CINXE.COM

Search results for: fish species

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fish species</title> <meta name="description" content="Search results for: fish species"> <meta name="keywords" content="fish species"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fish species" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fish species"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3675</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fish species</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3675</span> Patterns in Fish Diversity and Abundance of an Abandoned Gold Mine Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20E.%20Obayemi">O. E. Obayemi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ayoade"> M. A. Ayoade</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20O.%20Komolafe"> O. O. Komolafe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish survey was carried out for an annual cycle covering both rainy and dry seasons using cast nets, gill nets and traps at two different reservoirs. The objective was to examined the fish assemblages of the reservoirs and provide more additional information on the reservoir. The fish species in the reservoirs comprised of twelve species of six families. The results of the study also showed that five species of fish were caught in reservoir five while ten fish species were captured in reservoir six. Species such as Malapterurus electricus, Ctenopoma kingsleyae, Mormyrus rume, Parachanna obscura, Sarotherodon galilaeus, Tilapia mariae, C. guntheri, Clarias macromystax, Coptodon zilii and Clarias gariepinus were caught during the sampling period. There was a significant difference (p=0.014, t = 1.711) in the abundance of fish species in the two reservoirs. Seasonally, reservoirs five (p=0.221, t = 1.859) and six (p=0.453, t = 1.734) showed there was no significant difference in their fish populations. Also, despite being impacted with gold mining the diversity indices were high when compared to less disturbed waterbodies. The study concluded that the environments recorded low abundant fish species which suggests the influence of mining on the abundance and diversity of fish species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igun" title="Igun">Igun</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=Shannon-Wiener%20Index" title=" Shannon-Wiener Index"> Shannon-Wiener Index</a>, <a href="https://publications.waset.org/abstracts/search?q=Simpson%20index" title=" Simpson index"> Simpson index</a>, <a href="https://publications.waset.org/abstracts/search?q=Pielou%20index" title=" Pielou index"> Pielou index</a> </p> <a href="https://publications.waset.org/abstracts/173907/patterns-in-fish-diversity-and-abundance-of-an-abandoned-gold-mine-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3674</span> The Resistance of Fish Outside of Water Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Febri%20Ramadhan">Febri Ramadhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water medium is a vital necessity for the survival of fish. Fish can survive inside/outside of water medium within a certain time. By knowing the level of survival fish at outside of water medium, a person can transport the fish to a place with more efficiently. Transport of live fish from one place to another can be done with wet and dry media system. In this experiment the treatment-given the observed differences in fish species. This experiment aimed to test the degree of resilience of fish out of water media. Based on the ANOVA table is obtained, it can be concluded that the type of fish affects the level of resilience of fish outside the water (Fhit> Ftab). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fish" title="fish">fish</a>, <a href="https://publications.waset.org/abstracts/search?q=transport" title=" transport"> transport</a>, <a href="https://publications.waset.org/abstracts/search?q=retention%20rate" title=" retention rate"> retention rate</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20resiliance" title=" fish resiliance "> fish resiliance </a> </p> <a href="https://publications.waset.org/abstracts/12212/the-resistance-of-fish-outside-of-water-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3673</span> Radionuclide Determination Study for Some Fish Species in Kuwait </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Almutairi">Ahmad Almutairi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kuwait lies to the northwest of the Arabian Gulf. The levels of radionuclides are unknown in this area. Radionuclide like ²¹⁰Po, ²²⁶Ra, and ⁹⁰Sr accumulated in certain body tissues and bones, relate primarily to dietary uptake and inhalation. A large fraction of radiation exposure experienced by individuals comes from food chain transfer. In this study, some types of Kuwait fish were studied for radionuclide determination. These fish were taken from the Kuwaiti water territory during May. The study is to determine the radiation exposure for ²¹⁰Po in some fish species in Kuwait the ²¹⁰Po concentration was found to be between 0.089 and 2.544 Bq/kg the highs was in Zubaidy and the lowest was in Hamour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20radionuclide" title="the radionuclide">the radionuclide</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20exposure" title=" radiation exposure"> radiation exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20species" title=" fish species"> fish species</a>, <a href="https://publications.waset.org/abstracts/search?q=Zubaida" title=" Zubaida"> Zubaida</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamour" title=" Hamour "> Hamour </a> </p> <a href="https://publications.waset.org/abstracts/91837/radionuclide-determination-study-for-some-fish-species-in-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3672</span> Coral Reef Fishes in the Marine Protected Areas in Southern Cebu, Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christine%20M.%20Corrales">Christine M. Corrales</a>, <a href="https://publications.waset.org/abstracts/search?q=Gloria%20G.%20Delan"> Gloria G. Delan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Luz%20V.%20Rica"> Rachel Luz V. Rica</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfonso%20S.%20Piquero"> Alfonso S. Piquero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marine protected areas (MPAs) in the study sites were established 8-13 years ago and are presently operational. This study was conducted to gather baseline information on the diversity, density and biomass of coral reef fishes inside and outside the four marine protected areas (MPAs) of Cawayan, Dalaguete; Daan-Lungsod Guiwang, Alcoy; North Granada, Boljoon and Sta. Cruz, Ronda. Coral reef fishes in the MPAs were identified using Fish Visual Census Method. Results of the t-test showed that the mean diversity (fish species/250m2) of target and non-target reef fish species found inside and outside the MPAs were significantly different. Density (ind./1,000m2) of target species inside and outside the MPAs showed no significant difference. Similarly, density of non-target species inside and outside the MPAs also showed no significant difference. This is an indication that fish density inside and outside the MPAs were more or less of the same condition. The mean biomass (kg/1,000m2) of target species inside and outside the MPAs showed a significant difference in contrast with non-target species inside and outside the MPAs which showed a no significant difference. Higher biomass of target fish species belonging to family Caesonidae (fusiliers) and Scaridae (parrotfishes) were commonly observed inside the MPAs. Results showed that fish species were more diverse with higher density and biomass inside the MPAs than the outside area. However, fish diversity and density were mostly contributed by non-target species. Hence, long term protection and management of MPAs is needed to effectively increase fish diversity, density and biomass specifically on target fish species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20protected%20area" title=" marine protected area"> marine protected area</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20fish%20species" title=" target fish species"> target fish species</a> </p> <a href="https://publications.waset.org/abstracts/39481/coral-reef-fishes-in-the-marine-protected-areas-in-southern-cebu-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3671</span> Non-Native and Invasive Fish Species in Poland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Raczy%C5%84ski">Tomasz Raczyński</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-native and invasive species negatively transform ecosystems. Non-native fish species can displace native fish species through competition, predation, disrupting spawning, transforming ecosystems, or transmitting parasites. This influence is more and more noticeable in Poland and in the world. From December 2014 to October 2020, did catch of fishes by electrofishing method carried on 416 sites in various parts of Poland. Research was conducted in both running and stagnant freshwaters with the predominance of running waters. Only sites where the presence of fish was found were analysed. The research covered a wide spectrum of waters from small mountain streams, through drainage ditches to the largest Polish river - the Vistula. Single sites covered oxbow lakes, small ponds and