CINXE.COM
Search results for: fully differential bandpass amplifier
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fully differential bandpass amplifier</title> <meta name="description" content="Search results for: fully differential bandpass amplifier"> <meta name="keywords" content="fully differential bandpass amplifier"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fully differential bandpass amplifier" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fully differential bandpass amplifier"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3504</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fully differential bandpass amplifier</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3504</span> Symbolic Analysis of Input Impedance of CMOS Floating Active Inductors with Application in Fully Differential Bandpass Amplifier </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kittipong%20Tripetch">Kittipong Tripetch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes studies of input impedance of two types of the CMOS active inductor. It derives two input impedance formulas. The first formula is the input impedance of a grounded active inductor. The second formula is an input impedance of floating active inductor. After that, these formulas can be used to simulate magnitude and phase response of input impedance as a function of current consumption with MATLAB. Common mode rejection ratio (CMRR) of a fully differential bandpass amplifier is derived based on superposition principle. CMRR as a function of input frequency is plotted as a function of current consumption <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grounded%20active%20inductor" title="grounded active inductor">grounded active inductor</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20active%20inductor" title=" floating active inductor"> floating active inductor</a>, <a href="https://publications.waset.org/abstracts/search?q=fully%20differential%20bandpass%20amplifier" title=" fully differential bandpass amplifier "> fully differential bandpass amplifier </a> </p> <a href="https://publications.waset.org/abstracts/2174/symbolic-analysis-of-input-impedance-of-cmos-floating-active-inductors-with-application-in-fully-differential-bandpass-amplifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3503</span> Inverter Based Gain-Boosting Fully Differential CMOS Amplifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alpana%20Agarwal">Alpana Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhil%20Sharma"> Akhil Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a fully differential CMOS amplifier consisting of two self-biased gain boosted inverter stages, that provides an alternative to the power hungry operational amplifier. The self-biasing avoids the use of external biasing circuitry, thus reduces the die area, design efforts, and power consumption. In the present work, regulated cascode technique has been employed for gain boosting. The Miller compensation is also applied to enhance the phase margin. The circuit has been designed and simulated in 1.8 V 0.18 µm CMOS technology. The simulation results show a high DC gain of 100.7 dB, Unity-Gain Bandwidth of 107.8 MHz, and Phase Margin of 66.7<sup>o</sup> with a power dissipation of 286 μW and makes it suitable candidate for the high resolution pipelined ADCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS%20amplifier" title="CMOS amplifier">CMOS amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=gain%20boosting" title=" gain boosting"> gain boosting</a>, <a href="https://publications.waset.org/abstracts/search?q=inverter-based%20amplifier" title=" inverter-based amplifier"> inverter-based amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=self-biased%20inverter" title=" self-biased inverter"> self-biased inverter</a> </p> <a href="https://publications.waset.org/abstracts/64250/inverter-based-gain-boosting-fully-differential-cmos-amplifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3502</span> A High Linear and Low Power with 71dB 35.1MHz/4.38GHz Variable Gain Amplifier in 180nm CMOS Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Mahdavi">Sina Mahdavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Faeze%20Noruzpur"> Faeze Noruzpur</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysuda%20Noruzpur"> Aysuda Noruzpur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a high linear, low power and wideband Variable Gain Amplifier (VGA) with a direct current (DC) gain range of -10.2dB to 60.7dB. By applying the proposed idea to the folded cascade amplifier, it is possible to achieve a 71dB DC gain, 35MHz (-3dB) bandwidth, accompanied by high linearity and low sensitivity as well. It is noteworthy that the proposed idea can be able to apply on every differential amplifier, too. Moreover, the total power consumption and unity gain bandwidth of the proposed VGA is 1.41mW with a power supply of 1.8 volts and 4.37GHz, respectively, and 0.8pF capacitor load is applied at the output nodes of the amplifier. Furthermore, the proposed structure is simulated in whole process corners and different temperatures in the region of -60 to +90 ºC. Simulations are performed for all corner conditions by HSPICE using the BSIM3 model of the 180nm CMOS technology and MATLAB software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=variable%20gain%20amplifier" title="variable gain amplifier">variable gain amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20power" title=" low power"> low power</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20voltage" title=" low voltage"> low voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=folded%20cascade" title=" folded cascade"> folded cascade</a>, <a href="https://publications.waset.org/abstracts/search?q=amplifier" title=" amplifier"> amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20gain" title=" DC gain"> DC gain</a> </p> <a href="https://publications.waset.org/abstracts/174867/a-high-linear-and-low-power-with-71db-351mhz438ghz-variable-gain-amplifier-in-180nm-cmos-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3501</span> 2 Stage CMOS Regulated Cascode Distributed Amplifier Design Based On Inductive Coupling Technique in Submicron CMOS Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kittipong%20Tripetch">Kittipong Tripetch</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobuhiko%20Nakano"> Nobuhiko Nakano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes one stage and two stage CMOS Complementary Regulated Cascode Distributed Amplifier (CRCDA) design based on Inductive and Transformer coupling techniques. Usually, Distributed amplifier is based on inductor coupling between gate and gate of MOSFET and between drain and drain of MOSFET. But this paper propose some new idea, by coupling with differential primary windings of transformer between gate and gate of MOSFET first stage and second stage of regulated cascade amplifier and by coupling with differential secondary windings transformer of MOSFET between drain and drain of MOSFET first stage and second stage of regulated cascade amplifier. This paper also proposes polynomial modeling of Silicon Transformer passive equivalent circuit from Nanyang Technological University which is used to extract frequency response of transformer. Cadence simulation results are used to verify validity of transformer polynomial modeling which can be used to design distributed amplifier without Cadence. 