CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–35 of 35 results for author: <span class="mathjax">Mkhoyan, K A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Mkhoyan%2C+K+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Mkhoyan, K A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Mkhoyan%2C+K+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Mkhoyan, K A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16817">arXiv:2502.16817</a> <span> [<a href="https://arxiv.org/pdf/2502.16817">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Intrinsic vs. Extrinsic Magnetic Transitions in Sr3Ru2O7 films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Choudhary%2C+R">R. Choudhary</a>, <a href="/search/cond-mat?searchtype=author&query=Rajapitamahuni%2C+A">A. Rajapitamahuni</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+S">S. Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Q">Qi. Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+J+-">J. -H. Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. A. Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Jalan%2C+B">B. Jalan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16817v1-abstract-short" style="display: inline;"> In scientific research, both positive and negative results play crucial role in advancing the field. Negative results provide valuable insights that can guide future experiments and prevent repeated failures. Here we present our growth attempts of Sr3Ru2O7 thin films using the hybrid molecular beam epitaxy. X-ray diffraction suggests nominally phase-pure films. A combination of magnetoresistance a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16817v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16817v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16817v1-abstract-full" style="display: none;"> In scientific research, both positive and negative results play crucial role in advancing the field. Negative results provide valuable insights that can guide future experiments and prevent repeated failures. Here we present our growth attempts of Sr3Ru2O7 thin films using the hybrid molecular beam epitaxy. X-ray diffraction suggests nominally phase-pure films. A combination of magnetoresistance and magnetization measurements exhibits an onset of ferromagnetism at 170 K and 100 K, along with a metamagnetic-like transition at 40 K. These results could initially be interpreted as intrinsic behavior of strain-engineered Sr3Ru2O7 films. However, detailed microstructural analysis reveals intergrowths of Sr2RuO4, Sr4Ru3O10, and SrRuO3 phases, dispersed throughout the film. Our findings suggest that the Sr3Ru2O7 films are likely paramagnetic, with the observed ferromagnetism arising from the Sr4Ru3O10 and SrRuO3 phases. Our results highlight the need for detailed microstructural analysis when interpreting new material properties influenced by strain and microstructure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16817v1-abstract-full').style.display = 'none'; document.getElementById('2502.16817v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02995">arXiv:2408.02995</a> <span> [<a href="https://arxiv.org/pdf/2408.02995">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Patterning of Fine Features on Material Surfaces Using a Ga Ion-Beam in a FIB-SEM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+S">Supriya Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02995v1-abstract-short" style="display: inline;"> Since an ion-beam is a viable attractive alternative to other material surface patterning techniques like an electron-beam, a study of the structure, composition and dimension of patterned lines created on surfaces of Si and SrTiO3 wafers with a Ga ion-beam was carried out. A combination of top-view SEM and cross-sectional STEM imaging and EDX spectroscopy applied to the patterned lines showed tha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02995v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02995v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02995v1-abstract-full" style="display: none;"> Since an ion-beam is a viable attractive alternative to other material surface patterning techniques like an electron-beam, a study of the structure, composition and dimension of patterned lines created on surfaces of Si and SrTiO3 wafers with a Ga ion-beam was carried out. A combination of top-view SEM and cross-sectional STEM imaging and EDX spectroscopy applied to the patterned lines showed that the total ion-dose (DI) is the key parameter affecting the characteristics of the patterned lines, which can be adjusted by the degree of overlap between adjacent spots, beam dwell time at each spot, and the number of beam-passes for every beam size and current. A strong dependence between the used ion-doses and the patterned lines sizes was observed and quantified. At higher ion-doses (DI > 10^15 ions/cm^2), the Ga ions remove part of the material in the exposed area creating channels surrounded with amorphized regions whereas, at lower ion-doses only amorphization occurs, creating a ridge on the wafer surface. Further, to pattern lines with similar sizes, an order of magnitude different ion-doses might be required in different materials as was the case with Si and SrTiO3. The quantification of line sizes showed that with this approach, lines as fine as 10 nm can be reproducibly patterned and characterized on the surfaces of materials, when low ion-doses are used, typically in the range of 10^14-10^15 ions/cm^2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02995v1-abstract-full').style.display = 'none'; document.getElementById('2408.02995v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08915">arXiv:2405.08915</a> <span> [<a href="https://arxiv.org/pdf/2405.08915">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Deep-ultraviolet transparent conducting SrSnO3 via heterostructure design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+F">Fengdeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Z">Zhifei Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Abramovitch%2C+D">David Abramovitch</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+S">Silu Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Bernardi%2C+M">Marco Bernardi</a>, <a href="/search/cond-mat?searchtype=author&query=Jalan%2C+B">Bharat Jalan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08915v1-abstract-short" style="display: inline;"> Exploration and advancements in ultra-wide bandgap (UWBG) semiconductors are pivotal for next-generation high-power electronics and deep-ultraviolet (DUV) optoelectronics. A critical challenge lies in finding a semiconductor that is highly transparent to DUV wavelengths yet conductive with high mobility at room temperature. Here, we achieved both high transparency and high conductivity by employin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08915v1-abstract-full').style.display = 'inline'; document.getElementById('2405.08915v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08915v1-abstract-full" style="display: none;"> Exploration and advancements in ultra-wide bandgap (UWBG) semiconductors are pivotal for next-generation high-power electronics and deep-ultraviolet (DUV) optoelectronics. A critical challenge lies in finding a semiconductor that is highly transparent to DUV wavelengths yet conductive with high mobility at room temperature. Here, we achieved both high transparency and high conductivity by employing a thin heterostructure design. The heterostructure facilitated high conductivity by screening phonons using free carriers, while the atomically thin films ensured high transparency. We utilized a heterostructure comprising SrSnO3/La:SrSnO3/GdScO3 (110) and applied electrostatic gating to effectively separate electrons from their dopant atoms. This led to a modulation of carrier density from 1018 cm-3 to 1020 cm-3, with room temperature mobilities ranging from 40 to 140 cm2V-1s-1. The phonon-limited mobility, calculated from first principles, closely matched experimental results, suggesting that room-temperature mobility could be further increased with higher electron density. Additionally, the sample exhibited 85% optical transparency at a 300 nm wavelength. These findings highlight the potential of heterostructure design for transparent UWBG semiconductor applications, especially in deep-ultraviolet regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08915v1-abstract-full').style.display = 'none'; document.getElementById('2405.08915v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18485">arXiv:2403.18485</a> <span> [<a href="https://arxiv.org/pdf/2403.18485">pdf</a>, <a href="https://arxiv.org/format/2403.18485">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Rashba spin splitting-induced topological Hall effect in a Dirac semimetal-ferromagnetic semiconductor heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Islam%2C+S">Saurav Islam</a>, <a href="/search/cond-mat?searchtype=author&query=Steinebronn%2C+E">Emma Steinebronn</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+K">Kaijie Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Neupane%2C+B">Bimal Neupane</a>, <a href="/search/cond-mat?searchtype=author&query=Chamorro%2C+J">Juan Chamorro</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+S">Supriya Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=McQueen%2C+T+M">Tyrel M. McQueen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuanxi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chaoxing Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Samarth%2C+N">Nitin Samarth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18485v1-abstract-short" style="display: inline;"> We use a concerted theory-experiment effort to investigate the formation of chiral real space spin texture when the archetypal Dirac semimetal Cd$_3$As$_2$ is interfaced with In$_{1-x}$Mn$_x$As, a ferromagnetic semiconductor with perpendicular magnetic anisotropy. Our calculations reveal a nonzero off-diagonal spin susceptibility in the Cd$_3$As$_2$ layer due to the Rashba spin-orbit coupling from… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18485v1-abstract-full').style.display = 'inline'; document.getElementById('2403.18485v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18485v1-abstract-full" style="display: none;"> We use a concerted theory-experiment effort to investigate the formation of chiral real space spin texture when the archetypal Dirac semimetal Cd$_3$As$_2$ is interfaced with In$_{1-x}$Mn$_x$As, a ferromagnetic semiconductor with perpendicular magnetic anisotropy. Our calculations reveal a nonzero off-diagonal spin susceptibility in the Cd$_3$As$_2$ layer due to the Rashba spin-orbit coupling from broken inversion symmetry. This implies the presence of a Dzyaloshinskii-Moriya interaction between local moments in the In$_{1-x}$Mn$_x$As layer, mediated by Dirac electrons in the vicinal Cd$_3$As$_2$ layer, potentially creating the conditions for a real space chiral spin texture. Using electrical magnetoresistance measurements at low temperature, we observe an emergent excess contribution to the transverse magneto-resistance whose behavior is consistent with a topological Hall effect arising from the formation of an interfacial chiral spin texture. This excess Hall voltage varies with gate voltage, indicating a promising electrostatically-tunable platform for understanding the interplay between the helical momentum space states of a Dirac semimetal and chiral real space spin textures in a ferromagnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18485v1-abstract-full').style.display = 'none'; document.getElementById('2403.18485v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02538">arXiv:2401.02538</a> <span> [<a href="https://arxiv.org/pdf/2401.02538">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Site-Specific Plan-view (S)TEM Sample Preparation from Thin Films using a Dual-Beam FIB-SEM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+S">Supriya Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+F">Fengdeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Nair%2C+S">Sreejith Nair</a>, <a href="/search/cond-mat?searchtype=author&query=Jalan%2C+B">Bharat Jalan</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02538v1-abstract-short" style="display: inline;"> Plan-view transmission electron microscopy (TEM) samples are key to understand the atomic structure and associated properties of materials along their growth orientation, especially for thin films that are stain-engineered onto different substrates for property tuning. In this work, we present a method to prepare high-quality plan-view samples for analytical STEM study from thin-films using a dual… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02538v1-abstract-full').style.display = 'inline'; document.getElementById('2401.02538v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02538v1-abstract-full" style="display: none;"> Plan-view transmission electron microscopy (TEM) samples are key to understand the atomic structure and associated properties of materials along their growth orientation, especially for thin films that are stain-engineered onto different substrates for property tuning. In this work, we present a method to prepare high-quality plan-view samples for analytical STEM study from thin-films using a dual-beam focused ion beam scanning electron microscope (FIB-SEM) system. The samples were prepared from thin films of perovskite oxides and metal oxides ranging from 20-80 nm thicknesses, grown on different substrates using molecular beam epitaxy. A site-specific sample preparation from the area of interest is described, which includes sample attachment and thinning techniques to minimize damage to the final TEM samples. While optimized for the thin film-like geometry, this method can be extended to other site-specific plan-view samples from bulk materials. Aberration-corrected scanning (S)TEM was used to access the quality of the thin film in each sample. This enabled direct visualization of line defects in perovskite BaSnO3 and Ir particle formation and texturing in IrO2 films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02538v1-abstract-full').style.display = 'none'; document.getElementById('2401.02538v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11933">arXiv:2311.11933</a> <span> [<a href="https://arxiv.org/pdf/2311.11933">pdf</a>, <a href="https://arxiv.org/format/2311.11933">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Spin Hall conductivity in Bi$_{1-x}$Sb$_x$ as an experimental test of bulk-boundary correspondence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ou%2C+Y">Yongxi Ou</a>, <a href="/search/cond-mat?searchtype=author&query=Yanez-Parre%C3%B1o%2C+W">Wilson Yanez-Parre帽o</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yu-sheng Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+S">Supriya Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%9Eahin%2C+C">C眉neyt 艦ahin</a>, <a href="/search/cond-mat?searchtype=author&query=Stanley%2C+M">Max Stanley</a>, <a href="/search/cond-mat?searchtype=author&query=Santhosh%2C+S">Sandra Santhosh</a>, <a href="/search/cond-mat?searchtype=author&query=Islam%2C+S">Saurav Islam</a>, <a href="/search/cond-mat?searchtype=author&query=Richardella%2C+A">Anthony Richardella</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Flatt%C3%A9%2C+M+E">Michael E. Flatt茅</a>, <a href="/search/cond-mat?searchtype=author&query=Samarth%2C+N">Nitin Samarth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11933v1-abstract-short" style="display: inline;"> Bulk-boundary correspondence is a foundational principle underlying the electronic band structure and physical behavior of topological quantum materials. Although it has been rigorously tested in topological systems where the physical properties involve charge currents, it remains unclear whether bulk-boundary correspondence should also hold for non-conserved spin currents. We study charge-to-spin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11933v1-abstract-full').style.display = 'inline'; document.getElementById('2311.11933v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11933v1-abstract-full" style="display: none;"> Bulk-boundary correspondence is a foundational principle underlying the electronic band structure and physical behavior of topological quantum materials. Although it has been rigorously tested in topological systems where the physical properties involve charge currents, it remains unclear whether bulk-boundary correspondence should also hold for non-conserved spin currents. We study charge-to-spin conversion in a canonical topological insulator, Bi$_{1-x}$Sb$_x$, to address this fundamentally unresolved question. We use spin-torque ferromagnetic resonance measurements to accurately probe the charge-to-spin conversion efficiency in epitaxial Bi$_{1-x}$Sb$_x$~thin films of high structural quality spanning the entire range of composition, including both trivial and topological band structures, as verified using {\it in vacuo} angle-resolved photoemission spectroscopy. From these measurements, we deduce the effective spin Hall conductivity (SHC) and find excellent agreement with the values predicted by tight-binding calculations for the intrinsic SHC of the bulk bands. These results provide strong evidence that the strong spin-orbit entanglement of bulk states well below the Fermi energy connects directly to the SHC in epitaxial Bi$_{1-x}$Sb$_x$~films interfaced with a metallic ferromagnet. The excellent agreement between theory and experiment points to the generic value of analyses focused entirely on bulk properties, even for topological systems involving non-conserved spin currents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11933v1-abstract-full').style.display = 'none'; document.getElementById('2311.11933v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11899">arXiv:2311.11899</a> <span> [<a href="https://arxiv.org/pdf/2311.11899">pdf</a>, <a href="https://arxiv.org/format/2311.11899">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0190217">10.1063/5.0190217 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Epitaxial growth and characterization of Bi$_{1-x}$Sb$_x$ thin films on (0001) sapphire substrates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yu-Sheng Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Islam%2C+S">Saurav Islam</a>, <a href="/search/cond-mat?searchtype=author&query=Ou%2C+Y">Yongxi Ou</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+S">Supriya Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Richardella%2C+A">Anthony Richardella</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Samarth%2C+N">Nitin Samarth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11899v1-abstract-short" style="display: inline;"> We report the molecular beam epitaxy of Bi_1-xSb_x thin films ($0 \leq x \leq 1$) on (0001) sapphire substrates using a thin (Bi,Sb)$_2$Te$_3$ buffer layer. Characterization of the films using reflection high energy diffraction, x-ray diffraction, atomic force microscopy, and scanning transmission electron microscopy reveals epitaxial growth of films of reasonable structural quality. This is furth… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11899v1-abstract-full').style.display = 'inline'; document.getElementById('2311.11899v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11899v1-abstract-full" style="display: none;"> We report the molecular beam epitaxy of Bi_1-xSb_x thin films ($0 \leq x \leq 1$) on (0001) sapphire substrates using a thin (Bi,Sb)$_2$Te$_3$ buffer layer. Characterization of the films using reflection high energy diffraction, x-ray diffraction, atomic force microscopy, and scanning transmission electron microscopy reveals epitaxial growth of films of reasonable structural quality. This is further confirmed via x-ray diffraction pole figures that determine the epitaxial registry between the thin film and substrate. We further investigate the microscopic structure of thin films via Raman spectroscopy, demonstrating how the vibrational modes vary as the composition changes and discussing the implications for the crystal structure. We also characterize the samples using electrical transport measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11899v1-abstract-full').style.display = 'none'; document.getElementById('2311.11899v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> APL Mater. 12, 021106 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11448">arXiv:2311.11448</a> <span> [<a href="https://arxiv.org/pdf/2311.11448">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Fast and Facile Synthesis Route to Epitaxial Oxide Membrane Using a Sacrificial Layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Varshney%2C+S">Shivasheesh Varshney</a>, <a href="/search/cond-mat?searchtype=author&query=Choo%2C+S">Sooho Choo</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+L">Liam Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Z">Zhifei Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shah%2C+J">Jay Shah</a>, <a href="/search/cond-mat?searchtype=author&query=Wen%2C+J">Jiaxuan Wen</a>, <a href="/search/cond-mat?searchtype=author&query=Koester%2C+S+J">Steven J. Koester</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=McLeod%2C+A">Alexander McLeod</a>, <a href="/search/cond-mat?searchtype=author&query=Jalan%2C+B">Bharat Jalan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11448v1-abstract-short" style="display: inline;"> The advancement in thin-film exfoliation for synthesizing oxide membranes has opened up new possibilities for creating artificially-assembled heterostructures with structurally and chemically incompatible materials. The sacrificial layer method is a promising approach to exfoliate as-grown films from a compatible material system, allowing their integration with dissimilar materials. Nonetheless, t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11448v1-abstract-full').style.display = 'inline'; document.getElementById('2311.11448v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11448v1-abstract-full" style="display: none;"> The advancement in thin-film exfoliation for synthesizing oxide membranes has opened up new possibilities for creating artificially-assembled heterostructures with structurally and chemically incompatible materials. The sacrificial layer method is a promising approach to exfoliate as-grown films from a compatible material system, allowing their integration with dissimilar materials. Nonetheless, the conventional sacrificial layers often possess intricate stoichiometry, thereby constraining their practicality and adaptability, particularly when considering techniques like Molecular Beam Epitaxy (MBE). This is where easy-to-grow binary alkaline earth metal oxides with a rock salt crystal structure are useful. These oxides, which include (Mg, Ca, Sr, Ba)O, can be used as a sacrificial layer covering a much broader range of lattice parameters compared to conventional sacrificial layers and are easily dissolvable in deionized water. In this study, we show the epitaxial growth of single-crystalline perovskite SrTiO3 (STO) on sacrificial layers consisting of crystalline SrO, BaO, and Ba1-xCaxO films, employing a hybrid MBE method. Our results highlight the rapid (< 5 minutes) dissolution of the sacrificial layer when immersed in deionized water, facilitating the fabrication of millimeter-sized STO membranes. Using high-resolution x-ray diffraction, atomic-force microscopy, scanning transmission electron microscopy, impedance spectroscopy, and scattering-type near-field optical microscopy (SNOM), we demonstrate epitaxial STO membranes with bulk-like intrinsic dielectric properties. The employment of alkaline earth metal oxides as sacrificial layers is likely to simplify membrane synthesis, particularly with MBE, thus expanding research possibilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11448v1-abstract-full').style.display = 'none'; document.getElementById('2311.11448v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05801">arXiv:2305.05801</a> <span> [<a href="https://arxiv.org/pdf/2305.05801">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-39408-2">10.1038/s41467-023-39408-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust negative longitudinal magnetoresistance and spin-orbit torque in sputtered Pt3Sn topological semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+D">Delin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Yun%2C+H">Hwanhui Yun</a>, <a href="/search/cond-mat?searchtype=author&query=Benally%2C+O+J">Onri Jay Benally</a>, <a href="/search/cond-mat?searchtype=author&query=Peterson%2C+T">Thomas Peterson</a>, <a href="/search/cond-mat?searchtype=author&query=Cresswell%2C+Z">Zach Cresswell</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+Y">Yihong Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+Y">Yang Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+G">Guichuan Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Barriocanal%2C+J+G">Javier Garcia Barriocanal</a>, <a href="/search/cond-mat?searchtype=author&query=Swatek%2C+P">Przemyslaw Swatek</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Low%2C+T">Tony Low</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jian-Ping Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05801v1-abstract-short" style="display: inline;"> Contrary to topological insulators, topological semimetals possess a nontrivial chiral anomaly that leads to negative magnetoresistance and are hosts to both conductive bulk states and topological surface states with intriguing transport properties for spintronics. Here, we fabricate highly-ordered metallic Pt3Sn and Pt3SnxFe1-x thin films via sputtering