lakes. Electrofishing was associated with ichthyofauna inventories and was mainly aimed at detecting protected species of fish and lampreys or included in the annexes to the EU Habitats Directive (Council Directive 92/43/EEC on the Conservation of natural habitats and of wild fauna and flora). The results of these catches were analysed for alien and invasive fish species. The analysis of the catch structure shows that in 71 out of 416 research sites was found alien and invasive fish species, belonging to 9 taxa. According to the above, alien species of fish are present in 17% of the study sites. The most frequently observed species was the Prussian carp Carassius gibelio, which was recorded on 43 sites. Stone moroko Pseudorasbora parva was found on 24 sites. Chinese sleeper Perccottus glenii was found on 6 sites, and Bullhead Ameiurus sp. was also found on 6 sites. Western tubenose goby Proterorhinus semilunaris was found at 5 sites and Rainbow trout Oncorhynchus mykiss at 3 sites. Monkey goby Neogobius fluviatilis, Round goby Neogobius melanostomus and Eurasian carp Cyprinus carpio was recorded on 2 sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-native%20species" title="non-native species">non-native species</a>, <a href="https://publications.waset.org/abstracts/search?q=invasive%20species" title=" invasive species"> invasive species</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20species" title=" fish species"> fish species</a>, <a href="https://publications.waset.org/abstracts/search?q=invasive%20fish%20species" title=" invasive fish species"> invasive fish species</a>, <a href="https://publications.waset.org/abstracts/search?q=native%20fish%20species" title=" native fish species"> native fish species</a> </p> <a href="https://publications.waset.org/abstracts/157318/non-native-and-invasive-fish-species-in-poland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3670</span> Phylogenetic Relationships of Common Reef Fish Species in Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dang%20Thuy%20Binh">Dang Thuy Binh</a>, <a href="https://publications.waset.org/abstracts/search?q=Truong%20Thi%20Oanh"> Truong Thi Oanh</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Phan%20Khanh%20Hung"> Le Phan Khanh Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Luong%20thi%20Tuong%20Vy"> Luong thi Tuong Vy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the greatest environmental challenges facing Asia is the management and conservation of the marine biodiversity threaten by fisheries overexploitation, pollution, habitat destruction, and climate change. To date, a few molecular taxonomical studies has been conducted on marine fauna in Vietnam. The purpose of this study was to clarify the phylogeny of economic and ecological reef fish species in Vietnam Reef fish species covering Labridae, Scaridae, Nemipteridae, Serranidae, Acanthuridae, Lutjanidae, Lethrinidae, Mullidae, Balistidae, Pseudochromidae, Pinguipedidae, Fistulariidae, Holocentridae, Synodontidae, and Pomacentridae representing 28 genera were collected from South and Center, Vietnam. Combine with Genbank sequences, a phylogenetic tree was constructed based on 16S gene of mitochondrial DNA using maximum parsimony, maximum likelihood, and Bayesian inference approaches. The phylogram showed the well-resolved clades at genus and family level. Perciformes is the major order of reef fish species in Vietnam. The monophyly of Perciformes is not strongly supported as it was clustered in the same clade with Tetraodontiformes syngnathiformes and Beryciformes. Continue sampling of commercial fish species and classification based on morphology and genetics to build DNA barcoding of fish species in Vietnam is really necessary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reef%20fish" title="reef fish">reef fish</a>, <a href="https://publications.waset.org/abstracts/search?q=16s%20rDNA" title=" 16s rDNA"> 16s rDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=Vietnam" title=" Vietnam"> Vietnam</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogeny" title=" phylogeny"> phylogeny</a> </p> <a href="https://publications.waset.org/abstracts/33651/phylogenetic-relationships-of-common-reef-fish-species-in-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3669</span> Northern Westerrn Ghats of India Possess an Indigenous Fish Fauna: A Survey from Kudali River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Jamdade">R. A. Jamdade</a>, <a href="https://publications.waset.org/abstracts/search?q=Rokade%20A.%20C."> Rokade A. C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Deshpande%20V.%20Y."> Deshpande V. Y.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The freshwater fish fauna of Kudali River, a northern right bank tributary of the Krishna River Western Ghats of India was studied. It is one of the smallest tributary of Krishna river and never been explored for fish fauna assessment. It extends over 23 Kms having 22 fish species belonging to 15 genera and 7 families, of these 3 species are endemic to Western Ghats, 2 are globaly endangered and 2 near to be threatened. Downstream the Kudal locality, the river is under the influence of anthropogenic activities and over fishing, where conservation action plans are needed to be undertaken for conservation of endangered and near to be threatened fish fauna. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freshwater" title="freshwater">freshwater</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=fauna" title=" fauna"> fauna</a>, <a href="https://publications.waset.org/abstracts/search?q=western%20Ghats" title=" western Ghats"> western Ghats</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropogenic%20activity" title=" anthropogenic activity"> anthropogenic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a> </p> <a href="https://publications.waset.org/abstracts/24106/northern-westerrn-ghats-of-india-possess-an-indigenous-fish-fauna-a-survey-from-kudali-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3668</span> Some Metal Levels in Muscle Tissue of Seven Fish Species from the Suğla and Beyşehir Lakes, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haluk%20%C3%96zparlak">Haluk Özparlak</a>, <a href="https://publications.waset.org/abstracts/search?q=Murad%20Ayd%C4%B1n%20%C5%9Eanda"> Murad Aydın Şanda</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%C5%9Fin%20Arslan"> Gülşin Arslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phoxinellus anatolicus, Carassius gibelio, Sander lucioperca, Vimba vimba tenella, Capoeta capoeta, Tinca tinca from Suğla Lake (Turkey) and Phoxinellus anatolicus, Scardinius erythrophthalmus, Tinca tinca from Beyşehir Lake (Turkey) are economically important fish species and these fish have been consumed as food by local people. P. anatolicus is also endangered and endemic species from Turkey. In this study, concentrations of Cd, Co, Cr, Fe, Mn, Ni, Pb and Zn were determined in muscle tissue of these fish by using atomic absorption spectrophotometer. Levels of metals in the muscle tissue of all the fish specimens were compared with results of previous studies, the tolerance levels of national and international guidelines and the levels of Provisional Tolerable Weekly Intake (PTWI) limits set by FAO/WHO. Concentrations of Cd, Cr, Ni and Pb in the muscle tissue of all the fish specimens from Suğla and Beyşehir Lakes exceeded the tolerance levels of national and international guidelines. However, concentrations of Cd, Fe, Pb and Zn were below PTWI limits. Therefore, in terms of these metal levels, consumption of fresh filet of examined seven fish species (weekly up to about 300 g/person) doesn’t seem to be objectionable for human health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bey%C5%9Fehir%20Lake" title="Beyşehir Lake">Beyşehir Lake</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20levels" title=" metal levels"> metal levels</a>, <a href="https://publications.waset.org/abstracts/search?q=Su%C4%9Fla%20Lake" title=" Suğla Lake"> Suğla Lake</a> </p> <a href="https://publications.waset.org/abstracts/29001/some-metal-levels-in-muscle-tissue-of-seven-fish-species-from-the-sugla-and-beysehir-lakes-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3667</span> Mercury (Hg) Concentration in Fish Marketed in the São Luís Fish Market (MA) and Potential Exposure of Consumers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luiz%20Drude%20de%20Lacerda">Luiz Drude de Lacerda</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Luiz%20Cordeiro%20Ferrer%20do%20Carmo"> Kevin Luiz Cordeiro Ferrer do Carmo</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Lacerda%20Moura"> Victor Lacerda Moura</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayone%20Wesley%20Santos%20de%20Oliveira"> Rayone Wesley Santos de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Mois%C3%A9s%20Fernandes%20Bezerra"> Moisés Fernandes Bezerra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish is a food source well recognized for its health benefits. However, the consumption of fish, especially carnivorous species, is the main path of human exposure to Hg, a widely distributed pollutant on the planet and that accumulates along food chains. Studies on the impacts on public health by fish intake show existing toxic risks even when at low concentrations. This study quantifies, for the first time, the concentrations of Hg in muscle tissue of the nine