4 parameters of scattering matrix of 2 port of the propose circuit is derived as a function of 4 parameters of impedance matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS%20regulated%20cascode%20distributed%20amplifier" title="CMOS regulated cascode distributed amplifier">CMOS regulated cascode distributed amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20transformer%20modeling%20with%20polynomial" title=" silicon transformer modeling with polynomial"> silicon transformer modeling with polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20power%20consumption" title=" low power consumption"> low power consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=distribute%20amplification%20technique" title=" distribute amplification technique"> distribute amplification technique</a> </p> <a href="https://publications.waset.org/abstracts/24466/2-stage-cmos-regulated-cascode-distributed-amplifier-design-based-on-inductive-coupling-technique-in-submicron-cmos-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3500</span> A CMOS D-Band Power Amplifier in 22FDSOI Technology for 6G Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karandeep%20Kaur">Karandeep Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design of power amplifier (PA) for mmWave communication systems. The designed amplifier uses GlobalFoundries 22 FDX technology and works at an operational frequency of 140 GHz in the D-Band. With a supply voltage of 0.8V for the super low threshold voltage transistors, the amplifier is biased in class AB and has a total current consumption of 50 mA. The measured saturated output power from the power amplifier is 5.6 dBm with an output-referred 1dB-compression point of 1.6dBm. The measured gain of PA is 19 dB with 3 dB-bandwidth ranging from 120 GHz to 140 GHz. The chip occupies an area of 795µm × 410µm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mmWave%20communication%20system" title="mmWave communication system">mmWave communication system</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20amplifiers" title=" power amplifiers"> power amplifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=22FDX" title=" 22FDX"> 22FDX</a>, <a href="https://publications.waset.org/abstracts/search?q=D-Band" title=" D-Band"> D-Band</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-coupled%20capacitive%20neutralization" title=" cross-coupled capacitive neutralization"> cross-coupled capacitive neutralization</a> </p> <a href="https://publications.waset.org/abstracts/148830/a-cmos-d-band-power-amplifier-in-22fdsoi-technology-for-6g-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3499</span> Multi-Level Pulse Width Modulation to Boost the Power Efficiency of Switching Amplifiers for Analog Signals with Very High Crest Factor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jan%20Doutreloigne">Jan Doutreloigne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of this paper is to develop a switching amplifier with optimized power efficiency for analog signals with a very high crest factor such as audio or DSL signals. Theoretical calculations show that a switching amplifier architecture based on multi-level pulse width modulation outperforms all other types of linear or switching amplifiers in that respect. Simulations on a 2 W multi-level switching audio amplifier, designed in a 50 V 0.35 mm IC technology, confirm its superior performance in terms of power efficiency. A real silicon implementation of this audio amplifier design is currently underway to provide experimental validation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=audio%20amplifier" title="audio amplifier">audio amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-level%20switching%20amplifier" title=" multi-level switching amplifier"> multi-level switching amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20efficiency" title=" power efficiency"> power efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20width%20modulation" title=" pulse width modulation"> pulse width modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=PWM" title=" PWM"> PWM</a>, <a href="https://publications.waset.org/abstracts/search?q=self-oscillating%20amplifier" title=" self-oscillating amplifier"> self-oscillating amplifier</a> </p> <a href="https://publications.waset.org/abstracts/82607/multi-level-pulse-width-modulation-to-boost-the-power-efficiency-of-switching-amplifiers-for-analog-signals-with-very-high-crest-factor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3498</span> 55 dB High Gain L-Band EDFA Utilizing Single Pump Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Al-Mansoori">M. H. Al-Mansoori</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20S.%20Al-Ghaithi"> W. S. Al-Ghaithi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20N.%20Hasoon"> F. N. Hasoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we experimentally investigate the performance of an efficient high gain triple-pass L-band Erbium-Doped Fiber (EDF) amplifier structure with a single pump source. The amplifier gain and noise figure variation with EDF pump power, input signal power and wavelengths have been investigated. The generated backward Amplified Spontaneous Emission (ASE) noise of the first amplifier stage is suppressed by using a tunable band-pass filter. The amplifier achieves a signal gain of 55 dB with low noise figure of 3.8 dB at -50 dBm input signal power. The amplifier gain shows significant improvement of 12.8 dB compared to amplifier structure without ASE suppression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20amplifiers" title="optical amplifiers">optical amplifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=EDFA" title=" EDFA"> EDFA</a>, <a href="https://publications.waset.org/abstracts/search?q=L-band" title=" L-band"> L-band</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20networks" title=" optical networks"> optical networks</a> </p> <a href="https://publications.waset.org/abstracts/11110/55-db-high-gain-l-band-edfa-utilizing-single-pump-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3497</span> Microstrip Bandpass Filter with Wide Stopband and High Out-of-Band Rejection Based on Inter-Digital Capacitor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Farhat">Mohamad Farhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Bal%20Virdee"> Bal Virdee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper present a compact Microstrip Bandpass filter exhibiting a very wide stop band and high selectivity. The filter comprises of asymmetric resonator structures, which are interconnected by an inter-digital capacitor to enable the realization of a wide bandwidth with high rejection level. High selectivity is obtained by optimizing the parameters of the interdigital capacitor. The filter has high out-of-band rejection (> 30 dB), less than 0.6 dB of insertion-loss, up to 5.5 GHz spurii free, and about 18 dB of return-loss. Full-wave electromagnetic simulator ADSTM (Mom) is used to analyze and optimize the prototype bandpass filter. The proposed technique was verified practically to validate the design methodology. The experimental results of the prototype circuit are presented and a good agreement was obtained comparing with the simulation results. The dimensions of the proposed filter are 32 x 24 mm2.The filter’s characteristics and compact size make it suitable for wireless communication systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20resonator" title="asymmetric resonator">asymmetric resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=bandpass%20filter" title=" bandpass filter"> bandpass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip" title=" microstrip"> microstrip</a>, <a href="https://publications.waset.org/abstracts/search?q=spurious%20suppression" title=" spurious suppression"> spurious suppression</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-wide%20stop%20band" title=" ultra-wide stop band"> ultra-wide stop band</a> </p> <a href="https://publications.waset.org/abstracts/89052/microstrip-bandpass-filter-with-wide-stopband-and-high-out-of-band-rejection-based-on-inter-digital-capacitor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3496</span> Design Of High Sensitivity Transceiver for WSN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Anitha">A. Anitha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aishwariya"> M. Aishwariya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The realization of truly ubiquitous wireless sensor networks (WSN) demands Ultra-low power wireless communication capability. Because the radio transceiver in a wireless sensor node consumes more power when compared to the computation part it is necessary to reduce the power consumption. Hence, a low power transceiver is designed and implemented in a 120 nm CMOS technology for wireless sensor nodes. The power consumption of the transceiver is reduced still by maintaining the sensitivity. The transceiver