technology. Systematic angular dependence (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05801v1-abstract-full').style.display = 'inline'; document.getElementById('2305.05801v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05801v1-abstract-full" style="display: none;"> Contrary to topological insulators, topological semimetals possess a nontrivial chiral anomaly that leads to negative magnetoresistance and are hosts to both conductive bulk states and topological surface states with intriguing transport properties for spintronics. Here, we fabricate highly-ordered metallic Pt3Sn and Pt3SnxFe1-x thin films via sputtering technology. Systematic angular dependence (both in-plane and out-of-plane) study of magnetoresistance presents surprisingly robust quadratic and linear negative longitudinal magnetoresistance features for Pt3Sn and Pt3SnxFe1-x, respectively. We attribute the anomalous negative longitudinal magnetoresistance to the type-II Dirac semimetal phase (pristine Pt3Sn) and/or the formation of tunable Weyl semimetal phases through symmetry breaking processes, such as magnetic-atom doping, as confirmed by first-principles calculations. Furthermore, Pt3Sn and Pt3SnxFe1-x show the promising performance for facilitating the development of advanced spin-orbit torque devices. These results extend our understanding of chiral anomaly of topological semimetals and can pave the way for exploring novel topological materials for spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05801v1-abstract-full').style.display = 'none'; document.getElementById('2305.05801v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications volume 14, Article number: 4151 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13959">arXiv:2304.13959</a> <span> [<a href="https://arxiv.org/pdf/2304.13959">pdf</a>, <a href="https://arxiv.org/format/2304.13959">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.8.034204">10.1103/PhysRevMaterials.8.034204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thin film growth of the Weyl semimetal NbAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yanez%2C+W">Wilson Yanez</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yu-Sheng Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+S">Supriya Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Islam%2C+S">Saurav Islam</a>, <a href="/search/cond-mat?searchtype=author&query=Steinebronn%2C+E">Emma Steinebronn</a>, <a href="/search/cond-mat?searchtype=author&query=Richardella%2C+A">Anthony Richardella</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Samarth%2C+N">Nitin Samarth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13959v2-abstract-short" style="display: inline;"> We report the synthesis and characterization of thin films of the Weyl semimetal NbAs grown on GaAs (100) and GaAs (111)B substrates. By choosing the appropriate substrate, we can stabilize the growth of NbAs in the (001) and (100) directions. We combine x-ray characterization with high-angle annular dark field scanning transmission electron microscopy to understand both the macroscopic and micros… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13959v2-abstract-full').style.display = 'inline'; document.getElementById('2304.13959v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13959v2-abstract-full" style="display: none;"> We report the synthesis and characterization of thin films of the Weyl semimetal NbAs grown on GaAs (100) and GaAs (111)B substrates. By choosing the appropriate substrate, we can stabilize the growth of NbAs in the (001) and (100) directions. We combine x-ray characterization with high-angle annular dark field scanning transmission electron microscopy to understand both the macroscopic and microscopic structure of the NbAs thin films. We show that these films are textured with domains that are tens of nanometers in size and that, on a macroscopic scale, are mostly aligned to a single crystalline direction. Finally, we describe electrical transport measurements that reveal similar behavior in films grown in both crystalline directions, namely carrier densities of $\sim 10^{21} - 10^{22} $ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13959v2-abstract-full').style.display = 'none'; document.getElementById('2304.13959v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.03482">arXiv:2304.03482</a> <span> [<a href="https://arxiv.org/pdf/2304.03482">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Mending Cracks in Rutile TiO$_{2}$ with Electron Beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guo%2C+S">Silu Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Yun%2C+H">Hwanhui Yun</a>, <a href="/search/cond-mat?searchtype=author&query=Nair%2C+S">Sreejith Nair</a>, <a href="/search/cond-mat?searchtype=author&query=Jalan%2C+B">Bharat Jalan</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.03482v1-abstract-short" style="display: inline;"> Restructuring of rutile TiO$_{2}$ under electron beam irradiation driven by radiolysis was observed and analyzed using a combination of atomic-resolution imaging and electron energy loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM). It was determined that a high-energy (80-300 keV) electron beam at high doses ($\gtrapprox 10^7 \ e/nm^2$) can constructively restructure ru… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03482v1-abstract-full').style.display = 'inline'; document.getElementById('2304.03482v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.03482v1-abstract-full" style="display: none;"> Restructuring of rutile TiO$_{2}$ under electron beam irradiation driven by radiolysis was observed and analyzed using a combination of atomic-resolution imaging and electron energy loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM). It was determined that a high-energy (80-300 keV) electron beam at high doses ($\gtrapprox 10^7 \ e/nm^2$) can constructively restructure rutile TiO$_{2}$ with an efficiency of $6\times 10^{-6}$. These observations were realized using rutile TiO$_{2}$ samples with atomically sharp nanometer-wide cracks. Based on atomic-resolution STEM imaging and quantitative EELS analysis, we propose a $"$ 2-step $"$ rolling model of the octahedral building blocks of the crystal to account for observed radiolysis-driven atomic migration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03482v1-abstract-full').style.display = 'none'; document.getElementById('2304.03482v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages with 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.07481">arXiv:2208.07481</a> <span> [<a href="https://arxiv.org/pdf/2208.07481">pdf</a>, <a href="https://arxiv.org/format/2208.07481">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Strain effect on the ground-state structure of Sr2SnO4 Ruddlesden-Popper oxides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yun%2C+H">Hwanhui Yun</a>, <a href="/search/cond-mat?searchtype=author&query=Gautreau%2C+D">Dominique Gautreau</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Birol%2C+T">Turan Birol</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.07481v2-abstract-short" style="display: inline;"> Ruddlesden-Popper (RP) oxides (A$_{n+1}$B$_n$O$_{3n+1}$) comprised of perovskite (ABO$_3$)$_n$ slabs can host a wider variety of structural distortions than their perovskite counterparts. This makes accurate structural determination of RP oxides more challenging. In this study, we investigate the structural phase diagram of $n=1$ RP Sr$_2$SnO$_4$, one of alkaline earth stannates that are promising… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07481v2-abstract-full').style.display = 'inline'; document.getElementById('2208.07481v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.07481v2-abstract-full" style="display: none;"> Ruddlesden-Popper (RP) oxides (A$_{n+1}$B$_n$O$_{3n+1}$) comprised of perovskite (ABO$_3$)$_n$ slabs can host a wider variety of structural distortions than their perovskite counterparts. This makes accurate structural determination of RP oxides more challenging. In this study, we investigate the structural phase diagram of $n=1$ RP Sr$_2$SnO$_4$, one of alkaline earth stannates that are promising for opto-electronic applications by using group theory-based symmetry analysis and first-principles calculations. We explore the symmetry breaking effects of different dynamical instabilities, predict the energies of phases they lead to, and take into account different (biaxial strain and hydrostatic pressure) boundary conditions. We also address the effect of structural changes on the electronic structure and find that compressive biaxial strain drives Sr$_2$SnO$_4$ into a regime with wider bandgap and lower electron effective mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07481v2-abstract-full').style.display = 'none'; document.getElementById('2208.07481v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.08872">arXiv:2207.08872</a> <span> [<a href="https://arxiv.org/pdf/2207.08872">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.6.074206">10.1103/PhysRevMaterials.6.074206 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Room temperature spin-orbit torque efficiency in sputtered low-temperature superconductor delta-TaN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Swatek%2C+P+W">Przemyslaw Wojciech Swatek</a>, <a href="/search/cond-mat?searchtype=author&query=Hang%2C+X">Xudong Hang</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+Y">Yihong Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Yun%2C+H">Hwanhui Yun</a>, <a href="/search/cond-mat?searchtype=author&query=Lyu%2C+D">Deyuan Lyu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+D">Delin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Peterson%2C+T+J">Thomas J. Peterson</a>, <a href="/search/cond-mat?searchtype=author&query=Sahu%2C+P">Protyush Sahu</a>, <a href="/search/cond-mat?searchtype=author&query=Benally%2C+O+J">Onri Jay Benally</a>, <a href="/search/cond-mat?searchtype=author&query=Cresswell%2C+Z">Zach Cresswell</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jinming Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Pahari%2C+R">Rabindra Pahari</a>, <a href="/search/cond-mat?searchtype=author&query=Kukla%2C+D">Daniel Kukla</a>, <a href="/search/cond-mat?searchtype=author&query=Low%2C+T">Tony Low</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jian-Ping Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.08872v2-abstract-short" style="display: inline;"> In the course of searching for promising topological materials for applications in future topological electronics, we evaluated spin-orbit torques (SOTs) in high-quality sputtered $未-$TaN/Co20Fe60B20 devices through spin-torque ferromagnetic resonance ST-FMR and spin pumping measurements. From the ST-FMR characterization we observed a significant linewidth modulation in the magnetic Co20Fe60B20 la… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08872v2-abstract-full').style.display = 'inline'; document.getElementById('2207.08872v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.08872v2-abstract-full" style="display: none;"> In the course of searching for promising topological materials for applications in future topological electronics, we evaluated spin-orbit torques (SOTs) in high-quality sputtered $未-$TaN/Co20Fe60B20 devices through spin-torque ferromagnetic resonance ST-FMR and spin pumping measurements. From the ST-FMR characterization we observed a significant linewidth modulation in the magnetic Co20Fe60B20 layer attributed to the charge-to-spin conversion generated from the $未-$TaN layer. Remarkably, the spin-torque efficiency determined from ST-FMR and spin pumping measurements is as large as $螛 =$ 0.034 and 0.031, respectively. These values are over two times larger than for $伪-$Ta, but almost five times lower than for $尾-$Ta, which can be attributed to the low room temperature electrical resistivity $\sim 74渭惟$ cm in $未-$TaN. A large spin diffusion length of at least $\sim8$ nm is estimated, which is comparable to the spin diffusion length in pure Ta. Comprehensive experimental analysis, together with density functional theory calculations, indicates that the origin of the pronounced SOT effect in $未-$TaN can be mostly related to a significant contribution from the Berry curvature associated with the presence of a topically nontrivial electronic band structure in the vicinity of the Fermi level (EF). Through additional detailed theoretical analysis, we also found that an isostructural allotrope of the superconducting $未-$TaN phase, the simple hexagonal structure, $胃-$TaN, has larger Berry curvature, and that, together with expected reasonable charge conductivity, it can also be a promising candidate for exploring a generation of spin-orbit torque magnetic random access memory as cheap, temperature stable, and highly efficient spin current sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08872v2-abstract-full').style.display = 'none'; document.getElementById('2207.08872v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 6, 074206 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02416">arXiv:2207.02416</a> <span> [<a href="https://arxiv.org/pdf/2207.02416">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Co-operative Influence of O2 and H2O in the Degradation of Layered Black Arsenic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tanwar%2C+M">Mayank Tanwar</a>, <a href="/search/cond-mat?searchtype=author&query=Udyavara%2C+S">Sagar Udyavara</a>, <a href="/search/cond-mat?searchtype=author&query=Yun%2C+H">Hwanhui Yun</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+S">Supriya Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Neurock%2C+M">Matthew Neurock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02416v1-abstract-short" style="display: inline;"> Layered black arsenic (b-As) has recently emerged as a new anisotropic two-dimensional (2D) semiconducting material with applications in electronic devices. Understanding factors affecting the ambient stability of this material remains crucial for its applications. Herein we use first-principles density functional theory (DFT) calculations to examine the stability of the (010) and (101) surfaces o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02416v1-abstract-full').style.display = 'inline'; document.getElementById('2207.02416v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02416v1-abstract-full" style="display: none;"> Layered black arsenic (b-As) has recently emerged as a new anisotropic two-dimensional (2D) semiconducting material with applications in electronic devices. Understanding factors affecting the ambient stability of this material remains crucial for its applications. Herein we use first-principles density functional theory (DFT) calculations to examine the stability of the (010) and (101) surfaces of b-As in the presence of oxygen (O2) and water (H2O). We show that the (101) surface of b-As can easily oxidize in presence of O2. In the presence of moisture contained in air, the oxidized b-As surfaces favorably react with H2O molecules to volatilize As in the form of As(OH)3 and AsO(OH), which results in the degradation of the b-As surface, predominantly across the (101) surface. These predictions are in good agreement with experimental electron microscopy observations, thus demonstrating the co-operative reactivity of O2 and H2O in the degradation of layered b-As under ambient conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02416v1-abstract-full').style.display = 'none'; document.getElementById('2207.02416v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.10656">arXiv:2202.10656</a> <span> [<a href="https://arxiv.org/pdf/2202.10656">pdf</a>, <a href="https://arxiv.org/format/2202.10656">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.18.054004">10.1103/PhysRevApplied.18.054004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant spin torque efficiency in naturally oxidized polycrystalline TaAs thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yanez%2C+W">Wilson Yanez</a>, <a href="/search/cond-mat?searchtype=author&query=Ou%2C+Y">Yongxi Ou</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+R">Run Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+S">Supriya Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Dwivedi%2C+J">Jyotirmay Dwivedi</a>, <a href="/search/cond-mat?searchtype=author&query=Steinebronn%2C+E">Emma Steinebronn</a>, <a href="/search/cond-mat?searchtype=author&query=Richardella%2C+A">Anthony Richardella</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Samarth%2C+N">Nitin Samarth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.10656v1-abstract-short" style="display: inline;"> We report the measurement of efficient charge-to-spin conversion at room temperature in Weyl semimetal/ferromagnet heterostructures with both oxidized and pristine interfaces. Polycrystalline films of the Weyl semimetal, TaAs, are grown by molecular beam epitaxy on (001) GaAs and interfaced with a metallic ferromagnet (Ni$_{0.8}$Fe$_{0.2}$). Spin torque ferromagnetic resonance (ST-FMR) measurement… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10656v1-abstract-full').style.display = 'inline'; document.getElementById('2202.10656v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.10656v1-abstract-full" style="display: none;"> We report the measurement of efficient charge-to-spin conversion at room temperature in Weyl semimetal/ferromagnet heterostructures with both oxidized and pristine interfaces. Polycrystalline films of the Weyl semimetal, TaAs, are grown by molecular beam epitaxy on (001) GaAs and interfaced with a metallic ferromagnet (Ni$_{0.8}$Fe$_{0.2}$). Spin torque ferromagnetic resonance (ST-FMR) measurements in samples with an oxidized interface yield a spin torque efficiency as large as $尉_{\mathrm{FMR}}=0.45\pm 0.25$ for a 8 nm Ni$_{0.8}$Fe$_{0.2}$ layer thickness. By studying ST-FMR in these samples with varying Ni$_{0.8}$Fe$_{0.2}$ layer thickness, we extract a damping-like torque efficiency as high as $尉_{\mathrm{DL}}=1.36\pm 0.66$. In samples with a pristine (unoxidized) interface, the spin torque efficiency has opposite sign to that observed in oxidized samples ($尉_{\mathrm{FMR}}=-0.27\pm 0.14$ for a 5 nm Ni$_{0.8}$Fe$_{0.2}$ layer thickness). We also find a lower bound on the spin Hall conductivity ($424 \pm 110 \frac{\hbar}{e}$ S/cm) which is surprisingly consistent with theoretical predictions for the single crystal Weyl semimetal state of TaAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10656v1-abstract-full').style.display = 'none'; document.getElementById('2202.10656v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 18, 054004 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.04732">arXiv:2201.04732</a> <span> [<a href="https://arxiv.org/pdf/2201.04732">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.017203">10.1103/PhysRevLett.129.017203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient Spin-Orbit Torques in an Antiferromagnetic Insulator with Tilted Easy Plane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Pengxiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chou%2C+C">Chung-Tao Chou</a>, <a href="/search/cond-mat?searchtype=author&query=Yun%2C+H">Hwanhui Yun</a>, <a href="/search/cond-mat?searchtype=author&query=McGoldrick%2C+B+C">Brooke C. McGoldrick</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+J+T">Justin T. Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Luqiao Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.04732v1-abstract-short" style="display: inline;"> Electrical manipulation of spin textures inside antiferromagnets represents a new opportunity for developing spintronics with superior speed and high device density. Injecting spin currents into antiferromagnets and realizing efficient spin-orbit-torque-induced switching is however still challenging due to the complicated interactions from different sublattices. Meanwhile, because of the diminishi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04732v1-abstract-full').style.display = 'inline'; document.getElementById('2201.04732v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.04732v1-abstract-full" style="display: none;"> Electrical manipulation of spin textures inside antiferromagnets represents a new opportunity for developing spintronics with superior speed and high device density. Injecting spin currents into antiferromagnets and realizing efficient spin-orbit-torque-induced switching is however still challenging due to the complicated interactions from different sublattices. Meanwhile, because of the diminishing magnetic susceptibility, the nature and the magnitude of current-induced magnetic dynamics remain poorly characterized in antiferromagnets, whereas spurious effects further complicate experimental interpretations. In this work, by growing a thin film antiferromagnetic insulator, 伪-Fe2O3, along its non-basal plane orientation, we realize a configuration where an injected spin current can robustly rotate the N茅el vector within the tilted easy plane, with an efficiency comparable to that of classical ferromagnets. The spin-orbit torque effect stands out among other competing mechanisms and leads to clear switching dynamics. Thanks to this new mechanism, in contrast to the usually employed orthogonal switching geometry, we achieve bipolar antiferromagnetic switching by applying positive and negative currents along the same channel, a geometry that is more practical for device applications. By enabling efficient spin-orbit torque control on the antiferromagnetic ordering, the tilted easy plane geometry introduces a new platform for quantitatively understanding switching and oscillation dynamics in antiferromagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04732v1-abstract-full').style.display = 'none'; document.getElementById('2201.04732v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.12117">arXiv:2112.12117</a> <span> [<a href="https://arxiv.org/pdf/2112.12117">pdf</a>, <a href="https://arxiv.org/format/2112.12117">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.6.024203">10.1103/PhysRevMaterials.6.024203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Challenges to magnetic doping of thin films of the Dirac semimetal Cd$_3$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+R">Run Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Held%2C+J+T">Jacob T Held</a>, <a href="/search/cond-mat?searchtype=author&query=Rable%2C+J">Jeffrey Rable</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+S">Supriya Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Samarth%2C+N">Nitin Samarth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.12117v1-abstract-short" style="display: inline;"> Magnetic doping of topological quantum materials provides an attractive route for studying the effects of time-reversal symmetry breaking. Thus motivated, we explore the introduction of the transition metal Mn into thin films of the Dirac semimetal Cd3As2 during growth by molecular beam epitaxy. Scanning transmission electron microscopy measurements show the formation of a Mn-rich phase at the top… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12117v1-abstract-full').style.display = 'inline'; document.getElementById('2112.12117v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.12117v1-abstract-full" style="display: none;"> Magnetic doping of topological quantum materials provides an attractive route for studying the effects of time-reversal symmetry breaking. Thus motivated, we explore the introduction of the transition metal Mn into thin films of the Dirac semimetal Cd3As2 during growth by molecular beam epitaxy. Scanning transmission electron microscopy measurements show the formation of a Mn-rich phase at the top surface of Mn-doped Cd3As2 thin films grown using both uniform doping and delta doping. This suggests that Mn acts as a surfactant during epitaxial growth of Cd3As2, resulting in phase separation. Magnetometry measurements of such samples indicate a ferromagnetic phase with out-of-plane magnetic anisotropy. Electrical magneto-transport measurements of these films as a function of temperature, magnetic field, and chemical potential reveal a lower carrier density and higher electron mobility compared to pristine Cd3As2 films grown under similar conditions. This suggests that the surfactant effect might also serve to getter impurities. We observe robust quantum transport (Shubnikov-de Haas oscillations and an incipient integer quantum Hall effect) in very thin (7 nm) Cd3As2 films despite being in direct contact with a structurally disordered surface ferromagnetic overlayer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12117v1-abstract-full').style.display = 'none'; document.getElementById('2112.12117v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 6, 024203 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.10917">arXiv:2112.10917</a> <span> [<a href="https://arxiv.org/pdf/2112.10917">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-35024-8">10.1038/s41467-022-35024-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Room-Temperature Valence Transition in a Strain-Tuned Perovskite Oxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chaturvedi%2C+V">Vipul Chaturvedi</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+S">Supriya Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Gautreau%2C+D">Dominique Gautreau</a>, <a href="/search/cond-mat?searchtype=author&query=Postiglione%2C+W+M">William M. Postiglione</a>, <a href="/search/cond-mat?searchtype=author&query=Dewey%2C+J+E">John E. Dewey</a>, <a href="/search/cond-mat?searchtype=author&query=Quarterman%2C+P">Patrick Quarterman</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+P+P">Purnima P. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Kirby%2C+B+J">Brian J. Kirby</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H">Hua Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+H">Huikai Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Huon%2C+A">Amanda Huon</a>, <a href="/search/cond-mat?searchtype=author&query=Charlton%2C+T">Timothy Charlton</a>, <a href="/search/cond-mat?searchtype=author&query=Fitzsimmons%2C+M+R">Michael R. Fitzsimmons</a>, <a href="/search/cond-mat?searchtype=author&query=Korostynski%2C+C">Caroline Korostynski</a>, <a href="/search/cond-mat?searchtype=author&query=Jacobson%2C+A">Andrew Jacobson</a>, <a href="/search/cond-mat?searchtype=author&query=Figari%2C+L">Lucca Figari</a>, <a href="/search/cond-mat?searchtype=author&query=Barriocanal%2C+J+G">Javier Garcia Barriocanal</a>, <a href="/search/cond-mat?searchtype=author&query=Birol%2C+T">Turan Birol</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Leighton%2C+C">Chris Leighton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.10917v2-abstract-short" style="display: inline;"> Cobalt oxides have long been understood to display intriguing phenomena known as spin-state crossovers, where the cobalt ion spin changes vs. temperature, pressure, etc. A very different situation was recently uncovered in praseodymium-containing cobalt oxides, where a first-order coupled spin-state/structural/metal-insulator transition occurs, driven by a remarkable praseodymium valence transitio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10917v2-abstract-full').style.display = 'inline'; document.getElementById('2112.10917v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.10917v2-abstract-full" style="display: none;"> Cobalt oxides have long been understood to display intriguing phenomena known as spin-state crossovers, where the cobalt ion spin changes vs. temperature, pressure, etc. A very different situation was recently uncovered in praseodymium-containing cobalt oxides, where a first-order coupled spin-state/structural/metal-insulator transition occurs, driven by a remarkable praseodymium valence transition. Such valence transitions, particularly when triggering spin-state and metal-insulator transitions, offer highly appealing functionality, but have thus far been confined to cryogenic temperatures in bulk materials (e.g., 90 K in Pr1-xCaxCoO3). Here, we show that in thin films of the complex perovskite (Pr1-yYy)1-xCaxCoO3-未, heteroepitaxial strain tuning enables stabilization of valence-driven spin-state/structural/metal-insulator transitions to at least 291 K, i.e., around room temperature. The technological implications of this result are accompanied by fundamental prospects, as complete strain control of the electronic ground state is demonstrated, from ferromagnetic metal under tension to nonmagnetic insulator under compression, thereby exposing a potential novel quantum critical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10917v2-abstract-full').style.display = 'none'; document.getElementById('2112.10917v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.08599">arXiv:2107.08599</a> <span> [<a href="https://arxiv.org/pdf/2107.08599">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-30738-1">10.1038/s41467-022-30738-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ZrTe2/CrTe2: an epitaxial van der Waals platform for spintronics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ou%2C+Y">Yongxi Ou</a>, <a href="/search/cond-mat?searchtype=author&query=Yanez%2C+W">Wilson Yanez</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+R">Run Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Stanley%2C+M">Max Stanley</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+S">Supriya Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+B">Boyang Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yu-Sheng Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Pillsbury%2C+T">Timothy Pillsbury</a>, <a href="/search/cond-mat?searchtype=author&query=Richardella%2C+A">Anthony Richardella</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chaoxing Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Low%2C+T">Tony Low</a>, <a href="/search/cond-mat?searchtype=author&query=Crespi%2C+V+H">Vincent H. Crespi</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Samarth%2C+N">Nitin Samarth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.08599v2-abstract-short" style="display: inline;"> The rapid discovery of two-dimensional (2D) van der Waals (vdW) quantum materials has led to heterostructures that integrate diverse quantum functionalities such as topological phases, magnetism, and superconductivity. In this context, the epitaxial synthesis of vdW heterostructures with well-controlled interfaces is an attractive route towards wafer-scale platforms for systematically exploring fu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08599v2-abstract-full').style.display = 'inline'; document.getElementById('2107.08599v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.08599v2-abstract-full" style="display: none;"> The rapid discovery of two-dimensional (2D) van der Waals (vdW) quantum materials has led to heterostructures that integrate diverse quantum functionalities such as topological phases, magnetism, and superconductivity. In this context, the epitaxial synthesis of vdW heterostructures with well-controlled interfaces is an attractive route towards wafer-scale platforms for systematically exploring fundamental properties and fashioning proof-of-concept devices. Here, we use molecular beam epitaxy to synthesize a vdW heterostructure that interfaces two material systems of contemporary interest: a 2D ferromagnet (1T-CrTe2) and a topological semimetal (ZrTe2). We find that one unit-cell (u.c.) thick 1T-CrTe2 grown epitaxially on ZrTe2 is a 2D ferromagnet with a clear anomalous Hall effect. In thicker samples (12 u.c. thick CrTe2), the anomalous Hall effect has characteristics that may arise from real-space Berry curvature. Finally, in ultrathin CrTe2 (3 u.c. thickness), we demonstrate current-driven magnetization switching in a full vdW topological semimetal/2D ferromagnet heterostructure device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08599v2-abstract-full').style.display = 'none'; document.getElementById('2107.08599v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Includes new data (ST-FMR) and calculations (spin Hall conductivity)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 13, 2972 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.00193">arXiv:2107.00193</a> <span> [<a href="https://arxiv.org/pdf/2107.00193">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0062726">10.1063/5.0062726 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solid Source Metal-Organic Molecular Beam Epitaxy of Epitaxial RuO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nunn%2C+W">William Nunn</a>, <a href="/search/cond-mat?searchtype=author&query=Nair%2C+S">Sreejith Nair</a>, <a href="/search/cond-mat?searchtype=author&query=Yun%2C+H">Hwanhui Yun</a>, <a href="/search/cond-mat?searchtype=author&query=Manjeshwar%2C+A+K">Anusha Kamath Manjeshwar</a>, <a href="/search/cond-mat?searchtype=author&query=Rajapitamahuni%2C+A">Anil Rajapitamahuni</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+D">Dooyong Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Jalan%2C+B">Bharat Jalan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.00193v1-abstract-short" style="display: inline;"> A seemingly simple oxide with a rutile structure, RuO2 has been shown to possess several intriguing properties ranging from strain-stabilized superconductivity to a strong catalytic activity. Much interest has arisen surrounding the controlled synthesis of RuO2 films but, unfortunately, utilizing atomically-controlled deposition techniques like molecular beam epitaxy (MBE) has been difficult due t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00193v1-abstract-full').style.display = 'inline'; document.getElementById('2107.00193v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.00193v1-abstract-full" style="display: none;"> A seemingly simple oxide with a rutile structure, RuO2 has been shown to possess several intriguing properties ranging from strain-stabilized superconductivity to a strong catalytic activity. Much interest has arisen surrounding the controlled synthesis of RuO2 films but, unfortunately, utilizing atomically-controlled deposition techniques like molecular beam epitaxy (MBE) has been difficult due to the ultra-low vapor pressure and low oxidation potential of Ru. Here, we demonstrate the growth of epitaxial, single-crystalline RuO2 films on different substrate orientations using the novel solid-source metal-organic (MO) MBE. This approach circumvents these issues by supplying Ru using a pre-oxidized solid metal-organic precursor containing Ru. High-quality epitaxial RuO2 films with bulk-like room-temperature resistivity of 55 micro-ohm-cm were obtained at a substrate temperature as low as 300 C. By combining X-ray diffraction, transmission electron microscopy, and electrical measurements, we discuss the effect of substrate temperature, orientation, film thickness, and strain on the structure and electrical properties of these films. Our results illustrating the use of novel solid-source MOMBE approach paves the way to the atomic-layer controlled synthesis of complex oxides of stubborn metals, which are not only difficult to evaporate but also hard to oxidize. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00193v1-abstract-full').style.display = 'none'; document.getElementById('2107.00193v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages including 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.03982">arXiv:2103.03982</a> <span> [<a href="https://arxiv.org/pdf/2103.03982">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.1c00966">10.1021/acs.nanolett.1c00966 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation and consequences of dopant segregation inside and outside dislocation cores in perovskite BaSnO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yun%2C+H">Hwanhui Yun</a>, <a href="/search/cond-mat?searchtype=author&query=Prakash%2C+A">Abhinav Prakash</a>, <a href="/search/cond-mat?searchtype=author&query=Birol%2C+T">Turan Birol</a>, <a href="/search/cond-mat?searchtype=author&query=Jalan%2C+B">Bharat Jalan</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.03982v1-abstract-short" style="display: inline;"> Distinct dopant behaviors inside and outside dislocation cores are identified by atomic-resolution electron microscopy in perovskite BaSnO3 with considerable consequences on local atomic and electronic structures. Driven by elastic strain, when A-site designated La dopants segregate near a dislocation core, the dopant atoms accumulate at the Ba sites in compressively strained regions. This trigger… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03982v1-abstract-full').style.display = 'inline'; document.getElementById('2103.03982v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.03982v1-abstract-full" style="display: none;"> Distinct dopant behaviors inside and outside dislocation cores are identified by atomic-resolution electron microscopy in perovskite BaSnO3 with considerable consequences on local atomic and electronic structures. Driven by elastic strain, when A-site designated La dopants segregate near a dislocation core, the dopant atoms accumulate at the Ba sites in compressively strained regions. This triggers formation of Ba-vacancies adjacent to the core atomic sites resulting in reconstruction of the core. Notwithstanding the presence of extremely large tensile strain fields, when La atoms segregate inside the dislocation core, they become B-site dopants, replacing Sn atoms and compensating the positive charge of the core oxygen vacancies. Electron energy-loss spectroscopy shows that the local electronic structure of these dislocations changes dramatically due to the segregation of the dopants inside and around the core ranging from formation of strong La-O hybridized electronic states near the conduction band minimum to insulator-to-metal transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03982v1-abstract-full').style.display = 'none'; document.getElementById('2103.03982v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.00653">arXiv:2103.00653</a> <span> [<a href="https://arxiv.org/pdf/2103.00653">pdf</a>, <a href="https://arxiv.org/ps/2103.00653">ps</a>, <a href="https://arxiv.org/format/2103.00653">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.16.054031">10.1103/PhysRevApplied.16.054031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin and charge interconversion in Dirac semimetal thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yanez%2C+W">Wilson Yanez</a>, <a href="/search/cond-mat?searchtype=author&query=Ou%2C+Y">Yongxi