CINXE.COM
duality in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> duality in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> duality </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/5710/#Item_8" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Duality</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="duality">Duality</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/duality">duality</a></strong></p> <ul> <li> <p>abstract duality: <a class="existingWikiWord" href="/nlab/show/opposite+category">opposite category</a>,</p> <p><a class="existingWikiWord" href="/nlab/show/Eckmann-Hilton+duality">Eckmann-Hilton duality</a></p> </li> <li> <p>concrete duality: <a class="existingWikiWord" href="/nlab/show/dual+object">dual object</a>, <a class="existingWikiWord" href="/nlab/show/dualizable+object">dualizable object</a>, <a class="existingWikiWord" href="/nlab/show/fully+dualizable+object">fully dualizable object</a>, <a class="existingWikiWord" href="/nlab/show/dualizing+object">dualizing object</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/dual+vector+space">dual vector space</a></li> </ul> </li> </ul> <p><strong>Examples</strong></p> <ul> <li> <p>between <a class="existingWikiWord" href="/nlab/show/higher+geometry">higher geometry</a>/<a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Stone+duality">Stone duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gelfand+duality">Gelfand duality</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Langlands+duality">Langlands duality</a>, <a class="existingWikiWord" href="/nlab/show/geometric+Langlands+duality">geometric Langlands duality</a>, <a class="existingWikiWord" href="/nlab/show/quantum+geometric+Langlands+duality">quantum geometric Langlands duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Pontryagin+duality">Pontryagin duality</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Cartier+duality">Cartier duality</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Poincar%C3%A9+duality">Poincaré duality</a> for <a class="existingWikiWord" href="/nlab/show/manifolds">manifolds</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Koszul+duality">Koszul duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Spanier-Whitehead+duality">Spanier-Whitehead duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+duality">Grothendieck duality</a></p> </li> </ul> <p><strong>In QFT and String theory</strong></p> <p><strong><a class="existingWikiWord" href="/nlab/show/duality+in+physics">duality in physics</a></strong>, <strong><a class="existingWikiWord" href="/nlab/show/duality+in+string+theory">duality in string theory</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Seiberg+duality">Seiberg duality</a>, <a class="existingWikiWord" href="/nlab/show/AGT+conjecture">AGT conjecture</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/S-duality">S-duality</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/electro-magnetic+duality">electro-magnetic duality</a>, <a class="existingWikiWord" href="/nlab/show/Montonen-Olive+duality">Montonen-Olive duality</a>, <a class="existingWikiWord" href="/nlab/show/geometric+Langlands+duality">geometric Langlands duality</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/T-duality">T-duality</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/mirror+symmetry">mirror symmetry</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/U-duality">U-duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/open%2Fclosed+string+duality">open/closed string duality</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/AdS%2FCFT">AdS/CFT duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/KLT+relations">KLT relations</a></p> </li> </ul> </li> </ul> </div></div> </div> </div> <h1 id="duality_2">Duality</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#general_notions'>General notions</a></li> <ul> <li><a href='#abstractformalaxiomatic_duality'>Abstract/formal/axiomatic duality</a></li> <li><a href='#concrete_dualities'>Concrete dualities</a></li> <li><a href='#Adjunctions'>Adjunctions</a></li> </ul> <li><a href='#examples'>Examples</a></li> <li><a href='#dualizing_objects'>Dualizing objects</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>Instances of “dualities” relating two different, maybe opposing, but to some extent equivalent concepts or phenomena are ubiquitous in <a class="existingWikiWord" href="/nlab/show/mathematics">mathematics</a> (and in <a class="existingWikiWord" href="/nlab/show/mathematical+physics">mathematical physics</a>, see at <em><a class="existingWikiWord" href="/nlab/show/dualities+in+physics">dualities in physics</a></em>). The term “duality” is widespread and doesn’t have a single crisp meaning, but a rough guiding intuition is of pairs of concepts that are mirror images of one another.