CINXE.COM
Search results for: tensile strength ratio
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tensile strength ratio</title> <meta name="description" content="Search results for: tensile strength ratio"> <meta name="keywords" content="tensile strength ratio"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tensile strength ratio" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tensile strength ratio"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8132</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tensile strength ratio</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8132</span> Effect of Confinement on Flexural Tensile Strength of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ahmed">M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Javed%20Mallick"> Javed Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abul%20Hasan"> Mohammad Abul Hasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flexural tensile strength of concrete is an important parameter for determining cracking behavior of concrete structure and to compute deflection under flexure. Many factors have been shown to influence the flexural tensile strength, particularly the level of concrete strength, size of member, age of concrete and confinement to flexure member etc. Empirical equations have been suggested to relate the flexural tensile strength and compressive strength. Limited literature is available for relationship between flexural tensile strength and compressive strength giving consideration to the factors affecting the flexural tensile strength specially the concrete confinement factor. The concrete member such as slabs, beams and columns critical locations are under confinement effects. The paper presents the experimental study to predict the flexural tensile strength and compressive strength empirical relations using statistical procedures considering the effect of confinement and age of concrete for wide range of concrete strength (from 35 to about 100 MPa). It is concluded from study that due consideration of confinement should be given in deriving the flexural tensile strength and compressive strength proportionality equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20tensile%20strength" title=" flexural tensile strength"> flexural tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20rupture" title=" modulus of rupture"> modulus of rupture</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20procedures" title=" statistical procedures"> statistical procedures</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20confinement" title=" concrete confinement"> concrete confinement</a> </p> <a href="https://publications.waset.org/abstracts/2078/effect-of-confinement-on-flexural-tensile-strength-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8131</span> Effect of Saturation and Deformation Rate on Split Tensile Strength for Various Sedimentary Rocks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Soni">D. K. Soni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study of engineering properties of stones, i.e. compressive strength, tensile strength, modulus of elasticity, density, hardness were carried out to explore the possibility of optimum utilization of stone. The laboratory test results on equally dimensioned discs of the stone show a considerable variation in computed split tensile strength with varied rates of deformation. Hence, the effect of strain rate on the tensile strength of a sand stone and lime stone under wet and dry conditions has been studied experimentally using the split tensile strength test technique. It has been observed that the tensile strength of these stone is very much dependent on the rate of deformation particularly in a dry state. On saturation the value of split tensile strength reduced considerably depending upon the structure of rock and amount of water absorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sedimentary%20rocks" title="sedimentary rocks">sedimentary rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20tensile%20test" title=" split tensile test"> split tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20rate" title=" deformation rate"> deformation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20rate" title=" saturation rate"> saturation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20stone" title=" sand stone"> sand stone</a>, <a href="https://publications.waset.org/abstracts/search?q=lime%20stone" title=" lime stone"> lime stone</a> </p> <a href="https://publications.waset.org/abstracts/7251/effect-of-saturation-and-deformation-rate-on-split-tensile-strength-for-various-sedimentary-rocks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8130</span> Estimation of Tensile Strength for Granitic Rocks by Using Discrete Element Approach </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliakbar%20Golshani">Aliakbar Golshani</a>, <a href="https://publications.waset.org/abstracts/search?q=Armin%20Ramezanzad"> Armin Ramezanzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tensile strength which is an important parameter of the rock for engineering applications is difficult to measure directly through physical experiment (i.e. uniaxial tensile test). Therefore, indirect experimental methods such as Brazilian test have been taken into consideration and some relations have been proposed in order to obtain the tensile strength for rocks indirectly. In this research, to calculate numerically the tensile strength for granitic rocks, Particle Flow Code in three-dimension (PFC3D) software were used. First, uniaxial compression tests were simulated and the tensile strength was determined for Inada granite (from a quarry in Kasama, Ibaraki, Japan). Then, by simulating Brazilian test condition for Inada granite, the tensile strength was indirectly calculated again. Results show that the tensile strength calculated numerically agrees well with the experimental results obtained from uniaxial tensile tests on Inada granite samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20flow%20code" title=" particle flow code"> particle flow code</a>, <a href="https://publications.waset.org/abstracts/search?q=PFC" title=" PFC"> PFC</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=Brazilian%20Test" title=" Brazilian Test"> Brazilian Test</a> </p> <a href="https://publications.waset.org/abstracts/108663/estimation-of-tensile-strength-for-granitic-rocks-by-using-discrete-element-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8129</span> Waterproofing Agent in Concrete for Tensile Improvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Azani%20Yahya">Muhamad Azani Yahya</a>, <a href="https://publications.waset.org/abstracts/search?q=Umi%20Nadiah%20Nor%20Ali"> Umi Nadiah Nor Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Alias%20Yusof"> Mohammed Alias Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Norazman%20Mohamad%20Nor"> Norazman Mohamad Nor</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikneswaran%20Munikanan"> Vikneswaran Munikanan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In construction, concrete is one of the materials that can commonly be used as for structural elements. Concrete consists of cement, sand, aggregate and water. Concrete can be added with admixture in the wet condition to suit the design purpose such as to prolong the setting time to improve workability. For strength improvement, concrete is being added with other hybrid materials to increase strength; this is because the tensile strength of concrete is very low in comparison to the compressive strength. This paper shows the usage of a waterproofing agent in concrete to enhance the tensile strength. High tensile concrete is expensive because the concrete mix needs fiber and also high cement content to be incorporated in the mix. High tensile concrete being used for structures that are being imposed by high impact dynamic load such as blast loading that hit the structure. High tensile concrete can be defined as a concrete mix design that achieved 30%-40% tensile strength compared to its compression strength. This research evaluates the usage of a waterproofing agent in a concrete mix as an element of reinforcement to enhance the tensile strength. According to the compression and tensile test, it shows that the concrete mix with a waterproofing agent enhanced the mechanical properties of the concrete. It is also show that the composite concrete with waterproofing is a high tensile concrete; this is because of the tensile is between 30% and 40% of the compression strength. This mix is economical because it can produce high tensile concrete with low cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20tensile%20concrete" title="high tensile concrete">high tensile concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=waterproofing%20agent" title=" waterproofing agent"> waterproofing agent</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a> </p> <a