CINXE.COM

Search results for: response characteristic

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: response characteristic</title> <meta name="description" content="Search results for: response characteristic"> <meta name="keywords" content="response characteristic"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="response characteristic" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="response characteristic"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6599</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: response characteristic</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6599</span> Improved Estimation Strategies of Sensitive Characteristics Using Scrambled Response Techniques in Successive Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Suman">S. Suman</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Singh"> G. N. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work is an effort to analyse the consequences of scrambled response technique to estimate the current population mean in two-occasion successive sampling when the characteristic of interest is sensitive in nature. The generalized estimation procedures have been proposed using sensitive auxiliary variables under additive and multiplicative scramble models. The properties of resultant estimators have been deeply examined. Simulation, as well as empirical studies, are carried out to evaluate the performances of the proposed estimators with respect to other competent estimators. The results of our studies suggest that the proposed estimation procedures are highly effective under the presence of non-response situation. The result of this study also suggests that additive scrambled response model is a better choice in the perspective of cost of the survey and privacy of the respondents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scrambled%20response" title="scrambled response">scrambled response</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitive%20characteristic" title=" sensitive characteristic"> sensitive characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=successive%20sampling" title=" successive sampling"> successive sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20replacement%20strategy" title=" optimum replacement strategy"> optimum replacement strategy</a> </p> <a href="https://publications.waset.org/abstracts/95355/improved-estimation-strategies-of-sensitive-characteristics-using-scrambled-response-techniques-in-successive-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6598</span> Proficient Estimation Procedure for a Rare Sensitive Attribute Using Poisson Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Suman">S. Suman</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Singh"> G. N. Singh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present manuscript addresses the estimation procedure of population parameter using Poisson probability distribution when characteristic under study possesses a rare sensitive attribute. The generalized form of unrelated randomized response model is suggested in order to acquire the truthful responses from respondents. The resultant estimators have been proposed for two situations when the information on an unrelated rare non-sensitive characteristic is known as well as unknown. The properties of the proposed estimators are derived, and the measure of confidentiality of respondent is also suggested for respondents. Empirical studies are carried out in the support of discussed theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Poisson%20distribution" title="Poisson distribution">Poisson distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=randomized%20response%20model" title=" randomized response model"> randomized response model</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20sensitive%20attribute" title=" rare sensitive attribute"> rare sensitive attribute</a>, <a href="https://publications.waset.org/abstracts/search?q=non-sensitive%20attribute" title=" non-sensitive attribute"> non-sensitive attribute</a> </p> <a href="https://publications.waset.org/abstracts/95219/proficient-estimation-procedure-for-a-rare-sensitive-attribute-using-poisson-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6597</span> Acoustic Room Impulse Response Computation with Image Sources and Frequency Dependent Boundary Reflection Coefficients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Gandhi">Pratik Gandhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavitha%20Chandra"> Kavitha Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Thompson"> Charles Thompson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A computational model of the acoustic room impulse response between transmitters and receivers located in an enclosed cavity under the influence of frequency-dependent reflection coefficients of the walls is presented. The characteristic features of the impulse responses that differentiate these results from frequency-independent reflecting surfaces are discussed. The image-source model is derived from the first principle solution to Green's function of the acoustic wave equation. The post-processing of the computed impulse response with a band-pass filter to better represents the response of a loud-speaker is demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20room%20impulse%20response" title="acoustic room impulse response">acoustic room impulse response</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20dependent%20reflection%20coefficients" title=" frequency dependent reflection coefficients"> frequency dependent reflection coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=Green%27s%20function" title=" Green&#039;s function"> Green&#039;s function</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20model" title=" image model"> image model</a> </p> <a href="https://publications.waset.org/abstracts/152987/acoustic-room-impulse-response-computation-with-image-sources-and-frequency-dependent-boundary-reflection-coefficients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6596</span> Evaluation of Urban-Rural Integration of Characteristic Towns in Yunnan Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huang%20Yong">Huang Yong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Qianting"> Chen Qianting</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Shurong"> Zhao Shurong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to identify the role and effect of Characteristic Towns as an important means to promote urban-rural integration, this paper uses Flow Theory and complex network analysis methods to jointly construct the identification path of urban-rural integration capabilities of Characteristic Towns. Take the National Characteristic Towns of Yunnan Province as the empirical objects to identify their role laws. The study found that in the implementation of the National Characteristic Town Project in Yunnan Province, (1) the population is more susceptible to the impact of the Characteristic Town Project than the technical elements, but the stability is poor; (2) The flow capacity of urban and rural technical elements is weak, and the quality of the enterprise cooperation network in general; (3) Compared with the batch of Characteristic Towns in 2016, its ability to promote urban-rural integration is higher in 2017; (4) The role of the Characteristic Town Project on urban-rural integration focuses on the improvement of the number of urban and rural flow elements. This paper analyzes the mode of the role of Characteristic Towns on urban-rural integration from the perspective of ‘flow,’ establishes a research paradigm for evaluating the role of Characteristic Towns in urban-rural integration capabilities, and builds a path for the application of Characteristic Towns to support the realization of urban-rural integration goals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20town" title="characteristic town">characteristic town</a>, <a href="https://publications.waset.org/abstracts/search?q=urban-rural%20integration" title=" urban-rural integration"> urban-rural integration</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20theory" title=" flow theory"> flow theory</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20network%20analysis" title=" complex network analysis"> complex