CINXE.COM
Search results for: mines
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mines</title> <meta name="description" content="Search results for: mines"> <meta name="keywords" content="mines"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mines" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mines"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 125</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mines</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Abandoned Mine Methane Mitigation in the United States</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jerome%20Blackman">Jerome Blackman</a>, <a href="https://publications.waset.org/abstracts/search?q=Pamela%20Franklin"> Pamela Franklin</a>, <a href="https://publications.waset.org/abstracts/search?q=Volha%20Roshchanka"> Volha Roshchanka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The US coal mining sector accounts for 6% of total US Methane emissions (2021). 60% of US coal mining methane emissions come from active underground mine ventilation systems. Abandoned mines contribute about 13% of methane emissions from coal mining. While there are thousands of abandoned underground coal mines in the US, the Environmental Protection Agency (EPA) estimates that fewer than 100 have sufficient methane resources for viable methane recovery and use projects. Many abandoned mines are in remote areas far from potential energy customers and may be flooded, further complicating methane recovery. Because these mines are no longer active, recovery projects can be simpler to implement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abandoned%20mines" title="abandoned mines">abandoned mines</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20mine%20methane" title=" coal mine methane"> coal mine methane</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20mining" title=" coal mining"> coal mining</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20emissions" title=" methane emissions"> methane emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20mitigation" title=" methane mitigation"> methane mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20and%20use" title=" recovery and use"> recovery and use</a> </p> <a href="https://publications.waset.org/abstracts/176222/abandoned-mine-methane-mitigation-in-the-united-states" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Feature Selection for Production Schedule Optimization in Transition Mines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angelina%20Anani">Angelina Anani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ignacio%20Ortiz%20Flores"> Ignacio Ortiz Flores</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Li"> Haitao Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of underground mining methods have increased significantly over the past decades. This increase has also been spared on by several mines transitioning from surface to underground mining. However, determining the transition depth can be a challenging task, especially when coupled with production schedule optimization. Several researchers have simplified the problem by excluding operational features relevant to production schedule optimization. Our research objective is to investigate the extent to which operational features of transition mines accounted for affect the optimal production schedule. We also provide a framework for factors to consider in production schedule optimization for transition mines. An integrated mixed-integer linear programming (MILP) model is developed that maximizes the NPV as a function of production schedule and transition depth. A case study is performed to validate the model, with a comparative sensitivity analysis to obtain operational insights. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underground%20mining" title="underground mining">underground mining</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20mines" title=" transition mines"> transition mines</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed-integer%20linear%20programming" title=" mixed-integer linear programming"> mixed-integer linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20schedule" title=" production schedule"> production schedule</a> </p> <a href="https://publications.waset.org/abstracts/144388/feature-selection-for-production-schedule-optimization-in-transition-mines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Case study of Environmental Impact Assessment of Quarrying Activities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hocine%20Benabid">Hocine Benabid</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Ghorab"> M. F. Ghorab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exploration of open pit mines and quarries has always been important resources that provide many valuable needed minerals but very often accompanied by large amounts of dust rejected into the air and also many other negative environmental impacts. The dust remains suspended in the atmosphere before being deposited on soils, on forest trees, on plants and also on water, causing at long term allergic and respiratory diseases for residents living in the vicinity or even far away from the mines and quarries. As a consequence of this activity, dust can also disturb the photosynthetic activity of plants and affect water quality. It is for these reasons and because of the intensification of these activities that our motivations have become larger to deal with this kind of topic, which is becoming nowadays an environmental and health concern for almost every country in the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mines" title="mines">mines</a>, <a href="https://publications.waset.org/abstracts/search?q=dust" title=" dust"> dust</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impacts" title=" environmental impacts"> environmental impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20concern" title=" environmental concern "> environmental concern </a> </p> <a href="https://publications.waset.org/abstracts/24353/case-study-of-environmental-impact-assessment-of-quarrying-activities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> PM10 Concentration Emitted from Blasting and Crushing Processes of Limestone Mines in Saraburi Province, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanokrat%20Makkwao">Kanokrat Makkwao</a>, <a href="https://publications.waset.org/abstracts/search?q=Tassanee%20Prueksasit"> Tassanee Prueksasit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to investigate PM<sub>10 </sub>emitted from different limestone mines in Saraburi province, Thailand. The blasting and crushing were the main processes selected for PM<sub>10</sub> sampling. PM<sub>10 </sub>was collected in two mines including, a limestone mine for cement manufacturing (mine A) and a limestone mine for construction (mine B). The IMPACT samplers were used to collect PM<sub>10</sub>. At blasting, the points aligning with the upwind and downwind direction were assigned for the sampling. The ranges of PM<sub>10</sub> concentrations at mine A and B were 0.267-5.592 and 0.130-0.325 mg/m³, respectively, and the concentration at blasting from mine A was significantly higher than mine B (p < 0.05). During crushing at mine A, the PM<sub>10</sub> concentration with the range of 1.153-3.716 and 0.085-1.724 mg/m³ at crusher and piles in respectively were observed whereas the PM<sub>10</sub> concentration measured at four sampling points in mine B, including secondary crusher, tertiary crusher, screening point, and piles, were ranged 1.032-16.529, 10.957-74.057, 0.655-4.956, and 0.169-1.699 mg/m³, respectively. The emission of PM<sub>10</sub> concentration at the crushing units was different in the ranges depending on types of machine, its operation, dust collection and control system, and environmental conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PM%E2%82%81%E2%82%80%20concentration" title="PM₁₀ concentration">PM₁₀ concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=limestone%20mines" title=" limestone mines"> limestone mines</a>, <a href="https://publications.waset.org/abstracts/search?q=blasting" title=" blasting"> blasting</a>, <a href="https://publications.waset.org/abstracts/search?q=crushing" title=" crushing"> crushing</a> </p> <a href="https://publications.waset.org/abstracts/133194/pm10-concentration-emitted-from-blasting-and-crushing-processes-of-limestone-mines-in-saraburi-province-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Assessment of Indigenous People Living Condition in Coal Mining Region: An Evidence from Dhanbad, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20Kumar%20Yadav">Arun Kumar Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coal contributes a significant role in India’s developmental mission. But, ironically, on the other side it causes large scale population displacement and significant changes in indigenous people’s livelihood mechanism. Dhanbad which is regarded as one of the oldest and large mining area, as well as a “Coal Capital of India”. Here, mining exploration work started nearly a century ago. But with the passage of time, mining brings a lot of changes in the life of local people. In this context, study tries to do comparative situational analysis of the changes in the living condition of dwellers living in mines affected and non-mines affected villages based on livelihood approach. Since, this place has long history of mining so it is very difficult to conduct before and after comparison between mines and non-mines affected areas. Consequently, the present study is based on relative comparison approach to elucidate the actual scenario. By using primary survey data which was collected by the author during the