="display: none;"> In this article we describe a unifying framework for variational electromagnetic particle schemes of spectral type, and we propose a novel spectral Particle-In-Cell (PIC) scheme that preserves a discrete Hamiltonian structure. Our work is based on a new abstract variational derivation of particle schemes which builds on a de Rham complex where Low's Lagrangian is discretized using a particle approximation of the distribution function. In this framework, which extends the recent Finite Element based Geometric Electromagnetic PIC (GEMPIC) method to a variety of field solvers, the discretization of the electromagnetic potentials and fields is represented by a de Rham sequence of compatible spaces, and the particle-field coupling procedure is described by approximation operators that commute with the differential operators in the sequence. In particular, for spectral Maxwell solvers the choice of truncated $L^2$ projections using continuous Fourier transform coefficients for the commuting approximation operators yields the gridless Particle-in-Fourier method, whereas spectral Particle-in-Cell methods are obtained by using discrete Fourier transform coefficients computed from a grid. By introducing a new sequence of spectral pseudo-differential approximation operators, we then obtain a novel variational spectral PIC method with discrete Hamiltonian structure that we call Fourier-GEMPIC. Fully discrete schemes are then derived using a Hamiltonian splitting procedure, leading to explicit time steps that preserve the Gauss laws and the discrete Poisson bracket associated with the Hamiltonian structure. These explicit steps share many similarities with standard spectral PIC methods. As arbitrary filters are allowed in our framework, we also discuss aliasing errors and study a natural back-filtering procedure to mitigate the damping caused by anti-aliasing smoothing particle shapes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02106v1-abstract-full').style.display = 'none'; document.getElementById('2102.02106v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 34 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.06336">arXiv:2012.06336</a> <span> [<a href="https://arxiv.org/pdf/2012.06336">pdf</a>, <a href="https://arxiv.org/format/2012.06336">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Construction and commissioning of CMS CE prototype silicon modules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Acar%2C+B">B. Acar</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adloff%2C+C">C. Adloff</a>, <a href="/search/physics?searchtype=author&query=Afanasiev%2C+S">S. Afanasiev</a>, <a href="/search/physics?searchtype=author&query=Akchurin%2C+N">N. Akchurin</a>, <a href="/search/physics?searchtype=author&query=Akg%C3%BCn%2C+B">B. Akg眉n</a>, <a href="/search/physics?searchtype=author&query=Alhusseini%2C+M">M. Alhusseini</a>, <a href="/search/physics?searchtype=author&query=Alison%2C+J">J. Alison</a>, <a href="/search/physics?searchtype=author&query=Altopp%2C+G">G. Altopp</a>, <a href="/search/physics?searchtype=author&query=Alyari%2C+M">M. Alyari</a>, <a href="/search/physics?searchtype=author&query=An%2C+S">S. An</a>, <a href="/search/physics?searchtype=author&query=Anagul%2C+S">S. Anagul</a>, <a href="/search/physics?searchtype=author&query=Andreev%2C+I">I. Andreev</a>, <a href="/search/physics?searchtype=author&query=Andrews%2C+M">M. Andrews</a>, <a href="/search/physics?searchtype=author&query=Aspell%2C+P">P. Aspell</a>, <a href="/search/physics?searchtype=author&query=Atakisi%2C+I+A">I. A. Atakisi</a>, <a href="/search/physics?searchtype=author&query=Bach%2C+O">O. Bach</a>, <a href="/search/physics?searchtype=author&query=Baden%2C+A">A. Baden</a>, <a href="/search/physics?searchtype=author&query=Bakas%2C+G">G. Bakas</a>, <a href="/search/physics?searchtype=author&query=Bakshi%2C+A">A. Bakshi</a>, <a href="/search/physics?searchtype=author&query=Bargassa%2C+P">P. Bargassa</a>, <a href="/search/physics?searchtype=author&query=Barney%2C+D">D. Barney</a>, <a href="/search/physics?searchtype=author&query=Becheva%2C+E">E. Becheva</a>, <a href="/search/physics?searchtype=author&query=Behera%2C+P">P. Behera</a>, <a href="/search/physics?searchtype=author&query=Belloni%2C+A">A. Belloni</a> , et al. (307 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.06336v1-abstract-short" style="display: inline;"> As part of its HL-LHC upgrade program, the CMS Collaboration is developing a High Granularity Calorimeter (CE) to replace the existing endcap calorimeters. The CE is a sampling calorimeter with unprecedented transverse and longitudinal readout for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The calorimeter will be built with $\sim$30,000 hexagonal silicon modules. Prototype modul… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.06336v1-abstract-full').style.display = 'inline'; document.getElementById('2012.06336v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.06336v1-abstract-full" style="display: none;"> As part of its HL-LHC upgrade program, the CMS Collaboration is developing a High Granularity Calorimeter (CE) to replace the existing endcap calorimeters. The CE is a sampling calorimeter with unprecedented transverse and longitudinal readout for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The calorimeter will be built with $\sim$30,000 hexagonal silicon modules. Prototype modules have been constructed with 6-inch hexagonal silicon sensors with cell areas of 1.1~$cm^2$, and the SKIROC2-CMS readout ASIC. Beam tests of different sampling configurations were conducted with the prototype modules at DESY and CERN in 2017 and 2018. This paper describes the construction and commissioning of the CE calorimeter prototype, the silicon modules used in the construction, their basic performance, and the methods used for their calibration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.06336v1-abstract-full').style.display = 'none'; document.getElementById('2012.06336v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, submitted to JINST</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.03876">arXiv:2012.03876</a> <span> [<a href="https://arxiv.org/pdf/2012.03876">pdf</a>, <a href="https://arxiv.org/format/2012.03876">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/04/T04001">10.1088/1748-0221/16/04/T04001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The DAQ system of the 12,000 Channel CMS High Granularity Calorimeter Prototype </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Acar%2C+B">B. Acar</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adloff%2C+C">C. Adloff</a>, <a href="/search/physics?searchtype=author&query=Afanasiev%2C+S">S. Afanasiev</a>, <a href="/search/physics?searchtype=author&query=Akchurin%2C+N">N. Akchurin</a>, <a href="/search/physics?searchtype=author&query=Akg%C3%BCn%2C+B">B. Akg眉n</a>, <a href="/search/physics?searchtype=author&query=Alhusseini%2C+M">M. Alhusseini</a>, <a href="/search/physics?searchtype=author&query=Alison%2C+J">J. Alison</a>, <a href="/search/physics?searchtype=author&query=Altopp%2C+G">G. Altopp</a>, <a href="/search/physics?searchtype=author&query=Alyari%2C+M">M. Alyari</a>, <a href="/search/physics?searchtype=author&query=An%2C+S">S. An</a>, <a href="/search/physics?searchtype=author&query=Anagul%2C+S">S. Anagul</a>, <a href="/search/physics?searchtype=author&query=Andreev%2C+I">I. Andreev</a>, <a href="/search/physics?searchtype=author&query=Andrews%2C+M">M. Andrews</a>, <a href="/search/physics?searchtype=author&query=Aspell%2C+P">P. Aspell</a>, <a href="/search/physics?searchtype=author&query=Atakisi%2C+I+A">I. A. Atakisi</a>, <a href="/search/physics?searchtype=author&query=Bach%2C+O">O. Bach</a>, <a href="/search/physics?searchtype=author&query=Baden%2C+A">A. Baden</a>, <a href="/search/physics?searchtype=author&query=Bakas%2C+G">G. Bakas</a>, <a href="/search/physics?searchtype=author&query=Bakshi%2C+A">A. Bakshi</a>, <a href="/search/physics?searchtype=author&query=Bargassa%2C+P">P. Bargassa</a>, <a href="/search/physics?searchtype=author&query=Barney%2C+D">D. Barney</a>, <a href="/search/physics?searchtype=author&query=Becheva%2C+E">E. Becheva</a>, <a href="/search/physics?searchtype=author&query=Behera%2C+P">P. Behera</a>, <a href="/search/physics?searchtype=author&query=Belloni%2C+A">A. Belloni</a> , et al. (307 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.03876v2-abstract-short" style="display: inline;"> The CMS experiment at the CERN LHC will be upgraded to accommodate the 5-fold increase in the instantaneous luminosity expected at the High-Luminosity LHC (HL-LHC). Concomitant with this increase will be an increase in the number of interactions in each bunch crossing and a significant increase in the total ionising dose and fluence. One part of this upgrade is the replacement of the current endca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.03876v2-abstract-full').style.display = 'inline'; document.getElementById('2012.03876v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.03876v2-abstract-full" style="display: none;"> The CMS experiment at the CERN LHC will be upgraded to accommodate the 5-fold increase in the instantaneous luminosity expected at the High-Luminosity LHC (HL-LHC). Concomitant with this increase will be an increase in the number of interactions in each bunch crossing and a significant increase in the total ionising dose and fluence. One part of this upgrade is the replacement of the current endcap calorimeters with a high granularity sampling calorimeter equipped with silicon sensors, designed to manage the high collision rates. As part of the development of this calorimeter, a series of beam tests have been conducted with different sampling configurations using prototype segmented silicon detectors. In the most recent of these tests, conducted in late 2018 at the CERN SPS, the performance of a prototype calorimeter equipped with ${\approx}12,000\rm{~channels}$ of silicon sensors was studied with beams of high-energy electrons, pions and muons. This paper describes the custom-built scalable data acquisition system that was built with readily available FPGA mezzanines and low-cost Raspberry PI computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.03876v2-abstract-full').style.display = 'none'; document.getElementById('2012.03876v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.02146">arXiv:2012.02146</a> <span> [<a