</p> <h2 id="general_notions">General notions</h2> <p>In terms of general abstract concepts in <a class="existingWikiWord" href="/nlab/show/logic">logic</a> and <a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a>, instances of dualities might be (and have been) organized as follows.</p> <h3 id="abstractformalaxiomatic_duality">Abstract/formal/axiomatic duality</h3> <p>Instances here include projective duality, duality in lattice theory, and duality in category theory. In each case, one has a <a class="existingWikiWord" href="/nlab/show/theory">theory</a> whose <a class="existingWikiWord" href="/nlab/show/signature">signature</a> admits a nontrivial <a class="existingWikiWord" href="/nlab/show/involution">involution</a>, in such a way that “dualizing” or applying the involution to any axiom of the theory (but otherwise preserving the logical structure of formulae) results in another theorem of the theory. For example, for the theory of projective planes, the involution swaps points and lines, meets and joins, etc., and for each theorem there is a dual theorem. Similarly, in <a class="existingWikiWord" href="/nlab/show/category">category</a> theory, the involution swaps the domain and codomain and order of composition, etc., and for any theorem of formal category theory, the corresponding dual statement is also a theorem (because the set of axioms of category theory are closed under taking formal duals).</p> <p>Such formal duality can also be expressed at the level of <a class="existingWikiWord" href="/nlab/show/models">models</a> of the theory <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>: for each model <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math> there is a “dual” or “opposite” model <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>M</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">M^{op}</annotation></semantics></math> obtained by re-interpreting each formal sort/function/relation of the theory as the dual sort/function/relation. This further induces an involution <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Mod</mi><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo><mo>→</mo><mi>Mod</mi><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Mod(T) \to Mod(T)</annotation></semantics></math> on the category of models. For example, in the case of category theory, this operation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>↦</mo><msup><mi>C</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">C \mapsto C^{op}</annotation></semantics></math>, mapping a category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> to its <a class="existingWikiWord" href="/nlab/show/opposite+category">opposite category</a>, gives an involution <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mi>op</mi></msup><mo>:</mo><mi>Cat</mi><mo>→</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex">(-)^{op}: Cat \to Cat</annotation></semantics></math> on the category <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a> of (small) categories, viewing <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Cat</mi></mrow><annotation encoding="application/x-tex">Cat</annotation></semantics></math> here as a 1-category. In fact this is the only non-trivial automorphism of <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a>, see <a href="%28infinity%2Cn%29Cat#automorphisms">here</a>).</p> <p>This involution <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mi>op</mi></msup><mo>:</mo><mi>Cat</mi><mo>→</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex">(-)^{op}: Cat \to Cat</annotation></semantics></math> is also known as <em>abstract duality</em>. While the construction is a priori tautologous, any given <a class="existingWikiWord" href="/nlab/show/opposite+category">opposite category</a> often is equivalent to a <a class="existingWikiWord" href="/nlab/show/category">category</a> known by other means, which makes abstract duality interesting (particularly so in cases of concrete duality, which we discuss next).