CINXE.COM

Search results for: Gaussian

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Gaussian</title> <meta name="description" content="Search results for: Gaussian"> <meta name="keywords" content="Gaussian"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Gaussian" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Gaussian"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 285</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Gaussian</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">285</span> Base Change for Fisher Metrics: Case of the q−Gaussian Inverse Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Gabriel%20I.%20Loaiza%20O.">Gabriel I. Loaiza O.</a>, <a href="https://publications.waset.org/search?q=Carlos%20A.%20Cadavid%20M."> Carlos A. Cadavid M.</a>, <a href="https://publications.waset.org/search?q=Juan%20C.%20Arango%20P."> Juan C. Arango P.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>It is known that the Riemannian manifold determined by the family of inverse Gaussian distributions endowed with the Fisher metric has negative constant curvature κ = −1/2 , as does the family of usual Gaussian distributions. In the present paper, firstly we arrive at this result by following a different path, much simpler than the previous ones. We first put the family in exponential form, thus endowing the family with a new set of parameters, or coordinates, θ1, θ2; then we determine the matrix of the Fisher metric in terms of these parameters; and finally we compute this matrix in the original parameters. Secondly, we define the Inverse q−Gaussian distribution family (q &lt; 3), as the family obtained by replacing the usual exponential function by the Tsallis q−exponential function in the expression for the Inverse Gaussian distribution, and observe that it supports two possible geometries, the Fisher and the q−Fisher geometry. And finally, we apply our strategy to obtain results about the Fisher and q−Fisher geometry of the Inverse q−Gaussian distribution family, similar to the ones obtained in the case of the Inverse Gaussian distribution family. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Base%20of%20Changes" title="Base of Changes">Base of Changes</a>, <a href="https://publications.waset.org/search?q=Information%20Geometry" title=" Information Geometry"> Information Geometry</a>, <a href="https://publications.waset.org/search?q=Inverse%0D%0AGaussian%20distribution" title=" Inverse Gaussian distribution"> Inverse Gaussian distribution</a>, <a href="https://publications.waset.org/search?q=Inverse%20q-Gaussian%20distribution" title=" Inverse q-Gaussian distribution"> Inverse q-Gaussian distribution</a>, <a href="https://publications.waset.org/search?q=Statistical%0D%0AManifolds." title=" Statistical Manifolds."> Statistical Manifolds.</a> </p> <a href="https://publications.waset.org/10012676/base-change-for-fisher-metrics-case-of-the-qgaussian-inverse-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012676/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012676/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012676/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012676/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012676/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012676/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012676/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012676/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012676/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012676/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">284</span> An Alternative Method for Generating Almost Infinite Sequence of Gaussian Variables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nyah%20C.%20Temaneh">Nyah C. Temaneh</a>, <a href="https://publications.waset.org/search?q=F.%20A.%20Phiri"> F. A. Phiri</a>, <a href="https://publications.waset.org/search?q=E.%20Ruhunga"> E. Ruhunga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the well known methods for generating Gaussian variables require at least one standard uniform distributed value, for each Gaussian variable generated. The length of the random number generator therefore, limits the number of independent Gaussian distributed variables that can be generated meanwhile the statistical solution of complex systems requires a large number of random numbers for their statistical analysis. We propose an alternative simple method of generating almost infinite number of Gaussian distributed variables using a limited number of standard uniform distributed random numbers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gaussian%20variable" title="Gaussian variable">Gaussian variable</a>, <a href="https://publications.waset.org/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a>, <a href="https://publications.waset.org/search?q=simulation%20ofCommunication%20Network" title=" simulation ofCommunication Network"> simulation ofCommunication Network</a>, <a href="https://publications.waset.org/search?q=Random%20numbers." title=" Random numbers."> Random numbers.</a> </p> <a href="https://publications.waset.org/10547/an-alternative-method-for-generating-almost-infinite-sequence-of-gaussian-variables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10547/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10547/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10547/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10547/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10547/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10547/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10547/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10547/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10547/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10547/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1472</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">283</span> Propagation of Cos-Gaussian Beam in Photorefractive Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Keshavarz">A. Keshavarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A physical model for guiding the wave in photorefractive media is studied. Propagation of cos-Gaussian beam as the special cases of sinusoidal-Gaussian beams in photorefractive crystal is simulated numerically by the Crank-Nicolson method in one dimension. Results show that the beam profile deforms as the energy transfers from the center to the tails under propagation. This simulation approach is of significant interest for application in optical telecommunication. The results are presented graphically and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Beam%20propagation" title="Beam propagation">Beam propagation</a>, <a href="https://publications.waset.org/search?q=cos-Gaussian%20beam" title=" cos-Gaussian beam"> cos-Gaussian beam</a>, <a href="https://publications.waset.org/search?q=Numerical%0D%0Asimulation" title=" Numerical simulation"> Numerical simulation</a>, <a href="https://publications.waset.org/search?q=Photorefractive%20crystal." title=" Photorefractive crystal."> Photorefractive crystal.</a> </p> <a href="https://publications.waset.org/10003206/propagation-of-cos-gaussian-beam-in-photorefractive-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003206/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003206/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003206/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003206/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003206/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003206/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003206/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003206/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003206/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003206/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1665</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">282</span> Short-Term Electric Load Forecasting Using Multiple Gaussian Process Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tomohiro%20Hachino">Tomohiro Hachino</a>, <a href="https://publications.waset.org/search?q=Hitoshi%20Takata"> Hitoshi Takata</a>, <a href="https://publications.waset.org/search?q=Seiji%20Fukushima"> Seiji Fukushima</a>, <a href="https://publications.waset.org/search?q=Yasutaka%20Igarashi"> Yasutaka Igarashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents a Gaussian process model-based short-term electric load forecasting. The Gaussian process model is a nonparametric model and the output of the model has Gaussian distribution with mean and variance. The multiple Gaussian process models as every hour ahead predictors are used to forecast future electric load demands up to 24 hours ahead in accordance with the direct forecasting approach. The separable least-squares approach that combines the linear least-squares method and genetic algorithm is applied to train these Gaussian process models. Simulation results are shown to demonstrate the effectiveness of the proposed electric load forecasting.