CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–14 of 14 results for author: <span class="mathjax">Pauloski, J G</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&query=Pauloski%2C+J+G">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Pauloski, J G"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Pauloski%2C+J+G&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Pauloski, J G"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12092">arXiv:2410.12092</a> <span> [<a href="https://arxiv.org/pdf/2410.12092">pdf</a>, <a href="https://arxiv.org/format/2410.12092">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Accelerating Python Applications with Dask and ProxyStore </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Pauloski%2C+J+G">J. Gregory Pauloski</a>, <a href="/search/cs?searchtype=author&query=Rydzy%2C+K">Klaudiusz Rydzy</a>, <a href="/search/cs?searchtype=author&query=Hayot-Sasson%2C+V">Valerie Hayot-Sasson</a>, <a href="/search/cs?searchtype=author&query=Foster%2C+I">Ian Foster</a>, <a href="/search/cs?searchtype=author&query=Chard%2C+K">Kyle Chard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12092v2-abstract-short" style="display: inline;"> Applications are increasingly written as dynamic workflows underpinned by an execution framework that manages asynchronous computations across distributed hardware. However, execution frameworks typically offer one-size-fits-all solutions for data flow management, which can restrict performance and scalability. ProxyStore, a middleware layer that optimizes data flow via an advanced pass-by-referen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12092v2-abstract-full').style.display = 'inline'; document.getElementById('2410.12092v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12092v2-abstract-full" style="display: none;"> Applications are increasingly written as dynamic workflows underpinned by an execution framework that manages asynchronous computations across distributed hardware. However, execution frameworks typically offer one-size-fits-all solutions for data flow management, which can restrict performance and scalability. ProxyStore, a middleware layer that optimizes data flow via an advanced pass-by-reference paradigm, has shown to be an effective mechanism for addressing these limitations. Here, we investigate integrating ProxyStore with Dask Distributed, one of the most popular libraries for distributed computing in Python, with the goal of supporting scalable and portable scientific workflows. Dask provides an easy-to-use and flexible framework, but is less optimized for scaling certain data-intensive workflows. We investigate these limitations and detail the technical contributions necessary to develop a robust solution for distributed applications and demonstrate improved performance on synthetic benchmarks and real applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12092v2-abstract-full').style.display = 'none'; document.getElementById('2410.12092v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be presented as a demo at the SC24 Workshop on High Performance Python for Science at Scale (HPPSS)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16495">arXiv:2409.16495</a> <span> [<a href="https://arxiv.org/pdf/2409.16495">pdf</a>, <a href="https://arxiv.org/format/2409.16495">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Flight: A FaaS-Based Framework for Complex and Hierarchical Federated Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Hudson%2C+N">Nathaniel Hudson</a>, <a href="/search/cs?searchtype=author&query=Hayot-Sasson%2C+V">Valerie Hayot-Sasson</a>, <a href="/search/cs?searchtype=author&query=Babuji%2C+Y">Yadu Babuji</a>, <a href="/search/cs?searchtype=author&query=Baughman%2C+M">Matt Baughman</a>, <a href="/search/cs?searchtype=author&query=Pauloski%2C+J+G">J. Gregory Pauloski</a>, <a href="/search/cs?searchtype=author&query=Chard%2C+R">Ryan Chard</a>, <a href="/search/cs?searchtype=author&query=Foster%2C+I">Ian Foster</a>, <a href="/search/cs?searchtype=author&query=Chard%2C+K">Kyle Chard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16495v1-abstract-short" style="display: inline;"> Federated Learning (FL) is a decentralized machine learning paradigm where models are trained on distributed devices and are aggregated at a central server. Existing FL frameworks assume simple two-tier network topologies where end devices are directly connected to the aggregation server. While this is a practical mental model, it does not exploit the inherent topology of real-world distributed sy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16495v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16495v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16495v1-abstract-full" style="display: none;"> Federated Learning (FL) is a decentralized machine learning paradigm where models are trained on distributed devices and are aggregated at a central server. Existing FL frameworks assume simple two-tier network topologies where end devices are directly connected to the aggregation server. While this is a practical mental model, it does not exploit the inherent topology of real-world distributed systems like the Internet-of-Things. We present Flight, a novel FL framework that supports complex hierarchical multi-tier topologies, asynchronous aggregation, and decouples the control plane from