CINXE.COM
Search results for: alkali
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: alkali</title> <meta name="description" content="Search results for: alkali"> <meta name="keywords" content="alkali"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="alkali" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="alkali"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 216</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: alkali</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Determination of Alkali Treatment Conditions Effects That Influence the Variability of Kenaf Fiber Mean Cross-Sectional Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Yussni%20Hashim">Mohd Yussni Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Nazrul%20Roslan"> Mohd Nazrul Roslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahruddin%20Mahzan%20Mohd%20Zin"> Shahruddin Mahzan Mohd Zin</a>, <a href="https://publications.waset.org/abstracts/search?q=Saparudin%20Ariffin"> Saparudin Ariffin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber cross-sectional area value is a crucial factor in determining the strength properties of natural fiber. Furthermore, unlike synthetic fiber, a diameter and cross-sectional area of natural fiber has a large variation along and between the fibers. This study aims to determine the main and interaction effects of alkali treatment conditions that influence kenaf bast fiber mean cross-sectional area. Three alkali treatment conditions at two different levels were selected. The conditions setting were alkali concentrations at two and ten w/v %; fiber immersed temperature at room temperature and 1000C; and fiber immersed duration for 30 and 480 minute. Untreated kenaf fiber was used as a control unit. Kenaf bast fiber bundle mounting tab was prepared according to ASTM C1557-03. The cross-sectional area was measured using a Leica video analyzer. The study result showed that kenaf fiber bundle mean cross-sectional area was reduced 6.77% to 29.88% after alkali treatment. From the analysis of variance, it shows that the interaction of alkali concentration and immersed time has a higher magnitude at 0.1619 compared to alkali concentration and immersed temperature interaction that was 0.0896. For the main effect, alkali concentration factor contributes to the higher magnitude at 0.1372 which indicated the decrease pattern of variability when the level changed from lower to the higher level. Then, it was followed by immersed temperature at 0.1261 and immersed time at 0.0696 magnitudes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber" title="natural fiber">natural fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=kenaf%20bast%20fiber%20bundles" title=" kenaf bast fiber bundles"> kenaf bast fiber bundles</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20treatment" title=" alkali treatment"> alkali treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-sectional%20area" title=" cross-sectional area"> cross-sectional area</a> </p> <a href="https://publications.waset.org/abstracts/2033/determination-of-alkali-treatment-conditions-effects-that-influence-the-variability-of-kenaf-fiber-mean-cross-sectional-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> Effect of Particle Size on Alkali-Activation of Slag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Petrakis">E. Petrakis</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Karmali"> V. Karmali</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Komnitsas"> K. Komnitsas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 μm to 11.9 μm. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20activation" title="alkali activation">alkali activation</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding%20time" title=" grinding time"> grinding time</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity" title=" structural integrity"> structural integrity</a> </p> <a href="https://publications.waset.org/abstracts/103046/effect-of-particle-size-on-alkali-activation-of-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Laboratory Investigation of Alkali-Surfactant-Alternate Gas (ASAG) Injection – a Novel EOR Process for a Light Oil Sandstone Reservoir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vidit%20Mohan">Vidit Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashwin%20P.%20Ramesh"> Ashwin P. Ramesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anirudh%20Toshniwal"> Anirudh Toshniwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alkali-Surfactant-Alternate-Gas(ASAG) injection, a novel EOR process has the potential to improve displacement efficiency over Surfactant-Alternate-Gas(SAG) by addressing the problem of surfactant adsorption by clay minerals in rock matrix. A detailed laboratory investigation on ASAG injection process was carried out with encouraging results. To further enhance recovery over WAG injection process, SAG injection was investigated at laboratory scale. SAG injection yielded marginal incremental displacement efficiency over WAG process. On investigation, it was found that, clay minerals in rock matrix adsorbed the surfactants and were detrimental for SAG process. Hence, ASAG injection was conceptualized using alkali as a clay stabilizer. The experiment of ASAG injection with surfactant concentration of 5000 ppm and alkali concentration of 0.5 weight% yields incremental displacement efficiency of 5.42% over WAG process. The ASAG injection is a new process and has potential to enhance efficiency of WAG/SAG injection process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20surfactant%20alternate%20gas%20%28ASAG%29" title="alkali surfactant alternate gas (ASAG)">alkali surfactant alternate gas (ASAG)</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant%20alternate%20gas%20%28SAG%29" title=" surfactant alternate gas (SAG)"> surfactant alternate gas (SAG)</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20investigation" title=" laboratory investigation"> laboratory investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=EOR%20process" title=" EOR process"> EOR process</a> </p> <a href="https://publications.waset.org/abstracts/21646/laboratory-investigation-of-alkali-surfactant-alternate-gas-asag-injection-a-novel-eor-process-for-a-light-oil-sandstone-reservoir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> Repurposing of Crystalline Solar PV For Sodium Silicate Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lawal%20Alkasim">Lawal Alkasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Clement%20M.%20Gonah"> Clement M. Gonah</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainab%20S.%20Aliyu"> Zainab S. Aliyu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is focus on recovering silicon form photovoltaic cells and repurposing it toward the use in glass, ceramics or glass ceramics as it is made up of silicon material. Silicon is the main back-bone and responsible for the thermodynamic properties of glass, ceramics and glass ceramics materials. Antireflection silicon is soluble in hot alkali. Successfully the recovered material composed of silicon and silicon nitride of the A.R, with a small amount of silver, Aluminuim, lead & copper in the sunshine of crystalline/non-crystalline silicon solar cell. Aquaregia is used to remove the silver, Aluminium, lead & copper. The recovered material treated with hot alkali highly concentrated to produce sodium silicate, which is an alkali silicate glass (water glass). This type of glass is produced through chemical process, unlike other glasses that are produced through physical process of melting and non-crystalline solidification. It has showed a property of being alkali silicate glass from its solubility in water and insoluble in alcohol. The XRF analysis shows the presence of sodium silicate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unrecyclable%20solar%20PV" title="unrecyclable solar PV">unrecyclable solar PV</a>, <a href="https://publications.waset.org/abstracts/search?q=crystalline%20silicon" title=" crystalline silicon"> crystalline silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20conc.