</p> <h3 id="concrete_dualities">Concrete dualities</h3> <p>Instances here include linear duality, Stone duality, Pontryagin duality, and projective inversions with respect to a conic hypersurface. In each such case there is some <a class="existingWikiWord" href="/nlab/show/contravariant+functor">contravariant</a> process of “homming into” a suitable structure <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math> called a <a class="existingWikiWord" href="/nlab/show/dualizing+object">dualizing object</a>, which in the classical cases of what we will call “perfect duality”, induces an equivalence of categories <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>C</mi> <mi>op</mi></msup><mover><mo>→</mo><mo>∼</mo></mover><mi>D</mi></mrow><annotation encoding="application/x-tex">C^{op} \stackrel{\sim}{\to} D</annotation></semantics></math> where typically <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is the category of models of one type of concrete structure, and the equivalence maps the formal categorical dual <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>C</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">C^{op}</annotation></semantics></math> to a category of models <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> consisting of “dual” concrete structures.</p> <p>In other cases one might not obtain an equivalence or perfect duality, but in any case a contravariant <a class="existingWikiWord" href="/nlab/show/adjoint+pair">adjoint pair</a> of functors <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi><mo>:</mo><mi>C</mi><mo>→</mo><mi>D</mi></mrow><annotation encoding="application/x-tex">S: C \to D</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mo>:</mo><mi>D</mi><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">T: D \to C</annotation></semantics></math> between categories which can be termed a duality of sorts, in that concepts developed in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> are mapped to dual concepts in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> and vice-versa. Quoting (<a href="#LawvereRosebrugh">Lawvere-Rosebrugh, chapter 7</a>):</p> <blockquote> <p>Not every statement will be taken into its formal dual by the process of dualizing with respect to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>, and indeed a large part of the study of mathematics</p> <blockquote> <p>space vs. quantity</p> </blockquote> <p>and of logic</p> <blockquote> <p>theory vs. example</p> </blockquote> <p>may be considered as the detailed study of the extent to which formal duality and concrete duality into a favorite <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math> correspond or fail to correspond. (p. 122)</p> </blockquote> <p>Some examples follow.</p> <ul> <li> <p>In linear duality, say for vector spaces over a field <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>, the dual of a space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>W</mi></mrow><annotation encoding="application/x-tex">W</annotation></semantics></math> is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>W</mi> <mo>*</mo></msup><mo>=</mo><mi>hom</mi><mo stretchy="false">(</mo><mi>W</mi><mo>,</mo><mi>k</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">W^\ast = \hom(W, k)</annotation></semantics></math>, the hom of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>-linear maps into <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>. This induces a contravariant functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mo>*</mo></msup><mo>:</mo><msub><mi>Vect</mi> <mi>k</mi></msub><mo>→</mo><msub><mi>Vect</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">(-)^\ast: Vect_k \to Vect_k</annotation></semantics></math> that is adjoint to itself, in that there is a double-dual embedding <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>δ</mi> <mi>W</mi></msub><mo>:</mo><mi>W</mi><mo>→</mo><msup><mi>W</mi> <mrow><mo>*</mo><mo>*</mo></mrow></msup></mrow><annotation encoding="application/x-tex">\delta_W: W \to W^{\ast\ast}</annotation></semantics></math> such that</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mn>1</mn> <mrow><msup><mi>W</mi> <mo>*</mo></msup></mrow></msub><mo>=</mo><mo stretchy="false">(</mo><msup><mi>W</mi> <mo>*</mo></msup><mover><mo>→</mo><mrow><msub><mi>δ</mi> <mrow><msup><mi>W</mi> <mo>*</mo></msup></mrow></msub></mrow></mover><msup><mi>W</mi> <mrow><mo>*</mo><mo>*</mo><mo>*</mo></mrow></msup><mover><mo>→</mo><mrow><mo stretchy="false">(</mo><msub><mi>δ</mi> <mi>W</mi></msub><msup><mo stretchy="false">)</mo> <mo>*</mo></msup></mrow></mover><msup><mi>W</mi> <mo>*</mo></msup><mo stretchy="false">)</mo><mo>.</mo></mrow><annotation encoding="application/x-tex">1_{W^\ast} = (W^\ast \stackrel{\delta_{W^\ast}}{\to} W^{\ast\ast\ast} \stackrel{(\delta_W)^\ast}{\to} W^\ast).