the data plane. We compare the performance of Flight against Flower, a state-of-the-art FL framework. Our results show that Flight scales beyond Flower, supporting up to 2048 simultaneous devices, and reduces FL makespan across several models. Finally, we show that Flight's hierarchical FL model can reduce communication overheads by more than 60%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16495v1-abstract-full').style.display = 'none'; document.getElementById('2409.16495v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14434">arXiv:2408.14434</a> <span> [<a href="https://arxiv.org/pdf/2408.14434">pdf</a>, <a href="https://arxiv.org/format/2408.14434">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Employing Artificial Intelligence to Steer Exascale Workflows with Colmena </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ward%2C+L">Logan Ward</a>, <a href="/search/cs?searchtype=author&query=Pauloski%2C+J+G">J. Gregory Pauloski</a>, <a href="/search/cs?searchtype=author&query=Hayot-Sasson%2C+V">Valerie Hayot-Sasson</a>, <a href="/search/cs?searchtype=author&query=Babuji%2C+Y">Yadu Babuji</a>, <a href="/search/cs?searchtype=author&query=Brace%2C+A">Alexander Brace</a>, <a href="/search/cs?searchtype=author&query=Chard%2C+R">Ryan Chard</a>, <a href="/search/cs?searchtype=author&query=Chard%2C+K">Kyle Chard</a>, <a href="/search/cs?searchtype=author&query=Thakur%2C+R">Rajeev Thakur</a>, <a href="/search/cs?searchtype=author&query=Foster%2C+I">Ian Foster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14434v1-abstract-short" style="display: inline;"> Computational workflows are a common class of application on supercomputers, yet the loosely coupled and heterogeneous nature of workflows often fails to take full advantage of their capabilities. We created Colmena to leverage the massive parallelism of a supercomputer by using Artificial Intelligence (AI) to learn from and adapt a workflow as it executes. Colmena allows scientists to define how… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14434v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14434v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14434v1-abstract-full" style="display: none;"> Computational workflows are a common class of application on supercomputers, yet the loosely coupled and heterogeneous nature of workflows often fails to take full advantage of their capabilities. We created Colmena to leverage the massive parallelism of a supercomputer by using Artificial Intelligence (AI) to learn from and adapt a workflow as it executes. Colmena allows scientists to define how their application should respond to events (e.g., task completion) as a series of cooperative agents. In this paper, we describe the design of Colmena, the challenges we overcame while deploying applications on exascale systems, and the science workflows we have enhanced through interweaving AI. The scaling challenges we discuss include developing steering strategies that maximize node utilization, introducing data fabrics that reduce communication overhead of data-intensive tasks, and implementing workflow tasks that cache costly operations between invocations. These innovations coupled with a variety of application patterns accessible through our agent-based steering model have enabled science advances in chemistry, biophysics, and materials science using different types of AI. Our vision is that Colmena will spur creative solutions that harness AI across many domains of scientific computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14434v1-abstract-full').style.display = 'none'; document.getElementById('2408.14434v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07236">arXiv:2408.07236</a> <span> [<a href="https://arxiv.org/pdf/2408.07236">pdf</a>, <a href="https://arxiv.org/format/2408.07236">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> TaPS: A Performance Evaluation Suite for Task-based Execution Frameworks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Pauloski%2C+J+G">J. Gregory Pauloski</a>, <a href="/search/cs?searchtype=author&query=Hayot-Sasson%2C+V">Valerie Hayot-Sasson</a>, <a href="/search/cs?searchtype=author&query=Gonthier%2C+M">Maxime Gonthier</a>, <a href="/search/cs?searchtype=author&query=Hudson%2C+N">Nathaniel Hudson</a>, <a href="/search/cs?searchtype=author&query=Pan%2C+H">Haochen Pan</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+S">Sicheng Zhou</a>, <a href="/search/cs?searchtype=author&query=Foster%2C+I">Ian Foster</a>, <a href="/search/cs?searchtype=author&query=Chard%2C+K">Kyle Chard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07236v1-abstract-short" style="display: inline;"> Task-based execution frameworks, such as parallel programming libraries, computational workflow systems, and function-as-a-service platforms, enable the composition of distinct tasks into a single, unified application designed to achieve a computational goal. Task-based execution frameworks abstract the parallel execution of an application's tasks on arbitrary hardware. Research into these task ex… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07236v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07236v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07236v1-abstract-full" style="display: none;"> Task-based execution frameworks, such as parallel programming libraries, computational workflow