network analysis</a> </p> <a href="https://publications.waset.org/abstracts/152072/evaluation-of-urban-rural-integration-of-characteristic-towns-in-yunnan-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6595</span> An Experimental Study on the Optimum Installation of Fire Detector for Early Stage Fire Detecting in Rack-Type Warehouses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ki%20Ok%20Choi">Ki Ok Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Ho%20Hong"> Sung Ho Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Suck%20Kim"> Dong Suck Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Don%20Mook%20Choi"> Don Mook Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rack type warehouses are different from general buildings in the kinds, amount, and arrangement of stored goods, so the fire risk of rack type warehouses is different from those buildings. The fire pattern of rack type warehouses is different in combustion characteristic and storing condition of stored goods. The initial fire burning rate is different in the surface condition of materials, but the running time of fire is closely related with the kinds of stored materials and stored conditions. The stored goods of the warehouse are consisted of diverse combustibles, combustible liquid, and so on. Fire detection time may be delayed because the residents are less than office and commercial buildings. If fire detectors installed in rack type warehouses are inadaptable, the fire of the warehouse may be the great fire because of delaying of fire detection. In this paper, we studied what kinds of fire detectors are optimized in early detecting of rack type warehouse fire by real-scale fire tests. The fire detectors used in the tests are rate of rise type, fixed type, photo electric type, and aspirating type detectors. We considered optimum fire detecting method in rack type warehouses suggested by the response characteristic and comparative analysis of the fire detectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire%20detector" title="fire detector">fire detector</a>, <a href="https://publications.waset.org/abstracts/search?q=rack" title=" rack"> rack</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20characteristic" title=" response characteristic"> response characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=warehouse" title=" warehouse"> warehouse</a> </p> <a href="https://publications.waset.org/abstracts/56376/an-experimental-study-on-the-optimum-installation-of-fire-detector-for-early-stage-fire-detecting-in-rack-type-warehouses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">745</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6594</span> Characteristic Function in Estimation of Probability Distribution Moments </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20S.%20Timofeev">Vladimir S. Timofeev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article the problem of distributional moments estimation is considered. The new approach of moments estimation based on usage of the characteristic function is proposed. By statistical simulation technique, author shows that new approach has some robust properties. For calculation of the derivatives of characteristic function there is used numerical differentiation. Obtained results confirmed that author’s idea has a certain working efficiency and it can be recommended for any statistical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20function" title="characteristic function">characteristic function</a>, <a href="https://publications.waset.org/abstracts/search?q=distributional%20moments" title=" distributional moments"> distributional moments</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness" title=" robustness"> robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=outlier" title=" outlier"> outlier</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20estimation%20problem" title=" statistical estimation problem"> statistical estimation problem</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20simulation" title=" statistical simulation"> statistical simulation</a> </p> <a href="https://publications.waset.org/abstracts/11779/characteristic-function-in-estimation-of-probability-distribution-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6593</span> Time Effective Structural Frequency Response Testing with Oblique Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khoo%20Shin%20Yee">Khoo Shin Yee</a>, <a href="https://publications.waset.org/abstracts/search?q=Lian%20Yee%20Cheng"> Lian Yee Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ong%20Zhi%20Chao"> Ong Zhi Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zubaidah%20Ismail"> Zubaidah Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Siamak%20Noroozi"> Siamak Noroozi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural frequency response testing is accurate in identifying the dynamic characteristic of a machinery structure. In practical perspective, conventional structural frequency response testing such as experimental modal analysis with impulse technique (also known as &ldquo;impulse testing&rdquo;) has limitation especially on its long acquisition time. The high acquisition time is mainly due to the redundancy procedure where the engineer has to repeatedly perform the test in 3 directions, namely the axial-, horizontal- and vertical-axis, in order to comprehensively define the dynamic behavior of a 3D structure. This is unfavorable to numerous industries where the downtime cost is high. This study proposes to reduce the testing time by using oblique impact. Theoretically, a single oblique impact can induce significant vibration responses and vibration modes in all the 3 directions. Hence, the acquisition time with the implementation of the oblique impulse technique can be reduced by a factor of three (i.e. for a 3D dynamic system). This study initiates an experimental investigation of impulse testing with oblique excitation. A motor-driven test rig has been used for the testing purpose. Its dynamic characteristic has been identified using the impulse testing with the conventional normal impact and the proposed oblique impact respectively. The results show that the proposed oblique impulse testing is able to obtain all the desired natural frequencies in all 3 directions and thus providing a feasible solution for a fast and time effective way of conducting the impulse testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20response%20function" title="frequency response function">frequency response function</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20testing" title=" impact testing"> impact testing</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20angle" title=" oblique angle"> oblique angle</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20impact" title=" oblique impact"> oblique impact</a> </p> <a href="https://publications.waset.org/abstracts/90683/time-effective-structural-frequency-response-testing-with-oblique-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6592</span> Axle Load Estimation of Moving Vehicles Using BWIM Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changgil%20Lee">Changgil Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although vehicle driving test for the development of BWIM system is necessary, but it needs much cost and time in addition application of various driving condition. Thus, we need the numerical-simulation method resolving the cost and time problems of vehicle driving test and the way of measuring response of bridge according to the various driving condition. Using the precision analysis model reflecting the dynamic characteristic is contributed to increase accuracy in numerical simulation. In this paper, we conduct a numerical simulation to apply precision analysis model, which reflects the dynamic characteristic of bridge using Bridge Weigh-in-Motion technique and suggest overload vehicle enforcement technology using precision analysis model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20weigh-in-motion%28BWIM%29%20system" title="bridge weigh-in-motion(BWIM) system">bridge weigh-in-motion(BWIM) system</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20analysis%20model" title=" precision analysis model"> precision analysis model</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristic%20of%20bridge" title=" dynamic