CINXE.COM

Search results for: screen printing

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: screen printing</title> <meta name="description" content="Search results for: screen printing"> <meta name="keywords" content="screen printing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="screen printing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="screen printing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 857</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: screen printing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">857</span> Simulation of Fiber Deposition on Molded Fiber Screen Using Multi-Sphere Discrete Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kim%20Quy%20Le">Kim Quy Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Duan%20Fei"> Duan Fei</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Wei%20Chew"> Jia Wei Chew</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Zeng"> Jun Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Fabiola%20Leyva"> Maria Fabiola Leyva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In line with the sustainable development goal, molded fiber products play important roles in reducing plastic-based packaging. To fabricate molded fiber products, besides using conventional meshing tools, 3D printing is employed to manufacture the molded fiber screen. 3D printing technique allows printing molded fiber screens with complex geometry, flexible in pore size and shape. The 3D printed molded fiber screens are in the progress of investigation to improve the de-watering efficiency, fiber collection, mechanical strength, etc. In addition, the fiber distribution on the screen is also necessary to access the quality of the screen. Besides using experimental methods to capture the fiber distribution on screen, simulation also offers using tools to access the uniformity of fiber. In this study, the fiber was simulated using the multi-sphere model to simulate the fibers. The interaction of the fibers was able to mimic by employing the discrete element method. The fiber distribution was captured and compared to the experiment. The simulation results were able to reveal the fiber deposition layer upon layer and explain the formation of uneven thickness on the tilted area of molded fiber screen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-jet%20fusion" title=" multi-jet fusion"> multi-jet fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=molded%20fiber%20screen" title=" molded fiber screen"> molded fiber screen</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a> </p> <a href="https://publications.waset.org/abstracts/157099/simulation-of-fiber-deposition-on-molded-fiber-screen-using-multi-sphere-discrete-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">856</span> Thin and Flexible Zn-Air Battery by Inexpensive Screen Printing Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sira%20Suren">Sira Suren</a>, <a href="https://publications.waset.org/abstracts/search?q=Soorathep%20Kheawhom"> Soorathep Kheawhom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work focuses the development of thin and flexible zinc-air battery. The battery with an overall thickness of about 300 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder and ZnO was used to prepare the anode electrode. Types of conductive materials (Bi2O3, Na2O3Si and carbon black) for the anode and its concentration were investigated. Results showed that the battery using 29% carbon black showed the best performance. The open-circuit voltage and energy density observed were 1.6 V and 694 Wh/kg, respectively. When the battery was discharged at 10 mA/cm2, the potential voltage observed was 1.35 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible" title="flexible">flexible</a>, <a href="https://publications.waset.org/abstracts/search?q=Gel%20Electrolyte" title=" Gel Electrolyte"> Gel Electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20printing" title=" screen printing"> screen printing</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20battery" title=" thin battery"> thin battery</a>, <a href="https://publications.waset.org/abstracts/search?q=Zn-Air%20battery" title=" Zn-Air battery "> Zn-Air battery </a> </p> <a href="https://publications.waset.org/abstracts/53818/thin-and-flexible-zn-air-battery-by-inexpensive-screen-printing-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">855</span> A Flexible High Energy Density Zn-Air Battery by Screen Printing Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sira%20Suren">Sira Suren</a>, <a href="https://publications.waset.org/abstracts/search?q=Soorathep%20Kheawhom"> Soorathep Kheawhom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work investigates the development of a high energy density zinc-air battery. Printed and flexible thin film zinc-air battery with an overall thickness of about 350 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder, ZnO, and Bi2O3 was used to prepare the anode electrode. The suitable concentration of Bi2O3 and types of binders (styrene-butadiene and sodium silicate) were investigated. Results showed that battery using 20% Bi2O3 and sodium silicate binder provided the best performance. The open-circuit voltage and energy density observed were 1.59 V and 690 Wh/kg, respectively. When the battery was discharged at 20 mA/cm2, the potential voltage observed was 1.3 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible" title="flexible">flexible</a>, <a href="https://publications.waset.org/abstracts/search?q=printed%20battery" title=" printed battery"> printed battery</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20printing" title=" screen printing"> screen printing</a>, <a href="https://publications.waset.org/abstracts/search?q=Zn-air" title=" Zn-air"> Zn-air</a> </p> <a href="https://publications.waset.org/abstracts/50126/a-flexible-high-energy-density-zn-air-battery-by-screen-printing-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">854</span> Integration from Laboratory to Industrialization for Hybrid Printed Electronics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Moulay">Ahmed Moulay</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariia%20Zhuldybina"> Mariia Zhuldybina</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirko%20Torres"> Mirko Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Rozel"> Mike Rozel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ngoc%20Duc%20Trinh"> Ngoc Duc Trinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlo%C3%A9%20Bois"> Chloé Bois</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid printed electronics technology (HPE) provides innovative opportunities to enhance conventional electronics applications, which are often based on printed circuit boards (PCB). By combining the best of both performance from conventional electronic components and the flexibility from printed circuits makes it possible to manufacture HPE at high volumes using roll-to-roll printing processes. However, several challenges must be overcome in order to accurately integrate an electronic component on a printed circuit. In this presentation, we will demonstrate the integration process of electronic components from the lab scale to the industrialization. Both the printing quality and the integration technique must be studied to define the optimal conditions. To cover the parameters that influence the print quality of the printed circuit, different printing processes, flexible substrates, and conductive inks will be used to determine the optimized printing process/ink/substrate system. After the systems is selected, an electronic component of 2.5 mm2 chip size will be integrated to validate the functionality of the printed, electronic circuit. Critical information such as the conductive adhesive, the curing conditions, and the chip encapsulation will be determined. Thanks to these preliminary results, we are able to demonstrate the chip integration on a