%20%20alkali" title=" hot conc. alkali"> hot conc. alkali</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20silicate" title=" sodium silicate"> sodium silicate</a> </p> <a href="https://publications.waset.org/abstracts/168585/repurposing-of-crystalline-solar-pv-for-sodium-silicate-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">212</span> Effectiveness of Natural Zeolite in Mitigating Alkali Silica Reaction Expansions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esma%20Gizem%20Daskiran">Esma Gizem Daskiran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Mustafa%20Daskiran"> Mehmet Mustafa Daskiran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the effectiveness of two natural zeolites in reducing expansion of concrete due to alkali-silica reaction. These natural zeolites have different reactive silica content. Three aggregates; two natural sand and one crushed stone aggregate were used while preparing mortar bars in accordance with accelerated mortar bar test method, ASTM C1260. Performance of natural zeolites are compared by examining the expansions due to alkali silica reaction. Natural zeolites added to the mixtures at %10 and %20 replacement levels by weight of cement. Natural zeolite with high reactive silica content had better performance on reducing expansions due to ASR. In this research, using high reactive zeolite at %20 replacement level was effective in mitigating expansions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20silica%20reaction" title="alkali silica reaction">alkali silica reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20zeolite" title=" natural zeolite"> natural zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=expansion" title=" expansion"> expansion</a> </p> <a href="https://publications.waset.org/abstracts/32640/effectiveness-of-natural-zeolite-in-mitigating-alkali-silica-reaction-expansions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">211</span> Reuse of Municipal Solid Waste Incinerator Fly Ash for the Synthesis of Zeolite: Effects of Different Operation Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyh-Cherng%20Chen">Jyh-Cherng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Jie%20Lin"> Yi-Jie Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study tries to reuse the fly ash of municipal solid waste incinerator (MSWI) for the synthesis of zeolites. The fly ashes were treated with NaOH alkali fusion at different temperatures for 40 mins and then synthesized the zeolites with hydrothermal method at 105oC for different operation times. The effects of different operation conditions and the optimum synthesis parameters were explored. The specific surface area, surface morphology, species identification, adsorption capacity, and the reuse potentials of the synthesized zeolites were analyzed and evaluated. Experimental results showed that the optimum operation conditions for the synthesis of zeolite from the mixed fly ash were Si/Al=20, alkali/ash=1.5, alkali fusion reaction with NaOH at 800oC for 40 mins, hydrolysis with L/S=200 at 105oC for 24 hr, and hydrothermal synthesis at 105oC for 48 hr. The largest specific surface area of synthesized zeolite could be increased to 943.05m2/g. The influence of different operation parameters on the synthesis of zeolite from mixed fly ash followed the sequence of Si/Al > hydrolysis L/S> hydrothermal time > alkali fusion temperature > alkali/ash ratio. The XRD patterns of synthesized zeolites were identified to be similar with the ZSM-23 zeolite. The adsorption capacities of synthesized zeolite for pollutants were increased as rising the specific surface area of synthesized zeolite. In summary, MSWI fly ash can be treated and reused to synthesize the zeolite with high specific surface area by the alkali fusion and hydrothermal method. The zeolite can be reuse for the adsorption of various pollutants. They have great potential for development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20fusion" title="alkali fusion">alkali fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/95849/reuse-of-municipal-solid-waste-incinerator-fly-ash-for-the-synthesis-of-zeolite-effects-of-different-operation-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">210</span> Role of Sodium Concentration, Waiting Time and Constituents’ Temperature on the Rheological Behavior of Alkali Activated Slag Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammet%20M.%20Erdem">Muhammet M. Erdem</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdo%C4%9Fan%20%C3%96zbay"> Erdoğan Özbay</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20H.%20Durmu%C5%9F"> Ibrahim H. Durmuş</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Erdemir"> Mustafa Erdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Bik%C3%A7e"> Murat Bikçe</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%BCzeyyen%20Bal%C3%A7%C4%B1kanl%C4%B1"> Müzeyyen Balçıkanlı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, rheological behavior of alkali activated slag concretes were investigated depending on the sodium concentration (SC), waiting time (WT) after production, and constituents’ temperature (CT) parameters. For this purpose, an experimental program was conducted with four different SCs of 1.85, 3.0, 4.15, and 5.30%, three different WT of 0 (just after production), 15, and 30 minutes and three different CT of 18, 30, and 40 °C. Solid precursors are activated by water glass and sodium hydroxide solutions with silicate modulus (Ms = SiO<sub>2</sub>/Na<sub>2</sub>O) of 1. Slag content and (water + activator solution)/slag ratio were kept constant in all mixtures. Yield stress and plastic viscosity values were defined for each mixture by using the ICAR rheometer. Test results were demonstrated that all of the three studied parameters have tremendous effect on the yield stress and plastic viscosity values of the alkali activated slag concretes. Increasing the SC, WT, and CT drastically augmented the rheological parameters. At the 15 and 30 minutes WT after production, most of the alkali activated slag concretes were set instantaneously, and rheological measurements were not performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20activation" title="alkali activation">alkali activation</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress"> yield stress</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20viscosity" title=" plastic viscosity"> plastic viscosity</a> </p> <a href="https://publications.waset.org/abstracts/54616/role-of-sodium-concentration-waiting-time-and-constituents-temperature-on-the-rheological-behavior-of-alkali-activated-slag-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">209</span> Surprising Behaviour of Kaolinitic Soils under Alkaline Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Hari%20Prasad%20Reddy">P. Hari Prasad Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Shimna%20Paulose"> Shimna Paulose</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sai%20Kumar"> V. Sai Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Rama%20Vara%20Prasad"> C. H. Rama Vara Prasad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil environment gets contaminated due to rapid industrialisation, agricultural-chemical application and improper disposal of waste generated by the society. Unexpected volume changes can occur in soil in the presence of certain contaminants usually after the long duration of interaction. Alkali is one of the major soil contaminant that has a considerable effect on behaviour of soils and capable of inducing swelling potential in soil. Chemical heaving of clayey soils occurs when they are wetted by aqueous solutions of alkalis. Mineralogical composition of the soil is one of the main factors influencing soil- alkali interaction. In the present work, studies are carried out to understand the swell potential of soils due to soil-alkali interaction with different concentrations of NaOH solution. Locally available soil, namely, red earth containing kaolinite which is of non-swelling nature is selected for the study. In addition to this, two commercially available clayey soils, namely ball clay and china clay containing mainly of kaolinite are selected to understand the effect of alkali interaction in various kaolinitic soils. Non-swelling red earth shows maximum swell at lower concentrations of alkali solution (0.1N) and a slightly decreasing trend of swelling with further increase in concentration (1N, 4N, and 8N). Marginal decrease in swell potential with increase in concentration indicates that the increased concentration of alkali solution exists as free solution in case of red earth. China clay and ball clay both falling under kaolinite group of clay minerals, show swelling with alkaline solution. At lower concentrations of alkali solution both the soils shows similar swell behaviour, but at higher concentration of alkali solution ball clay shows high swell potential compared to china