month of September 2014 to March 2015 at Dhanbad, Jharkhand. The data were collected from eight villages, these were categorised broadly into mines and non-mines affected villages. Further at micro level, mines affected villages has been categorised into open cast and underground mines. This categorization will help us to capture the deeper understanding about the issues of mine affected villages group. Total of 400 household were surveyed. Result depicts that in every sphere mining affected villages are more vulnerable. Regarding financial capital, although mine affected villages are engaged in mining work and get higher mean income. But in contrast, non-mine affected villages are more occupationally diversified. They have an opportunity to earn money from diversified extents like agricultural land, working in mining area, selling coal informally as well as receiving remittances. Non-mines affected villages are in better physical capital which comprises of basic infrastructure to support livelihood. They have an access to secured shelter, adequate water supply & sanitation, and affordable information and transport. Mining affected villages are more prone to health risks. Regarding social capital, it shows that in comparison to last five years, law and order has been improved in mine affected villages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=displacement" title="displacement">displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=indigenous" title=" indigenous"> indigenous</a>, <a href="https://publications.waset.org/abstracts/search?q=livelihood" title=" livelihood"> livelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=mining" title=" mining "> mining </a> </p> <a href="https://publications.waset.org/abstracts/40669/assessment-of-indigenous-people-living-condition-in-coal-mining-region-an-evidence-from-dhanbad-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Hazardous Gas Detection Robot in Coal Mines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanchan%20J.%20Kakade">Kanchan J. Kakade</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Annadate"> S. A. Annadate</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents design and development of underground coal mine monitoring using mbed arm cortex controller and ZigBee communication. Coal mine is a special type of mine which is dangerous in nature. Safety is the most important feature of a coal industry for proper functioning. It’s not only for employees and workers but also for environment and nation. Many coal producing countries in the world face phenomenal frequently occurred accidents in coal mines viz, gas explosion, flood, and fire breaking out during coal mines exploitation. Thus, such emissions of various gases from coal mines are necessary to detect with the help of robot. Coal is a combustible, sedimentary, organic rock, which is made up of mainly carbon, hydrogen and oxygen. Coal Mine Detection Robot mainly detects mash gas and carbon monoxide. The mash gas is the kind of the mixed gas which mainly make up of methane in the underground of the coal mine shaft, and sometimes it abbreviate to methane. It is formed from vegetation, which has been fused between other rock layers and altered by the combined effects of heat and pressure over millions of years to form coal beds. Coal has many important uses worldwide. The most significant uses of coal are in electricity generation, steel production, cement manufacturing and as a liquid fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zigbee%20communication" title="Zigbee communication">Zigbee communication</a>, <a href="https://publications.waset.org/abstracts/search?q=various%20sensors" title=" various sensors"> various sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=hazardous%20gases" title=" hazardous gases"> hazardous gases</a>, <a href="https://publications.waset.org/abstracts/search?q=mbed%20arm%20cortex%20M3%20core%20controller" title=" mbed arm cortex M3 core controller "> mbed arm cortex M3 core controller </a> </p> <a href="https://publications.waset.org/abstracts/32662/hazardous-gas-detection-robot-in-coal-mines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Improvement of Overall Equipment Effectiveness of Load Haul Dump Machines in Underground Coal Mines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20BalaRaju">J. BalaRaju</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Govinda%20Raj"> M. Govinda Raj</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20N.%20Murthy"> C. S. N. Murthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every organization in the competitive world tends to improve its economy by increasing their production and productivity rates. Unequivocally, the production in Indian underground mines over the years is not satisfactory, due to a variety of reasons. There are manifold of avenues for the betterment of production, and one such approach is through enhanced utilization of mechanized equipment such as Load Haul Dumper (LHD). This is used as loading and hauling purpose in underground mines. In view of the aforementioned facts, this paper delves into identification of the key influencing factors such as LHDs maintenance effectiveness, vehicle condition, operator skill and utilization of the machines on performance of LHDs. An attempt has been made for improvement of performance of the equipment through evaluation of Overall Equipment Effectiveness (OEE). Two different approaches for evaluation of OEE have been adopted and compared under various operating conditions. The use of OEE calculation in terms of percentage availability, performance and quality and the hitherto existing situation of the underground mine production is evaluated. Necessary recommendations are suggested to mining industry on the basis of OEE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=utilization" title="utilization">utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=availability" title=" availability"> availability</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20and%20quality" title=" performance and quality"> performance and quality</a> </p> <a href="https://publications.waset.org/abstracts/79759/improvement-of-overall-equipment-effectiveness-of-load-haul-dump-machines-in-underground-coal-mines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Evaluation of Hand Arm Vibrations of Low Profile Dump Truck Operators in an Underground Metal Mine According to Job Component Analysis of a Work Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sridhar%20S">Sridhar S</a>, <a href="https://publications.waset.org/abstracts/search?q=Govinda%20Raj%20Mandela"> Govinda Raj Mandela</a>, <a href="https://publications.waset.org/abstracts/search?q=Aruna%20Mangalpady"> Aruna Mangalpady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present day scenario, Indian underground mines are moving towards full scale mechanisation for improvement of production and productivity levels. These mines are employing a wide variety of earth moving machines for the transportation of ore and overburden (waste). Low Profile Dump Trucks (LPDTs) have proven more advantageous towards improvement of production levels in underground mines through quick transportation. During the operation of LPDT, different kinds of vibrations are generated which can affect the health condition of the operator. Keeping this in view, the present research work focuses on measurement and evaluation of Hand Arm Vibrations (HAVs) from the steering system of LPDTs. The study also aims to evaluate the HAVs of different job components of a work cycle in operating LPDTs. The HAVs were measured and evaluated according to ISO 5349-2: 2001 standards, and the daily vibration exposures A(8) were calculated. The evaluated A(8) results show that LPDTs of 60 and 50 tons capacity have vibration levels more than that of the Exposure Action Value (EAV) of 2.5 m/s2 in every job component of the work cycle. Further, the results show that the vibration levels were more during empty haulage especially during descending journey when compared to other job components in all LPDTs considered for the study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20profile%20dump%20trucks" title="low profile dump trucks">low profile dump trucks</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20arm%20vibrations" title=" hand arm vibrations"> hand arm vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=exposure%20action%20value" title=" exposure action value"> exposure action value</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20mines" title=" underground mines"> underground mines</a> </p> <a href="https://publications.waset.org/abstracts/120502/evaluation-of-hand-arm-vibrations-of-low-profile-dump-truck-operators-in-an-underground-metal-mine-according-to-job-component-analysis-of-a-work-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Radon-222 Concentration and Potential Risk to Workers of Al-Jalamid Phosphate Mines, North Province, Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El-Said.%20I.%20Shabana">El-Said. I. Shabana</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20S.%20Tayeb"> Mohammad S. Tayeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Maher%20M.%20T.%20Qutub"> Maher M. T. Qutub</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulraheem%20A.