CINXE.COM

Geometrija - Wikipedija, prosta enciklopedija

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="sl" dir="ltr"> <head> <meta charset="UTF-8"> <title>Geometrija - Wikipedija, prosta enciklopedija</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )slwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy full","wgMonthNames":["","januar","februar","marec","april","maj","junij","julij","avgust","september","oktober","november","december"],"wgRequestId":"da850388-b076-4a34-a8fd-c120e51ed00a","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Geometrija","wgTitle":"Geometrija","wgCurRevisionId":6142015,"wgRevisionId":6142015,"wgArticleId":3410,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Članki, ki vsebujejo starogrško (do 1453) besedilo","Wikipedijini članki z identifikatorji BNF","Wikipedijini članki z identifikatorji EMU","Wikipedijini članki z identifikatorji GND","Wikipedijini članki z identifikatorji J9U","Wikipedijini članki z identifikatorji LCCN","Wikipedijini članki z identifikatorji NDL","Wikipedijini članki z identifikatorji NKC","Wikipedijini članki z okvarjenimi identifikatorji NLK", "Wikipedijini članki z identifikatorji TDVİA","Vsi škrbinski članki","Matematične škrbine","Matematika","Geometrija"],"wgPageViewLanguage":"sl","wgPageContentLanguage":"sl","wgPageContentModel":"wikitext","wgRelevantPageName":"Geometrija","wgRelevantArticleId":3410,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"sl","pageLanguageDir":"ltr","pageVariantFallbacks":"sl"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true, "wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q8087","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready", "jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.CommonsDirekt","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=sl&amp;modules=ext.cite.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=sl&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=sl&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/88/Stereographic_projection_in_3D.svg/1200px-Stereographic_projection_in_3D.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="881"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/88/Stereographic_projection_in_3D.svg/800px-Stereographic_projection_in_3D.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="588"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/88/Stereographic_projection_in_3D.svg/640px-Stereographic_projection_in_3D.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="470"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Geometrija - Wikipedija, prosta enciklopedija"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//sl.m.wikipedia.org/wiki/Geometrija"> <link rel="alternate" type="application/x-wiki" title="Uredi" href="/w/index.php?title=Geometrija&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedija (sl)"> <link rel="EditURI" type="application/rsd+xml" href="//sl.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://sl.wikipedia.org/wiki/Geometrija"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.sl"> <link rel="alternate" type="application/atom+xml" title="Atom-vir strani »Wikipedija«" href="/w/index.php?title=Posebno:ZadnjeSpremembe&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Geometrija rootpage-Geometrija skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Pojdi na vsebino</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Projekt"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Glavni meni" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Glavni meni</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Glavni meni</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">prestavi v stransko letvico</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">skrij</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigacija </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/Glavna_stran" title="Obiščite glavno stran [z]" accesskey="z"><span>Glavna stran</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Pomo%C4%8D:Uvod"><span>Naučite se urejati</span></a></li><li id="n-Izbrani-članki" class="mw-list-item"><a href="/wiki/Wikipedija:Izbrani_%C4%8Dlanki"><span>Izbrani članki</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Posebno:Naklju%C4%8Dno" title="Naložite naključno stran [x]" accesskey="x"><span>Naključna stran</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Posebno:ZadnjeSpremembe" title="Seznam zadnjih sprememb Wikipedije [r]" accesskey="r"><span>Zadnje spremembe</span></a></li> </ul> </div> </div> <div id="p-obcestvo" class="vector-menu mw-portlet mw-portlet-obcestvo" > <div class="vector-menu-heading"> Skupnost </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Pomo%C4%8D:Vsebina" title="Kraj, kjer lahko prejmete pomoč"><span>Pomoč</span></a></li><li id="n-Pod-lipo" class="mw-list-item"><a href="/wiki/Wikipedija:Pod_lipo"><span>Pod lipo</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedija:Portal_skupnosti" title="O projektu, kaj lahko storite, kje lahko kaj najdete"><span>Portal skupnosti</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedija:Stik_z_nami"><span>Stik z nami</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Glavna_stran" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedija" src="/static/images/mobile/copyright/wikipedia-wordmark-sl.svg" style="width: 7.4375em; height: 1.375em;"> <img class="mw-logo-tagline" alt="prosta enciklopedija" src="/static/images/mobile/copyright/wikipedia-tagline-sl.svg" width="118" height="13" style="width: 7.375em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Posebno:Iskanje" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Preiščite viki [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Iskanje</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Iskanje v Wikipediji" aria-label="Iskanje v Wikipediji" autocapitalize="sentences" title="Preiščite viki [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Posebno:Iskanje"> </div> <button class="cdx-button cdx-search-input__end-button">Išči</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Osebna orodja"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Videz"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Videz" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Videz</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_sl.wikipedia.org&amp;uselang=sl" class=""><span>Denarni prispevki</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Posebno:Registracija&amp;returnto=Geometrija" title="Predlagamo vam, da si ustvarite račun in se prijavite, vendar to ni obvezno." class=""><span>Ustvari račun</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Posebno:Prijava&amp;returnto=Geometrija" title="Prijava je zaželena, vendar ni obvezna [o]" accesskey="o" class=""><span>Prijava</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Več možnosti" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Osebna orodja" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Osebna orodja</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Uporabniški meni" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_sl.wikipedia.org&amp;uselang=sl"><span>Denarni prispevki</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Posebno:Registracija&amp;returnto=Geometrija" title="Predlagamo vam, da si ustvarite račun in se prijavite, vendar to ni obvezno."