systems, and function-as-a-service platforms, enable the composition of distinct tasks into a single, unified application designed to achieve a computational goal. Task-based execution frameworks abstract the parallel execution of an application's tasks on arbitrary hardware. Research into these task executors has accelerated as computational sciences increasingly need to take advantage of parallel compute and/or heterogeneous hardware. However, the lack of evaluation standards makes it challenging to compare and contrast novel systems against existing implementations. Here, we introduce TaPS, the Task Performance Suite, to support continued research in parallel task executor frameworks. TaPS provides (1) a unified, modular interface for writing and evaluating applications using arbitrary execution frameworks and data management systems and (2) an initial set of reference synthetic and real-world science applications. We discuss how the design of TaPS supports the reliable evaluation of frameworks and demonstrate TaPS through a survey of benchmarks using the provided reference applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07236v1-abstract-full').style.display = 'none'; document.getElementById('2408.07236v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in the Proceedings of 20th IEEE International Conference on e-Science</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01764">arXiv:2407.01764</a> <span> [<a href="https://arxiv.org/pdf/2407.01764">pdf</a>, <a href="https://arxiv.org/format/2407.01764">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Object Proxy Patterns for Accelerating Distributed Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Pauloski%2C+J+G">J. Gregory Pauloski</a>, <a href="/search/cs?searchtype=author&query=Hayot-Sasson%2C+V">Valerie Hayot-Sasson</a>, <a href="/search/cs?searchtype=author&query=Ward%2C+L">Logan Ward</a>, <a href="/search/cs?searchtype=author&query=Brace%2C+A">Alexander Brace</a>, <a href="/search/cs?searchtype=author&query=Bauer%2C+A">Andr茅 Bauer</a>, <a href="/search/cs?searchtype=author&query=Chard%2C+K">Kyle Chard</a>, <a href="/search/cs?searchtype=author&query=Foster%2C+I">Ian Foster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01764v1-abstract-short" style="display: inline;"> Workflow and serverless frameworks have empowered new approaches to distributed application design by abstracting compute resources. However, their typically limited or one-size-fits-all support for advanced data flow patterns leaves optimization to the application programmer -- optimization that becomes more difficult as data become larger. The transparent object proxy, which provides wide-area r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01764v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01764v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01764v1-abstract-full" style="display: none;"> Workflow and serverless frameworks have empowered new approaches to distributed application design by abstracting compute resources. However, their typically limited or one-size-fits-all support for advanced data flow patterns leaves optimization to the application programmer -- optimization that becomes more difficult as data become larger. The transparent object proxy, which provides wide-area references that can resolve to data regardless of location, has been demonstrated as an effective low-level building block in such situations. Here we propose three high-level proxy-based programming patterns -- distributed futures, streaming, and ownership -- that make the power of the proxy pattern usable for more complex and dynamic distributed program structures. We motivate these patterns via careful review of application requirements and describe implementations of each pattern. We evaluate our implementations through a suite of benchmarks and by applying them in three substantial scientific applications, in which we demonstrate substantial improvements in runtime, throughput, and memory usage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01764v1-abstract-full').style.display = 'none'; document.getElementById('2407.01764v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.03480">arXiv:2402.03480</a> <span> [<a href="https://arxiv.org/pdf/2402.03480">pdf</a>, <a href="https://arxiv.org/format/2402.03480">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Trillion Parameter AI Serving Infrastructure for Scientific Discovery: A Survey and Vision </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Hudson%2C+N">Nathaniel Hudson</a>, <a href="/search/cs?searchtype=author&query=Pauloski%2C+J+G">J. Gregory Pauloski</a>, <a href="/search/cs?searchtype=author&query=Baughman%2C+M">Matt Baughman</a>, <a href="/search/cs?searchtype=author&query=Kamatar%2C+A">Alok Kamatar</a>, <a href="/search/cs?searchtype=author&query=Sakarvadia%2C+M">Mansi Sakarvadia</a>, <a href="/search/cs?searchtype=author&query=Ward%2C+L">Logan Ward</a>, <a href="/search/cs?searchtype=author&query=Chard%2C+R">Ryan Chard</a>, <a href="/search/cs?searchtype=author&query=Bauer%2C+A">Andr茅 Bauer</a>, <a href="/search/cs?searchtype=author&query=Levental%2C+M">Maksim Levental</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+W">Wenyi Wang</a>, <a href="/search/cs?searchtype=author&query=Engler%2C+W">Will Engler</a>, <a href="/search/cs?searchtype=author&query=Skelly%2C+O+P">Owen Price Skelly</a>, <a