most commercialized fish species in the fish market of São Luís (MA) in north Brazil and estimates the consequent human exposure through consumption. Concentrations varied according to trophic level, with the highest found in the larger carnivorous species; the Yellow hake (Cynoscion acoupa) (296.4 ± 241.2 ng/g w.w) and the Atlantic croaker (Micropogonias undulatus) (262.8 ± 89.1 ng/g w.w.), whereas the lowest concentrations were recorded in iliophagous Mullets (Mugil curema) (20.5 ± 9.6 ng/g w.w.). Significant correlations were observed between Hg concentrations and individual length in only two species: the Flaming catfish (Bagre marinus) and the Atlantic bumper (Chloroscombrus crysurus). Given the relatively uniform size of individuals of the other species and/or the small number of samples, this relationship was not found for the other species. The estimated risk coefficients, despite the relatively low concentrations of Hg, suggest that yellow hake and Whitemouth croaker (Micropogonias furnieri), fish most consumed by the local population, present some risk to human health (> 1) HQ and THQ, depending on the frequency of their consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20exposure" title=" human exposure"> human exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/159037/mercury-hg-concentration-in-fish-marketed-in-the-sao-luis-fish-market-ma-and-potential-exposure-of-consumers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3666</span> Fish Check-List and Their Characteristics in Bayeku Water, Lagos, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Kashimawo">A. W. Kashimawo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish check list of Bayeku water, Lagos, Nigeria was investigated between February 2012 and January 2013. Fish specimens were caught with gill and cast-nets, and non-return valve basket trap. Services of artisanal fishermen were employed for the setting of gears and collections of fish. Species not captured after sampling were assumed to be absent or so rare as to be of minimal ecological importance. The 632 specimens were preserved in 10 % formaldehyde in the field prior to their identification. Physicochemical parameters such as temperature, salinity, dissolved oxygen and pH were determined from the lagoon water samples following standard methods. A total of 632 fish were encountered, belonging to 23 families, 27 genera and 29 species. The most abundant species were Chrysichthys nigrodigitatus (9.65 %), Macrobrachium vollenhoveni (7.94 %), Ethmalosa fimbriata (7.12 %), Elops lacerta (6.96 %), Cynoglossus browni (6.17 %), Gobioides broussonnetii (5.69 %), Sphyraena piscatorum (5.39 %), Polydactylus quadrifilis (5.06 %), and Mugil cephalus (4.91 %). There were seasonal variations in species occurrence and abundance. Marine fishes were found in dry season.. Freshwater fishes were more during the wet season. There are marine and freshwater fishes that have euryhaline characteristics and have adapted to the lagoon environment such that they were encountered both in dry and wet seasons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fish%20check%20list" title="fish check list">fish check list</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20occurrence" title=" species occurrence"> species occurrence</a>, <a href="https://publications.waset.org/abstracts/search?q=abundance" title=" abundance"> abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20importance" title=" ecological importance"> ecological importance</a> </p> <a href="https://publications.waset.org/abstracts/20131/fish-check-list-and-their-characteristics-in-bayeku-water-lagos-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3665</span> Quality Analysis of Lake Malawi&#039;s Diplotaxodon Fish Species Processed in Solar Tent Dryer versus Open Sun Drying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Banda">James Banda</a>, <a href="https://publications.waset.org/abstracts/search?q=Jupiter%20Simbeye"> Jupiter Simbeye</a>, <a href="https://publications.waset.org/abstracts/search?q=Essau%20Chisale"> Essau Chisale</a>, <a href="https://publications.waset.org/abstracts/search?q=Geoffrey%20Kanyerere"> Geoffrey Kanyerere</a>, <a href="https://publications.waset.org/abstracts/search?q=Kings%20Kamtambe"> Kings Kamtambe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improved solar tent dryers for processing small fish species were designed to reduce post-harvest fish losses and improve supply of quality fish products in the southern part of Lake Malawi under CultiAF project. A comparative analysis of the quality of Diplotaxodon (Ndunduma) from Lake Malawi processed in solar tent dryer and open sun drying was conducted using proximate analysis, microbial analysis and sensory evaluation. Proximates for solar tent dried fish and open sun dried fish in terms of proteins, fats, moisture and ash were 63.3±0.15% and 63.3±0.34%, 19.6±0.09% and 19.9±0.25%, 8.3±0.12% and 17.0±0.01%, and 15.6±0.61% and 21.9±0.91% respectively. Crude protein and crude fat showed non-significant differences (p = 0.05), while moisture and ash content were significantly different (p = 001). Open sun dried fish had significantly higher numbers of viable bacteria counts (5.2×10⁶ CFU) than solar tent dried fish (3.9×10² CFU). Most isolated bacteria from solar tent dried and open sun dried fish were 1.0×10¹ and 7.2×10³ for Total coliform, 0 and 4.5 × 10³ for Escherishia coli, 0 and 7.5 × 10³ for Salmonella, 0 and 5.7×10² for shigella, 4.0×10¹ and 6.1×10³ for Staphylococcus, 1.0×10¹ and 7.0×10² for vibrio. Qualitative evaluation of sensory properties showed higher acceptability of 3.8 for solar tent dried fish than 1.7 for open sun dried fish. It is concluded that promotion of solar tent drying in processing small fish species in Malawi would support small-scale fish processors to produce quality fish in terms of nutritive value, reduced microbial contamination, sensory acceptability and reduced moisture content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diplotaxodon" title="diplotaxodon">diplotaxodon</a>, <a href="https://publications.waset.org/abstracts/search?q=Malawi" title=" Malawi"> Malawi</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20sun%20drying" title=" open sun drying"> open sun drying</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20tent%20drying" title=" solar tent drying"> solar tent drying</a> </p> <a href="https://publications.waset.org/abstracts/53029/quality-analysis-of-lake-malawis-diplotaxodon-fish-species-processed-in-solar-tent-dryer-versus-open-sun-drying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3664</span> Population and Age Structure of the Goby Stigmatogobius pleurostigma in the Mekong Delta, Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quang%20M.%20Dinh">Quang M. Dinh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stigmatogobius pleurostigma is a commercial fish being caught increasingly in the Mekong Delta. Although it plays an important role for food supply, little is known about this species including morphology, distribution and growth pattern. Meanwhile, its population and age structure is unknown. The present study was conducted in the Mekong Delta to provide new data on population parameters of this goby species. The von Bertalanffy growth parameters were L∞= 8.6 cm, K = 0.83 yr⁻¹, and t0 = -0.07 yr⁻¹ basing on length frequency data analysis of 601 individuals. The fish total length at first capture was 3.8 cm; and fishing, natural and total mortalities of the fish population were 2.31 yr⁻¹, 1.17 yr⁻¹, and 3.48 yr⁻¹ respectively. The maximum fish yield (Eₘₐₓ), economic yield (E₀.₁) and yield of 50% reduction of exploitation (E₅₀) rates were 0.704, 0.555 and 0.335 based on the relative yield-per-recruit and biomass-per-recruit analyses. The fish longevity was 3.61 yr, and growth performance was 1.79. Three fish age groups were recorded in this study (0+, 1+ and 2+). The species is a potential aquaculture candidate because of its high growth parameter. This goby stock was overexploited in the Mekong Delta as its exploitation rate (E=0.34) was higher than E₅₀ (0.335). The mesh size of gillnets should be increased and avoid catching fish in June, recruitment time, for future sustainable fishery management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stigmatogobius%20pleurostigma" title="Stigmatogobius pleurostigma">Stigmatogobius pleurostigma</a>, <a href="https://publications.waset.org/abstracts/search?q=age" title=" age"> age</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20structure" title=" population structure"> population structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Vietnam" title=" Vietnam"> Vietnam</a> </p> <a href="https://publications.waset.org/abstracts/75857/population-and-age-structure-of-the-goby-stigmatogobius-pleurostigma-in-the-mekong-delta-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3663</span> Fish Diversity and Conservation of Two Lacustrine Wetlands of the Upper Benue Basin, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20L.%20David">D. L. David</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Wahedi"> J. A. Wahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20T.