</annotation></semantics></math></div> <p>This becomes a perfect duality if we restrict to finite-dimensional vector spaces, i.e., the contravariant functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mo>*</mo></msup><mo>:</mo><msub><mi>Vect</mi> <mi>fd</mi></msub><mo>→</mo><msub><mi>Vect</mi> <mi>fd</mi></msub></mrow><annotation encoding="application/x-tex">(-)^\ast: Vect_{fd} \to Vect_{fd}</annotation></semantics></math> is adjoint-equivalent to itself (i.e., the covariant functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mo>*</mo></msup><msup><mo stretchy="false">)</mo> <mi>op</mi></msup><mo>:</mo><msub><mi>Vect</mi> <mi>fd</mi></msub><mo>→</mo><msubsup><mi>Vect</mi> <mi>fd</mi> <mi>op</mi></msubsup></mrow><annotation encoding="application/x-tex">((-)^\ast)^{op}: Vect_{fd} \to Vect_{fd}^{op}</annotation></semantics></math> is left adjoint to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mo>*</mo></msup><mo>:</mo><msubsup><mi>Vect</mi> <mi>fd</mi> <mi>op</mi></msubsup><mo>→</mo><msub><mi>Vect</mi> <mi>fd</mi></msub></mrow><annotation encoding="application/x-tex">(-)^\ast: Vect_{fd}^{op} \to Vect_{fd}</annotation></semantics></math> and the adjunction is an <a class="existingWikiWord" href="/nlab/show/adjoint+equivalence">adjoint equivalence</a>).</p> </li> <li> <p>More generally, given a (usually <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric</a>) <a class="existingWikiWord" href="/nlab/show/monoidal+closed+category">monoidal closed category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>, any object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> induces an operation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>D</mi><mo stretchy="false">]</mo><mo>:</mo><mi>𝒞</mi><mo>→</mo><msup><mi>𝒞</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">[-,D] : \mathcal{C} \to \mathcal{C}^{op}</annotation></semantics></math> obtained by forming the <a class="existingWikiWord" href="/nlab/show/internal+hom">internal hom</a> into <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math>, sending each object to what may be termed its <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math>-dual object. There is a corresponding double-dual embedding <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>δ</mi> <mi>C</mi></msub><mo>:</mo><mi>C</mi><mo>→</mo><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo stretchy="false">]</mo><mo>,</mo><mi>D</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">\delta_C: C \to [ [C, D], D]</annotation></semantics></math> obtained as the composite</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>→</mo><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo stretchy="false">]</mo><mo>,</mo><mi>C</mi><mo>⊗</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo stretchy="false">]</mo><mo stretchy="false">]</mo><mo>→</mo><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo stretchy="false">]</mo><mo>,</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo stretchy="false">]</mo><mo>⊗</mo><mi>C</mi><mo stretchy="false">]</mo><mo>→</mo><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo stretchy="false">]</mo><mo>,</mo><mi>D</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">C \to [ [C, D], C \otimes [C, D]] \to [ [C, D], [C, D] \otimes C] \to [ [C, D], D]</annotation></semantics></math></div> <p>where the first arrow uses the unit of an adjunction <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>⊗</mo><mi>B</mi><mo stretchy="false">)</mo><mo>⊣</mo><mo stretchy="false">[</mo><mi>B</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">(- \otimes B) \dashv [B, -]</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><mo>=</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">B = [C, D]</annotation></semantics></math>, the second uses a symmetry isomorphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>⊗</mo><mi>B</mi><mo>≅</mo><mi>B</mi><mo>⊗</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">C \otimes B \cong B \otimes C</annotation></semantics></math>, and the third uses the counit of an adjunction <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>⊗</mo><mi>C</mi><mo stretchy="false">)</mo><mo>⊣</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">(- \otimes C) \dashv [C, -]</annotation></semantics></math>, aka an evaluation map. It may be shown that the contravariant functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mo>*</mo></msup><mo>≔</mo><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>D</mi><mo