designed combines the blocks including differential oscillator, mixer, envelope detector, power amplifiers, and LNA. RF signal modulation and demodulation is carried by On-Off keying method at 2.4 GHz which is said as ISM band. The transmitter demonstrates an output power of 2.075 mW while consuming a supply voltage of range 1.2 V-5.0 V. Here the comparison of LNA and power amplifier is done to obtain an amplifier which produces a high gain of 1.608 dB at receiver which is suitable to produce a desired sensitivity. The multistage RF amplifier is used to improve the gain at the receiver side. The power dissipation of the circuit is in the range of 0.183-0.323 mW. The receiver achieves a sensitivity of about -95 dBm with data rate of 1 Mbps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS" title="CMOS">CMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=envelope%20detector" title=" envelope detector"> envelope detector</a>, <a href="https://publications.waset.org/abstracts/search?q=ISM%20band" title=" ISM band"> ISM band</a>, <a href="https://publications.waset.org/abstracts/search?q=LNA" title=" LNA"> LNA</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20power%20electronics" title=" low power electronics"> low power electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=PA" title=" PA"> PA</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20transceiver" title=" wireless transceiver"> wireless transceiver</a> </p> <a href="https://publications.waset.org/abstracts/29995/design-of-high-sensitivity-transceiver-for-wsn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3495</span> A Low-Power Comparator Structure with Arbitrary Pre-Amplification Delay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ata%20Khorami">Ata Khorami</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Sharifkhani"> Mohammad Sharifkhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the dynamic comparators, the pre-amplifier amplifies the input differential voltage and when the output Vcm of the pre-amplifier becomes larger than Vth of the latch input transistors, the latch is activated and finalizes the comparison. As a result, the pre-amplification delay is fixed to a value and cannot be set at the minimum required delay, thus, significant power and delay are imposed. In this paper, a novel structure is proposed through which the pre-amplification delay can be set at any low value saving power and time. Simulations show that using the proposed structure, by setting the pre-amplification delay at the minimum required value the power and comparison delay can be reduced by 55% and 100ps respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20comparator" title="dynamic comparator">dynamic comparator</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20power%20comparator" title=" low power comparator"> low power comparator</a>, <a href="https://publications.waset.org/abstracts/search?q=analog%20to%20digital%20converter" title=" analog to digital converter"> analog to digital converter</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-amplification%20delay" title=" pre-amplification delay"> pre-amplification delay</a> </p> <a href="https://publications.waset.org/abstracts/105939/a-low-power-comparator-structure-with-arbitrary-pre-amplification-delay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3494</span> Design and Synthesis of Two Tunable Bandpass Filters Based on Varactors and Defected Ground Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%27Hamed%20Boulakroune">M'Hamed Boulakroune</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouloud%20Challal"> Mouloud Challal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassiba%20Louazene"> Hassiba Louazene</a>, <a href="https://publications.waset.org/abstracts/search?q=Saida%20Fentiz"> Saida Fentiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new ultra wideband (UWB) microstrip bandpass filter (BPF) at microwave frequencies. The first one is based on multiple-mode resonator (MMR) and rectangular-shaped defected ground structure (DGS). This filter, which is compact size of 25.2 x 3.8 mm2, provides in the pass band an insertion loss of 0.57 dB and a return loss greater than 12 dB. The second structure is a tunable bandpass filters using planar patch resonators based on diode varactor. This filter is formed by a triple mode circular patch resonator with two pairs of slots, in which the varactors are connected. Indeed, this filter is initially centered at 2.4 GHz, the center frequency of the tunable patch filter could be tuned up to 1.8 GHz simultaneously with the bandwidth, reaching high tuning ranges. Lossless simulations were compared to those considering the substrate dielectric, conductor losses, and the equivalent electrical circuit model of the tuning element in order to assess their effects. Within these variations, simulation results showed insertion loss better than 2 dB and return loss better than 10 dB over the passband. The proposed filters presents good performances and the simulation results are in satisfactory agreement with the experimentation ones reported elsewhere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defected%20ground%20structure" title="defected ground structure">defected ground structure</a>, <a href="https://publications.waset.org/abstracts/search?q=diode%20varactor" title=" diode varactor"> diode varactor</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20bandpass%20filter" title=" microstrip bandpass filter"> microstrip bandpass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-mode%20resonator" title=" multiple-mode resonator"> multiple-mode resonator</a> </p> <a href="https://publications.waset.org/abstracts/23038/design-and-synthesis-of-two-tunable-bandpass-filters-based-on-varactors-and-defected-ground-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3493</span> Design of a Phemt Buffer Amplifier in Mm-Wave Band around 60 GHz</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Abata">Maryam Abata</a>, <a href="https://publications.waset.org/abstracts/search?q=Moulhime%20El%20Bekkali"> Moulhime El Bekkali</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Mazer"> Said Mazer</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Algani"> Catherine Algani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Mehdi"> Mahmoud Mehdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One major problem of most electronic systems operating in the millimeter wave band is the signal generation with a high purity and a stable carrier frequency. This problem is overcome by using the combination of a signal with a low frequency local oscillator (LO) and several stages of frequency multipliers. The use of these frequency multipliers to create millimeter-wave signals is an attractive alternative to direct generation signal. Therefore, the isolation problem of the local oscillator from the other stages is always present, which leads to have various mechanisms that can disturb the oscillator performance, thus a buffer amplifier is often included in oscillator outputs. In this paper, we present the study and design of a buffer amplifier in the mm-wave band using a 0.15μm pHEMT from UMS foundry. This amplifier will be used as a part of a frequency quadrupler at 60 GHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mm-wave%20band" title="Mm-wave band">Mm-wave band</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20oscillator" title=" local oscillator"> local oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20quadrupler" title=" frequency quadrupler"> frequency quadrupler</a>, <a href="https://publications.waset.org/abstracts/search?q=buffer%20amplifier" title=" buffer amplifier"> buffer amplifier</a> </p> <a href="https://publications.waset.org/abstracts/26079/design-of-a-phemt-buffer-amplifier-in-mm-wave-band-around-60-ghz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3492</span> Development of Electromyography (EMG) Signal Acquisition System by Simple Electronic Circuits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divya%20Pradip%20Roy">Divya Pradip Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Zahirul%20Alam%20%20Chowdhury"> Md. Zahirul