%20Zaku"> Q. T. Zaku </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted at River Mayo Ranewo and River Lau, Taraba State Nigeria. The two rivers empty into the Upper Benue Basin. A visual encounter survey was conducted within the two wetlands from June to August, 2014. The fish record was based entirely on landings of fishermen, number of canoes that land fish was counted, types of nets and baits used on each sampling day. Fish were sorted into taxonomic groups, identified to family/species level, counted and weighed in groups. The relative species abundance was determined by dividing the number of species from a site by the total number of species from all tributaries/sites. Fish was preserved in 2% formaldehyde solution and taken to the laboratory, where they were identified. Shannon-Weiner index of species diversity indicated that the diversity was highest at River Mayo Ranewo than River Lau. In the result showed at River Mayo Ranewo, the family Mochokidae recorded the highest (23.15%), followed by Mormyridae (2.64%) and the least was the family Lepidosirenidae (0.04%). While at River Lau the family Mochokidae recorded the highest occurrence of (24.1%), followed by Bagridae (20.20%), and then Mormyridae, which also was the second highest in River Lau, with 18.46% occurrence. There was no occurrence of Malapteruridae and Osteoglossidae (0%) in River Lau, but the least occurrence was the family Gymnarchidae (0.04%). These results indicated that the fish composition were not significantly (p ≤ 0.05) different based on t-test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation" title="conservation">conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity%20index" title=" diversity index"> diversity index</a>, <a href="https://publications.waset.org/abstracts/search?q=Lau" title=" Lau"> Lau</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayo%20Ranewo" title=" Mayo Ranewo"> Mayo Ranewo</a>, <a href="https://publications.waset.org/abstracts/search?q=wetlands" title=" wetlands"> wetlands</a> </p> <a href="https://publications.waset.org/abstracts/28377/fish-diversity-and-conservation-of-two-lacustrine-wetlands-of-the-upper-benue-basin-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3662</span> A Taxonomic Study of Species Belonging to Flatfish Order (Pleuronectiformes) in Syrian Marine Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Khalil">Samira Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Adib%20Saad"> Adib Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Malek%20Ali"> Malek Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to determine fish species belonging to the order Pleuronectiforme fish found in Syrian marine water confirm or deny the continuity of the previously registered species, and record the unregistered species that appeared during this research for the first time. The research was carried out in the Laboratory of Marine Sciences, Faculty of Agriculture (Tishreen University); fish samples were collected periodically (bi-monthly) from fishermen in landing areas along the Syrian coast caught from depths (3m to 700m), using various mediums. An appropriate hand is available to fishermen on the Syrian coast (cliff bottom, fixed nets, enclosure nets, shelf nest, and manual disposal network; 451 individuals were captured and studied during the research period. During this study, it was found that the Syrian water includes 15 species, including one species recorded for the first time. On the eastern coast of the Mediterranean, it is Pegusa impar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pleuronectiformes" title="pleuronectiformes">pleuronectiformes</a>, <a href="https://publications.waset.org/abstracts/search?q=Syrian%20coast" title=" Syrian coast"> Syrian coast</a>, <a href="https://publications.waset.org/abstracts/search?q=flatfish" title=" flatfish"> flatfish</a>, <a href="https://publications.waset.org/abstracts/search?q=mediterranean" title=" mediterranean"> mediterranean</a> </p> <a href="https://publications.waset.org/abstracts/186018/a-taxonomic-study-of-species-belonging-to-flatfish-order-pleuronectiformes-in-syrian-marine-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3661</span> Sewage Induced Behavioural Responses in an Air-Breathing Fish, Pangasius pangasius</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sasikala%20Govindaraj">Sasikala Govindaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Palanisamy"> P. Palanisamy</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Natarajan"> G. M. Natarajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Domestic sewage poses major threats to the aquatic environment in third world countries due to lack of technical and economic sources which can have significant impacts on fish. The tolerance limits to toxicants found in domestic effluents vary among species and their integrative effects may lead to reproductive failure and reduction of survival and growth of the more sensitive fish species. The mechanism of action of toxic substances upon various concentrations of sewage was taken aiming to evaluate locomotory, physiological, neurological and morbidity response of fish. The rapid biomonitoring assessment technique for qualitative evaluation of various industrial pollutants, behavioral responses of an air-breathing fish Pangasius pangasius were used as biomarkers for water quality assessment. The present investigation concluded that sewage is highly toxic to the fish and severely affects their physiology and behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air-breathing%20organs" title="air-breathing organs">air-breathing organs</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioral" title=" behavioral"> behavioral</a>, <a href="https://publications.waset.org/abstracts/search?q=locomotory" title=" locomotory"> locomotory</a>, <a href="https://publications.waset.org/abstracts/search?q=morbidity" title=" morbidity"> morbidity</a>, <a href="https://publications.waset.org/abstracts/search?q=neurological" title=" neurological"> neurological</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological" title=" physiological"> physiological</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage" title=" sewage"> sewage</a> </p> <a href="https://publications.waset.org/abstracts/69385/sewage-induced-behavioural-responses-in-an-air-breathing-fish-pangasius-pangasius" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3660</span> Comparison of Fatty Acids Composition of Three Commercial Fish Species Farmed in the Adriatic Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jelka%20Pleadin">Jelka Pleadin</a>, <a href="https://publications.waset.org/abstracts/search?q=Greta%20Kre%C5%A1i%C4%87"> Greta Krešić</a>, <a href="https://publications.waset.org/abstracts/search?q=Tina%20Le%C5%A1i%C4%87"> Tina Lešić</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Vuli%C4%87"> Ana Vulić</a>, <a href="https://publications.waset.org/abstracts/search?q=Renata%20Bari%C4%87"> Renata Barić</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanja%20Bogdanovi%C4%87"> Tanja Bogdanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Dra%C5%BEen%20Orai%C4%87"> Dražen Oraić</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Legac"> Ana Legac</a>, <a href="https://publications.waset.org/abstracts/search?q=Snje%C5%BEana%20Zrn%C4%8Di%C4%87"> Snježana Zrnčić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish has been acknowledged as an integral component of a well-balanced diet, providing a healthy source of energy, high-quality proteins, vitamins, essential minerals and, especially, n-3 long-chain polyunsaturated fatty acids (n-3 LC PUFA), mainly eicosapentaenoic acid (20:5 n-3 EPA), and docosahexaenoicacid, (22:6 n-3 DHA), whose pleiotropic effects in terms of health promotion and disease prevention have been increasingly recognised. In this study, the fatty acids composition of three commercially important farmed fish species: sea bream (Sparus aurata), sea bass (Dicentrarchus labrax) and dentex (Dentex dentex) was investigated. In total, 60 fish samples were retrieved during 2015 (n = 30) and 2016 (n = 30) from different locations in the Adriatic Sea. Methyl esters of fatty acids were analysed using gas chromatography (GC) with flame ionization detection (FID). The results show that the most represented fatty acid in all three analysed species is oleic acid (C18:1n-9, OA), followed by linoleic acid (C18:2n-6, LA) and palmitic acid (C16:0, PA). Dentex was shown to have two to four times higher eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid content as compared to sea bream and sea bass. The recommended n-6/n-3 ratio was determined in all fish species but obtained results pointed to statistically significant differences (p < 0.05) in fatty acid composition among the analysed fish species and their potential as a dietary source of valuable fatty acids. Sea bass and sea bream had a significantly higher proportion of n-6 fatty acids, while dentex had a significantly higher proportion of n-3 (C18:4n-3, C20:4n-3, EPA, DHA) fatty acids. A higher hypocholesterolaemic and hypercholesterolaemic fatty acids (HH) ratio was determined for sea bass and sea bream, which comes as the consequence of a lower share of SFA determined in these two species in comparison to dentex. Since the analysed fish species vary in their fatty acids composition consumption of diverse fish species would be advisable. Based on the established lipid quality indicators, dentex, a fish species underutilised by the aquaculture, seems to be a highly recommendable and important source of fatty acids recommended to be included into the human