stretchy="false">]</mo><mo>:</mo><mi>𝒞</mi><mo>→</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">(-)^\ast \coloneqq [-, D]: \mathcal{C} \to \mathcal{C}</annotation></semantics></math> is again dual to itself, exactly as in the case of linear duality above, where we have a triangular equation</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mn>1</mn> <mrow><msup><mi>C</mi> <mo>*</mo></msup></mrow></msub><mo>=</mo><mo stretchy="false">(</mo><msub><mi>δ</mi> <mi>C</mi></msub><msup><mo stretchy="false">)</mo> <mo>*</mo></msup><mo>∘</mo><msub><mi>δ</mi> <mrow><msup><mi>C</mi> <mo>*</mo></msup></mrow></msub></mrow><annotation encoding="application/x-tex">1_{C^\ast} = (\delta_C)^\ast \circ \delta_{C^\ast}</annotation></semantics></math></div> <p>for an adjunction <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>D</mi><msup><mo stretchy="false">]</mo> <mi>op</mi></msup><mo>⊣</mo><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>D</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[-, D]^{op} \dashv [-, D]</annotation></semantics></math>. Under certain circumstances, we have perfect duality, i.e., double dualization <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>D</mi><mo stretchy="false">]</mo><mo>,</mo><mi>D</mi><mo stretchy="false">]</mo><mo>:</mo><mi>𝒞</mi><mo>→</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">[ [-, D], D]: \mathcal{C} \to \mathcal{C}</annotation></semantics></math> is an equivalence; see <a class="existingWikiWord" href="/nlab/show/dualizing+object+in+a+closed+category">dualizing object in a closed category</a> and <a class="existingWikiWord" href="/nlab/show/star-autonomous+category">star-autonomous category</a>. Particular special cases of this may obtain when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi><mo>=</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">D = I</annotation></semantics></math>, the monoidal unit, or even more particularly when every object has a <a class="existingWikiWord" href="/nlab/show/dual+object">dual object</a> in the sense of <a class="existingWikiWord" href="/nlab/show/monoidal+categories">monoidal categories</a>; see also <a class="existingWikiWord" href="/nlab/show/compact+closed+category">compact closed category</a>. On the other hand, there is also a mild generalization of this type of example where we deal with a <a class="existingWikiWord" href="/nlab/show/biclosed+monoidal+category">biclosed monoidal category</a>; here the double dualization will involve both the left and right internal hom.</p> </li> <li> <p>More general still is a concrete duality induced by a <a class="existingWikiWord" href="/nlab/show/dualizing+object">dualizing object</a>. In this case one is given a pair of categories together with underlying-set functors</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>:</mo><mi>𝒞</mi><mo>→</mo><mi>Set</mi><mo>,</mo><mspace width="2em"></mspace><mi>V</mi><mo>:</mo><mi>𝒟</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">U: \mathcal{C} \to Set, \qquad V: \mathcal{D} \to Set</annotation></semantics></math></div> <p>(and often when one says “concrete”, one intends that these functors be faithful as well, so that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi><mo>,</mo><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}, \mathcal{D}</annotation></semantics></math> can be viewed as “sets with structure”; see <a class="existingWikiWord" href="/nlab/show/stuff%2C+structure%2C+property">stuff, structure, property</a>). The concrete duality consists of a pair of objects <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>∈</mo><mi>𝒞</mi><mo>,</mo><mi>D</mi><mo>∈</mo><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">C \in \mathcal{C}, D \in \mathcal{D}</annotation></semantics></math> together with an isomorphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ω</mi><mo>:</mo><mi>U</mi><mi>C</mi><mo>≅</mo><mi>V</mi><mi>D</mi></mrow><annotation encoding="application/x-tex">\omega: U C \cong V D</annotation></semantics></math>, such that the contravariant homs <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>hom</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>C</mi><mo stretchy="false">)</mo><mo>:</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">\hom(-, C): C^{op} \to Set</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>hom</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>D</mi><mo stretchy="false">)</mo><mo>:</mo><msup><mi>D</mi> <mi>op</mi></msup><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">\hom(-, D): D^{op} \to Set</annotation></semantics></math> lift to a contravariant adjunction between <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math>, in the sense described <a href="/nlab/show/dualizing+object#ambi">here</a>. Frequently in practice, such concrete dualities are “naturally represented” in the sense described <a href="/nlab/show/dualizing+object#natural">here</a>, involving certain lifts adapted from the theory of <a class="existingWikiWord" href="/nlab/show/topological+concrete+categories">topological concrete categories</a>.