><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Ustvari račun</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Posebno:Prijava&amp;returnto=Geometrija" title="Prijava je zaželena, vendar ni obvezna [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Prijava</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Strani za neprijavljene urejevalce <a href="/wiki/Pomo%C4%8D:Uvod" aria-label="Več o urejanju"><span>več o tem</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Posebno:MojiPrispevki" title="Seznam urejanj s tega IP-naslova [y]" accesskey="y"><span>Prispevki</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Posebno:MojPogovor" title="Pogovor o urejanjih s tega IP-naslova [n]" accesskey="n"><span>Pogovorna stran</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Projekt"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Vsebina" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Vsebina</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">prestavi v stransko letvico</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">skrij</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Uvod</div> </a> </li> <li id="toc-Zemljemerstvo" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Zemljemerstvo"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Zemljemerstvo</span> </div> </a> <ul id="toc-Zemljemerstvo-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Pomembni_koncepti_geometrije" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Pomembni_koncepti_geometrije"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Pomembni koncepti geometrije</span> </div> </a> <button aria-controls="toc-Pomembni_koncepti_geometrije-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Vklopi podrazdelek Pomembni koncepti geometrije</span> </button> <ul id="toc-Pomembni_koncepti_geometrije-sublist" class="vector-toc-list"> <li id="toc-Aksiom" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Aksiom"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Aksiom</span> </div> </a> <ul id="toc-Aksiom-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Točka" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Točka"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Točka</span> </div> </a> <ul id="toc-Točka-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Premica" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Premica"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Premica</span> </div> </a> <ul id="toc-Premica-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ravnina" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ravnina"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Ravnina</span> </div> </a> <ul id="toc-Ravnina-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kot" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Kot"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Kot</span> </div> </a> <ul id="toc-Kot-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Krivulja" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Krivulja"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>Krivulja</span> </div> </a> <ul id="toc-Krivulja-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Površina" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Površina"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7</span> <span>Površina</span> </div> </a> <ul id="toc-Površina-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mnogoterost" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mnogoterost"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.8</span> <span>Mnogoterost</span> </div> </a> <ul id="toc-Mnogoterost-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dolžina,_površina_in_prostornina" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dolžina,_površina_in_prostornina"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.9</span> <span>Dolžina, površina in prostornina</span> </div> </a> <ul id="toc-Dolžina,_površina_in_prostornina-sublist" class="vector-toc-list"> <li id="toc-Meritve_in_mere" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Meritve_in_mere"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.9.1</span> <span>Meritve in mere</span> </div> </a> <ul id="toc-Meritve_in_mere-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Skladnost_in_podobnost" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Skladnost_in_podobnost"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.10</span> <span>Skladnost in podobnost</span> </div> </a> <ul id="toc-Skladnost_in_podobnost-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Konstrukcije_z_ravnilom_in_šestilom" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Konstrukcije_z_ravnilom_in_šestilom"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.11</span> <span>Konstrukcije z ravnilom in šestilom</span> </div> </a> <ul id="toc-Konstrukcije_z_ravnilom_in_šestilom-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dimenzija" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dimenzija"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.12</span> <span>Dimenzija</span> </div> </a> <ul id="toc-Dimenzija-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ostalo" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ostalo"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.13</span> <span>Ostalo</span> </div> </a> <ul id="toc-Ostalo-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Sodobna_geometrija" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sodobna_geometrija"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Sodobna geometrija</span> </div> </a> <button aria-controls="toc-Sodobna_geometrija-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Vklopi podrazdelek Sodobna geometrija</span> </button> <ul id="toc-Sodobna_geometrija-sublist" class="vector-toc-list"> <li id="toc-Evklidska_geometrija" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Evklidska_geometrija"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Evklidska geometrija</span> </div> </a> <ul id="toc-Evklidska_geometrija-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Neevklidska_geometrija" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Neevklidska_geometrija"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Neevklidska geometrija</span> </div> </a> <ul id="toc-Neevklidska_geometrija-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Analitična_geometrija" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Analitična_geometrija"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Analitična geometrija</span> </div> </a> <ul id="toc-Analitična_geometrija-sublist" class="vector-toc-list"> <li id="toc-Elementarna_geometrija" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Elementarna_geometrija"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.1</span> <span>Elementarna geometrija</span> </div> </a> <ul id="toc-Elementarna_geometrija-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Višja_geometrija" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Višja_geometrija"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.2</span> <span>Višja geometrija</span> </div> </a> <ul id="toc-Višja_geometrija-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Afina_in_projektivna_geometrija" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Afina_in_projektivna_geometrija"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Afina in projektivna geometrija</span> </div> </a> <ul id="toc-Afina_in_projektivna_geometrija-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mnogoterosti" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mnogoterosti"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Mnogoterosti</span> </div> </a> <ul id="toc-Mnogoterosti-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Glej_tudi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Glej_tudi"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Glej tudi</span> </div> </a> <ul id="toc-Glej_tudi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sklici" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sklici"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Sklici</span> </div> </a> <ul id="toc-Sklici-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Vsebina" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Vklopi kazalo vsebine" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Vklopi kazalo vsebine</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Geometrija</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="P9jdi na članek v drugem jeziku. Na voljo v 179 jezikih." > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-179" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">179 