diet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dentex" title="dentex">dentex</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=farmed%20fish" title=" farmed fish"> farmed fish</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20bass" title=" sea bass"> sea bass</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20bream" title=" sea bream"> sea bream</a> </p> <a href="https://publications.waset.org/abstracts/64067/comparison-of-fatty-acids-composition-of-three-commercial-fish-species-farmed-in-the-adriatic-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3659</span> The Effects of Extraction Methods on Fat Content and Fatty Acid Profiles of Marine Fish Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yesim%20%C3%96zogul">Yesim Özogul</a>, <a href="https://publications.waset.org/abstracts/search?q=Fethiye%20Takada%C5%9F"> Fethiye Takadaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Durmus"> Mustafa Durmus</a>, <a href="https://publications.waset.org/abstracts/search?q=Y%C4%B1lmaz%20Ucar"> Yılmaz Ucar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20R%C4%B1za%20K%C3%B6%C5%9Fker"> Ali Rıza Köşker</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulsun%20%C3%96zyurt"> Gulsun Özyurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20%C3%96zogul"> Fatih Özogul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been well documented that polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial effects on health, regarding prevention of cardiovascular diseases, cancer and autoimmune disorders, development the brain and retina and treatment of major depressive disorder etc. Thus, an adequate intake of omega PUFA is essential and generally marine fish are the richest sources of PUFA in human diet. Thus, this study was conducted to evaluate the efficiency of different extraction methods (Bligh and Dyer, soxhlet, microwave and ultrasonics) on the fat content and fatty acid profiles of marine fish species (Mullus babatus, Upeneus moluccensis, Mullus surmuletus, Anguilla anguilla, Pagellus erythrinus and Saurida undosquamis). Fish species were caught by trawl in Mediterranean Sea and immediately iced. After that, fish were transported to laboratory in ice and stored at -18oC in a freezer until the day of analyses. After extracting lipid from fish by different methods, lipid samples were converted to their constituent fatty acid methyl esters. The fatty acid composition was analysed by a GC Clarus 500 with an autosampler (Perkin Elmer, Shelton, CT, USA) equipped with a flame ionization detector and a fused silica capillary SGE column (30 m x 0.32 mm ID x 0.25 mm BP20 0.25 UM, USA). The results showed that there were significant differences (P < 0.05) in fatty acids of all species and also extraction methods affected fat contents and fatty acid profiles of fish species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction%20methods" title="extraction methods">extraction methods</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20fish" title=" marine fish"> marine fish</a>, <a href="https://publications.waset.org/abstracts/search?q=PUFA" title=" PUFA"> PUFA</a> </p> <a href="https://publications.waset.org/abstracts/72687/the-effects-of-extraction-methods-on-fat-content-and-fatty-acid-profiles-of-marine-fish-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3658</span> Contamination with Heavy Metals of Frozen Fish Sold in Open Markets in Ondo City, Southwest Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adebisi%20M.%20Tiamiyu">Adebisi M. Tiamiyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Adewale%20F.%20Adeyemi"> Adewale F. Adeyemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olu-Ayobamikale%20V.%20Irewunmi"> Olu-Ayobamikale V. Irewunmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish consumption has increased in recent years in both developing and advanced countries, owing to increased awareness of its nutritional and therapeutic benefits and its availability and affordability relative to other animal protein sources. Fish and fish products, however, are extremely prone to contamination by a wide range of hazardous organic and inorganic substances. This study assessed the levels of three heavy metals, copper (Cu), iron (Fe), and zinc (Zn), in frozen fish imported into Nigeria and sold in Ondo City for their safety for human consumption as recommended by WHO and FEPA. Three species of frozen fish (Scombrus scombrus, Merluccius merluccius, and Clupea harengus) were purchased, and the wet tissues (gills, muscles, and liver) were digested using a 3:1 mixture of nitric acid (HNO3) and hydrochloric acid (HCL). An atomic absorption spectrophotometer (AAS) was used to detect the amount of metal in the tissues. The levels of heavy metals in different fish species' organs varied. The fish had Zn > Fe > Cu heavy metal concentrations in that order. While the concentration of Cu and Fe in the tissues of all three fish species studied were within the WHO and FEPA prescribed limits for food fish, the concentration of Zn in the muscles of M. merluccius (0.262±0.052), C. harengus harengus (0.327±0.099), and S. scombrus (0.362±0.119) was above the prescribed limit (0.075 ppm) set by FEPA. An excessive amount of zinc in the body can cause nausea, headaches, decreased immunity, and appetite loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20absorption%20spectrophotometer" title=" atomic absorption spectrophotometer"> atomic absorption spectrophotometer</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=agencies" title=" agencies"> agencies</a> </p> <a href="https://publications.waset.org/abstracts/180540/contamination-with-heavy-metals-of-frozen-fish-sold-in-open-markets-in-ondo-city-southwest-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3657</span> Modulation of Fish Allergenicity towards the Production of a Low Allergen Farmed Fish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denise%20Schrama">Denise Schrama</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Raposo"> Claudia Raposo</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Rodrigues"> Pedro Rodrigues</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Food allergies are conducted by a hypersensitive response of the immune system. These allergies are a global concern for the public health. Consumption of fish is increasing worldwide as it is a healthy meat with high nutritional value. Unfortunately, fish can cause adverse immune-mediate reactions, affecting part of the population with higher incidence in children. β-parvalbumin, a small, highly conserved stable, calcium or magnesium binding muscle protein is the main fish allergen. In fish-allergic patients, cross-reactivity between different fish species exist due to recognition of highly identical protein regions. Enolases, aldolases, or fish gelatin are other identified fish allergens in some fish species. With no available cure for fish allergies, clinical management is only based on an avoidance diet aiming at the total exclusion of offending food. Methods: Mediterranean fish (S. aurata and D. labrax) were fed specifically designed diets, enriched in components that target the expression or inactivation of parvalbumin (creatine and EDTA, respectively). After 90 days fish were sampled and biological tissues were excised. Proteomics was used to access fish allergens characterization and expression in muscle while IgE assays to confirm the lower allergenic potential are conducted in patients with history of fish allergies. Fish welfare and quality of flesh were established with biochemical, texture and sensorial analysis. Results: Fish welfare shows no major impact between diets. In case of creatine supplementation in D. labrax proteomic analysis show a slight decrease in parvalbumin expression. No accumulation of this compound was found in muscle. For EDTA supplementation in S. aurata IgE assay show a slight decrease in allergenicity when using sera of fish allergic patients. Conclusion: Supplementation with these two compounds seems to change slightly the allergenicity of the two mean Mediterranean species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fish%20allergies" title="fish allergies">fish allergies</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20nutrition" title=" fish nutrition"> fish nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomics" title=" proteomics"> proteomics</a>, <a href="https://publications.waset.org/abstracts/search?q=aquaculture" title=" aquaculture"> aquaculture</a> </p> <a href="https://publications.waset.org/abstracts/93373/modulation-of-fish-allergenicity-towards-the-production-of-a-low-allergen-farmed-fish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3656</span> Community Assemblages of Reef Fishes in Marine Sanctuary and Non-Marine Sanctuary Areas in Sogod Bay, Southern Leyte, Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Homer%20Hermes%20De%20Dios">Homer Hermes De Dios</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewoowoogen%20Baclayon"> Dewoowoogen Baclayon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The community assemblages of reef fishes was conducted in ten marine sanctuaries and ten non-marine sanctuary areas in Sogod Bay, Southern Leyte, Philippines from 2014-2015. A total of 223 species belonging to 39 families of reef fishes in Sogod Bay were recorded. Family Pomacentridae (e.g. damsel fishes) has the highest number of species (42), followed by