clay which may be due to lack of well ordered crystallinity in ball clay compared to china clay. The variations in the results obtained were corroborated by carrying XRD and SEM studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali" title="alkali">alkali</a>, <a href="https://publications.waset.org/abstracts/search?q=kaolinite" title=" kaolinite"> kaolinite</a>, <a href="https://publications.waset.org/abstracts/search?q=swell%20potential" title=" swell potential"> swell potential</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/23569/surprising-behaviour-of-kaolinitic-soils-under-alkaline-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">208</span> The Optimum Operating Conditions for the Synthesis of Zeolite from Waste Incineration Fly Ash by Alkali Fusion and Hydrothermal Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Jie%20Lin">Yi-Jie Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyh-Cherng%20Chen"> Jyh-Cherng Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fly ash of waste incineration processes is usually hazardous and the disposal or reuse of waste incineration fly ash is difficult. In this study, the waste incineration fly ash was converted to useful zeolites by the alkali fusion and hydrothermal synthesis method. The influence of different operating conditions (the ratio of Si/Al, the ratio of hydrolysis liquid to solid, and hydrothermal time) was investigated to seek the optimum operating conditions for the synthesis of zeolite from waste incineration fly ash. The results showed that concentrations of heavy metals in the leachate of Toxicity Characteristic Leaching Procedure (TCLP) were all lower than the regulatory limits except lead. The optimum operating conditions for the synthesis of zeolite from waste incineration fly ash by the alkali fusion and hydrothermal synthesis method were Si/Al=40, NaOH/ash=1.5, alkali fusion at 400 <sup>o</sup>C for 40 min, hydrolysis with Liquid to Solid ratio (L/S)= 200 at 105 <sup>o</sup>C for 24 h, and hydrothermal synthesis at 105 <sup>o</sup>C for 24 h. The specific surface area of fly ash could be significantly increased from 8.59 m<sup>2</sup>/g to 651.51 m<sup>2</sup>/g (synthesized zeolite). The influence of different operating conditions on the synthesis of zeolite from waste incineration fly ash followed the sequence of Si/Al ratio > hydrothermal time > hydrolysis L/S ratio. The synthesized zeolites can be reused as good adsorbents to control the air or wastewater pollutants. The purpose of fly ash detoxification, reduction and waste recycling/reuse is achieved successfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20fusion" title="alkali fusion">alkali fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/94021/the-optimum-operating-conditions-for-the-synthesis-of-zeolite-from-waste-incineration-fly-ash-by-alkali-fusion-and-hydrothermal-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">207</span> Compressive Strength and Microstructure of Hybrid Alkaline Cements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Abdollahnejad">Z. Abdollahnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Torgal"> P. Torgal</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Barroso%20Aguiar"> J. Barroso Aguiar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Publications on the field of alkali-activated binders, state that this new material is likely to have high potential to become an alternative to Portland cement. Classical alkali-activated cements could be made more eco-efficient if the use of sodium silicate is avoided. Besides, most alkali-activated cements suffer from severe efflorescence originated by the fact that alkaline and/or soluble silicates that are added during processing cannot be totally consumed. This paper presents experimental results on hybrid alkaline cements. Compressive strength results and efflorescence’s observations show that the new mixes already analyzed are promising. SEM results show that no traditional porous ITZ was detected in these binders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20alkaline%20cements" title="hybrid alkaline cements">hybrid alkaline cements</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=efflorescence" title=" efflorescence"> efflorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=ITZ" title=" ITZ"> ITZ</a> </p> <a href="https://publications.waset.org/abstracts/5468/compressive-strength-and-microstructure-of-hybrid-alkaline-cements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">206</span> Kinetic Studies of Bioethanol Production from Salt-Pretreated Sugarcane Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preshanthan%20Moodley">Preshanthan Moodley</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20B.%20Gueguim%20Kana"> E. B. Gueguim Kana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the kinetics of S. cerevisiae BY4743 growth and bioethanol production from sugarcane leaf waste (SLW), utilizing two different optimized pretreatment regimes; under two fermentation modes: steam salt-alkali filtered enzymatic hydrolysate (SSA-F), steam salt-alkali unfiltered (SSA-U), microwave salt-alkali filtered (MSA-F) and microwave salt-alkali unfiltered (MSA-U). The kinetic coefficients were determined by fitting the Monod, modified Gompertz, and logistic models to the experimental data with high coefficients of determination R² > 0.97. A maximum specific growth rate (µₘₐₓ) of 0.153 h⁻¹ was obtained under SSA-F and SSA-U whereas, 0.150 h⁻¹ was observed with MSA-F and MSA-U. SSA-U gave a potential maximum bioethanol concentration (Pₘ) of 31.06 g/L compared to 30.49, 23.26 and 21.79g/L for SSA-F, MSA-F and MSA-U respectively. An insignificant difference was observed in the μmax and Pm for the filtered and unfiltered enzymatic hydrolysate for both SSA and MSA pretreatments, thus potentially reducing a unit operation. These findings provide significant insights for process scale up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20bioethanol" title="lignocellulosic bioethanol">lignocellulosic bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20pretreatment" title=" microwave pretreatment"> microwave pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20leaves" title=" sugarcane leaves"> sugarcane leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a> </p> <a href="https://publications.waset.org/abstracts/110833/kinetic-studies-of-bioethanol-production-from-salt-pretreated-sugarcane-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> Comparison of Different Activators Impact on the Alkali-Activated Aluminium-Silicate Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20Dembovska">Laura Dembovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Ina%20Pundiene"> Ina Pundiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Bajare"> Diana Bajare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alkali-activated aluminium-silicate composites (AASC) can be used in the production of innovative materials with a wide range of properties and applications. AASC are associated with low CO₂ emissions; in the production process, it is possible to use industrial by-products and waste, thereby minimizing the use of a non-renewable natural resource. This study deals with the preparation of heat-resistant porous AASC based on chamotte for high-temperature applications up to 1200°C. Different fillers, aluminium scrap recycling waste as pores forming agent and alkali activation with 6M sodium hydroxide (NaOH) and potassium hydroxide (KOH) solution were used. Sodium hydroxide (NaOH) is widely used for the synthesis of AASC compared to potassium hydroxide (KOH), but comparison of using different activator for geopolymer synthesis is not well established. Changes in chemical composition of AASC during heating were identified and quantitatively analyzed by using DTA, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of AASC was determined by XRD. Lightweight porous AASC activated with NaOH have been obtained with density in range from 600 to 880 kg/m³ and compressive strength from 0.8 to 2.7 MPa, but for AAM activated with KOH density was in range from 750 to 850 kg/m³ and compressive strength from 0.7 to 2.1 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20activation" title="alkali activation">alkali activation</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20activated%20materials" title=" alkali activated materials"> alkali activated materials</a>, <a href="https://publications.waset.org/abstracts/search?q=elevated%20temperature%20application" title=" elevated