href="https://arxiv.org/pdf/2012.02146">pdf</a>, <a href="https://arxiv.org/format/2012.02146">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.023172">10.1103/PhysRevResearch.3.023172 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ternary Quarter Wavelength Coatings for Gravitational Wave Detector Mirrors: Design Optimization via Exhaustive Search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pierro%2C+V">V. Pierro</a>, <a href="/search/physics?searchtype=author&query=Fiumara%2C+V">V. Fiumara</a>, <a href="/search/physics?searchtype=author&query=Chiadini%2C+F">F. Chiadini</a>, <a href="/search/physics?searchtype=author&query=Granata%2C+V">V. Granata</a>, <a href="/search/physics?searchtype=author&query=Di+Giorgio%2C+C">C. Di Giorgio</a>, <a href="/search/physics?searchtype=author&query=Durante%2C+O">O. Durante</a>, <a href="/search/physics?searchtype=author&query=Neilson%2C+J">J. Neilson</a>, <a href="/search/physics?searchtype=author&query=Fittipaldi%2C+R">R. Fittipaldi</a>, <a href="/search/physics?searchtype=author&query=Carapella%2C+G">G. Carapella</a>, <a href="/search/physics?searchtype=author&query=Bobba%2C+F">F. Bobba</a>, <a href="/search/physics?searchtype=author&query=Principe%2C+M">M. Principe</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+I+M">I. M. Pinto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.02146v5-abstract-short" style="display: inline;"> Multimaterial optical coatings are a promising viable option to meet the challenging requirements (in terms of transmittance, absorbance and thermal noise) of next generation gravitational wave detector mirrors. In this paper we focus on ternary coatings consisting of quarter-wavelength thick layers, where a third material (H') is added to the two presently in use, namely Silica (L) and Titania-do… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.02146v5-abstract-full').style.display = 'inline'; document.getElementById('2012.02146v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.02146v5-abstract-full" style="display: none;"> Multimaterial optical coatings are a promising viable option to meet the challenging requirements (in terms of transmittance, absorbance and thermal noise) of next generation gravitational wave detector mirrors. In this paper we focus on ternary coatings consisting of quarter-wavelength thick layers, where a third material (H') is added to the two presently in use, namely Silica (L) and Titania-doped Tantala (H), featuring higher dielectric contrast (against Silica), and lower thermal noise (compared to Titania-doped Tantala), but higher optical losses. We seek the optimal material sequences, featuring minimal thermal (Brownian) noise under prescribed transmittance and absorbance constraints, by exhaustive simulation over all possible configurations, for different values (in a meaningful range) of the optical density and extinction coefficient of the third material. In all cases studied, the optimal designs consist of a stack of (H'|L) doublets topped by a stack of (H|L) doublets, confirming previous heuristic assumptions, and the achievable coating noise power spectral density reduction factor is \sim 0.5. The robustness of the found optimal designs against layer thickness deposition errors and uncertainties and/or fluctuations in the optical losses of the third material is also investigated. Possible margins for further thermal noise reduction by layer thickness optimization, and strategies to implement it, are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.02146v5-abstract-full').style.display = 'none'; document.getElementById('2012.02146v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">(twocolum style) 13 pages, 8 figures, 4 table (updated version 5) Appearing on Physical Review Research</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, 023172 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.13722">arXiv:2005.13722</a> <span> [<a href="https://arxiv.org/pdf/2005.13722">pdf</a>, <a href="https://arxiv.org/format/2005.13722">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Economics">econ.GN</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> COVID-19 and Global Economic Growth: Policy Simulations with a Pandemic-Enabled Neoclassical Growth Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Trotter%2C+I+M">Ian M. Trotter</a>, <a href="/search/physics?searchtype=author&query=Schmidt%2C+L+A+C">Lu铆s A. C. Schmidt</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+B+C+M">Bruno C. M. Pinto</a>, <a href="/search/physics?searchtype=author&query=Batista%2C+A+L">Andrezza L. Batista</a>, <a href="/search/physics?searchtype=author&query=Pellenz%2C+J">J茅ssica Pellenz</a>, <a href="/search/physics?searchtype=author&query=Isidro%2C+M">Maritza Isidro</a>, <a href="/search/physics?searchtype=author&query=Rodrigues%2C+A">Aline Rodrigues</a>, <a href="/search/physics?searchtype=author&query=Suela%2C+A+G+S">Attawan G. S. Suela</a>, <a href="/search/physics?searchtype=author&query=Rodrigues%2C+L">Loredany Rodrigues</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.13722v3-abstract-short" style="display: inline;"> During the COVID-19 pandemic of 2019/2020, authorities have used temporary ad-hoc policy measures, such as lockdowns and mass quarantines, to slow its transmission. However, the consequences of widespread use of these unprecedented measures are poorly understood. To contribute to the understanding of the economic and human consequences of such policy measures, we therefore construct a mathematical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.13722v3-abstract-full').style.display = 'inline'; document.getElementById('2005.13722v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.13722v3-abstract-full" style="display: none;"> During the COVID-19 pandemic of 2019/2020, authorities have used temporary ad-hoc policy measures, such as lockdowns and mass quarantines, to slow its transmission. However, the consequences of widespread use of these unprecedented measures are poorly understood. To contribute to the understanding of the economic and human consequences of such policy measures, we therefore construct a mathematical model of an economy under the impact of a pandemic, select parameter values to represent the global economy under the impact of COVID-19, and perform numerical experiments by simulating a large number of possible policy responses. By varying the starting date of the policy intervention in the simulated scenarios, we find that the most effective policy intervention occurs around the time when the number of active infections is growing at its highest rate -- that is, the results suggest that the most severe measures should only be implemented when the disease is sufficiently spread. The intensity of the intervention, above a certain threshold, does not appear to have a great impact on the outcomes in our simulations, due to the strongly concave relationship that we identify between production shortfall and infection rate reductions. Our experiments further suggest that the intervention should last until after the peak established by the reduced infection rate, which implies that stricter policies should last longer. The model and its implementation, along with the general insights from our policy experiments, may help policymakers design effective emergency policy responses in the face of a serious pandemic, and contribute to our understanding of the relationship between the economic growth and the spread of infectious diseases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.13722v3-abstract-full').style.display = 'none'; document.getElementById('2005.13722v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.08051">arXiv:2005.08051</a> <span> [<a href="https://arxiv.org/pdf/2005.08051">pdf</a>, <a href="https://arxiv.org/format/2005.08051">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/09/P09031">10.1088/1748-0221/15/09/P09031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge Collection and Electrical Characterization of Neutron Irradiated Silicon Pad Detectors for the CMS High Granularity Calorimeter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akchurin%2C+N">N. Akchurin</a>, <a href="/search/physics?searchtype=author&query=Almeida%2C+P">P. Almeida</a>, <a href="/search/physics?searchtype=author&query=Altopp%2C+G">G. Altopp</a>, <a href="/search/physics?searchtype=author&query=Alyari%2C+M">M. Alyari</a>, <a href="/search/physics?searchtype=author&query=Bergauer%2C+T">T. Bergauer</a>, <a href="/search/physics?searchtype=author&query=Brondolin%2C+E">E. Brondolin</a>, <a href="/search/physics?searchtype=author&query=Burkle%2C+B">B. Burkle</a>, <a href="/search/physics?searchtype=author&query=Frey%2C+W+D">W. D. Frey</a>, <a href="/search/physics?searchtype=author&query=Gecse%2C+Z">Z. Gecse</a>, <a href="/search/physics?searchtype=author&query=Heintz%2C+U">U. Heintz</a>, <a href="/search/physics?searchtype=author&query=Hinton%2C+N">N. Hinton</a>, <a href="/search/physics?searchtype=author&query=Kuryatkov%2C+V">V. Kuryatkov</a>, <a href="/search/physics?searchtype=author&query=Lipton%2C+R">R. Lipton</a>, <a href="/search/physics?searchtype=author&query=Mannelli%2C+M">M. Mannelli</a>, <a href="/search/physics?searchtype=author&query=Mengke%2C+T">T. Mengke</a>, <a href="/search/physics?searchtype=author&query=Paulitsch%2C+P">P. Paulitsch</a>, <a href="/search/physics?searchtype=author&query=Peltola%2C+T">T. Peltola</a>, <a href="/search/physics?searchtype=author&query=Pitters%2C+F">F. Pitters</a>, <a href="/search/physics?searchtype=author&query=Sicking%2C+E">E. Sicking</a>, <a href="/search/physics?searchtype=author&query=Spencer%2C+E">E. Spencer</a>, <a href="/search/physics?searchtype=author&query=Tripathi%2C+M">M. Tripathi</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+V+B">M. Vicente Barreto Pinto</a>, <a href="/search/physics?searchtype=author&query=Voelker%2C+J">J. Voelker</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Z. Wang</a>, <a href="/search/physics?searchtype=author&query=Yohay%2C+R">R. Yohay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.08051v3-abstract-short" style="display: inline;"> The replacement of the existing endcap calorimeter in the Compact Muon Solenoid (CMS) detector for the high-luminosity LHC (HL-LHC), scheduled for 2027, will be a high granularity calorimeter. It will provide detailed position, energy, and