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Direct%20method" title="Direct method">Direct method</a>, <a href="https://publications.waset.org/search?q=electric%20load%20forecasting" title=" electric load forecasting"> electric load forecasting</a>, <a href="https://publications.waset.org/search?q=Gaussian%20process%20model" title=" Gaussian process model"> Gaussian process model</a>, <a href="https://publications.waset.org/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/search?q=separable%20least-squares%20method." title=" separable least-squares method."> separable least-squares method.</a> </p> <a href="https://publications.waset.org/9998341/short-term-electric-load-forecasting-using-multiple-gaussian-process-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998341/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998341/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998341/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998341/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998341/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998341/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998341/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998341/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998341/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998341/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1984</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">281</span> Frequency Offset Estimation Schemes Based On ML for OFDM Systems in Non-Gaussian Noise Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Keunhong%20Chae">Keunhong Chae</a>, <a href="https://publications.waset.org/search?q=Seokho%20Yoon"> Seokho Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, frequency offset (FO) estimation schemes robust to the non-Gaussian noise environments are proposed for orthogonal frequency division multiplexing (OFDM) systems. First, a maximum-likelihood (ML) estimation scheme in non-Gaussian noise environments is proposed, and then, the complexity of the ML estimation scheme is reduced by employing a reduced set of candidate values. In numerical results, it is demonstrated that the proposed schemes provide a significant performance improvement over the conventional estimation scheme in non-Gaussian noise environments while maintaining the performance similar to the estimation performance in Gaussian noise environments.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Frequency%20offset%20estimation" title="Frequency offset estimation">Frequency offset estimation</a>, <a href="https://publications.waset.org/search?q=maximum-likelihood" title=" maximum-likelihood"> maximum-likelihood</a>, <a href="https://publications.waset.org/search?q=non-Gaussian%20noise%20environment" title=" non-Gaussian noise environment"> non-Gaussian noise environment</a>, <a href="https://publications.waset.org/search?q=OFDM" title=" OFDM"> OFDM</a>, <a href="https://publications.waset.org/search?q=training%20symbol." title=" training symbol."> training symbol.</a> </p> <a href="https://publications.waset.org/9999361/frequency-offset-estimation-schemes-based-on-ml-for-ofdm-systems-in-non-gaussian-noise-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999361/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999361/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999361/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999361/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999361/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999361/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999361/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999361/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999361/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999361/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1948</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">280</span> Real-time Tracking in Image Sequences based-on Parameters Updating with Temporal and Spatial Neighborhoods Mixture Gaussian Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hu%20Haibo">Hu Haibo</a>, <a href="https://publications.waset.org/search?q=Zhao%20Hong"> Zhao Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gaussian mixture background model is widely used in moving target detection of the image sequences. However, traditional Gaussian mixture background model usually considers the time continuity of the pixels, and establishes background through statistical distribution of pixels without taking into account the pixels- spatial similarity, which will cause noise, imperfection and other problems. This paper proposes a new Gaussian mixture modeling approach, which combines the color and gradient of the spatial information, and integrates the spatial information of the pixel sequences to establish Gaussian mixture background. The experimental results show that the movement background can be extracted accurately and efficiently, and the algorithm is more robust, and can work in real time in tracking applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gaussian%20mixture%20model" title="Gaussian mixture model">Gaussian mixture model</a>, <a href="https://publications.waset.org/search?q=real-time%20tracking" title=" real-time tracking"> real-time tracking</a>, <a href="https://publications.waset.org/search?q=sequence%20image" title="sequence image">sequence image</a>, <a href="https://publications.waset.org/search?q=gradient." title=" gradient."> gradient.</a> </p> <a href="https://publications.waset.org/9832/real-time-tracking-in-image-sequences-based-on-parameters-updating-with-temporal-and-spatial-neighborhoods-mixture-gaussian-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9832/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9832/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9832/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9832/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9832/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9832/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9832/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9832/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9832/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9832/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1477</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">279</span> Simulation of Propagation of Cos-Gaussian Beam in Strongly Nonlocal Nonlinear Media Using Paraxial Group Transformation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Keshavarz">A. Keshavarz</a>, <a href="https://publications.waset.org/search?q=Z.%20Roosta"> Z. Roosta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, propagation of cos-Gaussian beam in strongly nonlocal nonlinear media has been stimulated by using paraxial group transformation. At first, cos-Gaussian beam, nonlocal nonlinear media, critical power, transfer matrix, and paraxial group transformation are introduced. Then, the propagation of the cos-Gaussian beam in strongly nonlocal nonlinear media is simulated. Results show that beam propagation has periodic structure during self-focusing effect in this case. However, this simple method can be used for investigation of propagation of kinds of beams in ABCD optical media.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Paraxial%20group%20transformation" title="Paraxial group transformation">Paraxial group transformation</a>, <a href="https://publications.waset.org/search?q=nonlocal%20nonlinear%20media" title=" nonlocal nonlinear media"> nonlocal nonlinear media</a>, <a href="https://publications.waset.org/search?q=Cos-Gaussian%20beam" title=" Cos-Gaussian beam"> Cos-Gaussian beam</a>, <a href="https://publications.waset.org/search?q=ABCD%20law." title=" ABCD law."> ABCD law.</a> </p> <a href="https://publications.waset.org/10006913/simulation-of-propagation-of-cos-gaussian-beam-in-strongly-nonlocal-nonlinear-media-using-paraxial-group-transformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006913/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006913/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006913/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006913/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006913/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006913/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006913/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006913/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006913/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006913/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">863</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">278</span> Volterra Filtering Techniques for Removal of Gaussian and Mixed Gaussian-Impulse Noise </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20B.