CINXE.COM

Search results for: packing angle

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: packing angle</title> <meta name="description" content="Search results for: packing angle"> <meta name="keywords" content="packing angle"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="packing angle" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="packing angle"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1544</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: packing angle</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1544</span> Mechanical Properties of Lithium-Ion Battery at Different Packing Angles Under Impact Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Zhao">Wei Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuxuan%20Yao"> Yuxuan Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Chen"> Hao Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to find out the mechanical properties and failure behavior of lithium-ion batteries, drop hammer impact experiments and finite element simulations are carried out on batteries with different packed angles. Firstly, a drop hammer impact experiment system, which is based on the DHR-1808 drop hammer and oscilloscope, is established, and then a drop test of individual batteries and packed angles of 180 ° and 120 ° are carried out. The image of battery deformation, force-time curve and voltage-time curve are recorded. Secondly, finite element models of individual batteries and two packed angles are established, and the results of the test and simulation are compared. Finally, the mechanical characteristics and failure behavior of lithium-ion battery modules with the packed arrangement of 6 * 6 and packing angles of 180 °, 120 °, 90 ° and 60 ° are analyzed under the same velocity with different battery packing angles, and the same impact energy with different impact velocity and different packing angles. The result shows that the individual battery is destroyed completely in the drop hammer impact test with an initial impact velocity of 3m/s and drop height of 459mm, and the voltage drops to close to 0V when the test ends. The voltage drops to 12V when packed angle of 180°, and 3.6V when packed angle of 120°. It is found that the trend of the force-time curve between simulation and experiment is generally consistent. The difference in maximum peak value is 3.9kN for a packing angle of 180° and 1.3kN for a packing angle of 120°. Under the same impact velocity and impact energy, the strain rate of the battery module with a packing angle of 180° is the lowest, and the maximum stress can reach 26.7MPa with no battery short-circuited. The research under our experiment and simulation shows that the lithium-ion battery module with a packing angle of 180 ° is the least likely to be damaged, which can sustain the maximum stress under the same impact load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20module" title="battery module">battery module</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20simulation" title=" finite element simulation"> finite element simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20battery" title=" power battery"> power battery</a>, <a href="https://publications.waset.org/abstracts/search?q=packing%20angle" title=" packing angle"> packing angle</a> </p> <a href="https://publications.waset.org/abstracts/182236/mechanical-properties-of-lithium-ion-battery-at-different-packing-angles-under-impact-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1543</span> Challenging the Traditional Practice of Continuous Abscess Cavity Packing – A Single Center, Single Blind Randomized Controlled Trial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakmali%20Anthony">Lakmali Anthony</a>, <a href="https://publications.waset.org/abstracts/search?q=Bushra%20Oathman"> Bushra Oathman</a>, <a href="https://publications.waset.org/abstracts/search?q=Anshini%20Jain"> Anshini Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Raaj%20Chandra"> Raaj Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Abscesses are traditionally treated by incision and drainage with the packing of the residual abscess cavity until healing. This method requires regular visits from community nurses for continuous wound packing upon discharge from the hospital and causes considerable patient discomfort. Whether abscess cavity packing offers any advantage over non-packing has not yet been adequately studied to the best of our knowledge. This study aims to determine if there are differences in clinical outcomes of time to healing, fistula formation and recurrence of abscess between abscess cavity packing vs. non-packing groups. Methods: This study was a single-center, single-blind, randomized controlled trial where patients were randomized into packing and non-packing arms. All patients over 18 years presenting to Eastern Health with an abscess requiring incision and drainage in the theatre were invited to participate. Those with underlying conditions that cause recurrent abscesses were excluded. Data were collected from December 2018 to April 2020. Results: There were 63 patients who had abscesses treated with incision and drainage that were enrolled in the study, 52 of which were suitable for analysis. Demographic characteristics were similar in both groups. The packing group had a significantly longer time to heal compared to the non-packing group. Rates of fistula formation and recurrence of abscess were low and there were no statistically significant differences between groups. The packing group had more patients with delayed healing (defined as >60 days) and required more follow-up visits compared to the non-packing group. Conclusion: This pilot study indicates that abscesses can not only be managed safely with incision and drainage alone without the need for continuous abscess cavity packing but also that non-packing may offer clinical benefits to patients with earlier healing of abscesses compared to continuous cavity packing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abscess%20packing" title="abscess packing">abscess packing</a>, <a href="https://publications.waset.org/abstracts/search?q=subcutaneous" title=" subcutaneous"> subcutaneous</a>, <a href="https://publications.waset.org/abstracts/search?q=perianal" title=" perianal"> perianal</a>, <a href="https://publications.waset.org/abstracts/search?q=pilonidal" title=" pilonidal"> pilonidal</a> </p> <a href="https://publications.waset.org/abstracts/164496/challenging-the-traditional-practice-of-continuous-abscess-cavity-packing-a-single-center-single-blind-randomized-controlled-trial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1542</span> Bee Colony Optimization Applied to the Bin Packing Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kenza%20Aida%20Amara">Kenza Aida Amara</a>, <a href="https://publications.waset.org/abstracts/search?q=Bachir%20Djebbar"> Bachir Djebbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We treat the two-dimensional bin packing problem which involves packing a given set of rectangles into a minimum number of larger identical rectangles called bins. This combinatorial problem is NP-hard. We propose a pretreatment for the oriented version of the problem that allows the valorization of the lost areas in the bins and the reduction of the size problem. A heuristic method based on the strategy first-fit adapted to this problem is presented. We present an approach of resolution by bee colony optimization. Computational results express a comparison of the number of bins used with and without pretreatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bee%20colony%20optimization" title="bee colony optimization">bee colony optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=bin%20packing" title=" bin packing"> bin packing</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithm" title=" heuristic algorithm"> heuristic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/65005/bee-colony-optimization-applied-to-the-bin-packing-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">633</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1541</span> Wettability Behavior of Organic Silane Molecules with Different Alkyl-Chain Length Coated Si Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Ishizaki">Takahiro Ishizaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Shutaro%20Hisada"> Shutaro Hisada</a>, <a href="https://publications.waset.org/abstracts/search?q=Oi%20Lun%20Li"> Oi Lun Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Control of surface wettability is very important in various industrial fields. Thus, contact angle hysteresis which is defined as the difference between advancing and receding water contact angles has been paid attention because the surface having low contact angle hysteresis can control wetting behavior of water droplet. Self-assembled monolayer (SAM) formed using organic silane molecules has been used to control surface wettability, in particular, static contact angles, however, the effect of alkyl-chain length in organic silane