Alam Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electromyography (EMG) sensors are generally used to record the electrical activity produced by skeletal muscles. The conventional EMG sensors available in the market are expensive. This research suggests a low cost EMG sensor design which can be built with simple devices within our reach. In this research, one instrumentation amplifier, two high pass filters, two low pass filters and an inverting amplifier is connected sequentially. The output from the circuit exhibits electrical potential generated by the muscle cells when they are neurologically activated. This electromyography signal is used to control prosthetic devices, identifying neuromuscular diseases and for various other purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMG" title="EMG">EMG</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pass%20filter" title=" high pass filter"> high pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=instrumentation%20amplifier" title=" instrumentation amplifier"> instrumentation amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=inverting%20amplifier" title=" inverting amplifier"> inverting amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20pass%20filter" title=" low pass filter"> low pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromuscular" title=" neuromuscular"> neuromuscular</a> </p> <a href="https://publications.waset.org/abstracts/123161/development-of-electromyography-emg-signal-acquisition-system-by-simple-electronic-circuits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3491</span> Compact Dual-Band Bandpass Filter Based on Quarter Wavelength Stepped Impedance Resonators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Fu%20Chen">Yu-Fu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Zih-Jyun%20Dai"> Zih-Jyun Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Te%20Chiu"> Chen-Te Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiue-Chen%20Chiou"> Shiue-Chen Chiou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung-Wei%20Chen"> Yung-Wei Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Ming%20Lin"> Yu-Ming Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuan-Yu%20Chen"> Kuan-Yu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Wei%20Wu"> Hung-Wei Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsin-Ying%20Lee"> Hsin-Ying Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan-Kuin%20Su"> Yan-Kuin Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoou-Jinn%20Chang"> Shoou-Jinn Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a compact dual-band bandpass filter that involves using the quarter wavelength stepped impedance resonators (SIRs) for achieving simultaneously compact circuit size and good dual-band performance. The filter is designed at 2.4 / 3.5 GHz and constructed by two pairs of quarter wavelength SIRs and source-load lines. By properly tuning the impedance ratio, length ratio and radius of via hole of the SIRs, dual-passbands performance can be easily determined. To improve the passband selectivity, the use of source-load lines is to increase coupling energy between the resonators. The filter is showing simple configuration, effective design method and small circuit size. The measured results are in good agreement with the simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual-band" title="dual-band">dual-band</a>, <a href="https://publications.waset.org/abstracts/search?q=bandpass%20filter" title=" bandpass filter"> bandpass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=stepped%20impedance%20resonators" title=" stepped impedance resonators"> stepped impedance resonators</a>, <a href="https://publications.waset.org/abstracts/search?q=SIR" title=" SIR"> SIR</a> </p> <a href="https://publications.waset.org/abstracts/44601/compact-dual-band-bandpass-filter-based-on-quarter-wavelength-stepped-impedance-resonators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3490</span> Indigenous Patch Clamp Technique: Design of Highly Sensitive Amplifier Circuit for Measuring and Monitoring of Real Time Ultra Low Ionic Current through Cellular Gates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moez%20ul%20Hassan">Moez ul Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bushra%20Noman"> Bushra Noman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarmad%20Hameed"> Sarmad Hameed</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahab%20Mehmood"> Shahab Mehmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Bashir"> Asma Bashir </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of Noble prize winning “Patch Clamp Technique” is well documented. However, Patch Clamp Technique is very expensive and hence hinders research in developing countries. In this paper, detection, processing and recording of ultra low current from induced cells by using transimpedence amplifier is described. The sensitivity of the proposed amplifier is in the range of femto amperes (fA). Capacitive-feedback is used with active load to obtain a 20MΩ transimpedance gain. The challenging task in designing includes achieving adequate performance in gain, noise immunity and stability. The circuit designed by the authors was able to measure current in the rangeof 300fA to 100pA. Adequate performance shown by the amplifier with different input current and outcome result was found to be within the acceptable error range. Results were recorded using LabVIEW 8.5®for further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20discovery" title="drug discovery">drug discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20current" title=" ionic current"> ionic current</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20amplifier" title=" operational amplifier"> operational amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=patch%20clamp" title=" patch clamp"> patch clamp</a> </p> <a href="https://publications.waset.org/abstracts/28042/indigenous-patch-clamp-technique-design-of-highly-sensitive-amplifier-circuit-for-measuring-and-monitoring-of-real-time-ultra-low-ionic-current-through-cellular-gates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3489</span> High Efficiency Class-F Power Amplifier Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdalla%20Mohamed%20Eblabla">Abdalla Mohamed Eblabla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the high increase and demand for a wide assortment of applications that require low-cost, high-efficiency, and compact systems, RF power amplifiers are considered the most critical design blocks and power consuming components in wireless communication, TV transmission, radar, and RF heating. Therefore, much research has been carried out in order to improve the performance of power amplifiers. Classes-A, B, C, D, E, and F are the main techniques for realizing power amplifiers. An implementation of high efficiency class-F power amplifier with Gallium Nitride (GaN) High Electron Mobility Transistor (HEMT) was realized in this paper. The simulation and optimization of the class-F power amplifier circuit model was undertaken using Agilent’s Advanced Design system (ADS). The circuit was designed using lumped elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Power%20Amplifier%20%28PA%29" title="Power Amplifier (PA)">Power Amplifier (PA)</a>, <a href="https://publications.waset.org/abstracts/search?q=gallium%20nitride%20%28GaN%29" title=" gallium nitride (GaN)"> gallium nitride (GaN)</a>, <a href="https://publications.waset.org/abstracts/search?q=Agilent%E2%80%99s%20Advanced%20Design%20System%20%28ADS%29" title=" Agilent’s Advanced Design System (ADS)"> Agilent’s Advanced Design System (ADS)</a>, <a href="https://publications.waset.org/abstracts/search?q=lumped%20elements" title=" lumped elements "> lumped elements </a> </p> <a href="https://publications.waset.org/abstracts/2508/high-efficiency-class-f-power-amplifier-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3488</span> The Excess Loop Delay Calibration in a Bandpass Continuous-Time Delta Sigma Modulators Based on Q-Enhanced LC Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sorore%20Benabid">Sorore Benabid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Q-enhanced LC filters are the most used architecture in