printed circuit using industrial equipment, showing the potential of industrialization, compatible using roll-to-roll printing and integrating processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flat%20bed%20screen-printing" title="flat bed screen-printing">flat bed screen-printing</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20printed%20electronics" title=" hybrid printed electronics"> hybrid printed electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20production" title=" large-scale production"> large-scale production</a>, <a href="https://publications.waset.org/abstracts/search?q=roll-to-roll%20printing" title=" roll-to-roll printing"> roll-to-roll printing</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary%20screen%20printing" title=" rotary screen printing"> rotary screen printing</a> </p> <a href="https://publications.waset.org/abstracts/142964/integration-from-laboratory-to-industrialization-for-hybrid-printed-electronics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">853</span> Identification of a Print Design Approach for the Application of Multicolour and Pattern Changing Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dilusha%20Rajapakse">Dilusha Rajapakse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main reason for printing coloured imageries, pattern or motif onto textiles is to enhance the visual appearance of the surface so that the final textile product would get the required attention from potential customers. Such colours and patterns are permanently applied onto the textiles using conventional static colourants, and we expect such decorations to be last for the entire lifecycle of the textile product. The focus of this research presentation is to discuss the ability to integrate multicolour and pattern changing aesthetics onto textiles with the application of water based photochromic colourants. By adopting a research through design approach, a number of iterative flatbed screen printing experiments were conducted to explore the process of printing water based photochromic colours on textile surfaces. The research resulted in several technical parameters that have to be considered during the process of screen printing. Moreover, a modified printing technique that could be used to apply decorative photographic imagery onto textile with multicolour changing effects was also identified. A number of product applications for such dynamic printed textiles were revealed, and appropriate visual evidence was referred to justify the finding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20aesthetics" title="dynamic aesthetics">dynamic aesthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=multicolour%20changing%20textiles" title=" multicolour changing textiles"> multicolour changing textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=non-emissive%20colours" title=" non-emissive colours"> non-emissive colours</a>, <a href="https://publications.waset.org/abstracts/search?q=printed%20textile%20design" title=" printed textile design "> printed textile design </a> </p> <a href="https://publications.waset.org/abstracts/71454/identification-of-a-print-design-approach-for-the-application-of-multicolour-and-pattern-changing-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">852</span> Environmental Pb-Free Cu Front Electrode for Si-Base Solar Cell Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen-Hsi%20Lee">Wen-Hsi Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=C.G.%20Kao"> C.G. Kao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Cu paste was prepared and printed with narrow line screen printing process on polycrystalline Si solar cell which has already finished the back Al printing and deposition of double anti-reflection coatings (DARCs). Then, two-step firing process was applied to sinter the front electrode and obtain the ohmic contact between front electrode and solar cell. The first step was in air atmosphere. In this process, PbO-based glass frit etched the DARCs and Ag recrystallized at the surface of Si, constructing the preliminary contact. The second step was in reducing atmosphere. In this process, CuO reduced to Cu and sintered. Besides, Ag nanoparticles recrystallized in the glass layer at interface due to the interactions between H2, Ag and PbO-based glass frit and the volatility of Pb, constructing the ohmic contact between electrode and solar cell. By experiment and analysis, reaction mechanism in each stage was surmised, and it was also proven that ohmic contact and good sheet resistance for front electrode could both be obtained by applying newly-invented paste and process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=front%20electrode" title="front electrode">front electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=ohmic%20contact" title=" ohmic contact"> ohmic contact</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20printing" title=" screen printing"> screen printing</a>, <a href="https://publications.waset.org/abstracts/search?q=paste" title=" paste"> paste</a> </p> <a href="https://publications.waset.org/abstracts/32923/environmental-pb-free-cu-front-electrode-for-si-base-solar-cell-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">851</span> Design Aspects of 3D Printing for Fashion and Textiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chi-Chung%20Marven%20Chick">Chi-Chung Marven Chick</a>, <a href="https://publications.waset.org/abstracts/search?q=Chu-Po%20Ho"> Chu-Po Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sau-Chuen%20Joe%20Au"> Sau-Chuen Joe Au</a>, <a href="https://publications.waset.org/abstracts/search?q=Wing-Fai%20Sidney%20Wong"> Wing-Fai Sidney Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Wai%20Kan"> Chi-Wai Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D printing is now drawing attention to manufacturing process. In fashion and textile industry, many 3D printing applications had been developed for prototyping or even final product production because of its great flexibility in production. However, when compared with conventional manufacturing processes for fashion and textiles, the design aspects and requirements may not be same for using 3D printing process. Therefore, in this paper, we will compare the design aspects between conventional manufacturing processes and 3D printing processes. Also, the material requirements related to the design in 3D printing for fashion and textiles will be reviewed and discussed. This review paper may demonstrate a possible way to develop 3D printing method(s) for fashion and textiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a> </p> <a href="https://publications.waset.org/abstracts/184119/design-aspects-of-3d-printing-for-fashion-and-textiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">850</span> Improving Sustainability of the Apparel Industry with Joining the Forces among the Brand Owners: The Case Study of Digital Textile Printing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babak%20Mohajeri">Babak Mohajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Elina%20Ilen"> Elina Ilen</a>, <a href="https://publications.waset.org/abstracts/search?q=Timo%20Nyberg"> Timo Nyberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainability has become an important topic in contemporary business. The apparel industry is a good example to assess sustainability in practice. Value chains in the apparel industry are faced with various challenges regarding sustainability issues. Apparel companies pay higher attention to economic sustainability issues, and environmental and social sustainability issues of the apparel industry are often underrated. In this paper, we analyze the role of the different players in the value chain of the apparel industry in terms of sustainability. We realize that the brand owners have the highest impact on improving the sustainability of the apparel industry. We design a collaborative business model to join the forces