molecules on the contact angle hysteresis has not yet clarified. In this study, we aimed to investigate the effect of alkyl-chain length (C1-C18) in organic silane molecules on the contact angle hysteresis. SAMs were formed on Si wafer by thermal CVD method using silane coupling agents having different alkyl-chain length. The static water contact angles increased with an increase in the alkyl-chain length. On the other hand, although the water contact angle hysteresis tended to decrease with an increase in the alkyl-chain length, in case of the alkyl-chain length of more than C16 the contact angle hysteresis increased. This could be due to the decrease in the molecular mobility because of the increase in the molecular packing density in chemisorbed silane molecules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkyl-chain%20length" title="alkyl-chain length">alkyl-chain length</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembled%20monolayer" title=" self-assembled monolayer"> self-assembled monolayer</a>, <a href="https://publications.waset.org/abstracts/search?q=silane%20coupling%20agent" title=" silane coupling agent"> silane coupling agent</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20wettability" title=" surface wettability"> surface wettability</a> </p> <a href="https://publications.waset.org/abstracts/68943/wettability-behavior-of-organic-silane-molecules-with-different-alkyl-chain-length-coated-si-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1540</span> Application of Robotics to Assemble a Used Fuel Container in the Canadian Used Fuel Packing Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitrie%20Marinceu">Dimitrie Marinceu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The newest Canadian Used Fuel Container (UFC)- (called also “Mark II”) modifies the design approach for its Assembly Robotic Cell (ARC) in the Canadian Used (Nuclear) Fuel Packing Plant (UFPP). Some of the robotic design solutions are presented in this paper. The design indicates that robots and manipulators are expected to be used in the Canadian UFPP. As normally, the UFPP design will incorporate redundancy of all equipment to allow expedient recovery from any postulated upset conditions. Overall, this paper suggests that robot usage will have a significant positive impact on nuclear safety, quality, productivity, and reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=used%20fuel%20packing%20plant" title="used fuel packing plant">used fuel packing plant</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20assembly%20cell" title=" robotic assembly cell"> robotic assembly cell</a>, <a href="https://publications.waset.org/abstracts/search?q=used%20fuel%20container" title=" used fuel container"> used fuel container</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20geological%20repository" title=" deep geological repository"> deep geological repository</a> </p> <a href="https://publications.waset.org/abstracts/56119/application-of-robotics-to-assemble-a-used-fuel-container-in-the-canadian-used-fuel-packing-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1539</span> Influence of Random Fibre Packing on the Compressive Strength of Fibre Reinforced Plastic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Wang">Y. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zhang"> S. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Chen"> X. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The longitudinal compressive strength of fibre reinforced plastic (FRP) possess a large stochastic variability, which limits efficient application of composite structures. This study aims to address how the random fibre packing affects the uncertainty of FRP compressive strength. An novel approach is proposed to generate random fibre packing status by a combination of Latin hypercube sampling and random sequential expansion. 3D nonlinear finite element model is built which incorporates both the matrix plasticity and fibre geometrical instability. The matrix is modeled by isotropic ideal elasto-plastic solid elements, and the fibres are modeled by linear-elastic rebar elements. Composite with a series of different nominal fibre volume fractions are studied. Premature fibre waviness at different magnitude and direction is introduced in the finite element model. Compressive tests on uni-directional CFRP (carbon fibre reinforced plastic) are conducted following the ASTM D6641. By a comparison of 3D FE models and compressive tests, it is clearly shown that the stochastic variation of compressive strength is partly caused by the random fibre packing, and normal or lognormal distribution tends to be a good fit the probabilistic compressive strength. Furthermore, it is also observed that different random fibre packing could trigger two different fibre micro-buckling modes while subjected to longitudinal compression: out-of-plane buckling and twisted buckling. The out-of-plane buckling mode results much larger compressive strength, and this is the major reason why the random fibre packing results a large uncertainty in the FRP compressive strength. This study would contribute to new approaches to the quality control of FRP considering higher compressive strength or lower uncertainty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP" title=" FRP"> FRP</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-buckling" title=" micro-buckling"> micro-buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20fibre%20packing" title=" random fibre packing"> random fibre packing</a> </p> <a href="https://publications.waset.org/abstracts/86173/influence-of-random-fibre-packing-on-the-compressive-strength-of-fibre-reinforced-plastic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1538</span> Effect of Packing Ratio on Fire Spread across Discrete Fuel Beds: An Experimental Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qianqian%20He">Qianqian He</a>, <a href="https://publications.waset.org/abstracts/search?q=Naian%20Liu"> Naian Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20Xie"> Xiaodong Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Linhe%20Zhang"> Linhe Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhang"> Yang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weidong%20Yan"> Weidong Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the wild, the vegetation layer with exceptionally complex fuel composition and heterogeneous spatial distribution strongly affects the rate of fire spread (ROS) and fire intensity. Clarifying the influence of fuel bed structure on fire spread behavior is of great significance to wildland fire management and prediction. The packing ratio is one of the key physical parameters describing the property of the fuel bed. There is a threshold value of the packing ratio for ROS, but little is known about the controlling mechanism. In this study, to address this deficiency, a series of fire spread experiments were performed across a discrete fuel bed composed of some regularly arranged laser-cut cardboards, with constant wind speed and different packing ratios (0.0125-0.0375). The experiment aims to explore the relative importance of the internal and surface heat transfer with packing ratio. The dependence of the measured ROS on the packing ratio was almost consistent with the previous researches. The data of the radiative and total heat fluxes show that the internal heat transfer and surface heat transfer are both enhanced with increasing packing ratio (referred to as ‘Stage 1’). The trend agrees well with the variation of the flame length. The results extracted from the video show that the flame length markedly increases with increasing packing ratio in Stage 1. Combustion intensity is suggested to be increased, which, in turn, enhances the heat radiation. The heat flux data shows that the surface heat transfer appears to be more important than the internal heat transfer (fuel preheating inside the fuel bed) in Stage 1. On the contrary, the internal heat transfer dominates the fuel preheating mechanism when the packing ratio further increases (referred to as ‘Stage 2’) because the surface heat flux keeps almost stable with the packing ratio in Stage 2. As for the heat convection, the flow velocity was measured using Pitot tubes both inside and on the upper surface of the fuel bed during the fire spread. Based on the gas velocity distribution ahead of the flame front, it is found that the airflow inside the fuel bed is restricted in Stage 2, which can reduce the internal heat convection in theory. However, the analysis indicates not the influence of inside flow on convection and combustion, but the decreased internal radiation of per unit fuel is responsible for the decrease of ROS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20fuel%20bed" title="discrete fuel bed">discrete fuel bed</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20spread" title=" fire spread"> fire spread</a>, <a href="https://publications.waset.org/abstracts/search?q=packing%20ratio" title=" packing ratio"> packing ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=wildfire" title=" wildfire"> wildfire</a> </p> <a href="https://publications.waset.org/abstracts/133214/effect-of-packing-ratio-on-fire-spread-across-discrete-fuel-beds-an-experimental-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1537</span> Application of Cube IQ Software to Optimize Heterogeneous Packing Products in Logistics Cargo and Minimize Transportation Cost</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ganda%20Wiratama">Muhammad Ganda Wiratama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> XYZ company is one of the upstream chemical companies that produce chemical products such as NaOH, HCl, NaClO, VCM, EDC, and PVC for downstream companies. The products are shipped by land using trucks and sea lanes using ship mode. Especially for solid products such as flake caustic soda (F-NaOH) and PVC resin, the products are sold in loose bag packing and palletize packing (packed in pallet). The focus of this study is to increase the number of items that can be loaded in pallet packaging on the company's logistics vehicle. This is very difficult because on this packaging, the dimensions or size of the material to be loaded become larger and certainly much heavier than the loose bag packing. This factor causes the arrangement and handling of materials in the mode of transportation more difficult. In this case, it is difficult to load a different type of volume packing pallet dimension in one truck or container. By using the Cube-IQ software, it is hoped that the planning of stuffing activity material by pallet can become easier in optimizing the existing space with various possible combinations of possibilities. In addition, the output of this software can also be used as a reference for operators in the material handling include the order and orientation of materials contained in the truck or container. The more optimal contents of logistics cargo, then transportation costs can also be minimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=loading%20activity" title="loading activity">loading activity</a>, <a href="https://publications.waset.org/abstracts/search?q=container%20loading" title=" container loading"> container loading</a>, <a href="https://publications.waset.org/abstracts/search?q=palletize%20product" title=" palletize product"> palletize product</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/73043/application-of-cube-iq-software-to-optimize-heterogeneous-packing-products-in-logistics-cargo-and-minimize-transportation-cost" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1536</span> The Applications of Toyota Production System to Reduce Wastes in Agricultural Products Packing Process: A Study of Onion Packing Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Larpsomboonchai">P. Larpsomboonchai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agro-industry is one of major industries that has strong impacts on national economic incomes, growth, stability, and sustainable development. Moreover, this industry also has strong influences on social, cultural and political issues. Furthermore, this industry, as producing primary and secondary products, is facing challenges from such diverse factors such as demand inconsistency, intense international competition, technological advancements and new competitors. In order to maintain and to improve industry’s competitiveness in both domestics and international markets, science and technology are key factors. Besides hard sciences and technologies, modern industrial engineering concepts such as Just in Time (JIT) Total Quality Management (TQM), Quick Response (QR), Supply Chain Management (SCM) and Lean can be very effective to supportant to increase efficiency and effectiveness of these agricultural products on world stage. Onion is one of Thailand’s major export products which brings back national incomes. But, it also facing challenges in many ways. This paper focused its interests in onion packing process and its related activities such as storage and shipment from one of major packing plant and storage in Mae Wang District, Chiang Mai, Thailand, by applying Toyota Production System (TPS) or Lean concepts, to improve process capability throughout the entire packing and distribution process which will be profitable for the whole onion supply chain. And it will be beneficial to other related agricultural products in Thailand and other ASEAN countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=packing%20process" title="packing process">packing process</a>, <a href="https://publications.waset.org/abstracts/search?q=Toyota%20Production%20System%20%28TPS%29" title=" Toyota Production System (TPS)"> Toyota Production System (TPS)</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20concepts" title=" lean concepts"> lean concepts</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20reduction" title=" waste reduction"> waste reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20in%20agro-industries%20activities" title=" lean in agro-industries activities"> lean in agro-industries activities</a> </p> <a href="https://publications.waset.org/abstracts/31560/the-applications-of-toyota-production-system-to-reduce-wastes-in-agricultural-products-packing-process-a-study-of-onion-packing-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1535</span> Random Variation of Treated Volumes in Fractionated 2D Image Based HDR Brachytherapy for Cervical Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Tudugala">R. Tudugala</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20A.%20I.%20Balasooriya"> B. M. A. I. Balasooriya</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20M.%20Ediri%20Arachchi"> W. M. Ediri Arachchi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20W.%20M.%20W.%20K.%20Rathnayake"> R. W. M. W. K. Rathnayake</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20D.%20Premaratna"> T. D. Premaratna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brachytherapy involves placing a source of radiation near the cancer site which gives promising prognosis for cervical cancer treatments. The purpose of this study was to evaluate the effect of random variation of treated volumes in between fractions in the 2D image based fractionated high dose rate brachytherapy for cervical cancer at National Cancer Institute Maharagama, Sri Lanka. Dose plans were analyzed for 150 cervical cancer patients with orthogonal radiographs (2D) based brachytherapy. ICRU treated volumes was modeled by translating the applicators with the help of “Multisource HDR plus software”. The difference of treated volumes with respect to the applicator geometry was analyzed by using SPSS 18 software; to derived patient population based estimates of delivered treated volumes relative to ideally treated volumes. Packing was evaluated according to bladder dose, rectum dose and geometry of the dose distribution by three consultant radiation oncologist. The difference of treated volumes depends on types of the applicators, which was used in fractionated brachytherapy. The means of the “Difference of Treated Volume” (DTV) for “Evenly activated tandem (ET)” length” group was ((X_1)) -0.48 cm3 and ((X_2)) 11.85 cm3 for “Unevenly activated tandem length (UET) group. The range of the DTV for ET group was 35.80 cm3 whereas UET group 104.80 cm3. One sample T test was performed to compare the DTV with “Ideal treatment volume difference (0.00cm3)”. It is evident that P value was 0.732 for ET group and for UET it was 0.00 moreover independent two sample T test was performed to compare ET and UET groups and calculated P value was 0.005. Packing was evaluated under three categories 59.38% used “Convenient Packing Technique”, 33.33% used “Fairly Packing Technique” and 7.29% used “Not Convenient Packing” in their fractionated brachytherapy treatments. Random variation of treated volume in ET group is much lower than UET group and there is a significant difference (p<0.05) in between ET and UET groups which affects the dose distribution of the treatment. Furthermore, it can be concluded nearly 92.71% patient’s packing were used acceptable packing technique at NCIM, Sri Lanka. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brachytherapy" title="brachytherapy">brachytherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=cervical%20cancer" title=" cervical cancer"> cervical cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20dose%20rate" title=" high dose rate"> high dose rate</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem" title=" tandem"> tandem</a>, <a href="https://publications.waset.org/abstracts/search?q=treated%20volumes" title=" treated volumes"> treated volumes</a> </p> <a href="https://publications.waset.org/abstracts/45942/random-variation-of-treated-volumes-in-fractionated-2d-image-based-hdr-brachytherapy-for-cervical-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1534</span> Performance Improvement of Photovoltaic Module at Different Tilt Angle in Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Bunyan">Hussain Bunyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wesam%20Ali"> Wesam Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we will study the performance of a Silicon Photovoltaic (PV) system with different tilt angle arrangement in Kuwait (latitude 30˚ N). In this study the PV system is installed facing south, collecting maximum solar radiation at noon, and their angles are from 00 to 900 respectively, during full year at the Solstice and Equinox periods and aiming for a higher angle than 300 with competitive output power. The results show that the performance and the output power of the PV system with 50˚ tilt angle, is equivalent to the latitude tilt angle (30˚) during a full year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20model" title="photovoltaic model">photovoltaic model</a>, <a href="https://publications.waset.org/abstracts/search?q=tilt%20angle" title=" tilt angle"> tilt angle</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collector" title=" solar collector"> solar collector</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20system%20performance" title=" PV system performance"> PV system performance</a>, <a href="https://publications.waset.org/abstracts/search?q=State%20of%20Kuwait" title=" State of Kuwait"> State of Kuwait</a> </p> <a href="https://publications.waset.org/abstracts/14874/performance-improvement-of-photovoltaic-module-at-different-tilt-angle-in-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1533</span> Aerodynamic Investigation of Rear Vehicle by Geometry Variations on the Backlight Angle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saud%20Hassan">Saud Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper shows simulation for the prediction of the flow around the backlight angle of the passenger vehicle. The CFD simulations are carried out on different car models. The Ahmed model “bluff body” used as the stander model to study aerodynamics of the backlight angle. This paper described the airflow over the different car models with different backlight angles and also on the Ahmed model to determine the trailing vortices with the varying backlight angle of a passenger vehicle body. The CFD simulation is carried out with the Ahmed body which has simplified car model mainly used in automotive industry to investigate the flow over the car body surface. The main goal of the simulation is to study the behavior of trailing vortices of these models. In this paper the air flow over the slant angle of 0,5o, 12.5o, 20o, 30o, 40o are considered. As investigating on the rear backlight angle two dimensional flows occurred at the rear slant, on the other hand when the slant angle is 30o the flow become three dimensional. Above this angle sudden drop occurred in drag. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahemd%20vehicle" title=" Ahemd vehicle "> Ahemd vehicle </a>, <a href="https://publications.waset.org/abstracts/search?q=backlight%20angle" title=" backlight angle"> backlight angle</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method "> finite element method </a> </p> <a href="https://publications.waset.org/abstracts/26384/aerodynamic-investigation-of-rear-vehicle-by-geometry-variations-on-the-backlight-angle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">781</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1532</span> An Analytical and Numerical Solutions for the Thermal Analysis of a Mechanical Draft Wet Cooling Tower</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Djalal">Hamed Djalal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal analysis of the mechanical draft wet cooling tower is performed in this study by the heat and mass transfer modelization in the packing zone. After combining the heat and mass transfer laws, the mass and energy balances and by involving the Merkel assumptions; firstly, an ordinary differential equations system is derived and solved numerically by the Runge-Kutta method to determine the water and air temperatures, the humidity, and also other properties variation along the packing zone. Secondly, by making some linear assumptions for the air saturation curve, an analytical solution is formed, which is developed for the air washer calculation, but in this study, it is applied for the cooling tower to express also the previous parameters mathematically as a function of the packing height. Finally, a good agreement with experimental data is achieved by both solutions, but the numerical one seems to be the more accurate for modeling the heat and mass transfer process in the wet cooling tower. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaporative%20cooling" title="evaporative cooling">evaporative cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20tower" title=" cooling tower"> cooling tower</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20washer" title=" air washer"> air washer</a>, <a href="https://publications.waset.org/abstracts/search?q=humidification" title=" humidification"> humidification</a>, <a href="https://publications.waset.org/abstracts/search?q=moist%20air" title=" moist air"> moist air</a>, <a href="https://publications.waset.org/abstracts/search?q=heat" title=" heat"> heat</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20mass%20transfer" title=" and mass transfer"> and mass transfer</a> </p> <a href="https://publications.waset.org/abstracts/152695/an-analytical-and-numerical-solutions-for-the-thermal-analysis-of-a-mechanical-draft-wet-cooling-tower" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1531</span> Correlation between Flexible Flatfoot and Lumbosacral Angle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Elwan">Moustafa Elwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohier%20Shehata"> Sohier Shehata</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Sedek"> Fatma Sedek</a>, <a href="https://publications.waset.org/abstracts/search?q=Manar%20Hussine"> Manar Hussine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most risky factors that lead to a foot injury during physical activities are both high and low arched feet. Normally the medial longitudinal arch of the foot develops in the first 10 years of life, so flexible flat foot has an inversely relationship with age in the first decade, all over the world, the prevalence of flat foot is increasing. In approximately 15% of foot deformities cases, the deformity does not disappear and remains throughout adulthood, 90% of the clinical cases are complaining from foot problems are due to flatfoot. Flatfoot creates subtalar over pronation, which creates tibial and femoral medial rotation, and that is accompanied with increases of pelvic tilting anteriorly, which may influence the lumbar vertebrae alignment by increasing muscle tension and rotation. Objective: To study the impact of the flexible flatfoot on lumbosacral angle (angle of Ferguson). Methods: This experiment included 40 volunteers (14 females &26 males) gathered from the Faculty of Physical Therapy, Modern University of Technology and Information, Cairo, Egypt, for each participant, four angles were measured in the foot( talar first metatarsal angle, lateral talocalcaneal angle, , Calcaneal first metatarsal angle, calcaneal inclination angle) and one angle in the lumbar region (lumbosacral angle). Measurement of these angles was conducted by using Surgimap Spine software (version 2.2.9.6). Results: The results demonstrated that there was no significant correlation betweenFerguson angle and lateral talocalcaneal (r=0.164, p=0.313). Also, there was no significant correlation between Ferguson angle and talo first metatarsal “Meary’s angle" (r=0.007, p=0.968). Moreover, there was no significant correlation between Ferguson angle and calcaneal-first metatarsal angle (r=0.083, p=0.612). Also, there was no significant correlation between Ferguson angle and calcaneal inclination angle (r= 0.032, p= 0.846). Conclusion: It can be concluded that there is no significant correlation between the flexible flat foot and lumbosacral angle So, more study should be conducted in large sample and different ages and conditions of foot problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcaneal%20first%20metatarsal" title="calcaneal first metatarsal">calcaneal first metatarsal</a>, <a href="https://publications.waset.org/abstracts/search?q=calcaneal%20inclination" title=" calcaneal inclination"> calcaneal inclination</a>, <a href="https://publications.waset.org/abstracts/search?q=flatfoot" title=" flatfoot"> flatfoot</a>, <a href="https://publications.waset.org/abstracts/search?q=ferguson%E2%80%99s%20angle" title=" ferguson’s angle"> ferguson’s angle</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20talocalcaneal%20angle" title=" lateral talocalcaneal angle"> lateral talocalcaneal angle</a>, <a href="https://publications.waset.org/abstracts/search?q=lumbosacral%20angle" title=" lumbosacral angle"> lumbosacral angle</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20talar%20first%20metatarsal%20angle" title=" and talar first metatarsal angle"> and talar