timing information on electromagnetic and hadronic showers in the immense pileup of the HL-LHC. The High Granularity Calorimeter (HGCAL) will use 120-, 200-, an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08051v3-abstract-full').style.display = 'inline'; document.getElementById('2005.08051v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.08051v3-abstract-full" style="display: none;"> The replacement of the existing endcap calorimeter in the Compact Muon Solenoid (CMS) detector for the high-luminosity LHC (HL-LHC), scheduled for 2027, will be a high granularity calorimeter. It will provide detailed position, energy, and timing information on electromagnetic and hadronic showers in the immense pileup of the HL-LHC. The High Granularity Calorimeter (HGCAL) will use 120-, 200-, and 300-$渭\textrm{m}$ thick silicon (Si) pad sensors as the main active material and will sustain 1-MeV neutron equivalent fluences up to about $10^{16}~\textrm{n}_\textrm{eq}\textrm{cm}^{-2}$. In order to address the performance degradation of the Si detectors caused by the intense radiation environment, irradiation campaigns of test diode samples from 8-inch and 6-inch wafers were performed in two reactors. Characterization of the electrical and charge collection properties after irradiation involved both bulk polarities for the three sensor thicknesses. Since the Si sensors will be operated at -30 $^\circ$C to reduce increasing bulk leakage current with fluence, the charge collection investigation of 30 irradiated samples was carried out with the infrared-TCT setup at -30 $^\circ$C. TCAD simulation results at the lower fluences are in close agreement with the experimental results and provide predictions of sensor performance for the lower fluence regions not covered by the experimental study. All investigated sensors display 60$\%$ or higher charge collection efficiency at their respective highest lifetime fluences when operated at 800 V, and display above 90$\%$ at the lowest fluence, at 600 V. The collected charge close to the fluence of $10^{16}~\textrm{n}_\textrm{eq}\textrm{cm}^{-2}$ exceeds 1 fC at voltages beyond 800 V. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08051v3-abstract-full').style.display = 'none'; document.getElementById('2005.08051v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 34 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.03066">arXiv:1906.03066</a> <span> [<a href="https://arxiv.org/pdf/1906.03066">pdf</a>, <a href="https://arxiv.org/ps/1906.03066">ps</a>, <a href="https://arxiv.org/format/1906.03066">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.99.062411">10.1103/PhysRevE.99.062411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inhibitory autapse mediates anticipated synchronization between coupled neurons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pinto%2C+M+A">Marcel A. Pinto</a>, <a href="/search/physics?searchtype=author&query=Rosso%2C+O+A">Osvaldo A. Rosso</a>, <a href="/search/physics?searchtype=author&query=Matias%2C+F+S">Fernanda S. Matias</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.03066v1-abstract-short" style="display: inline;"> Two identical autonomous dynamical systems unidirectionally coupled in a sender-receiver configuration can exhibit anticipated synchronization (AS) if the Receiver neuron (R) also receives a delayed negative self-feedback. Recently, AS was shown to occur in a three-neuron motif with standard chemical synapses where the delayed inhibition was provided by an interneuron. Here we show that a two-neur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.03066v1-abstract-full').style.display = 'inline'; document.getElementById('1906.03066v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.03066v1-abstract-full" style="display: none;"> Two identical autonomous dynamical systems unidirectionally coupled in a sender-receiver configuration can exhibit anticipated synchronization (AS) if the Receiver neuron (R) also receives a delayed negative self-feedback. Recently, AS was shown to occur in a three-neuron motif with standard chemical synapses where the delayed inhibition was provided by an interneuron. Here we show that a two-neuron model in the presence of an inhibitory autapse, which is a massive self-innervation present in the cortical architecture, may present AS. The GABAergic autapse regulates the internal dynamics of the Receiver neuron and acts as the negative delayed self-feedback required by dynamical systems in order to exhibit AS. In this biologically plausible scenario, a smooth transition from the usual delayed synchronization (DS) to AS typically occurs when the inhibitory conductance is increased. The phenomenon is shown to be robust when model parameters are varied within a physiological range. For extremely large values of the inhibitory autapse the system undergoes to a phase-drift regime in which the Receiver is faster than the Sender. Furthermore, we show that the inhibitory autapse promotes a faster internal dynamics of the free-running Receiver when the two neurons are uncoupled, which could be the mechanism underlying anticipated synchronization and the DS-AS transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.03066v1-abstract-full').style.display = 'none'; document.getElementById('1906.03066v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.02520">arXiv:1905.02520</a> <span> [<a href="https://arxiv.org/pdf/1905.02520">pdf</a>, <a href="https://arxiv.org/format/1905.02520">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.23731/CYRM-2019-001">10.23731/CYRM-2019-001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detector Technologies for CLIC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hoffman%2C+A+C+A">A. C. Abusleme Hoffman</a>, <a href="/search/physics?searchtype=author&query=Par%C3%A8s%2C+G">G. Par猫s</a>, <a href="/search/physics?searchtype=author&query=Fritzsch%2C+T">T. Fritzsch</a>, <a href="/search/physics?searchtype=author&query=Rothermund%2C+M">M. Rothermund</a>, <a href="/search/physics?searchtype=author&query=Jansen%2C+H">H. Jansen</a>, <a href="/search/physics?searchtype=author&query=Kr%C3%BCger%2C+K">K. Kr眉ger</a>, <a href="/search/physics?searchtype=author&query=Sefkow%2C+F">F. Sefkow</a>, <a href="/search/physics?searchtype=author&query=Velyka%2C+A">A. Velyka</a>, <a href="/search/physics?searchtype=author&query=Schwandt%2C+J">J. Schwandt</a>, <a href="/search/physics?searchtype=author&query=Peri%C4%87%2C+I">I. Peri膰</a>, <a href="/search/physics?searchtype=author&query=Emberger%2C+L">L. Emberger</a>, <a href="/search/physics?searchtype=author&query=Graf%2C+C">C. Graf</a>, <a href="/search/physics?searchtype=author&query=Macchiolo%2C+A">A. Macchiolo</a>, <a href="/search/physics?searchtype=author&query=Simon%2C+F">F. Simon</a>, <a href="/search/physics?searchtype=author&query=Szalay%2C+M">M. Szalay</a>, <a href="/search/physics?searchtype=author&query=van+der+Kolk%2C+N">N. van der Kolk</a>, <a href="/search/physics?searchtype=author&query=Abramowicz%2C+H">H. Abramowicz</a>, <a href="/search/physics?searchtype=author&query=Benhammou%2C+Y">Y. Benhammou</a>, <a href="/search/physics?searchtype=author&query=Borysov%2C+O">O. Borysov</a>, <a href="/search/physics?searchtype=author&query=Borysova%2C+M">M. Borysova</a>, <a href="/search/physics?searchtype=author&query=Joffe%2C+A">A. Joffe</a>, <a href="/search/physics?searchtype=author&query=Kananov%2C+S">S. Kananov</a>, <a href="/search/physics?searchtype=author&query=Levy%2C+A">A. Levy</a>, <a href="/search/physics?searchtype=author&query=Levy%2C+I">I. Levy</a>, <a href="/search/physics?searchtype=author&query=Eigen%2C+G">G. Eigen</a> , et al. (107 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.02520v1-abstract-short" style="display: inline;"> The Compact Linear Collider (CLIC) is a high-energy high-luminosity linear electron-positron collider under development. It is foreseen to be built and operated in three stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. It offers a rich physics program including direct searches as well as the probing of new physics through a broad set of precision measurements of Stan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02520v1-abstract-full').style.display = 'inline'; document.getElementById('1905.02520v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.02520v1-abstract-full" style="display: none;"> The Compact Linear Collider (CLIC) is a high-energy high-luminosity linear electron-positron collider under development. It is foreseen to be built and operated in three stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. It offers a rich physics program including direct searches as well as the probing of new physics through a broad set of precision measurements of Standard Model processes, particularly in the Higgs-boson and top-quark sectors. The precision required for such measurements and the specific conditions imposed by the beam dimensions and time structure put strict requirements on the detector design and technology. This includes low-mass vertexing and tracking systems with small cells, highly granular imaging calorimeters, as well as a precise hit-time resolution and power-pulsed operation for all subsystems. A conceptual design for the CLIC detector system was published in 2012. Since then, ambitious R&D programmes for silicon vertex and tracking detectors, as well as for calorimeters have been pursued within the CLICdp, CALICE and FCAL collaborations, addressing the challenging detector requirements with innovative technologies. This report introduces the experimental environment and detector requirements at CLIC and reviews the current status and future plans for detector technology R&D. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02520v1-abstract-full').style.display = 'none'; document.getElementById('1905.02520v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">152 pages, 116 figures; published as CERN Yellow Report Monograph Vol. 1/2019; corresponding editors: Dominik Dannheim, Katja Kr眉ger, Aharon Levy, Andreas N眉rnberg, Eva Sicking</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-2019-001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.08250">arXiv:1904.08250</a> <span> [<a href="https://arxiv.org/pdf/1904.08250">pdf</a>, <a href="https://arxiv.org/format/1904.08250">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.optmat.2019.109269">10.1016/j.optmat.2019.109269 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the performance limits of coatings for gravitational wave detectors made of alternating layers of two materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pierro%2C+V">V. Pierro</a>, <a href="/search/physics?searchtype=author&query=Fiumara%2C+V">V. Fiumara</a>, <a href="/search/physics?searchtype=author&query=Chiadini%2C+F">F. Chiadini</a>, <a href="/search/physics?searchtype=author&query=Bobba%2C+F">F. Bobba</a>, <a href="/search/physics?searchtype=author&query=Carapella%2C+G">G. Carapella</a>, <a href="/search/physics?searchtype=author&query=Di+Giorgio%2C+C">C. Di Giorgio</a>, <a href="/search/physics?searchtype=author&query=Durante%2C+O">O. Durante</a>, <a href="/search/physics?searchtype=author&query=Fittipaldi%2C+R">R. Fittipaldi</a>, <a href="/search/physics?searchtype=author&query=Villa%2C+E+M">E. Mejuto Villa</a>, <a href="/search/physics?searchtype=author&query=Neilson%2C+J">J. Neilson</a>, <a href="/search/physics?searchtype=author&query=Principe%2C+M">M. Principe</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+I+M">I. M. Pinto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.08250v4-abstract-short" style="display: inline;"> The coating design for mirrors used in interferometric detectors of gravitational waves currently consists of stacks of two alternating dielectric materials with different refractive indexes. In order to explore the performance limits of such coatings, we have formulated and solved the design problem as a multiobjective optimization problem consisting of the minimization of both coating transmitta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08250v4-abstract-full').style.display = 'inline'; document.getElementById('1904.08250v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.08250v4-abstract-full" style="display: none;"> The coating design for mirrors used in interferometric detectors of gravitational waves currently consists of stacks of two alternating dielectric materials with different refractive indexes. In order to explore the performance limits of such coatings, we have formulated and solved the design problem as a multiobjective optimization problem consisting of the minimization of both coating transmittance and thermal noise. An algorithm of global optimization (Borg MOEA) has been used without any a priori assumption on the number and thicknesses of the layers in the coating. The algorithm yields to a Pareto tradeoff boundary exhibiting a continuous, decreasing and non convex (bump-like) profile, bounded from below by an exponential curve which can be written in explicit closed form in the transmittance-noise plane. The lower bound curve has the same expression of the relation between transmittance and noise for the quarter wavelength design where the noise coefficient of the high refractive index material assumes a smaller equivalent value. An application of this result allowing to reduce the computational burden of the search procedure is reported and discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08250v4-abstract-full').style.display = 'none'; document.getElementById('1904.08250v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.05914">arXiv:1902.05914</a> <span> [<a href="https://arxiv.org/pdf/1902.05914">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/05/C05003">10.1088/1748-0221/14/05/C05003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrical characterization of AMS aH18 HV-CMOS after neutrons and protons irradiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sultan%2C+D+M+S">D M S Sultan</a>, <a href="/search/physics?searchtype=author&query=Sevilla%2C+S+G">Sergio Gonzalez Sevilla</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">Didier Ferrere</a>, <a href="/search/physics?searchtype=author&query=Iacobucci%2C+G">Giuseppe Iacobucci</a>, <a href="/search/physics?searchtype=author&query=Zaffaroni%2C+E">Ettore Zaffaroni</a>, <a href="/search/physics?searchtype=author&query=Wong%2C+W">Winnie Wong</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+V+B">Mateus Vicente Barrero Pinto</a>, <a href="/search/physics?searchtype=author&query=Kiehn%2C+M">Moritz Kiehn</a>, <a href="/search/physics?searchtype=author&query=Prathapan%2C+M">Mridula Prathapan</a>, <a href="/search/physics?searchtype=author&query=Ehrler%2C+F">Felix Ehrler</a>, <a href="/search/physics?searchtype=author&query=Peric%2C+I">Ivan Peric</a>, <a href="/search/physics?searchtype=author&query=Miucci%2C+A">Antonio Miucci</a>, <a href="/search/physics?searchtype=author&query=Anders%2C+J+K">John Kenneth Anders</a>, <a href="/search/physics?searchtype=author&query=Fehr%2C+A">Armin Fehr</a>, <a href="/search/physics?searchtype=author&query=Weber%2C+M">Michele Weber</a>, <a href="/search/physics?searchtype=author&query=Schoening%2C+A">Andre Schoening</a>, <a href="/search/physics?searchtype=author&query=Herkert%2C+A">Adrian Herkert</a>, <a href="/search/physics?searchtype=author&query=Augustin%2C+H">Heiko Augustin</a>, <a href="/search/physics?searchtype=author&query=Benoit%2C+M">Mathieu Benoit</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.05914v6-abstract-short" style="display: inline;"> In view of the tracking detector application to the ATLAS High Luminosity LHC (HL-LHC) upgrade, we have developed a new generation of High Voltage CMOS (HV-CMOS) monolithic pixel-sensor prototypes featuring the AMS aH18 (180 nm) commercial CMOS technology. By fully integrating both analog and digital readout-circuitry on the same particle-detecting substrate, current challenges of hybrid sensor te… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05914v6-abstract-full').style.display = 'inline'; document.getElementById('1902.05914v6-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.05914v6-abstract-full" style="display: none;"> In view of the tracking detector application to the ATLAS High Luminosity LHC (HL-LHC) upgrade, we have developed a new generation of High Voltage CMOS (HV-CMOS) monolithic pixel-sensor prototypes featuring the AMS aH18 (180 nm) commercial CMOS technology. By fully integrating both analog and digital readout-circuitry on the same particle-detecting substrate, current challenges of hybrid sensor technologies, i.e., larger readout input-capacitance, lower production-yield, and higher production and integration cost, can be downscaled. The large electrode design using high-resistivity substrates actively helps to mitigate the charge-trapping effects, making these chips radiation hard. The surface and bulk damage induced in high irradiation environment change the effective doping concentration of the device, which modulates high electric fields as the reverse-bias voltage increases. This effect can cause high leakage current and premature electrical breakdown, driven by impact ionization. In order to assess the characteristics of heavily irradiated samples, we have carried out dedicated campaigns on ATLASPix1 chips that included irradiations of neutrons and protons, made at different facilities. Here, we report on the electrical characterization of the irradiated samples at different ambient conditions, also in comparison to their pre-irradiation properties. Results demonstrate that hadron irradiated devices can be safely operated at a voltage high enough to allow for high efficiency, up to the fluence of 2E15 neq/cm2, beyond the radiation levels (TID and NIEL) expected in the outermost pixel layers of the new ATLAS tracker for HL-LHC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05914v6-abstract-full').style.display = 'none'; document.getElementById('1902.05914v6-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proof Version to JINST</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.06018">arXiv:1812.06018</a> <span> [<a href="https://arxiv.org/pdf/1812.06018">pdf</a>, <a href="https://arxiv.org/format/1812.06018">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.23731/CYRM-2018-002">10.23731/CYRM-2018-002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Compact Linear Collider (CLIC) - 2018 Summary Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CLIC%2C+T">The CLIC</a>, <a href="/search/physics?searchtype=author&query=collaborations%2C+C">CLICdp collaborations</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Charles%2C+T+K">T. K. Charles</a>, <a href="/search/physics?searchtype=author&query=Giansiracusa%2C+P+J">P. J. Giansiracusa</a>, <a href="/search/physics?searchtype=author&query=Lucas%2C+T+G">T. G. Lucas</a>, <a href="/search/physics?searchtype=author&query=Rassool%2C+R+P">R. P. Rassool</a>, <a href="/search/physics?searchtype=author&query=Volpi%2C+M">M. Volpi</a>, <a href="/search/physics?searchtype=author&query=Balazs%2C+C">C. Balazs</a>, <a href="/search/physics?searchtype=author&query=Afanaciev%2C+K">K. Afanaciev</a>, <a href="/search/physics?searchtype=author&query=Makarenko%2C+V">V. Makarenko</a>, <a href="/search/physics?searchtype=author&query=Patapenka%2C+A">A. Patapenka</a>, <a href="/search/physics?searchtype=author&query=Zhuk%2C+I">I. Zhuk</a>, <a href="/search/physics?searchtype=author&query=Collette%2C+C">C. Collette</a>, <a href="/search/physics?searchtype=author&query=Boland%2C+M+J">M. J. Boland</a>, <a href="/search/physics?searchtype=author&query=Hoffman%2C+A+C+A">A. C. Abusleme Hoffman</a>, <a href="/search/physics?searchtype=author&query=Diaz%2C+M+A">M. A. Diaz</a>, <a href="/search/physics?searchtype=author&query=Garay%2C+F">F. Garay</a>, <a href="/search/physics?searchtype=author&query=Chi%2C+Y">Y. Chi</a>, <a href="/search/physics?searchtype=author&query=He%2C+X">X. He</a>, <a href="/search/physics?searchtype=author&query=Pei%2C+G">G. Pei</a>, <a href="/search/physics?searchtype=author&query=Pei%2C+S">S. Pei</a>, <a href="/search/physics?searchtype=author&query=Shu%2C+G">G. Shu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">X. Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">J. Zhang</a> , et al. (671 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.06018v3-abstract-short" style="display: inline;"> The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^-$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.06018v3-abstract-full').style.display = 'inline'; document.getElementById('1812.06018v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.06018v3-abstract-full" style="display: none;"> The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^-$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.06018v3-abstract-full').style.display = 'none'; document.getElementById('1812.06018v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">112 pages, 59 figures; published as CERN Yellow Report Monograph Vol. 2/2018; corresponding editors: Philip N. Burrows, Nuria Catalan Lasheras, Lucie Linssen, Marko Petri膷, Aidan Robson, Daniel Schulte, Eva Sicking, Steinar Stapnes</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-2018-005-M </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.07817">arXiv:1811.07817</a> <span> [<a href="https://arxiv.org/pdf/1811.07817">pdf</a>, <a href="https://arxiv.org/format/1811.07817">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/02/P02016">10.1088/1748-0221/14/02/P02016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterisation of AMS H35 HV-CMOS monolithic active pixel sensor prototypes for HEP applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Terzo%2C+S">S. Terzo</a>, <a href="/search/physics?searchtype=author&query=Benoit%2C+M">M. Benoit</a>, <a href="/search/physics?searchtype=author&query=Cavallaro%2C+E">E. Cavallaro</a>, <a href="/search/physics?searchtype=author&query=Casanova%2C+R">R. Casanova</a>, <a href="/search/physics?searchtype=author&query=Di+Bello%2C+F+A">F. A. Di Bello</a>, <a href="/search/physics?searchtype=author&query=F%C3%B6rster%2C+F">F. F枚rster</a>, <a href="/search/physics?searchtype=author&query=Grinstein%2C+S">S. Grinstein</a>, <a href="/search/physics?searchtype=author&query=Iacobucci%2C+G">G. Iacobucci</a>, <a href="/search/physics?searchtype=author&query=Peri%C4%87%2C+I">I. Peri膰</a>, <a href="/search/physics?searchtype=author&query=Puigdengoles%2C+C">C. Puigdengoles</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+V+B">M. Vicente Barrero Pinto</a>, <a href="/search/physics?searchtype=author&query=Figueras%2C+E+V">E. Vilella Figueras</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.07817v3-abstract-short" style="display: inline;"> Monolithic active pixel sensors produced in High Voltage CMOS (HV-CMOS) technology are being considered for High Energy Physics applications due to the ease of production and the reduced costs. Such technology is especially appealing when large areas to be covered and material budget are concerned. This is the case of the outermost pixel layers of the future ATLAS tracking detector for the HL-LHC.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.07817v3-abstract-full').style.display = 'inline'; document.getElementById('1811.07817v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.07817v3-abstract-full" style="display: none;"> Monolithic active pixel sensors produced in High Voltage CMOS (HV-CMOS) technology are being considered for High Energy Physics applications due to the ease of production and the reduced costs. Such technology is especially appealing when large areas to be covered and material budget are concerned. This is the case of the outermost pixel layers of the future ATLAS tracking detector for the HL-LHC. For experiments at hadron colliders, radiation hardness is a key requirement which is not fulfilled by standard CMOS sensor designs that collect charge by diffusion. This issue has been addressed by depleted active pixel sensors in which electronics are embedded into a large deep implantation ensuring uniform charge collection by drift. Very first small prototypes of hybrid depleted active pixel sensors have already shown a radiation hardness compatible with the ATLAS requirements. Nevertheless, to compete with the present hybrid solutions a further reduction in costs achievable by a fully monolithic design is desirable. The H35DEMO is a large electrode full reticle demonstrator chip produced in AMS 350 nm HV-CMOS technology by the collaboration of Karlsruher Institut f眉r Technologie (KIT), Institut de F铆sica d'Altes Energies (IFAE), University of Liverpool and University of Geneva. It includes two large monolithic pixel matrices which can be operated standalone. One of these two matrices has been characterised at beam test before and after irradiation with protons and neutrons. Results demonstrated the feasibility of producing radiation hard large area fully monolithic pixel sensors in HV-CMOS technology. H35DEMO chips with a substrate resistivity of 200$惟$ cm irradiated with neutrons showed a radiation hardness up to a fluence of $10^{15}$n$_{eq}$cm$^{-2}$ with a hit efficiency of about 99% and a noise occupancy lower than $10^{-6}$ hits in a LHC bunch crossing of 25ns at 150V. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.07817v3-abstract-full').style.display = 'none'; document.getElementById('1811.07817v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 14 (2019) P02016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.09553">arXiv:1807.09553</a> <span> [<a href="https://arxiv.org/pdf/1807.09553">pdf</a>, <a href="https://arxiv.org/format/1807.09553">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/13/10/P10004">10.1088/1748-0221/13/10/P10004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge collection characterisation with the Transient Current Technique of the ams H35DEMO CMOS detector after proton irradiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Anders%2C+J">John Anders</a>, <a href="/search/physics?searchtype=author&query=Benoit%2C+M">Mathieu Benoit</a>, <a href="/search/physics?searchtype=author&query=Braccini%2C+S">Saverio Braccini</a>, <a href="/search/physics?searchtype=author&query=Casanova%2C+R">Raimon Casanova</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">Hucheng Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+K">Kai Chen</a>, <a href="/search/physics?searchtype=author&query=di+Bello%2C+F+A">Francesco Armando di Bello</a>, <a href="/search/physics?searchtype=author&query=Fehr%2C+A">Armin Fehr</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">Didier Ferrere</a>, <a href="/search/physics?searchtype=author&query=Forshaw%2C+D">Dean Forshaw</a>, <a href="/search/physics?searchtype=author&query=Golling%2C+T">Tobias Golling</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">Sergio Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Iacobucci%2C+G">Giuseppe Iacobucci</a>, <a href="/search/physics?searchtype=author&query=Kiehn%2C+M">Moritz Kiehn</a>, <a href="/search/physics?searchtype=author&query=Lanni%2C+F">Francesco Lanni</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hongbin Liu</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+L">Lingxin Meng</a>, <a href="/search/physics?searchtype=author&query=Merlassino%2C+C">Claudia Merlassino</a>, <a href="/search/physics?searchtype=author&query=Miucci%2C+A">Antonio Miucci</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">Marzio Nessi</a>, <a href="/search/physics?searchtype=author&query=Peri%C4%87%2C+I">Ivan Peri膰</a>, <a href="/search/physics?searchtype=author&query=Rimoldi%2C+M">Marco Rimoldi</a>, <a href="/search/physics?searchtype=author&query=Sultan%2C+D+M+S">D M S Sultan</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+V+B">Mateus Vincente Barreto Pinto</a>, <a href="/search/physics?searchtype=author&query=Vilella%2C+E">Eva Vilella</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.09553v1-abstract-short" style="display: inline;"> This paper reports on the characterisation with Transient Current Technique measurements of the charge collection and depletion depth of a radiation-hard high-voltage CMOS pixel sensor produced at ams AG. Several substrate resistivities were tested before and after proton irradiation with two different sources: the 24 GeV Proton Synchrotron at CERN and the 16.7 MeV Cyclotron at Bern Inselspital. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.09553v1-abstract-full" style="display: none;"> This paper reports on the characterisation with Transient Current Technique measurements of the charge collection and depletion depth of a radiation-hard high-voltage CMOS pixel sensor produced at ams AG. Several substrate resistivities were tested before and after proton irradiation with two different sources: the 24 GeV Proton Synchrotron at CERN and the 16.7 MeV Cyclotron at Bern Inselspital. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.09553v1-abstract-full').style.display = 'none'; document.getElementById('1807.09553v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.04319">arXiv:1807.04319</a> <span> [<a href="https://arxiv.org/pdf/1807.04319">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2019.01.024">10.1016/j.cpc.2019.01.024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GUIMesh: a tool to import STEP geometries into Geant4 via GDML </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pinto%2C+M">Marco Pinto</a>, <a href="/search/physics?searchtype=author&query=Gon%C3%A7alves%2C+P">Patr铆cia Gon莽alves</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.04319v1-abstract-short" style="display: inline;"> Detailed radiation analysis of instruments flown in space is critical to ensure mission safety, often requiring the use of state-of-the-art particle transport simulation tools. Geant4 is one of the most powerful toolkits to simulate the interaction and the passage of particles through matter. This framework however, is not prepared to receive Standard for The Exchange of Product data (STEP) files,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.04319v1-abstract-full').style.display = 'inline'; document.getElementById('1807.04319v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.04319v1-abstract-full" style="display: none;"> Detailed radiation analysis of instruments flown in space is critical to ensure mission safety, often requiring the use of state-of-the-art particle transport simulation tools. Geant4 is one of the most powerful toolkits to simulate the interaction and the passage of particles through matter. This framework however, is not prepared to receive Standard for The Exchange of Product data (STEP) files, the most versatile Computer-Aided Design (CAD) format, as inputs requiring previous conversion to other formats. This, especially when the instruments have complex shapes, and/or a large number of volumes may lead to loss of detail and under or overestimation of the quantities under study. Though several solutions have been proposed to import complex geometries into Geant4, so far, only commercial options are available. In this paper we present a new tool, GUIMesh, that embeds FreeCAD libraries, an open-source CAD editor, to tessellate volumes, and convert them to Geometry Description Markup Language (GDML), a Geant4 readable format, in a straightforward way. Several degrees of freedom are given to the user regarding the mesh and choice of material. Different geometries were tested for p material definition, geometry and navigation errors, successfully validating the method used. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.04319v1-abstract-full').style.display = 'none'; document.getElementById('1807.04319v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.05813">arXiv:1806.05813</a> <span> [<a href="https://arxiv.org/pdf/1806.05813">pdf</a>, <a href="https://arxiv.org/format/1806.05813">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2018.06.020">10.1016/j.nima.2018.06.020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Allpix$^2$: A Modular Simulation Framework for Silicon Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Spannagel%2C+S">Simon Spannagel</a>, <a href="/search/physics?searchtype=author&query=Wolters%2C+K">Koen Wolters</a>, <a href="/search/physics?searchtype=author&query=Hynds%2C+D">Daniel Hynds</a>, <a href="/search/physics?searchtype=author&query=Tehrani%2C+N+A">Niloufar Alipour Tehrani</a>, <a href="/search/physics?searchtype=author&query=Benoit%2C+M">Mathieu Benoit</a>, <a href="/search/physics?searchtype=author&query=Dannheim%2C+D">Dominik Dannheim</a>, <a href="/search/physics?searchtype=author&query=Gauvin%2C+N">Neal Gauvin</a>, <a href="/search/physics?searchtype=author&query=N%C3%BCrnberg%2C+A">Andreas N眉rnberg</a>, <a href="/search/physics?searchtype=author&query=Sch%C3%BCtze%2C+P">Paul Sch眉tze</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+V+B">Mateus Vicente Barreto Pinto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.05813v1-abstract-short" style="display: inline;"> Allpix$^2$ (read: Allpix Squared) is a generic, open-source software framework for the simulation of silicon pixel detectors. Its goal is to ease the implementation of detailed simulations for both single detectors and more complex setups such as beam telescopes from incident radiation to the digitised detector response. Predefined detector types can be automatically constructed from simple model… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.05813v1-abstract-full').style.display = 'inline'; document.getElementById('1806.05813v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.05813v1-abstract-full" style="display: none;"> Allpix$^2$ (read: Allpix Squared) is a generic, open-source software framework for the simulation of silicon pixel detectors. Its goal is to ease the implementation of detailed simulations for both single detectors and more complex setups such as beam telescopes from incident radiation to the digitised detector response. Predefined detector types can be automatically constructed from simple model files describing the detector parameters. The simulation chain is arranged with the help of intuitive configuration files and an extensible system of modules, which implement separate simulation steps such as realistic charge carrier deposition with the Geant4 toolkit or propagation of charge carriers in silicon using a drift-diffusion model. Detailed electric field maps imported from TCAD simulations can be used to precisely model the drift behaviour of charge carriers within the silicon, bringing a new level of realism to Monte Carlo based simulations of particle detectors. This paper provides an overview of the framework and a selection of different simulation modules, and presents a comparison of simulation results with test beam data recorded with hybrid pixel detectors. Emphasis is placed on the performance of the framework itself, using a first-principles simulation of the detectors without addressing secondary ASIC-specific effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.05813v1-abstract-full').style.display = 'none'; document.getElementById('1806.05813v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CLICdp-Pub-2018-002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.08338">arXiv:1712.08338</a> <span> [<a href="https://arxiv.org/pdf/1712.08338">pdf</a>, <a href="https://arxiv.org/format/1712.08338">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Test beam measurement of ams H35 HV-CMOS capacitively coupled pixel sensor prototypes with high-resistivity substrate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Benoit%2C+M">M. Benoit</a>, <a href="/search/physics?searchtype=author&query=Braccini%2C+S">S. Braccini</a>, <a href="/search/physics?searchtype=author&query=Casanova%2C+R">R. Casanova</a>, <a href="/search/physics?searchtype=author&query=Cavallaro%2C+E">E. Cavallaro</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+K">K. Chen</a>, <a href="/search/physics?searchtype=author&query=Di+Bello%2C+F+A">F. A. Di Bello</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">D. Ferrere</a>, <a href="/search/physics?searchtype=author&query=Frizzell%2C+D">D. Frizzell</a>, <a href="/search/physics?searchtype=author&query=Golling%2C+T">T. Golling</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">S. Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Grinstein%2C+S">S. Grinstein</a>, <a href="/search/physics?searchtype=author&query=Iacobucci%2C+G">G. Iacobucci</a>, <a href="/search/physics?searchtype=author&query=Kiehn%2C+M">M. Kiehn</a>, <a href="/search/physics?searchtype=author&query=Lanni%2C+F">F. Lanni</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">H. Liu</a>, <a href="/search/physics?searchtype=author&query=Metcalfe%2C+J">J. Metcalfe</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+L">L. Meng</a>, <a href="/search/physics?searchtype=author&query=Merlassino%2C+C">C. Merlassino</a>, <a href="/search/physics?searchtype=author&query=Miucci%2C+A">A. Miucci</a>, <a href="/search/physics?searchtype=author&query=Muenstermann%2C+D">D. Muenstermann</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">M. Nessi</a>, <a href="/search/physics?searchtype=author&query=Okawa%2C+H">H. Okawa</a>, <a href="/search/physics?searchtype=author&query=Peri%C4%87%2C+I">I. Peri膰</a>, <a href="/search/physics?searchtype=author&query=Rimoldi%2C+M">M. Rimoldi</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.08338v3-abstract-short" style="display: inline;"> In the context of the studies of the ATLAS High Luminosity LHC programme, radiation tolerant pixel detectors in CMOS technologies are investigated. To evaluate the effects of substrate resistivity on CMOS sensor performance, the H35DEMO demonstrator, containing different diode and amplifier designs, was produced in ams H35 HV-CMOS technology using four different substrate resistivities spanning fr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08338v3-abstract-full').style.display = 'inline'; document.getElementById('1712.08338v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.08338v3-abstract-full" style="display: none;"> In the context of the studies of the ATLAS High Luminosity LHC programme, radiation tolerant pixel detectors in CMOS technologies are investigated. To evaluate the effects of substrate resistivity on CMOS sensor performance, the H35DEMO demonstrator, containing different diode and amplifier designs, was produced in ams H35 HV-CMOS technology using four different substrate resistivities spanning from $\mathrm{80}$ to $\mathrm{1000~惟\cdot cm}$. A glueing process using a high-precision flip-chip machine was developed in order to capacitively couple the sensors to FE-I4 Readout ASIC using a thin layer of epoxy glue with good uniformity over a large surface. The resulting assemblies were measured in beam test at the Fermilab Test Beam Facilities with 120 GeV protons and CERN SPS H8 beamline using 80 GeV pions. The in-time efficiency and tracking properties measured for the different sensor types are shown to be compatible with the ATLAS ITk requirements for its pixel sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08338v3-abstract-full').style.display = 'none'; document.getElementById('1712.08338v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.00148">arXiv:1712.00148</a> <span> [<a href="https://arxiv.org/pdf/1712.00148">pdf</a>, <a href="https://arxiv.org/ps/1712.00148">ps</a>, <a href="https://arxiv.org/format/1712.00148">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptx180">10.1093/ptep/ptx180 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Construction of KAGRA: an Underground Gravitational Wave Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/physics?searchtype=author&query=Ando%2C+M">M. Ando</a>, <a href="/search/physics?searchtype=author&query=Araki%2C+S">S. Araki</a>, <a href="/search/physics?searchtype=author&query=Araya%2C+A">A. Araya</a>, <a href="/search/physics?searchtype=author&query=Arima%2C+T">T. Arima</a>, <a href="/search/physics?searchtype=author&query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/physics?searchtype=author&query=Asada%2C+H">H. Asada</a>, <a href="/search/physics?searchtype=author&query=Aso%2C+Y">Y. Aso</a>, <a href="/search/physics?searchtype=author&query=Atsuta%2C+S">S. Atsuta</a>, <a href="/search/physics?searchtype=author&query=Awai%2C+K">K. Awai</a>, <a href="/search/physics?searchtype=author&query=Baiotti%2C+L">L. Baiotti</a>, <a href="/search/physics?searchtype=author&query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D">D. Chen</a>, <a href="/search/physics?searchtype=author&query=Cho%2C+K">K. Cho</a>, <a href="/search/physics?searchtype=author&query=Craig%2C+K">K. Craig</a>, <a href="/search/physics?searchtype=author&query=DeSalvo%2C+R">R. DeSalvo</a>, <a href="/search/physics?searchtype=author&query=Doi%2C+K">K. Doi</a>, <a href="/search/physics?searchtype=author&query=Eda%2C+K">K. Eda</a>, <a href="/search/physics?searchtype=author&query=Enomoto%2C+Y">Y. Enomoto</a>, <a href="/search/physics?searchtype=author&query=Flaminio%2C+R">R. Flaminio</a>, <a href="/search/physics?searchtype=author&query=Fujibayashi%2C+S">S. Fujibayashi</a>, <a href="/search/physics?searchtype=author&query=Fujii%2C+Y">Y. Fujii</a>, <a href="/search/physics?searchtype=author&query=Fujimoto%2C+M+-">M. -K. Fujimoto</a>, <a href="/search/physics?searchtype=author&query=Fukushima%2C+M">M. Fukushima</a>, <a href="/search/physics?searchtype=author&query=Furuhata%2C+T">T. Furuhata</a> , et al. (202 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.00148v2-abstract-short" style="display: inline;"> Major construction and initial-phase operation of a second-generation gravitational-wave detector KAGRA has been completed. The entire 3-km detector is installed underground in a mine in order to be isolated from background seismic vibrations on the surface. This allows us to achieve a good sensitivity at low frequencies and high stability of the detector. Bare-bones equipment for the interferomet… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.00148v2-abstract-full').style.display = 'inline'; document.getElementById('1712.00148v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.00148v2-abstract-full" style="display: none;"> Major construction and initial-phase operation of a second-generation gravitational-wave detector KAGRA has been completed. The entire 3-km detector is installed underground in a mine in order to be isolated from background seismic vibrations on the surface. This allows us to achieve a good sensitivity at low frequencies and high stability of the detector. Bare-bones equipment for the interferometer operation has been installed and the first test run was accomplished in March and April of 2016 with a rather simple configuration. The initial configuration of KAGRA is named {\it iKAGRA}. In this paper, we summarize the construction of KAGRA, including the study of the advantages and challenges of building an underground detector and the operation of the iKAGRA interferometer together with the geophysics interferometer that has been constructed in the same tunnel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.00148v2-abstract-full').style.display = 'none'; document.getElementById('1712.00148v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Resolution of some figures has been decreased from its original version submitted to a journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Progress of Theoretical and Experimental Physics, Vol 2018, 1, 013F01 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.00630">arXiv:1710.00630</a> <span> [<a href="https://arxiv.org/pdf/1710.00630">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.201702993">10.1002/adma.201702993 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Highly efficient rubrene-graphene charge transfer interfaces as phototransistors in the visible regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jones%2C+G+F">Gareth F. Jones</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+R+M">Rui M. Pinto</a>, <a href="/search/physics?searchtype=author&query=De+Sanctis%2C+A">Adolfo De Sanctis</a>, <a href="/search/physics?searchtype=author&query=Nagareddy%2C+V+K">V. Karthik Nagareddy</a>, <a href="/search/physics?searchtype=author&query=Wright%2C+C+D">C. David Wright</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+H">Helena Alves</a>, <a href="/search/physics?searchtype=author&query=Craciun%2C+M+F">Monica F. Craciun</a>, <a href="/search/physics?searchtype=author&query=Russo%2C+S">Saverio Russo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.00630v2-abstract-short" style="display: inline;"> Atomically thin materials such as graphene are uniquely responsive to charge transfer from adjacent materials, making them ideal charge transport layers in phototransistor devices. Effective implementation of organic semiconductors as a photoactive layer would open up a multitude of applications in biomimetic circuitry and ultra-broadband imaging but polycrystalline and amorphous thin films have s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.00630v2-abstract-full').style.display = 'inline'; document.getElementById('1710.00630v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.00630v2-abstract-full" style="display: none;"> Atomically thin materials such as graphene are uniquely responsive to charge transfer from adjacent materials, making them ideal charge transport layers in phototransistor devices. Effective implementation of organic semiconductors as a photoactive layer would open up a multitude of applications in biomimetic circuitry and ultra-broadband imaging but polycrystalline and amorphous thin films have shown inferior performance compared to inorganic semiconductors. Here, we utilize the long-range order in rubrene single crystals to engineer organic semiconductor-graphene phototransistors surpassing previously reported photo-gating efficiencies by one order of magnitude. Phototransistors based upon these interfaces are spectrally selective to visible wavelengths and, through photoconductive gain mechanisms, achieve responsivity as large as 10^7 A/W and a detectivity of 1.5 10^9 Jones at room temperature. These findings point towards implementing low-cost, flexible materials for amplified imaging at ultra-low light levels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.00630v2-abstract-full').style.display = 'none'; document.getElementById('1710.00630v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Advanced Materials. Supplementary material available at http://onlinelibrary.wiley.com/doi/10.1002/adma.201702993/full</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.05146">arXiv:1705.05146</a> <span> [<a href="https://arxiv.org/pdf/1705.05146">pdf</a>, <a href="https://arxiv.org/format/1705.05146">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/12/06/C06009">10.1088/1748-0221/12/06/C06009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterisation of novel prototypes of monolithic HV-CMOS pixel detectors for high energy physics experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Terzo%2C+S">Stefano Terzo</a>, <a href="/search/physics?searchtype=author&query=Cavallaro%2C+E">Emanuele Cavallaro</a>, <a href="/search/physics?searchtype=author&query=Casanova%2C+R">Raimon Casanova</a>, <a href="/search/physics?searchtype=author&query=Di+Bello%2C+F">Francesco Di Bello</a>, <a href="/search/physics?searchtype=author&query=F%C3%B6rster%2C+F">Fabian F枚rster</a>, <a href="/search/physics?searchtype=author&query=Grinstein%2C+S">Sebastian Grinstein</a>, <a href="/search/physics?searchtype=author&query=Per%C3%ADc%2C+I">Ivan Per铆c</a>, <a href="/search/physics?searchtype=author&query=Puigdengoles%2C+C">Carles Puigdengoles</a>, <a href="/search/physics?searchtype=author&query=Ristic%2C+B">Branislav Ristic</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+V+B">Mateus Vicente Barrero Pinto</a>, <a href="/search/physics?searchtype=author&query=Vilella%2C+E">Eva Vilella</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.05146v1-abstract-short" style="display: inline;"> An upgrade of the ATLAS experiment for the High Luminosity phase of LHC is planned for 2024 and foresees the replacement of the present Inner Detector (ID) with a new Inner Tracker (ITk) completely made of silicon devices. Depleted active pixel sensors built with the High Voltage CMOS (HV-CMOS) technology are investigated as an option to cover large areas in the outermost layers of the pixel detec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.05146v1-abstract-full').style.display = 'inline'; document.getElementById('1705.05146v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.05146v1-abstract-full" style="display: none;"> An upgrade of the ATLAS experiment for the High Luminosity phase of LHC is planned for 2024 and foresees the replacement of the present Inner Detector (ID) with a new Inner Tracker (ITk) completely made of silicon devices. Depleted active pixel sensors built with the High Voltage CMOS (HV-CMOS) technology are investigated as an option to cover large areas in the outermost layers of the pixel detector and are especially interesting for the development of monolithic devices which will reduce the production costs and the material budget with respect to the present hybrid assemblies. For this purpose the H35DEMO, a large area HV-CMOS demonstrator chip, was designed by KIT, IFAE and University of Liverpool, and produced in AMS 350 nm CMOS technology. It consists of four pixel matrices and additional test structures. Two of the matrices include amplifiers and discriminator stages and are thus designed to be operated as monolithic detectors. In these devices the signal is mainly produced by charge drift in a small depleted volume obtained by applying a bias voltage of the order of 100 V. Moreover, to enhance the radiation hardness of the chip, this technology allows to enclose the electronics in the same deep N-WELLs which are also used as collecting electrodes. In this contribution the characterisation of H35DEMO chips and results of the very first beam test measurements of the monolithic CMOS matrices with high energetic pions at CERN SPS will be presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.05146v1-abstract-full').style.display = 'none'; document.getElementById('1705.05146v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in proceedings of INSTR17, Novosibirsk, Russia, February 27 - March 3, 2017, submitted to JINST</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.02669">arXiv:1611.02669</a> <span> [<a href="https://arxiv.org/pdf/1611.02669">pdf</a>, <a href="https://arxiv.org/format/1611.02669">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/13/02/P02011">10.1088/1748-0221/13/02/P02011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testbeam results of irradiated ams H18 HV-CMOS pixel sensor prototypes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Benoit%2C+M">M. Benoit</a>, <a href="/search/physics?searchtype=author&query=Braccini%2C+S">S. Braccini</a>, <a href="/search/physics?searchtype=author&query=Casse%2C+G">G. Casse</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+K">K. Chen</a>, <a href="/search/physics?searchtype=author&query=Di+Bello%2C+F+A">F. A. Di Bello</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">D. Ferrere</a>, <a href="/search/physics?searchtype=author&query=Golling%2C+T">T. Golling</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">S. Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Iacobucci%2C+G">G. Iacobucci</a>, <a href="/search/physics?searchtype=author&query=Kiehn%2C+M">M. Kiehn</a>, <a href="/search/physics?searchtype=author&query=Lanni%2C+F">F. Lanni</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">H. Liu</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+L">L. Meng</a>, <a href="/search/physics?searchtype=author&query=Merlassino%2C+C">C. Merlassino</a>, <a href="/search/physics?searchtype=author&query=Miucci%2C+A">A. Miucci</a>, <a href="/search/physics?searchtype=author&query=Muenstermann%2C+D">D. Muenstermann</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">M. Nessi</a>, <a href="/search/physics?searchtype=author&query=Okawa%2C+H">H. Okawa</a>, <a href="/search/physics?searchtype=author&query=Peric%2C+I">I. Peric</a>, <a href="/search/physics?searchtype=author&query=Rimoldi%2C+M">M. Rimoldi</a>, <a href="/search/physics?searchtype=author&query=Ristic%2C+B">B. Ristic</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+V+B">M. Vicente Barrero Pinto</a>, <a href="/search/physics?searchtype=author&query=Vossebeld%2C+J">J. Vossebeld</a>, <a href="/search/physics?searchtype=author&query=Weber%2C+M">M. Weber</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.02669v3-abstract-short" style="display: inline;"> HV-CMOS pixel sensors are a promising option for the tracker upgrade of the ATLAS experiment at the LHC, as well as for other future tracking applications in which large areas are to be instrumented with radiation-tolerant silicon pixel sensors. We present results of testbeam characterisations of the $4^{\mathrm{th}}$ generation of Capacitively Coupled Pixel Detectors (CCPDv4) produced with the am… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.02669v3-abstract-full').style.display = 'inline'; document.getElementById('1611.02669v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.02669v3-abstract-full" style="display: none;"> HV-CMOS pixel sensors are a promising option for the tracker upgrade of the ATLAS experiment at the LHC, as well as for other future tracking applications in which large areas are to be instrumented with radiation-tolerant silicon pixel sensors. We present results of testbeam characterisations of the $4^{\mathrm{th}}$ generation of Capacitively Coupled Pixel Detectors (CCPDv4) produced with the ams H18 HV-CMOS process that have been irradiated with different particles (reactor neutrons and 18 MeV protons) to fluences between $1\cdot 10^{14}$ and $5\cdot 10^{15}$ 1-MeV-n$_\textrm{eq}$/cm$^2$. The sensors were glued to ATLAS FE-I4 pixel readout chips and measured at the CERN SPS H8 beamline using the FE-I4 beam telescope. Results for all fluences are very encouraging with all hit efficiencies being better than 97% for bias voltages of $85\,$V. The sample irradiated to a fluence of $1\cdot 10^{15}$ n$_\textrm{eq}$/cm$^2$ - a relevant value for a large volume of the upgraded tracker - exhibited 99.7% average hit efficiency. The results give strong evidence for the radiation tolerance of HV-CMOS sensors and their suitability as sensors for the experimental HL-LHC upgrades and future large-area silicon-based tracking detectors in high-radiation environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.02669v3-abstract-full').style.display = 'none'; document.getElementById('1611.02669v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures; revised version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 13 (2018) P02011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.07537">arXiv:1608.07537</a> <span> [<a href="https://arxiv.org/pdf/1608.07537">pdf</a>, <a href="https://arxiv.org/format/1608.07537">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5170/CERN-2016-004">10.5170/CERN-2016-004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Updated baseline for a staged Compact Linear Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CLIC%2C+T">The CLIC</a>, <a href="/search/physics?searchtype=author&query=collaborations%2C+C">CLICdp collaborations</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Boland%2C+M+J">M. J. Boland</a>, <a href="/search/physics?searchtype=author&query=Felzmann%2C+U">U. Felzmann</a>, <a href="/search/physics?searchtype=author&query=Giansiracusa%2C+P+J">P. J. Giansiracusa</a>, <a href="/search/physics?searchtype=author&query=Lucas%2C+T+G">T. G. Lucas</a>, <a href="/search/physics?searchtype=author&query=Rassool%2C+R+P">R. P. Rassool</a>, <a href="/search/physics?searchtype=author&query=Balazs%2C+C">C. Balazs</a>, <a href="/search/physics?searchtype=author&query=Charles%2C+T+K">T. K. Charles</a>, <a href="/search/physics?searchtype=author&query=Afanaciev%2C+K">K. Afanaciev</a>, <a href="/search/physics?searchtype=author&query=Emeliantchik%2C+I">I. Emeliantchik</a>, <a href="/search/physics?searchtype=author&query=Ignatenko%2C+A">A. Ignatenko</a>, <a href="/search/physics?searchtype=author&query=Makarenko%2C+V">V. Makarenko</a>, <a href="/search/physics?searchtype=author&query=Shumeiko%2C+N">N. Shumeiko</a>, <a href="/search/physics?searchtype=author&query=Patapenka%2C+A">A. Patapenka</a>, <a href="/search/physics?searchtype=author&query=Zhuk%2C+I">I. Zhuk</a>, <a href="/search/physics?searchtype=author&query=Hoffman%2C+A+C+A">A. C. Abusleme Hoffman</a>, <a href="/search/physics?searchtype=author&query=Gutierrez%2C+M+A+D">M. A. Diaz Gutierrez</a>, <a href="/search/physics?searchtype=author&query=Gonzalez%2C+M+V">M. Vogel Gonzalez</a>, <a href="/search/physics?searchtype=author&query=Chi%2C+Y">Y. Chi</a>, <a href="/search/physics?searchtype=author&query=He%2C+X">X. He</a>, <a href="/search/physics?searchtype=author&query=Pei%2C+G">G. Pei</a>, <a href="/search/physics?searchtype=author&query=Pei%2C+S">S. Pei</a>, <a href="/search/physics?searchtype=author&query=Shu%2C+G">G. Shu</a> , et al. (493 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.07537v3-abstract-short" style="display: inline;"> The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-q… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.07537v3-abstract-full').style.display = 'inline'; document.getElementById('1608.07537v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.07537v3-abstract-full" style="display: none;"> The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Subsequent stages will focus on measurements of rare Higgs processes, as well as searches for new physics processes and precision measurements of new states, e.g. states previously discovered at LHC or at CLIC itself. In the 2012 CLIC Conceptual Design Report, a fully optimised 3 TeV collider was presented, while the proposed lower energy stages were not studied to the same level of detail. This report presents an updated baseline staging scenario for CLIC. The scenario is the result of a comprehensive study addressing the performance, cost and power of the CLIC accelerator complex as a function of centre-of-mass energy and it targets optimal physics output based on the current physics landscape. The optimised staging scenario foresees three main centre-of-mass energy stages at 380 GeV, 1.5 TeV and 3 TeV for a full CLIC programme spanning 22 years. For the first stage, an alternative to the CLIC drive beam scheme is presented in which the main linac power is produced using X-band klystrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.07537v3-abstract-full').style.display = 'none'; document.getElementById('1608.07537v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages, 27 figures, 12 tables, published as CERN Yellow Report. Updated version: Minor layout changes for print version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-2016-004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.07950">arXiv:1603.07950</a> <span> [<a href="https://arxiv.org/pdf/1603.07950">pdf</a>, <a href="https://arxiv.org/format/1603.07950">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/12/01/P01008">10.1088/1748-0221/12/01/P01008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of a modular test system for the silicon sensor R&D of the ATLAS Upgrade </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+H">H. Liu</a>, <a href="/search/physics?searchtype=author&query=Benoit%2C+M">M. Benoit</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+K">K. Chen</a>, <a href="/search/physics?searchtype=author&query=Di+Bello%2C+F+A">F. A. Di Bello</a>, <a href="/search/physics?searchtype=author&query=Iacobucci%2C+G">G. Iacobucci</a>, <a href="/search/physics?searchtype=author&query=Lanni%2C+F">F. Lanni</a>, <a href="/search/physics?searchtype=author&query=Peric%2C+I">I. Peric</a>, <a href="/search/physics?searchtype=author&query=Ristic%2C+B">B. Ristic</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+V+B">M. Vicente Barreto Pinto</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+W">W. Wu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+L">L. Xu</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+G">G. Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.07950v4-abstract-short" style="display: inline;"> High Voltage CMOS sensors are a promising technology for tracking detectors in collider experiments. Extensive R&D studies are being carried out by the ATLAS Collaboration for a possible use of HV-CMOS in the High Luminosity LHC upgrade of the Inner Tracker detector. CaRIBOu (Control and Readout Itk BOard) is a modular test system developed to test Silicon based detectors. It currently includes fi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.07950v4-abstract-full').style.display = 'inline'; document.getElementById('1603.07950v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.07950v4-abstract-full" style="display: none;"> High Voltage CMOS sensors are a promising technology for tracking detectors in collider experiments. Extensive R&D studies are being carried out by the ATLAS Collaboration for a possible use of HV-CMOS in the High Luminosity LHC upgrade of the Inner Tracker detector. CaRIBOu (Control and Readout Itk BOard) is a modular test system developed to test Silicon based detectors. It currently includes five custom designed boards, a Xilinx ZC706 development board, FELIX (Front-End LInk eXchange) PCIe card and a host computer. A software program has been developed in Python to control the CaRIBOu hardware. CaRIBOu has been used in the testbeam of the HV-CMOS sensor CCPDv4 at CERN. Preliminary results have shown that the test system is very versatile. Further development is ongoing to adapt to different sensors, and to make it available to various lab test stands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.07950v4-abstract-full').style.display = 'none'; document.getElementById('1603.07950v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Pinto%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Pinto%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Pinto%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>