temperature application"> elevated temperature application</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20resistance" title=" heat resistance"> heat resistance</a> </p> <a href="https://publications.waset.org/abstracts/82266/comparison-of-different-activators-impact-on-the-alkali-activated-aluminium-silicate-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> Alcoxysilanes Production from Silica and Dimethylcarbonate Promoted by Alkali Bases: A DFT Investigation of the Reaction Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valeria%20%20Butera">Valeria Butera</a>, <a href="https://publications.waset.org/abstracts/search?q=Norihisa%20Fukaya"> Norihisa Fukaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Chu%20Choi"> Jun-Chu Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuhiko%20Sato"> Kazuhiko Sato</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoong-Kee%20Choe"> Yoong-Kee Choe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several silicon dioxide sources can react with dimethyl carbonate (DMC) in presence of alkali bases catalysts to ultimately produce tetramethoxysilane (TMOS). Experimental findings suggested that the reaction proceeds through several steps in which the first molecule of DMC is converted to dimethylsilyloxide (DMOS) and CO₂. Following the same mechanistic steps, a second molecule of DMC reacts with the DMOS to afford the final product TMOS. Using a cluster model approach, a quantum-mechanical investigation of the first part of the reaction leading to DMOS formation is reported with a twofold purpose: (1) verify the viability of the reaction mechanism proposed on the basis of experimental evidences .(2) compare the behaviors of three different alkali hydroxides MOH, where M=Li, K and Cs, to determine whether diverse ionic radius and charge density can be considered responsible for the observed differences in reactivity. Our findings confirm the observed experimental trend and furnish important information about the effective role of the alkali hydroxides giving an explanation of the different catalytic activity of the three metal cations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alcoxysilanes%20production" title="Alcoxysilanes production">Alcoxysilanes production</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20model%20approach" title=" cluster model approach"> cluster model approach</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=DMC%20conversion" title=" DMC conversion"> DMC conversion</a> </p> <a href="https://publications.waset.org/abstracts/70173/alcoxysilanes-production-from-silica-and-dimethylcarbonate-promoted-by-alkali-bases-a-dft-investigation-of-the-reaction-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> Microcrystalline Cellulose (MCC) from Oil Palm Empty Fruit Bunch (EFB) Fiber via Simultaneous Ultrasonic and Alkali Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ridzuan%20Ramli">Ridzuan Ramli</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhafzan%20Junadi"> Norhafzan Junadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20D.H.%20Beg"> Mohammad D.H. Beg</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosli%20M.%20Yunus"> Rosli M. Yunus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, microcrystalline cellulose (MCC) was extracted from oil palm empty fruit bunch (EFB) cellulose which was earlier isolated from oil palm EFB fibre. In order to isolate the cellulose, the chlorination method was carried out. Then, the MCC was prepared by simultaneous ultrasonic and alkali treatment from the isolated α-cellulose. Based on mass balance calculation, the yields for MCC obtained from EFB was 44%. For fiber characterization, it is observed that the chemical composition of the hemicellulose and lignin for all samples decreased while composition for cellulose increased. The structural property of the MCC was studied by X-ray diffraction (XRD) method and the result shows that the MCC produced is a cellulose-I polymorph, with 73% crystallinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20empty%20fruit%20bunch" title="oil palm empty fruit bunch">oil palm empty fruit bunch</a>, <a href="https://publications.waset.org/abstracts/search?q=microcrystalline%20cellulose" title=" microcrystalline cellulose"> microcrystalline cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20treatment" title=" alkali treatment"> alkali treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20diffraction" title=" x-ray diffraction"> x-ray diffraction</a> </p> <a href="https://publications.waset.org/abstracts/17460/microcrystalline-cellulose-mcc-from-oil-palm-empty-fruit-bunch-efb-fiber-via-simultaneous-ultrasonic-and-alkali-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> Optimum Design of Alkali Activated Slag Concretes for Low Chloride Ion Permeability and Water Absorption Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%C3%BCzeyyen%20Bal%C3%A7ikanli">Müzeyyen Balçikanli</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdo%C4%9Fan%20%C3%96zbay"> Erdoğan Özbay</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Tacettin%20T%C3%BCrker"> Hakan Tacettin Türker</a>, <a href="https://publications.waset.org/abstracts/search?q=Okan%20Karahan"> Okan Karahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cengiz%20Duran%20Ati%C5%9F"> Cengiz Duran Atiş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, effect of curing time (TC), curing temperature (CT), sodium concentration (SC) and silicate modules (SM) on the compressive strength, chloride ion permeability, and water absorption capacity of alkali activated slag (AAS) concretes were investigated. For maximization of compressive strength while for minimization of chloride ion permeability and water absorption capacity of AAS concretes, best possible combination of CT, CTime, SC and SM were determined. An experimental program was conducted by using the central composite design method. Alkali solution-slag ratio was kept constant at 0.53 in all mixture. The effects of the independent parameters were characterized and analyzed by using statistically significant quadratic regression models on the measured properties (dependent parameters). The proposed regression models are valid for AAS concretes with the SC from 0.1% to 7.5%, SM from 0.4 to 3.2, CT from 20 °C to 94 °C and TC from 1.2 hours to 25 hours. The results of test and analysis indicate that the most effective parameter for the compressive strength, chloride ion permeability and water absorption capacity is the sodium concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20activation" title="alkali activation">alkali activation</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20chloride%20permeability" title=" rapid chloride permeability"> rapid chloride permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20absorption%20capacity" title=" water absorption capacity"> water absorption capacity</a> </p> <a href="https://publications.waset.org/abstracts/54620/optimum-design-of-alkali-activated-slag-concretes-for-low-chloride-ion-permeability-and-water-absorption-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">201</span> Understanding the Role of Alkali-Free Accelerators in Wet-Mix Shotcrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezgi%20Yurdakul">Ezgi Yurdakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus-Alexander%20Rieder"> Klaus-Alexander Rieder</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Sibbick"> Richard Sibbick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the shotcrete projects require compliance with meeting a specified early-age strength target (e.g., reaching 1 MPa in 1 hour) that is selected based on the underground conditions. To meet the desired early-age performance characteristics, accelerators are commonly used as they increase early-age strength development rate and accelerate the setting thereby reducing sagging and rebound. The selection of accelerator type and its dosage is made by the setting time and strength required for the shotcrete application. While alkaline and alkali-free accelerators are the two main types used in wet-mix shotcrete; alkali-free admixtures increasingly substitute the alkaline accelerators to improve the performance and working safety. This paper aims to evaluate the impact of alkali-free accelerators in wet-mix on various tests including set time, early and later-age compressive strength, boiled absorption, and electrical resistivity. Furthermore, the comparison between accelerated and non-accelerated samples will be made to demonstrate