href="/search/cs?searchtype=author&query=Blaiszik%2C+B">Ben Blaiszik</a>, <a href="/search/cs?searchtype=author&query=Stevens%2C+R">Rick Stevens</a>, <a href="/search/cs?searchtype=author&query=Chard%2C+K">Kyle Chard</a>, <a href="/search/cs?searchtype=author&query=Foster%2C+I">Ian Foster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.03480v1-abstract-short" style="display: inline;"> Deep learning methods are transforming research, enabling new techniques, and ultimately leading to new discoveries. As the demand for more capable AI models continues to grow, we are now entering an era of Trillion Parameter Models (TPM), or models with more than a trillion parameters -- such as Huawei's PanGu-$危$. We describe a vision for the ecosystem of TPM users and providers that caters to t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03480v1-abstract-full').style.display = 'inline'; document.getElementById('2402.03480v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.03480v1-abstract-full" style="display: none;"> Deep learning methods are transforming research, enabling new techniques, and ultimately leading to new discoveries. As the demand for more capable AI models continues to grow, we are now entering an era of Trillion Parameter Models (TPM), or models with more than a trillion parameters -- such as Huawei's PanGu-$危$. We describe a vision for the ecosystem of TPM users and providers that caters to the specific needs of the scientific community. We then outline the significant technical challenges and open problems in system design for serving TPMs to enable scientific research and discovery. Specifically, we describe the requirements of a comprehensive software stack and interfaces to support the diverse and flexible requirements of researchers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03480v1-abstract-full').style.display = 'none'; document.getElementById('2402.03480v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, accepted for publication in the proceedings of the 10th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.04610">arXiv:2310.04610</a> <span> [<a href="https://arxiv.org/pdf/2310.04610">pdf</a>, <a href="https://arxiv.org/format/2310.04610">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Song%2C+S+L">Shuaiwen Leon Song</a>, <a href="/search/cs?searchtype=author&query=Kruft%2C+B">Bonnie Kruft</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+M">Minjia Zhang</a>, <a href="/search/cs?searchtype=author&query=Li%2C+C">Conglong Li</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+S">Shiyang Chen</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+C">Chengming Zhang</a>, <a href="/search/cs?searchtype=author&query=Tanaka%2C+M">Masahiro Tanaka</a>, <a href="/search/cs?searchtype=author&query=Wu%2C+X">Xiaoxia Wu</a>, <a href="/search/cs?searchtype=author&query=Rasley%2C+J">Jeff Rasley</a>, <a href="/search/cs?searchtype=author&query=Awan%2C+A+A">Ammar Ahmad Awan</a>, <a href="/search/cs?searchtype=author&query=Holmes%2C+C">Connor Holmes</a>, <a href="/search/cs?searchtype=author&query=Cai%2C+M">Martin Cai</a>, <a href="/search/cs?searchtype=author&query=Ghanem%2C+A">Adam Ghanem</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+Z">Zhongzhu Zhou</a>, <a href="/search/cs?searchtype=author&query=He%2C+Y">Yuxiong He</a>, <a href="/search/cs?searchtype=author&query=Luferenko%2C+P">Pete Luferenko</a>, <a href="/search/cs?searchtype=author&query=Kumar%2C+D">Divya Kumar</a>, <a href="/search/cs?searchtype=author&query=Weyn%2C+J">Jonathan Weyn</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+R">Ruixiong Zhang</a>, <a href="/search/cs?searchtype=author&query=Klocek%2C+S">Sylwester Klocek</a>, <a href="/search/cs?searchtype=author&query=Vragov%2C+V">Volodymyr Vragov</a>, <a href="/search/cs?searchtype=author&query=AlQuraishi%2C+M">Mohammed AlQuraishi</a>, <a href="/search/cs?searchtype=author&query=Ahdritz%2C+G">Gustaf Ahdritz</a>, <a href="/search/cs?searchtype=author&query=Floristean%2C+C">Christina Floristean</a>, <a href="/search/cs?searchtype=author&query=Negri%2C+C">Cristina Negri</a> , et al. (67 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.04610v2-abstract-short" style="display: inline;"> In the upcoming decade, deep learning may revolutionize the natural sciences, enhancing our capacity to model and predict natural occurrences. This could herald a new era of scientific exploration, bringing significant advancements across sectors from drug development to renewable energy. To answer this call, we present DeepSpeed4Science initiative (deepspeed4science.ai) which aims to build unique… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04610v2-abstract-full').style.display = 'inline'; document.getElementById('2310.04610v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.04610v2-abstract-full" style="display: none;"> In the upcoming decade, deep learning may revolutionize the natural sciences, enhancing our capacity to model and predict natural occurrences. This could herald a new era of scientific exploration, bringing significant advancements across sectors from drug development to renewable energy. To answer this call, we present DeepSpeed4Science initiative (deepspeed4science.ai) which aims to build unique capabilities through AI system technology innovations to help domain experts to unlock today's biggest science mysteries. By leveraging