%20Kinsara"> Abdulraheem A. Kinsara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Usually, phosphate deposits contain <sup>238</sup>U and <sup>232</sup>Th in addition to their decay products. Due to their different pathways in the environment, the <sup>238</sup>U/<sup>232</sup>Th activity concentration ratio usually found to be greater than unity in phosphate sediments. The presence of these radionuclides creates a potential need to control exposure of workers in the mining and processing activities of the phosphate minerals in accordance with IAEA safety standards. The greatest dose to workers comes from exposure to radon, especially <sup>222</sup>Rn from the uranium series, and has to be controlled. In this regard, radon (<sup>222</sup>Rn) was measured in the atmosphere (indoor and outdoor) of Al-Jalamid phosphate-mines working area using a portable radon-measurement instrument RAD7, in a purpose of radiation protection. Radon was measured in 61 sites inside the open phosphate mines, the phosphate upgrading facility (offices and rooms of the workers, and in some open-air sites) and in the dwellings of the workers residence-village that lies at about 3 km from the mines working area. The obtained results indicated that the average indoor radon concentration was about 48.4 Bq/m<sup>3</sup>. Inside the upgrading facility, the average outdoor concentrations were 10.8 and 9.7 Bq/m<sup>3</sup> in the concentrate piles and crushing areas, respectively. It was 12.3 Bq/m<sup>3</sup> in the atmosphere of the open mines. These values are comparable with the global average values. Based on the average values, the annual effective dose due to radon inhalation was calculated and risk estimates have been done. The average annual effective dose to workers due to the radon inhalation was estimated by 1.32 mSv. The potential excess risk of lung cancer mortality that could be attributed to radon, when considering the lifetime exposure, was estimated by 53.0x10<sup>-4</sup>. The results have been discussed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dosimetry" title="dosimetry">dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20monitoring" title=" environmental monitoring"> environmental monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate%20deposits" title=" phosphate deposits"> phosphate deposits</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20protection" title=" radiation protection"> radiation protection</a>, <a href="https://publications.waset.org/abstracts/search?q=radon" title=" radon"> radon</a> </p> <a href="https://publications.waset.org/abstracts/52996/radon-222-concentration-and-potential-risk-to-workers-of-al-jalamid-phosphate-mines-north-province-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Hybrid Energy System for the German Mining Industry: An Optimized Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kateryna%20Zharan">Kateryna Zharan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20C.%20Bongaerts"> Jan C. Bongaerts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, economic attractiveness of renewable energy (RE) for the mining industry, especially for off-grid mines, and a negative environmental impact of fossil energy are stimulating to use RE for mining needs. Being that remote area mines have higher energy expenses than mines connected to a grid, integration of RE may give a mine economic benefits. Regarding the literature review, there is a lack of business models for adopting of RE at mine. The main aim of this paper is to develop an optimized model of RE integration into the German mining industry (GMI). Hereby, the GMI with amount of around 800 mill. t. annually extracted resources is included in the list of the 15 major mining country in the world. Accordingly, the mining potential of Germany is evaluated in this paper as a perspective market for RE implementation. The GMI has been classified in order to find out the location of resources, quantity and types of the mines, amount of extracted resources, and access of the mines to the energy resources. Additionally, weather conditions have been analyzed in order to figure out where wind and solar generation technologies can be integrated into a mine with the highest efficiency. Despite the fact that the electricity demand of the GMI is almost completely covered by a grid connection, the hybrid energy system (HES) based on a mix of RE and fossil energy is developed due to show environmental and economic benefits. The HES for the GMI consolidates a combination of wind turbine, solar PV, battery and diesel generation. The model has been calculated using the HOMER software. Furthermore, the demonstrated HES contains a forecasting model that predicts solar and wind generation in advance. The main result from the HES such as CO2 emission reduction is estimated in order to make the mining processing more environmental friendly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20generation" title="diesel generation">diesel generation</a>, <a href="https://publications.waset.org/abstracts/search?q=German%20mining%20industry" title=" German mining industry"> German mining industry</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20energy%20system" title=" hybrid energy system"> hybrid energy system</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20optimization%20model%20for%20electric%20renewables" title=" hybrid optimization model for electric renewables"> hybrid optimization model for electric renewables</a>, <a href="https://publications.waset.org/abstracts/search?q=optimized%20model" title=" optimized model"> optimized model</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/64267/hybrid-energy-system-for-the-german-mining-industry-an-optimized-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Uses for Closed Coal Mines: Construction of Underground Pumped Storage Hydropower Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javier%20Men%C3%A9ndez">Javier Menéndez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Loredo"> Jorge Loredo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large scale energy storage systems (LSESS) such as pumped-storage hydro-power (PSH) are required in the current energy transition towards a low carbon economy by using green energies that produce low levels of greenhouse gas (GHG) emissions. Coal mines are currently being closed in the European Union and their underground facilities may be used to build PSH plants. However, the development of this projects requires the excavation of a network of tunnels and a large cavern that would be used as a powerhouse to install the Francis turbine and motor-generator. The technical feasibility to excavate the powerhouse cavern has been analyzed in the North of Spain. Three-dimensional numerical models have been conducted to analyze the stability considering shale and sandstone rock mass. Total displacements and thickness of plastic zones were examined considering different support systems. Systematic grouted rock bolts and fibre reinforced shotcrete were applied at the cavern walls and roof. The results obtained show that the construction of the powerhouse is feasible applying proper support systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=closed%20mines" title="closed mines">closed mines</a>, <a href="https://publications.waset.org/abstracts/search?q=mine%20water" title=" mine water"> mine water</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title=" numerical model"> numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=pumped-storage" title=" pumped-storage"> pumped-storage</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energies" title=" renewable energies"> renewable energies</a> </p> <a href="https://publications.waset.org/abstracts/159364/uses-for-closed-coal-mines-construction-of-underground-pumped-storage-hydropower-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Valorization of Mining Waste (Sand of Djemi Djema) from the Djbel Onk Mine (Eastern Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachida%20%20Malaoui">Rachida Malaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20%20Arabet"> Leila Arabet </a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20%20Benbouza"> Asma Benbouza </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of mining waste rock as a material for construction is one of the biggest concerns grabbing the attention of many mining countries. As these materials are abandoned, more effective solutions have been made to offset some of the building materials, and to avoid environmental pollution. The sands of the Djemi Djema deposit mines of the Djebel Onk mines are sedimentary materials of several varieties of layers with varying thicknesses and are worth far more than 300m deep. The sands from the Djemi Djema business area are medium to coarse and are discharged and accumulated, generating a huge estimated quantity of more than 77424250 tonnes. This state of "resource" is of great importance so as to be oriented towards the fields of public works and civil engineering after having reached the acceptable properties of this resource <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=sands" title=" sands"> sands</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20tests" title=" shear tests"> shear tests</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20rock" title=" waste rock"> waste rock</a> </p> <a href="https://publications.waset.org/abstracts/119708/valorization-of-mining-waste-sand-of-djemi-djema-from-the-djbel-onk-mine-eastern-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Utilization of Fly Ash as Backfilling Material in Indian Coal Mines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Venkata%20Karthik">P. Venkata Karthik</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Kranthi%20Kumar"> B. Kranthi Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fly ash is a solid waste product of coal based electric power generating plants. Fly ash is the finest of coal ash particles and it is transported from the combustion chamber by exhaust gases. Fly ash is removed by particulate emission control devices such as electrostatic precipitators or filter fabric