%20Meenavathi">M. B. Meenavathi</a>, <a href="https://publications.waset.org/search?q=K.%20Rajesh"> K. Rajesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, we propose a new class of Volterra series based filters for image enhancement and restoration. Generally the linear filters reduce the noise and cause blurring at the edges. Some nonlinear filters based on median operator or rank operator deal with only impulse noise and fail to cancel the most common Gaussian distributed noise. A class of second order Volterra filters is proposed to optimize the trade-off between noise removal and edge preservation. In this paper, we consider both the Gaussian and mixed Gaussian-impulse noise to test the robustness of the filter. Image enhancement and restoration results using the proposed Volterra filter are found to be superior to those obtained with standard linear and nonlinear filters.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gaussian%20noise" title="Gaussian noise">Gaussian noise</a>, <a href="https://publications.waset.org/search?q=Image%20enhancement" title=" Image enhancement"> Image enhancement</a>, <a href="https://publications.waset.org/search?q=Imagerestoration" title=" Imagerestoration"> Imagerestoration</a>, <a href="https://publications.waset.org/search?q=Linear%20filters" title=" Linear filters"> Linear filters</a>, <a href="https://publications.waset.org/search?q=Nonlinear%20filters" title=" Nonlinear filters"> Nonlinear filters</a>, <a href="https://publications.waset.org/search?q=Volterra%20series." title=" Volterra series."> Volterra series.</a> </p> <a href="https://publications.waset.org/13044/volterra-filtering-techniques-for-removal-of-gaussian-and-mixed-gaussian-impulse-noise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13044/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13044/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13044/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13044/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13044/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13044/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13044/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13044/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13044/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13044/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2732</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">277</span> Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Cuneyt%20Yucelbas">Cuneyt Yucelbas</a>, <a href="https://publications.waset.org/search?q=Seral%20Ozsen"> Seral Ozsen</a>, <a href="https://publications.waset.org/search?q=Sule%20Yucelbas"> Sule Yucelbas</a>, <a href="https://publications.waset.org/search?q=Gulay%20Tezel"> Gulay Tezel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20Immune%20System" title="Artificial Immune System">Artificial Immune System</a>, <a href="https://publications.waset.org/search?q=Breast%20Cancer%20Diagnosis" title=" Breast Cancer Diagnosis"> Breast Cancer Diagnosis</a>, <a href="https://publications.waset.org/search?q=Euclidean%20Function" title=" Euclidean Function"> Euclidean Function</a>, <a href="https://publications.waset.org/search?q=Gaussian%20Function." title=" Gaussian Function."> Gaussian Function.</a> </p> <a href="https://publications.waset.org/9998229/use-of-gaussian-euclidean-hybrid-function-based-artificial-immune-system-for-breast-cancer-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998229/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998229/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998229/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998229/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998229/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998229/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998229/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998229/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998229/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998229/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2121</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">276</span> More on Gaussian Quadratures for Fuzzy Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shu-Xin%20Miao">Shu-Xin Miao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, the Gaussian type quadrature rules for fuzzy functions are discussed. The errors representation and convergence theorems are given. Moreover, four kinds of Gaussian type quadrature rules with error terms for approximate of fuzzy integrals are presented. The present paper complements the theoretical results of the paper by T. Allahviranloo and M. Otadi [T. Allahviranloo, M. Otadi, Gaussian quadratures for approximate of fuzzy integrals, Applied Mathematics and Computation 170 (2005) 874-885]. The obtained results are illustrated by solving some numerical examples.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Guassian%20quadrature%20rules" title="Guassian quadrature rules">Guassian quadrature rules</a>, <a href="https://publications.waset.org/search?q=fuzzy%20number" title=" fuzzy number"> fuzzy number</a>, <a href="https://publications.waset.org/search?q=fuzzy%20integral" title=" fuzzy integral"> fuzzy integral</a>, <a href="https://publications.waset.org/search?q=fuzzy%20solution." title=" fuzzy solution."> fuzzy solution.</a> </p> <a href="https://publications.waset.org/7935/more-on-gaussian-quadratures-for-fuzzy-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7935/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7935/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7935/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7935/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7935/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7935/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7935/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7935/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7935/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7935/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1439</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">275</span> An Extension of the Kratzel Function and Associated Inverse Gaussian Probability Distribution Occurring in Reliability Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20K.%20Saxena">R. K. Saxena</a>, <a href="https://publications.waset.org/search?q=Ravi%20Saxena"> Ravi Saxena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In view of their importance and usefulness in reliability theory and probability distributions, several generalizations of the inverse Gaussian distribution and the Krtzel function are investigated in recent years. This has motivated the authors to introduce and study a new generalization of the inverse Gaussian distribution and the Krtzel function associated with a product of a Bessel function of the third kind )(zKQ and a Z - Fox-Wright generalized hyper geometric function introduced in this paper. The introduced function turns out to be a unified gamma-type function. Its incomplete forms are also discussed. Several properties of this gamma-type function are obtained. By means of this generalized function, we introduce a generalization of inverse Gaussian distribution, which is useful in reliability analysis, diffusion processes, and radio techniques etc. The inverse Gaussian distribution thus introduced also provides a generalization of the Krtzel function. Some basic statistical functions associated with this probability density function, such as moments, the Mellin transform, the moment generating function, the hazard rate function, and the mean residue life function are also obtained.KeywordsFox-Wright function, Inverse Gaussian distribution, Krtzel function &amp; Bessel function of the third kind.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fox-Wright%20function" title="Fox-Wright function">Fox-Wright function</a>, <a href="https://publications.waset.org/search?q=Inverse%20Gaussian%20distribution" title=" Inverse Gaussian distribution"> Inverse Gaussian distribution</a>, <a href="https://publications.waset.org/search?q=Krtzel%20function%20%26%20Bessel%20function%20of%20the%20third%20kind." title=" Krtzel function &amp; Bessel function of the third kind."> Krtzel function &amp; Bessel function of the third kind.