jezikov</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Meetkunde" title="Meetkunde – afrikanščina" lang="af" hreflang="af" data-title="Meetkunde" data-language-autonym="Afrikaans" data-language-local-name="afrikanščina" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Geometrie" title="Geometrie – nemščina (Švica)" lang="gsw" hreflang="gsw" data-title="Geometrie" data-language-autonym="Alemannisch" data-language-local-name="nemščina (Švica)" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8C%82%E1%8B%8E%E1%88%9C%E1%89%B5%E1%88%AA" title="ጂዎሜትሪ – amharščina" lang="am" hreflang="am" data-title="ጂዎሜትሪ" data-language-autonym="አማርኛ" data-language-local-name="amharščina" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Cheometr%C3%ADa" title="Cheometría – aragonščina" lang="an" hreflang="an" data-title="Cheometría" data-language-autonym="Aragonés" data-language-local-name="aragonščina" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-anp mw-list-item"><a href="https://anp.wikipedia.org/wiki/%E0%A4%9C%E0%A5%8D%E0%A4%AF%E0%A4%BE%E0%A4%AE%E0%A4%BF%E0%A4%A4%E0%A4%BF" title="ज्यामिति – angikaščina" lang="anp" hreflang="anp" data-title="ज्यामिति" data-language-autonym="अंगिका" data-language-local-name="angikaščina" class="interlanguage-link-target"><span>अंगिका</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%87%D9%86%D8%AF%D8%B3%D8%A9_%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A9" title="هندسة رياضية – arabščina" lang="ar" hreflang="ar" data-title="هندسة رياضية" data-language-autonym="العربية" data-language-local-name="arabščina" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ary mw-list-item"><a href="https://ary.wikipedia.org/wiki/%D8%AA%D8%B3%D8%B7%D8%A7%D8%B1" title="تسطار – Moroccan Arabic" lang="ary" hreflang="ary" data-title="تسطار" data-language-autonym="الدارجة" data-language-local-name="Moroccan Arabic" class="interlanguage-link-target"><span>الدارجة</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%9C%E0%A7%8D%E0%A6%AF%E0%A6%BE%E0%A6%AE%E0%A6%BF%E0%A6%A4%E0%A6%BF" title="জ্যামিতি – asamščina" lang="as" hreflang="as" data-title="জ্যামিতি" data-language-autonym="অসমীয়া" data-language-local-name="asamščina" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Xeometr%C3%ADa" title="Xeometría – asturijščina" lang="ast" hreflang="ast" data-title="Xeometría" data-language-autonym="Asturianu" data-language-local-name="asturijščina" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/H%C9%99nd%C9%99s%C9%99" title="Həndəsə – azerbajdžanščina" lang="az" hreflang="az" data-title="Həndəsə" data-language-autonym="Azərbaycanca" data-language-local-name="azerbajdžanščina" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D9%87%D9%86%D8%AF%D8%B3%D9%87" title="هندسه – South Azerbaijani" lang="azb" hreflang="azb" data-title="هندسه" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Геометрия – baškirščina" lang="ba" hreflang="ba" data-title="Геометрия" data-language-autonym="Башҡортса" data-language-local-name="baškirščina" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Geuometr%C4%97j%C4%97" title="Geuometrėjė – Samogitian" lang="sgs" hreflang="sgs" data-title="Geuometrėjė" data-language-autonym="Žemaitėška" data-language-local-name="Samogitian" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Heometriya" title="Heometriya – Central Bikol" lang="bcl" hreflang="bcl" data-title="Heometriya" data-language-autonym="Bikol Central" data-language-local-name="Central Bikol" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%93%D0%B5%D0%B0%D0%BC%D0%B5%D1%82%D1%80%D1%8B%D1%8F" title="Геаметрыя – beloruščina" lang="be" hreflang="be" data-title="Геаметрыя" data-language-autonym="Беларуская" data-language-local-name="beloruščina" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%93%D0%B5%D0%B0%D0%BC%D1%8D%D1%82%D1%80%D1%8B%D1%8F" title="Геамэтрыя – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Геамэтрыя" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Геометрия – bolgarščina" lang="bg" hreflang="bg" data-title="Геометрия" data-language-autonym="Български" data-language-local-name="bolgarščina" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%9C%E0%A5%8D%E0%A4%AF%E0%A5%89%E0%A4%AE%E0%A5%87%E0%A4%9F%E0%A5%8D%E0%A4%B0%E0%A5%80" title="ज्यॉमेट्री – Bhojpuri" lang="bh" hreflang="bh" data-title="ज्यॉमेट्री" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bi mw-list-item"><a href="https://bi.wikipedia.org/wiki/Jiometri" title="Jiometri – bislamščina" lang="bi" hreflang="bi" data-title="Jiometri" data-language-autonym="Bislama" data-language-local-name="bislamščina" class="interlanguage-link-target"><span>Bislama</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%9C%E0%A7%8D%E0%A6%AF%E0%A6%BE%E0%A6%AE%E0%A6%BF%E0%A6%A4%E0%A6%BF" title="জ্যামিতি – bengalščina" lang="bn" hreflang="bn" data-title="জ্যামিতি" data-language-autonym="বাংলা" data-language-local-name="bengalščina" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bo mw-list-item"><a href="https://bo.wikipedia.org/wiki/%E0%BD%91%E0%BD%96%E0%BE%B1%E0%BD%B2%E0%BD%96%E0%BD%A6%E0%BC%8B%E0%BD%A2%E0%BE%A9%E0%BD%B2%E0%BD%A6%E0%BC%8B%E0%BD%A2%E0%BD%B2%E0%BD%82%E0%BC%8B%E0%BD%94%E0%BC%8D" title="དབྱིབས་རྩིས་རིག་པ། – tibetanščina" lang="bo" hreflang="bo" data-title="དབྱིབས་རྩིས་རིག་པ།" data-language-autonym="བོད་ཡིག" data-language-local-name="tibetanščina" class="interlanguage-link-target"><span>བོད་ཡིག</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Mentoniezh" title="Mentoniezh – bretonščina" lang="br" hreflang="br" data-title="Mentoniezh" data-language-autonym="Brezhoneg" data-language-local-name="bretonščina" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Geometrija" title="Geometrija – bosanščina" lang="bs" hreflang="bs" data-title="Geometrija" data-language-autonym="Bosanski" data-language-local-name="bosanščina" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8" title="Геометри – Russia Buriat" lang="bxr" hreflang="bxr" data-title="Геометри" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Geometria" title="Geometria – katalonščina" lang="ca" hreflang="ca" data-title="Geometria" data-language-autonym="Català" data-language-local-name="katalonščina" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-chr mw-list-item"><a href="https://chr.wikipedia.org/wiki/%E1%8F%97%E1%8F%8E%E1%8F%8D%E1%8F%97_%E1%8F%93%E1%8F%8D%E1%8F%93%E1%8F%85%E1%8F%85" title="ᏗᏎᏍᏗ ᏓᏍᏓᏅᏅ – čerokeščina" lang="chr" hreflang="chr" data-title="ᏗᏎᏍᏗ ᏓᏍᏓᏅᏅ" data-language-autonym="ᏣᎳᎩ" data-language-local-name="čerokeščina" class="interlanguage-link-target"><span>ᏣᎳᎩ</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%A6%DB%95%D9%86%D8%AF%D8%A7%D8%B2%DB%95" title="ئەندازە – osrednja kurdščina" lang="ckb" hreflang="ckb" data-title="ئەندازە" data-language-autonym="کوردی" data-language-local-name="osrednja kurdščina" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-co mw-list-item"><a href="https://co.wikipedia.org/wiki/Geumitria" title="Geumitria – korziščina" lang="co" hreflang="co" data-title="Geumitria" data-language-autonym="Corsu" data-language-local-name="korziščina" class="interlanguage-link-target"><span>Corsu</span></a></li><li class="interlanguage-link interwiki-cs badge-Q17437798 badge-goodarticle mw-list-item" title="dober članek"><a href="https://cs.wikipedia.org/wiki/Geometrie" title="Geometrie – češčina" lang="cs" hreflang="cs" data-title="Geometrie" data-language-autonym="Čeština" data-language-local-name="češčina" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8" title="Геометри – čuvaščina" lang="cv" hreflang="cv" data-title="Геометри" data-language-autonym="Чӑвашла" data-language-local-name="čuvaščina" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Geometreg" title="Geometreg – valižanščina" lang="cy" hreflang="cy" data-title="Geometreg" data-language-autonym="Cymraeg" data-language-local-name="valižanščina" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Geometri" title="Geometri – danščina" lang="da" hreflang="da" data-title="Geometri" data-language-autonym="Dansk" data-language-local-name="danščina" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Geometrie" title="Geometrie – nemščina" lang="de" hreflang="de" data-title="Geometrie" data-language-autonym="Deutsch" data-language-local-name="nemščina" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Geometri" title="Geometri – Zazaki" lang="diq" hreflang="diq" data-title="Geometri" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%93%CE%B5%CF%89%CE%BC%CE%B5%CF%84%CF%81%CE%AF%CE%B1" title="Γεωμετρία – grščina" lang="el" hreflang="el" data-title="Γεωμετρία" data-language-autonym="Ελληνικά" data-language-local-name="grščina" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/Geometr%C3%AE" title="Geometrî – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Geometrî" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Geometry" title="Geometry – angleščina" lang="en" hreflang="en" data-title="Geometry" data-language-autonym="English" data-language-local-name="angleščina" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Geometrio" title="Geometrio – esperanto" lang="eo" hreflang="eo" data-title="Geometrio" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Geometr%C3%ADa" title="Geometría – španščina" lang="es" hreflang="es" data-title="Geometría" data-language-autonym="Español" data-language-local-name="španščina" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Geomeetria" title="Geomeetria – estonščina" lang="et" hreflang="et" data-title="Geomeetria" data-language-autonym="Eesti" data-language-local-name="estonščina" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Geometria" title="Geometria – baskovščina" lang="eu" hreflang="eu" data-title="Geometria" data-language-autonym="Euskara" data-language-local-name="baskovščina" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-ext mw-list-item"><a href="https://ext.wikipedia.org/wiki/Geometria" title="Geometria – Extremaduran" lang="ext" hreflang="ext" data-title="Geometria" data-language-autonym="Estremeñu" data-language-local-name="Extremaduran" class="interlanguage-link-target"><span>Estremeñu</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%87%D9%86%D8%AF%D8%B3%D9%87" title="هندسه – perzijščina" lang="fa" hreflang="fa" data-title="هندسه" data-language-autonym="فارسی" data-language-local-name="perzijščina" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Geometria" title="Geometria – finščina" lang="fi" hreflang="fi" data-title="Geometria" data-language-autonym="Suomi" data-language-local-name="finščina" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Geomeetri%C3%A4" title="Geomeetriä – Võro" lang="vro" hreflang="vro" data-title="Geomeetriä" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-fj mw-list-item"><a href="https://fj.wikipedia.org/wiki/Geometry" title="Geometry – fidžijščina" lang="fj" hreflang="fj" data-title="Geometry" data-language-autonym="Na Vosa Vakaviti" data-language-local-name="fidžijščina" class="interlanguage-link-target"><span>Na Vosa Vakaviti</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Geometri" title="Geometri – ferščina" lang="fo" hreflang="fo" data-title="Geometri" data-language-autonym="Føroyskt" data-language-local-name="ferščina" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/G%C3%A9om%C3%A9trie" title="Géométrie – francoščina" lang="fr" hreflang="fr" data-title="Géométrie" data-language-autonym="Français" data-language-local-name="francoščina" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Geometrii" title="Geometrii – severna frizijščina" lang="frr" hreflang="frr" data-title="Geometrii" data-language-autonym="Nordfriisk" data-language-local-name="severna frizijščina" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Geoim%C3%A9adracht" title="Geoiméadracht – irščina" lang="ga" hreflang="ga" data-title="Geoiméadracht" data-language-autonym="Gaeilge" data-language-local-name="irščina" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E5%B9%BE%E4%BD%95%E5%AD%B8" title="幾何學 – Gan" lang="gan" hreflang="gan" data-title="幾何學" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/J%C3%A9om%C3%A9tri" title="Jéométri – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Jéométri" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-gd mw-list-item"><a href="https://gd.wikipedia.org/wiki/Geoimeatras" title="Geoimeatras – škotska gelščina" lang="gd" hreflang="gd" data-title="Geoimeatras" data-language-autonym="Gàidhlig" data-language-local-name="škotska gelščina" class="interlanguage-link-target"><span>Gàidhlig</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Xeometr%C3%ADa" title="Xeometría – galicijščina" lang="gl" hreflang="gl" data-title="Xeometría" data-language-autonym="Galego" data-language-local-name="galicijščina" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gn mw-list-item"><a href="https://gn.wikipedia.org/wiki/Ysajarekokuaa" title="Ysajarekokuaa – gvaranijščina" lang="gn" hreflang="gn" data-title="Ysajarekokuaa" data-language-autonym="Avañe&#039;ẽ" data-language-local-name="gvaranijščina" class="interlanguage-link-target"><span>Avañe'ẽ</span></a></li><li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://gu.wikipedia.org/wiki/%E0%AA%AD%E0%AB%82%E0%AA%AE%E0%AA%BF%E0%AA%A4%E0%AA%BF" title="ભૂમિતિ – gudžaratščina" lang="gu" hreflang="gu" data-title="ભૂમિતિ" data-language-autonym="ગુજરાતી" data-language-local-name="gudžaratščina" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li><li class="interlanguage-link interwiki-gv mw-list-item"><a href="https://gv.wikipedia.org/wiki/Towse-oaylleeaght" title="Towse-oaylleeaght – manščina" lang="gv" hreflang="gv" data-title="Towse-oaylleeaght" data-language-autonym="Gaelg" data-language-local-name="manščina" class="interlanguage-link-target"><span>Gaelg</span></a></li><li class="interlanguage-link interwiki-hak mw-list-item"><a href="https://hak.wikipedia.org/wiki/K%C3%AD-h%C3%B2-ho%CC%8Dk" title="Kí-hò-ho̍k – Hakka Chinese" lang="hak" hreflang="hak" data-title="Kí-hò-ho̍k" data-language-autonym="客家語 / Hak-kâ-ngî" data-language-local-name="Hakka Chinese" class="interlanguage-link-target"><span>客家語 / Hak-kâ-ngî</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%92%D7%90%D7%95%D7%9E%D7%98%D7%A8%D7%99%D7%94" title="גאומטריה – hebrejščina" lang="he" hreflang="he" data-title="גאומטריה" data-language-autonym="עברית" data-language-local-name="hebrejščina" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%9C%E0%A5%8D%E0%A4%AF%E0%A4%BE%E0%A4%AE%E0%A4%BF%E0%A4%A4%E0%A4%BF" title="ज्यामिति – hindijščina" lang="hi" hreflang="hi" data-title="ज्यामिति" data-language-autonym="हिन्दी" data-language-local-name="hindijščina" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Geometry" title="Geometry – Fiji Hindi" lang="hif" hreflang="hif" data-title="Geometry" data-language-autonym="Fiji Hindi" data-language-local-name="Fiji Hindi" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Geometrija" title="Geometrija – hrvaščina" lang="hr" hreflang="hr" data-title="Geometrija" data-language-autonym="Hrvatski" data-language-local-name="hrvaščina" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Jewometri" title="Jewometri – haitijska kreolščina" lang="ht" hreflang="ht" data-title="Jewometri" data-language-autonym="Kreyòl ayisyen" data-language-local-name="haitijska kreolščina" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Geometria" title="Geometria – madžarščina" lang="hu" hreflang="hu" data-title="Geometria" data-language-autonym="Magyar" data-language-local-name="madžarščina" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B5%D6%80%D5%AF%D6%80%D5%A1%D5%B9%D5%A1%D6%83%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Երկրաչափություն – armenščina" lang="hy" hreflang="hy" data-title="Երկրաչափություն" data-language-autonym="Հայերեն" data-language-local-name="armenščina" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia badge-Q17437796 badge-featuredarticle mw-list-item" title="izbrani članek"><a href="https://ia.wikipedia.org/wiki/Geometria" title="Geometria – interlingva" lang="ia" hreflang="ia" data-title="Geometria" data-language-autonym="Interlingua" data-language-local-name="interlingva" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Geometri" title="Geometri – indonezijščina" lang="id" hreflang="id" data-title="Geometri" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonezijščina" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ie mw-list-item"><a href="https://ie.wikipedia.org/wiki/Geometrie" title="Geometrie – interlingve" lang="ie" hreflang="ie" data-title="Geometrie" data-language-autonym="Interlingue" data-language-local-name="interlingve" class="interlanguage-link-target"><span>Interlingue</span></a></li><li class="interlanguage-link interwiki-ilo mw-list-item"><a href="https://ilo.wikipedia.org/wiki/Heometria" title="Heometria – ilokanščina" lang="ilo" hreflang="ilo" data-title="Heometria" data-language-autonym="Ilokano" data-language-local-name="ilokanščina" class="interlanguage-link-target"><span>Ilokano</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Geometrio" title="Geometrio – ido" lang="io" hreflang="io" data-title="Geometrio" data-language-autonym="Ido" data-language-local-name="ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/R%C3%BAmfr%C3%A6%C3%B0i" title="Rúmfræði – islandščina" lang="is" hreflang="is" data-title="Rúmfræði" data-language-autonym="Íslenska" data-language-local-name="islandščina" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Geometria" title="Geometria – italijanščina" lang="it" hreflang="it" data-title="Geometria" data-language-autonym="Italiano" data-language-local-name="italijanščina" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%B9%BE%E4%BD%95%E5%AD%A6" title="幾何学 – japonščina" lang="ja" hreflang="ja" data-title="幾何学" data-language-autonym="日本語" data-language-local-name="japonščina" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Jaamichri" title="Jaamichri – Jamaican Creole English" lang="jam" hreflang="jam" data-title="Jaamichri" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-jv mw-list-item"><a href="https://jv.wikipedia.org/wiki/G%C3%A9om%C3%A8tri" title="Géomètri – javanščina" lang="jv" hreflang="jv" data-title="Géomètri" data-language-autonym="Jawa" data-language-local-name="javanščina" class="interlanguage-link-target"><span>Jawa</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%92%E1%83%94%E1%83%9D%E1%83%9B%E1%83%94%E1%83%A2%E1%83%A0%E1%83%98%E1%83%90" title="გეომეტრია – gruzijščina" lang="ka" hreflang="ka" data-title="გეომეტრია" data-language-autonym="ქართული" data-language-local-name="gruzijščina" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kaa mw-list-item"><a href="https://kaa.wikipedia.org/wiki/Geometriya" title="Geometriya – karakalpaščina" lang="kaa" hreflang="kaa" data-title="Geometriya" data-language-autonym="Qaraqalpaqsha" data-language-local-name="karakalpaščina" class="interlanguage-link-target"><span>Qaraqalpaqsha</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Tanzeggit" title="Tanzeggit – kabilščina" lang="kab" hreflang="kab" data-title="Tanzeggit" data-language-autonym="Taqbaylit" data-language-local-name="kabilščina" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-kbd mw-list-item"><a href="https://kbd.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%B5" title="Геометрие – kabardinščina" lang="kbd" hreflang="kbd" data-title="Геометрие" data-language-autonym="Адыгэбзэ" data-language-local-name="kabardinščina" class="interlanguage-link-target"><span>Адыгэбзэ</span></a></li><li class="interlanguage-link interwiki-kbp mw-list-item"><a href="https://kbp.wikipedia.org/wiki/Sii%C5%8B_l%C9%A9z%CA%8A%CA%8A" title="Siiŋ lɩzʊʊ – Kabiye" lang="kbp" hreflang="kbp" data-title="Siiŋ lɩzʊʊ" data-language-autonym="Kabɩyɛ" data-language-local-name="Kabiye" class="interlanguage-link-target"><span>Kabɩyɛ</span></a></li><li class="interlanguage-link interwiki-ki mw-list-item"><a href="https://ki.wikipedia.org/wiki/M%C5%A9thun%C5%A9r%C5%A9rio_(geometry)" title="Mũthunũrũrio (geometry) – kikujščina" lang="ki" hreflang="ki" data-title="Mũthunũrũrio (geometry)" data-language-autonym="Gĩkũyũ" data-language-local-name="kikujščina" class="interlanguage-link-target"><span>Gĩkũyũ</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Геометрия – kazaščina" lang="kk" hreflang="kk" data-title="Геометрия" data-language-autonym="Қазақша" data-language-local-name="kazaščina" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%92%E1%9E%9A%E1%9E%8E%E1%9E%B8%E1%9E%98%E1%9E%B6%E1%9E%8F%E1%9F%92%E1%9E%9A" title="ធរណីមាត្រ – kmerščina" lang="km" hreflang="km" data-title="ធរណីមាត្រ" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="kmerščina" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%B0%E0%B3%87%E0%B2%96%E0%B2%BE%E0%B2%97%E0%B2%A3%E0%B2%BF%E0%B2%A4" title="ರೇಖಾಗಣಿತ – kanareščina" lang="kn" hreflang="kn" data-title="ರೇಖಾಗಣಿತ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="kanareščina" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B8%B0%ED%95%98%ED%95%99" title="기하학 – korejščina" lang="ko" hreflang="ko" data-title="기하학" data-language-autonym="한국어" data-language-local-name="korejščina" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/Geometr%C3%AE" title="Geometrî – kurdščina" lang="ku" hreflang="ku" data-title="Geometrî" data-language-autonym="Kurdî" data-language-local-name="kurdščina" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-kw mw-list-item"><a href="https://kw.wikipedia.org/wiki/Mynsonieth" title="Mynsonieth – kornijščina" lang="kw" hreflang="kw" data-title="Mynsonieth" data-language-autonym="Kernowek" data-language-local-name="kornijščina" class="interlanguage-link-target"><span>Kernowek</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Геометрия – kirgiščina" lang="ky" hreflang="ky" data-title="Геометрия" data-language-autonym="Кыргызча" data-language-local-name="kirgiščina" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Geometria" title="Geometria – latinščina" lang="la" hreflang="la" data-title="Geometria" data-language-autonym="Latina" data-language-local-name="latinščina" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Geometrie" title="Geometrie – luksemburščina" lang="lb" hreflang="lb" data-title="Geometrie" data-language-autonym="Lëtzebuergesch" data-language-local-name="luksemburščina" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://lfn.wikipedia.org/wiki/Jeometria" title="Jeometria – Lingua Franca Nova" lang="lfn" hreflang="lfn" data-title="Jeometria" data-language-autonym="Lingua Franca Nova" data-language-local-name="Lingua Franca Nova" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li><li class="interlanguage-link interwiki-lg mw-list-item"><a href="https://lg.wikipedia.org/wiki/Essomampimo_(Geometry)" title="Essomampimo (Geometry) – ganda" lang="lg" hreflang="lg" data-title="Essomampimo (Geometry)" data-language-autonym="Luganda" data-language-local-name="ganda" class="interlanguage-link-target"><span>Luganda</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Maetk%C3%B3nde" title="Maetkónde – limburščina" lang="li" hreflang="li" data-title="Maetkónde" data-language-autonym="Limburgs" data-language-local-name="limburščina" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lij mw-list-item"><a href="https://lij.wikipedia.org/wiki/Geometria" title="Geometria – Ligurian" lang="lij" hreflang="lij" data-title="Geometria" data-language-autonym="Ligure" data-language-local-name="Ligurian" class="interlanguage-link-target"><span>Ligure</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Geometr%C3%ACa" title="Geometrìa – Lombard" lang="lmo" hreflang="lmo" data-title="Geometrìa" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-ln mw-list-item"><a href="https://ln.wikipedia.org/wiki/Zom%C9%9Bt%C9%9Bl%C3%AD" title="Zomɛtɛlí – lingala" lang="ln" hreflang="ln" data-title="Zomɛtɛlí" data-language-autonym="Lingála" data-language-local-name="lingala" class="interlanguage-link-target"><span>Lingála</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BB%80%E0%BA%A5%E0%BA%82%E0%BA%B2%E0%BA%84%E0%BA%B0%E0%BA%99%E0%BA%B4%E0%BA%94" title="ເລຂາຄະນິດ – laoščina" lang="lo" hreflang="lo" data-title="ເລຂາຄະນິດ" data-language-autonym="ລາວ" data-language-local-name="laoščina" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Geometrija" title="Geometrija – litovščina" lang="lt" hreflang="lt" data-title="Geometrija" data-language-autonym="Lietuvių" data-language-local-name="litovščina" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/%C4%A2eometrija" title="Ģeometrija – latvijščina" lang="lv" hreflang="lv" data-title="Ģeometrija" data-language-autonym="Latviešu" data-language-local-name="latvijščina" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mdf mw-list-item"><a href="https://mdf.