bag-houses. It is a fine material with spherical particles. Large quantities of fly ash discharged from coal-fired power stations are a major problem not only in terms of scarcity of land available for its disposal, but also in environmental aspects. Fly ash can be one of the alternatives and can be a viable option to use as a filling material. This paper contains the problems associated with fly ash generation, need for its management and the efficacy of fly ash composite as a backfilling material. By conducting suitable geotechnical investigations and numerical modelling techniques, the fly ash composite material was tested. It also contains case studies of typical Indian opencast and underground coal mines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=backfilling" title="backfilling">backfilling</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20concentration%20slurry%20disposal" title=" high concentration slurry disposal"> high concentration slurry disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant" title=" power plant"> power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=void%20infilling" title=" void infilling"> void infilling</a> </p> <a href="https://publications.waset.org/abstracts/57229/utilization-of-fly-ash-as-backfilling-material-in-indian-coal-mines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Identification of Workplace Hazards of Underground Coal Mines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madiha%20Ijaz">Madiha Ijaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Akram"> Muhammad Akram</a>, <a href="https://publications.waset.org/abstracts/search?q=Sima%20Mir"> Sima Mir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Underground mining of coal is carried out manually in Pakistan. Exposure to ergonomic hazards (musculoskeletal disorders) are very common among the coal cutters of these mines. Cutting coal in narrow spaces poses a great threat to both upper and lower limbs of these workers. To observe the prevalence of such hazards, a thorough study was conducted on 600 workers from 30 mines (20 workers from 1 mine), located in two districts of province Punjab, Pakistan. Rapid Upper Limb Assessment sheet and Rapid Entire Body Assessment sheet were used for the study along with a standard Nordic Musculoskeleton disorder questionnaire. SPSS, 25, software was used for data analysis on upper and lower limb disorders, and regression analysis models were run for upper and lower back pain. According to the results obtained, it was found that work stages (drilling & blasting, coal cutting, timbering & supporting, etc.), wok experience and number of repetitions performed/minute were significant (with p-value 0.00,0.004 and 0.009, respectively) for discomfort in upper and lower limb. Age got p vale 0.00 for upper limb and 0.012 for lower limb disorder. The task of coal cutting was strongly associated with the pain in upper back (with odd ratios13.21, 95% confidence interval (CI)14.0-21.64)) and lower back pain (3.7, 95% confidence interval 1.3-4.2). scored on RULA and REBA sheets, every work-stage was ranked at 7-highest level of risk involved. Workers were young (mean value of age= 28.7 years) with mean BMI 28.1 kg/m2 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=workplace%20hazards" title="workplace hazards">workplace hazards</a>, <a href="https://publications.waset.org/abstracts/search?q=ergonomic%20disorders" title=" ergonomic disorders"> ergonomic disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=limb%20disorders" title=" limb disorders"> limb disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=MSDs." title=" MSDs."> MSDs.</a> </p> <a href="https://publications.waset.org/abstracts/157023/identification-of-workplace-hazards-of-underground-coal-mines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Factors Affecting Visual Environment in Mine Lighting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Lakshmipathy">N. Lakshmipathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20S.%20N.%20Murthy"> Ch. S. N. Murthy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aruna"> M. Aruna </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of lighting systems for surface mines is not an easy task because of the unique environment and work procedures encountered in the mines. The primary objective of this paper is to identify the major problems encountered in mine lighting application and to provide guidance in the solution of these problems. In the surface mining reflectance of surrounding surfaces is one of the important factors, which improve the vision, in the night hours. But due to typical working nature in the mines it is very difficult to fulfill these requirements, and also the orientation of the light at work site is a challenging task. Due to this reason machine operator and other workers in a mine need to be able to orient themselves in a difficult visual environment. The haul roads always keep on changing to tune with the mining activity. Other critical area such as dumpyards, stackyards etc. also change their phase with time, and it is difficult to illuminate such areas. Mining is a hazardous occupation, with workers exposed to adverse conditions; apart from the need for hard physical labor, there is exposure to stress and environmental pollutants like dust, noise, heat, vibration, poor illumination, radiation, etc. Visibility is restricted when operating load haul dumper and Heavy Earth Moving Machinery (HEMM) vehicles resulting in a number of serious accidents. one of the leading causes of these accidents is the inability of the equipment operator to see clearly people, objects or hazards around the machine. Results indicate blind spots are caused primarily by posts, the back of the operator's cab, and by lights and light brackets. The careful designed and implemented, lighting systems provide mine workers improved visibility and contribute to improved safety, productivity and morale. Properly designed lighting systems can improve visibility and safety during working in the opencast mines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contrast" title="contrast">contrast</a>, <a href="https://publications.waset.org/abstracts/search?q=efficacy" title=" efficacy"> efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=illuminance" title=" illuminance"> illuminance</a>, <a href="https://publications.waset.org/abstracts/search?q=illumination" title=" illumination"> illumination</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=luminaire" title=" luminaire"> luminaire</a>, <a href="https://publications.waset.org/abstracts/search?q=luminance" title=" luminance"> luminance</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectance" title=" reflectance"> reflectance</a>, <a href="https://publications.waset.org/abstracts/search?q=visibility" title=" visibility"> visibility</a> </p> <a href="https://publications.waset.org/abstracts/20531/factors-affecting-visual-environment-in-mine-lighting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Treatment of Acid Mine Drainage with Metallurgical Slag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukla%20Saha">Sukla Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Alok%20Sinha"> Alok Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acid mine drainage (AMD) refers to the production of acidified water from abandoned mines and active mines as well. The reason behind the generation of this kind of acidified water is the oxidation of pyrites present in the rocks in and around mining areas. Thiobacillus ferrooxidans, which is a sulfur oxidizing bacteria, helps in the oxidation process. AMD is extremely acidic in nature, (pH 2-3) with high concentration of several trace and heavy metals such as Fe, Al, Zn, Mn, Cu and Co and anions such as chloride and sulfate. AMD has several detrimental effect on aquatic organism and environment. It can directly or indirectly contaminate the ground water and surface water as well. The present study considered the treatment of AMD with metallurgical slag, which is a waste material. Slag helped to enhance the pH of AMD to 8.62 from 1.5 with 99% removal of trace metals such as Fe, Al, Mn, Cu and Co. Metallurgical slag was proven as efficient neutralizing material for the treatment of AMD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20mine%20drainage" title="acid mine drainage">acid mine drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=Heavy%20metals" title=" Heavy metals"> Heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20slag" title=" metallurgical slag"> metallurgical slag</a>, <a href="https://publications.waset.org/abstracts/search?q=Neutralization" title=" Neutralization"> Neutralization</a> </p> <a href="https://publications.waset.org/abstracts/104096/treatment-of-acid-mine-drainage-with-metallurgical-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Study of the Stability of the Slope Open-Pit Mines: Case of the Mine of Phosphates – Tebessa, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Fredj">Mohamed Fredj</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20Hafsaoui"> Abdallah Hafsaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Radouane%20Nakache"> Radouane Nakache</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the stability of the mining works in rock masses fractured is the major concern of the operating engineer. For geotechnical works in mines and quarries, it there is not today's general methodology for analysis and the quantification of the risks relating to the dangers inherent in these concrete types (falling boulders, landslides, etc.). The reasons for this are uncertainty, which weighs on available data or lack of knowledge of the values of the parameters required for this analysis type. Stability calculations must be based on reliable knowledge of the distribution of discontinuities that dissect the Rocky massif and the resistance to shear of the intact rock and discontinuities. This study is aimed to study the stability of slope of mine (Kef Sennoun - Tebessa, Algeria). The problem is analyzed using a numerical model based on the finite elements (software Plaxis 3D). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stability" title="stability">stability</a>, <a href="https://publications.waset.org/abstracts/search?q=discontinuities" title=" discontinuities"> discontinuities</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements" title=" finite elements"> finite elements</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20mass" title=" rock mass"> rock mass</a>, <a href="https://publications.waset.org/abstracts/search?q=open-pit%20mine" title=" open-pit mine"> open-pit mine</a> </p> <a href="https://publications.waset.org/abstracts/46643/study-of-the-stability-of-the-slope-open-pit-mines-case-of-the-mine-of-phosphates-tebessa-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Results of EPR Dosimetry Study of Population Residing in the Vicinity of the Uranium Mines and Uranium Processing Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Zhumadilov">K. Zhumadilov</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Kazymbet"> P. Kazymbet</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ivannikov"> A. Ivannikov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bakhtin"> M. Bakhtin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Akylbekov"> A. Akylbekov</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kadyrzhanov"> K. Kadyrzhanov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Morzabayev"> A. Morzabayev</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hoshi"> M. Hoshi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study is to evaluate the possible excess of dose received by uranium processing plant workers. The possible excess of dose of workers was evaluated with comparison with population pool (Stepnogorsk) and control pool (Astana city). The measured teeth samples were extracted according to medical indications. In total, twenty-seven tooth enamel samples were analyzed from the residents of Stepnogorsk city (180 km from Astana city, Kazakhstan). About 6 tooth samples were collected from the workers of uranium processing plant. The results of tooth enamel dose estimation show us small influence of working conditions to workers, the maximum excess dose is less than 100 mGy. This is pilot study of EPR dose estimation and for a final conclusion additional sample is required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EPR%20dose" title="EPR dose">EPR dose</a>, <a href="https://publications.waset.org/abstracts/search?q=workers" title=" workers"> workers</a>, <a href="https://publications.waset.org/abstracts/search?q=uranium%20mines" title=" uranium mines"> uranium mines</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20samples" title=" tooth samples"> tooth samples</a> </p> <a href="https://publications.waset.org/abstracts/2357/results-of-epr-dosimetry-study-of-population-residing-in-the-vicinity-of-the-uranium-mines-and-uranium-processing-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Risk Assessment of Heavy Metals in River Sediments and Suspended Matter in Small Tributaries of Abandoned Mercury Mines in Wanshan, Guizhou</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guo-Hui%20Lu">Guo-Hui Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing-Yi%20Cai"> Jing-Yi Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ke-Yan%20Tan"> Ke-Yan Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao-Cai%20Yin"> Xiao-Cai Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zheng"> Yu Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng-Wei%20Shao"> Peng-Wei Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Liang%20Yang"> Yong-Liang Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil erosion around abandoned mines is one of the important geological agents for pollutant diffuses to the lower reaches of the local river basin system. River loading of pollutants is an important parameter for remediation of abandoned mines. In order to obtain information on pollutant transport and diffusion downstream in mining area, the small tributary system of the Xiaxi River in Wanshan District of Guizhou Province was selected as the research area. Sediment and suspended matter samples were collected and determined for Pb, As, Hg, Zn, Co, Cd, Cu, Ni, Cr, and Mn by inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) with the pretreatment of wet digestion. Discussions are made for pollution status and spatial distribution characteristics. The total Hg content in the sediments ranged from 0.45 to 16.0 g/g (dry weight) with an average of 5.79 g/g, which was ten times higher than the limit of Class II soil for mercury by the National Soil Environmental Quality Standard. The maximum occurred at the intersection of the Jin River and the Xiaxi River. The potential ecological hazard index (RI) was used to evaluate the ecological risk of heavy metals in the sediments. The average RI value for the whole study area suggests the high potential ecological risk level. High Cd potential ecological risk was found at individual sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=suspended%20matter" title=" suspended matter"> suspended matter</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanshan%20mercury%20mine" title=" Wanshan mercury mine"> Wanshan mercury mine</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20tributary%20system" title=" small tributary system"> small tributary system</a> </p> <a href="https://publications.waset.org/abstracts/108537/risk-assessment-of-heavy-metals-in-river-sediments-and-suspended-matter-in-small-tributaries-of-abandoned-mercury-mines-in-wanshan-guizhou" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Recent Findings of Late Bronze Age Mining and Archaeometallurgy Activities in the Mountain Region of Colchis (Southern Lechkhumi, Georgia)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rusudan%20Chagelishvili">Rusudan Chagelishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nino%20Sulava"> Nino Sulava</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Beridze"> Tamar Beridze</a>, <a href="https://publications.waset.org/abstracts/search?q=Nana%20Rezesidze"> Nana Rezesidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikoloz%20Tatuashvili"> Nikoloz Tatuashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The South Caucasus is one of the most important centers of prehistoric metallurgy, known for its Colchian bronze culture. Modern Lechkhumi – historical Mountainous Colchis where the existence of prehistoric metallurgy is confirmed by the discovery of many artifacts is a part of this area. Studies focused on prehistoric smelting sites, related artefacts, and ore deposits have been conducted during last ten years in Lechkhumi. More than 20 prehistoric smelting sites and artefacts associated with metallurgical activities (ore roasting furnaces, slags, crucible, and tuyères fragments) have been identified so far. Within the framework of integrated studies was established that these sites were operating in 13-9 centuries B.C. and used for copper smelting. Palynological studies of slags revealed that chestnut (Castanea sativa) and hornbeam (Carpinus sp.) wood were used as smelting fuel. Geological exploration-analytical studies revealed that copper ore mining, processing, and smelting sites were distributed close to each other. Despite recent complex data, the signs of prehistoric mines (trenches) haven’t been found in this part of the study area so far. Since 2018 the archaeological-geological exploration has been focused on the southern part of Lechkhumi and covered the areas of villages Okureshi and Opitara. Several copper smelting sites (Okureshi 1 and 2, Opitara 1), as well as a Colchian Bronze culture settlement, have been identified here. Three mine workings have been found in the narrow gorge of the river Rtkhmelebisgele in the vicinities of the village Opitara. In order to establish a link between the Opitara-Okureshi archaeometallurgical sites, Late Bronze Age settlements, and mines, various scientific analytical methods -mineralized rock and slags petrography and atomic absorption spectrophotometry (AAS) analysis have been applied. The careful examination of Opitara mine workings revealed that there is a striking difference between the mine #1 on the right bank of the river and mines #2 and #3 on the left bank. The first one has all characteristic features of the Soviet period mine working (e. g. high portal with angular ribs and roof showing signs of blasting). In contrast, mines #2 and #3, which are located very close to each other, have round-shaped portals/entrances, low roofs, and fairly smooth ribs and are filled with thick layers of river sediments and collapsed weathered rock mass. A thorough review of the publications related to prehistoric mine workings revealed some striking similarities between mines #2 and #3 with their worldwide analogues. Apparently, the ore extraction from these mines was conducted by fire-setting applying primitive tools. It was also established that mines are cut in Jurassic mineralized volcanic rocks. Ore minerals (chalcopyrite, pyrite, galena) are related to calcite and quartz veins. The results obtained through the petrochemical and petrography studies of mineralized rock samples from Opitara mines and prehistoric slags are in complete correlation with each other, establishing the direct link between copper mining and smelting within the study area. Acknowledgment: This work was supported by the Shota Rustaveli National Science Foundation of Georgia (grant # FR-19-13022). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=archaeometallurgy" title="archaeometallurgy">archaeometallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mountainous%20Colchis" title=" Mountainous Colchis"> Mountainous Colchis</a>, <a href="https://publications.waset.org/abstracts/search?q=mining" title=" mining"> mining</a>, <a href="https://publications.waset.org/abstracts/search?q=ore%20minerals" title=" ore minerals"> ore minerals</a> </p> <a href="https://publications.waset.org/abstracts/145189/recent-findings-of-late-bronze-age-mining-and-archaeometallurgy-activities-in-the-mountain-region-of-colchis-southern-lechkhumi-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> The Curse of Natural Resources: An Empirical Analysis Applied to the Case of Copper Mining in Zambia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chomba%20Kalunga">Chomba Kalunga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many developing countries have a rich endowment of natural resources. Yet, amidst that wealth, living standards remain poor. At the same time, international markets have been surged with an increase in copper prices in the last twenty years. This is a presentation of the findings on the causal economic impact of Zambia’s copper mines, a country located in sub-Saharan Africa endowed with vast copper deposits on living standards using household data from 1996 to 2010, exploiting an episode where the copper prices on the international market were rising. Using an Instrumental Variable approach and controlling for constituency-level and microeconomic factors, the results show a significant impact of copper production on living standards. After splitting the constituencies close to and far away from the nearest mine, the results document that constituencies close to the mines benefited significantly from the increase in copper production, compared to their counterparts through increased levels of employment. Finally, the results are not consistent with the natural resource curse hypothesis; findings show a positive causal relationship between the presence of natural resources and socioeconomic outcomes in less developed countries, particularly for constituencies close to the mines in Zambia. Some key policy implications follow from the findings. The finding that increased copper production led to an increase in employment suggests that, in Zambias’ context, policies that promote local employment may be more beneficial to residents. Meaning that it is government policies that can help improve the living standards were government needs to work towards making this impact more substantial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20prices" title="copper prices">copper prices</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20development" title=" local development"> local development</a>, <a href="https://publications.waset.org/abstracts/search?q=mining" title=" mining"> mining</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20resources" title=" natural resources"> natural resources</a> </p> <a href="https://publications.waset.org/abstracts/72875/the-curse-of-natural-resources-an-empirical-analysis-applied-to-the-case-of-copper-mining-in-zambia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> The MHz Frequency Range EM Induction Device Development and Experimental Study for Low Conductive Objects Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Kakulia">D. Kakulia</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Shoshiashvili"> L. Shoshiashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Sapharishvili"> G. Sapharishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The results of the study are related to the direction of plastic mine detection research using electromagnetic induction, the development of appropriate equipment, and the evaluation of expected results. Electromagnetic induction sensing is effectively used in the detection of metal objects in the soil and in the discrimination of unexploded ordnances. Metal objects interact well with a low-frequency alternating magnetic field. Their electromagnetic response can be detected at the low-frequency range even when they are placed in the ground. Detection of plastic things such as plastic mines by electromagnetic induction is associated with difficulties. The interaction of non-conducting bodies or low-conductive objects with a low-frequency alternating magnetic field is very weak. At the high-frequency range where already wave processes take place, the interaction increases. Interactions with other distant objects also increase. A complex interference picture is formed, and extraction of useful information also meets difficulties. Sensing by electromagnetic induction at the intermediate MHz frequency range is the subject of research. The concept of detecting plastic mines in this range can be based on the study of the electromagnetic response of non-conductive cavity in a low-conductivity environment or the detection of small metal components in plastic mines, taking into account constructive features. The detector node based on the amplitude and phase detector 'Analog Devices ad8302' has been developed for experimental studies. The node has two inputs. At one of the inputs, the node receives a sinusoidal signal from the generator, to which a transmitting coil is also connected. The receiver coil is attached to the second input of the node. The additional circuit provides an option to amplify the signal output from the receiver coil by 20 dB. The node has two outputs. The voltages obtained at the output reflect the ratio of the amplitudes and the phase difference of the input harmonic signals. Experimental measurements were performed in different positions of the transmitter and receiver coils at the frequency range 1-20 MHz. Arbitrary/Function Generator Tektronix AFG3052C and the eight-channel high-resolution oscilloscope PICOSCOPE 4824 were used in the experiments. Experimental measurements were also performed with a low-conductive test object. The results of the measurements and comparative analysis show the capabilities of the simple detector node and the prospects for its further development in this direction. The results of the experimental measurements are compared and analyzed with the results of appropriate computer modeling based on the method of auxiliary sources (MAS). The experimental measurements are driven using the MATLAB environment. Acknowledgment -This work was supported by Shota Rustaveli National Science Foundation (SRNSF) (Grant number: NFR 17_523). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EM%20induction%20sensing" title="EM induction sensing">EM induction sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=detector" title=" detector"> detector</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20mines" title=" plastic mines"> plastic mines</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/134281/the-mhz-frequency-range-em-induction-device-development-and-experimental-study-for-low-conductive-objects-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Grating Assisted Surface Plasmon Resonance Sensor for Monitoring of Hazardous Toxic Chemicals and Gases in an Underground Mines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar%20Raghuwanshi">Sanjeev Kumar Raghuwanshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yadvendra%20%20Singh"> Yadvendra Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to develop and optimize the Fiber Bragg (FBG) grating based Surface Plasmon Resonance (SPR) sensor for monitoring the hazardous toxic chemicals and gases in underground mines or any industrial area. A fully cladded telecommunication standard FBG is proposed to develop to produce surface plasmon resonance. A thin few nm gold/silver film (subject to optimization) is proposed to apply over the FBG sensing head using e-beam deposition method. Sensitivity enhancement of the sensor will be done by adding a composite nanostructured Graphene Oxide (GO) sensing layer using the spin coating method. Both sensor configurations suppose to demonstrate high responsiveness towards the changes in resonance wavelength. The GO enhanced sensor may show increased sensitivity of many fold compared to the gold coated traditional fibre optic sensor. Our work is focused on to optimize GO, multilayer structure and to develop fibre coating techniques that will serve well for sensitive and multifunctional detection of hazardous chemicals. This research proposal shows great potential towards future development of optical fiber sensors using readily available components such as Bragg gratings as highly sensitive chemical sensors in areas such as environmental sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance" title="surface plasmon resonance">surface plasmon resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre%20Bragg%20grating" title=" fibre Bragg grating"> fibre Bragg grating</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic%20gases" title=" toxic gases"> toxic gases</a>, <a href="https://publications.waset.org/abstracts/search?q=MATRIX%20method" title=" MATRIX method"> MATRIX method</a> </p> <a href="https://publications.waset.org/abstracts/90374/grating-assisted-surface-plasmon-resonance-sensor-for-monitoring-of-hazardous-toxic-chemicals-and-gases-in-an-underground-mines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Developing Sustainable Tourism Practices in Communities Adjacent to Mines: An Exploratory Study in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felicite%20Ann%20Fairer-Wessels">Felicite Ann Fairer-Wessels</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There