</a> </p> <a href="https://publications.waset.org/674/an-extension-of-the-kratzel-function-and-associated-inverse-gaussian-probability-distribution-occurring-in-reliability-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/674/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/674/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/674/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/674/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/674/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/674/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/674/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/674/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/674/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/674/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1721</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">274</span> Simulation of Sample Paths of Non Gaussian Stationary Random Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Fabrice%20Poirion">Fabrice Poirion</a>, <a href="https://publications.waset.org/search?q=Benedicte%20Puig"> Benedicte Puig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Mathematical justifications are given for a simulation technique of multivariate nonGaussian random processes and fields based on Rosenblatt-s transformation of Gaussian processes. Different types of convergences are given for the approaching sequence. Moreover an original numerical method is proposed in order to solve the functional equation yielding the underlying Gaussian process autocorrelation function.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Simulation" title="Simulation">Simulation</a>, <a href="https://publications.waset.org/search?q=nonGaussian" title=" nonGaussian"> nonGaussian</a>, <a href="https://publications.waset.org/search?q=random%20field" title=" random field"> random field</a>, <a href="https://publications.waset.org/search?q=multivariate" title=" multivariate"> multivariate</a>, <a href="https://publications.waset.org/search?q=stochastic%20process." title=" stochastic process."> stochastic process.</a> </p> <a href="https://publications.waset.org/3523/simulation-of-sample-paths-of-non-gaussian-stationary-random-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3523/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3523/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3523/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3523/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3523/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3523/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3523/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3523/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3523/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3523/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1839</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">273</span> Using Gaussian Process in Wind Power Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hacene%20Benkhoula">Hacene Benkhoula</a>, <a href="https://publications.waset.org/search?q=Mohamed%20Badreddine%20Benabdella"> Mohamed Badreddine Benabdella</a>, <a href="https://publications.waset.org/search?q=Hamid%20Bouzeboudja"> Hamid Bouzeboudja</a>, <a href="https://publications.waset.org/search?q=Abderrahmane%20Asraoui"> Abderrahmane Asraoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wind is a random variable difficult to master, for this, we developed a mathematical and statistical methods enable to modeling and forecast wind power. Gaussian Processes (GP) is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space or time and space. GP is an underlying process formed by unrecognized operator&rsquo;s uses to solve a problem. The purpose of this paper is to present how to forecast wind power by using the GP. The Gaussian process method for forecasting are presented. To validate the presented approach, a simulation under the MATLAB environment has been given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Forecasting" title="Forecasting">Forecasting</a>, <a href="https://publications.waset.org/search?q=Gaussian%20process" title=" Gaussian process"> Gaussian process</a>, <a href="https://publications.waset.org/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/search?q=wind%20power." title=" wind power."> wind power.</a> </p> <a href="https://publications.waset.org/10005381/using-gaussian-process-in-wind-power-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005381/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005381/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005381/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005381/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005381/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005381/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005381/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005381/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005381/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005381/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1787</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">272</span> Unsupervised Texture Classification and Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=V.P.Subramanyam%20Rallabandi">V.P.Subramanyam Rallabandi</a>, <a href="https://publications.waset.org/search?q=S.K.Sett"> S.K.Sett</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An unsupervised classification algorithm is derived by modeling observed data as a mixture of several mutually exclusive classes that are each described by linear combinations of independent non-Gaussian densities. The algorithm estimates the data density in each class by using parametric nonlinear functions that fit to the non-Gaussian structure of the data. This improves classification accuracy compared with standard Gaussian mixture models. When applied to textures, the algorithm can learn basis functions for images that capture the statistically significant structure intrinsic in the images. We apply this technique to the problem of unsupervised texture classification and segmentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gaussian%20Mixture%20Model" title="Gaussian Mixture Model">Gaussian Mixture Model</a>, <a href="https://publications.waset.org/search?q=Independent%20Component%0AAnalysis" title=" Independent Component Analysis"> Independent Component Analysis</a>, <a href="https://publications.waset.org/search?q=Segmentation" title=" Segmentation"> Segmentation</a>, <a href="https://publications.waset.org/search?q=Unsupervised%20Classification." title=" Unsupervised Classification."> Unsupervised Classification.</a> </p> <a href="https://publications.waset.org/4391/unsupervised-texture-classification-and-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4391/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4391/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4391/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4391/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4391/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4391/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4391/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4391/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4391/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4391/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1592</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">271</span> Tests for Gaussianity of a Stationary Time Series</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Adnan%20Al-Smadi">Adnan Al-Smadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the primary uses of higher order statistics in signal processing has been for detecting and estimation of non- Gaussian signals in Gaussian noise of unknown covariance. This is motivated by the ability of higher order statistics to suppress additive Gaussian noise. In this paper, several methods to test for non- Gaussianity of a given process are presented. These methods include histogram plot, kurtosis test, and hypothesis testing using cumulants and bispectrum of the available sequence. The hypothesis testing is performed by constructing a statistic to test whether the bispectrum of the given signal is non-zero. A zero bispectrum is not a proof of Gaussianity. Hence, other tests such as the kurtosis test should be employed. Examples are given to demonstrate the performance of the presented methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Non-Gaussian" title="Non-Gaussian">Non-Gaussian</a>, <a href="https://publications.waset.org/search?q=bispectrum" title=" bispectrum"> bispectrum</a>, <a href="https://publications.waset.org/search?q=kurtosis" title=" kurtosis"> kurtosis</a>, <a href="https://publications.waset.org/search?q=hypothesistesting" title=" hypothesistesting"> hypothesistesting</a>, <a href="https://publications.waset.org/search?q=histogram." title=" histogram."> histogram.