characteristic of bridge"> dynamic characteristic of bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/49092/axle-load-estimation-of-moving-vehicles-using-bwim-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6591</span> Research on Planning Strategy of Characteristic Town from the Perspective of Ecological Concept: A Case Study on Hangzhou Dream Town in Zhejiang</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohan%20Ye">Xiaohan Ye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under the new normal situation, some urban spaces with the industrial base and regional features in Zhejiang, China have been selected to build a characteristic town, a kind of environmentally-friendly development platform with city-industry integrated, in an attempt to achieve the most optimized layout of productivity with the least space resource. After analysis on the connotation, mechanism and mode of characteristic town in Zhejiang, it is suggested in this paper that characteristic town should take improving the regional ecological environment as an important object in planning strategy from the perspective of ecological concept. Improved environmental quality, optimized resource allocation, and compact industrial distribution should be realized so as to drive the regional green and sustainable development. Finally, this paper analyzes location selection, industrial distribution, spatial organization and environment construction based on the exploration of the dream town of Zhejiang province, the first batch of provincial-level characteristic towns to demonstrate how to apply the ecological concept to the design of characteristic town. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20town" title="characteristic town">characteristic town</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20concept" title=" ecological concept"> ecological concept</a>, <a href="https://publications.waset.org/abstracts/search?q=Hangzhou%20dream%20town" title=" Hangzhou dream town"> Hangzhou dream town</a>, <a href="https://publications.waset.org/abstracts/search?q=planning%20strategy" title=" planning strategy"> planning strategy</a> </p> <a href="https://publications.waset.org/abstracts/67261/research-on-planning-strategy-of-characteristic-town-from-the-perspective-of-ecological-concept-a-case-study-on-hangzhou-dream-town-in-zhejiang" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6590</span> Relationship between Response of the Resistive Sensors on the Chosen Volatile Organic Compounds (VOCs) and Their Concentration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marek%20Gancarz">Marek Gancarz</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Nawrocka"> Agnieszka Nawrocka</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Rusinek"> Robert Rusinek</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Tadla"> Marcin Tadla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volatile organic compounds (VOCs) are the fungi metabolites in the gaseous form produced during improper storage of agricultural commodities (e.g. grain, food). The spoilt commodities produce a wide range of VOCs including alcohols, esters, aldehydes, ketones, alkanes, alkenes, furans, phenols etc. The characteristic VOCs and odours can be determined by using electronic nose (e-Nose) which contains a matrix of different kinds of sensors e.g. resistive sensors. The aim of the present studies was to determine relationship between response of the resistive sensors on the chosen volatiles and their concentration. According to the literature, it was chosen volatiles characteristic for the cereals: ethanol, 3-methyl-1-butanol and hexanal. Analysis of the sensor signals shows that a signal shape is different for the different substances. Moreover, each VOC signal gives information about a maximum of the normalized sensor response (R/Rmax), an impregnation time (tIM) and a cleaning time at half maximum of R/Rmax (tCL). These three parameters can be regarded as a ‘VOC fingerprint’. Seven resistive sensors (TGS2600-B00, TGS2602-B00, TGS2610-C00, TGS2611-C00, TGS2611-E00, TGS2612-D00, TGS2620-C00) produced by Figaro USA Inc., and one (AS-MLV-P2) produced by AMS AG, Austria were used. Two out of seven sensors (TGS2611-E00, TGS2612-D00) did not react to the chosen VOCs. The most responsive sensor was AS-MLV-P2. The research was supported by the National Centre for Research and Development (NCBR), Grant No. PBS2/A8/22/2013. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20commodities" title="agricultural commodities">agricultural commodities</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20compounds" title=" organic compounds"> organic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=resistive%20sensors" title=" resistive sensors"> resistive sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile" title=" volatile"> volatile</a> </p> <a href="https://publications.waset.org/abstracts/43240/relationship-between-response-of-the-resistive-sensors-on-the-chosen-volatile-organic-compounds-vocs-and-their-concentration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6589</span> Toward a Characteristic Optimal Power Flow Model for Temporal Constraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zongjie%20Wang">Zongjie Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhizhong%20Guo"> Zhizhong Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While the regular optimal power flow model focuses on a single time scan, the optimization of power systems is typically intended for a time duration with respect to a desired objective function. In this paper, a temporal optimal power flow model for a time period is proposed. To reduce the computation burden needed for calculating temporal optimal power flow, a characteristic optimal power flow model is proposed, which employs different characteristic load patterns to represent the objective function and security constraints. A numerical method based on the interior point method is also proposed for solving the characteristic optimal power flow model. Both the temporal optimal power flow model and characteristic optimal power flow model can improve the systems’ desired objective function for the entire time period. Numerical studies are conducted on the IEEE 14 and 118-bus test systems to demonstrate the effectiveness of the proposed characteristic optimal power flow model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20power%20flow" title="optimal power flow">optimal power flow</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20period" title=" time period"> time period</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=economy" title=" economy"> economy</a> </p> <a href="https://publications.waset.org/abstracts/61552/toward-a-characteristic-optimal-power-flow-model-for-temporal-constraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6588</span> Characteristic Components in Cornusofficinalis to AGEs Injury Protective Effect and Mechanism of HUVEC </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Han%20Tao">Yu-Han Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-Qin%20Xu"> Hui-Qin Xu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aimed to explain the protective effect of Cornus officinalis characteristic components, under AGEs damage to HUVEC. After cultured HUVEC adhered, Cornus officinalis characteristic components such as loganin, morroniside, oleanolic acid, ursolic acid and aminoguanidine (positive control dug) hatched, after 1h the AGEs (200 mg/L) were added. After 24h, LDH, SOD, MDA, NO, ET, and AngⅡ, TGF-β, IL-1β, ROS in the supernatant were determined. The results showed the Cornus officinalis characteristic compounds could improve vitality of SOD, NO, reduce the MDA, ET, AngⅡ, TGF-β, IL-1β, ROS significantly when compared with the model groug. Loganin, oleanic acid, ursolic acid, had significant protective effect on AGEs injured HUVEC. As a conclusion, characteristic components in Cornus officinalis had a positive effect after HUVEC injured by AGEs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cornus%20officinalis" title="Cornus officinalis">Cornus officinalis</a>, <a href="https://publications.waset.org/abstracts/search?q=morroniside" title=" morroniside"> morroniside</a>, <a href="https://publications.waset.org/abstracts/search?q=oganin" title=" oganin"> oganin</a>, <a