</p> </li> </ul> <p>Again, in all of these examples, one can consider the further condition of “perfect duality” where the units and counits of the (lifted) adjunctions are isomorphisms.</p> <h3 id="Adjunctions">Adjunctions</h3> <p>Perhaps the loosest general notion of “duality” is that of <a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a>, as in pairs of <a class="existingWikiWord" href="/nlab/show/adjoint+functors">adjoint functors</a> (<a href="#Lambek81">Lambek 81</a>). Here one may omit any concretizations via functors to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Set</mi></mrow><annotation encoding="application/x-tex">Set</annotation></semantics></math>, or even for that matter any explicit mention of opposite categories, and just work at the level of abstract categories themselves.</p> <p>Nevertheless, many adjunctions come packaged in “dual pairs”. A famous slogan from <a class="existingWikiWord" href="/nlab/show/Categories+for+the+Working+Mathematician">Categories for the Working Mathematician</a> is that “all concepts are Kan extensions”, and in that light the dual pairs are instances of the general dual pair “(right Kan extension, left Kan extension)” which are formal duals in the axiomatic sense described earlier. Via the many incarnations of <a class="existingWikiWord" href="/nlab/show/universal+constructions">universal constructions</a> in <a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a>, we have for example</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/limit">limit</a> and <a class="existingWikiWord" href="/nlab/show/colimit">colimit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/end">end</a> and <a class="existingWikiWord" href="/nlab/show/coend">coend</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dependent+sum">dependent sum</a> and <a class="existingWikiWord" href="/nlab/show/dependent+product">dependent product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/existential+quantification">existential quantification</a> and <a class="existingWikiWord" href="/nlab/show/universal+quantification">universal quantification</a></p> </li> </ul> <p>When the adjoint functors are <a class="existingWikiWord" href="/nlab/show/monads">monads</a> and hence <a class="existingWikiWord" href="/nlab/show/modalities">modalities</a>, then adjointness between them has been argued to specifically express the concept of <a class="existingWikiWord" href="/nlab/show/duality+of+opposites">duality of opposites</a>.</p> <p>Again, adjunctions and specifically <a class="existingWikiWord" href="/nlab/show/dual+adjunctions">dual adjunctions</a> (“<a class="existingWikiWord" href="/nlab/show/Galois+connections">Galois connections</a>”) may be thought of as generalized dualities, more general than “perfect duality” which involves equivalences between categories (“Galois correspondences”). However, it should also be noted that any such adjunction (or <a class="existingWikiWord" href="/nlab/show/dual+adjunction">dual adjunction</a>) restricts to a <em>maximal (dual) equivalence</em> between <a class="existingWikiWord" href="/nlab/show/subcategories">subcategories</a>, by considering objects where the appropriate units and counits are isomorphisms. This generalizes the manner by which any Galois connection induces a Galois correspondence (where in this special case, one need only take the images of the poset maps which constitute the connection).