the Bandpass (BP) Continuous-Time (CT) Delta-Sigma (ΣΔ) modulators, due to their: high frequencies operation, high linearity than the active filters and a high quality factor obtained by Q-enhanced technique. This technique consists of the use of a negative resistance that compensate the ohmic losses in the on-chip inductor. However, this technique introduces a zero in the filter transfer function which will affect the modulator performances in term of Dynamic Range (DR), stability and in-band noise (Signal-to-Noise Ratio (SNR)). In this paper, we study the effect of this zero and we demonstrate that a calibration of the excess loop delay (ELD) is required to ensure the best performances of the modulator. System level simulations are done for a 2ndorder BP CT (ΣΔ) modulator at a center frequency of 300MHz. Simulation results indicate that the optimal ELD should be reduced by 13% to achieve the maximum SNR and DR compared to the ideal LC-based ΣΔ modulator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous-time%20bandpass%20delta-sigma%20modulators" title="continuous-time bandpass delta-sigma modulators">continuous-time bandpass delta-sigma modulators</a>, <a href="https://publications.waset.org/abstracts/search?q=excess%20loop%20delay" title=" excess loop delay"> excess loop delay</a>, <a href="https://publications.waset.org/abstracts/search?q=on-chip%20inductor" title=" on-chip inductor"> on-chip inductor</a>, <a href="https://publications.waset.org/abstracts/search?q=Q-enhanced%20LC%20filter" title=" Q-enhanced LC filter"> Q-enhanced LC filter</a> </p> <a href="https://publications.waset.org/abstracts/81967/the-excess-loop-delay-calibration-in-a-bandpass-continuous-time-delta-sigma-modulators-based-on-q-enhanced-lc-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3487</span> Transient Enhanced LDO Voltage Regulator with Improved Feed Forward Path Compensation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Suresh">A. Suresh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreehari%20Rao%20Patri"> Sreehari Rao Patri</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20R.%20Krishnaprasad"> K. S. R. Krishnaprasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An ultra low power capacitor less low-dropout voltage regulator with improved transient response using gain enhanced feed forward path compensation is presented in this paper. It is based on a cascade of a voltage amplifier and a transconductor stage in the feed forward path with regular error amplifier to form a composite gain-enhanced feed forward stage. It broadens the gain bandwidth and thus improves the transient response without substantial increase in power consumption. The proposed LDO, designed for a maximum output current of 100 mA in UMC 180 nm, requires a quiescent current of 69 µA. An undershoot of 153.79mV for a load current changes from 0mA to 100mA and an overshoot of 196.24mV for current change of 100mA to 0mA. The settling time is approximately 1.1 µs for the output voltage undershoot case. The load regulation is of 2.77 µV/mA at load current of 100mA. Reference voltage is generated by using an accurate band gap reference circuit of 0.8V.The costly features of SOC such as total chip area and power consumption is drastically reduced by the use of only a total compensation capacitance of 6pF while consuming power consumption of 0.096 mW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitor-less%20LDO" title="capacitor-less LDO">capacitor-less LDO</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20compensation" title=" frequency compensation"> frequency compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20response" title=" transient response"> transient response</a>, <a href="https://publications.waset.org/abstracts/search?q=latch" title=" latch"> latch</a>, <a href="https://publications.waset.org/abstracts/search?q=self-biased%20differential%20amplifier" title=" self-biased differential amplifier "> self-biased differential amplifier </a> </p> <a href="https://publications.waset.org/abstracts/15837/transient-enhanced-ldo-voltage-regulator-with-improved-feed-forward-path-compensation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3486</span> Realization of Hybrid Beams Inertial Amplifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somya%20Ranjan%20Patro">Somya Ranjan Patro</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhigna%20Bhatt"> Abhigna Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Banerjee"> Arnab Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inertial amplifier has recently gained increasing attention as a new mechanism for vibration control of structures. Currently, theoretical investigations are undertaken by researchers to reveal its fundamentals and to understand its underline principles in altering the structural response of structures against dynamic loadings. This paper investigates experimental and analytical studies on the dynamic characteristics of hybrid beam inertial amplifier (HBIA). The analytical formulation of the HBIA has been derived by implementing the spectral element method and rigid body dynamics. This formulation gives the relation between dynamic force and the response of the structure in the frequency domain. Further, for validation of the proposed HBIA, the experiments have been performed. The experimental setup consists of a 3D printed HBIA of polylactic acid (PLA) material screwed at the base plate of the shaker system. Two numbers of accelerometers are used to study the response, one at the base plate of the shaker second one placed at the top of the inertial amplifier. A force transducer is also placed in between the base plate and the inertial amplifier to calculate the total amount of load transferred from the base plate to the inertial amplifier. The obtained time domain response from the accelerometers have been converted into the frequency domain using the Fast Fourier Transform (FFT) algorithm. The experimental transmittance values are successfully validated with the analytical results, providing us essential confidence in our proposed methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20amplifier" title="inertial amplifier">inertial amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20fourier%20transform" title=" fast fourier transform"> fast fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequencies" title=" natural frequencies"> natural frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactic%20acid" title=" polylactic acid"> polylactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance" title=" transmittance"> transmittance</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20absorbers" title=" vibration absorbers"> vibration absorbers</a> </p> <a href="https://publications.waset.org/abstracts/153357/realization-of-hybrid-beams-inertial-amplifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3485</span> Transverse Vibration of Non-Homogeneous Rectangular Plates of Variable Thickness Using GDQ</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Saini">R. Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Lal"> R. Lal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of non-homogeneity on the free transverse vibration of thin rectangular plates of bilinearly varying thickness has been analyzed using generalized differential quadrature (GDQ) method. The non-homogeneity of the plate material is assumed to arise due to linear variations in Young’s modulus and density of the plate material with the in-plane coordinates x and y. Numerical results have been computed for fully clamped and fully simply supported boundary conditions. The solution procedure by means of GDQ method has been implemented in a MATLAB code. The effect of various plate parameters has been investigated for the first three modes of vibration. A comparison of results with those available in literature has been presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rectangular" title="rectangular">rectangular</a>, <a href="https://publications.waset.org/abstracts/search?q=non-homogeneous" title=" non-homogeneous"> non-homogeneous</a>, <a href="https://publications.waset.org/abstracts/search?q=bilinear%20thickness" title=" bilinear thickness"> bilinear thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20differential%20quadrature%20%28GDQ%29" title=" generalized differential quadrature (GDQ)"> generalized differential quadrature (GDQ)</a> </p> <a href="https://publications.waset.org/abstracts/9802/transverse-vibration-of-non-homogeneous-rectangular-plates-of-variable-thickness-using-gdq" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3484</span> A Test Methodology to Measure the Open-Loop Voltage Gain of an Operational Amplifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maninder%20Kaur%20Gill">Maninder Kaur Gill</a>, <a href="https://publications.waset.org/abstracts/search?q=Alpana%20Agarwal"> Alpana Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is practically not feasible to measure the open-loop voltage gain of the operational amplifier in the open loop configuration. It is because the open-loop voltage gain of the operational amplifier is very large. In order to avoid the saturation of the output voltage, a very small input should be given to operational amplifier which is not possible to be measured practically by a digital multimeter. A test circuit for measurement of open loop voltage gain of an operational amplifier has been proposed and verified using simulation tools as well as by experimental methods on breadboard. The main advantage of this test circuit is that it is simple, fast, accurate, cost effective, and easy to handle even on a breadboard. The test circuit requires only the device under test (DUT) along with resistors. This circuit has been tested for measurement of open loop voltage gain for different operational amplifiers. The underlying goal is to design testable circuits for various analog devices that are simple to realize in VLSI systems, giving accurate results and without changing the characteristics of the original system. The DUTs used are LM741CN and UA741CP. For LM741CN, the simulated gain and experimentally measured gain (average) are calculated as 89.71 dB and 87.71 dB, respectively. For UA741CP, the simulated gain and experimentally measured gain (average) are calculated as 101.15 dB and 105.15 dB, respectively. These values are found to be close to the datasheet values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Device%20Under%20Test%20%28DUT%29" title="Device Under Test (DUT)">Device Under Test (DUT)</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20loop%20voltage%20gain" title=" open loop voltage gain"> open loop voltage gain</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20amplifier" title=" operational amplifier"> operational amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20circuit" title=" test circuit"> test circuit</a> </p> <a href="https://publications.waset.org/abstracts/63309/a-test-methodology-to-measure-the-open-loop-voltage-gain-of-an-operational-amplifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3483</span> Design and Implementation of a 94 GHz CMOS Double-Balanced Up-Conversion Mixer for 94 GHz Imaging Radar Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yo-Sheng%20Lin">Yo-Sheng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Run-Chi%20Liu"> Run-Chi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Chu%20Ji"> Chien-Chu Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Chung%20Chen"> Chih-Chung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Chin%20Wang"> Chien-Chin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A W-band double-balanced mixer for direct up-conversion using standard 90 nm CMOS technology is reported. The mixer comprises an enhanced double-balanced Gilbert cell with PMOS negative resistance compensation for conversion gain (CG) enhancement and current injection for power consumption reduction and linearity improvement, a Marchand balun for converting the single LO input signal to differential signal, another Marchand balun for converting the differential RF output signal to single signal, and an output buffer amplifier for loading effect suppression, power consumption reduction and CG enhancement. The mixer consumes low power of 6.9 mW and achieves LO-port input reflection coefficient of -17.8~ -38.7 dB and RF-port input reflection coefficient of -16.8~ -27.9 dB for frequencies of 90~100 GHz. The mixer achieves maximum CG of 3.6 dB at 95 GHz, and CG of 2.1±1.5 dB for frequencies of 91.9~99.4 GHz. That is, the corresponding 3 dB CG bandwidth is 7.5 GHz. In addition, the mixer achieves LO-RF isolation of 36.8 dB at 94 GHz. To the authors’ knowledge, the CG, LO-RF isolation and power dissipation results are the best data ever reported for a 94 GHz CMOS/BiCMOS up-conversion mixer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS" title="CMOS">CMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=W-band" title=" W-band"> W-band</a>, <a href="https://publications.waset.org/abstracts/search?q=up-conversion%20mixer" title=" up-conversion mixer"> up-conversion mixer</a>, <a href="https://publications.waset.org/abstracts/search?q=conversion%20gain" title=" conversion gain"> conversion gain</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20resistance%20compensation" title=" negative resistance compensation"> negative resistance compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=output%20buffer%20amplifier" title=" output buffer amplifier"> output buffer amplifier</a> </p> <a href="https://publications.waset.org/abstracts/32066/design-and-implementation-of-a-94-ghz-cmos-double-balanced-up-conversion-mixer-for-94-ghz-imaging-radar-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3482</span> 2.4 GHz 0.13µM Multi Biased Cascode Power Amplifier for ISM Band Wireless Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Udayan%20Patankar">Udayan Patankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashwati%20Bhagat"> Shashwati Bhagat</a>, <a href="https://publications.waset.org/abstracts/search?q=Vilas%20Nitneware"> Vilas Nitneware</a>, <a href="https://publications.waset.org/abstracts/search?q=Ants%20Koel"> Ants Koel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An ISM band power amplifier is a type of electronic amplifier used to convert a low-power radio-frequency signal into a larger signal of significant power, typically used for driving the antenna of a transmitter. Due to drastic changes in telecommunication generations may lead to the requirements of improvements. Rapid changes in communication lead to the wide implementation of WLAN technology for its excellent characteristics, such as high transmission speed, long communication distance, and high reliability. Many applications such as WLAN, Bluetooth, and ZigBee, etc. were evolved with 2.4GHz to 5 GHz ISM Band, in which the power amplifier (PA) is a key building block of RF transmitters. There are many manufacturing processes available to manufacture a power amplifier for desired power output, but the major problem they have faced is about the power it consumed for its proper working, as many of them are fabricated on the GaN HEMT, Bi COMS process. In this paper we present a CMOS Base two stage cascode design of power amplifier working on 2.4GHz ISM frequency band. To lower the costs and allow full integration of a complete System-on-Chip (SoC) we have chosen 0.13µm low power CMOS technology for design. While designing a power amplifier, it is a real task to achieve higher power efficiency with minimum resources. This design showcase the Multi biased Cascode methodology to implement a two-stage CMOS power amplifier using ADS and LTSpice simulating tool. Main source is maximum of 2.4V which is internally distributed into different biasing point VB driving and VB driven as required for distinct stages of two stage RF power amplifier. It shows maximum power added efficiency near about 70.195% whereas its Power added efficiency calculated at 1 dB compression point is 44.669 %. Biased MOSFET is used to reduce total dc current as this circuit is designed for different wireless applications comes under 2.4GHz ISM Band. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RFIC" title="RFIC">RFIC</a>, <a href="https://publications.waset.org/abstracts/search?q=PAE" title=" PAE"> PAE</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20CMOS" title=" RF CMOS"> RF CMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20matching" title=" impedance matching"> impedance matching</a> </p> <a href="https://publications.waset.org/abstracts/75933/24-ghz-013m-multi-biased-cascode-power-amplifier-for-ism-band-wireless-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3481</span> Noncommutative Differential Structure on Finite Groups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibtisam%20Masmali">Ibtisam Masmali</a>, <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Beggs"> Edwin Beggs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we take example of differential calculi, on the finite group A4. Then, we apply methods of non-commutative of non-commutative differential geometry to this example, and see how similar the results are to those of classical differential geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=di%EF%AC%80erential%20calculi" title="differential calculi">differential calculi</a>, <a href="https://publications.waset.org/abstracts/search?q=%EF%AC%81nite%20group%20A4" title=" finite group A4"> finite group A4</a>, <a href="https://publications.waset.org/abstracts/search?q=Christo%EF%AC%80el%20symbols" title=" Christoffel symbols"> Christoffel symbols</a>, <a href="https://publications.waset.org/abstracts/search?q=covariant%20derivative" title=" covariant derivative"> covariant derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=torsion%20compatible" title=" torsion compatible"> torsion compatible</a> </p> <a href="https://publications.waset.org/abstracts/3359/noncommutative-differential-structure-on-finite-groups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3480</span> Design of a 28-nm CMOS 2.9-64.9-GHz Broadband Distributed Amplifier with Floating Ground CPW</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tian-Wei%20Huang">Tian-Wei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Ting%20Bai"> Wei-Ting Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Tung%20Cheng"> Yu-Tung Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeng-Han%20Tsai"> Jeng-Han Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a 1-stage 6-section conventional distributed amplifier (CDA) structure distributed power amplifier (DPA) fabricated in a 28-nm HPC+ 1P9M CMOS process is proposed. The transistor size selection is introduced to achieve broadband power matching and thus remains a high flatness output power and power added efficiency (PAE) within the bandwidth. With the inductive peaking technique, the high-frequency pole appears and the high-frequency gain is increased; the gain flatness becomes better as well. The inductive elements used to form an artificial transmission line are built up with a floating ground coplanar waveguide plane (CPWFG) rather than a microstrip line, coplanar waveguide (CPW), or spiral inductor to get better performance. The DPA achieves 12.6 dB peak gain at 52.5 GHz with 2.9 to 64.9 GHz 3-dB bandwidth. The Psat is 11.4 dBm with PAEMAX of 10.6 % at 25 GHz. The output 1-dB compression point power is 9.8 dBm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20power%20amplifier%20%28DPA%29" title="distributed power amplifier (DPA)">distributed power amplifier (DPA)</a>, <a href="https://publications.waset.org/abstracts/search?q=gain%20bandwidth%20%28GBW%29" title=" gain bandwidth (GBW)"> gain bandwidth (GBW)</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20ground%20CPW" title=" floating ground CPW"> floating ground CPW</a>, <a href="https://publications.waset.org/abstracts/search?q=inductive%20peaking" title=" inductive peaking"> inductive peaking</a>, <a href="https://publications.waset.org/abstracts/search?q=28-nm" title=" 28-nm"> 28-nm</a>, <a href="https://publications.waset.org/abstracts/search?q=CMOS" title=" CMOS"> CMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=5G." title=" 5G."> 5G.</a> </p> <a href="https://publications.waset.org/abstracts/161176/design-of-a-28-nm-cmos-29-649-ghz-broadband-distributed-amplifier-with-floating-ground-cpw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3479</span> A Low Power and High-Speed Conditional-Precharge Sense Amplifier Based Flip-Flop Using Single Ended Latch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guo-Ming%20Sung">Guo-Ming Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramavath%20Naga%20Raju%20Naik"> Ramavath Naga Raju Naik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a low power, high speed, sense-amplifier based flip-flop (SAFF). The flip-flop’s power con-sumption and delay are greatly reduced by employing a new conditionally precharge sense-amplifier stage and a single-ended latch stage. Glitch-free and contention-free latch operation is achieved by using a conditional cut-off strategy. The design uses fewer transistors, has a lower clock load, and has a simple structure, all of which contribute to a near-zero setup time. When compared to previous flip-flop structures proposed for similar input/output conditions, this design’s performance and overall PDP have improved. The post layout simulation of the circuit uses 2.91µW of power and has a delay of 65.82 ps. Overall, the power-delay product has seen some enhancements. Cadence Virtuoso Designing tool with CMOS 90nm technology are used for all designs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-speed" title="high-speed">high-speed</a>, <a href="https://publications.waset.org/abstracts/search?q=low-power" title=" low-power"> low-power</a>, <a href="https://publications.waset.org/abstracts/search?q=flip-flop" title=" flip-flop"> flip-flop</a>, <a href="https://publications.waset.org/abstracts/search?q=sense-amplifier" title=" sense-amplifier"> sense-amplifier</a> </p> <a href="https://publications.waset.org/abstracts/144462/a-low-power-and-high-speed-conditional-precharge-sense-amplifier-based-flip-flop-using-single-ended-latch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3478</span> On-Chip Ku-Band Bandpass Filter with Compact Size and Wide Stopband</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyh%20Sheen">Jyh Sheen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang-Hung%20Cheng"> Yang-Hung Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a design of a microstrip bandpass filter with a compact size and wide stopband by using 0.15-μm GaAs pHEMT process. The wide stop band is achieved by suppressing the first and second harmonic resonance frequencies. The slow-wave coupling stepped impedance resonator with cross coupled structure is adopted to design the bandpass filter. A two-resonator filter was fabricated with 13.5GHz center frequency and 11% bandwidth was achieved. The devices are simulated using the ADS design software. This device has shown a compact size and very low insertion loss of 2.6 dB. Microstrip planar bandpass filters have been widely adopted in various communication applications due to the attractive features of compact size and ease of fabricating. Various planar resonator structures have been suggested. In order to reach a wide stopband to reduce the interference outside the passing band, various designs of planar resonators have also been submitted to suppress the higher order harmonic frequencies of the designed center frequency. Various modifications to the traditional hairpin structure have been introduced to reduce large design area of hairpin designs. The stepped-impedance, slow-wave open-loop, and cross-coupled resonator structures have been studied to miniaturize the hairpin resonators. In this study, to suppress the spurious harmonic bands and further reduce the filter size, a modified hairpin-line bandpass filter with cross coupled structure is suggested by introducing the stepped impedance resonator design as well as the slow-wave open-loop resonator structure. In this way, very compact circuit size as well as very wide upper stopband can be achieved and realized in a Roger 4003C substrate. On the other hand, filters constructed with integrated circuit technology become more attractive for enabling the integration of the microwave system on a single chip (SOC). To examine the performance of this design structure at the integrated circuit, the filter is fabricated by the 0.15 μm pHEMT GaAs integrated