among the brand owners for improving the sustainability of the apparel industry throughout the value chain. We have conducted a case study of shifting from conventional screen-printing to more environmentally sustainable digital textile printing. We suggest that this shift can be accelerated if the brand owners join their forces together to shift from conventional printing to digital printing technology in the apparel industry. Based on the proposed business model, we suggest future directions for using joining the forces among the brand owners for case of sustainability <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainability" title="sustainability">sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20textile%20printing" title=" digital textile printing "> digital textile printing </a>, <a href="https://publications.waset.org/abstracts/search?q=joining%20forces" title=" joining forces"> joining forces</a>, <a href="https://publications.waset.org/abstracts/search?q=apparel%20industry" title=" apparel industry"> apparel industry</a> </p> <a href="https://publications.waset.org/abstracts/64623/improving-sustainability-of-the-apparel-industry-with-joining-the-forces-among-the-brand-owners-the-case-study-of-digital-textile-printing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">849</span> Comparison of Tensile Strength and Folding Endurance of (FDM Process) 3D Printed ABS and PLA Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Devicharan">R. Devicharan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a short span 3D Printing is expected to play a vital role in our life. The possibility of creativity and speed in manufacturing through various 3D printing processes is infinite. This study is performed on the FDM (Fused Deposition Modelling) method of 3D printing, which is one of the pre-dominant methods of 3D printing technologies. This study focuses on physical properties of the objects produced by 3D printing which determine the applications of the 3D printed objects. This paper specifically aims at the study of the tensile strength and the folding endurance of the 3D printed objects through the FDM (Fused Deposition Modelling) method using the ABS (Acronitirile Butadiene Styrene) and PLA (Poly Lactic Acid) plastic materials. The study is performed on a controlled environment and the specific machine settings. Appropriate tables, graphs are plotted and research analysis techniques will be utilized to analyse, verify and validate the experiment results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FDM%20process" title="FDM process">FDM process</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=ABS%20for%203D%20printing" title=" ABS for 3D printing"> ABS for 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=PLA%20for%203D%20printing" title=" PLA for 3D printing"> PLA for 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title=" rapid prototyping"> rapid prototyping</a> </p> <a href="https://publications.waset.org/abstracts/29802/comparison-of-tensile-strength-and-folding-endurance-of-fdm-process-3d-printed-abs-and-pla-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">599</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">848</span> The Bloom of 3D Printing in the Health Care Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mihika%20Shivkumar">Mihika Shivkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Kumar"> Krishna Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Perisamy"> C. Perisamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D printing is a method of manufacturing wherein materials, such as plastic or metal, are deposited in layers one on top of the other to produce a three dimensional object. 3D printing is most commonly associated with creating engineering prototypes. However, its applications in the field of human health care have been frequently disregarded. Medical applications for 3D printing are expanding rapidly and are envisaged to revolutionize health care. Medical applications for 3D printing, both present and its potential, can be categorized broadly, including: creation of customized prosthetics tissue and organ fabrication; creation of implants, and anatomical models and pharmaceutical research regarding drug dosage forms. This piece breaks down bioprinting in the healthcare sector. It focuses on the better subtle elements of every particular point, including how 3D printing functions in the present, its impediments, and future applications in the health care sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-printing" title="bio-printing">bio-printing</a>, <a href="https://publications.waset.org/abstracts/search?q=prototype" title=" prototype"> prototype</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=organ%20regeneration" title=" organ regeneration"> organ regeneration</a> </p> <a href="https://publications.waset.org/abstracts/44541/the-bloom-of-3d-printing-in-the-health-care-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">847</span> Development of Soft 3D Printing Materials for Textile Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chi-Chung%20Marven%20Chick">Chi-Chung Marven Chick</a>, <a href="https://publications.waset.org/abstracts/search?q=Chu-Po%20Ho"> Chu-Po Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sau-Chuen%20Joe%20Au"> Sau-Chuen Joe Au</a>, <a href="https://publications.waset.org/abstracts/search?q=Wing-Fai%20Sidney%20Wong"> Wing-Fai Sidney Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Wai%20Kan"> Chi-Wai Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, 3D printing becomes popular process for manufacturing, especially has special attention in textile applications. However, there are various types of 3D printing materials, including plastic, resin, rubber, ceramics, gold, platinum, silver, iron, titanium but not all these materials are suitable for textile application. Generally speaking, 3D printing of textile mainly uses thermoplastic polymers such as acrylonitrile butadiene styrene (ABS), polylactide (PLA), polycaprolactone (PCL), thermoplastic polyurethane (TPU), polyethylene terephthalate glycol-modified (PETG), polystyrene (PS), polypropylene (PP). Due to the characteristics of the polymers, 3D printed textiles usually have low air permeability and poor comfortable. Therefore, in this paper, we will review the possible materials suitable for textile application with desired physical and mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing%20materials" title=" 3D printing materials"> 3D printing materials</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/184118/development-of-soft-3d-printing-materials-for-textile-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">846</span> Development of the Web-Based Multimedia N-Screen Service System for Cross Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bae">S. Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Shin"> J. Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lee"> S. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the development of smart devices such as Smart TV, Smartphone, Tablet PC, Laptop, the interest in N-Screen Services that can be cross-linked with heterogeneous devices is increasing. N-Screen means User-centric services that can share and constantly watch multimedia contents anytime and anywhere. However, the existing N-Screen system has the limitation that N-Screen system has to implement the application for each platform and device to provide multimedia service. To overcome this limitation, Multimedia N-Screen Service System is proposed through the web, and it is independent of different environments. The combination of Web and cloud computing technologies from this study results in increasing efficiency and reduction in costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=N-screen" title="N-screen">N-screen</a>, <a href="https://publications.waset.org/abstracts/search?q=web" title=" web"> web</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud" title=" cloud"> cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=multimedia" title=" multimedia"> multimedia</a> </p> <a href="https://publications.waset.org/abstracts/36623/development-of-the-web-based-multimedia-n-screen-service-system-for-cross-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">845</span> Effect of Infill Density and Pattern on the Compressive Strength of Parts Produced by Polylactic Acid Filament Using Fused Deposition Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Awari">G. K. Awari</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishwajeet%20V.