DeepSpeed's current technology pillars (training, inference and compression) as base technology enablers, DeepSpeed4Science will create a new set of AI system technologies tailored for accelerating scientific discoveries by addressing their unique complexity beyond the common technical approaches used for accelerating generic large language models (LLMs). In this paper, we showcase the early progress we made with DeepSpeed4Science in addressing two of the critical system challenges in structural biology research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04610v2-abstract-full').style.display = 'none'; document.getElementById('2310.04610v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.09593">arXiv:2305.09593</a> <span> [<a href="https://arxiv.org/pdf/2305.09593">pdf</a>, <a href="https://arxiv.org/format/2305.09593">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Accelerating Communications in Federated Applications with Transparent Object Proxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Pauloski%2C+J+G">J. Gregory Pauloski</a>, <a href="/search/cs?searchtype=author&query=Hayot-Sasson%2C+V">Valerie Hayot-Sasson</a>, <a href="/search/cs?searchtype=author&query=Ward%2C+L">Logan Ward</a>, <a href="/search/cs?searchtype=author&query=Hudson%2C+N">Nathaniel Hudson</a>, <a href="/search/cs?searchtype=author&query=Sabino%2C+C">Charlie Sabino</a>, <a href="/search/cs?searchtype=author&query=Baughman%2C+M">Matt Baughman</a>, <a href="/search/cs?searchtype=author&query=Chard%2C+K">Kyle Chard</a>, <a href="/search/cs?searchtype=author&query=Foster%2C+I">Ian Foster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.09593v3-abstract-short" style="display: inline;"> Advances in networks, accelerators, and cloud services encourage programmers to reconsider where to compute -- such as when fast networks make it cost-effective to compute on remote accelerators despite added latency. Workflow and cloud-hosted serverless computing frameworks can manage multi-step computations spanning federated collections of cloud, high-performance computing (HPC), and edge syste… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09593v3-abstract-full').style.display = 'inline'; document.getElementById('2305.09593v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.09593v3-abstract-full" style="display: none;"> Advances in networks, accelerators, and cloud services encourage programmers to reconsider where to compute -- such as when fast networks make it cost-effective to compute on remote accelerators despite added latency. Workflow and cloud-hosted serverless computing frameworks can manage multi-step computations spanning federated collections of cloud, high-performance computing (HPC), and edge systems, but passing data among computational steps via cloud storage can incur high costs. Here, we overcome this obstacle with a new programming paradigm that decouples control flow from data flow by extending the pass-by-reference model to distributed applications. We describe ProxyStore, a system that implements this paradigm by providing object proxies that act as wide-area object references with just-in-time resolution. This proxy model enables data producers to communicate data unilaterally, transparently, and efficiently to both local and remote consumers. We demonstrate the benefits of this model with synthetic benchmarks and real-world scientific applications, running across various computing platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09593v3-abstract-full').style.display = 'none'; document.getElementById('2305.09593v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication at the International Conference for High Performance Computing, Networking, Storage and Analysis (SC23)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08803">arXiv:2303.08803</a> <span> [<a href="https://arxiv.org/pdf/2303.08803">pdf</a>, <a href="https://arxiv.org/format/2303.08803">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/IPDPSW59300.2023.00018">10.1109/IPDPSW59300.2023.00018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cloud Services Enable Efficient AI-Guided Simulation Workflows across Heterogeneous Resources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ward%2C+L">Logan Ward</a>, <a href="/search/cs?searchtype=author&query=Pauloski%2C+J+G">J. Gregory Pauloski</a>, <a href="/search/cs?searchtype=author&query=Hayot-Sasson%2C+V">Valerie Hayot-Sasson</a>, <a href="/search/cs?searchtype=author&query=Chard%2C+R">Ryan Chard</a>, <a href="/search/cs?searchtype=author&query=Babuji%2C+Y">Yadu Babuji</a>, <a href="/search/cs?searchtype=author&query=Sivaraman%2C+G">Ganesh Sivaraman</a>, <a href="/search/cs?searchtype=author&query=Choudhury%2C+S">Sutanay Choudhury</a>, <a href="/search/cs?searchtype=author&query=Chard%2C+K">Kyle Chard</a>, <a href="/search/cs?searchtype=author&query=Thakur%2C+R">Rajeev Thakur</a>, <a href="/search/cs?searchtype=author&query=Foster%2C+I">Ian Foster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08803v1-abstract-short" style="display: inline;"> Applications that fuse machine learning and simulation can benefit from the use of multiple computing resources, with, for example, simulation codes running on highly parallel supercomputers and AI training and inference tasks on specialized accelerators. Here, we present our experiences deploying two AI-guided simulation workflows