href="https://publications.waset.org/abstracts/search?q=oleanolic%20acid" title=" oleanolic acid"> oleanolic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=ursolic%20acid" title=" ursolic acid"> ursolic acid</a> </p> <a href="https://publications.waset.org/abstracts/2916/characteristic-components-in-cornusofficinalis-to-ages-injury-protective-effect-and-mechanism-of-huvec" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6587</span> A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyu%20Jin%20Kim">Kyu Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20Kwan%20Oh"> Byung Kwan Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo%20Seon%20Park"> Hyo Seon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title="structural health monitoring">structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title=" dynamic response"> dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20network" title=" radial basis function network"> radial basis function network</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/41138/a-prediction-model-for-dynamic-responses-of-building-from-earthquake-based-on-evolutionary-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6586</span> Classifying and Analysis 8-Bit to 8-Bit S-Boxes Characteristic Using S-Box Evaluation Characteristic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Luqman">Muhammad Luqman</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Kurniawan"> Yusuf Kurniawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> S-Boxes is one of the linear parts of the cryptographic algorithm. The existence of S-Box in the cryptographic algorithm is needed to maintain non-linearity of the algorithm. Nowadays, modern cryptographic algorithms use an S-Box as a part of algorithm process. Despite the fact that several cryptographic algorithms today reuse theoretically secure and carefully constructed S-Boxes, there is an evaluation characteristic that can measure security properties of S-Boxes and hence the corresponding primitives. Analysis of an S-Box usually is done using manual mathematics calculation. Several S-Boxes are presented as a Truth Table without any mathematical background algorithm. Then, it’s rather difficult to determine the strength of Truth Table S-Box without a mathematical algorithm. A comprehensive analysis should be applied to the Truth Table S-Box to determine the characteristic. Several important characteristics should be owned by the S-Boxes, they are Nonlinearity, Balancedness, Algebraic degree, LAT, DAT, differential delta uniformity, correlation immunity and global avalanche criterion. Then, a comprehensive tool will be present to automatically calculate the characteristics of S-Boxes and determine the strength of S-Box. Comprehensive analysis is done on a deterministic process to produce a sequence of S-Boxes characteristic and give advice for a better S-Box construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryptographic%20properties" title="cryptographic properties">cryptographic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Truth%20Table%20S-Boxes" title=" Truth Table S-Boxes"> Truth Table S-Boxes</a>, <a href="https://publications.waset.org/abstracts/search?q=S-Boxes%20characteristic" title=" S-Boxes characteristic"> S-Boxes characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=deterministic%20process" title=" deterministic process"> deterministic process</a> </p> <a href="https://publications.waset.org/abstracts/65017/classifying-and-analysis-8-bit-to-8-bit-s-boxes-characteristic-using-s-box-evaluation-characteristic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6585</span> Response of Vibration and Damping System of UV Irradiated Renewable Biopolymer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anika%20Zafiah%20M.%20Rus">Anika Zafiah M. Rus</a>, <a href="https://publications.waset.org/abstracts/search?q=Nik%20Normunira%20Mat%20Hassan"> Nik Normunira Mat Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biopolymer made from renewable material are one of the most important group of polymer because of their versatility and they can be manufactured in a wide range of densities and stiffness. In this project, biopolymer based on waste vegetable oil were synthesized and crosslink with commercial polymethane polyphenyl isocyanate (known as BF).The BF was compressed by using hot compression moulding technique at 90 oC based on the evaporation of volatile matter and known as compress biopolymer (CB). The density, vibration and damping characteristic of CB were determined after UV irradiation. Treatment with titanium dioxide (TiO2) was found to affect the physical property of compress biopolymer composite (CBC). The density of CBC samples was steadily increased with an increase of UV irradiation time and TiO2 loading. The highest density of CBC samples is at 10 % of TiO2 loading of 1.1088 g/cm3 due to the amount of filler loading. The vibration and damping characteristic of CBC samples was generated at displacements of 1 mm and 1.5 mm and acceleration of 0.1 G and 0.15 G base excitation according to ASTM D3580-9. It was revealed that, the vibration and damping characteristic of CBC samples is significantly increased with the increasing of UV irradiation time, lowest thickness and percentages of TiO2 loading at the frequency range of 15 - 25 Hz. Therefore, this study indicated that the damping property of CBC could be improved upon prolonged exposure to UV irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopolymer%20flexible%20foam" title="biopolymer flexible foam">biopolymer flexible foam</a>, <a href="https://publications.waset.org/abstracts/search?q=TGA" title=" TGA"> TGA</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20irradiation" title=" UV irradiation"> UV irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20and%20damping" title=" vibration and damping"> vibration and damping</a> </p> <a href="https://publications.waset.org/abstracts/16776/response-of-vibration-and-damping-system-of-uv-irradiated-renewable-biopolymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6584</span> Analysis of the Engineering Judgement Influence on the Selection of Geotechnical Parameters Characteristic Values</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Ivandic">K. Ivandic</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Dodigovic"> F. Dodigovic</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Stuhec"> D. Stuhec</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Strelec"> S. Strelec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A characteristic value of certain geotechnical parameter results from an engineering assessment. Its selection has to be based on technical principles and standards of engineering practice. It has been shown that the results of engineering assessment of different authors for the same problem and input data are significantly dispersed. A survey was conducted in which participants had to estimate the force that causes a 10 cm displacement at the top of a axially in-situ compressed pile. Fifty experts from all over the world took part in it. The lowest estimated force value was 42% and the highest was 133% of measured force resulting from a mentioned static pile load test. These extreme values result in significantly different technical solutions to the same engineering task. In case of selecting a characteristic value of a geotechnical parameter the importance of the influence of an engineering assessment can be reduced by using statistical methods. An informative annex of Eurocode 1 prescribes the method of selecting the characteristic values of material properties. This is followed by Eurocode 7 with certain specificities linked to selecting characteristic values of geotechnical parameters. The paper shows the procedure of selecting characteristic values of a geotechnical parameter by using a statistical method with different initial conditions. The aim of the paper is to quantify an engineering assessment in the example of determining a characteristic value of a specific geotechnical parameter. It is assumed that this assessment is a random variable and that its statistical features will be determined. For this purpose, a survey research was conducted among relevant experts from the field of geotechnical engineering. Conclusively, the results of the survey and the application of statistical method were compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20values" title="characteristic values">characteristic values</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20judgement" title=" engineering judgement"> engineering judgement</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode%207" title=" Eurocode 7"> Eurocode 7</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20methods" title=" statistical methods"> statistical methods</a> </p> <a href="https://publications.waset.org/abstracts/87290/analysis-of-the-engineering-judgement-influence-on-the-selection-of-geotechnical-parameters-characteristic-values" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6583</span> Boundary Conditions for 2D Site Response Analysis in OpenSees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Eskandarighadi">M. Eskandarighadi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20R.