first metatarsal angle</a> </p> <a href="https://publications.waset.org/abstracts/155584/correlation-between-flexible-flatfoot-and-lumbosacral-angle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1530</span> Definition of Service Angle of Android’S Robot Hand by Method of Small Movements of Gripper’S Axis Synthesis by Speed Vector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valeriy%20Nebritov">Valeriy Nebritov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a generalized method for determining the service solid angle based on the assigned gripper axis orientation with a stationary grip center. Motion synthesis in this work is carried out in the vector of velocities. As an example, a solid angle of the android robot arm is determined, this angle being formed by the longitudinal axis of a gripper. The nature of the method is based on the study of sets of configuration positions, defining the end point positions of the unit radius sphere sweep, which specifies the service solid angle. From this the spherical curve specifying the shape of the desired solid angle was determined. The results of the research can be used in the development of control systems of autonomous android robots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=android%20robot" title="android robot">android robot</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20systems" title=" control systems"> control systems</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20synthesis" title=" motion synthesis"> motion synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20angle" title=" service angle"> service angle</a> </p> <a href="https://publications.waset.org/abstracts/105865/definition-of-service-angle-of-androids-robot-hand-by-method-of-small-movements-of-grippers-axis-synthesis-by-speed-vector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1529</span> Performance of Photovoltaic Module at Different Tilt Angles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Bunyan">Hussain Bunyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wesam%20Ali"> Wesam Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we will study the performance of a Silicon Photovoltaic (PV) system with different tilt angle arrangement in Kuwait (latitude 30˚ N). In the study the PV system is installed facing South, collecting maximum solar radiation at noon, and their angles are from 00 to 900 respectively, during full year at the Solstice and Equinox periods, aiming for a higher angle than 300 with competitive output power. The results show that the performance and the output power of the PV system with 50˚ tilt angle, is equivalent to the latitude tilt angle (30˚) during a full year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20model" title="photovoltaic model">photovoltaic model</a>, <a href="https://publications.waset.org/abstracts/search?q=tilt%20angle" title=" tilt angle"> tilt angle</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collector" title=" solar collector"> solar collector</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20system%20performance" title=" PV system performance"> PV system performance</a>, <a href="https://publications.waset.org/abstracts/search?q=State%20of%20Kuwait" title=" State of Kuwait "> State of Kuwait </a> </p> <a href="https://publications.waset.org/abstracts/17334/performance-of-photovoltaic-module-at-different-tilt-angles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1528</span> Optimization of Tilt Angle for Solar Collectors: A Case Study for Bursa, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Arslanoglu">N. Arslanoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the optimum tilt angle for the solar collector in order to collect the maximum solar radiation. The optimum angle for tilted surfaces varying from 0<sup>◦</sup> to 90<sup>◦</sup> in steps of 1<sup>◦ </sup>was computed. In present study, a theoretical model is used to predict the global solar radiation on a tilted surface and to obtain the optimum tilt angle for a solar collector in Bursa, Turkey. Global solar energy radiation on the solar collector surface with an optimum tilt angle is calculated for specific periods. It is determined that the optimum slope angle varies between 0<sup>◦</sup> (June) and 59<sup>◦</sup> (December) throughout the year. In winter (December, January, and February) the tilt should be 55<sup>◦</sup>, in spring (March, April, and May) 19.6<sup>◦</sup>, in summer (June, July, and August) 5.6<sup>◦</sup>, and in autumn (September, October, and November) 44.3<sup>◦</sup>. The yearly average of this value was obtained to be 31.1<sup>◦</sup> and this would be the optimum fixed slope throughout the year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bursa" title="Bursa">Bursa</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20solar%20radiation" title=" global solar radiation"> global solar radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20tilt%20angle" title=" optimum tilt angle"> optimum tilt angle</a>, <a href="https://publications.waset.org/abstracts/search?q=tilted%20surface" title=" tilted surface"> tilted surface</a> </p> <a href="https://publications.waset.org/abstracts/49458/optimization-of-tilt-angle-for-solar-collectors-a-case-study-for-bursa-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1527</span> Measurement of the Quadriceps Angle with Respect to Various Body Parameters in Arab Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramada%20R.%20Khasawneh">Ramada R. Khasawneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Z.%20Allouh"> Mohammed Z. Allouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ejlal%20Abu-El%20Rub"> Ejlal Abu-El Rub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quadriceps angle (Q angle), formed between the quadriceps muscles and the patella tendon, is considered clinically as a very important parameter which displays the biomechanical effect of the quadriceps muscle on the knee, and it is also regarded as a crucial factor for the proper posture and movement of the knee patella. This study had been conducted to measure the normal Q angle values range in the Arab nationalities and determine the correlation between Q angle values and several body parameters, including gender, height, weight, dominant side, and the condylar distance of the femur. The study includes 500 healthy Arab students from Yarmouk University and Jordan University of Science and Technology. The Q angle of those volunteers was measured using a universal manual Goniometer with the subjects in the upright weight-bearing position. It was found that the Q angle was greater in women than in men. The analysis of the data revealed an insignificant increase in the dominant side of the Q angle. In addition, the Q was significantly higher in the taller people of both sexes. However, the Q angle did not present any considerable correlation with weight in the study population; conversely, it was observed that there was a link with the condylar distance of the femur in both sexes. It was also noticed that the Q angle increased remarkably when there was an increase in the condylar distance. Consequently, it turned out that the gender, height, and the condylar distance were momentous factors that had an impact on the Q angle in our study samples. However, weight and dominance factors did not show to have any influence on the values in our study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Q%20angle" title="Q angle">Q angle</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordanian" title=" Jordanian"> Jordanian</a>, <a href="https://publications.waset.org/abstracts/search?q=anatomy" title=" anatomy"> anatomy</a>, <a href="https://publications.waset.org/abstracts/search?q=condylar%20distance" title=" condylar distance"> condylar distance</a> </p> <a href="https://publications.waset.org/abstracts/109735/measurement-of-the-quadriceps-angle-with-respect-to-various-body-parameters-in-arab-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1526</span> Hybrid GA-PSO Based Pitch Controller Design for Aircraft Control System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Singh%20%20Rajput">Vaibhav Singh Rajput</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Kumar%20Jatoth"> Ravi Kumar Jatoth</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagu%20Bhookya"> Nagu Bhookya</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhasker%20Boda"> Bhasker Boda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper proportional, integral, derivative (PID) controller is used to control the pitch angle of the aircraft when the elevation angle is changed or modified. The pitch angle is dependent on elevation angle; a change in one corresponds to a change in the other. The PID controller helps in restricted change of pitch rate in response to the elevation angle. The PID controller is dependent on different parameters like Kp, Ki, Kd which change the pitch rate as they change. Various methodologies are used for changing those parameters for getting a perfect time response pitch angle, as