%20Ambade"> Vishwajeet V. Ambade</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Rajurkar"> S. W. Rajurkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field of additive manufacturing is growing, and discoveries are being made. 3D printing machines are also being developed to accommodate a wider range of 3D printing materials, including plastics, metals (metal AM powders), composites, filaments, and other materials. There are numerous printing materials available for industrial additive manufacturing. Such materials have their unique characteristics, advantages, and disadvantages. In order to avoid errors in additive manufacturing, key elements such as 3D printing material type, texture, cost, printing technique and procedure, and so on must be examined. It can be complex to select the best material for a particular job. Polylactic acid (PLA) is made from sugar cane or cornstarch, both of which are renewable resources. "Black plastic" is another name for it. Because it is safe to use and print, it is frequently used in primary and secondary schools. This is also how FDM screen printing is done. PLA is simple to print because of its low warping impact. It's also possible to print it on a cold surface. When opposed to ABS, it allows for sharper edges and features to be printed. This material comes in a wide range of colours. Polylactic acid (PLA) is the most common material used in fused deposition modelling (FDM). PLA can be used to print a wide range of components, including medical implants, household items, and mechanical parts. The mechanical behaviour of the printed item is affected by variations in infill patterns that are subjected to compressive tests in the current investigation to examine their behaviour under compressive stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modelling" title="fused deposition modelling">fused deposition modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactic%20acid" title=" polylactic acid"> polylactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=infill%20density" title=" infill density"> infill density</a>, <a href="https://publications.waset.org/abstracts/search?q=infill%20pattern" title=" infill pattern"> infill pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/159760/effect-of-infill-density-and-pattern-on-the-compressive-strength-of-parts-produced-by-polylactic-acid-filament-using-fused-deposition-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">844</span> Evaluations of 3D Concrete Printing Produced in the Environment of United Arab Emirates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adil%20K.%20Tamimi">Adil K. Tamimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarig%20Ali"> Tarig Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Rawan%20Anoohi"> Rawan Anoohi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Rajput"> Ahmed Rajput</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaltham%20Alkamali"> Kaltham Alkamali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D concrete printing is one of the most innovative and modern techniques in the field of construction that achieved several milestones in that field for the following advantages: saving project&rsquo;s time, ability to execute complicated shapes, reduce waste and low cost. However, the concept of 3D printing in UAE is relatively new where construction teams, including clients, consultants, and contractors, do not have the required knowledge and experience in the field. This is the most significant obstacle for the construction parties, which make them refrained from using 3D concrete printing compared to conventional concreting methods. This study shows the historical development of the 3D concrete printing, its advantages, and the challenges facing this innovation. Concrete mixes and materials have been proposed and evaluated to select the best combination for successful 3D concrete printing. The main characteristics of the 3D concrete printing in the fresh and hardened states are considered, such as slump test, flow table, compressive strength, tensile, and flexural strengths. There is need to assess the structural stability of the 3D concrete by testing the bond between interlayers of the concrete. &nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability"> workability</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=robots" title=" robots"> robots</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensions" title=" dimensions"> dimensions</a> </p> <a href="https://publications.waset.org/abstracts/111244/evaluations-of-3d-concrete-printing-produced-in-the-environment-of-united-arab-emirates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">843</span> 3D Printing Technology in Housing Projects Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20F.%20Haddad">Mohammed F. Haddad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20Albenayyan"> Mohammad A. Albenayyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Realistically, 3-D printing as a technology has not yet reached the required maturity level to handle construction housing projects for citizens on a country scale. However, potentially, it has all of the required elements for addressing this issue. There are two main high-level elements of this technology that need to be capitalized on in order for the technology to reach its full potential, technical and logistical. This paper aims to cover how 3-D printing can be a viable technical solution for housing projects and describe the impact of 3-D printing technical features on the logistical aspects of completing a housing project. Additionally, a perspective about 3-D printing in Saudi Arabia will be presented in order to give the reader an idea of where the kingdom stands in the deployment of this technology. Finally, a glimpse will be given regarding the potential utilization of this technology for space applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large-scale%203-D%20printing" title="large-scale 3-D printing">large-scale 3-D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=D-%20shape" title=" D- shape"> D- shape</a>, <a href="https://publications.waset.org/abstracts/search?q=contour%20crafting" title=" contour crafting"> contour crafting</a> </p> <a href="https://publications.waset.org/abstracts/148137/3d-printing-technology-in-housing-projects-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">842</span> 3D Printing: Rebounding from Global Supply Chain Disruption Due to Natural Disaster</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurjinder%20Singh">Gurjinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasmeen%20Kaur"> Jasmeen Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukul%20Dhiman"> Mukul Dhiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper mainly describes the significance of 3D printing in the supply chain management in a scenario when there is disruption in global supply chain. Furthermore, the development and implementation of supply chain strategies in context of 3D printing technology is framed to make supply chain of an organization resilient to disruption caused by natural disasters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20supply%20chain" title=" global supply chain"> global supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20strategies" title=" supply chain strategies"> supply chain