has always been a disparity between mining and tourism mainly due to the socio-economic and environmental impacts of mines on both the adjacent resident communities and the areas taken up by the mining operation. Although heritage mining tourism has been actively and successfully pursued and developed in the UK, largely Wales, and Scandinavian countries, the debate whether active mining and tourism can have a mutually beneficial relationship remains imminent. This pilot study explores the relationship between the ‘to be developed’ future Nokeng Mine and its adjacent community, the rural community of Moloto, will be investigated in terms of whether sustainable tourism and livelihood activities can potentially be developed with the support of the mine. Concepts such as social entrepreneur, corporate social responsibility, sustainable development and triple bottom line are discussed. Within the South African context as a mineral rich developing country, the government has a statutory obligation to empower disenfranchised communities through social and labour plans and policies. All South African mines must preside over a Social and Labour Plan according to the Mineral and Petroleum Resources Development Act, No 28 of 2002. The ‘social’ component refers to the ‘social upliftment’ of communities within or adjacent to any mine; whereas the ‘labour’ component refers to the mine workers sourced from the specific community. A qualitative methodology is followed using the case study as research instrument for the Nokeng Mine and Moloto community with interviews and focus group discussions. The target population comprised of the Moloto Tribal Council members (8 in-depth interviews), the Moloto community members (17: focus groups); and the Nokeng Mine representatives (4 in-depth interviews). In this pilot study two disparate ‘worlds’ are potentially linked: on the one hand, the mine as social entrepreneur that is searching for feasible and sustainable ideas; and on the other hand, the community adjacent to the mine, with potentially sustainable tourism entrepreneurs that can tap into the resources of the mine should their ideas be feasible to build their businesses. Being an exploratory study the findings are limited but indicate that the possible success of tourism and sustainable livelihood activities lies in the fact that both the Mine and Community are keen to work together – the mine in terms of obtaining labour and profit; and the community in terms of improved and sustainable social and economic conditions; with both parties realizing the importance to mitigate negative environmental impacts. In conclusion, a relationship of trust is imperative between a mine and a community before a long term liaison is possible. However whether tourism is a viable solution for the community to engage in is debatable. The community could initially rather pursue the sustainable livelihoods approach and focus on life-supporting activities such as building, gardening, etc. that once established could feed into possible sustainable tourism activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20development" title="community development">community development</a>, <a href="https://publications.waset.org/abstracts/search?q=mining%20tourism" title=" mining tourism"> mining tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title=" South Africa"> South Africa</a> </p> <a href="https://publications.waset.org/abstracts/35851/developing-sustainable-tourism-practices-in-communities-adjacent-to-mines-an-exploratory-study-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Upgrade of Value Chains and the Effect on Resilience of Russia’s Coal Industry and Receiving Regions on the Path of Energy Transition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Nikitenko">Sergey Nikitenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Klishin"> Vladimir Klishin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yury%20Malakhov"> Yury Malakhov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Goosen"> Elena Goosen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transition to renewable energy sources (solar, wind, bioenergy, etc.) and launching of alternative energy generation has weakened the role of coal as a source of energy. The Paris Agreement and assumption of obligations by many nations to orderly reduce CO₂ emissions by means of technological modernization and climate change adaptation has abridged coal demand yet more. This paper aims to assess current resilience of the coal industry to stress and to define prospects for coal production optimization using high technologies pursuant to global challenges and requirements of energy transition. Our research is based on the resilience concept adapted to the coal industry. It is proposed to divide the coal sector into segments depending on the prevailing value chains (VC). Four representative models of VC are identified in the coal sector. The most promising lines of upgrading VC in the coal industry include: •Elongation of VC owing to introduction of clean technologies of coal conversion and utilization; •Creation of parallel VC by means of waste management; •Branching of VC (conversion of a company’s VC into a production network). The upgrade effectiveness is governed in many ways by applicability of advanced coal processing technologies, usability of waste, expandability of production, entrance to non-rival markets and localization of new segments of VC in receiving regions. It is also important that upgrade of VC by means of formation of agile high-tech inter-industry production networks within the framework of operating surface and underground mines can reduce social, economic and ecological risks associated with closure of coal mines. Such promising route of VC upgrade is application of methanotrophic bacteria to produce protein to be used as feed-stuff in fish, poultry and cattle breeding, or in production of ferments, lipoids, sterols, antioxidants, pigments and polysaccharides. Closed mines can use recovered methane as a clean energy source. There exist methods of methane utilization from uncontrollable sources, including preliminary treatment and recovery of methane from air-and-methane mixture, or decomposition of methane to hydrogen and acetylene. Separated hydrogen is used in hydrogen fuel cells to generate power to feed the process of methane utilization and to supply external consumers. Despite the recent paradigm of carbon-free energy generation, it is possible to preserve the coal mining industry using the differentiated approach to upgrade of value chains based on flexible technologies with regard to specificity of mining companies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resilience" title="resilience">resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience%20concept" title=" resilience concept"> resilience concept</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience%20indicator" title=" resilience indicator"> resilience indicator</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience%20in%20the%20Russian%20coal%20industry" title=" resilience in the Russian coal industry"> resilience in the Russian coal industry</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20chains" title=" value chains"> value chains</a> </p> <a href="https://publications.waset.org/abstracts/159366/upgrade-of-value-chains-and-the-effect-on-resilience-of-russias-coal-industry-and-receiving-regions-on-the-path-of-energy-transition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> The Impact of Mining Activities on the Surface Water Quality: A Case Study of the Kaap River in Barberton, Mpumalanga</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Mamabolo">M. F. Mamabolo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mining activities are identified as the most significant source of heavy metal contamination in river basins, due to inadequate disposal of mining waste thus resulting in acid mine drainage. Waste materials generated from gold mining and processing have severe and widespread impacts on water resources. Therefore, a total of 30 water samples were collected from Fig Tree Creek, Kaapriver, Sheba mine stream & Sauid kaap river to investigate the impact of gold mines on the Kaap River system. Physicochemical parameters (pH, EC and TDS) were taken using a BANTE 900P portable water quality meter. The concentration of Fe, Cu, Co, and SO₄²⁻ in water samples were analysed using Inductively Coupled Plasma-Mass spectrophotometry (ICP-MS) at 0.01 mg/L. The results were compared to the regulatory guideline of the World Health Organization (WHO) and the South Africa National Standards (SANS). It was found that Fe, Cu and Co were below the guideline values while SO₄²⁻ detected in Sheba mine stream exceeded the 250 mg/L limit for both seasons, attributed by mine wastewater. SO₄²⁻ was higher in wet season due to high evaporation rates and greater interaction between rocks and water. The pH of all the streams was within the limit (≥5 to ≤9.7), however EC of the Sheba mine stream, Suid Kaap River & where the tributary connects with the Fig Tree Creek exceeded 1700 uS/m, due to dissolved material. The TDS of Sheba mine stream exceeded 1000 mg/L, attributed by high SO₄²⁻ concentration. While the tributary connecting to the Fig Tree Creek exceed the value due to pollution from household waste, runoff from agriculture etc. In conclusion, the water from all sampled streams were safe for consumption due to low concentrations of physicochemical parameters. However, elevated concentration of SO₄²⁻ should be monitored and managed to avoid water quality deterioration in the Kaap River system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaap%20river%20system" title="Kaap