%20McGann"> C. R. McGann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is observed from past experiences of earthquakes that local site conditions can significantly affect the strong ground motion characteristicssuch as frequency content, amplitude, and duration of seismic waves. The most common method for investigating site response is one-dimensional seismic site response analysis. The infinite horizontal length of the model and the homogeneous characteristic of the soil are crucial assumptions of this method. One boundary condition that can be used in the sides is tying the sides horizontally for vertical 1D wave propagation. However, 1D analysis cannot account for the 2D nature of wave propagation in the condition where the soil profile is not fully horizontal or has heterogeneity within layers. Therefore, 2D seismic site response analysis can be used to take all of these limitations into account for a better understanding of local site conditions. Different types of boundary conditions can be appliedin 2D site response models, such as tied boundary condition, massive columns, and free-field boundary condition. The tied boundary condition has been used in 1D analysis, which is useful for 1D wave propagation. Employing two massive columns at the sides is another approach for capturing the 2D nature of wave propagation. Free-field boundary condition can simulate the free-field motion that would exist far from the domain of interest. The goal for free-field boundary condition is to minimize the unwanted reflection from sides. This research focuses on the comparison between these methods with examples and discusses the details and limitations of each of these boundary conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20condition" title="boundary condition">boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=free-field" title=" free-field"> free-field</a>, <a href="https://publications.waset.org/abstracts/search?q=massive%20columns" title=" massive columns"> massive columns</a>, <a href="https://publications.waset.org/abstracts/search?q=opensees" title=" opensees"> opensees</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20response%20analysis" title=" site response analysis"> site response analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation" title=" wave propagation"> wave propagation</a> </p> <a href="https://publications.waset.org/abstracts/158091/boundary-conditions-for-2d-site-response-analysis-in-opensees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6582</span> Characteristic Study on Conventional and Soliton Based Transmission System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhupeshwaran%20Mani">Bhupeshwaran Mani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Radha"> S. Radha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Jawahar"> A. Jawahar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sivasubramanian"> A. Sivasubramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Here, we study the characteristic feature of conventional (ON-OFF keying) and soliton based transmission system. We consider 20 Gbps transmission system implemented with Conventional Single Mode Fiber (C-SMF) to examine the role of Gaussian pulse which is the characteristic of conventional propagation and hyperbolic-secant pulse which is the characteristic of soliton propagation in it. We note the influence of these pulses with respect to different dispersion lengths and soliton period in conventional and soliton system, respectively, and evaluate the system performance in terms of quality factor. From the analysis, we could prove that the soliton pulse has more consistent performance even for long distance without dispersion compensation than the conventional system as it is robust to dispersion. For the length of transmission of 200 Km, soliton system yielded Q of 33.958 while the conventional system totally exhausted with Q=0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion%20length" title="dispersion length">dispersion length</a>, <a href="https://publications.waset.org/abstracts/search?q=retrun-to-zero%20%28rz%29" title=" retrun-to-zero (rz)"> retrun-to-zero (rz)</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton" title=" soliton"> soliton</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton%20period" title=" soliton period"> soliton period</a>, <a href="https://publications.waset.org/abstracts/search?q=q-factor" title=" q-factor"> q-factor</a> </p> <a href="https://publications.waset.org/abstracts/30789/characteristic-study-on-conventional-and-soliton-based-transmission-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6581</span> 3D Receiver Operator Characteristic Histogram</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaoli%20Zhang">Xiaoli Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiongfei%20Li"> Xiongfei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuncong%20Feng"> Yuncong Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ROC curves, as a widely used evaluating tool in machine learning field, are the tradeoff of true positive rate and negative rate. However, they are blamed for ignoring some vital information in the evaluation process, such as the amount of information about the target that each instance carries, predicted score given by each classification model to each instance. Hence, in this paper, a new classification performance method is proposed by extending the Receiver Operator Characteristic (ROC) curves to 3D space, which is denoted as 3D ROC Histogram. In the histogram, the <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver%20operating%20characteristic%20histogram" title=" receiver operating characteristic histogram"> receiver operating characteristic histogram</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20prediction" title=" hardness prediction"> hardness prediction</a> </p> <a href="https://publications.waset.org/abstracts/44143/3d-receiver-operator-characteristic-histogram" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6580</span> ESS Control Strategy for Primary Frequency Response in Microgrid Considering Ramp Rate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ho-Jun%20Jo">Ho-Jun Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Wook-Won%20Kim"> Wook-Won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Sung%20Kim"> Yong-Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-O%20Kim"> Jin-O Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of ESS (Energy Storage Systems) in the future grids has been the solution of the microgrid. However, high investment costs necessitate accurate modeling and control strategy of ESS to justify its economic viability and further underutilization. Therefore, the reasonable control strategy for ESS which is subjected to generator and usage helps to curtail the cost of investment and operation costs. The rated frequency in power system is decreased when the load is increasing unexpectedly; hence the thermal power is operated at the capacity of only its 95% for the Governor Free (GF) to adjust the frequency as reserve (5%) in practice. The ESS can be utilized with governor at the same time for the frequency response due to characteristic of its fast response speed and moreover, the cost of ESS is declined rapidly to the reasonable price. This paper presents the ESS control strategy to extend usage of the ESS taken account into governor’s