Ou</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+R">Run Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Koo%2C+J">Jahyun Koo</a>, <a href="/search/cond-mat?searchtype=author&query=Held%2C+J+T">Jacob T. Held</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+S">Supriya Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Rable%2C+J">Jeffrey Rable</a>, <a href="/search/cond-mat?searchtype=author&query=Pillsbury%2C+T">Timothy Pillsbury</a>, <a href="/search/cond-mat?searchtype=author&query=Delgado%2C+E+G">Enrique Gonzalez Delgado</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+K">Kezhou Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Chamorro%2C+J">Juan Chamorro</a>, <a href="/search/cond-mat?searchtype=author&query=Grutter%2C+A+J">Alexander J. Grutter</a>, <a href="/search/cond-mat?searchtype=author&query=Quarterman%2C+P">Patrick Quarterman</a>, <a href="/search/cond-mat?searchtype=author&query=Richardella%2C+A">Anthony Richardella</a>, <a href="/search/cond-mat?searchtype=author&query=Sengupta%2C+A">Abhronil Sengupta</a>, <a href="/search/cond-mat?searchtype=author&query=McQueen%2C+T">Tyrel McQueen</a>, <a href="/search/cond-mat?searchtype=author&query=Borchers%2C+J+A">Julie A. Borchers</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Samarth%2C+N">Nitin Samarth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.00653v1-abstract-short" style="display: inline;"> We report spin-to-charge and charge-to-spin conversion at room temperature in heterostructure devices that interface an archetypal Dirac semimetal, Cd3As2, with a metallic ferromagnet, Ni0.80Fe0.20 (permalloy). The spin-charge interconversion is detected by both spin torque ferromagnetic resonance and ferromagnetic resonance driven spin pumping. Analysis of the symmetric and anti-symmetric compone… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.00653v1-abstract-full').style.display = 'inline'; document.getElementById('2103.00653v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.00653v1-abstract-full" style="display: none;"> We report spin-to-charge and charge-to-spin conversion at room temperature in heterostructure devices that interface an archetypal Dirac semimetal, Cd3As2, with a metallic ferromagnet, Ni0.80Fe0.20 (permalloy). The spin-charge interconversion is detected by both spin torque ferromagnetic resonance and ferromagnetic resonance driven spin pumping. Analysis of the symmetric and anti-symmetric components of the mixing voltage in spin torque ferromagnetic resonance and the frequency and power dependence of the spin pumping signal show that the behavior of these processes is consistent with previously reported spin-charge interconversion mechanisms in heavy metals, topological insulators, and Weyl semimetals. We find that the efficiency of spin-charge interconversion in Cd3As2/permalloy bilayers can be comparable to that in heavy metals. We discuss the underlying mechanisms by comparing our results with first principles calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.00653v1-abstract-full').style.display = 'none'; document.getElementById('2103.00653v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 16, 054031 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.06104">arXiv:2009.06104</a> <span> [<a href="https://arxiv.org/pdf/2009.06104">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.0c03708">10.1021/acs.nanolett.0c03708 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self-Assembled Periodic Nanostructures Using Martensitic Phase Transformations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Prakash%2C+A">Abhinav Prakash</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+T">Tianqi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Bucsek%2C+A">Ashley Bucsek</a>, <a href="/search/cond-mat?searchtype=author&query=Truttmann%2C+T+K">Tristan K. Truttmann</a>, <a href="/search/cond-mat?searchtype=author&query=Fali%2C+A">Alireza Fali</a>, <a href="/search/cond-mat?searchtype=author&query=Cotrufo%2C+M">Michele Cotrufo</a>, <a href="/search/cond-mat?searchtype=author&query=Yun%2C+H">Hwanhui Yun</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+J">Jong-Woo Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Ryan%2C+P+J">Philip J. Ryan</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Alu%2C+A">Andrea Alu</a>, <a href="/search/cond-mat?searchtype=author&query=Abate%2C+Y">Yohannes Abate</a>, <a href="/search/cond-mat?searchtype=author&query=James%2C+R+D">Richard D. James</a>, <a href="/search/cond-mat?searchtype=author&query=Jalan%2C+B">Bharat Jalan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.06104v1-abstract-short" style="display: inline;"> We describe a novel approach for the rational design and synthesis of self-assembled periodic nanostructures using martensitic phase transformations. We demonstrate this approach in a thin film of perovskite SrSnO3 with reconfigurable periodic nanostructures consisting of regularly spaced regions of sharply contrasted dielectric properties. The films can be designed to have different periodicities… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06104v1-abstract-full').style.display = 'inline'; document.getElementById('2009.06104v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.06104v1-abstract-full" style="display: none;"> We describe a novel approach for the rational design and synthesis of self-assembled periodic nanostructures using martensitic phase transformations. We demonstrate this approach in a thin film of perovskite SrSnO3 with reconfigurable periodic nanostructures consisting of regularly spaced regions of sharply contrasted dielectric properties. The films can be designed to have different periodicities and relative phase fractions via chemical doping or strain engineering. The dielectric contrast within a single film can be tuned using temperature and laser wavelength, effectively creating a variable photonic crystal. Our results show the realistic possibility of designing large-area self-assembled periodic structures using martensitic phase transformations with the potential of implementing "built-to-order" nanostructures for tailored optoelectronic functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06104v1-abstract-full').style.display = 'none'; document.getElementById('2009.06104v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.09417">arXiv:2002.09417</a> <span> [<a href="https://arxiv.org/pdf/2002.09417">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.0c01506">10.1021/acsnano.0c01506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Layer-dependence of dielectric response and water-enhanced ambient degradation of highly-anisotropic black As </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yun%2C+H">Hwanhui Yun</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosh%2C+S">Supriya Ghosh</a>, <a href="/search/cond-mat?searchtype=author&query=Golani%2C+P">Prafful Golani</a>, <a href="/search/cond-mat?searchtype=author&query=Koester%2C+S+J">Steven J. Koester</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.09417v1-abstract-short" style="display: inline;"> Black arsenic (BAs) is a van der Waals layered material with a puckered honeycomb structure and has received increased interest due to its anisotropic properties and promising performance in devices. Here, crystalline structure, thickness-dependent dielectric responses, and ambient stability of BAs nanosheets are investigated using STEM imaging and spectroscopy. Atomic-resolution HAADF-STEM images… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09417v1-abstract-full').style.display = 'inline'; document.getElementById('2002.09417v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.09417v1-abstract-full" style="display: none;"> Black arsenic (BAs) is a van der Waals layered material with a puckered honeycomb structure and has received increased interest due to its anisotropic properties and promising performance in devices. Here, crystalline structure, thickness-dependent dielectric responses, and ambient stability of BAs nanosheets are investigated using STEM imaging and spectroscopy. Atomic-resolution HAADF-STEM images directly visualize the three-dimensional structure and evaluate the degree of anisotropy. STEM-EELS is used to measure the dielectric response of BAs as a function of the number of layers. Finally, BAs degradation under different ambient environments is studied highlighting high sensitivity to moisture in the air. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09417v1-abstract-full').style.display = 'none'; document.getElementById('2002.09417v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.06379">arXiv:1906.06379</a> <span> [<a href="https://arxiv.org/pdf/1906.06379">pdf</a>, <a href="https://arxiv.org/format/1906.06379">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S1431927619003982">10.1017/S1431927619003982 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simultaneous multi-region background subtraction for core-level EEL spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Held%2C+J">Jacob Held</a>, <a href="/search/cond-mat?searchtype=author&query=Yun%2C+H">Hwanhui Yun</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.06379v1-abstract-short" style="display: inline;"> We present a multi-region extension of standard power-law background subtraction for core-level EEL spectra to improve the robustness of background removal. This method takes advantage of the post-edge shape of core-loss EEL edges to enable simultaneous and co-dependent fitting of pre- and post-edge background regions. This method also produces simultaneous and consistent background removal from m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06379v1-abstract-full').style.display = 'inline'; document.getElementById('1906.06379v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.06379v1-abstract-full" style="display: none;"> We present a multi-region extension of standard power-law background subtraction for core-level EEL spectra to improve the robustness of background removal. This method takes advantage of the post-edge shape of core-loss EEL edges to enable simultaneous and co-dependent fitting of pre- and post-edge background regions. This method also produces simultaneous and consistent background removal from multiple edges in a single EEL spectrum. The stability of this method with respect to the fitting energy window is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06379v1-abstract-full').style.display = 'none'; document.getElementById('1906.06379v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Ultramicroscopy 210 (2020) 112919 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.05923">arXiv:1906.05923</a> <span> [<a href="https://arxiv.org/pdf/1906.05923">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ultramic.2019.112863">10.1016/j.ultramic.2019.112863 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> STEM beam channeling in BaSnO3/LaAlO3 perovskite bilayers and visualization of 2D misfit dislocation network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yun%2C+H">Hwanhui Yun</a>, <a href="/search/cond-mat?searchtype=author&query=Prakash%2C+A">Abhinav Prakash</a>, <a href="/search/cond-mat?searchtype=author&query=Jalan%2C+B">Bharat Jalan</a>, <a href="/search/cond-mat?searchtype=author&query=Jeong%2C+J+S">Jong Seok Jeong</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.05923v1-abstract-short" style="display: inline;"> A study of the STEM probe channeling in a heterostructures crystalline specimen is presented here with a goal to guide appropriate STEM-based characterization for complex structures. STEM analysis of perovskite BaSnO3/LaAlO3 bilayers is performed and the dominating effects of beam channeling on HAADF- and LAADF-STEM are illustrated. To study the electron beam propagating through BaSnO3/LaAlO3 bila… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05923v1-abstract-full').style.display = 'inline'; document.getElementById('1906.05923v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.05923v1-abstract-full" style="display: none;"> A study of the STEM probe channeling in a heterostructures crystalline specimen is presented here with a goal to guide appropriate STEM-based characterization for complex structures. STEM analysis of perovskite BaSnO3/LaAlO3 bilayers is performed and the dominating effects of beam channeling on HAADF- and LAADF-STEM are illustrated. To study the electron beam propagating through BaSnO3/LaAlO3 bilayers, probe intensity depth profiles are calculated, and the effects of probe defocus and atomic column alignment are discussed. Characteristics of the beam channeling are correlated to resulting ADF-STEM images, which is then tested by comparing focal series of plan-view HAADF-STEM images to those recorded experimentally. Additionally, discussions on how to visualize the misfit dislocation network at the BaSnO3/LaAlO3 interface using HAADF- and LAADF-STEM images are provided. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05923v1-abstract-full').style.display = 'none'; document.getElementById('1906.05923v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.04563">arXiv:1905.04563</a> <span> [<a href="https://arxiv.org/pdf/1905.04563">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.9b03825">10.1021/acs.nanolett.9b03825 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Separating Electrons and Donors in BaSnO3 via Band Engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Prakash%2C+A">Abhinav Prakash</a>, <a href="/search/cond-mat?searchtype=author&query=Quackenbush%2C+N+F">Nicholas F. Quackenbush</a>, <a href="/search/cond-mat?searchtype=author&query=Yun%2C+H">Hwanhui Yun</a>, <a href="/search/cond-mat?searchtype=author&query=Held%2C+J">Jacob Held</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+T">Tianqi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Truttmann%2C+T">Tristan Truttmann</a>, <a href="/search/cond-mat?searchtype=author&query=Ablett%2C+J+M">James M. Ablett</a>, <a href="/search/cond-mat?searchtype=author&query=Weiland%2C+C">Conan Weiland</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+T">Tien-Lin Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Woicik%2C+J+C">Joseph C. Woicik</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Jalan%2C+B">Bharat Jalan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.04563v1-abstract-short" style="display: inline;"> Through a combination of thin film growth, hard X-ray photoelectron spectroscopy (HAXPES), scanning transmission electron microscopy/electron energy loss spectroscopy (STEM/EELS), magneto-transport measurements, and transport modeling, we report on the demonstration of modulation-doping of BaSnO3 (BSO) using a wider bandgap La-doped SrSnO3 (LSSO) layer. Hard X-ray photoelectron spectroscopy (HAXPE… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04563v1-abstract-full').style.display = 'inline'; document.getElementById('1905.04563v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.04563v1-abstract-full" style="display: none;"> Through a combination of thin film growth, hard X-ray photoelectron spectroscopy (HAXPES), scanning transmission electron microscopy/electron energy loss spectroscopy (STEM/EELS), magneto-transport measurements, and transport modeling, we report on the demonstration of modulation-doping of BaSnO3 (BSO) using a wider bandgap La-doped SrSnO3 (LSSO) layer. Hard X-ray photoelectron spectroscopy (HAXPES) revealed a valence band offset of 0.71 +/- 0.02 eV between LSSO and BSO resulting in a favorable conduction band offset for remote doping of BSO using LSSO. Nonlinear Hall effect of LSSO/BSO heterostructure confirmed two-channel conduction owing to electron transfer from LSSO to BSO and remained in good agreement with the results of self-consistent solution to one-dimensional Poisson and Schr枚dinger equations. Angle-dependent HAXPES measurements revealed a spatial distribution of electrons over 2-3 unit cells in BSO. These results bring perovskite oxides a step closer to room-temperature oxide electronics by establishing modulation-doping approaches in non-SrTiO3-based oxide heterostructure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04563v1-abstract-full').style.display = 'none'; document.getElementById('1905.04563v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.03719">arXiv:1808.03719</a> <span> [<a href="https://arxiv.org/pdf/1808.03719">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.011201">10.1103/PhysRevMaterials.4.011201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large-scale defects hidden inside a topological insulator grown onto a 2D substrate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hickey%2C+D+R">Danielle Reifsnyder Hickey</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+R+J">Ryan J. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">Joon Sue Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Azadani%2C+J+G">Javad G. Azadani</a>, <a href="/search/cond-mat?searchtype=author&query=Grassi%2C+R">Roberto Grassi</a>, <a href="/search/cond-mat?searchtype=author&query=DC%2C+M">Mahendra DC</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jian-Ping Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Low%2C+T">Tony Low</a>, <a href="/search/cond-mat?searchtype=author&query=Samarth%2C+N">Nitin Samarth</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.03719v1-abstract-short" style="display: inline;"> Topological insulator (TI) materials are exciting candidates for integration into next-generation memory and logic devices because of their potential for efficient, low-energy-consumption switching of magnetization. Specifically, the family of bismuth chalcogenides offers efficient spin-to-charge conversion because of its large spin-orbit coupling and spin-momentum locking of surface states. Howev… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.03719v1-abstract-full').style.display = 'inline'; document.getElementById('1808.03719v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.03719v1-abstract-full" style="display: none;"> Topological insulator (TI) materials are exciting candidates for integration into next-generation memory and logic devices because of their potential for efficient, low-energy-consumption switching of magnetization. Specifically, the family of bismuth chalcogenides offers efficient spin-to-charge conversion because of its large spin-orbit coupling and spin-momentum locking of surface states. However, a major obstacle to realizing the promise of TIs is the thin-film materials' quality, which lags behind that of epitaxially grown semiconductors. In contrast to the latter systems, the Bi-chalcogenides form by van der Waals epitaxy, which allows them to successfully grow onto substrates with various degrees of lattice mismatch. This flexibility enables the integration of TIs into heterostructures with emerging materials, including two-dimensional materials. However, understanding and controlling local features and defects within the TI films is critical to achieving breakthrough device performance. Here, we report observations and modeling of large-scale structural defects in (Bi,Sb)$_2$Te$_3$ films grown onto hexagonal BN, highlighting unexpected symmetry-breaking rotations within the films and the coexistence of a second phase along grain boundaries. Using first-principles calculations, we show that these defects could have consequential impacts on the devices that rely on these TI films, and therefore they cannot be ignored. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.03719v1-abstract-full').style.display = 'none'; document.getElementById('1808.03719v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Mater. 4, 011201(R) (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.03348">arXiv:1808.03348</a> <span> [<a href="https://arxiv.org/pdf/1808.03348">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.075501">10.1103/PhysRevLett.122.075501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sub-Atomic Channeling and Vortex Beams in SrTiO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jeong%2C+J+S">Jong Seok Jeong</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+H">Hosup Song</a>, <a href="/search/cond-mat?searchtype=author&query=Held%2C+J+T">Jacob T. Held</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.03348v1-abstract-short" style="display: inline;"> Inspired by recent experimental sub-atomic measurements using analytical aberration-corrected scanning transmission electron microscopes (STEMs), we studied electron probe propagation in crystalline SrTiO$_3$ at the sub-atomic length scale. Here, we report the existence of sub-atomic channeling and the formation of a vortex beam at this scale. The results of beam propagation simulations, which are… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.03348v1-abstract-full').style.display = 'inline'; document.getElementById('1808.03348v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.03348v1-abstract-full" style="display: none;"> Inspired by recent experimental sub-atomic measurements using analytical aberration-corrected scanning transmission electron microscopes (STEMs), we studied electron probe propagation in crystalline SrTiO$_3$ at the sub-atomic length scale. Here, we report the existence of sub-atomic channeling and the formation of a vortex beam at this scale. The results of beam propagation simulations, which are performed at various crystal temperatures and STEM probe convergence angles (10 to 50 mrad) and beam energies (80 to 300 keV), showed that reducing the ambient temperature can enhance the sub-atomic channeling and that STEM probe parameters can be used to control the vortex beams and adjust their intensity, speed, and area. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.03348v1-abstract-full').style.display = 'none'; document.getElementById('1808.03348v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 075501 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.01377">arXiv:1807.01377</a> <span> [<a href="https://arxiv.org/pdf/1807.01377">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.3.111001">10.1103/PhysRevMaterials.3.111001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An Inside Look at the Ti-MoS2 Contact in Ultra-thin Field Effect Transistor with Atomic Resolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+R+J">Ryan J. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Udyavara%2C+S">Sagar Udyavara</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+R">Rui Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chhowalla%2C+M">Manish Chhowalla</a>, <a href="/search/cond-mat?searchtype=author&query=Koester%2C+S+J">Steven J. Koester</a>, <a href="/search/cond-mat?searchtype=author&query=Neurock%2C+M">Matthew Neurock</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.01377v1-abstract-short" style="display: inline;"> Two-dimensional molybdenum disulfide (MoS2) is an excellent channel material for ultra-thin field effect transistors. However, high contact resistance across the metal-MoS2 interface continues to limit its widespread realization. Here, using atomic-resolution analytical scanning transmission electron microscopy (STEM) together with first principle calculations, we show that this contact problem is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.01377v1-abstract-full').style.display = 'inline'; document.getElementById('1807.01377v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.01377v1-abstract-full" style="display: none;"> Two-dimensional molybdenum disulfide (MoS2) is an excellent channel material for ultra-thin field effect transistors. However, high contact resistance across the metal-MoS2 interface continues to limit its widespread realization. Here, using atomic-resolution analytical scanning transmission electron microscopy (STEM) together with first principle calculations, we show that this contact problem is a fundamental limitation from the bonding and interactions at the metal-MoS2 interface that cannot be solved by improved deposition engineering. STEM analysis in conjunction with theory shows that when MoS2 is in contact with Ti, a metal with a high affinity to form strong bonds with sulfur, there is a release of S from Mo along with the formation of small Ti/TixSy clusters. A destruction of the MoS2 layers and penetration of metal can also be expected. The design of true high-mobility metal-MoS2 contacts will require the optimal selection of the metal or alloy based on their bonding interactions with the MoS2 surface. This can be advanced by evaluation of binding energies with increasing the number of atoms within metal clusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.01377v1-abstract-full').style.display = 'none'; document.getElementById('1807.01377v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 3, 111001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.02626">arXiv:1805.02626</a> <span> [<a href="https://arxiv.org/pdf/1805.02626">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Decomposition of La2-xSrxCuO4 into Several La2O3 Phases at Elevated Temperatures in Ultra-High Vacuum inside a Transmission Electron Microscope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jeong%2C+J+S">Jong Seok Jeong</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+W">Wangzhou Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Topsakal%2C+M">Mehmet Topsakal</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+G">Guichuan Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Sasagawa%2C+T">Takao Sasagawa</a>, <a href="/search/cond-mat?searchtype=author&query=Greven%2C+M">Martin Greven</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.02626v1-abstract-short" style="display: inline;"> We report the decomposition of La2-xSrxCuO4 into La2O3 and Cu nanoparticles in ultra-high vacuum, observed by in-situ heating