Labridae or wrasses (27), Chaetodonthidae or butterfly fish (22), Scaridae or parrotfishes (17), and Acanthuridae (surgeonfishes) and Pomacanthidae (angelfishes) both with 10 species. Two of the recorded fish species were included in the IUCN Red List, wherein one is near threatened (Chlorurus bowersi) and the other is endangered species (Cheilinus undulatus). The mean total fish biomass (target + indicator + major or other fish) in MPA was significantly higher (13,468 g/500m2 or equivalent to 26.94 mt/km2) than Non-MPA with 7,408 g/500m2 or 15,216mt/km2 in Non-MPA. The mean total fish biomass in MPAs in Sogod Bay can be categorized as high (21-40 mt/km2) with minimal fishing and medium or slightly moderately fished (11-20 mt/km2) in Non-MPAs. The mean (±SE) biomass of target fishes was significantly higher in MPA than Non-MPA and differ significantly across two depths. The target fish biomass was significantly higher in Limasawa Marine Sanctuary (13,569 g/500m2) followed by Lungsodaan Marine Sanctuary in Padre Burgos (11,884 g/500m2) and the lowest was found in San Isidro (735 g/500m2). The mean total fish density (target + indicator + major or other fish) did not differ between Marine Protected area (607.912 fishes/500m2 or 1215.824 fishes/1000m2) and 525.937 fishes/500m2 in non-Marine Protected Area and can be categorized as moderate (667-2267mt/km2). The mean density of target fishes was significantly (p=0.022) higher in deeper areas (12-15m) than in shallow areas but did not differ significantly between MPAs and Non-MPA. No significant difference of the biomass and density for indicator and other fishes in MPAs and Non-MPAs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abundance" title="abundance">abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20richness" title=" species richness"> species richness</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20fish" title=" target fish"> target fish</a>, <a href="https://publications.waset.org/abstracts/search?q=coral%20reef%20management" title=" coral reef management"> coral reef management</a> </p> <a href="https://publications.waset.org/abstracts/59121/community-assemblages-of-reef-fishes-in-marine-sanctuary-and-non-marine-sanctuary-areas-in-sogod-bay-southern-leyte-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3655</span> DNA Barcoding Application in Study of Icthyo- Biodiversity in Rivers of Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Karim">Asma Karim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish taxonomy plays a fundamental role in the study of biodiversity. However, traditional methods of fish taxonomy rely on morphological features, which can lead to confusion due to great similarities between closely related species. To overcome this limitation, modern taxonomy employs DNA barcoding as a species identification method. This involves using a short standardized mitochondrial DNA region as a barcode, specifically a 658 base pair fragment near the 5′ ends of the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene, to exploit the diversity in this region for identification of species. To test the effectiveness and reliability of DNA barcoding, 25 fish specimens from nine different fish species found in various rivers of Pakistan were identified morphologically using a dichotomous key at the start of the study. Comprising nine freshwater fish species, including Mystus cavasius, Mystus bleekeri, Osteobrama cotio, Labeo rohita, Labeo culbasu, Labeo gonius, Cyprinus carpio, Catla catla and Cirrhinus mrigala from different rivers of Pakistan were used in the present study. DNA was extracted from one of the pectoral fins and a partial sequence of CO1 gene was amplified using the conventional PCR method. Analysis of the barcodes confirmed that genetically identified fishes were the same as those identified morphologically at the beginning of the study. The sequences were also analyzed for biodiversity and phylogenetic studies. Based on the results of the study, it can be concluded that DNA barcoding is an effective and reliable method for studying biodiversity and conducting phylogenetic analysis of different fish species in Pakistan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20barcoding" title="DNA barcoding">DNA barcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20water%20fishes" title=" fresh water fishes"> fresh water fishes</a>, <a href="https://publications.waset.org/abstracts/search?q=taxonomy" title=" taxonomy"> taxonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title=" biodiversity"> biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a> </p> <a href="https://publications.waset.org/abstracts/167772/dna-barcoding-application-in-study-of-icthyo-biodiversity-in-rivers-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3654</span> Fish Diversity of Two Lacustrine Wetlands of the Upper Benue Basin, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20L.%20David">D. L. David</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Wahedi"> J. A. Wahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20T.%20Zaku"> Q. T. Zaku</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted at River Mayo Ranewo and River Lau, Taraba State Nigeria. The two rivers empty into the Upper Benue Basin. A survey of visual encounter was conducted within the two wetlands from June to August, 2014. The fish record was based entirely on landings of fishermen, number of canoes that land fish was counted, types of nets and baits used on each sampling day. Fishes were sorted into taxonomic groups, identified to family/ species level, counted and weighed in groups by species. Other aquatic organisms captured by the fishermen were scallops, turtles and frogs. The relative species abundance was determined by dividing the number of species from a site by the total number of species from all tributaries/sites. The fish were preserved in 2% formaldehyde solution and taken to the laboratory, were identified through keys of identification to African fishes and field guides. Shannon-Wieiner index of species diversity indicated that the diversity was highest at River Mayo Ranewo than River Lau. Results showed that at River Mayo Ranewo, the family Mochokidae recorded the highest (23.15%), followed by Mormyridae (22.64%) and the least was the family Lepidosirenidae (0.04%). While at River Lau, the family Mochokidae recorded the highest occurrence of (24.1%), followed by Bagridae (20.20%), and then Mormyridae, which also was the second highest in River Lau, with 18.46% occurrence. There was no occurrence of Malapteruridae and Osteoglossidae (0%) in River Lau, but the least occurrence was the family Gymnarchidae (0.04%). According to the result from the t-test, the fish composition was not significantly different (p&le;0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diversity%20Index" title="Diversity Index">Diversity Index</a>, <a href="https://publications.waset.org/abstracts/search?q=Lau" title=" Lau"> Lau</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayo%20Ranewo" title=" Mayo Ranewo"> Mayo Ranewo</a>, <a href="https://publications.waset.org/abstracts/search?q=Wetlands" title=" Wetlands"> Wetlands</a> </p> <a href="https://publications.waset.org/abstracts/32789/fish-diversity-of-two-lacustrine-wetlands-of-the-upper-benue-basin-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3653</span> Trends and Priorities for the Fishing Sector in the Republic of Moldova </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mihaela%20Munteanu%20Pila"> Mihaela Munteanu Pila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract The Republic of Moldova has a high potential for commercial growth of fish, due to its rich natural resources. Every year, national actions are implemented for the development and improvement of wetlands through acclimatization of hydrobionts, cleaning of adjacent waste areas and repopulation with valuable fish species. Due to aggressive environmental factors, anthropogenic factors, poaching or insufficient financial resources allocated to the authorities, there is a strong degradation of aquatic resources in the area. The main issue of the study is to identify priority areas for the development of fish farming in the area and maintain potential reserves to increase the efficiency of fish production in the pond. The rational operation of pond-type reservoirs will make it possible to maintain the breeding base of many fish species and will in future become a valuable source of local marketable products, in order to increase the productivity of fish in ponds and exploit the region's resources. The research looked at the problems that led to a decline in local fish production and identified a number of long-term measures needed to develop aquaculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Development" title=" Development"> Development</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a>, <a href="https://publications.waset.org/abstracts/search?q=Republic%20of%20Moldova" title=" Republic of Moldova"> Republic of Moldova</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a>, <a href="https://publications.waset.org/abstracts/search?q=fisheries" title=" fisheries"> fisheries</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a> </p> <a href="https://publications.waset.org/abstracts/128164/trends-and-priorities-for-the-fishing-sector-in-the-republic-of-moldova" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3652</span> Distribution and Community Structure of Fish in Relation with Water Physico-chemical Parameters of Floodplain Rivers in the Alitash National Park, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alamrew%20Eyayu">Alamrew Eyayu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Riverine ecosystems are highly exposed to different forms of human activities, and different water features can affect fish distribution in such habitats. Tributaries of the Abbay and Tekeze Basins are supporting all life-requesting activities in Ethiopia. Fisheries of these habitats are also the mainstay of livelihoods. However, brutal human activities are affecting these ecosystems and the fish therein. This study was thus undertaken to examine fish distribution and community structure in relation to water parameters in Ayima, Gelegu and Shinfa Rivers. 