ramp rate and reduce the governor’s intervention as well. All results in this paper are simulated by MATLAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20grid" title="micro grid">micro grid</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20systems" title=" energy storage systems"> energy storage systems</a>, <a href="https://publications.waset.org/abstracts/search?q=ramp%20rate" title=" ramp rate"> ramp rate</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20strategy" title=" control strategy"> control strategy</a> </p> <a href="https://publications.waset.org/abstracts/39143/ess-control-strategy-for-primary-frequency-response-in-microgrid-considering-ramp-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6579</span> New Modification Negative Stiffness Device with Constant Force-Displacement Characteristic for Seismic Protection of Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huan%20Li">Huan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianchun%20Li"> Jianchun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yancheng%20Li"> Yancheng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yu"> Yang Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a seismic protection method of civil and engineering structures, weakening and damping is effective during the elastic region, while it somehow leads to the early yielding of the entire structure accompanying with large excursions and permanent deformations. Adaptive negative stiffness device is attractive for realizing yielding property without changing the stiffness of the primary structure. In this paper, a new modification negative stiffness device (MNSD) with constant force-displacement characteristic is proposed by combining a magnetic negative stiffness spring, a piecewise linear positive spring and a passive damper with a certain adaptive stiffness device. The proposed passive control MNSD preserves no effect under small excitation. When the displacement amplitude increases beyond the pre-defined yielding point, the force-displacement characteristics of the system with MNSD will keep constant. The seismic protection effect of the MNSD is evaluated by employing it to a single-degree-of-freedom system under sinusoidal excitation, and real earthquake waves. By comparative analysis, the system with MNSD performs better on reducing acceleration and displacement response under different displacement amplitudes than the scenario without it and the scenario with unmodified certain adaptive stiffness device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=negative%20stiffness" title="negative stiffness">negative stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20stiffness" title=" adaptive stiffness"> adaptive stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=weakening%20and%20yielding" title=" weakening and yielding"> weakening and yielding</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20force-displacement%20characteristic" title=" constant force-displacement characteristic"> constant force-displacement characteristic</a> </p> <a href="https://publications.waset.org/abstracts/125646/new-modification-negative-stiffness-device-with-constant-force-displacement-characteristic-for-seismic-protection-of-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6578</span> Programmed Cell Death in Datura and Defensive Plant Response toward Tomato Mosaic Virus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Alhuqail">Asma Alhuqail</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagwa%20Aref"> Nagwa Aref</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Programmed cell death resembles a real nature active defense in Datura metel against TMV after three days of virus infection. Physiological plant response was assessed for asymptomatic healthy and symptomatic infected detached leaves. The results indicated H2O2 and Chlorophyll-a as the most potential parameters. Chlorophyll-a was considered the only significant predictor variant for the H2O2 dependent variant with a P value of 0.001 and R-square of 0.900. The plant immune response was measured within three days of virus infection using the cutoff value of H2O2 (61.095 lmol/100 mg) and (63.201 units) for the tail moment in the Comet Assay. Their percentage changes were 255.12% and 522.40% respectively which reflects the stress of virus infection in the plant. Moreover, H2O2 showed 100% specificity and sensitivity in the symptomatic infected group using the receiver-operating characteristic (ROC). All tested parameters in the symptomatic infected group had significant correlations with twenty-five positive and thirty-one negative correlations where the P value was <0.05 and 0.01. Chlorophyll-a parameter had a crucial role of highly significant correlation between total protein and salicylic acid. Contrarily, this correlation with tail moment unit was (r = _0.930, P <0.01) where the P value was < 0.01. The strongest significant negative correlation was between Chlorophyll-a and H2O2 at P < 0.01, while moderate negative significant correlation was seen for Chlorophyll-b where the P value < 0.05. The present study discloses the secret of the three days of rapid transient production of activated oxygen species (AOS) that was enough for having potential quantitative physiological parameters for defensive plant response toward the virus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=programmed%20cell%20death" title="programmed cell death">programmed cell death</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%E2%80%93adaptive%20immune%20response" title=" plant–adaptive immune response"> plant–adaptive immune response</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide%20%28H2O2%29" title=" hydrogen peroxide (H2O2)"> hydrogen peroxide (H2O2)</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20parameters" title=" physiological parameters"> physiological parameters</a> </p> <a href="https://publications.waset.org/abstracts/54333/programmed-cell-death-in-datura-and-defensive-plant-response-toward-tomato-mosaic-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6577</span> Photoimpedance Spectroscopy Analysis of Planar and Nano-Textured Thin-Film Silicon Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Kumar">P. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Eisenhauer"> D. Eisenhauer</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20K.%20Yousef"> M. M. K. Yousef</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20Shi"> Q. Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20G.%20Khalil"> A. S. G. Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Saber"> M. R. Saber</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Becker"> C. Becker</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Pullerits"> T. Pullerits</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20J.%20Karki"> K. J. Karki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In impedance spectroscopy (IS) the response of a photo-active device is analysed as a function of ac bias. It is widely applied in a broad class of material systems and devices. It gives access to fundamental mechanisms of operation of solar cells. We have implemented a method of IS where we modulate the light instead of the bias. This scheme allows us to analyze not only carrier dynamics but also impedance of device locally. Here, using this scheme, we have measured the frequency-dependent photocurrent response of the thin-film planar and nano-textured Si solar cells using this method. Photocurrent response is measured in range of 50 Hz to 50 kHz. Bode and Nyquist plots are used to determine characteristic lifetime of both the cells. Interestingly, the carrier lifetime of both planar and nano-textured solar cells depend on back and front contact positions. This is due to either heterogeneity of device or contacts are not optimized. The estimated average lifetime is found to be shorter for the nano-textured cell, which could be due to the influence of the textured interface on the carrier relaxation dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carrier%20lifetime" title="carrier lifetime">carrier lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance" title=" impedance"> impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-textured" title=" nano-textured"> nano-textured</a>, <a