strategies</a> </p> <a href="https://publications.waset.org/abstracts/24079/3d-printing-rebounding-from-global-supply-chain-disruption-due-to-natural-disaster" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">841</span> An Alternative Concept of Green Screen Keying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Zhi">Jin Zhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on a green screen keying method developed especially for film visual effects. There are a series of ways of using existing tools for creating mattes from green or blue screen plates. However, it is still a time-consuming process, and the results vary especially when it comes to retaining tiny details, such as hair and fur. This paper introduces an alternative concept and method for retaining edge details of characters on a green screen plate, also, a number of connected mathematical equations are explored. At the end of this study, a simplified process of applying this method in real productions is also introduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20screen" title="green screen">green screen</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20effects" title=" visual effects"> visual effects</a>, <a href="https://publications.waset.org/abstracts/search?q=compositing" title=" compositing"> compositing</a>, <a href="https://publications.waset.org/abstracts/search?q=matte" title=" matte"> matte</a> </p> <a href="https://publications.waset.org/abstracts/5566/an-alternative-concept-of-green-screen-keying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">840</span> Exploring the Impact of Additive Manufacturing on Supply Chains: A Game-Theoretic Analysis of Manufacturer-Retailer Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ebrahim%20Arbabian">Mohammad Ebrahim Arbabian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the impact of 3D printing, also known as additive manufacturing, on a multi-item supply chain comprising a manufacturer and retailer. Operating under a wholesale-price contract and catering to stochastic customer demand, this study delves into the largely unexplored realm of how 3D printing technology reshapes supply chain dynamics. A distinguishing aspect of 3D printing is its versatility in producing various product types, yet its slower production pace compared to traditional methods poses a challenge. We analyze the trade-off between 3D printing's limited capacity and its enhancement of production flexibility. By delineating the economic circumstances favoring 3D printing adoption by the manufacturer, we establish the Stackelberg equilibrium in the retailer-manufacturer game. Additionally, we determine optimal order quantities for the retailer considering 3D printing as an option for the manufacturer, ascertain optimal wholesale prices in the presence of 3D printing, and compute optimal profits for both parties involved in the supply chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=contract%20theory" title=" contract theory"> contract theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Stackelberg%20game" title=" Stackelberg game"> Stackelberg game</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/184661/exploring-the-impact-of-additive-manufacturing-on-supply-chains-a-game-theoretic-analysis-of-manufacturer-retailer-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">839</span> Fabrication of Eco-Friendly Pigment Printed Textiles by Reducing Formaldehyde Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sidra%20Saleemi">Sidra Saleemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Raja%20Fahad%20Qureshi"> Raja Fahad Qureshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farooq%20Ahmed"> Farooq Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabia%20Almas"> Rabia Almas</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Jameel"> Tahir Jameel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed to decrease formaldehyde content in substrates printed by pigments using different fixation temperature and concentration of urea in order to produce eco-friendly textiles. Substrates were printed by hand screen printing method as per recipe followed by drying and curing. Standard test methods were adapted to measure formaldehyde content washing and rubbing fastness. Formaldehyde content is instantaneously decreased by raising the temperature during curing printed fabric. Good results of both dry and wet rubbing fastness were found at 160˚C slightly improved dry rubbing results are achieved with 2% urea at a curing temperature of 150˚C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=formaldehyde%20content" title="formaldehyde content">formaldehyde content</a>, <a href="https://publications.waset.org/abstracts/search?q=pigment%20printing" title=" pigment printing"> pigment printing</a>, <a href="https://publications.waset.org/abstracts/search?q=urea" title=" urea"> urea</a>, <a href="https://publications.waset.org/abstracts/search?q=washing%20fastness" title=" washing fastness"> washing fastness</a>, <a href="https://publications.waset.org/abstracts/search?q=rubbing%20fastness" title=" rubbing fastness "> rubbing fastness </a> </p> <a href="https://publications.waset.org/abstracts/53694/fabrication-of-eco-friendly-pigment-printed-textiles-by-reducing-formaldehyde-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">838</span> In Situ Production of Nano-Cu on a Cotton Fabric Surface by Ink-Jet Printing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Zoghi">N. Zoghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Laleh%20Maleknia"> Laleh Maleknia </a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Olya"> M. E. Olya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nano-Cu particles were produced on cotton fabric substrate by ink-jet printing technology with water-soluble ink, which was based on copper. The surface tension and viscosity of the prepared inks were evaluated. The ink-jet printing process was repeated 1, 3, and 5 times in order to evaluate variations in the optical properties by changing thickness of printed film. Following initial drying of the printed film, the samples were annealed at different temperatures (150 °C, 200 °C and 250 °C) to determine the optimum temperature for the parameters set out in this experiment. The prepared nano-Cu particles were characterized by XRD and UV spectroscopy. The appearance of printed image and the nano-Cu particles morphology were observed by SEM. The results demonstrated that the ink-jet printing technology can be used to produce nano-particles on the cotton fabrics surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ink-jet%20printing" title="ink-jet printing">ink-jet printing</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-cu" title=" nano-cu"> nano-cu</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20ink" title=" fabric ink"> fabric ink</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20production" title=" in situ production"> in situ production</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20fabric" title=" cotton fabric"> cotton fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=water-soluble%20ink" title=" water-soluble ink"> water-soluble ink</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a> </p> <a href="https://publications.waset.org/abstracts/35338/in-situ-production-of-nano-cu-on-a-cotton-fabric-surface-by-ink-jet-printing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">837</span> Characterizing Nanoparticles Generated from the Different Working Type and the Stack Flue during 3D Printing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Jui%20Kou">Kai-Jui Kou</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzu-Ling%20Shen"> Tzu-Ling Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying-Fang%20Wang"> Ying-Fang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of the present study are to characterize nanoparticles generated from the different working type in 3D printing room and the stack