experiments in a transmission electron microscope (TEM). The analysis of electron diffraction data reveals that the phase decomposition process starts at about 150 掳C and is considerably expedited in the temperature range of 350-450 掳C. Two major resultant solid phases are… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.02626v1-abstract-full').style.display = 'inline'; document.getElementById('1805.02626v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.02626v1-abstract-full" style="display: none;"> We report the decomposition of La2-xSrxCuO4 into La2O3 and Cu nanoparticles in ultra-high vacuum, observed by in-situ heating experiments in a transmission electron microscope (TEM). The analysis of electron diffraction data reveals that the phase decomposition process starts at about 150 掳C and is considerably expedited in the temperature range of 350-450 掳C. Two major resultant solid phases are identified as metallic Cu and La2O3 by electron diffraction, simulation, and electron energy-loss spectroscopy (EELS) analyses. With the aid of calculations, La2O3 phases are further identified to be derivatives of a fluorite structure - fluorite, pyrochlore, and (distorted) bixbyite - characterized by different oxygen-vacancy order. Additionally, the bulk plasmon energy and the fine structures of the O K and La M4,5 EELS edges are reported for these structures, along with simulated O K X-ray absorption near-edge structure. The resultant Cu nanoparticles and La2O3 phases remain unchanged after cooling to room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.02626v1-abstract-full').style.display = 'none'; document.getElementById('1805.02626v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures, It is to be published in Phys. Rev. Mater</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.03822">arXiv:1703.03822</a> <span> [<a href="https://arxiv.org/pdf/1703.03822">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-018-0136-z">10.1038/s41563-018-0136-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered BixSe(1-x) topological insulator material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=DC%2C+M">Mahendra DC</a>, <a href="/search/cond-mat?searchtype=author&query=Jamali%2C+M">Mahdi Jamali</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jun-Yang Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Hickey%2C+D+R">Danielle Reifsnyder Hickey</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+D">Delin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Z">Zhengyang Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hongshi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Quarterman%2C+P">P. Quarterman</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+Y">Yang Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+M">Mo Li</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jian-Ping Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.03822v1-abstract-short" style="display: inline;"> The spin-orbit torque (SOT) arising from materials with large spin-orbit coupling promises a path for ultra-low power and fast magnetic-based storage and computational devices. We investigated the SOT from magnetron-sputtered BixSe(1-x) thin films in BixSe(1-x)/CoFeB heterostructures by using a dc planar Hall method. Remarkably, the spin Hall angle (SHA) was found to be as large as 18.83, which is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.03822v1-abstract-full').style.display = 'inline'; document.getElementById('1703.03822v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.03822v1-abstract-full" style="display: none;"> The spin-orbit torque (SOT) arising from materials with large spin-orbit coupling promises a path for ultra-low power and fast magnetic-based storage and computational devices. We investigated the SOT from magnetron-sputtered BixSe(1-x) thin films in BixSe(1-x)/CoFeB heterostructures by using a dc planar Hall method. Remarkably, the spin Hall angle (SHA) was found to be as large as 18.83, which is the largest ever reported at room temperature (RT). Moreover, switching of a perpendicular CoFeB multilayer using SOT from the BixSe(1-x) has been observed with the lowest-ever switching current density reported in a bilayer system: 2.3 * 105 A/cm2 at RT. The giant SHA, smooth surface, ease of growth of the films on silicon substrate, successful growth and switching of a perpendicular CoFeB multilayer on BixSe(1-x) film opens a path for use of BixSe(1-x) topological insulator (TI) material as a spin-current generator in SOT-based memory and logic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.03822v1-abstract-full').style.display = 'none'; document.getElementById('1703.03822v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.09284">arXiv:1611.09284</a> <span> [<a href="https://arxiv.org/pdf/1611.09284">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1116/1.5026298">10.1116/1.5026298 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure of BaSnO3 investigated by high-energy-resolution electron energy-loss spectroscopy and ab initio calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yun%2C+H">Hwanhui Yun</a>, <a href="/search/cond-mat?searchtype=author&query=Topsakal%2C+M">Mehmet Topsakal</a>, <a href="/search/cond-mat?searchtype=author&query=Prakash%2C+A">Abhinav Prakash</a>, <a href="/search/cond-mat?searchtype=author&query=Ganguly%2C+K">Koustav Ganguly</a>, <a href="/search/cond-mat?searchtype=author&query=Leighton%2C+C">Chris Leighton</a>, <a href="/search/cond-mat?searchtype=author&query=Jalan%2C+B">Bharat Jalan</a>, <a href="/search/cond-mat?searchtype=author&query=Wentzcovitch%2C+R+M">Renata M. Wentzcovitch</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Jeong%2C+J+S">Jong Seok Jeong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.09284v1-abstract-short" style="display: inline;"> There has been growing interest in perovskite BaSnO3 due to its desirable properties for oxide electronic devices including high electron mobility at room temperature and optical transparency. As these electronic and optical properties originate largely from the electronic structure of the material, here the basic electronic structure of epitaxially-grown BaSnO3 films is studied using high-energy-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.09284v1-abstract-full').style.display = 'inline'; document.getElementById('1611.09284v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.09284v1-abstract-full" style="display: none;"> There has been growing interest in perovskite BaSnO3 due to its desirable properties for oxide electronic devices including high electron mobility at room temperature and optical transparency. As these electronic and optical properties originate largely from the electronic structure of the material, here the basic electronic structure of epitaxially-grown BaSnO3 films is studied using high-energy-resolution electron energy-loss spectroscopy in a transmission electron microscope and ab initio calculations. This study provides a detailed description of the dielectric function of BaSnO3, including the energies of bulk plasmon excitations and critical interband electronic transitions, the band structure and partial densities of states, the measured band gap, and more. To make the study representative of a variety of deposition methods, results from BaSnO3 films grown by both hybrid molecular beam epitaxy and high pressure oxygen sputter deposition are reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.09284v1-abstract-full').style.display = 'none'; document.getElementById('1611.09284v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 7 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.06415">arXiv:1607.06415</a> <span> [<a href="https://arxiv.org/pdf/1607.06415">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.6b02532">10.1021/acs.nanolett.6b02532 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A New Line Defect in NdTiO3 Perovskite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jeong%2C+J+S">Jong Seok Jeong</a>, <a href="/search/cond-mat?searchtype=author&query=Topsakal%2C+M">Mehmet Topsakal</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+P">Peng Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Jalan%2C+B">Bharat Jalan</a>, <a href="/search/cond-mat?searchtype=author&query=Wentzcovitch%2C+R+M">Renata M. Wentzcovitch</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.06415v1-abstract-short" style="display: inline;"> Perovskite oxides form an eclectic class of materials owing to their structural flexibility in accommodating cations of different sizes and valences. They host well known point and planar defects, but so far no line defect has been identified other than dislocations. Using analytical scanning transmission electron microscopy (STEM) and ab initio calculations we have detected and characterized the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.06415v1-abstract-full').style.display = 'inline'; document.getElementById('1607.06415v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.06415v1-abstract-full" style="display: none;"> Perovskite oxides form an eclectic class of materials owing to their structural flexibility in accommodating cations of different sizes and valences. They host well known point and planar defects, but so far no line defect has been identified other than dislocations. Using analytical scanning transmission electron microscopy (STEM) and ab initio calculations we have detected and characterized the atomic and electronic structures of a novel line defect in NdTiO3 perovskite. It appears in STEM images as a perovskite cell rotated by 45 degrees. It consists of self-organized Ti-O vacancy lines replaced by Nd columns surrounding a central Ti-O octahedral chain containing Ti4+ ions, as opposed to Ti3+ in the host. The distinct Ti valence in this line defect introduces the possibility of engineering exotic conducting properties in a single preferred direction and tailoring novel desirable functionalities in this Mott insulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.06415v1-abstract-full').style.display = 'none'; document.getElementById('1607.06415v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 16 (2016) 6816-6822 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.07063">arXiv:1507.07063</a> <span> [<a href="https://arxiv.org/pdf/1507.07063">pdf</a>, <a href="https://arxiv.org/format/1507.07063">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.155312">10.1103/PhysRevB.92.155312 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mapping the chemical potential dependence of current-induced spin polarization in a topological insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">Joon Sue Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Richardella%2C+A">Anthony Richardella</a>, <a href="/search/cond-mat?searchtype=author&query=Hickey%2C+D+R">Danielle Reifsnyder Hickey</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&query=Samarth%2C+N">Nitin Samarth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.07063v1-abstract-short" style="display: inline;"> We report electrical measurements of the current-induced spin polarization of the surface current in topological insulator devices where contributions from bulk and surface conduction can be disen- tangled by electrical gating. The devices use a ferromagnetic tunnel junction (permalloy/Al2O3) as a spin detector on a back-gated (Bi,Sb)2Te3 channel. We observe hysteretic voltage signals as the magne… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07063v1-abstract-full').style.display = 'inline'; document.getElementById('1507.07063v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.07063v1-abstract-full" style="display: none;"> We report electrical measurements of the current-induced spin polarization of the surface current in topological insulator devices where contributions from bulk and surface conduction can be disen- tangled by electrical gating. The devices use a ferromagnetic tunnel junction (permalloy/Al2O3) as a spin detector on a back-gated (Bi,Sb)2Te3 channel. We observe hysteretic voltage signals as the magnetization of the detector ferromagnet is switched parallel or anti-parallel to the spin polariza- tion of the surface current. The amplitude of the detected voltage change is linearly proportional to the applied DC bias current in the (Bi,Sb)2Te3 channel. As the chemical potential is tuned from the bulk bands into the surface state band, we observe an enhancement of the spin-dependent voltages up to 300% within the range of the electrostatic gating. Using a simple model, we extract the spin polarization near charge neutrality (i.e. the Dirac point). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07063v1-abstract-full').style.display = 'none'; document.getElementById('1507.07063v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 155312 (2015) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>