href="https://publications.waset.org/abstracts/58331/waterproofing-agent-in-concrete-for-tensile-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8128</span> Experimental Study on the Effect of Water-Cement Ratio and Replacement Ratio to the Capacity of the Recycled Aggregate Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng%20Fu">Feng Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Karli"> Maria Karli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, experimental studies were carried out to investigate the behaviour of recycled aggregate concrete (RAC). A number of compressive tests, tensile splitting tests, as well as impact tests were conducted. In the tests, different recycled aggregate replacement ratio, different mix design and different water to cement ratio have been chosen in the investigation. The behavior of the RAC concrete was investigated in detail. The results of the tests show that the water-cement ratio plays an important role in the strength of the concrete and RAC concrete exhibit sufficient strength in comparison to the normal aggregate concrete; the relevant design recommendations are also made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregate%20concrete" title="recycled aggregate concrete">recycled aggregate concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20test" title=" compressive test"> compressive test</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20splitting%20test" title=" tensile splitting test"> tensile splitting test</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength%20test" title=" flexural strength test"> flexural strength test</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20test" title=" impact test"> impact test</a> </p> <a href="https://publications.waset.org/abstracts/71770/experimental-study-on-the-effect-of-water-cement-ratio-and-replacement-ratio-to-the-capacity-of-the-recycled-aggregate-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8127</span> Comparison of Direct and Indirect Tensile Strength of Brittle Materials and Accurate Estimate of Tensile Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Etezadi">M. Etezadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Fahimifar"> A. Fahimifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many geotechnical designs in rocks and rock masses, tensile strength of rock and rock mass is needed. The difficulties associated with performing a direct uniaxial tensile test on a rock specimen have led to a number of indirect methods for assessing the tensile strength that in the meantime the Brazilian test is more popular. Brazilian test is widely applied in rock engineering because specimens are easy to prepare, the test is easy to conduct and uniaxial compression test machines are quite common. This study compares experimental results of direct and Brazilian tensile tests carried out on two rock types and three concrete types using 39 cylindrical and 28 disc specimens. The tests are performed using Servo-Control device. The relationship between direct and indirect tensile strength of specimens is extracted using linear regression. In the following, tensile strength of direct and indirect test is evaluated using finite element analysis. The results are analyzed and effective factors on results are studied. According to the experimental results Brazilian test is shown higher tensile strength than direct test. Because of decreasing the contact surface of grains and increasing the uniformity in concrete specimens with fine aggregate (largest grain size= 6mm), higher tensile strength in direct test is shown. The experimental and numerical results of tensile strength are compared and empirical relationship witch is obtained from experimental tests is validated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title="tensile strength">tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=brittle%20materials" title=" brittle materials"> brittle materials</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20and%20indirect%20tensile%20test" title=" direct and indirect tensile test"> direct and indirect tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling "> numerical modeling </a> </p> <a href="https://publications.waset.org/abstracts/36005/comparison-of-direct-and-indirect-tensile-strength-of-brittle-materials-and-accurate-estimate-of-tensile-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8126</span> Effect of Shape and Size of Concrete Specimen and Strength of Concrete Mixture in the Absence and Presence of Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sultan%20Husein%20Bayqra">Sultan Husein Bayqra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mardani%20Aghabaglou"> Ali Mardani Aghabaglou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zia%20Ahmad%20Faqiri"> Zia Ahmad Faqiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassane%20Amidou%20Ouedraogo"> Hassane Amidou Ouedraogo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of shape and size of the concrete specimen on the compressive and splitting tensile strength of the concrete mixtures in the absence and presence of steel fiber was investigated. For this aim, ten different concrete mixtures having w/c ratio of 0.3, 0.4, 0.5, 0.6 and 0.7 with and without fiber were prepared. In the mixtures containing steel fibers having aspect ratio (L/D) of 64 were used by 1% of the total mixture volume. In all concrete mixtures, CEM I 42,5R type Portland cement and crushed Lime-stone aggregates having different aggregate size fractions were used. The combined aggregate was obtained by mixing %40 0-5 mm, %30 5-12 mm and %30 12-22 mm aggregate size fraction. The slump values of concrete mixtures were kept constant as 17 ± 2 cm. To provide the desired slump value, a polycarboxylate ether-based high range water reducing admixture was used. In order to investigate the effect of size and shape of concrete specimen on strength properties 10 cm, 15 cm cubic specimens and 10×20 cm, 15×30 cm cylindrical specimens were prepared for each mixture. The specimens were cured under standard conditions until testing days. The 7- and 28-day compressive and splitting tensile strengths of mixtures were determined. The results obtained from the experimental study showed that the strength ratio between the cylinder and the cube specimens increased with the increase of the strength of the concrete. Regardless of the fiber utilization and specimen shape, strength values of concrete mixtures were increased by decreasing specimen size. However, the mentioned behaviour was not observed for the case that the mixtures having high W/C ratio and containing fiber. The compressive strength of cube specimens containing fiber was less affected by the size of the specimen compared to that of cube specimens containing no fibers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20tensile%20strength" title=" splitting tensile strength"> splitting tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20concrete" title=" fiber reinforced concrete"> fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=size%20effect" title=" size effect"> size effect</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20effect" title=" shape effect"> shape effect</a> </p> <a href="https://publications.waset.org/abstracts/101633/effect-of-shape-and-size-of-concrete-specimen-and-strength-of-concrete-mixture-in-the-absence-and-presence-of-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8125</span> Experimental Investigations on the Mechanical properties of Spiny (Kawayan Tinik) Bamboo Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ma.%20Doreen%20E.%20Candelaria">Ma. Doreen E. Candelaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma.%20Louise%20Margaret%20A.%20Ramos"> Ma. Louise Margaret A. Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=Dr.%20Jaime%20Y.