flue during 3D printing process. The studied laboratory (10.5 m× 7.2 m × 3.2 m) with a ventilation rate of 500 m³/H is installed a 3D metal printing machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L/min, respectively. The concentrations of background, printing process, clearing operation, and screening operation were performed in the laboratory. On the other hand, we also conducted nanoparticle measurement on the 3D printing machine's stack flue to understand its emission characteristics. Results show that the nanoparticles emitted from the different operation process were the same distribution in the form of the uni-modal with number median diameter (NMD) as approximately 28.3 nm to 29.6 nm. The number concentrations of nanoparticles were 2.55×10³ count/cm³ in laboratory background, 2.19×10³ count/cm³ during printing process, 2.29×10³ count/cm³ during clearing process, 3.05×10³ count/cm³ during screening process, 2.69×10³ count/cm³ in laboratory background after printing process, and 6.75×10³ outside laboratory, respectively. We found that there are no emission nanoparticles during the printing process. However, the number concentration of stack flue nanoparticles in the ongoing print is 1.13×10⁶ count/cm³, and that of the non-printing is 1.63×10⁴ count/cm³, with a NMD of 458 nm and 29.4 nm, respectively. It can be confirmed that the measured particle size belongs to easily penetrate the filter in theory during the printing process, even though the 3D printer has a high-efficiency filtration device. Therefore, it is recommended that the stack flue of the 3D printer would be equipped with an appropriate dust collection device to prevent the operators from exposing these hazardous particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title="nanoparticle">nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20emission" title=" particle emission"> particle emission</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20concentration" title=" number concentration"> number concentration</a> </p> <a href="https://publications.waset.org/abstracts/96276/characterizing-nanoparticles-generated-from-the-different-working-type-and-the-stack-flue-during-3d-printing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">836</span> Nano-Enabling Technical Carbon Fabrics to Achieve Improved Through Thickness Electrical Conductivity in Carbon Fiber Reinforced Composites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angelos%20Evangelou">Angelos Evangelou</a>, <a href="https://publications.waset.org/abstracts/search?q=Katerina%20%20Loizou"> Katerina Loizou</a>, <a href="https://publications.waset.org/abstracts/search?q=Loukas%20Koutsokeras"> Loukas Koutsokeras</a>, <a href="https://publications.waset.org/abstracts/search?q=Orestes%20Marangos"> Orestes Marangos</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgos%20Constantinides"> Giorgos Constantinides</a>, <a href="https://publications.waset.org/abstracts/search?q=Stylianos%20Yiatros"> Stylianos Yiatros</a>, <a href="https://publications.waset.org/abstracts/search?q=Katerina%20%20Sofocleous"> Katerina Sofocleous</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasileios%20Drakonakis"> Vasileios Drakonakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Owing to their outstanding strength to weight properties, carbon fiber reinforced polymer (CFRPs) composites have attracted significant attention finding use in various fields (sports, automotive, transportation, etc.). The current momentum indicates that there is an increasing demand for their employment in high value bespoke applications such as avionics and electronic casings, damage sensing structures, EMI (electromagnetic interference) structures that dictate the use of materials with increased electrical conductivity both in-plane and through the thickness. Several efforts by research groups have focused on enhancing the through-thickness electrical conductivity of FRPs, in an attempt to combine the intrinsically high relative strengths exhibited with improved z-axis electrical response as well. However, only a limited number of studies deal with printing of nano-enhanced polymer inks to produce a pattern on dry fabric level that could be used to fabricate CFRPs with improved through thickness electrical conductivity. The present study investigates the employment of screen-printing process on technical dry fabrics using nano-reinforced polymer-based inks to achieve the required through thickness conductivity, opening new pathways for the application of fiber reinforced composites in niche products. Commercially available inks and in-house prepared inks reinforced with electrically conductive nanoparticles are employed, printed in different patterns. The aim of the present study is to investigate both the effect of the nanoparticle concentration as well as the droplet patterns (diameter, inter-droplet distance and coverage) to optimize printing for the desired level of conductivity enhancement in the lamina level. The electrical conductivity is measured initially at ink level to pinpoint the optimum concentrations to be employed using a “four-probe” configuration. Upon printing of the different patterns, the coverage of the dry fabric area is assessed along with the permeability of the resulting dry fabrics, in alignment with the fabrication of CFRPs that requires adequate wetting by the epoxy matrix. Results demonstrated increased electrical conductivities of the printed droplets, with increase of the conductivity from the benchmark value of 0.1 S/M to between 8 and 10 S/m. Printability of dense and dispersed patterns has exhibited promising results in terms of increasing the z-axis conductivity without inhibiting the penetration of the epoxy matrix at the processing stage of fiber reinforced composites. The high value and niche prospect of the resulting applications that can stem from CFRPs with increased through thickness electrical conductivities highlights the potential of the presented endeavor, signifying screen printing as the process to to nano-enable z-axis electrical conductivity in composite laminas. This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation (Project: ENTERPRISES/0618/0013). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRPs" title="CFRPs">CFRPs</a>, <a href="https://publications.waset.org/abstracts/search?q=conductivity" title=" conductivity"> conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-reinforcement" title=" nano-reinforcement"> nano-reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=screen-printing" title=" screen-printing"> screen-printing</a> </p> <a href="https://publications.waset.org/abstracts/134529/nano-enabling-technical-carbon-fabrics-to-achieve-improved-through-thickness-electrical-conductivity-in-carbon-fiber-reinforced-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">835</span> Geopolymer Stabilization of Earth Building Material for Construction 3D Printing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timur%20Mukhametkaliyev">Timur Mukhametkaliyev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The earthen material possesses low compression strength, and it is highly sensitive to the water content. Different binders can be added (Portland cement or lime) to improve the durability and the mechanical characteristics of earthen material, but the production of these binders has high embodied energy and results in an increase in world CO₂ emission. Geopolymers are binders which can be synthesized at low temperature in alkaline solutions from raw materials consisting of amorphous aluminosilicates. Geopolymers are an attractive substitution of Portland cement and can be used as an excellent stabilization for earthen material. In this study, earthen material stabilized with geopolymer binder for use in construction 3D printing was developed. Construction 3D printing offers freedom of design, waste minimisation, customisation, reduced labour, and automation. For successful 