href="https://publications.waset.org/abstracts/search?q=photocurrent" title=" photocurrent"> photocurrent</a> </p> <a href="https://publications.waset.org/abstracts/85196/photoimpedance-spectroscopy-analysis-of-planar-and-nano-textured-thin-film-silicon-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6576</span> Screening Post-Menopausal Women for Osteoporosis by Complex Impedance Measurements of the Dominant Arm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yekta%20%C3%9Clgen">Yekta Ülgen</a>, <a href="https://publications.waset.org/abstracts/search?q=F%C4%B1rat%20Matur"> Fırat Matur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cole-Cole parameters of 40 post-menopausal women are compared with their DEXA bone mineral density measurements. Impedance characteristics of four extremities are compared; left and right extremities are statistically same, but lower extremities are statistically different than upper ones due to their different fat content. The correlation of Cole-Cole impedance parameters to bone mineral density (BMD) is observed to be higher for a dominant arm. With the post menopausal population, ANOVA tests of the dominant arm characteristic frequency, as a predictor for DEXA classified osteopenic and osteoporotic population around the lumbar spine, is statistically very significant. When used for total lumbar spine osteoporosis diagnosis, the area under the Receiver Operating Curve of the characteristic frequency is 0.875, suggesting that the Cole-Cole plot characteristic frequency could be a useful diagnostic parameter when integrated into standard screening methods for osteoporosis. Moreover, the characteristic frequency can be directly measured by monitoring frequency driven the angular behavior of the dominant arm without performing any complex calculation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioimpedance%20spectroscopy" title="bioimpedance spectroscopy">bioimpedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20density" title=" bone mineral density"> bone mineral density</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title=" osteoporosis"> osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic%20frequency" title=" characteristic frequency"> characteristic frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver%20operating%20curve" title=" receiver operating curve"> receiver operating curve</a> </p> <a href="https://publications.waset.org/abstracts/30804/screening-post-menopausal-women-for-osteoporosis-by-complex-impedance-measurements-of-the-dominant-arm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6575</span> Thermoluminescence Characteristic of Nanocrystalline BaSO4 Doped with Europium </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanika%20S.%20Raheja">Kanika S. Raheja</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pandey"> A. Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaila%20Bahl"> Shaila Bahl</a>, <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Kumar"> Pratik Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Lochab"> S. P. Lochab </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject of undertaking for this paper is the study of BaSO4 nanophosphor doped with Europium in which mainly the concentration of the rare earth impurity Eu (0.05, 0.1, 0.2, 0.5, and 1 mol %) has been varied. A comparative study of the thermoluminescence(TL) properties of the given nanophosphor has also been done using a well-known standard dosimetry material i.e. TLD-100.Firstly, a number of samples were prepared successfully by the chemical co-precipitation method. The whole lot was then compared to a well established standard material (TLD-100) for its TL sensitivity property. BaSO4:Eu ( 0.2 mol%) showed the highest sensitivity out of the lot. It was also found that when compared to the standard TLD-100, BaSo4:Eu (0.2mol%) showed surprisingly high sensitivity for a large range of doses. The TL response curve for all prepared samples has also been studied over a wide range of doses i.e 10Gy to 2kGy for gamma radiation. Almost all the samples of BaSO4:Eu showed a remarkable linearity for a broad range of doses, which is a characteristic feature of a fine TL dosimeter. The graph remained linear even beyond 1kGy for gamma radiation. Thus, the given nanophosphor has been successfully optimised for the concentration of the dopant material to achieve its highest TL sensitivity. Further, the comparative study with the standard material revealed that the current optimised sample shows an astonishingly better TL sensitivity and a phenomenal linear response curve for an incredibly wide range of doses for gamma radiation (Co-60) as compared to the standard TLD-100, which makes the current optimised BaSo4:Eu quite promising as an efficient gamma radiation dosimeter. Lastly, the present phosphor has been optimised for its annealing temperature to acquire the best results while also studying its fading and reusability properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title="gamma radiation">gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dosimetry" title=" radiation dosimetry"> radiation dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoluminescence" title=" thermoluminescence "> thermoluminescence </a> </p> <a href="https://publications.waset.org/abstracts/33558/thermoluminescence-characteristic-of-nanocrystalline-baso4-doped-with-europium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6574</span> FlexPoints: Efficient Algorithm for Detection of Electrocardiogram Characteristic Points</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Bulanda">Daniel Bulanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Janusz%20A.%20Starzyk"> Janusz A. Starzyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Horzyk"> Adrian Horzyk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrocardiogram (ECG) is one of the most commonly used medical tests, essential for correct diagnosis and treatment of the patient. While ECG devices generate a huge amount of data, only a small part of them carries valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the past years. However, the rapid development of new machine learning techniques poses new challenges. To address this class of problems, we created the FlexPoints algorithm that searches for characteristic points on the ECG signal and ignores all other points that do not carry relevant medical information. The conducted experiments proved that the presented algorithm can significantly reduce the number of data points which represents ECG signal without losing valuable medical information. These sparse but essential characteristic points (flex points) can be a perfect input for some modern machine learning models, which works much better using flex points as an input instead of raw data or data compressed by many popular algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20points" title="characteristic points">characteristic points</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram" title=" electrocardiogram"> electrocardiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG" title=" ECG"> ECG</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20compression" title=" signal compression"> signal compression</a> </p> <a href="https://publications.waset.org/abstracts/132090/flexpoints-efficient-algorithm-for-detection-of-electrocardiogram-characteristic-points" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6573</span> Corporate Social Responsibility Participation on Organizational Citizenship Behavior in Different Job Characteristic Profiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Woo%20Lee">Min Woo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoung%20Seok%20Kim"> Kyoung Seok Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We made an effort to resolve a research question, which is about the relationship between employees’ corporate social responsibility (CSR) participation and their organizational citizenship behavior (OCB), and an effect of profiles of job characteristics. To test the question, we divided sample into two groups that have the profiles of each job characteristic. One group had high level on the five dimensions of job characteristic (D group), whereas another group had low level on the dimensions (R group). As a result, regression analyses showed that the relationship between CSR participation and OCB is positive in the D group, but the relationship is not significant in the R group. The results raise a question to the argument of recent studies showing that there is positive relationship between the CSR and the OCB. Implications and limitations are demonstrated in the conclusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CSR" title="CSR">CSR</a>, <a href="https://publications.waset.org/abstracts/search?q=OCB" title=" OCB"> OCB</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20characteristics" title=" job characteristics"> job characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title=" cluster analysis"> cluster analysis</a> </p> <a href="https://publications.waset.org/abstracts/54590/corporate-social-responsibility-participation-on-organizational-citizenship-behavior-in-different-job-characteristic-profiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6572</span> Anisotropic Behavior of Sand Stabilized with Colloidal Silica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eleni%20Maria%20Pavlopoulou">Eleni Maria Pavlopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasiliki%20N.