%20Hernandez"> Dr. Jaime Y. Hernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jr"> Jr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bamboo has been introduced as a possible alternative to some construction materials nowadays. Its potential use in the field of engineering, however, is still not widely practiced due to insufficient engineering knowledge on the material’s properties and characteristics. Although there are researches and studies proving its advantages, it is still not enough to say that bamboo can sustain and provide the strength and capacity required of common structures. In line with this, a more detailed analysis was made to observe the layered structure of the bamboo, particularly the species of Kawayan Tinik. It is the main intent of this research to provide the necessary experiments to determine the tensile strength of dried bamboo samples. The test includes tensile strength parallel to fibers with samples taken at internodes only. Throughout the experiment, methods suggested by the International Organization for Standardization (ISO) were followed. The specimens were tested using 3366 INSTRON Universal Testing Machine, with a rate of loading set to 0.6 mm/min. It was then observed from the results of these experiments that dried bamboo samples recorded high layered tensile strengths, as high as 600 MPa. Likewise, along the culm’s length and across its cross section, higher tensile strength were observed at the top part and at its outer layers. Overall, the top part recorded the highest tensile strength per layer, with its outer layers having tensile strength as high as 600 MPa. The recorded tensile strength of its middle and inner layers, on the other hand, were approximately 450 MPa and 180 MPa, respectively. From this variation in tensile strength across the cross section, it may be concluded that an increase in tensile strength may be observed towards the outer periphery of the bamboo. With these preliminary investigations on the layered tensile strength of bamboo, it is highly recommended to conduct experimental investigations on the layered compressive strength properties as well. It is also suggested to conduct investigations evaluating perpendicular layered tensile strength of the material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20strength" title="bamboo strength">bamboo strength</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20strength%20tests" title=" layered strength tests"> layered strength tests</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20test" title=" strength test"> strength test</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test "> tensile test </a> </p> <a href="https://publications.waset.org/abstracts/24458/experimental-investigations-on-the-mechanical-properties-of-spiny-kawayan-tinik-bamboo-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8124</span> Influence of Magnetized Water on the Split Tensile Strength of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justine%20Cyril%20E.%20Nunag">Justine Cyril E. Nunag</a>, <a href="https://publications.waset.org/abstracts/search?q=Nestor%20B.%20Sabado%20Jr."> Nestor B. Sabado Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Jienne%20Chester%20M.%20Tolosa"> Jienne Chester M. Tolosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete has high compressive strength but a low-tension strength. The small tensile strength of concrete is regarded as its primary weakness, which is why it is typically reinforced with steel, a material that is resistant to tension. Even with steel, however, cracking can occur. In strengthening concrete, only a few researchers have modified the water to be used in a concrete mix. This study aims to compare the split tensile strength of normal structural concrete to concrete prepared with magnetic water and a quick setting admixture. In this context, magnetic water is defined as tap water that has undergone a magnetic process to become magnetized water. To test the hypothesis that magnetized concrete leads to higher split tensile strength, twenty concrete specimens were made. There were five groups, each with five samples, that were differentiated by the number of cycles (0, 50, 100, and 150). The data from the Universal Testing Machine's split tensile strength were then analyzed using various statistical models and tests to determine the significant effect of magnetized water. The result showed a moderate (+0.579) but still significant degree of correlation. The researchers also discovered that using magnetic water for 50 cycles did not result in a significant increase in the concrete's split tensile strength, which influenced the analysis of variance. These results suggest that a concrete mix containing magnetic water and a quick-setting admixture alters the typical split tensile strength of normal concrete. Magnetic water has a significant impact on concrete tensile strength. The hardness property of magnetic water influenced the split tensile strength of concrete. In addition, a higher number of cycles results in a strong water magnetism. The laboratory test results show that a higher cycle translates to a higher tensile strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardness%20property" title="hardness property">hardness property</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20water" title=" magnetic water"> magnetic water</a>, <a href="https://publications.waset.org/abstracts/search?q=quick-setting%20admixture" title=" quick-setting admixture"> quick-setting admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20tensile%20strength" title=" split tensile strength"> split tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=universal%20testing%20machine" title=" universal testing machine"> universal testing machine</a> </p> <a href="https://publications.waset.org/abstracts/146441/influence-of-magnetized-water-on-the-split-tensile-strength-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8123</span> Influence of Scrap Tyre Steel Fiber on Mechanical Properties of High Performance Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isyaka%20Abdulkadir">Isyaka Abdulkadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Egbe%20Ngu-Ntui%20Ogork"> Egbe Ngu-Ntui Ogork</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to investigate the use of Scrap Tyre Steel Fibers (STSF) for the production of fiber reinforced high performance concrete. The Scrap Tyre Steel Fibers (STSF) were obtained from dealers that extracted the fibers by burning the scrap tyres and were characterized. The effect of STSF was investigated on grade 50 concrete of 1:1.28:1.92 with water cement ratio of 0.39 at additions of STSF of 0, 0.5, 1.0, 1.5, 2.0 and 2.5% by volume of concrete. The fresh concrete was tested for slump while the hardened concrete was tested for compressive and splitting tensile strengths, respectively at curing ages of 3, 7, 28 and 56 days in accordance with standard procedure. The results indicate that slump decreased with increase in STSF, while compressive and splitting tensile strengths increased with increase in STSF up to 1.5% and reduction in strength with increase in STSF above 1.5%. 1.5% STSF was considered as the optimum dosage with a 28 days increase in compressive strength and splitting tensile strength of 12.3% and 43.8% respectively, of control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20concrete" title=" high performance concrete"> high performance concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=scrap%20tyre%20steel%20fiber" title=" scrap tyre steel fiber"> scrap tyre steel fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20tensile%20strength" title=" splitting tensile strength"> splitting tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/36478/influence-of-scrap-tyre-steel-fiber-on-mechanical-properties-of-high-performance-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8122</span> Effect of Size, Geometry and Tensile Strength of Fibers on the Flexure of Hooked Steel Fiber Reinforced Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chuchai%20Sujivorakul">Chuchai Sujivorakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focused on the study of various parameters of fiber itself affecting on the flexure of hooked steel fiber reinforced concrete (HSFRC). The size of HSFRC beams was 150x150 mm in cross section and 550 mm in length, and the flexural test was carried out in accordance with EN-14651 standard. The test result was the relationship between centre-point load and crack-mount opening displacement (CMOD) at the centre notch. Controlled concrete had a compressive strength of 42 MPa. The investigated variables related to the hooked fiber itself were: (a) 3 levels of aspect ratio of fibers (65, 80 and 100); (b) 2 different fiber lengths (35 mm and 60 mm); (c) 2 different tensile strength of fibers (1100 MPa and 1500 MPa); and (d) 3 different fiber-end geometries (3D 4D and 5D fibers). The 3D hooked fibers have two plastic hinges at both ends, while the 4D and 5D hooked fibers are the newly developed steel fibers by Bekaert, and they have three and four plastic hinges at both ends, respectively. The hooked steel fibers were used in concrete with three different fiber contents, i.e., 20 30 and 40 kg/m³. From the study, it was found that all variables did not seem to affect the flexural strength at limit of proportionality (LOP) of HSFRC. However, they affected the residual flexural tensile strength (fR,j). It was observed that an increase in fiber lengths and the tensile strength the fibers would significantly increase in the fR,j of HSFRC, while the aspect ratio of the fiber would slightly effect the fR,j of HSFRC. Moreover, it was found that using 5D fibers would better enhance the fR,j and flexural behavior of HSFRC than 3D and 4D fibers, because they gave highest mechanical anchorage effect created by their hooked-end geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hooked%20steel%20fibers" title="hooked steel fibers">hooked steel fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20concrete" title=" fiber reinforced concrete"> fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=EN-14651" title=" EN-14651"> EN-14651</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20test" title=" flexural test"> flexural test</a> </p> <a href="https://publications.waset.org/abstracts/96421/effect-of-size-geometry-and-tensile-strength-of-fibers-on-the-flexure-of-hooked-steel-fiber-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8121</span> Tensile strength and Elastic Modulus of Nanocomposites Based on Polypropylene/Linear Low Density Polyethylene/Titanium Dioxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faramarz%20Ashenai%20Ghasemi">Faramarz Ashenai Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Ghasemi"> Ismail Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajad%20Daneshpayeh"> Sajad Daneshpayeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, tensile strength and elastic modulus of nanocomposites based on polypropylene/ linear low density polyethylene/ nano titanium dioxide (PP/LLDPE/TiO2) were studied. The samples were produced using a co-rotating twin screw extruder including 0, 2, 4 Wt .