desired or wished by a concerned person. While reckoning the values of those parameters, trial and guessing may prove to be futile in order to provide comfort to passengers. So, using some metaheuristic techniques can be useful in handling these errors. Hybrid GA-PSO is one such powerful algorithm which can improve transient and steady state response and can give us more reliable results for PID gain scheduling problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pitch%20rate" title="pitch rate">pitch rate</a>, <a href="https://publications.waset.org/abstracts/search?q=elevation%20angle" title=" elevation angle"> elevation angle</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%20controller" title=" PID controller"> PID controller</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=phugoid" title=" phugoid"> phugoid</a> </p> <a href="https://publications.waset.org/abstracts/64457/hybrid-ga-pso-based-pitch-controller-design-for-aircraft-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1525</span> The Correlation between Head of Bed Angle and IntraAbdominal Pressure of Intubated Patients; a Pre-Post Clinical Trial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sedigheh%20Samimian">Sedigheh Samimian</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadra%20Ashrafi"> Sadra Ashrafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahereh%20Khaleghdoost%20Mohammadi"> Tahereh Khaleghdoost Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Yeganeh"> Mohammad Reza Yeganeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ashraf"> Ali Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamideh%20Hakimi"> Hamideh Hakimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Dehghani"> Maryam Dehghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The recommended position for measuring Intra-Abdominal Pressure (IAP) is the supine position. However, patients put in this position are prone to Ventilator-associated pneumonia. This study was done to evaluate the relationship between bed head angle and IAP measurements of intubated patients in the intensive care unit. Methods: In this clinical trial, seventy-six critically ill patients under mechanical ventilation were enrolled. IAP measurement was performed every 8 hours for 24 hours using the KORN method in three different degrees of the head of bed (HOB) elevation (0°, 15°, and 30°). Bland-Altman analysis was performed to identify the bias and limits of agreement among the three HOBs. According to World Society of the Abdominal Compartment Syndrome (WSACS), we can consider two IAP techniques equivalent if a bias of <1 mmHg and limits of agreement of - 4 to +4 were found between them. Data were analyzed using SPSS statistical software (v. 19), and the significance level was considered as 0.05. Results: The prevalence of intra-abdominal hypertension was 18.42%. Mean ± standard deviation (SD) of IAP were 8.44 ± 4.02 mmHg for HOB angle 0°, 9.58 ± 4.52 for HOB angle 15°, and 11.10 ± 4.73 for HOB angle 30o (p = 0.0001). The IAP measurement bias between HOB angle 0◦ and HOB angle 15° was 1.13 mmHg. This bias was 2.66 mmHg between HOB angle 0° and HOB angle 30°. Conclusion: Elevation of HOB angle from 0 to 30 degree significantly increases IAP. It seems that the measurement of IAP at HOB angle 15° was more reliable than 30°. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure" title="pressure">pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=intra-abdominal%20hypertension" title=" intra-abdominal hypertension"> intra-abdominal hypertension</a>, <a href="https://publications.waset.org/abstracts/search?q=head%20of%20bed" title=" head of bed"> head of bed</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20care" title=" critical care"> critical care</a>, <a href="https://publications.waset.org/abstracts/search?q=compartment%20syndrome" title=" compartment syndrome"> compartment syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=supine%20position" title=" supine position"> supine position</a> </p> <a href="https://publications.waset.org/abstracts/183409/the-correlation-between-head-of-bed-angle-and-intraabdominal-pressure-of-intubated-patients-a-pre-post-clinical-trial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1524</span> Numerical Simulation of the Flowing of Ice Slurry in Seawater Pipe of Polar Ships</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Xu">Li Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Huanbao%20Jiang"> Huanbao Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenfei%20Huang"> Zhenfei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lailai%20Zhang"> Lailai Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, as global warming, the sea-ice extent of North Arctic undergoes an evident decrease and Arctic channel has attracted the attention of shipping industry. Ice crystals existing in the seawater of Arctic channel which enter the seawater system of the ship with the seawater were found blocking the seawater pipe. The appearance of cooler paralysis, auxiliary machine error and even ship power system paralysis may be happened if seriously. In order to reduce the effect of high temperature in auxiliary equipment, seawater system will use external ice-water to participate in the cooling cycle and achieve the state of its flow. The distribution of ice crystals in seawater pipe can be achieved. As the ice slurry system is solid liquid two-phase system, the flow process of ice-water mixture is very complex and diverse. In this paper, the flow process in seawater pipe of ice slurry is simulated with fluid dynamics simulation software based on k-&epsilon; turbulence model. As the ice packing fraction is a key factor effecting the distribution of ice crystals, the influence of ice packing fraction on the flowing process of ice slurry is analyzed. In this work, the simulation results show that as the ice packing fraction is relatively large, the distribution of ice crystals is uneven in the flowing process of the seawater which has such disadvantage as increase the possibility of blocking, that will provide scientific forecasting methods for the forming of ice block in seawater piping system. It has important significance for the reliability of the operating of polar ships in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ice%20slurry" title="ice slurry">ice slurry</a>, <a href="https://publications.waset.org/abstracts/search?q=seawater%20pipe" title=" seawater pipe"> seawater pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=ice%20packing%20fraction" title=" ice packing fraction"> ice packing fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/47553/numerical-simulation-of-the-flowing-of-ice-slurry-in-seawater-pipe-of-polar-ships" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1523</span> Pythagorean-Platonic Lattice Method for Finding all Co-Prime Right Angle Triangles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Overmars">Anthony Overmars</a>, <a href="https://publications.waset.org/abstracts/search?q=Sitalakshmi%20Venkatraman"> Sitalakshmi Venkatraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a method for determining all of the co-prime right angle triangles in the Euclidean field by looking at the intersection of the Pythagorean and Platonic right angle triangles and the corresponding lattice that this produces. The co-prime properties of each lattice point representing a unique right angle triangle are then considered. This paper proposes a conjunction between these two ancient disparaging theorists. This work has wide applications in information security where cryptography involves improved ways of finding tuples of prime numbers for secure communication systems. In particular, this paper has direct impact in enhancing the encryption and decryption algorithms in cryptography. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pythagorean%20triples" title="Pythagorean triples">Pythagorean triples</a>, <a href="https://publications.waset.org/abstracts/search?q=platonic%20triples" title=" platonic triples"> platonic triples</a>, <a href="https://publications.waset.org/abstracts/search?q=right%20angle%20triangles" title=" right angle triangles"> right angle triangles</a>, <a href="https://publications.waset.org/abstracts/search?q=co-prime%20numbers" title=" co-prime numbers"> co-prime numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptography" title=" cryptography"> cryptography</a> </p> <a href="https://publications.waset.org/abstracts/80590/pythagorean-platonic-lattice-method-for-finding-all-co-prime-right-angle-triangles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1522</span> Relationship Between Dynamic Balance, Jumping Performance and Q-angle in Soccer Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarik%20Ozmen">Tarik Ozmen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The soccer players need good dynamic balance and jumping performance for dribbling, crossing rival, and to be effective in high balls during soccer game. The quadriceps angle (Q-angle) is used to assess biomechanics of the patellofemoral joint in the musculoskeletal medicine. The Q angle is formed by the intersection of two lines drawing from the anterior superior iliac spine to the centre of the patella and to the midline of the tibia tuberosity. Studies have shown that the Q angle is inversely associated with quadriceps femoris strength. The purpose of this study was to investigate relationship between dynamic balance, jumping performance and Q-angle in soccer players. Thirty male soccer players (mean ± SD: age, 15.23 ± 0.56 years, height, 170 ± 8.37 cm, weight, 61.36 ± 6.04 kg) participated as volunteer in this study. Dynamic balance of the participants were evaluated at directions of anterior (A), posteromedial (PM) and posterolateral (PL) with Star Excursion Balance Test (SEBT). Each participant was instructed to reach as far as with the non-dominant leg in each of the 3 directions while maintaining dominant leg stance. Leg length was used to normalize excursion distances by dividing the distance reached by leg length and then multiplying the result by 100. The jumping performance was evaluated by squat jump using a contact mat. A universal (standard) goniometer was used to measure the Q angle in standing position. The Q angle was not correlated with directions of SEBT (A: p = 0.32, PM: p = 0.06, PL: p = 0.37). The squat jump height was not correlated with Q-angle (p = 0.21). The findings of this study suggest that there are no significant relationships between dynamic balance, jumping performance and Q-angle in soccer players. Further studies should investigate relationship between balance ability, athletic performance and Q-angle with larger sample size in soccer players. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balance" title="balance">balance</a>, <a href="https://publications.waset.org/abstracts/search?q=jump%20height" title=" jump height"> jump height</a>, <a href="https://publications.waset.org/abstracts/search?q=Q%20angle" title=" Q angle"> Q angle</a>, <a href="https://publications.waset.org/abstracts/search?q=soccer" title=" soccer"> soccer</a> </p> <a href="https://publications.waset.org/abstracts/50053/relationship-between-dynamic-balance-jumping-performance-and-q-angle-in-soccer-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1521</span> Additive Manufacturing – Application to Next Generation Structured Packing (SpiroPak)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biao%20Sun">Biao Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Tejas%20Bhatelia"> Tejas Bhatelia</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20Pareek"> Vishnu Pareek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjeet%20Utikar"> Ranjeet Utikar</a>, <a href="https://publications.waset.org/abstracts/search?q=Moses%20Tad%C3%A9">Moses Tadé</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing (AM), commonly known as 3D printing, with the continuing advances in parallel processing and computational modeling, has created a paradigm shift (with significant radical thinking) in the design and operation of chemical processing plants, especially LNG plants. With the rising energy demands, environmental pressures, and economic challenges, there is a continuing industrial need for disruptive technologies such as AM, which possess capabilities that can drastically reduce the cost of manufacturing and operations of chemical processing plants in the future. However, the continuing challenge for 3D printing is its lack of adaptability in re-designing the process plant equipment coupled with the non-existent theory or models that could assist in selecting the optimal candidates out of the countless potential fabrications that are possible using AM. One of the most common packings used in the LNG process is structured packing in the packed column (which is a unit operation) in the process. In this work, we present an example of an optimum strategy for the application of AM to this important unit operation. Packed columns use a packing material through which the gas phase passes and comes into contact with the liquid phase flowing over the packing, typically performing the necessary mass transfer to enrich the products, etc. Structured packing consists of stacks of corrugated sheets, typically inclined between 40-70° from the plane. Computational Fluid Dynamics (CFD) was used to test and model various geometries to study the governing hydrodynamic characteristics. The results demonstrate that the costly iterative experimental process can be minimized. Furthermore, they also improve the understanding of the fundamental physics of the system at the multiscale level. SpiroPak, patented by Curtin University, represents an innovative structured packing solution currently at a technology readiness level (TRL) of 5~6. This packing exhibits remarkable characteristics, offering a substantial increase in surface area while significantly enhancing hydrodynamic and mass transfer performance. Recent studies have revealed that SpiroPak can reduce pressure drop by 50~70% compared to commonly used commercial packings, and it can achieve 20~50% greater mass transfer efficiency (particularly in CO2 absorption applications). The implementation of SpiroPak has the potential to reduce the overall size of columns and decrease power consumption, resulting in cost savings for both capital expenditure (CAPEX) and operational expenditure (OPEX) when applied to retrofitting existing systems or incorporated into new processes. Furthermore, pilot to large-scale tests is currently underway to further advance and refine this technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Additive%20Manufacturing%20%28AM%29" title="Additive Manufacturing (AM)">Additive Manufacturing (AM)</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=Computational%20Fluid%20Dynamics%20%28CFD" title=" Computational Fluid Dynamics (CFD"> Computational Fluid Dynamics (CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=structured%20packing%20%28SpiroPak%29" title=" structured packing (SpiroPak)"> structured packing (SpiroPak)</a> </p> <a href="https://publications.waset.org/abstracts/183351/additive-manufacturing-application-to-next-generation-structured-packing-spiropak" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1520</span> The Influence of Winding Angle on Functional Failure of FRP Pipes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roham%20Rafiee">Roham Rafiee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Hesamsadat"> Hadi Hesamsadat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a parametric finite element modeling is developed to analyze failure modes of FRP pipes subjected to internal pressure. First-ply failure pressure and functional failure pressure was determined by a progressive damage modeling and then it is validated using experimental observations. The influence of both winding angle and fiber volume fraction is studied on the functional failure of FRP pipes and it corresponding pressure. It is observed that despite the fact that increasing fiber volume fraction will enhance the mechanical properties, it will be resulted in lower values for functional failure pressure. This shortcoming can be compensated by modifying the winding angle in angle plies of pipe wall structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20pipe" title="composite pipe">composite pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20failure" title=" functional failure"> functional failure</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20modeling" title=" progressive modeling"> progressive modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=winding%20angle" title=" winding angle"> winding angle</a> </p> <a href="https://publications.waset.org/abstracts/1399/the-influence-of-winding-angle-on-functional-failure-of-frp-pipes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1519</span> Tensile Properties of 3D Printed PLA under Unidirectional and Bidirectional Raster Angle: A Comparative Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shilpesh%20R.%20Rajpurohit">Shilpesh R. Rajpurohit</a>, <a href="https://publications.waset.org/abstracts/search?q=Harshit%20K.