</a> </p> <a href="https://publications.waset.org/2851/tests-for-gaussianity-of-a-stationary-time-series" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2851/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2851/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2851/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2851/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2851/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2851/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2851/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2851/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2851/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2851/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1916</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> ML-Based Blind Frequency Offset Estimation Schemes for OFDM Systems in Non-Gaussian Noise Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Keunhong%20Chae">Keunhong Chae</a>, <a href="https://publications.waset.org/search?q=Seokho%20Yoon"> Seokho Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper proposes frequency offset (FO) estimation schemes robust to the non-Gaussian noise for orthogonal frequency division multiplexing (OFDM) systems. A maximum-likelihood (ML) scheme and a low-complexity estimation scheme are proposed by applying the probability density function of the cyclic prefix of OFDM symbols to the ML criterion. From simulation results, it is confirmed that the proposed schemes offer a significant FO estimation performance improvement over the conventional estimation scheme in non-Gaussian noise environments.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Frequency%20offset" title="Frequency offset">Frequency offset</a>, <a href="https://publications.waset.org/search?q=cyclic%20prefix" title=" cyclic prefix"> cyclic prefix</a>, <a href="https://publications.waset.org/search?q=maximum-likelihood" title=" maximum-likelihood"> maximum-likelihood</a>, <a href="https://publications.waset.org/search?q=non-Gaussian%20noise" title=" non-Gaussian noise"> non-Gaussian noise</a>, <a href="https://publications.waset.org/search?q=OFDM." title=" OFDM."> OFDM.</a> </p> <a href="https://publications.waset.org/9998481/ml-based-blind-frequency-offset-estimation-schemes-for-ofdm-systems-in-non-gaussian-noise-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998481/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998481/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998481/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998481/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998481/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998481/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998481/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998481/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998481/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998481/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2021</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">269</span> Blind Source Separation Using Modified Gaussian FastICA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=V.%20K.%20Ananthashayana">V. K. Ananthashayana</a>, <a href="https://publications.waset.org/search?q=Jyothirmayi%20M."> Jyothirmayi M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addresses the problem of source separation in images. We propose a FastICA algorithm employing a modified Gaussian contrast function for the Blind Source Separation. Experimental result shows that the proposed Modified Gaussian FastICA is effectively used for Blind Source Separation to obtain better quality images. In this paper, a comparative study has been made with other popular existing algorithms. The peak signal to noise ratio (PSNR) and improved signal to noise ratio (ISNR) are used as metrics for evaluating the quality of images. The ICA metric Amari error is also used to measure the quality of separation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Amari%20error" title="Amari error">Amari error</a>, <a href="https://publications.waset.org/search?q=Blind%20Source%20Separation" title=" Blind Source Separation"> Blind Source Separation</a>, <a href="https://publications.waset.org/search?q=Contrast%0Afunction" title=" Contrast function"> Contrast function</a>, <a href="https://publications.waset.org/search?q=Gaussian%20function" title=" Gaussian function"> Gaussian function</a>, <a href="https://publications.waset.org/search?q=Independent%20Component%20Analysis." title=" Independent Component Analysis."> Independent Component Analysis.</a> </p> <a href="https://publications.waset.org/12887/blind-source-separation-using-modified-gaussian-fastica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12887/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12887/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12887/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12887/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12887/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12887/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12887/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12887/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12887/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12887/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1743</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">268</span> An Evaluation of Algorithms for Single-Echo Biosonar Target Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Turgay%20Temel">Turgay Temel</a>, <a href="https://publications.waset.org/search?q=John%20Hallam">John Hallam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A recent neurospiking coding scheme for feature extraction from biosonar echoes of various plants is examined with avariety of stochastic classifiers. Feature vectors derived are employedin well-known stochastic classifiers, including nearest-neighborhood,single Gaussian and a Gaussian mixture with EM optimization.Classifiers&#39; performances are evaluated by using cross-validation and bootstrapping techniques. It is shown that the various classifers perform equivalently and that the modified preprocessing configuration yields considerably improved results.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Classification" title="Classification">Classification</a>, <a href="https://publications.waset.org/search?q=neuro-spike%20coding" title=" neuro-spike coding"> neuro-spike coding</a>, <a href="https://publications.waset.org/search?q=non-parametricmodel" title=" non-parametricmodel"> non-parametricmodel</a>, <a href="https://publications.waset.org/search?q=parametric%20model" title=" parametric model"> parametric model</a>, <a href="https://publications.waset.org/search?q=Gaussian%20mixture" title=" Gaussian mixture"> Gaussian mixture</a>, <a href="https://publications.waset.org/search?q=EM%20algorithm." title=" EM algorithm."> EM algorithm.</a> </p> <a href="https://publications.waset.org/972/an-evaluation-of-algorithms-for-single-echo-biosonar-target-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/972/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/972/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/972/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/972/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/972/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/972/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/972/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/972/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/972/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/972/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1669</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">267</span> Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wanatchapong%20Kongkaew">Wanatchapong Kongkaew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.</p> <p>&nbsp;</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gaussian%20process%20regression" title="Gaussian process regression">Gaussian process regression</a>, <a href="https://publications.waset.org/search?q=iterated%20local%20search" title=" iterated local search"> iterated local search</a>, <a href="https://publications.waset.org/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a>, <a href="https://publications.waset.org/search?q=single%20machine%20total%20weighted%20tardiness." title=" single machine total weighted tardiness."> single machine total weighted tardiness.</a> </p> <a href="https://publications.waset.org/9998548/solving-single-machine-total-weighted-tardiness-problem-using-gaussian-process-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998548/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998548/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998548/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998548/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998548/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998548/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998548/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998548/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998548/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998548/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2235</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">266</span> A New Proof on the Growth Factor in Gaussian Elimination for Generalized Higham Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Qian-Ping%20Guo">Qian-Ping Guo</a>, <a href="https://publications.waset.org/search?q=Hou-Biao%20Li"> Hou-Biao Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The generalized Higham matrix is a complex symmetric&nbsp;matrix A = B + iC, where both B &isin; Cn&times;n and C &isin; Cn&times;n are&nbsp;Hermitian positive definite, and i = &radic;&minus;1 is the imaginary unit. The&nbsp;growth factor in Gaussian elimination is less than 3&radic;2 for this kind&nbsp;of matrices. In this paper, we give a new brief proof on this result by&nbsp;different techniques, which can be understood very easily, and obtain&nbsp;some new findings.