% of nano particles, and 20, 40, 60 Wt.% of LLDPE. The styrene-ethylene-butylene-styrene (SEBS) was used as comptabiliser. Tensile strength and elastic modulus were evaluated. The results showed that modulus was increased by 7% with addition of nano particles in comparison to PP/LLDPE. In addition, tensile strength was decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PP%2FLLDPE%2FTiO2" title="PP/LLDPE/TiO2">PP/LLDPE/TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus" title=" elastic modulus"> elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/35267/tensile-strength-and-elastic-modulus-of-nanocomposites-based-on-polypropylenelinear-low-density-polyethylenetitanium-dioxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8120</span> Effect of Taper Pin Ratio on Microstructure and Mechanical Property of Friction Stir Welded AZ31 Magnesium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20H.%20Othman">N. H. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Udin"> N. Udin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ishak"> M. Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20H.%20Shah"> L. H. Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the effect of pin taper tool ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 6 mm were friction stir welded by using the conventional milling machine. The shoulder diameter used in this experiment is fixed at 18 mm. The taper pin ratio used are varied at 6:6, 6:5, 6:4, 6:3, 6:2 and 6:1. The rotational speeds that were used in this study were 500 rpm, 1000 rpm and 1500 rpm, respectively. The welding speeds used are 150 mm/min, 200 mm/min and 250 mm/min. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. Tool pin diameter ratio 6/1 causes low heat input to the material because of small contact surface between tool surface and stirred materials compared to other tool pin diameter ratio. The grain size of stir zone increased with increasing of ratio of rotational speed to transverse speed due to higher heat input. It is observed that worm hole is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Welded specimens using taper pin ratio 6:1 shows higher tensile strength compared to other taper pin ratio up to 204 MPa. Moreover, specimens using taper pin ratio 6:1 showed better tensile strength with 500 rpm of rotational speed and 150mm/min welding speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title="friction stir welding">friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20AZ31" title=" magnesium AZ31"> magnesium AZ31</a>, <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20taper%20tool" title=" cylindrical taper tool"> cylindrical taper tool</a>, <a href="https://publications.waset.org/abstracts/search?q=taper%20pin%20ratio" title=" taper pin ratio"> taper pin ratio</a> </p> <a href="https://publications.waset.org/abstracts/46340/effect-of-taper-pin-ratio-on-microstructure-and-mechanical-property-of-friction-stir-welded-az31-magnesium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8119</span> Development of Tensile Stress-Strain Relationship for High-Strength Steel Fiber Reinforced Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Alguhi">H. A. Alguhi</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20Elsaigh"> W. A. Elsaigh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides a tensile stress-strain (σ-ε) relationship for High-Strength Steel Fiber Reinforced Concrete (HSFRC). Load-deflection (P-δ) behavior of HSFRC beams tested under four-point flexural load were used with inverse analysis to calculate the tensile σ-ε relationship for various tested concrete grades (70 and 90MPa) containing 60 kg/m3 (0.76 %) of hook-end steel fibers. A first estimate of the tensile (σ-ε) relationship is obtained using RILEM TC 162-TDF and other methods available in literature, frequently used for determining tensile σ-ε relationship of Normal-Strength Concrete (NSC) Non-Linear Finite Element Analysis (NLFEA) package ABAQUS® is used to model the beam’s P-δ behavior. The results have shown that an element-size dependent tensile σ-ε relationship for HSFRC can be successfully generated and adopted for further analyzes involving HSFRC structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tensile%20stress-strain" title="tensile stress-strain">tensile stress-strain</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20response" title=" flexural response"> flexural response</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title=" high strength concrete"> high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibers" title=" steel fibers"> steel fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20finite%20element%20analysis" title=" non-linear finite element analysis"> non-linear finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/44522/development-of-tensile-stress-strain-relationship-for-high-strength-steel-fiber-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8118</span> Improving Concrete Properties with Fibers Addition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Mello">E. Mello</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Ribellato"> C. Ribellato</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Mohamedelhassan"> E. Mohamedelhassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the improvement in concrete properties with addition of cellulose, steel, carbon and PET fibers. Each fiber was added at four percentages to the fresh concrete, which was moist-cured for 28-days and then tested for compressive, flexural and tensile strengths. Changes in strength and increases in cost were analyzed. Results showed that addition of cellulose caused a decrease between 9.8% and 16.4% in compressive strength. This range may be acceptable as cellulose fibers can significantly increase the concrete resistance to fire, and freezing and thawing cycles. Addition of steel fibers to concrete increased the compressive strength by up to 20%. Increases 121.5% and 80.7% were reported in tensile and flexural strengths respectively. Carbon fibers increased flexural and tensile strengths by up to 11% and 45%, respectively. Concrete strength properties decreased after the addition of PET fibers. Results showed that improvement in strength after addition of steel and carbon fibers may justify the extra cost of fibers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=fibers" title=" fibers"> fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/2705/improving-concrete-properties-with-fibers-addition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8117</span> Investigating the Properties of Nylon Fiber Reinforced Asphalt Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Taherkhani">Hasan Taherkhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of asphalt pavements is highly dependent on the mechanical properties of asphaltic layers. Improving the mechanical properties of asphaltic mixtures by fiber reinforcement is a common method. Randomly distribution of fibers in the bituminous mixtures and placing between the particles develop reinforcing property in all directions in the mixture and improve their engineering properties. In this research, the effects of the nylon fiber length and content on some engineering properties of a typical binder course asphalt concrete have been investigated. The fibers at different contents of 0.3, 0.4 and 0.5% (by the weight of total mixture), each at three different lengths of 10, 25 and 40 mm have been used, and the properties of the mixtures, such as, volumetric properties, Marshall stability, flow, Marshall quotient, indirect tensile strength and moisture damage have been studied. It is found that the highest Marshall quotient is obtained by using 0.4% of 25mm long nylon fibers. The results also show that the indirect tensile strength and tensile strength ratio, which is an indication of moisture damage of asphalt concrete, decreases with increasing the length of fibers and fiber content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20concrete" title="asphalt concrete">asphalt concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20damage" title=" moisture damage"> moisture damage</a>, <a href="https://publications.waset.org/abstracts/search?q=nylon%20fiber" title=" nylon fiber"> nylon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/16685/investigating-the-properties-of-nylon-fiber-reinforced-asphalt-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8116</span> Properties of Triadic Concrete Containing Rice Husk Ash and Wood Waste Ash as Partial Cement Replacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rahman%20Mohd.