</p> <h2 id="examples">Examples</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/opposite+category">opposite category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dual+object">dual object</a>, <a class="existingWikiWord" href="/nlab/show/dualizing+object">dualizing object</a>, <a class="existingWikiWord" href="/nlab/show/dualizing+object+in+a+closed+category">dualizing object in a closed category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dual+space">dual space</a>, <a class="existingWikiWord" href="/nlab/show/dual+vector+space">dual vector space</a></p> </li> <li> <p>the duality between <a class="existingWikiWord" href="/nlab/show/space+and+quantity">space and quantity</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Poincar%C3%A9+duality">Poincaré duality</a> for finite dimensional (oriented) closed manifolds</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Spanier-Whitehead+duality">Spanier-Whitehead duality</a>, <a class="existingWikiWord" href="/nlab/show/Brown-Comenetz+duality">Brown-Comenetz duality</a>, <a class="existingWikiWord" href="/nlab/show/Anderson+duality">Anderson duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Pontryagin+duality">Pontryagin duality</a> for commutative (<a class="existingWikiWord" href="/nlab/show/Hausdorff+space">Hausdorff</a>) <a class="existingWikiWord" href="/nlab/show/topological+group">topological groups</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cartier+duality">Cartier duality</a> of a finite flat commutative <a class="existingWikiWord" href="/nlab/show/group+scheme">group scheme</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Serre+duality">Serre duality</a> on nonsingular projective algebraic varieties which has as a special case the statement of the <a class="existingWikiWord" href="/nlab/show/Riemann-Roch+theorem">Riemann-Roch theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+duality">Grothendieck duality</a>, <span class="newWikiWord">coherent duality<a href="/nlab/new/coherent+duality">?</a></span> for <span class="newWikiWord">coherent sheaves<a href="/nlab/new/coherentsheave">?</a></span></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Verdier+duality">Verdier duality</a> for abelian categories of sheaves; e.g. for a category of sheaves of abelian groups.</p> </li> <li> <p><span class="newWikiWord">Artin-Verdier duality<a href="/nlab/new/Artin-Verdier+duality">?</a></span> generalizing <span class="newWikiWord">Tate duality<a href="/nlab/new/Tate+duality">?</a></span> for constructible sheaves over the spectrum of a ring of <a class="existingWikiWord" href="/nlab/show/algebraic+number">algebraic numbers</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Koszul+duality">Koszul duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Stone+duality">Stone duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/syntax+-+semantics+duality">syntax - semantics duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Eckmann-Hilton+duality">Eckmann-Hilton duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gabriel-Roos-Oberst+duality">Gabriel-Roos-Oberst duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hochster+duality">Hochster duality</a></p> </li> </ul> <h2 id="dualizing_objects">Dualizing objects</h2> <p>Of particular interest are concrete dualities between <a class="existingWikiWord" href="/nlab/show/concrete+categories">concrete categories</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>,</mo><mi>D</mi></mrow><annotation encoding="application/x-tex">C, D</annotation></semantics></math>, i.e. categories equipped with faithful functors</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>C</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex"> f : C \to Set</annotation></semantics></math></div> <p>to <a class="existingWikiWord" href="/nlab/show/Set">Set</a>, which are represented by objects <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">a \in C</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>a</mi><mo stretchy="false">^</mo></mover><mo>∈</mo><mi>D</mi></mrow><annotation encoding="application/x-tex">\hat a \in D</annotation></semantics></math> with the same underlying set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><mover><mi>f</mi><mo stretchy="false">^</mo></mover><mo stretchy="false">(</mo><mover><mi>a</mi><mo stretchy="false">^</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(a) = \hat f(\hat a)</annotation></semantics></math>. Such objects are known as <a class="existingWikiWord" href="/nlab/show/dualizing+objects">dualizing objects</a>.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/de+Morgan+duality">de Morgan duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/unity+of+opposites">unity of opposites</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/duality+in+physics">duality in physics</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fixed+point+of+an+adjunction">fixed point of an adjunction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mysterious+duality">mysterious duality</a></p> </li> </ul> <h2 id="references">References</h2> <ul> <li id="Lambek81"> <p><a class="existingWikiWord" href="/nlab/show/Joachim+Lambek">Joachim Lambek</a>: <em>The Influence of Heraclitus on Modern Mathematics</em>, in: Joseph Agassi, Robert S. Cohen (eds.) <em>Scientific Philosophy Today: Essays in Honor of Mario Bunge</em>, , 111-21. Boston: D. Reidel Publishing Co. (1981) 111-121 [<a href="https://doi.org/10.1007/978-94-009-8462-2_6">doi:10.1007/978-94-009-8462-2_6</a>, <a href="https://link.springer.com/content/pdf/10.1007/978-94-009-8462-2_6.pdf">pdf</a>]</p> </li> <li id="PorstTholen91"> <p><a class="existingWikiWord" href="/nlab/show/Hans-E.