across such heterogeneous systems. A unique aspect of our approach… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08803v1-abstract-full').style.display = 'inline'; document.getElementById('2303.08803v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08803v1-abstract-full" style="display: none;"> Applications that fuse machine learning and simulation can benefit from the use of multiple computing resources, with, for example, simulation codes running on highly parallel supercomputers and AI training and inference tasks on specialized accelerators. Here, we present our experiences deploying two AI-guided simulation workflows across such heterogeneous systems. A unique aspect of our approach is our use of cloud-hosted management services to manage challenging aspects of cross-resource authentication and authorization, function-as-a-service (FaaS) function invocation, and data transfer. We show that these methods can achieve performance parity with systems that rely on direct connection between resources. We achieve parity by integrating the FaaS system and data transfer capabilities with a system that passes data by reference among managers and workers, and a user-configurable steering algorithm to hide data transfer latencies. We anticipate that this ease of use can enable routine use of heterogeneous resources in computational science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08803v1-abstract-full').style.display = 'none'; document.getElementById('2303.08803v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.02827">arXiv:2110.02827</a> <span> [<a href="https://arxiv.org/pdf/2110.02827">pdf</a>, <a href="https://arxiv.org/format/2110.02827">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/MLHPC54614.2021.00007">10.1109/MLHPC54614.2021.00007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Colmena: Scalable Machine-Learning-Based Steering of Ensemble Simulations for High Performance Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ward%2C+L">Logan Ward</a>, <a href="/search/cs?searchtype=author&query=Sivaraman%2C+G">Ganesh Sivaraman</a>, <a href="/search/cs?searchtype=author&query=Pauloski%2C+J+G">J. Gregory Pauloski</a>, <a href="/search/cs?searchtype=author&query=Babuji%2C+Y">Yadu Babuji</a>, <a href="/search/cs?searchtype=author&query=Chard%2C+R">Ryan Chard</a>, <a href="/search/cs?searchtype=author&query=Dandu%2C+N">Naveen Dandu</a>, <a href="/search/cs?searchtype=author&query=Redfern%2C+P+C">Paul C. Redfern</a>, <a href="/search/cs?searchtype=author&query=Assary%2C+R+S">Rajeev S. Assary</a>, <a href="/search/cs?searchtype=author&query=Chard%2C+K">Kyle Chard</a>, <a href="/search/cs?searchtype=author&query=Curtiss%2C+L+A">Larry A. Curtiss</a>, <a href="/search/cs?searchtype=author&query=Thakur%2C+R">Rajeev Thakur</a>, <a href="/search/cs?searchtype=author&query=Foster%2C+I">Ian Foster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.02827v1-abstract-short" style="display: inline;"> Scientific applications that involve simulation ensembles can be accelerated greatly by using experiment design methods to select the best simulations to perform. Methods that use machine learning (ML) to create proxy models of simulations show particular promise for guiding ensembles but are challenging to deploy because of the need to coordinate dynamic mixes of simulation and learning tasks. We… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02827v1-abstract-full').style.display = 'inline'; document.getElementById('2110.02827v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.02827v1-abstract-full" style="display: none;"> Scientific applications that involve simulation ensembles can be accelerated greatly by using experiment design methods to select the best simulations to perform. Methods that use machine learning (ML) to create proxy models of simulations show particular promise for guiding ensembles but are challenging to deploy because of the need to coordinate dynamic mixes of simulation and learning tasks. We present Colmena, an open-source Python framework that allows users to steer campaigns by providing just the implementations of individual tasks plus the logic used to choose which tasks to execute when. Colmena handles task dispatch, results collation, ML model invocation, and ML model (re)training, using Parsl to execute tasks on HPC systems. We describe the design of Colmena and illustrate its capabilities by applying it to electrolyte design, where it both scales to 65536 CPUs and accelerates the discovery rate for high-performance molecules by a factor of 100 over unguided searches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02827v1-abstract-full').style.display = 'none'; document.getElementById('2110.02827v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">camera-ready version for ML in HPC Environments 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.01739">arXiv:2107.01739</a> <span> [<a href="https://arxiv.org/pdf/2107.01739">pdf</a>, <a href="https://arxiv.org/format/2107.01739">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3458817.3476152">10.1145/3458817.3476152 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> KAISA: An Adaptive Second-Order Optimizer Framework for Deep Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Pauloski%2C+J+G">J. Gregory Pauloski</a>, <a href="/search/cs?searchtype=author&query=Huang%2C+Q">Qi Huang</a>, <a