%20Sam">Abdul Rahman Mohd. Sam</a>, <a href="https://publications.waset.org/abstracts/search?q=Olukotun%20Nathaniel"> Olukotun Nathaniel</a>, <a href="https://publications.waset.org/abstracts/search?q=Dunu%20Williams"> Dunu Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is one of the most popular materials used in construction industry. However, one of the setbacks is that concrete can degrade with time upon exposure to an aggressive environment that leads to decrease in strength. Thus, research works and innovative ways are needed to enhance the strength and durability of concrete. This work tries to look into the potential use of rice husk ash (RHA) and wood waste ash (WWA) as cement replacement material. These are waste materials that may not only enhance the properties of concrete but also can serves as a viable method of disposal of waste for sustainability. In addition, a substantial replacement of Ordinary Portland Cement (OPC) with these pozzolans will mean reduction in CO₂ emissions and high energy requirement associated with the production of OPC. This study is aimed at assessing the properties of triadic concrete produced using RHA and WWA as a partial replacement of cement. The effects of partial replacement of OPC with 10% RHA and 5% WWA on compressive and tensile strength of concrete among other properties were investigated. Concrete was produced with nominal mix of 1:2:4 and 0.55 water-cement ratio, prepared, cured and subjected to compressive and tensile strength test at 3, 7, 14, 28 and 90days. The experimental data demonstrate that concrete containing RHA and WWA produced lighter weight in comparison with OPC sample. Results also show that combination of RHA and WWA help to prolong the initial and final setting time by about 10-30% compared to the control sample. Furthermore, compressive strength was increased by 15-30% with 10% RHA and 5% WWA replacement, respectively above the control, RHA and WWA samples. Tensile strength test at the ages of 3, 7, 14, 28 and 90 days reveals that a replacement of 15% RHA and 5% WWA produced samples with the highest tensile capacity compared to the control samples. Thus, it can be concluded that RHA and WWA can be used as partial cement replacement materials in concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title=" rice husk ash"> rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20waste%20ash" title=" wood waste ash"> wood waste ash</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20Portland%20cement" title=" ordinary Portland cement"> ordinary Portland cement</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/77993/properties-of-triadic-concrete-containing-rice-husk-ash-and-wood-waste-ash-as-partial-cement-replacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8115</span> Shear Behavior of Ultra High Strength Concrete Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Diaa">Ghada Diaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Enas%20A.%20Khattab"> Enas A. Khattab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultra High Strength Concrete (UHSC) is a new advanced concrete that is being transferred from laboratory researches to practicable applications. In addition to its excellent durability properties, UHSC has high compressive and tensile strengths, and high modulus of elasticity. Despite of this low degree of hydration, ultra high strength values can be achieved by controlling the mixture proportions. In this research, an experimental program was carried out to investigate the shear behavior of ultra high strength concrete beams. A total of nine beams were tested to determine the effect of different parameters on the shear behavior of UHSC beams. The parameters include concrete strength, steel fiber volume, shear span to depth ratio, and web reinforcement ratio. The results demonstrated that nominal shear stress at cracking load and at ultimate load increased with the increase of concrete strength or the decrease in shear span-depth ratio. Using steel fibers or shear reinforcement increases the ultimate shear strength and makes the shear behavior more ductile. In this study, a simplified analytical model to calculate the shear strength of UHSC beams is introduced. Shear strength estimated according to the proposed method in this research is in good agreement with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultra%20high%20strength" title="ultra high strength">ultra high strength</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=diagonal" title=" diagonal"> diagonal</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking" title=" cracking"> cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibers" title=" steel fibers"> steel fibers</a> </p> <a href="https://publications.waset.org/abstracts/22302/shear-behavior-of-ultra-high-strength-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">618</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8114</span> Rational Probabilistic Method for Calculating Thermal Cracking Risk of Mass Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naoyuki%20Sugihashi">Naoyuki Sugihashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiharu%20Kishi"> Toshiharu Kishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The probability of occurrence of thermal cracks in mass concrete in Japan is evaluated by the cracking probability diagram that represents the relationship between the thermal cracking index and the probability of occurrence of cracks in the actual structure. In this paper, we propose a method to directly calculate the cracking probability, following a probabilistic theory by modeling the variance of tensile stress and tensile strength. In this method, the relationship between the variance of tensile stress and tensile strength, the thermal cracking index, and the cracking probability are formulated and presented. In addition, standard deviation of tensile stress and tensile strength was identified, and the method of calculating cracking probability in a general construction controlled environment was also demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20crack%20control" title="thermal crack control">thermal crack control</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20concrete" title=" mass concrete"> mass concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cracking%20probability" title=" thermal cracking probability"> thermal cracking probability</a>, <a href="https://publications.waset.org/abstracts/search?q=durability%20of%20concrete" title=" durability of concrete"> durability of concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=calculating%20method%20of%20cracking%20probability" title=" calculating method of cracking probability"> calculating method of cracking probability</a> </p> <a href="https://publications.waset.org/abstracts/74943/rational-probabilistic-method-for-calculating-thermal-cracking-risk-of-mass-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8113</span> Evaluation of Fracture Resistance and Moisture Damage of Hot Mix Asphalt Using Plastic Coated Aggregates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malleshappa%20Japagal">Malleshappa Japagal</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivas%20Chitragar"> Srinivas Chitragar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of waste plastic in pavement is becoming important alternative worldwide for disposal of plastic as well as to improve the stability of pavement and to meet out environmental issues. However, there are still concerns on fatigue and fracture resistance of Hot Mix Asphalt with the addition of plastic waste, (HMA-Plastic mixes) and moisture damage potential. The present study was undertaken to evaluate fracture resistance of HMA-Plastic mixes using semi-circular bending (SCB) test and moisture damage potential by Indirect Tensile strength (ITS) test using retained tensile strength (TSR). In this study, a dense graded asphalt mix with 19 mm nominal maximum aggregate size was designed in the laboratory using Marshall Mix design method. Aggregates were coated with different percentages of waste plastic (0%, 2%, 3% and 4%) by weight of aggregate and performance evaluation of fracture resistance and Moisture damage was carried out. The following parameters were estimated for the mixes: J-Integral or Jc, strain energy at failure, peak load at failure, and deformation at failure. It was found that the strain energy and peak load of all the mixes decrease with an increase in notch depth, indicating that increased percentage of plastic waste gave better fracture resistance. The