%20Georgiannou"> Vasiliki N. Georgiannou</a>, <a href="https://publications.waset.org/abstracts/search?q=Filippos%20C.%20Chortis"> Filippos C. Chortis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The response of M31 sand stabilized with colloidal silica (CS) aqueous gel is investigated in the laboratory. CS is introduced in the water regime, forming a hydrosol. The low viscosity hydrosol thickens in a controllable manner to form a stable, non-toxic gel; the gel fills the pore space, retains the pore water, and supports the grain structure. The role of colloidal silica on subsequent sand behavior is examined with the aid of direct shear, triaxial, and normal compression tests. Under the examined loading modes, while the strength of the treated sand is enhanced, its stiffness may reduce, and its compressibility increase. However, in most geotechnical problems, the loading conditions are complex, involving changes in both stress magnitude and direction. Rotation of principal stresses (σ1, σ2, σ3) in varying amounts expressed as angle α, (from α=0° to 90°) in concurrence with increasing shear stress loading is commonly encountered in soil structures such as foundations, embankments, underwater slopes. To assess the influence of anisotropy on the response of sands before and after their stabilization, hollow cylinder tests were performed. The behavior of stabilized sand is compared with the characteristic sand behavior, i.e., a reduction in peak stress ratio associated with a softer stress-strain response with the increasing angle a. The influence of the magnitude of the intermediate principal stress (σ2) on the mechanical response of treated and untreated sand is also examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title="anisotropy">anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=colloidal%20silica" title=" colloidal silica"> colloidal silica</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20tests" title=" laboratory tests"> laboratory tests</a>, <a href="https://publications.waset.org/abstracts/search?q=sands" title=" sands"> sands</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilization" title=" soil stabilization"> soil stabilization</a> </p> <a href="https://publications.waset.org/abstracts/133107/anisotropic-behavior-of-sand-stabilized-with-colloidal-silica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6571</span> Electrochemical Detection of Hydroquinone by Square Wave Voltammetry Using a Zn Layered Hydroxide-Ferulate Modified Multiwall Carbon Nanotubes Paste Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Syahrizal%20Ahmad">Mohamad Syahrizal Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Illyas%20M.%20Isa"> Illyas M. Isa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a multiwall carbon nanotubes (MWCNT) paste electrode modified by a Zn layered hydroxide-ferulate (ZLH-F) was used for detection of hydroquinone (HQ). The morphology and characteristic of the ZLH-F/MWCNT were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM) and square wave voltammetry (SWV). Under optimal conditions, the SWV response showed linear plot for HQ concentration in the range of 1.0×10⁻⁵ M – 1.0×10⁻³ M. The detection limit was found to be 5.7×10⁻⁶ M and correlation coefficient of 0.9957. The glucose, fructose, sucrose, bisphenol A, acetaminophen, lysine, NO₃⁻, Cl⁻ and SO₄²⁻ did not interfere the HQ response. This modified electrode can be used to determine HQ content in wastewater and cosmetic cream with range of recovery 97.8% - 103.0%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1" title="1">1</a>, <a href="https://publications.waset.org/abstracts/search?q=4-dihydroxybenzene" title="4-dihydroxybenzene">4-dihydroxybenzene</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroquinone" title=" hydroquinone"> hydroquinone</a>, <a href="https://publications.waset.org/abstracts/search?q=multiwall%20carbon%20nanotubes" title=" multiwall carbon nanotubes"> multiwall carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20wave%20voltammetry" title=" square wave voltammetry"> square wave voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/84969/electrochemical-detection-of-hydroquinone-by-square-wave-voltammetry-using-a-zn-layered-hydroxide-ferulate-modified-multiwall-carbon-nanotubes-paste-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6570</span> Evaluation of Sensor Pattern Noise Estimators for Source Camera Identification </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Anderson-Sackaney">Benjamin Anderson-Sackaney</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20Abdel-Dayem"> Amr Abdel-Dayem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a comprehensive survey of recent source camera identification (SCI) systems. Then, the performance of various sensor pattern noise (SPN) estimators was experimentally assessed, under common photo response non-uniformity (PRNU) frameworks. The experiments used 1350 natural and 900 flat-field images, captured by 18 individual cameras. 12 different experiments, grouped into three sets, were conducted. The results were analyzed using the receiver operator characteristic (ROC) curves. The experimental results demonstrated that combining the basic SPN estimator with a wavelet-based filtering scheme provides promising results. However, the phase SPN estimator fits better with both patch-based (BM3D) and anisotropic diffusion (AD) filtering schemes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sensor%20pattern%20noise" title="sensor pattern noise">sensor pattern noise</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20camera%20identification" title=" source camera identification"> source camera identification</a>, <a href="https://publications.waset.org/abstracts/search?q=photo%20response%20non-uniformity" title=" photo response non-uniformity"> photo response non-uniformity</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20diffusion" title=" anisotropic diffusion"> anisotropic diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20to%20correlation%20energy%20ratio" title=" peak to correlation energy ratio"> peak to correlation energy ratio</a> </p> <a href="https://publications.waset.org/abstracts/63183/evaluation-of-sensor-pattern-noise-estimators-for-source-camera-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20characteristic&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20characteristic&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20characteristic&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20characteristic&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20characteristic&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20characteristic&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20characteristic&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20characteristic&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20characteristic&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20characteristic&amp;page=219">219</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20characteristic&amp;page=220">220</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=response%20characteristic&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10