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F%D1%81%D1%8C" title="Геометриясь – mokšavščina" lang="mdf" hreflang="mdf" data-title="Геометриясь" data-language-autonym="Мокшень" data-language-local-name="mokšavščina" class="interlanguage-link-target"><span>Мокшень</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Je%C3%B4metria" title="Jeômetria – malgaščina" lang="mg" hreflang="mg" data-title="Jeômetria" data-language-autonym="Malagasy" data-language-local-name="malgaščina" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-mhr mw-list-item"><a href="https://mhr.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%B9" title="Геометрий – Eastern Mari" lang="mhr" hreflang="mhr" data-title="Геометрий" data-language-autonym="Олык марий" data-language-local-name="Eastern Mari" class="interlanguage-link-target"><span>Олык марий</span></a></li><li class="interlanguage-link interwiki-min mw-list-item"><a href="https://min.wikipedia.org/wiki/Ilmu_ukua" title="Ilmu ukua – minangkabau" lang="min" hreflang="min" data-title="Ilmu ukua" data-language-autonym="Minangkabau" data-language-local-name="minangkabau" class="interlanguage-link-target"><span>Minangkabau</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%98%D0%B0" title="Геометрија – makedonščina" lang="mk" hreflang="mk" data-title="Геометрија" data-language-autonym="Македонски" data-language-local-name="makedonščina" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%9C%E0%B5%8D%E0%B4%AF%E0%B4%BE%E0%B4%AE%E0%B4%BF%E0%B4%A4%E0%B4%BF" title="ജ്യാമിതി – malajalamščina" lang="ml" hreflang="ml" data-title="ജ്യാമിതി" data-language-autonym="മലയാളം" data-language-local-name="malajalamščina" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80" title="Геометр – mongolščina" lang="mn" hreflang="mn" data-title="Геометр" data-language-autonym="Монгол" data-language-local-name="mongolščina" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mnw mw-list-item"><a href="https://mnw.wikipedia.org/wiki/%E1%80%82%E1%80%B1%E1%80%9E%E1%80%BC%E1%80%99%E1%80%B1%E1%80%90%E1%80%BC%E1%80%B3" title="ဂေသြမေတြဳ – Mon" lang="mnw" hreflang="mnw" data-title="ဂေသြမေတြဳ" data-language-autonym="ဘာသာမန်" data-language-local-name="Mon" class="interlanguage-link-target"><span>ဘာသာမန်</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%AD%E0%A5%82%E0%A4%AE%E0%A4%BF%E0%A4%A4%E0%A5%80" title="भूमिती – maratščina" lang="mr" hreflang="mr" data-title="भूमिती" data-language-autonym="मराठी" data-language-local-name="maratščina" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Geometri" title="Geometri – malajščina" lang="ms" hreflang="ms" data-title="Geometri" data-language-autonym="Bahasa Melayu" data-language-local-name="malajščina" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/%C4%A0eometrija" title="Ġeometrija – malteščina" lang="mt" hreflang="mt" data-title="Ġeometrija" data-language-autonym="Malti" data-language-local-name="malteščina" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-mwl mw-list-item"><a href="https://mwl.wikipedia.org/wiki/Geometrie" title="Geometrie – mirandeščina" lang="mwl" hreflang="mwl" data-title="Geometrie" data-language-autonym="Mirandés" data-language-local-name="mirandeščina" class="interlanguage-link-target"><span>Mirandés</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%82%E1%80%BB%E1%80%AE%E1%80%A9%E1%80%99%E1%80%B1%E1%80%90%E1%80%BC%E1%80%AE" title="ဂျီဩမေတြီ – burmanščina" lang="my" hreflang="my" data-title="ဂျီဩမေတြီ" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="burmanščina" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-myv mw-list-item"><a href="https://myv.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Геометрия – erzjanščina" lang="myv" hreflang="myv" data-title="Геометрия" data-language-autonym="Эрзянь" data-language-local-name="erzjanščina" class="interlanguage-link-target"><span>Эрзянь</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Geometrie" title="Geometrie – nizka nemščina" lang="nds" hreflang="nds" data-title="Geometrie" data-language-autonym="Plattdüütsch" data-language-local-name="nizka nemščina" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%9C%E0%A5%8D%E0%A4%AF%E0%A4%BE%E0%A4%AE%E0%A4%BF%E0%A4%A4%E0%A4%BF" title="ज्यामिति – nepalščina" lang="ne" hreflang="ne" data-title="ज्यामिति" data-language-autonym="नेपाली" data-language-local-name="nepalščina" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-new mw-list-item"><a href="https://new.wikipedia.org/wiki/%E0%A4%B0%E0%A5%87%E0%A4%96%E0%A4%BE%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4" title="रेखागणित – nevarščina" lang="new" hreflang="new" data-title="रेखागणित" data-language-autonym="नेपाल भाषा" data-language-local-name="nevarščina" class="interlanguage-link-target"><span>नेपाल भाषा</span></a></li><li class="interlanguage-link interwiki-nia mw-list-item"><a href="https://nia.wikipedia.org/wiki/Geometris" title="Geometris – niaščina" lang="nia" hreflang="nia" data-title="Geometris" data-language-autonym="Li Niha" data-language-local-name="niaščina" class="interlanguage-link-target"><span>Li Niha</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Meetkunde" title="Meetkunde – nizozemščina" lang="nl" hreflang="nl" data-title="Meetkunde" data-language-autonym="Nederlands" data-language-local-name="nizozemščina" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Geometri" title="Geometri – novonorveščina" lang="nn" hreflang="nn" data-title="Geometri" data-language-autonym="Norsk nynorsk" data-language-local-name="novonorveščina" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Geometri" title="Geometri – knjižna norveščina" lang="nb" hreflang="nb" data-title="Geometri" data-language-autonym="Norsk bokmål" data-language-local-name="knjižna norveščina" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nov mw-list-item"><a href="https://nov.wikipedia.org/wiki/Geometria" title="Geometria – Novial" lang="nov" hreflang="nov" data-title="Geometria" data-language-autonym="Novial" data-language-local-name="Novial" class="interlanguage-link-target"><span>Novial</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Geometria" title="Geometria – okcitanščina" lang="oc" hreflang="oc" data-title="Geometria" data-language-autonym="Occitan" data-language-local-name="okcitanščina" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Ji%27oomeetirii" title="Ji&#039;oomeetirii – oromo" lang="om" hreflang="om" data-title="Ji&#039;oomeetirii" data-language-autonym="Oromoo" data-language-local-name="oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-or mw-list-item"><a href="https://or.wikipedia.org/wiki/%E0%AC%9C%E0%AD%8D%E0%AD%9F%E0%AC%BE%E0%AC%AE%E0%AC%BF%E0%AC%A4%E0%AC%BF" title="ଜ୍ୟାମିତି – odijščina" lang="or" hreflang="or" data-title="ଜ୍ୟାମିତି" data-language-autonym="ଓଡ଼ିଆ" data-language-local-name="odijščina" class="interlanguage-link-target"><span>ଓଡ଼ିଆ</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B0%E0%A9%87%E0%A8%96%E0%A8%BE_%E0%A8%97%E0%A8%A3%E0%A8%BF%E0%A8%A4" title="ਰੇਖਾ ਗਣਿਤ – pandžabščina" lang="pa" hreflang="pa" data-title="ਰੇਖਾ ਗਣਿਤ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="pandžabščina" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Geometria" title="Geometria – poljščina" lang="pl" hreflang="pl" data-title="Geometria" data-language-autonym="Polski" data-language-local-name="poljščina" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Geometr%C3%ACa" title="Geometrìa – Piedmontese" lang="pms" hreflang="pms" data-title="Geometrìa" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D8%AC%DB%8C%D9%88%D9%85%DB%8C%D9%B9%D8%B1%DB%8C" title="جیومیٹری – Western Punjabi" lang="pnb" hreflang="pnb" data-title="جیومیٹری" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%D9%85%DB%90%DA%86%D9%BE%D9%88%D9%87%D9%86%D9%87" title="مېچپوهنه – paštunščina" lang="ps" hreflang="ps" data-title="مېچپوهنه" data-language-autonym="پښتو" data-language-local-name="paštunščina" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Geometria" title="Geometria – portugalščina" lang="pt" hreflang="pt" data-title="Geometria" data-language-autonym="Português" data-language-local-name="portugalščina" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Pacha_tupuy" title="Pacha tupuy – kečuanščina" lang="qu" hreflang="qu" data-title="Pacha tupuy" data-language-autonym="Runa Simi" data-language-local-name="kečuanščina" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Geometrie" title="Geometrie – romunščina" lang="ro" hreflang="ro" data-title="Geometrie" data-language-autonym="Română" data-language-local-name="romunščina" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Геометрия – ruščina" lang="ru" hreflang="ru" data-title="Геометрия" data-language-autonym="Русский" data-language-local-name="ruščina" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-rue mw-list-item"><a href="https://rue.wikipedia.org/wiki/%D2%90%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D1%96%D1%8F" title="Ґеометрія – Rusyn" lang="rue" hreflang="rue" data-title="Ґеометрія" data-language-autonym="Русиньскый" data-language-local-name="Rusyn" class="interlanguage-link-target"><span>Русиньскый</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Геометрия – jakutščina" lang="sah" hreflang="sah" data-title="Геометрия" data-language-autonym="Саха тыла" data-language-local-name="jakutščina" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Giometr%C3%ACa" title="Giometrìa – sicilijanščina" lang="scn" hreflang="scn" data-title="Giometrìa" data-language-autonym="Sicilianu" data-language-local-name="sicilijanščina" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Geometry" title="Geometry – škotščina" lang="sco" hreflang="sco" data-title="Geometry" data-language-autonym="Scots" data-language-local-name="škotščina" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sd mw-list-item"><a href="https://sd.wikipedia.org/wiki/%D8%AC%D8%A7%D9%85%D9%8A%D9%BD%D8%B1%D9%8A" title="جاميٽري – sindščina" lang="sd" hreflang="sd" data-title="جاميٽري" data-language-autonym="سنڌي" data-language-local-name="sindščina" class="interlanguage-link-target"><span>سنڌي</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Geometrija" title="Geometrija – srbohrvaščina" lang="sh" hreflang="sh" data-title="Geometrija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="srbohrvaščina" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-shi mw-list-item"><a href="https://shi.wikipedia.org/wiki/As%C9%A3kl" title="Asɣkl – tahelitska berberščina" lang="shi" hreflang="shi" data-title="Asɣkl" data-language-autonym="Taclḥit" data-language-local-name="tahelitska berberščina" class="interlanguage-link-target"><span>Taclḥit</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%A2%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B7%8F%E0%B6%B8%E0%B7%92%E0%B6%AD%E0%B7%92%E0%B6%BA" title="ජ්‍යාමිතිය – sinhalščina" lang="si" hreflang="si" data-title="ජ්‍යාමිතිය" data-language-autonym="සිංහල" data-language-local-name="sinhalščina" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Geometry" title="Geometry – Simple English" lang="en-simple" hreflang="en-simple" data-title="Geometry" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Geometria" title="Geometria – slovaščina" lang="sk" hreflang="sk" data-title="Geometria" data-language-autonym="Slovenčina" data-language-local-name="slovaščina" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-smn mw-list-item"><a href="https://smn.wikipedia.org/wiki/Geometria" title="Geometria – inarska samijščina" lang="smn" hreflang="smn" data-title="Geometria" data-language-autonym="Anarâškielâ" data-language-local-name="inarska samijščina" class="interlanguage-link-target"><span>Anarâškielâ</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Pimachisi" title="Pimachisi – šonščina" lang="sn" hreflang="sn" data-title="Pimachisi" data-language-autonym="ChiShona" data-language-local-name="šonščina" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Gjeometria" title="Gjeometria – albanščina" lang="sq" hreflang="sq" data-title="Gjeometria" data-language-autonym="Shqip" data-language-local-name="albanščina" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%98%D0%B0" title="Геометрија – srbščina" lang="sr" hreflang="sr" data-title="Геометрија" data-language-autonym="Српски / srpski" data-language-local-name="srbščina" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-stq mw-list-item"><a href="https://stq.wikipedia.org/wiki/Geometrie" title="Geometrie – Saterland Frisian" lang="stq" hreflang="stq" data-title="Geometrie" data-language-autonym="Seeltersk" data-language-local-name="Saterland Frisian" class="interlanguage-link-target"><span>Seeltersk</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/%C3%89lmu_ukur" title="Élmu ukur – sundanščina" lang="su" hreflang="su" data-title="Élmu ukur" data-language-autonym="Sunda" data-language-local-name="sundanščina" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Geometri" title="Geometri – švedščina" lang="sv" hreflang="sv" data-title="Geometri" data-language-autonym="Svenska" data-language-local-name="švedščina" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Jiometri" title="Jiometri – svahili" lang="sw" hreflang="sw" data-title="Jiometri" data-language-autonym="Kiswahili" data-language-local-name="svahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Geometryjo" title="Geometryjo – Silesian" lang="szl" hreflang="szl" data-title="Geometryjo" data-language-autonym="Ślůnski" data-language-local-name="Silesian" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%B5%E0%AE%9F%E0%AE%BF%E0%AE%B5%E0%AE%B5%E0%AE%BF%E0%AE%AF%E0%AE%B2%E0%AF%8D" title="வடிவவியல் – tamilščina" lang="ta" hreflang="ta" data-title="வடிவவியல்" data-language-autonym="தமிழ்" data-language-local-name="tamilščina" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%B0%E0%B1%87%E0%B0%96%E0%B0%BE%E0%B0%97%E0%B0%A3%E0%B0%BF%E0%B0%A4%E0%B0%82" title="రేఖాగణితం – telugijščina" lang="te" hreflang="te" data-title="రేఖాగణితం" data-language-autonym="తెలుగు" data-language-local-name="telugijščina" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D2%B2%D0%B0%D0%BD%D0%B4%D0%B0%D1%81%D0%B0" title="Ҳандаса – tadžiščina" lang="tg" hreflang="tg" data-title="Ҳандаса" data-language-autonym="Тоҷикӣ" data-language-local-name="tadžiščina" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%A3%E0%B8%82%E0%B8%B2%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95" title="เรขาคณิต – tajščina" lang="th" hreflang="th" data-title="เรขาคณิต" data-language-autonym="ไทย" data-language-local-name="tajščina" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tk mw-list-item"><a href="https://tk.wikipedia.org/wiki/Geometri%C3%BDa" title="Geometriýa – turkmenščina" lang="tk" hreflang="tk" data-title="Geometriýa" data-language-autonym="Türkmençe" data-language-local-name="turkmenščina" class="interlanguage-link-target"><span>Türkmençe</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Heometriya" title="Heometriya – tagalogščina" lang="tl" hreflang="tl" data-title="Heometriya" data-language-autonym="Tagalog" data-language-local-name="tagalogščina" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Geometri" title="Geometri – turščina" lang="tr" hreflang="tr" data-title="Geometri" data-language-autonym="Türkçe" data-language-local-name="turščina" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-ts mw-list-item"><a href="https://ts.wikipedia.org/wiki/Tinhlayo-vupimi" title="Tinhlayo-vupimi – congščina" lang="ts" hreflang="ts" data-title="Tinhlayo-vupimi" data-language-autonym="Xitsonga" data-language-local-name="congščina" class="interlanguage-link-target"><span>Xitsonga</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Геометрия – tatarščina" lang="tt" hreflang="tt" data-title="Геометрия" data-language-autonym="Татарча / tatarça" data-language-local-name="tatarščina" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-tyv mw-list-item"><a href="https://tyv.