moisture damage potential was evaluated by Tensile strength ratio (TSR). The experimental results shown increased TRS value up to 3% addition of waste plastic in HMA mix which gives better performance hence the use of waste plastic in road construction is favorable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20mix%20asphalt" title="hot mix asphalt">hot mix asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=semi%20circular%20bending" title=" semi circular bending"> semi circular bending</a>, <a href="https://publications.waset.org/abstracts/search?q=marshall%20mix%20design" title=" marshall mix design"> marshall mix design</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength%20ratio" title=" tensile strength ratio"> tensile strength ratio</a> </p> <a href="https://publications.waset.org/abstracts/62384/evaluation-of-fracture-resistance-and-moisture-damage-of-hot-mix-asphalt-using-plastic-coated-aggregates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8112</span> Polystyrene Paste as a Substitute for a Portland Cement: A Solution to the Nigerian Dilemma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lanre%20Oluwafemi%20Akinyemi">Lanre Oluwafemi Akinyemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reduction of limestone to cement in Nigeria is expensive and requires huge amounts of energy. This significantly affects the cost of cement. Concrete is heavy: a cubic foot of it weighs about 150 lbs. and a cubic yard is about 4000 lbs. Thus a ready-mix truck with 9 cubic yards is carrying 36,000 lbs excluding the weight of the truck itself, thereby accumulating cost for also manufacturers. Therein lies the need to find a substitute for cement by using the polystyrene paste that benefits both the manufactures and the consumers. Polystyrene Paste Constructional Cement (PPCC), a patented material obtained by dissolving Waste EPS in volatile organic solvent, has recently been identified as a suitable binder/cement for construction and building material production. This paper illustrates the procedures of a test experiment undertaken to determine the splitting tensile strength of PPCC mortar compared to that of OPC (Ordinary Portland Cement). Expanded polystyrene was dissolved in gasoline to form a paste referred to as Polystyrene Paste Constructional Cement (PPCC). Mortars of mix ratios 1:4, 1:5, 1:6, 1:7 (PPCC: fine aggregate) batched by volume were used to produce 50mm x 100mm cylindrical PPCC mortar splitting tensile strength specimens. The control experiment was done by creating another series of cylindrical OPC mortar splitting tensile strength specimens following the same mix ratio used earlier. The PPCC cylindrical splitting tensile strength specimens were left to air-set, and the ones made with Ordinary Portland Cement (OPC) were demoded after 24 hours and cured in water. The cylindrical PPCC splitting tensile strength specimens were tested at 28 days and compared with those of the Ordinary Portland cement splitting tensile strength specimens. The result shows that hence for this two mixes, PPCC exhibits a better binding property than the OPC. With this my new invention I recommend the use of PPCC as a substitute for a Portland cement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polystyrene%20paste" title="polystyrene paste">polystyrene paste</a>, <a href="https://publications.waset.org/abstracts/search?q=Portland%20cement" title=" Portland cement"> Portland cement</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a> </p> <a href="https://publications.waset.org/abstracts/82175/polystyrene-paste-as-a-substitute-for-a-portland-cement-a-solution-to-the-nigerian-dilemma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8111</span> The Effects of Microstructure of Directionally Solidified Al-Si-Fe Alloys on Micro Hardness, Tensile Strength, and Electrical Resistivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sevda%20Engin">Sevda Engin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ugur%20Buyuk"> Ugur Buyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Necmettin%20Marasli"> Necmettin Marasli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Directional solidification of eutectic alloys attracts considerable attention because of microhardness, tensile strength, and electrical resistivity influenced by eutectic structures. In this research, we examined processing of Al–Si–Fe (Al–11.7wt.%Si–1wt.%Fe) eutectic by directional solidification. The alloy was prepared by vacuum furnace and directionally solidified in Bridgman-type equipment. During the directional solidification process, the growth rates utilized varied from 8.25 m/s to 164.80 m/s. The Al–Si–Fe system showed an eutectic transformation, which resulted in the matrix Al, Si and Al5SiFe plate phases. The eutectic spacing between (λ_Si-λ_Si, λ_(Al_5 SiFe)-λ_(Al_5 SiFe)) was measured. Additionally, the microhardness, tensile strength, and electrical resistivity of the alloy were determined using directionally solidified samples. The effects of growth rates on microhardness, tensile strength, and electrical resistivity for directionally solidified Al–Si–Fe eutectic alloy were investigated, and the relationships between them were experimentally obtained. It was found that the microhardness, tensile strength, and electrical resistivity were affected by both eutectic spacing and the solidification parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=directional%20solidification" title="directional solidification">directional solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy" title=" aluminum alloy"> aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20properties" title=" electrical properties"> electrical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20test" title=" hardness test"> hardness test</a> </p> <a href="https://publications.waset.org/abstracts/45109/the-effects-of-microstructure-of-directionally-solidified-al-si-fe-alloys-on-micro-hardness-tensile-strength-and-electrical-resistivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8110</span> Mechanical Properties and Shrinkage and Expansion Assessment of Rice Husk Ash Concrete and Its Comparison with the Control Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Ahmadi%20Moghadam">Hamed Ahmadi Moghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Omolbanin%20Arasteh%20Khoshbin"> Omolbanin Arasteh Khoshbin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The possibility of using of rice husk ash (RHA) of Guilan (a province located in the north of Iran) (RHA) in concrete was studied by performing experiments. Mechanical properties and shrinkage and expansion of concrete containing different percentage of RHA and the control concrete consisting of cement type II were investigated. For studying, a number of cube and prism concrete specimens containing of 5 to 30% of RHA with constant water to binder ratio of 0.4 were casted and the compressive strength, tensile strength, shrinkage and expansion for water curing conditions up to 360 days were measured. The tests results show that the cement replacement of rice husk ash (RHA) caused both the quality and mechanical properties alterations. It is shown that the compressive strength, tensile strength increase also shrinkage and expansion of specimens were increased that should be controlled in mass concrete structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title="rice husk ash">rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage%20and%20expansion" title=" shrinkage and expansion"> shrinkage and expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=Pozzolan" title=" Pozzolan"> Pozzolan</a> </p> <a href="https://publications.waset.org/abstracts/13675/mechanical-properties-and-shrinkage-and-expansion-assessment-of-rice-husk-ash-concrete-and-its-comparison-with-the-control-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8109</span> Effect of Lead Content on Physical Properties of the Al–Si Eutectic Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Kaya">Hasan Kaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of lead content on the microstructure, mechanical (microhardness, ultimate tensile strength) and electrical resistivity properties of Al–Si eutectic alloys has been investigated. Al–12.6 Si–xSn (x=1, 2, 4, 6 and 8 wt. %) were prepared using metals of 99.99% high purity in the vacuum atmosphere. These alloys were directionally solidified under constant temperature gradient (5.50 K/mm) and growth rate (8.25 μm/s) by using a Bridgman–type directional solidification furnace. Eutectic spacing, microhardness, ultimate tensile strength and electrical resistivity were expressed as functions of the composition by using a linear regression analysis. The dependency of the eutectic spacing, microhardness, tensile strength and electrical resistivity on the composition (Sn content) were determined. According to experimental results, the microhardness, ultimate tensile strength and electrical resistivity of the solidified samples increase with increasing the Sn content, but