river system">Kaap river system</a>, <a href="https://publications.waset.org/abstracts/search?q=mines" title=" mines"> mines</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphate" title=" sulphate"> sulphate</a> </p> <a href="https://publications.waset.org/abstracts/173969/the-impact-of-mining-activities-on-the-surface-water-quality-a-case-study-of-the-kaap-river-in-barberton-mpumalanga" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Application of Harris Hawks Optimization Metaheuristic Algorithm and Random Forest Machine Learning Method for Long-Term Production Scheduling Problem under Uncertainty in Open-Pit Mines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamyar%20Tolouei">Kamyar Tolouei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Moosavi"> Ehsan Moosavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In open-pit mines, the long-term production scheduling optimization problem (LTPSOP) is a complicated problem that contains constraints, large datasets, and uncertainties. Uncertainty in the output is caused by several geological, economic, or technical factors. Due to its dimensions and NP-hard nature, it is usually difficult to find an ideal solution to the LTPSOP. The optimal schedule generally restricts the ore, metal, and waste tonnages, average grades, and cash flows of each period. Past decades have witnessed important measurements of long-term production scheduling and optimal algorithms since researchers have become highly cognizant of the issue. In fact, it is not possible to consider LTPSOP as a well-solved problem. Traditional production scheduling methods in open-pit mines apply an estimated orebody model to produce optimal schedules. The smoothing result of some geostatistical estimation procedures causes most of the mine schedules and production predictions to be unrealistic and imperfect. With the expansion of simulation procedures, the risks from grade uncertainty in ore reserves can be evaluated and organized through a set of equally probable orebody realizations. In this paper, to synthesize grade uncertainty into the strategic mine schedule, a stochastic integer programming framework is presented to LTPSOP. The objective function of the model is to maximize the net present value and minimize the risk of deviation from the production targets considering grade uncertainty simultaneously while satisfying all technical constraints and operational requirements. Instead of applying one estimated orebody model as input to optimize the production schedule, a set of equally probable orebody realizations are applied to synthesize grade uncertainty in the strategic mine schedule and to produce a more profitable and risk-based production schedule. A mixture of metaheuristic procedures and mathematical methods paves the way to achieve an appropriate solution. This paper introduced a hybrid model between the augmented Lagrangian relaxation (ALR) method and the metaheuristic algorithm, the Harris Hawks optimization (HHO), to solve the LTPSOP under grade uncertainty conditions. In this study, the HHO is experienced to update Lagrange coefficients. Besides, a machine learning method called Random Forest is applied to estimate gold grade in a mineral deposit. The Monte Carlo method is used as the simulation method with 20 realizations. The results specify that the progressive versions have been considerably developed in comparison with the traditional methods. The outcomes were also compared with the ALR-genetic algorithm and ALR-sub-gradient. To indicate the applicability of the model, a case study on an open-pit gold mining operation is implemented. The framework displays the capability to minimize risk and improvement in the expected net present value and financial profitability for LTPSOP. The framework could control geological risk more effectively than the traditional procedure considering grade uncertainty in the hybrid model framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grade%20uncertainty" title="grade uncertainty">grade uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristic%20algorithms" title=" metaheuristic algorithms"> metaheuristic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=open-pit%20mine" title=" open-pit mine"> open-pit mine</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20scheduling%20optimization" title=" production scheduling optimization"> production scheduling optimization</a> </p> <a href="https://publications.waset.org/abstracts/146657/application-of-harris-hawks-optimization-metaheuristic-algorithm-and-random-forest-machine-learning-method-for-long-term-production-scheduling-problem-under-uncertainty-in-open-pit-mines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Halophilic Bacterium: A Review of New Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bassam%20Al%20Johny">Bassam Al Johny</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Halophilic bacteria are organisms which thrive in salt-rich environments, such as salt lakes, solar salterns and salt mines which contain large populations of these organisms. In biotechnology, such salt-tolerant bacteria are widely used for the production of valuable enzymes, and more than a thousand years ago humans began using salt to cure and thereby preserve perishable foods and other materials, such as hides; halophiles can be detrimental to the preservation of salt brine cured hides. The aim of this review is to provide an overview of the taxonomy of these organisms including novel isolates from rock salt, and also to discuss their current and future biotechnological and environmental uses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypersaline%20environments" title="hypersaline environments">hypersaline environments</a>, <a href="https://publications.waset.org/abstracts/search?q=halophilic%20bacteria" title=" halophilic bacteria"> halophilic bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20application" title=" environmental application"> environmental application</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20application" title=" industrial application"> industrial application</a> </p> <a href="https://publications.waset.org/abstracts/54097/halophilic-bacterium-a-review-of-new-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Analysis of Changes Being Done of the Mine Legislation of Turkey: Mining Operation Activity Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ta%C5%9Fk%C4%B1n%20Deniz%20Y%C4%B1ld%C4%B1z">Taşkın Deniz Yıldız</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Topalo%C4%9Flu"> Mustafa Topaloğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Orhan%20Kural"> Orhan Kural</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The right to operate a fairly long periods of prior periods and after the 3213 Mining Law has been observed to be shortened in Turkey. Permit the realization of business activities (or concession) requested the purchase of the mine operated "found mine" position, as well as the financial and technical capability to have the owner of the right to operate the mines as well as the principle of equality is important in terms of assessing the best way be. In particular, in this context, license fields "negligence" (downsizing) have noted that the current arrangement for all periods. However, in the period after 3213 Mining Act and a permit to operate more effectively within the framework of implementation of negligence is laid down. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mining%20legislation" title="mining legislation">mining legislation</a>, <a href="https://publications.waset.org/abstracts/search?q=operation" title=" operation"> operation</a>, <a href="https://publications.waset.org/abstracts/search?q=permit" title=" permit"> permit</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/59466/analysis-of-changes-being-done-of-the-mine-legislation-of-turkey-mining-operation-activity-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> The Environmental and Socio Economic Impacts of Mining on Local Livelihood in Cameroon: A Case Study in Bertoua</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fongang%20Robert%20Tichuck">Fongang Robert Tichuck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports the findings of a study undertaken to assess the socio-economic and environmental impacts of mining in Bertoua Eastern Region of Cameroon. In addition to sampling community perceptions of mining activities, the study prescribes interventions that can assist in mitigating the negative impacts of mining. Marked environmental and interrelated socio-economic improvements can be achieved within regional artisanal gold mines if the government provides technical support to local operators, regulations are improved, and illegal mining activity is reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold%20mining" title="gold mining">gold mining</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-economic" title=" socio-economic"> socio-economic</a>, <a href="https://publications.waset.org/abstracts/search?q=mining%20activities" title=" mining activities"> mining activities</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20people" title=" local people"> local people</a> </p> <a href="https://publications.waset.org/abstracts/42339/the-environmental-and-socio-economic-impacts-of-mining-on-local-livelihood-in-cameroon-a-case-study-in-bertoua" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mines&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mines&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mines&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mines&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mines&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>