the interaction between cement and accelerators. Scanning electron microscopy (SEM), fluorescent resin impregnated thin section and cut and polished surface images will be used to understand the microstructure characterization of mixes in the presence of accelerators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerators" title="accelerators">accelerators</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20admixtures" title=" chemical admixtures"> chemical admixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=shotcrete" title=" shotcrete"> shotcrete</a>, <a href="https://publications.waset.org/abstracts/search?q=sprayed%20concrete" title=" sprayed concrete"> sprayed concrete</a> </p> <a href="https://publications.waset.org/abstracts/87205/understanding-the-role-of-alkali-free-accelerators-in-wet-mix-shotcrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">200</span> Influence of Superplasticizer and Alkali Activator Concentration on Slag-Fly Ash Based Geopolymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sulaem%20Musaddiq%20Laskar">Sulaem Musaddiq Laskar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudip%20Talukdar"> Sudip Talukdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable supplementary cementitious material is the prime need in the construction industry. Geopolymer has strong potential for replacing the conventional Portland cement used in mortar and concrete in the industry. This study deals with experimental investigations performed on geopolymer mixes prepared from both ultra-fine ground granulated blast furnace slag and fly ash in a certain proportion. Geopolymer mixes were prepared with alkali activator composed of sodium hydroxide solution and varying amount of superplasticizer. The mixes were tested to study fresh and hardened state properties such as setting time, workability and compressive strength. Influence of concentration of alkali activator on effectiveness of superplasticizer in modifying the properties of geopolymer mixes was also investigated. Results indicated that addition of superplasticizer to ultra-fine slag-fly ash based geopolymer is advantageous in terms of setting time, workability and strength performance but up to certain dosage level. Higher concentration of alkali activator renders ineffectiveness in superplasticizer in improving the fresh and hardened state properties of geopolymer mixes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultra-fine%20slag" title="ultra-fine slag">ultra-fine slag</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=superplasticizer" title=" superplasticizer"> superplasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=setting%20time" title=" setting time"> setting time</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability"> workability</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/61661/influence-of-superplasticizer-and-alkali-activator-concentration-on-slag-fly-ash-based-geopolymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">199</span> Feasibility of Ground Alkali-Active Sandstone Powder for Use in Concrete as Mineral Admixture </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xia%20Chen">Xia Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua-Quan%20Yang"> Hua-Quan Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi-Hua%20Zhou"> Shi-Hua Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alkali-active sandstone aggregate was ground by vertical and ball mill into particles with residue over 45 μm less than 12%, and investigations have been launched on particles distribution and characterization of ground sandstone powder, fluidity, heat of hydration, strength as well as hydration products morphology of pastes with incorporation of ground sandstone powder. Results indicated that ground alkali-active sandstone powder with residue over 45 μm less than 8% was easily obtainable, and specific surface area was more sensitive to characterize its fineness with extension of grinding length. Incorporation of sandstone powder resulted in higher water demand and lower strength, advanced hydration of C<sub>3</sub>A and C<sub>2</sub>S within 3days and refined pore structure. Based on its manufacturing, characteristics and influence on properties of pastes, it was concluded that sandstone powder was a good selection for use in concrete as mineral admixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20admixture" title=" mineral admixture"> mineral admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=hydration" title=" hydration"> hydration</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a> </p> <a href="https://publications.waset.org/abstracts/89811/feasibility-of-ground-alkali-active-sandstone-powder-for-use-in-concrete-as-mineral-admixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">198</span> Physical Properties of Alkali Resistant-Glass Fibers in Continuous Fiber Spinning Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji-Sun%20Lee">Ji-Sun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Soong-Keun%20Hyun"> Soong-Keun Hyun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Ho%20Kim"> Jin-Ho Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a glass fiber is fabricated using a continuous spinning process from alkali resistant (AR) glass with 4 wt% zirconia. In order to confirm the melting properties of the marble glass, the raw material is placed into a Pt crucible and melted at 1650 ℃ for 2 h, and then annealed. In order to confirm the transparency of the clear marble glass, the visible transmittance is measured, and the fiber spinning condition is investigated by using high temperature viscosity measurements. A change in the diameter is observed according to the winding speed in the range of 100–900 rpm; it is also verified as a function of the fiberizing temperature in the range of 1200–1260 ℃. The optimum winding speed and spinning temperature are 500 rpm and 1240 ℃, respectively. The properties of the prepared spinning fiber are confirmed using optical microscope, tensile strength, modulus, and alkali-resistant tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20composition" title="glass composition">glass composition</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20diameter" title=" fiber diameter"> fiber diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20filament%20fiber" title=" continuous filament fiber"> continuous filament fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20spinning" title=" continuous spinning"> continuous spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title=" physical properties"> physical properties</a> </p> <a href="https://publications.waset.org/abstracts/75451/physical-properties-of-alkali-resistant-glass-fibers-in-continuous-fiber-spinning-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">197</span> An Evaluation of the Feasibility of Several Industrial Wastes and Natural Materials as Precursors for the Production of Alkali Activated Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Alelweet">O. Alelweet</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pavia"> S. Pavia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to face current compelling environmental problems affecting the planet, the construction industry needs to adapt. It is widely acknowledged that there is a need for durable, high-performance, low-greenhouse gas emission binders that can be used as an alternative to Portland cement (PC) to lower the environmental impact of construction. Alkali activated materials (AAMs) are considered a more sustainable alternative to PC materials. The binders of AAMs result from the reaction of an alkali metal source and a silicate powder or precursor which can be a calcium silicate or an aluminosilicate-rich material. This paper evaluates the particle size, specific surface area, chemical and mineral composition and amorphousness of silicate materials (most industrial waste locally produced in Ireland and Saudi Arabia) to develop alkali-activated binders that can replace PC resources in specific applications. These include recycled ceramic brick, bauxite, illitic clay, fly ash and metallurgical slag. According to the results, the wastes are reactive and comply with building standards requirements. The study also evidenced that the reactivity of the Saudi bauxite (with significant kaolinite) can be enhanced on thermal activation; and high calcium in the slag will promote reaction; which should be possible with low alkalinity activators. The wastes evidenced variable water demands that will be