decrease eutectic spacing. Variation of electrical resistivity with the temperature in the range of 300-500 K for studied alloys was also measured by using a standard d.c. four-point probe technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=content%20elements" title="content elements">content elements</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=microhardness" title=" microhardness"> microhardness</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/45734/effect-of-lead-content-on-physical-properties-of-the-al-si-eutectic-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8108</span> The Investigation of Niobium Addition on Mechanical Properties of Al11Si alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kerem%20Can%20Dizdar">Kerem Can Dizdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Semih%20Ate%C5%9F"> Semih Ateş</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozan%20G%C3%BCler"> Ozan Güler</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6khan%20Basman"> Gökhan Basman</a>, <a href="https://publications.waset.org/abstracts/search?q=Derya%20D%C4%B1%C5%9Fp%C4%B1nar"> Derya Dışpınar</a>, <a href="https://publications.waset.org/abstracts/search?q=Cevat%20Fahir%20Ar%C4%B1soy"> Cevat Fahir Arısoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grain refinement and obtaining homogeneous microstructure is the key parameter in casting of aluminum alloys. Ti has been traditionally used as grain refiner, however, inconsistency and heterogeneous dendrite arms, as well as fading efficiency, have been the drawbacks of Ti. Alternatively, Nb (Niobium) has gained attention. In this work, the effect of Nb was investigated in case of both as cast and T6 heat treated conditions. Different ratios of Nb (0.0, 0.03, 0.05, 0.07, 0.1 weight%) were added to AlSi11 alloy, mechanical properties were examined statistically, and relationship was established between microstructure and mechanical properties by examining the grain size and dendrite characteristics before and after heat treatment. Results indicate that in the case of as cast state; with the increasing addition of Nb has no significant effect on yield strength, however, it increases the tensile strength and elongation starting with 0.05wt% ratio, and it remains constant up to 0.1wt%. For the heat-treated condition; Nb addition provides increment at yield strength and tensile strength up to 0.05wt%, but it leads to decrementfrom 0.05 to 0.1wt%. The opposite is valid for the elongation; It decreases in between 0-0.05wt% then rises in range of 0.05-0.1wt%. Highest yield strength and ultimate tensile strength were found T6 heat treated 0.05wt% Nb addition. 0.05wt% was found as critical Nbaddition ratio for mechanical properties of Al-11Si alloys. Grain refinement and obtaining homogeneous microstructure is the key parameter in casting of aluminum alloys. Ti has been traditionally used as grain refiner, however, inconsistency and heterogeneous dendrite arms, as well as fading efficiency, have been the drawbacks of Ti. Alternatively, Nb (Niobium) has gained attention. In this work, the effect of Nb was investigated in case of both as cast and T6 heat treated conditions. Different ratios of Nb (0.0, 0.03, 0.05, 0.07, 0.1 weight%) were added to AlSi11 alloy, mechanical properties were examined statistically, and relationship was established between microstructure and mechanical properties by examining the grain size and dendrite characteristics before and after heat treatment. Results indicate that in the case of as cast state; with the increasing addition of Nb has no significant effect on yield strength, however, it increases the tensile strength and elongation starting with 0.05wt% ratio, and it remains constant up to 0.1wt%. For the heat-treated condition; Nb addition provides increment at yield strength and tensile strength up to 0.05wt%, but it leads to decrement from 0.05 to 0.1wt%. The opposite is valid for the elongation; It decreases in between 0-0.05wt% then rises in range of 0.05-0.1wt%. Highest yield strength and ultimate tensile strength were found T6 heat treated 0.05wt% Nb addition. 0.05wt% was found as critical Nbaddition ratio for mechanical properties of Al-11Si alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=al-si%20alloy" title="al-si alloy">al-si alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20refinement" title=" grain refinement"> grain refinement</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=niobium" title=" niobium"> niobium</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20casting" title=" sand casting"> sand casting</a> </p> <a href="https://publications.waset.org/abstracts/144469/the-investigation-of-niobium-addition-on-mechanical-properties-of-al11si-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8107</span> An Investigation of the Strength Deterioration of Forged Aluminum 6082 (T6) Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajveer">Rajveer</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhinav%20Saxena"> Abhinav Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Das"> Sanjeev Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is focused on the strength of forged aluminum alloy (AA) 6082 (T6). Aluminum alloy 6082 belongs to Al-Mg-Si family which has a wide range of automotive applications. A decrease in the strength of AA 6082 alloy was observed after T6 treatment. The as-received (extruded), forged, and forged + heat treated samples were examined to understand the reason. These examinations were accomplished by optical (OM) and scanning electron microscope (SEM) and X-ray diffraction (XRD) studies. It was observed that the defects had an insignificant effect on the alloy strength. The alloy samples were subjected to age hardening treatment and the time to achieve peak hardening was acquired. Standard tensile specimens were prepared from as-received (extruded), forged, forged + solutionized and forged + solutionized + age hardened. Tensile tests were conducted by Instron universal testing machine. It was observed that there was a significant drop in tensile strength in the case of solutionized sample. The detailed study of the fracture samples showed that the solutionizing after forging was not the best way to increase the strength of Al 6082 alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%206082" title="aluminum alloy 6082">aluminum alloy 6082</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=forging" title=" forging"> forging</a>, <a href="https://publications.waset.org/abstracts/search?q=age%20hardening" title=" age hardening"> age hardening</a> </p> <a href="https://publications.waset.org/abstracts/82119/an-investigation-of-the-strength-deterioration-of-forged-aluminum-6082-t6-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8106</span> Experimental Investigation to Produce an Optimum Mix Ratio of Micro-Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shofiq%20Ahmed">Shofiq Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakibul%20Hassan"> Rakibul Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Raquib%20Ahsan"> Raquib Ahsan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is one of the basic elements of RCC structure and also the most crucial one. In recent years, a lot of researches have been conducted to develop special types of concrete for special purposes. Micro-concrete is one of them which has high compressive strength and is mainly used for retrofitting. Micro-concrete is a cementitious based composition formulated for use in repairs of areas where the concrete is damaged & the area is confined in movement making the placement of conventional concrete difficult. According to recent statistics, a large number of structures in the major cities of Bangladesh are vulnerable to collapse. Retrofitting may thus be required for a sustainable solution, and for this purpose, the utilization of micro-concrete can be considered as the most effective solution. For that reason, the aim of this study was to produce micro-concrete using indigenous materials in low cost. Following this aim, the experimental data were observed for five mix ratios with varied amount of cement, fine aggregate, coarse aggregate, water, and admixture. The investigation criteria were a compressive strength, tensile strength, slump and the cost of different mix ratios. Finally, for a mix ratio of 1:1:1.5, the compressive strength was achieved as 7820 psi indicating highest strength among all the samples with the reasonable tensile strength of 1215 psi. The slump of 6.9 inches was also found for this specimen indicating it’s high flowability and making it’s convenient to use as micro-concrete. Moreover, comparing with the cost of foreign products of micro-concrete, it was observed that foreign products were almost four to five times costlier than this local product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indigenous" title="indigenous">indigenous</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-concrete" title=" micro-concrete"> micro-concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=retrofitting" title=" retrofitting"> retrofitting</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerable" title=" vulnerable"> vulnerable</a> </p> <a