3D printing, the properties of used material are the most important aspects because they require adaptability for extrusion and controlled time of hardening for the binder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20construction" title=" building construction"> building construction</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture" title=" architecture"> architecture</a> </p> <a href="https://publications.waset.org/abstracts/135313/geopolymer-stabilization-of-earth-building-material-for-construction-3d-printing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">834</span> The Influence of 3D Printing Course on Middle School Students&#039; Spatial Thinking Ability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xingjuan">Wang Xingjuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20Dongming"> Qian Dongming</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a common thinking ability, spatial thinking ability plays an increasingly important role in the information age. The key to cultivating students' spatial thinking ability is to cultivate students' ability to process and transform graphics. The 3D printing course enables students to constantly touch the rotation and movement of objects during the modeling process and to understand spatial graphics from different views. To this end, this article combines the classic PSVT: R test to explore the impact of 3D printing courses on the spatial thinking ability of middle school students. The results of the study found that: (1) Through the study of the 3D printing course, the students' spatial ability test scores have been significantly improved, which indirectly reflects the improvement of the spatial thinking ability level. (2) The student's spatial thinking ability test results are influenced by the parent's occupation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=middle%20school%20students" title=" middle school students"> middle school students</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20thinking%20ability" title=" spatial thinking ability"> spatial thinking ability</a>, <a href="https://publications.waset.org/abstracts/search?q=influence" title=" influence"> influence</a> </p> <a href="https://publications.waset.org/abstracts/109150/the-influence-of-3d-printing-course-on-middle-school-students-spatial-thinking-ability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">833</span> An Electrically Small Silver Ink Printed FR4 Antenna for RF Transceiver Chip CC1101</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Majeed">F. Majeed</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20V.%20Thiel"> D. V. Thiel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shahpari"> M. Shahpari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An electrically small meander line antenna is designed for impedance matching with RF transceiver chip CC1101. The design provides the flexibility of tuning the reactance of the antenna over a wide range of values: highly capacitive to highly inductive. The antenna was printed with silver ink on FR4 substrate using the screen printing design process. The antenna impedance was perfectly matched to CC1101 at 433 MHz. The measured radiation efficiency of the antenna was 81.3% at resonance. The 3 dB and 10 dB fractional bandwidth of the antenna was 14.5% and 4.78%, respectively. The read range of the antenna was compared with a copper wire monopole antenna over a distance of five meters. The antenna, with a perfect impedance match with RF transceiver chip CC1101, shows improvement in the read range compared to a monopole antenna over the specified distance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meander%20line%20antenna" title="meander line antenna">meander line antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=RFID" title=" RFID"> RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20ink%20printing" title=" silver ink printing"> silver ink printing</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20matching" title=" impedance matching"> impedance matching</a> </p> <a href="https://publications.waset.org/abstracts/56190/an-electrically-small-silver-ink-printed-fr4-antenna-for-rf-transceiver-chip-cc1101" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">832</span> Characteristics of Football Spectators Using Second Screen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Florian%20Pfeffel">Florian Pfeffel</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20A.%20Kexel"> Christoph A. Kexel</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Kexel"> Peter Kexel</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Ratz"> Maria Ratz </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The parallel usage of different media channels has increased recently owing to technological advances. Second Screen describes the use of a second device by television viewers to consume further content which is related to the program they are watching. This study analysed the characteristics of football spectators regarding their media consumption in relation to Second Screen usage while watching a football match on TV. The existing literature on Second Screen usage is still very limited, especially in the context of particular broadcasting settings such as sport or even more specific such as football matches. Therefore, the primary research objective was to reveal first insights into the user behaviour of football spectators regarding Second Screen services. The survey, which was conducted among German football supporters in 2015, revealed some characteristics such as the identification and involvement into the sports which are related to an increased use of Second Screen services. One important finding for football supporters was that at the time of a match they have a lower parallel media usage compared to other TV broadcastings. Nevertheless, if supporters used a second device while watching a match on TV, then they were using specific Second Screen services. This means they searched for more content related information. The findings on the habits and characteristics of people who are using Second Screen services are relevant for future developments in that area as well as for marketing decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=media%20consumption" title="media consumption">media consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20screen" title=" second screen"> second screen</a>, <a href="https://publications.waset.org/abstracts/search?q=sport%20marketing" title=" sport marketing"> sport marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20behaviour" title=" user behaviour"> user behaviour</a> </p> <a href="https://publications.waset.org/abstracts/47468/characteristics-of-football-spectators-using-second-screen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">831</span> Ketones Emission during Pad Printing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiurski%20S.%20Jelena">Kiurski S. Jelena</a>, <a href="https://publications.waset.org/abstracts/search?q=Aksentijevi%C4%87%20M.%20Sne%C5%BEana"> Aksentijević M. Snežana</a>, <a href="https://publications.waset.org/abstracts/search?q=Oros%20B.%20Ivana"> Oros B. Ivana</a>, <a href="https://publications.waset.org/abstracts/search?q=Keci%C4%87%20S.%20Vesna"> Kecić S. Vesna</a>, <a href="https://publications.waset.org/abstracts/search?q=Djogo%20Z.