2719 fish specimens identified into 43 species were sampled using gillnets, cast nets and electro-fishing on a seasonal campaign. Based on frequency of occurrence (%FO), 5 species fell in the ‘euconstant occurrence’ category or their FO was ≥75%, while many species were in the ‘constant occurrence’ category. Among others, site depth, total phosphorus, dissolved oxygen, and river channel diameter were key environmental factors determining fish community structure. Similarity percentage produced an overall average Bray-Curtis dissimilarity of 60.8% between the fish communities of the three rivers. The final model accounted for 77.2% of the total variance in fish composition, and all canonical axes were significant (Monte Carlo test 499, p =0.002). Generally, this study was conducted in areas where no ecological studies are undertaken, and the results obtained from this study could be important for the sustainable utilization of Ethiopian fisheries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fish%20biology" title="fish biology">fish biology</a>, <a href="https://publications.waset.org/abstracts/search?q=fisheries%20socioeconomics" title=" fisheries socioeconomics"> fisheries socioeconomics</a>, <a href="https://publications.waset.org/abstracts/search?q=aquatic%20biodiversity" title=" aquatic biodiversity"> aquatic biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=fisheries%20management" title=" fisheries management"> fisheries management</a> </p> <a href="https://publications.waset.org/abstracts/190368/distribution-and-community-structure-of-fish-in-relation-with-water-physico-chemical-parameters-of-floodplain-rivers-in-the-alitash-national-park-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3651</span> Environmental Drivers of Ichthyofauna Species Diversity and Richness in the Lower Reaches of Warri River, a Typical Mangrove Ecosystem in the Niger Delta, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20O.%20Arimoro">F. O. Arimoro</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20N.%20Okonkwo"> F. N. Okonkwo</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Ikomi"> R. B. Ikomi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environmental determinants structuring species richness has been generating interest recently but we still lack an understanding of these patterns in various regions (e.g. Afrotropical), and how seasons help to structure these patterns. Our aim was to assessed the environmental drivers importance in regulating species richness and community structure of fish species. The lchthyofauna assemblage of Warri River, Niger Delta area of Nigeria was studied between August 2013 and July 2014. A total of 1152 individuals representing 43 species in 23 families and 30 genera were caught. Of the 43 species recorded, 67.4%, 53.5% and 67.4% of the species occurred in Stations 1, 2 and 3 respectively. Eight taxa representing 18.6% of the total abundance were ubiquitous. The claroteid, Chrysichthys walkeri and the cichlid, Chromidotilapia guentheri were the most dominant species accounting for 19.2% and 6.0% respectively of the total catch. The species richness and general diversity were relatively higher in station 1 although Jaccard similarity index revealed that stations 1 and 3 were significantly similar while station 2 showed complete dissimilarity with stations 1 and 3. Canonical correspondence analysis indicated that dissolved oxygen, electrical conductivity, total nitrogen, Biochemical Oxygen demand and temperature were important variables structuring the overall fish assemblages. The presence of appreciable number of juveniles in this water body suggests that the Warri River is a breeding and nursery ground for fish species particularly those of brackish origin. These findings indicate that the water body is still useful as a good fishing ground for the rural communities and every effort should be put in place to ensure its protection and conservation for the production of healthy fish. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chrysichthys%20walkeri" title="Chrysichthys walkeri">Chrysichthys walkeri</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20communities" title=" fish communities"> fish communities</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove%20ecosystem" title=" mangrove ecosystem"> mangrove ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20parameters" title=" physicochemical parameters"> physicochemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=Warri%20River" title=" Warri River"> Warri River</a> </p> <a href="https://publications.waset.org/abstracts/26899/environmental-drivers-of-ichthyofauna-species-diversity-and-richness-in-the-lower-reaches-of-warri-river-a-typical-mangrove-ecosystem-in-the-niger-delta-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3650</span> Sorting Fish by Hu Moments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Hern%C3%A1ndez-Ontiveros">J. M. Hernández-Ontiveros</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20E.%20Garc%C3%ADa-Guerrero"> E. E. García-Guerrero</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Inzunza-Gonz%C3%A1lez"> E. Inzunza-González</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20R.%20L%C3%B3pez-Bonilla"> O. R. López-Bonilla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the implementation of an algorithm that identifies and accounts different fish species: Catfish, Sea bream, Sawfish, Tilapia, and Totoaba. The main contribution of the method is the fusion of the characteristics of invariance to the position, rotation and scale of the Hu moments, with the proper counting of fish. The identification and counting is performed, from an image under different noise conditions. From the experimental results obtained, it is inferred the potentiality of the proposed algorithm to be applied in different scenarios of aquaculture production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=counting%20fish" title="counting fish">counting fish</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20processing" title=" digital image processing"> digital image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=invariant%20moments" title=" invariant moments"> invariant moments</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a> </p> <a href="https://publications.waset.org/abstracts/27652/sorting-fish-by-hu-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3649</span> Organochlorine and Organophosphorus Pesticide Residues in Fish Samples from Lake Chad, Baga, North Eastern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Akan">J. C. Akan</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20I.%20%20Abdulrahman"> F. I. Abdulrahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20M.%20Chellube"> Z. M. Chellube</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine the levels of some organochlorine (o, p-DDE, p,p’-DDD, o,p’-DDD, p,p’-DDT, p,p’-DDT, α-BHC, γ-BHC, lindane, Endosulfan sulphate, dieldrin and aldrin and organophosphorus (Dichlorvos, Diazinon, Chlorpyrifos, fenitrothion and Fenitrothion) pesticide residues in the gills, liver, stomach, kidney and flesh of four fish species (Tilapia zilli, Clarias anguillaris Hetrotis niloticus and Oreochronmis niloticus) between the periods of September 2010 to October, 2011. Samples were collected from Kwantan turare in Lake Chad, Baga, Borno State, Nigeria. Extraction of the fish samples and de-fattening of the fish sample extracts were performed using standard procedures. Analysis of the fish samples for pesticide residues were carried out using Shimadzu GC/MS (GC – 17A), equipped with fluorescence detector. Large differences in the levels of pesticide residues were observed between tissues within each fish. The concentrations of all the organophosphorus pesticides were higher in the organs of Oreochronmis niloticus, while Hetrotis niloticus shows the lowest. For organochlorine pesticides, the organs of Tilapia zilli showed the highest concentrations, while Hetrotis niloticus shows the lowest. The highest pesticide concentrations were observed in gills and liver tissues of all the species of fish study, while the lowest concentrations were observed in flesh. Based on the above results, it can therefore be concluded that the concentrations of pesticide in the four fish species study did exceed the permissible limits set by FAO and FEPA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organochlorine" title="organochlorine">organochlorine</a>, <a