href="https://publications.waset.org/abstracts/66464/experimental-investigation-to-produce-an-optimum-mix-ratio-of-micro-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8105</span> The Effect of Surface Modifiers on the Mechanical and Morphological Properties of Waste Silicon Carbide Filled High-Density Polyethylene </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Dangtungee">R. Dangtungee</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rattanapan"> A. Rattanapan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Siengchin"> S. Siengchin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste silicon carbide (waste SiC) filled high-density polyethylene (HDPE) with and without surface modifiers were studied. Two types of surface modifiers namely; high-density polyethylene-grafted-maleic anhydride (HDPE-g-MA) and 3-aminopropyltriethoxysilane have been used in this study. The composites were produced using a two roll mill, extruder and shaped in a hydraulic compression molding machine. The mechanical properties of polymer composites such as flexural strength and modulus, impact strength, tensile strength, stiffness and hardness were investigated over a range of compositions. It was found that, flexural strength and modulus, tensile modulus and hardness increased, whereas impact strength and tensile strength decreased with the increasing in filler contents, compared to the neat HDPE. At similar filler content, the effect of both surface modifiers increased flexural modulus, impact strength, tensile strength and stiffness but reduced the flexural strength. Morphological investigation using SEM revealed that the improvement in mechanical properties was due to enhancement of the interfacial adhesion between waste SiC and HDPE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-density%20polyethylene" title="high-density polyethylene">high-density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=HDPE-g-MA" title=" HDPE-g-MA"> HDPE-g-MA</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20properties" title=" morphological properties"> morphological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20silicon%20carbide" title=" waste silicon carbide"> waste silicon carbide</a> </p> <a href="https://publications.waset.org/abstracts/17302/the-effect-of-surface-modifiers-on-the-mechanical-and-morphological-properties-of-waste-silicon-carbide-filled-high-density-polyethylene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8104</span> Analyzing Tensile Strength in Different Composites at High Temperatures: Insights from 761 Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milad%20Abolfazli">Milad Abolfazli</a>, <a href="https://publications.waset.org/abstracts/search?q=Milad%20Bazli"> Milad Bazli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this critical review, the topic of how composites maintain their tensile strength when exposed to elevated temperatures will be studied. A comprehensive database of 761 tests have been analyzed and closely examined to study the various factors that affect the strength retention. Conclusions are drawn from the collective research efforts of numerous scholars who have investigated this subject. Through the analysis of these tests, the relationships between the tensile strength retention and various effective factors are investigated. This review is meant to be a practical resource for researchers and engineers. It provides valuable information that can guide the development of composites tailored for high-temperature applications. By offering a deeper understanding of how composites behave in extreme heat, the paper contributes to the advancement of materials science and engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tesnile%20tests" title="tesnile tests">tesnile tests</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperatures" title=" high temperatures"> high temperatures</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP%20composites" title=" FRP composites"> FRP composites</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20perfomance" title=" mechanical perfomance"> mechanical perfomance</a> </p> <a href="https://publications.waset.org/abstracts/176234/analyzing-tensile-strength-in-different-composites-at-high-temperatures-insights-from-761-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8103</span> Improvement of Compressive and Tensile Strengths of Concrete Using Polypropylene Fibers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Asad%20Ahmad">Omar Asad Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Awwad"> Mohammed Awwad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is one of the essential elements that used in different types of construction these days, but it has many problems when interacts with environmental elements such as water, air, temperature, dust, and humidity. Also concrete made with Portland cement has certain characteristics: it is relatively strong in compression but weak in tension and tends to be brittle. These disadvantages make concrete limited to use in certain conditions. The most common problems appears on concrete are manifested by tearing, cracking, corrosion and spalling, which will lead to do some defect in concrete then in the whole construction, The fundamental objective of this research was to provide information about the hardened properties of concrete achieved by using easily available local raw materials in Jordan to support the practical work with partners in assessing the practicability of the mixes with polypropylene, and to facilitate the introduction of polypropylene fiber concrete (PFC) technology into general construction practice. Investigate the effect of the polypropylene fibers in PCC mixtures and on materials properties such as compressive strength, and tensile strength. Also to investigate the use of polypropylene fibers in plain cubes and cylindrical concrete to improve its compressive and tensile strengths to reduce early cracking and inhibit later crack growth. Increasing the hardness of concrete in this research is the main purpose to measure the deference of compressive strength and tensile strength between plain concrete and concrete mixture with polypropylene fibers different additions and to investigate its effect on reducing the early and later cracking problem. To achieve the goals of research 225 concrete test sample were prepared to measure it’s compressive strength and tensile strength, the concrete test sample were three classes (A,B,C), sub-classified to standard , and polypropylene fibers added by the volume of concrete (5%, 10%, 15%, and 20%). The investigation of polypropylene fibers mixture with concrete shows that the strengths of the cement are increased and the cracking decreased. The results show that for class A the recommended addition were 5% of polypropylene fibers additions for compressive strength and 10 % for tensile strength revels the best compressive strength that reach 26.67 Mpa and tensile strength that reach 2.548 Mpa records. Achieved results show that for classes B and C the recommend additions were 10 % polypropylene fibers revels the best compressive strength records where they reach 21.11 and 33.78 Mpa, records reach for tensile strength 2.707 and 2.65 Mpa respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title="polypropylene">polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=effects" title=" effects"> effects</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive" title=" compressive"> compressive</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile" title=" tensile"> tensile</a>, <a href="https://publications.waset.org/abstracts/search?q=strengths" title=" strengths"> strengths</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a> </p> <a href="https://publications.waset.org/abstracts/22028/improvement-of-compressive-and-tensile-strengths-of-concrete-using-polypropylene-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20strength%20ratio&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20strength%20ratio&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20strength%20ratio&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20strength%20ratio&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20strength%20ratio&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20strength%20ratio&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20strength%20ratio&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20strength%20ratio&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20strength%20ratio&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20strength%20ratio&page=271">271</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20strength%20ratio&page=272">272</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tensile%20strength%20ratio&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>