%20Maja"> Djogo Z. Maja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper investigates the effect of light intensity on the formation of two ketones, acetone and methyl ethyl ketone, in working premises of five pad printing departments in Novi Sad, Serbia. Multiple linear regression analysis examined the form of interdependency concentrations of methyl ethyl ketone, acetone and light intensity in five printing presses at seven sampling points, using Statistica software package version 10th. The results show an average stacking variation investigated variable and can be presented by the general regression model: y = b0 + b1xi1 + b2xi2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetone" title="acetone">acetone</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20ethyl%20ketone" title=" methyl ethyl ketone"> methyl ethyl ketone</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20linear%20regression%20analysis" title=" multiple linear regression analysis"> multiple linear regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pad%20printing" title=" pad printing"> pad printing</a> </p> <a href="https://publications.waset.org/abstracts/4798/ketones-emission-during-pad-printing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">830</span> Topology Optimisation for Reduction in Material Use for Precast Concrete Elements: A Case Study of a 3D-Printed Staircase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dengyu%20You">Dengyu You</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Kashani"> Alireza Kashani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the potential of 3D concrete printing in manufacturing prefabricated staircases. The applications of 3D concrete printing in large-scale construction could enhance the industry’s implementation of the Industry 4.0 concept. In addition, the current global challenge is to achieve Net Zero Emissions by 2050. Innovation in the construction industry could potentially speed up achieving this target. The 3D printing technology offers a possible solution that reduces cement usage, minimises framework wastes, and is capable of manufacturing complex structures. The performance of the 3D concrete printed lightweight staircase needs to be evaluated. In this study, the staircase is designed using computer-aided technologies, fabricated by 3D concrete printing technologies, and tested with Australian Standard (AS 1657-2018 Fixed platforms, walkways, stairways, and ladders – design, construction, and installation) under a laboratory environment. The experiment results will be further compared with the FEM analysis. The results indicate that 3D concrete printing is capable of fast production, reducing material usage, and is highly automotive, which meets the industry’s future development goal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%203D%20printing" title="concrete 3D printing">concrete 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=staircase" title=" staircase"> staircase</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a> </p> <a href="https://publications.waset.org/abstracts/154922/topology-optimisation-for-reduction-in-material-use-for-precast-concrete-elements-a-case-study-of-a-3d-printed-staircase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">829</span> An Introduction to E-Content Producing Algorithm for Screen-Recorded Videos</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamileh%20Darsareh">Jamileh Darsareh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Nikafrooz"> Mohammad Nikafrooz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some teachers and e-content producers, based on their experiences, try to produce educational videos using screen recording software. There are many challenges that they may encounter while producing screen-recorded videos. These are in the domains of technical and pedagogical challenges like designing the roadmap, preparing the screen, setting the recording software and recording the screen, editing, etc. This study is a descriptive study and tries to present some procedures for producing acceptable and well-made videos. These procedures are presented in the form of an algorithm for producing screen-recorded video. This algorithm presents the main producing phases, including design, pre-production, production, post-production, and distribution. These phases consist of some steps which are supported by several technical and pedagogical considerations. Following these phases and steps according to the suggested order helps the producers to produce their intended and desired video by saving time and also facing fewer technical problems. It is expected that by using this algorithm, e-content producers and teachers gain better performance in producing educational videos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-content%20producing%20algorithm" title="e-content producing algorithm">e-content producing algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=screen-recorded%20videos" title=" screen-recorded videos"> screen-recorded videos</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20recording%20software" title=" screen recording software"> screen recording software</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20and%20pedagogical%20considerations" title=" technical and pedagogical considerations"> technical and pedagogical considerations</a> </p> <a href="https://publications.waset.org/abstracts/136056/an-introduction-to-e-content-producing-algorithm-for-screen-recorded-videos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">828</span> Fabrication of Wearable Antennas through Thermal Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeff%20Letcher">Jeff Letcher</a>, <a href="https://publications.waset.org/abstracts/search?q=Dennis%20Tierney"> Dennis Tierney</a>, <a href="https://publications.waset.org/abstracts/search?q=Haider%20Raad"> Haider Raad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antennas are devices for transmitting and/or receiving signals which make them a necessary component of any wireless system. In this paper, a thermal deposition technique is utilized as a method to fabricate antenna structures on substrates. Thin-film deposition is achieved by evaporating a source material (metals in our case) in a vacuum which allows vapor particles to travel directly to the target substrate which is encased with a mask that outlines the desired structure. The material then condenses back to solid state. This method is used in comparison to screen printing, chemical etching, and ink jet printing to indicate advantages and disadvantages to the method. The antenna created undergoes various testing of frequency ranges, conductivity, and a series of flexing to indicate the effectiveness of the thermal deposition technique. A single band antenna that is operated at 2.45 GHz intended for wearable and flexible applications was successfully fabricated through this method and tested. It is concluded that thermal deposition presents a feasible technique of producing such antennas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20deposition" title="thermal deposition">thermal deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20antennas" title=" wearable antennas"> wearable antennas</a>, <a href="https://publications.waset.org/abstracts/search?q=bluetooth%20technology" title=" bluetooth technology"> bluetooth technology</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20electronics" title=" flexible electronics"> flexible electronics</a> </p> <a href="https://publications.waset.org/abstracts/56810/fabrication-of-wearable-antennas-through-thermal-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=screen%20printing&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=screen%20printing&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=screen%20printing&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=screen%20printing&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=screen%20printing&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=screen%20printing&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=screen%20printing&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=screen%20printing&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=screen%20printing&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=screen%20printing&amp;page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=screen%20printing&amp;page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=screen%20printing&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10