href="/search/cs?searchtype=author&query=Huang%2C+L">Lei Huang</a>, <a href="/search/cs?searchtype=author&query=Venkataraman%2C+S">Shivaram Venkataraman</a>, <a href="/search/cs?searchtype=author&query=Chard%2C+K">Kyle Chard</a>, <a href="/search/cs?searchtype=author&query=Foster%2C+I">Ian Foster</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zhao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.01739v2-abstract-short" style="display: inline;"> Kronecker-factored Approximate Curvature (K-FAC) has recently been shown to converge faster in deep neural network (DNN) training than stochastic gradient descent (SGD); however, K-FAC's larger memory footprint hinders its applicability to large models. We present KAISA, a K-FAC-enabled, Adaptable, Improved, and ScAlable second-order optimizer framework that adapts the memory footprint, communicat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.01739v2-abstract-full').style.display = 'inline'; document.getElementById('2107.01739v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.01739v2-abstract-full" style="display: none;"> Kronecker-factored Approximate Curvature (K-FAC) has recently been shown to converge faster in deep neural network (DNN) training than stochastic gradient descent (SGD); however, K-FAC's larger memory footprint hinders its applicability to large models. We present KAISA, a K-FAC-enabled, Adaptable, Improved, and ScAlable second-order optimizer framework that adapts the memory footprint, communication, and computation given specific models and hardware to improve performance and increase scalability. We quantify the tradeoffs between memory and communication cost and evaluate KAISA on large models, including ResNet-50, Mask R-CNN, U-Net, and BERT, on up to 128 NVIDIA A100 GPUs. Compared to the original optimizers, KAISA converges 18.1-36.3% faster across applications with the same global batch size. Under a fixed memory budget, KAISA converges 32.5% and 41.6% faster in ResNet-50 and BERT-Large, respectively. KAISA can balance memory and communication to achieve scaling efficiency equal to or better than the baseline optimizers. KAISA is open source and available at https://github.com/gpauloski/kfac_pytorch. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.01739v2-abstract-full').style.display = 'none'; document.getElementById('2107.01739v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication at the International Conference for High Performance Computing, Networking, Storage and Analysis (SC21)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.04617">arXiv:2101.04617</a> <span> [<a href="https://arxiv.org/pdf/2101.04617">pdf</a>, <a href="https://arxiv.org/format/2101.04617">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> AI- and HPC-enabled Lead Generation for SARS-CoV-2: Models and Processes to Extract Druglike Molecules Contained in Natural Language Text </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Hong%2C+Z">Zhi Hong</a>, <a href="/search/cs?searchtype=author&query=Pauloski%2C+J+G">J. Gregory Pauloski</a>, <a href="/search/cs?searchtype=author&query=Ward%2C+L">Logan Ward</a>, <a href="/search/cs?searchtype=author&query=Chard%2C+K">Kyle Chard</a>, <a href="/search/cs?searchtype=author&query=Blaiszik%2C+B">Ben Blaiszik</a>, <a href="/search/cs?searchtype=author&query=Foster%2C+I">Ian Foster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.04617v1-abstract-short" style="display: inline;"> Researchers worldwide are seeking to repurpose existing drugs or discover new drugs to counter the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A promising source of candidates for such studies is molecules that have been reported in the scientific literature to be drug-like in the context of coronavirus research. We report here on a project that leverages both h… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.04617v1-abstract-full').style.display = 'inline'; document.getElementById('2101.04617v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.04617v1-abstract-full" style="display: none;"> Researchers worldwide are seeking to repurpose existing drugs or discover new drugs to counter the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A promising source of candidates for such studies is molecules that have been reported in the scientific literature to be drug-like in the context of coronavirus research. We report here on a project that leverages both human and artificial intelligence to detect references to drug-like molecules in free text. We engage non-expert humans to create a corpus of labeled text, use this labeled corpus to train a named entity recognition model, and employ the trained model to extract 10912 drug-like molecules from the COVID-19 Open Research Dataset Challenge (CORD-19) corpus of 198875 papers. Performance analyses show that our automated extraction model can achieve performance on par with that of non-expert humans. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.04617v1-abstract-full').style.display = 'none'; document.getElementById('2101.04617v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 single-column pages, 6 figures, and 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.00784">arXiv:2007.00784</a> <span> [<a href="https://arxiv.org/pdf/2007.00784">pdf</a>, <a href="https://arxiv.org/format/2007.00784">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Convolutional Neural Network Training with Distributed K-FAC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Pauloski%2C+J+G">J. Gregory Pauloski</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zhao Zhang</a>, <a href="/search/cs?searchtype=author&query=Huang%2C+L">Lei Huang</a>, <a href="/search/cs?searchtype=author&query=Xu%2C+W">Weijia Xu</a>, <a href="/search/cs?searchtype=author&query=Foster%2C+I+T">Ian T. Foster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.00784v1-abstract-short" style="display: inline;"> Training neural networks with many processors can reduce time-to-solution; however, it is challenging to maintain convergence and efficiency at large scales. The Kronecker-factored Approximate Curvature (K-FAC) was recently proposed as an approximation of the Fisher Information Matrix that can be used in natural gradient optimizers. We investigate here a scalable K-FAC design and its applicability… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00784v1-abstract-full').style.display = 'inline'; document.getElementById('2007.00784v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.00784v1-abstract-full" style="display: none;"> Training neural networks with many processors can reduce time-to-solution; however, it is challenging to maintain convergence and efficiency at large scales. The Kronecker-factored Approximate Curvature (K-FAC) was recently proposed as an approximation of the Fisher Information Matrix that can be used in natural gradient optimizers. We investigate here a scalable K-FAC design and its applicability in convolutional neural network (CNN) training at scale. We study optimization techniques such as layer-wise distribution strategies, inverse-free second-order gradient evaluation, and dynamic K-FAC update decoupling to reduce training time while preserving convergence. We use residual neural networks (ResNet) applied to the CIFAR-10 and ImageNet-1k datasets to evaluate the correctness and scalability of our K-FAC gradient preconditioner. With ResNet-50 on the ImageNet-1k dataset, our distributed K-FAC implementation converges to the 75.9% MLPerf baseline in 18-25% less time than does the classic stochastic gradient descent (SGD) optimizer across scales on a GPU cluster. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00784v1-abstract-full').style.display = 'none'; document.getElementById('2007.00784v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in the proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC20)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.02629">arXiv:1811.02629</a> <span> [<a href="https://arxiv.org/pdf/1811.02629">pdf</a>, <a href="https://arxiv.org/format/1811.02629">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Bakas%2C+S">Spyridon Bakas</a>, <a href="/search/cs?searchtype=author&query=Reyes%2C+M">Mauricio Reyes</a>, <a href="/search/cs?searchtype=author&query=Jakab%2C+A">Andras Jakab</a>, <a href="/search/cs?searchtype=author&query=Bauer%2C+S">Stefan Bauer</a>, <a href="/search/cs?searchtype=author&query=Rempfler%2C+M">Markus Rempfler</a>, <a href="/search/cs?searchtype=author&query=Crimi%2C+A">Alessandro Crimi</a>, <a href="/search/cs?searchtype=author&query=Shinohara%2C+R+T">Russell Takeshi Shinohara</a>, <a href="/search/cs?searchtype=author&query=Berger%2C+C">Christoph Berger</a>, <a href="/search/cs?searchtype=author&query=Ha%2C+S+M">Sung Min Ha</a>, <a href="/search/cs?searchtype=author&query=Rozycki%2C+M">Martin Rozycki</a>, <a href="/search/cs?searchtype=author&query=Prastawa%2C+M">Marcel Prastawa</a>, <a href="/search/cs?searchtype=author&query=Alberts%2C+E">Esther Alberts</a>, <a href="/search/cs?searchtype=author&query=Lipkova%2C+J">Jana Lipkova</a>, <a href="/search/cs?searchtype=author&query=Freymann%2C+J">John Freymann</a>, <a href="/search/cs?searchtype=author&query=Kirby%2C+J">Justin Kirby</a>, <a href="/search/cs?searchtype=author&query=Bilello%2C+M">Michel Bilello</a>, <a href="/search/cs?searchtype=author&query=Fathallah-Shaykh%2C+H">Hassan Fathallah-Shaykh</a>, <a href="/search/cs?searchtype=author&query=Wiest%2C+R">Roland Wiest</a>, <a href="/search/cs?searchtype=author&query=Kirschke%2C+J">Jan Kirschke</a>, <a href="/search/cs?searchtype=author&query=Wiestler%2C+B">Benedikt Wiestler</a>, <a href="/search/cs?searchtype=author&query=Colen%2C+R">Rivka Colen</a>, <a href="/search/cs?searchtype=author&query=Kotrotsou%2C+A">Aikaterini Kotrotsou</a>, <a href="/search/cs?searchtype=author&query=Lamontagne%2C+P">Pamela Lamontagne</a>, <a href="/search/cs?searchtype=author&query=Marcus%2C+D">Daniel Marcus</a>, <a href="/search/cs?searchtype=author&query=Milchenko%2C+M">Mikhail Milchenko</a> , et al. (402 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.02629v3-abstract-short" style="display: inline;"> Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles dissem… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02629v3-abstract-full').style.display = 'inline'; document.getElementById('1811.02629v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.02629v3-abstract-full" style="display: none;"> Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02629v3-abstract-full').style.display = 'none'; document.getElementById('1811.02629v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The International Multimodal Brain Tumor Segmentation (BraTS) Challenge</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>