href="https://publications.waset.org/abstracts/search?q=organophosphorus" title=" organophosphorus"> organophosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=accumulation" title=" accumulation"> accumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=lake%20chad" title=" lake chad"> lake chad</a> </p> <a href="https://publications.waset.org/abstracts/1908/organochlorine-and-organophosphorus-pesticide-residues-in-fish-samples-from-lake-chad-baga-north-eastern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">700</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3648</span> Induced Breeding of Neolissochilus hexagonolepis Using Pituitary and Synthetic Hormone under the Agro-Climatic Condition of Meghalaya, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lydia%20Booney%20Jyrwa">Lydia Booney Jyrwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabindra%20Nath%20Bhuyan"> Rabindra Nath Bhuyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chocolate Mahseer (Neolissochilus hexagonolepis) is one of the Mahseer species inhabiting the North-eastern region of India and is a native species to the state of Meghalaya since it can adapt and grow well under the agro climatic conditions of the region. The natural population of this fish has been declining over the years from this part of the country. The natural population of this fish has been declining over the years from this part of the country. The fish is considered as one of the endangered species of the Mahseer group, which is having tremendous scope for culture, sports and tourism. But non-availability of quality seed is a hindrance for the culture of this fish. Thus induced breeding of the fish by hormonal administration with pituitary gland and synthetic hormones is the only reliable method to procure the pure seed of the fish. Chocolate Mahseer was successfully bred at the Hatchery Complex, St. Anthony’s College, Shillong, Meghalaya by using pituitary extract and synthetic hormone viz. ovaprim, ovatide and gonopro-FH. The dose standardized is @ 4mg/kg body weight to both male and female as 1st dose and @ 7.9 mg/kg body weight only to female as 2nd dose for pituitary extract and single dose @ 0.8 ml/kg body weight to female and @ 0.3 ml/kg body weight to male of both ovaprim and ovatide, while a single dose @ 0.9 ml/kg body weight to female and @ 0.3 ml/kg body weight to male of gonopro-FH. The doses are standardized after a series of trial and error experiment performed. The fecundity of the fish was 3500 eggs/ kg body weight. The final hatching percentage achieved was 60%. The survival rate of hatchling was 50% up to fry stage. The use of synthetic hormone and positive response of the fish to the hormone will go in long way for production of quality seed of the fish which in turn help in culture of the species as the fish can be a very good candidate species for the culture in the state. This study will also help in the ranching of the fish in the natural habitat leading to conservation of the species. However, the study should be continued further for the large scale production of seeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chocolate%20mahseer" title="chocolate mahseer">chocolate mahseer</a>, <a href="https://publications.waset.org/abstracts/search?q=induced%20breeding" title=" induced breeding"> induced breeding</a>, <a href="https://publications.waset.org/abstracts/search?q=pituitary%20extract" title=" pituitary extract"> pituitary extract</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20hormone" title=" synthetic hormone"> synthetic hormone</a> </p> <a href="https://publications.waset.org/abstracts/58599/induced-breeding-of-neolissochilus-hexagonolepis-using-pituitary-and-synthetic-hormone-under-the-agro-climatic-condition-of-meghalaya-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3647</span> Growth Pattern, Condition Factor and Relative Condition Factor of Twenty Important Demersal Marine Fish Species in Nigerian Coastal Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omogoriola%20Hannah%20Omoloye">Omogoriola Hannah Omoloye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish is a key ingredient on the global menu, a vital factor in the global environment and an important basis for livelihood worldwide1. The length – weight relationships (LWRs) is of great importance in fishery assessment2,3. Its importance is pronounced in estimated the average weight at a given length group4 and in assessing the relative well being of a fish population5. Length and weight measurement in conjunction with age data can give information on the stock composition, age at maturity, life span, mortality, growth and production4,5,6,7. In addition, the data on length and weight can also provides important clues to climatic and environmental changes and the change in human consumption practices8,9. However, the size attained by the individual fish may also vary because of variation in food supply, and these in turn may reflect variation in climatic parameters and in the supply of nutrient or in the degree of competition for food. Environment deterioration, for example, may reduce growth rates and will cause a decrease in the average age of the fish. The condition factor and the relative condition factor10 are the quantitative parameters of the well being state of the fish and reflect recent feeding condition of the fish. It is based on the hypothesis that heavier fish of a given length are in better condition11. This factor varies according to influences of physiological factors, fluctuating according to different stages of the development. Condition factor has been used as an index of growth and feeding intensity12. Condition factor decrease with increase in length 12,13 and also influences the reproductive cycle in fish14. The objective here is to determine the length-weight relationships and condition factor for direct use in fishery assessment and for future comparisons between populations of the same species at different locations. To provide quantitative information on the biology of marine fish species trawl from Nigeria coastal water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition%20factor" title="condition factor">condition factor</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20pattern" title=" growth pattern"> growth pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20fish%20species" title=" marine fish species"> marine fish species</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigerian%20Coastal%20water" title=" Nigerian Coastal water"> Nigerian Coastal water</a> </p> <a href="https://publications.waset.org/abstracts/28437/growth-pattern-condition-factor-and-relative-condition-factor-of-twenty-important-demersal-marine-fish-species-in-nigerian-coastal-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3646</span> Changes in Fish and Shellfish in Thondamanaru Lagoon, Jaffna, Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Piratheepa">S. Piratheepa</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Rajendramani"> G. Rajendramani</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Eswaramohan"> T. Eswaramohan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current study was conducted for one year from June 2014 to May 2015, with an objective of identification of fish and shellfish diversity in the Thondamanaru lagoon ecosystem. In this study, 11 species were identified from Thondamanaru lagoon, Jaffna, Sri Lanka. There are four fishes, <em>Chanos chanos</em>, <em>Hemirhamphus </em>sp.<em>, Nematalosa </em>sp. and <em>Mugil cephalus</em> and seven shell fishes, <em>Penaeus indicus, Penaeus monodon, Penaeus latisulcatus, Penaeus semisulcatus, Metapenaeus monoceros</em>, <em>Portunus pelagicus</em> and<em> Scylla serrata</em>. Species composition of <em>Mugil cephalus</em>, <em>Penaeus indicus</em> and <em>Metapenaeus</em> <em>monoceros</em> was high during rainy seasons. However, lagoon is being subjected to adverse environmental conditions that threaten its fish and shellfish biodiversity due to lack of saline water availability and changes in rainfall pattern. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diversity" title="diversity">diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20fish" title=" shell fish"> shell fish</a>, <a href="https://publications.waset.org/abstracts/search?q=shrimp" title=" shrimp"> shrimp</a>, <a href="https://publications.waset.org/abstracts/search?q=Thondamanaru%20lagoon" title=" Thondamanaru lagoon"> Thondamanaru lagoon</a> </p> <a href="https://publications.waset.org/abstracts/48936/changes-in-fish-and-shellfish-in-thondamanaru-lagoon-jaffna-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fish%20species&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fish%20species&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fish%20species&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fish%20species&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fish%20species&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fish%20species&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fish%20species&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fish%20species&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fish%20species&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fish%20species&amp;page=122">122</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fish%20species&amp;page=123">123</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fish%20species&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10