taken into account for mixing with the activators. Finally, further research is proposed to further determine the reactive fraction of the clay-based precursors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20activated%20materials" title="alkali activated materials">alkali activated materials</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali-activated%20binders" title=" alkali-activated binders"> alkali-activated binders</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20building%20materials" title=" sustainable building materials"> sustainable building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20ceramic%20brick" title=" recycled ceramic brick"> recycled ceramic brick</a>, <a href="https://publications.waset.org/abstracts/search?q=bauxite" title=" bauxite"> bauxite</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20mud" title=" red mud"> red mud</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20slags" title=" metallurgical slags"> metallurgical slags</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20and%20mineral%20composition%20and%20amorphousness" title=" chemical and mineral composition and amorphousness"> chemical and mineral composition and amorphousness</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20demand" title=" water demand"> water demand</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20density" title=" particle density"> particle density</a> </p> <a href="https://publications.waset.org/abstracts/113869/an-evaluation-of-the-feasibility-of-several-industrial-wastes-and-natural-materials-as-precursors-for-the-production-of-alkali-activated-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">196</span> Development of a Steam or Microwave-Assisted Sequential Salt-Alkali Pretreatment for Sugarcane Leaf Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preshanthan%20Moodley">Preshanthan Moodley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study compares two different pretreatments for sugarcane leaf waste (SLW): steam salt-alkali (SSA) and microwave salt-alkali (MSA). The two pretreatment types were modelled, optimized, and validated with R² > 0.97. Reducing sugar yields of 1.21g/g were obtained with optimized SSA pretreatment using 1.73M ZnCl₂, 1.36M NaOH and 9.69% solid loading, and 1.17g/g with optimized MSA pretreatment using 1.67M ZnCl₂, 1.52M NaOH at 400W for 10min. A lower pretreatment time (10min) was required for the MSA model (83% lower). The structure of pretreated SLW was assessed using scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR). The optimized SSA and MSA models showed lignin removal of 80.5 and 73% respectively. The MSA pretreatment was further examined on sorghum leaves and Napier grass and showed yield improvements of 1.9- and 2.8-fold compared to recent reports. The developed pretreatment methods demonstrated high efficiency at enhancing enzymatic hydrolysis on various lignocellulosic substrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title="lignocellulosic biomass">lignocellulosic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=salt" title=" salt"> salt</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20leaves" title=" sugarcane leaves"> sugarcane leaves</a> </p> <a href="https://publications.waset.org/abstracts/110989/development-of-a-steam-or-microwave-assisted-sequential-salt-alkali-pretreatment-for-sugarcane-leaf-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">195</span> Alkali Silica Reaction Mitigation and Prevention Measures for Arkansas Local Aggregates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Kamal%20Akhnoukh">Amin Kamal Akhnoukh</a>, <a href="https://publications.waset.org/abstracts/search?q=Lois%20Zaki%20Kamel"> Lois Zaki Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Magued%20Mourad%20Barsoum"> Magued Mourad Barsoum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to mitigate and prevent the alkali silica reactivity (ASR) in highway construction projects. ASR is a deleterious reaction initiated when the silica content of the aggregate reacts with alkali hydroxides in cement in the presence of relatively high moisture content. The ASR results in the formation of an expansive white colored gel-like material which forms the destructive tensile stresses inside hardened concrete. In this research, different types of local aggregates available in the State of Arkansas were mixed and mortar bars were poured according to the ASTM specifications. Mortar bars expansion was measured versus time and aggregates with potential ASR problems were detected. Different types of supplementary cementitious materials (SCMs) were used in remixing mortar bars with highly reactive aggregates. Length changes for remixed bars proved that different types of SCMs can be successfully used in reducing the expansive effect of ASR. SCMs percentage by weight is highly dependent on the SCM type. The result of this study will help avoiding future losses due to ASR cracking in construction project and reduce the maintenance, repair, and replacement budgets required for highways network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20silica%20reaction" title="alkali silica reaction">alkali silica reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregates" title=" aggregates"> aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=misture" title=" misture"> misture</a>, <a href="https://publications.waset.org/abstracts/search?q=cracks" title=" cracks"> cracks</a>, <a href="https://publications.waset.org/abstracts/search?q=Mortar%20Bar%20Test" title=" Mortar Bar Test"> Mortar Bar Test</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementary%20cementitious%20materials" title=" supplementary cementitious materials"> supplementary cementitious materials</a> </p> <a href="https://publications.waset.org/abstracts/43556/alkali-silica-reaction-mitigation-and-prevention-measures-for-arkansas-local-aggregates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">194</span> A Prospective Study on Alkali Activated Bottom Ash-GGBS Blend in Paver Blocks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Revathi">V. Revathi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Thaarrini"> J. Thaarrini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Venkob%20Rao"> M. Venkob Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a study on use of alkali activated bottom ash (BA) and ground granulated blast furnace slag (GGBS) blend in paver blocks. A preliminary effort on alkali-activated bottom ash, blast furnace slag based geopolymer (BA-GGBS-GP) mortar with river sand was carried out to identify the suitable mix for paver block. Several mixes were proposed based on the combination of BA-GGBS. The percentage ratio of BA:GGBS was selected as 100:0, 75:25, 50:50, 25:75 and 0:100 for the source material. Sodium based alkaline activators were used for activation. The molarity of NaOH was considered as 8M. The molar ratio of SiO2 to Na2O was varied from 1 to 4. Two curing mode such as ambient and steam curing 60°C for 24 hours were selected. The properties of paver block such as compressive strength split tensile strength, flexural strength and water absorption were evaluated as per IS15658:2006. Based on the preliminary study on BA-GGBS-GP mortar, the combinations of 25% BA with 75% GGBS mix for M30 and 75% BA with 25% GGBS mix for M35 grade were identified for paver block. Test results shows that the combination of BA-GGBS geopolymer paver blocks attained remarkable compressive strength under steam curing as well as in ambient mode at 3 days. It is noteworthy to know BA-GGBS-GP has promising future in the construction industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom%20ash" title="bottom ash">bottom ash</a>, <a href="https://publications.waset.org/abstracts/search?q=GGBS" title=" GGBS"> GGBS</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20activation" title=" alkali activation"> alkali activation</a>, <a href="https://publications.waset.org/abstracts/search?q=paver%20block" title=" paver block"> paver block</a> </p> <a href="https://publications.waset.org/abstracts/8069/a-prospective-study-on-alkali-activated-bottom-ash-ggbs-blend-in-paver-blocks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">193</span> Flexural Analysis of Palm Fiber Reinforced Hybrid Polymer Matrix Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.Venkatachalam">G.Venkatachalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Gautham%20Shankar"> Gautham Shankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Dasarath%20Raghav"> Dasarath