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CSPD%20matrix" title="CSPD matrix">CSPD matrix</a>, <a href="https://publications.waset.org/search?q=positive%20definite" title=" positive definite"> positive definite</a>, <a href="https://publications.waset.org/search?q=Schur%20complement" title=" Schur complement"> Schur complement</a>, <a href="https://publications.waset.org/search?q=Higham%20matrix" title=" Higham matrix"> Higham matrix</a>, <a href="https://publications.waset.org/search?q=Gaussian%20elimination" title=" Gaussian elimination"> Gaussian elimination</a>, <a href="https://publications.waset.org/search?q=Growth%20factor." title=" Growth factor."> Growth factor.</a> </p> <a href="https://publications.waset.org/9997825/a-new-proof-on-the-growth-factor-in-gaussian-elimination-for-generalized-higham-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997825/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997825/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997825/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997825/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997825/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997825/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997825/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997825/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997825/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997825/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1746</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">265</span> Modeling Oxygen-transfer by Multiple Plunging Jets using Support Vector Machines and Gaussian Process Regression Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Surinder%20Deswal">Surinder Deswal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper investigates the potential of support vector machines and Gaussian process based regression approaches to model the oxygen–transfer capacity from experimental data of multiple plunging jets oxygenation systems. The results suggest the utility of both the modeling techniques in the prediction of the overall volumetric oxygen transfer coefficient (KLa) from operational parameters of multiple plunging jets oxygenation system. The correlation coefficient root mean square error and coefficient of determination values of 0.971, 0.002 and 0.945 respectively were achieved by support vector machine in comparison to values of 0.960, 0.002 and 0.920 respectively achieved by Gaussian process regression. Further, the performances of both these regression approaches in predicting the overall volumetric oxygen transfer coefficient was compared with the empirical relationship for multiple plunging jets. A comparison of results suggests that support vector machines approach works well in comparison to both empirical relationship and Gaussian process approaches, and could successfully be employed in modeling oxygen-transfer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Oxygen-transfer" title="Oxygen-transfer">Oxygen-transfer</a>, <a href="https://publications.waset.org/search?q=multiple%20plunging%20jets" title=" multiple plunging jets"> multiple plunging jets</a>, <a href="https://publications.waset.org/search?q=support%0Avector%20machines" title=" support vector machines"> support vector machines</a>, <a href="https://publications.waset.org/search?q=Gaussian%20process." title=" Gaussian process."> Gaussian process.</a> </p> <a href="https://publications.waset.org/7423/modeling-oxygen-transfer-by-multiple-plunging-jets-using-support-vector-machines-and-gaussian-process-regression-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7423/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7423/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7423/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7423/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7423/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7423/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7423/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7423/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7423/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7423/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1639</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">264</span> Variational EM Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wanhyun%20Cho">Wanhyun Cho</a>, <a href="https://publications.waset.org/search?q=Soonja%20Kang"> Soonja Kang</a>, <a href="https://publications.waset.org/search?q=Sangkyoon%20Kim"> Sangkyoon Kim</a>, <a href="https://publications.waset.org/search?q=Soonyoung%20Park"> Soonyoung Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, we propose the variational EM inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multiclass. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bayesian%20rule" title="Bayesian rule">Bayesian rule</a>, <a href="https://publications.waset.org/search?q=Gaussian%20process%20classification%20model%0D%0Awith%20multiclass" title=" Gaussian process classification model with multiclass"> Gaussian process classification model with multiclass</a>, <a href="https://publications.waset.org/search?q=Gaussian%20process%20prior" title=" Gaussian process prior"> Gaussian process prior</a>, <a href="https://publications.waset.org/search?q=human%20action%20classification" title=" human action classification"> human action classification</a>, <a href="https://publications.waset.org/search?q=laplace%20approximation" title=" laplace approximation"> laplace approximation</a>, <a href="https://publications.waset.org/search?q=variational%20EM%20algorithm." title=" variational EM algorithm."> variational EM algorithm.</a> </p> <a href="https://publications.waset.org/10003023/variational-em-inference-algorithm-for-gaussian-process-classification-model-with-multiclass-and-its-application-to-human-action-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003023/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003023/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003023/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003023/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003023/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003023/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003023/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003023/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003023/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003023/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1758</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">263</span> Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wanhyun%20Cho">Wanhyun Cho</a>, <a href="https://publications.waset.org/search?q=Soonja%20Kang"> Soonja Kang</a>, <a href="https://publications.waset.org/search?q=Sangkyoon%20Kim"> Sangkyoon Kim</a>, <a href="https://publications.waset.org/search?q=Soonyoung%20Park"> Soonyoung Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior distribution for various parameters and latent function by using the variational Bayesian approximations and important sampling method, and next we derived a predictive distribution of latent function needed to classify new samples. The proposed model is applied to classify the synthetic multivariate dataset in order to verify the performance of our model. Experiment result shows that our model is more accurate than the other approximation methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Multinomial%20dirichlet%20classification%20model" title="Multinomial dirichlet classification model">Multinomial dirichlet classification model</a>, <a href="https://publications.waset.org/search?q=Gaussian%0D%0Aprocess%20priors" title=" Gaussian process priors"> Gaussian process priors</a>, <a href="https://publications.waset.org/search?q=variational%20Bayesian%20approximation" title=" variational Bayesian approximation"> variational Bayesian approximation</a>, <a href="https://publications.waset.org/search?q=Importance%0D%0Asampling" title=" Importance sampling"> Importance sampling</a>, <a href="https://publications.waset.org/search?q=approximate%20posterior%20distribution" title=" approximate posterior distribution"> approximate posterior distribution</a>, <a href="https://publications.waset.org/search?q=Marginal%20likelihood%0D%0Aevidence." title=" Marginal likelihood evidence."