+Porst">Hans-E. Porst</a>, <a class="existingWikiWord" href="/nlab/show/Walter+Tholen">Walter Tholen</a>, <em>Concrete Dualities</em> in H. Herrlich, <a class="existingWikiWord" href="/nlab/show/Hans-E.+Porst">Hans-E. Porst</a> (eds.) <em>Category Theory at Work</em>, Heldermann Verlag 1991 (<a href="http://www.heldermann.de/R&E/RAE18/ctw07.pdf">pdf</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Saunders+MacLane">Saunders MacLane</a>, §II.1 of: <em><a class="existingWikiWord" href="/nlab/show/Categories+for+the+Working+Mathematician">Categories for the Working Mathematician</a></em>, Graduate Texts in Mathematics <strong>5</strong> Springer (1971, second ed. 1997) [<a href="https://link.springer.com/book/10.1007/978-1-4757-4721-8">doi:10.1007/978-1-4757-4721-8</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Francis+Borceux">Francis Borceux</a>, Section 1.10 in: <em><a class="existingWikiWord" href="/nlab/show/Handbook+of+Categorical+Algebra">Handbook of Categorical Algebra</a></em> Vol. 1: <em>Basic Category Theory</em>, Encyclopedia of Mathematics and its Applications <strong>50</strong>, Cambridge University Press (1994) [<a href="https://doi.org/10.1017/CBO9780511525858">doi:10.1017/CBO9780511525858</a>]</p> </li> <li id="LawvereRosebrugh"> <p><a class="existingWikiWord" href="/nlab/show/William+Lawvere">William Lawvere</a>, <a class="existingWikiWord" href="/nlab/show/Bob+Rosebrugh">Bob Rosebrugh</a>, chaper 7 of: <em><a class="existingWikiWord" href="/nlab/show/Sets+for+Mathematics">Sets for Mathematics</a></em> (2004) [<a href="http://www.mta.ca/~rrosebru/setsformath/">web</a>]</p> </li> <li id="Corfield17"> <p><a class="existingWikiWord" href="/nlab/show/David+Corfield">David Corfield</a>: <em>Duality as a category-theoretic concept</em>, Science Part B: Studies in History and Philosophy of Modern Physics <strong>59</strong> (2017) 55-61 [<a href="https://doi.org/10.1016/j.shpsb.2015.07.004">doi:10.1016/j.shpsb.2015.07.004</a>]</p> </li> </ul> <p>Discussion of duality specifically in <a class="existingWikiWord" href="/nlab/show/homological+algebra">homological algebra</a> and <a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable homotopy theory</a> with emphasis on the concept of <a class="existingWikiWord" href="/nlab/show/dualizing+object+in+a+closed+category">dualizing object in a closed category</a> (and the induced <a class="existingWikiWord" href="/nlab/show/Umkehr+maps">Umkehr maps</a> etc.) is in</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/William+Dwyer">William Dwyer</a>, <a class="existingWikiWord" href="/nlab/show/John+Greenlees">John Greenlees</a>, S. Iyengar, <em>Duality in algebra and topology</em>, <a href="http://hopf.math.purdue.edu/cgi-bin/generate?/Dwyer-Greenlees-Iyengar/duality">Hopf archive</a></li> </ul> <p>See also</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/David+Corfield">David Corfield</a>; <em><a href="http://golem.ph.utexas.edu/category/2007/01/more_on_duality.html">More on duality</a></em> (blog)</p> </li> <li> <p>wikipedia <a href="http://en.wikipedia.org/wiki/Duality_%28mathematics%29">duality (mathematics)</a></p> </li> <li> <p>MathOverflow: <a href="http://mathoverflow.net/questions/73711/the-concept-of-duality">the-concept-of-duality</a></p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on November 10, 2024 at 07:23:51. See the <a href="/nlab/history/duality" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/duality" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/5710/#Item_8">Discuss</a><span class="backintime"><a href="/nlab/revision/duality/50" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/duality" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/duality" accesskey="S" class="navlink" id="history" rel="nofollow">History (50 revisions)</a> <a href="/nlab/show/duality/cite" style="color: black">Cite</a> <a href="/nlab/print/duality" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/duality" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>