Raghav</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Kuar"> Krishna Kuar</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhosh%20Kiran"> Santhosh Kiran</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhargav%20Mahesh"> Bhargav Mahesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncertainty in the availability of fossil fuels in the future and global warming increased the need for more environment-friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as a reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adhesion" title="Adhesion">Adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=CNSL" title=" CNSL"> CNSL</a>, <a href="https://publications.waset.org/abstracts/search?q=Flexural%20Analysis" title=" Flexural Analysis"> Flexural Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Hybrid%20Matrix%20Composite" title=" Hybrid Matrix Composite"> Hybrid Matrix Composite</a>, <a href="https://publications.waset.org/abstracts/search?q=Palm%20Fiber" title=" Palm Fiber"> Palm Fiber</a> </p> <a href="https://publications.waset.org/abstracts/29720/flexural-analysis-of-palm-fiber-reinforced-hybrid-polymer-matrix-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">192</span> The Effect of Porous Alkali Activated Material Composition on Buffer Capacity in Bioreactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Girts%20Bumanis">Girts Bumanis</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Bajare"> Diana Bajare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With demand for primary energy continuously growing, search for renewable and efficient energy sources has been high on agenda of our society. One of the most promising energy sources is biogas technology. Residues coming from dairy industry and milk processing could be used in biogas production; however, low efficiency and high cost impede wide application of such technology. One of the main problems is management and conversion of organic residues through the anaerobic digestion process which is characterized by acidic environment due to the low whey pH (<6) whereas additional pH control system is required. Low buffering capacity of whey is responsible for the rapid acidification in biological treatments; therefore alkali activated material is a promising solution of this problem. Alkali activated material is formed using SiO2 and Al2O3 rich materials under highly alkaline solution. After material structure forming process is completed, free alkalis remain in the structure of materials which are available for leaching and could provide buffer capacity potential. In this research porous alkali activated material was investigated. Highly porous material structure ensures gradual leaching of alkalis during time which is important in biogas digestion process. Research of mixture composition and SiO2/Na2O and SiO2/Al2O ratio was studied to test the buffer capacity potential of alkali activated material. This research has proved that by changing molar ratio of components it is possible to obtain a material with different buffer capacity, and this novel material was seen to have considerable potential for using it in processes where buffer capacity and pH control is vitally important. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20material" title="alkaline material">alkaline material</a>, <a href="https://publications.waset.org/abstracts/search?q=buffer%20capacity" title=" buffer capacity"> buffer capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas%20production" title=" biogas production"> biogas production</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactors" title=" bioreactors"> bioreactors</a> </p> <a href="https://publications.waset.org/abstracts/9251/the-effect-of-porous-alkali-activated-material-composition-on-buffer-capacity-in-bioreactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">191</span> Feminism and the Nigerian Female Question: A Feminist Appraisal of Zaynab Alkali’s Stillborn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ogbu%20Harry%20Omilonye">Ogbu Harry Omilonye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines feminism as a literary ideology which attempts to win for women a status of recognition and parity in a male-dominated society like Nigeria. This article deals essentially with the emergence of the ideology and literary personalities behind it. It focuses sharply on Zaynab Alkali’s brand of feminism as demonstrated in the delineation of her female characters vis-à-vis her male characters. The woman’s destiny, this paper believes, lies in her hand, and that true emancipation of women can only be realized through education and hard work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feminism" title="feminism">feminism</a>, <a href="https://publications.waset.org/abstracts/search?q=stillborn" title=" stillborn"> stillborn</a>, <a href="https://publications.waset.org/abstracts/search?q=literary%20ideology" title=" literary ideology"> literary ideology</a>, <a href="https://publications.waset.org/abstracts/search?q=literature" title=" literature"> literature</a> </p> <a href="https://publications.waset.org/abstracts/9130/feminism-and-the-nigerian-female-question-a-feminist-appraisal-of-zaynab-alkalis-stillborn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">190</span> Safe Disposal of Pyrite Rich Waste Rock Using Alkali Phosphate Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae%20Gon%20Kim">Jae Gon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongchan%20Cho"> Yongchan Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungwha%20Lee"> Jungwha Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acid rock drainage (ARD) is generated by the oxidation of pyrite (FeS₂) contained in the excavated rocks upon its exposure to atmosphere and is an environmental concern at construction site due to its high acidity and high concentration of toxic elements. We developed the safe disposal method with the reduction of ARD generation by an alkali phosphate treatment. A pyrite rich andesite was collected from a railway construction site. The collected rock sample was crushed to be less than 3/8 inches in diameter using a jaw crusher. The crushed rock was filled in an acryl tube with 20 cm in diameter and 40 cm in height. Two treatments for the ARD reduction were conducted with duplicates: 1) the addition of 10mM KH₂PO₄_3% NaHCO₃ and 2) the addition of 10mM KH₂PO₄_3% NaHCO₃ and ordinary portland cement (OPC) on the top of the column. After the treatments, 500 ml of distilled water added to each column for every week for 3 weeks and then the column was flushed with 1,500 ml of distilled water in the 4th week. The pH, electrical conductivity (EC), concentrations of anions and cations of the leachates were monitored for 10 months. The pH of the leachates from the untreated column showed 2.1-3.7, but the leachates from the columns treated with the alkali phosphate solution with or without the OPC addition showed pH 6.7–8.9. The leachates from the treated columns had much lower concentrations of SO₄²⁻ and toxic elements such as Al, Mn, Fe and heavy metals than those from the untreated columns. However, the leachates from the treated columns had a higher As concentration than those from the untreated columns. There was no significant difference in chemical property between the leachates from the treated columns with and without the OPC addition. The chemistry of leachates indicates that the alkali phosphate treatment decreased the oxidation of sulfide and neutralized the acidic pore water. No significant effect of the OPC addition on the leachate chemistry has shown during 10-month experiment. However, we expect a positive effect of the OPC addition on the reduction of ARD generation in terms of long period. According to the results of this experiment, the alkali phosphate treatment of sulfide rich rock can be a promising technology for the safe disposal method with the ARD reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20rock%20drainage" title="acid rock drainage">acid rock drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20phosphate%20treatment" title=" alkali phosphate treatment"> alkali phosphate treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite%20rich%20rock" title=" pyrite rich rock"> pyrite rich rock</a>, <a href="https://publications.waset.org/abstracts/search?q=safe%20disposal" title=" safe disposal"> safe disposal</a> </p> <a href="https://publications.waset.org/abstracts/96111/safe-disposal-of-pyrite-rich-waste-rock-using-alkali-phosphate-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">189</span> High