> Marginal likelihood evidence.</a> </p> <a href="https://publications.waset.org/10003081/multinomial-dirichlet-gaussian-process-model-for-classification-of-multidimensional-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003081/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003081/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003081/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003081/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003081/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003081/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003081/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003081/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003081/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003081/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1614</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">262</span> Effect of Different BER Performance Comparison of MAP and ML Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Naveed%20Ur%20Rehman">Naveed Ur Rehman</a>, <a href="https://publications.waset.org/search?q=Rehan%20Jamil"> Rehan Jamil</a>, <a href="https://publications.waset.org/search?q=Irfan%20Jamil"> Irfan Jamil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, we regard as a coded transmission over a frequency-selective channel. We plan to study analytically the convergence of the turbo-detector using a maximum a posteriori (MAP) equalizer and a MAP decoder. We demonstrate that the densities of the maximum likelihood (ML) exchanged during the iterations are e-symmetric and output-symmetric. Under the Gaussian approximation, this property allows to execute a one-dimensional scrutiny of the turbo-detector. By deriving the analytical terminology of the ML distributions under the Gaussian approximation, we confirm that the bit error rate (BER) performance of the turbo-detector converges to the BER performance of the coded additive white Gaussian noise (AWGN) channel at high signal to noise ratio (SNR), for any frequency selective channel.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=MAP" title="MAP">MAP</a>, <a href="https://publications.waset.org/search?q=ML" title=" ML"> ML</a>, <a href="https://publications.waset.org/search?q=SNR" title=" SNR"> SNR</a>, <a href="https://publications.waset.org/search?q=Decoder" title=" Decoder"> Decoder</a>, <a href="https://publications.waset.org/search?q=BER" title=" BER"> BER</a>, <a href="https://publications.waset.org/search?q=Coded%20transmission." title=" Coded transmission."> Coded transmission.</a> </p> <a href="https://publications.waset.org/10000773/effect-of-different-ber-performance-comparison-of-map-and-ml-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000773/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000773/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000773/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000773/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000773/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000773/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000773/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000773/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000773/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000773/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2256</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">261</span> Gaussian Density and HOG with Content Based Image Retrieval System – A New Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Shanmugapriya">N. Shanmugapriya</a>, <a href="https://publications.waset.org/search?q=R.%20Nallusamy"> R. Nallusamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Content-based image retrieval (CBIR) uses the contents of images to characterize and contact the images. This paper focus on retrieving the image by separating images into its three color mechanism R, G and B and for that Discrete Wavelet Transformation is applied. Then Wavelet based Generalized Gaussian Density (GGD) is practical which is used for modeling the coefficients from the wavelet transforms. After that it is agreed to Histogram of Oriented Gradient (HOG) for extracting its characteristic vectors with Relevant Feedback technique is used. The performance of this approach is calculated by exactness and it confirms that this method is wellorganized for image retrieval.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Content-Based%20Image%20Retrieval%20%28CBIR%29" title="Content-Based Image Retrieval (CBIR)">Content-Based Image Retrieval (CBIR)</a>, <a href="https://publications.waset.org/search?q=Relevant%0D%0AFeedback" title=" Relevant Feedback"> Relevant Feedback</a>, <a href="https://publications.waset.org/search?q=Histogram%20of%20Oriented%20Gradient%20%28HOG%29" title=" Histogram of Oriented Gradient (HOG)"> Histogram of Oriented Gradient (HOG)</a>, <a href="https://publications.waset.org/search?q=Generalized%0D%0AGaussian%20Density%20%28GGD%29." title=" Generalized Gaussian Density (GGD)."> Generalized Gaussian Density (GGD).</a> </p> <a href="https://publications.waset.org/10000411/gaussian-density-and-hog-with-content-based-image-retrieval-system-a-new-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000411/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000411/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000411/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000411/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000411/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000411/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000411/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000411/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000411/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000411/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2039</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">260</span> An Efficient Gaussian Noise Removal Image Enhancement Technique for Gray Scale Images </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=V.%20Murugan">V. Murugan</a>, <a href="https://publications.waset.org/search?q=R.%20Balasubramanian"> R. Balasubramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Image enhancement is a challenging issue in many applications. In the last two decades, there are various filters developed. This paper proposes a novel method which removes Gaussian noise from the gray scale images. The proposed technique is compared with Enhanced Fuzzy Peer Group Filter (EFPGF) for various noise levels. Experimental results proved that the proposed filter achieves better Peak-Signal-to-Noise-Ratio PSNR than the existing techniques. The proposed technique achieves 1.736dB gain in PSNR than the EFPGF technique.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gaussian%20noise" title="Gaussian noise">Gaussian noise</a>, <a href="https://publications.waset.org/search?q=adaptive%20bilateral%20filter" title=" adaptive bilateral filter"> adaptive bilateral filter</a>, <a href="https://publications.waset.org/search?q=fuzzy%20peer%0D%0Agroup%20filter" title=" fuzzy peer group filter"> fuzzy peer group filter</a>, <a href="https://publications.waset.org/search?q=switching%20bilateral%20filter" title=" switching bilateral filter"> switching bilateral filter</a>, <a href="https://publications.waset.org/search?q=PSNR" title=" PSNR"> PSNR</a> </p> <a href="https://publications.waset.org/10001316/an-efficient-gaussian-noise-removal-image-enhancement-technique-for-gray-scale-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001316/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001316/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001316/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001316/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001316/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001316/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001316/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001316/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001316/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001316/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2481</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">259</span> Propagation of a Generalized Beam in ABCD System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Halil%20Tanyer%20Eyyubo%C4%9Fu">Halil Tanyer Eyyuboğu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>For a generalized Hermite sinosiodal / hyperbolic Gaussian beam passing through an ABCD system with a finite aperture, the propagation properties are derived using the Collins integral. The results are obtained in the form of intensity graphs indicating that previously demonstrated rules of reciprocity are applicable, while the existence of the aperture accelerates this transformation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Optical%20communications" title="Optical communications">Optical communications</a>, <a href="https://publications.waset.org/search?q=Hermite-Gaussian%20beams" title=" Hermite-Gaussian beams"> Hermite-Gaussian beams</a>, <a href="https://publications.waset.org/search?q=ABCD%20system." title=" ABCD system."