circuit process. This pHEMT process can also provide a much better circuit performance for high frequency designs than those made on a PCB board. The design example was implemented in GaAs with center frequency at 13.5 GHz to examine the performance in higher frequency in detail. The occupied area is only about 1.09×0.97 mm2. The ADS software is used to design those modified filters to suppress the first and second harmonics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstrip%20resonator" title="microstrip resonator">microstrip resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=bandpass%20filter" title=" bandpass filter"> bandpass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20suppression" title=" harmonic suppression"> harmonic suppression</a>, <a href="https://publications.waset.org/abstracts/search?q=GaAs" title=" GaAs"> GaAs</a> </p> <a href="https://publications.waset.org/abstracts/74887/on-chip-ku-band-bandpass-filter-with-compact-size-and-wide-stopband" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3477</span> A Low-Power, Low-Noise and High-Gain 58~66 GHz CMOS Receiver Front-End for Short-Range High-Speed Wireless Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yo-Sheng%20Lin">Yo-Sheng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jen-How%20Lee"> Jen-How Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Chin%20Wang"> Chien-Chin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 60-GHz receiver front-end using standard 90-nm CMOS technology is reported. The receiver front-end comprises a wideband low-noise amplifier (LNA), and a double-balanced Gilbert cell mixer with a current-reused RF single-to-differential (STD) converter, an LO Marchand balun and a baseband amplifier. The receiver front-end consumes 34.4 mW and achieves LO-RF isolation of 60.7 dB, LO-IF isolation of 45.3 dB and RF-IF isolation of 41.9 dB at RF of 60 GHz and LO of 59.9 GHz. At IF of 0.1 GHz, the receiver front-end achieves maximum conversion gain (CG) of 26.1 dB at RF of 64 GHz and CG of 25.2 dB at RF of 60 GHz. The corresponding 3-dB bandwidth of RF is 7.3 GHz (58.4 GHz to 65.7 GHz). The measured minimum noise figure was 5.6 dB at 64 GHz, one of the best results ever reported for a 60 GHz CMOS receiver front-end. In addition, the measured input 1-dB compression point and input third-order inter-modulation point are -33.1 dBm and -23.3 dBm, respectively, at 60 GHz. These results demonstrate the proposed receiver front-end architecture is very promising for 60 GHz direct-conversion transceiver applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS" title="CMOS">CMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=60%20GHz" title=" 60 GHz"> 60 GHz</a>, <a href="https://publications.waset.org/abstracts/search?q=direct-conversion%20transceiver" title=" direct-conversion transceiver"> direct-conversion transceiver</a>, <a href="https://publications.waset.org/abstracts/search?q=LNA" title=" LNA"> LNA</a>, <a href="https://publications.waset.org/abstracts/search?q=down-conversion%20mixer" title=" down-conversion mixer"> down-conversion mixer</a>, <a href="https://publications.waset.org/abstracts/search?q=marchand%20balun" title=" marchand balun"> marchand balun</a>, <a href="https://publications.waset.org/abstracts/search?q=current-reused" title=" current-reused"> current-reused</a> </p> <a href="https://publications.waset.org/abstracts/32604/a-low-power-low-noise-and-high-gain-5866-ghz-cmos-receiver-front-end-for-short-range-high-speed-wireless-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3476</span> Novel Approach to Design of a Class-EJ Power Amplifier Using High Power Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Rahmani">F. Rahmani</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Razaghian"> F. Razaghian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Kashaninia"> A. R. Kashaninia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article proposes a new method for application in communication circuit systems that increase efficiency, PAE, output power and gain in the circuit. The proposed method is based on a combination of switching class-E and class-J and has been termed class-EJ. This method was investigated using both theory and simulation to confirm ~72% PAE and output power of > 39 dBm. The combination and design of the proposed power amplifier accrues gain of over 15dB in the 2.9 to 3.5 GHz frequency bandwidth. This circuit was designed using MOSFET and high power transistors. The load- and source-pull method achieved the best input and output networks using lumped elements. The proposed technique was investigated for fundamental and second harmonics having desirable amplitudes for the output signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20amplifier%20%28PA%29" title="power amplifier (PA)">power amplifier (PA)</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20power" title=" high power"> high power</a>, <a href="https://publications.waset.org/abstracts/search?q=class-J%20and%20%20%20class-E" title=" class-J and class-E"> class-J and class-E</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20efficiency" title=" high efficiency "> high efficiency </a> </p> <a href="https://publications.waset.org/abstracts/25917/novel-approach-to-design-of-a-class-ej-power-amplifier-using-high-power-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3475</span> Development of Extended Trapezoidal Method for Numerical Solution of Volterra Integro-Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuziyah%20Ishak">Fuziyah Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Norazura%20Ahmad"> Siti Norazura Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volterra integro-differential equations appear in many models for real life phenomena. Since analytical solutions for this type of differential equations are hard and at times impossible to attain, engineers and scientists resort to numerical solutions that can be made as accurately as possible. Conventionally, numerical methods for ordinary differential equations are adapted to solve Volterra integro-differential equations. In this paper, numerical solution for solving Volterra integro-differential equation using extended trapezoidal method is described. Formulae for the integral and differential parts of the equation are presented. Numerical results show that the extended method is suitable for solving first order Volterra integro-differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy" title="accuracy">accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20trapezoidal%20method" title=" extended trapezoidal method"> extended trapezoidal method</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=Volterra%20integro-differential%20equations" title=" Volterra integro-differential equations"> Volterra integro-differential equations</a> </p> <a href="https://publications.waset.org/abstracts/52856/development-of-extended-trapezoidal-method-for-numerical-solution-of-volterra-integro-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fully%20differential%20bandpass%20amplifier&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fully%20differential%20bandpass%20amplifier&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fully%20differential%20bandpass%20amplifier&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fully%20differential%20bandpass%20amplifier&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fully%20differential%20bandpass%20amplifier&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fully%20differential%20bandpass%20amplifier&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fully%20differential%20bandpass%20amplifier&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fully%20differential%20bandpass%20amplifier&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fully%20differential%20bandpass%20amplifier&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fully%20differential%20bandpass%20amplifier&page=116">116</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fully%20differential%20bandpass%20amplifier&page=117">117</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fully%20differential%20bandpass%20amplifier&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>