Performance Fibre Reinforced Alkali Activated Slag Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Sivakumar">A. Sivakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Srinivasan"> K. Srinivasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of the study is focused in producing slag based geopolymer concrete obtained with the addition of alkali activator. Test results indicated that the reaction of silicates in slag is based on the reaction potential of sodium hydroxide and the formation of alumino-silicates. The study also comprises on the evaluation of the efficiency of polymer reaction in terms of the strength gain properties for different geopolymer mixtures. Geopolymer mixture proportions were designed for different binder to total aggregate ratio (0.3 & 0.45) and fine to coarse aggregate ratio (0.4 & 0.8). Geopolymer concrete specimens casted with normal curing conditions reported a maximum 28 days compressive strength of 54.75 MPa. The addition of glued steel fibres at 1.0% Vf in geopolymer concrete showed reasonable improvements on the compressive strength, split tensile strength and flexural properties of different geopolymer mixtures. Further, comparative assessment was made for different geopolymer mixtures and the reinforcing effects of steel fibres were investigated in different concrete matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerators" title="accelerators">accelerators</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20activators" title=" alkali activators"> alkali activators</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20air%20oven%20curing" title=" hot air oven curing"> hot air oven curing</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20fibres" title=" polypropylene fibres"> polypropylene fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20curing" title=" steam curing"> steam curing</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibres" title=" steel fibres"> steel fibres</a> </p> <a href="https://publications.waset.org/abstracts/17419/high-performance-fibre-reinforced-alkali-activated-slag-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">188</span> Bulk Electrical Resistivity of Geopolymer Mortars: The Effect of Binder Composition and Alkali Concentration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Babaee">Mahdi Babaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnaud%20Castel"> Arnaud Castel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main hurdles for commercial adaptation of geopolymer concrete (GPC) as a low-embodied-carbon alternative for Portland cement concrete (PCC) is the durability aspects and its long-term performance in aggressive/corrosive environments. GPC is comparatively a new engineering material and in the absence of a track record of successful durability performance, proper experimental studies to investigate different durability-related characteristics of GPC seem inevitable. In this context, this paper aims to study the bulk electrical resistivity of geopolymer mortars fabricated of blends of low-calcium fly ash (FA) and ground granulated blast-furnace slag (GGBS). Bulk electrical resistivity is recognized as one of the most important parameters influencing the rate of corrosion of reinforcing bars during the propagation phase of corrosion. To investigate the effect of alkali concentration on the resistivity of the samples, 100x200 mm mortar cylinders were cast at different alkali concentration levels, whereas the modulus ratio (the molar ratio of SiO2/Na2O) was fixed for the mixes, and the bulk electrical resistivity was then measured. Also, the effect of the binder composition was assessed with respect to the ratio of FA to GGBS used. Results show a superior performance of samples with higher GGBS content. Lower concentration of the solution has increased the resistivity by reducing the amount of mobile alkali ions in the pore solution. Moreover, GGBS-based samples showed a much sharper increase in the electrical resistivity with decreasing the moisture content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulk%20resistivity" title="bulk resistivity">bulk resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer%20concrete" title=" geopolymer concrete"> geopolymer concrete</a> </p> <a href="https://publications.waset.org/abstracts/74311/bulk-electrical-resistivity-of-geopolymer-mortars-the-effect-of-binder-composition-and-alkali-concentration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">187</span> Transport Properties of Alkali Nitrites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Mateyshina">Y. Mateyshina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Ulihin"> A.Ulihin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.Uvarov"> N.Uvarov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrolytes with different type of charge carrier can find widely application in different using, e.g. sensors, electrochemical equipments, batteries and others. One of important components ensuring stable functioning of the equipment is electrolyte. Electrolyte has to be characterized by high conductivity, thermal stability, and wide electrochemical window. In addition to many advantageous characteristic for liquid electrolytes, the solid state electrolytes have good mechanical stability, wide working range of temperature range. Thus search of new system of solid electrolytes with high conductivity is an actual task of solid state chemistry. Families of alkali perchlorates and nitrates have been investigated by us earlier. In literature data about transport properties of alkali nitrites are absent. Nevertheless, alkali nitrites MeNO2 (Me= Li+, Na+, K+, Rb+ and Cs+), except for the lithium salt, have high-temperature phases with crystal structure of the NaCl-type. High-temperature phases of nitrites are orientationally disordered, i.e. non-spherical anions are reoriented over several equivalents directions in the crystal lattice. Pure lithium nitrite LiNO2 is characterized by ionic conductivity near 10-4 S/cm at 180°C and more stable as compared with lithium nitrate and can be used as a component for synthesis of composite electrolytes. In this work composite solid electrolytes in the binary system LiNO2 - A (A= MgO, -Al2O3, Fe2O3, CeO2, SnO2, SiO2) were synthesized and their structural, thermodynamic and electrical properties investigated. Alkali nitrite was obtained by exchange reaction from water solutions of barium nitrite and alkali sulfate. The synthesized salt was characterized by X-ray powder diffraction technique using D8 Advance X-Ray Diffractometer with Cu K radiation. Using thermal analysis, the temperatures of dehydration and thermal decomposition of salt were determined.. The conductivity was measured using a two electrode scheme in a forevacuum (6.7 Pa) with an HP 4284A (Precision LCR meter) in a frequency range 20 Hz < ν < 1 MHz. Solid composite electrolytes LiNO2 - A A (A= MgO, -Al2O3, Fe2O3, CeO2, SnO2, SiO2) have been synthesized by mixing of preliminary dehydrated components followed by sintering at 250°C. In the series of nitrite of alkaline metals Li+-Cs+, the conductivity varies not monotonically with increasing radius of cation. The minimum conductivity is observed for KNO2; however, with further increase in the radius of cation in the series, the conductivity tends to increase. The work was supported by the Russian Foundation for Basic research, grant #14-03-31442. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductivity" title="conductivity">conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20nitrites" title=" alkali nitrites"> alkali nitrites</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20electrolytes" title=" composite electrolytes"> composite electrolytes</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20properties" title=" transport properties"> transport properties</a> </p> <a href="https://publications.waset.org/abstracts/34633/transport-properties-of-alkali-nitrites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkali&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkali&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkali&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkali&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkali&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkali&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkali&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkali&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>