> ABCD system.</a> </p> <a href="https://publications.waset.org/4324/propagation-of-a-generalized-beam-in-abcd-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4324/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4324/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4324/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4324/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4324/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4324/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4324/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4324/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4324/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4324/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1874</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">258</span> Computing SAGB-Gröbner Basis of Ideals of Invariant Rings by Using Gaussian Elimination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sajjad%20Rahmany">Sajjad Rahmany</a>, <a href="https://publications.waset.org/search?q=Abdolali%20Basiri"> Abdolali Basiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The link between Gröbner basis and linear algebra was described by Lazard [4,5] where he realized the Gr┬¿obner basis computation could be archived by applying Gaussian elimination over Macaulay-s matrix . In this paper, we indicate how same technique may be used to SAGBI- Gröbner basis computations in invariant rings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gr%C3%B6bner%20basis" title="Gröbner basis">Gröbner basis</a>, <a href="https://publications.waset.org/search?q=SAGBI-%20Gr%C3%B6bner%20basis" title=" SAGBI- Gröbner basis"> SAGBI- Gröbner basis</a>, <a href="https://publications.waset.org/search?q=reduction" title=" reduction"> reduction</a>, <a href="https://publications.waset.org/search?q=Invariant%20ring" title="Invariant ring">Invariant ring</a>, <a href="https://publications.waset.org/search?q=permutation%20groups." title=" permutation groups."> permutation groups.</a> </p> <a href="https://publications.waset.org/15048/computing-sagb-grobner-basis-of-ideals-of-invariant-rings-by-using-gaussian-elimination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15048/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15048/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15048/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15048/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15048/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15048/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15048/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15048/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15048/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15048/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3000</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">257</span> Fractional Masks Based On Generalized Fractional Differential Operator for Image Denoising</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hamid%20A.%20Jalab">Hamid A. Jalab</a>, <a href="https://publications.waset.org/search?q=Rabha%20W.%20Ibrahim"> Rabha W. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper introduces an image denoising algorithm based on generalized Srivastava-Owa fractional differential operator for removing Gaussian noise in digital images. The structures of nxn&nbsp;fractional masks are constructed by this algorithm. Experiments show that, the capability of the denoising algorithm by fractional differential-based approach appears efficient to smooth the Gaussian noisy images for different noisy levels. The denoising performance is measured by using peak signal to noise ratio (PSNR) for the denoising images. The results showed an improved performance (higher PSNR values) when compared with standard Gaussian smoothing filter.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fractional%20calculus" title="Fractional calculus">Fractional calculus</a>, <a href="https://publications.waset.org/search?q=fractional%20differential%20operator" title=" fractional differential operator"> fractional differential operator</a>, <a href="https://publications.waset.org/search?q=fractional%20mask" title=" fractional mask"> fractional mask</a>, <a href="https://publications.waset.org/search?q=fractional%20filter." title=" fractional filter."> fractional filter.</a> </p> <a href="https://publications.waset.org/9996971/fractional-masks-based-on-generalized-fractional-differential-operator-for-image-denoising" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996971/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996971/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996971/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996971/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996971/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996971/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996971/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996971/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996971/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996971/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3003</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">256</span> Gaussian Process Model Identification Using Artificial Bee Colony Algorithm and Its Application to Modeling of Power Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tomohiro%20Hachino">Tomohiro Hachino</a>, <a href="https://publications.waset.org/search?q=Hitoshi%20Takata"> Hitoshi Takata</a>, <a href="https://publications.waset.org/search?q=Shigeru%20Nakayama"> Shigeru Nakayama</a>, <a href="https://publications.waset.org/search?q=Ichiro%20Iimura"> Ichiro Iimura</a>, <a href="https://publications.waset.org/search?q=Seiji%20Fukushima"> Seiji Fukushima</a>, <a href="https://publications.waset.org/search?q=Yasutaka%20Igarashi"> Yasutaka Igarashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents a nonparametric identification of continuous-time nonlinear systems by using a Gaussian process (GP) model. The GP prior model is trained by artificial bee colony algorithm. The nonlinear function of the objective system is estimated as the predictive mean function of the GP, and the confidence measure of the estimated nonlinear function is given by the predictive covariance of the GP. The proposed identification method is applied to modeling of a simplified electric power system. Simulation results are shown to demonstrate the effectiveness of the proposed method.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20bee%20colony%20algorithm" title="Artificial bee colony algorithm">Artificial bee colony algorithm</a>, <a href="https://publications.waset.org/search?q=Gaussian%20process%20model" title=" Gaussian process model"> Gaussian process model</a>, <a href="https://publications.waset.org/search?q=identification" title=" identification"> identification</a>, <a href="https://publications.waset.org/search?q=nonlinear%20system" title=" nonlinear system"> nonlinear system</a>, <a href="https://publications.waset.org/search?q=electric%20power%20system." title=" electric power system."> electric power system.</a> </p> <a href="https://publications.waset.org/9998340/gaussian-process-model-identification-using-artificial-bee-colony-algorithm-and-its-application-to-modeling-of-power-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998340/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998340/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998340/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998340/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998340/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998340/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998340/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998340/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998340/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998340/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1575</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gaussian&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gaussian&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gaussian&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gaussian&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gaussian&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gaussian&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gaussian&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gaussian&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gaussian&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gaussian&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10