%20Dave"> Harshit K. Dave</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fused deposition modeling (FDM) gains popularity in recent times, due to its capability to create prototype as well as functional end use product directly from CAD file. Parts fabricated using FDM process have mechanical properties comparable with those of injection-molded parts. However, performance of the FDM part is severally affected by the poor mechanical properties of the part due to nature of layered structure of printed part. Mechanical properties of the part can be improved by proper selection of process variables. In the present study, a comparative study between unidirectional and bidirectional raster angle has been carried out at a combination of different layer height and raster width. Unidirectional raster angle varied at five different levels, and bidirectional raster angle has been varied at three different levels. Fabrication of tensile specimen and tensile testing of specimen has been conducted according to ASTM D638 standard. From the results, it can be observed that higher tensile strength has been obtained at 0° raster angle followed by 45°/45° raster angle, while lower tensile strength has been obtained at 90° raster angle. Analysis of fractured surface revealed that failure takes place along with raster deposition direction for unidirectional and zigzag failure can be observed for bidirectional raster angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=unidirectional" title=" unidirectional"> unidirectional</a>, <a href="https://publications.waset.org/abstracts/search?q=bidirectional" title=" bidirectional"> bidirectional</a>, <a href="https://publications.waset.org/abstracts/search?q=raster%20angle" title=" raster angle"> raster angle</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/86885/tensile-properties-of-3d-printed-pla-under-unidirectional-and-bidirectional-raster-angle-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1518</span> Extracting the Failure Criterion to Evaluate the Strength of Cracked Drills under Torque Caused by Drilling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Falsafi">A. Falsafi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Dadkhah"> M. Dadkhah</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shahidi"> S. Shahidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The destruction and defeat of drill pipes and drill rigs in oil wells often combined with a combination of shear modulus II and III. In such a situation, the strength and load bearing capacity of the drill are evaluated based on the principles of fracture mechanics and crack growth criteria. In this paper, using the three-dimensional stress equations around the Turkish frontier, the relations of the tense-tense criterion (MTS) are extracted for the loading of the combined II and III modulus. It is shown that in crisp deflection under loading of combination II and III, the level of fracture is characterized by two different angles: the longitudinal angle of deflection θ and the angle of the deflection of the alpha. Based on the relationships obtained from the MTS criterion, the failure criteria, the longitudinal angle of the theta failure and the lateral angle of the failure of the alpha are presented. Also, the role of Poisson's coefficient on these parameters is investigated in these graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=most%20tangential%20tension%20criterion" title="most tangential tension criterion">most tangential tension criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20angle%20of%20failure" title=" longitudinal angle of failure"> longitudinal angle of failure</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20angle%20of%20fracture" title=" side angle of fracture"> side angle of fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=drills%20crack" title=" drills crack"> drills crack</a> </p> <a href="https://publications.waset.org/abstracts/101747/extracting-the-failure-criterion-to-evaluate-the-strength-of-cracked-drills-under-torque-caused-by-drilling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1517</span> Computational Fluid Dynamics Analysis of an RC Airplane Wing Using a NACA 2412 Profile at Different Angle of Attacks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20Gokberk">Huseyin Gokberk</a>, <a href="https://publications.waset.org/abstracts/search?q=Shian%20Gao"> Shian Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CFD analysis of the relationship between the coefficients of lift and drag with respect to the angle of attack on a NACA 2412 wing section of an RC plane is conducted. Both the 2D and 3D models are investigated with the turbulence model. The 2D analysis has a free stream velocity of 10m/s at different AoA of 0°, 2°, 5°, 10°, 12°, and 15°. The induced drag and drag coefficient increased throughout the changes in angles even after the critical angle had been exceeded, whereas the lift force and coefficient of lift increased but had a limit at the critical stall angle, which results in values to reduce sharply. Turbulence flow characteristics are analysed around the aerofoil with the additions caused due to a finite 3D model. 3D results highlight how wing tip vortexes develop and alter the flow around the wing with the effects of the tapered configuration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20modelling" title=" turbulence modelling"> turbulence modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=aerofoil" title=" aerofoil"> aerofoil</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20attack" title=" angle of attack"> angle of attack</a> </p> <a href="https://publications.waset.org/abstracts/104536/computational-fluid-dynamics-analysis-of-an-rc-airplane-wing-using-a-naca-2412-profile-at-different-angle-of-attacks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1516</span> Required SNR for PPM in Downlink Gamma-Gamma Turbulence Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selami%20%C5%9Eahin">Selami Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, in order to achieve sufficient bit error rate (BER) according to zenith angle of the satellite to ground station, SNR requirement is investigated utilizing pulse position modulation (PPM). To realize explicit results, all parameters such as link distance, Rytov variance, scintillation index, wavelength, aperture diameter of the receiver, Fried's parameter and zenith angle have been taken into account. Results indicate that after some parameters are determined since the constraints of the system, to achieve desired BER, required SNR values are in wide range while zenith angle changes from small to large values. Therefore, in order not to utilize high link margin, either SNR should adjust according to zenith angle or link should establish with predetermined intervals of the zenith angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Free-space%20optical%20communication" title="Free-space optical communication">Free-space optical communication</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20downlink%20channel" title=" optical downlink channel"> optical downlink channel</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20turbulence" title=" atmospheric turbulence"> atmospheric turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20optical%20communication" title=" wireless optical communication"> wireless optical communication</a> </p> <a href="https://publications.waset.org/abstracts/31718/required-snr-for-ppm-in-downlink-gamma-gamma-turbulence-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1515</span> Determination of Optimum Fin Wave Angle and Its Effect on the Performance of an Intercooler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Hamzehei">Mahdi Hamzehei</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Amin%20Hakim"> Seyyed Amin Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Taherian"> Nahid Taherian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fins play an important role in increasing the efficiency of compact shell and tube heat exchangers by increasing heat transfer. The objective of this paper is to determine the optimum fin wave angle, as one of the geometric parameters affecting the efficiency of the heat exchangers. To this end, finite volume method is used to model and simulate the flow in heat exchanger. In this study, computational fluid dynamics simulations of wave channel are done. The results show that the wave angle affects the temperature output of the heat exchanger. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fin%20wave%20angle" title="fin wave angle">fin wave angle</a>, <a href="https://publications.waset.org/abstracts/search?q=tube" title=" tube"> tube</a>, <a href="https://publications.waset.org/abstracts/search?q=intercooler" title=" intercooler"> intercooler</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum" title=" optimum"> optimum</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/41621/determination-of-optimum-fin-wave-angle-and-its-effect-on-the-performance-of-an-intercooler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=packing%20angle&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=packing%20angle&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=packing%20angle&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=packing%20angle&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=packing%20angle&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=packing%20angle&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=packing%20angle&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=packing%20angle&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=packing%20angle&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=packing%20angle&amp;page=51">51</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=packing%20angle&amp;page=52">52</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=packing%20angle&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10