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Геометрия – tuvinščina" lang="tyv" hreflang="tyv" data-title="Геометрия" data-language-autonym="Тыва дыл" data-language-local-name="tuvinščina" class="interlanguage-link-target"><span>Тыва дыл</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D1%96%D1%8F" title="Геометрія – ukrajinščina" lang="uk" hreflang="uk" data-title="Геометрія" data-language-autonym="Українська" data-language-local-name="ukrajinščina" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%DB%81%D9%86%D8%AF%D8%B3%DB%81" title="ہندسہ – urdujščina" lang="ur" hreflang="ur" data-title="ہندسہ" data-language-autonym="اردو" data-language-local-name="urdujščina" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Geometriya" title="Geometriya – uzbeščina" lang="uz" hreflang="uz" data-title="Geometriya" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="uzbeščina" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/Zeometria" title="Zeometria – Venetian" lang="vec" hreflang="vec" data-title="Zeometria" data-language-autonym="Vèneto" data-language-local-name="Venetian" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vep mw-list-item"><a href="https://vep.wikipedia.org/wiki/Geometrii" title="Geometrii – Veps" lang="vep" hreflang="vep" data-title="Geometrii" data-language-autonym="Vepsän kel’" data-language-local-name="Veps" class="interlanguage-link-target"><span>Vepsän kel’</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/H%C3%ACnh_h%E1%BB%8Dc" title="Hình học – vietnamščina" lang="vi" hreflang="vi" data-title="Hình học" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamščina" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Heyometriya" title="Heyometriya – varajščina" lang="war" hreflang="war" data-title="Heyometriya" data-language-autonym="Winaray" data-language-local-name="varajščina" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%87%A0%E4%BD%95%E5%AD%A6" title="几何学 – wu-kitajščina" lang="wuu" hreflang="wuu" data-title="几何学" data-language-autonym="吴语" data-language-local-name="wu-kitajščina" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-xmf mw-list-item"><a href="https://xmf.wikipedia.org/wiki/%E1%83%92%E1%83%94%E1%83%9D%E1%83%9B%E1%83%94%E1%83%A2%E1%83%A0%E1%83%98%E1%83%90" title="გეომეტრია – Mingrelian" lang="xmf" hreflang="xmf" data-title="გეომეტრია" data-language-autonym="მარგალური" data-language-local-name="Mingrelian" class="interlanguage-link-target"><span>მარგალური</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%92%D7%A2%D7%90%D7%9E%D7%A2%D7%98%D7%A8%D7%99%D7%A2" title="געאמעטריע – jidiš" lang="yi" hreflang="yi" data-title="געאמעטריע" data-language-autonym="ייִדיש" data-language-local-name="jidiš" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-za mw-list-item"><a href="https://za.wikipedia.org/wiki/Gijhozyoz" title="Gijhozyoz – Zhuang" lang="za" hreflang="za" data-title="Gijhozyoz" data-language-autonym="Vahcuengh" data-language-local-name="Zhuang" class="interlanguage-link-target"><span>Vahcuengh</span></a></li><li class="interlanguage-link interwiki-zgh mw-list-item"><a href="https://zgh.wikipedia.org/wiki/%E2%B5%9C%E2%B4%B0%E2%B5%8F%E2%B5%A3%E2%B4%B3%E2%B4%B3%E2%B5%89%E2%B5%9C" title="ⵜⴰⵏⵣⴳⴳⵉⵜ – standardni maroški tamazig" lang="zgh" hreflang="zgh" data-title="ⵜⴰⵏⵣⴳⴳⵉⵜ" data-language-autonym="ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ" data-language-local-name="standardni maroški tamazig" class="interlanguage-link-target"><span>ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%87%A0%E4%BD%95%E5%AD%A6" title="几何学 – kitajščina" lang="zh" hreflang="zh" data-title="几何学" data-language-autonym="中文" data-language-local-name="kitajščina" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%B9%BE%E4%BD%95" title="幾何 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="幾何" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/K%C3%AD-h%C3%B4-ha%CC%8Dk" title="Kí-hô-ha̍k – min nan kitajščina" lang="nan" hreflang="nan" data-title="Kí-hô-ha̍k" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="min nan kitajščina" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%B9%BE%E4%BD%95%E5%AD%B8" title="幾何學 – kantonščina" lang="yue" hreflang="yue" data-title="幾何學" data-language-autonym="粵語" data-language-local-name="kantonščina" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zu mw-list-item"><a href="https://zu.wikipedia.org/wiki/Umchazabukhulu" title="Umchazabukhulu – zulujščina" lang="zu" hreflang="zu" data-title="Umchazabukhulu" data-language-autonym="IsiZulu" data-language-local-name="zulujščina" class="interlanguage-link-target"><span>IsiZulu</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q8087#sitelinks-wikipedia" title="Uredi medjezikovne povezave" class="wbc-editpage">Uredi povezave</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Imenski prostori"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Geometrija" title="Ogled vsebinske strani [c]" accesskey="c"><span>Stran</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Pogovor:Geometrija" rel="discussion" title="Pogovor o vsebinski strani [t]" accesskey="t"><span>Pogovor</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Spremeni različico jezika" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">slovenščina</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Pogledi"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Geometrija"><span>Preberi</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Geometrija&amp;veaction=edit" title="Uredite to stran [v]" accesskey="v"><span>Uredi stran</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Geometrija&amp;action=edit" title="Uredi izvorno kodo te strani [e]" accesskey="e"><span>Uredi kodo</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Geometrija&amp;action=history" title="Prejšnje redakcije te strani [h]" accesskey="h"><span>Zgodovina</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Orodja strani"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Orodja" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Orodja</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Orodja</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">prestavi v stransko letvico</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">skrij</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Več možnosti" > <div class="vector-menu-heading"> Dejanja </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Geometrija"><span>Preberi</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Geometrija&amp;veaction=edit" title="Uredite to stran [v]" accesskey="v"><span>Uredi stran</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Geometrija&amp;action=edit" title="Uredi izvorno kodo te strani [e]" accesskey="e"><span>Uredi kodo</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Geometrija&amp;action=history"><span>Zgodovina</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Splošno </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Posebno:KajSePovezujeSem/Geometrija" title="Seznam vseh strani, ki se povezujejo sem [j]" accesskey="j"><span>Kaj se povezuje sem</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Posebno:RecentChangesLinked/Geometrija" rel="nofollow" title="Zadnje spremembe na straneh, s katerimi se povezuje ta stran [k]" accesskey="k"><span>Povezane spremembe</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Posebno:PosebneStrani" title="Seznam vseh posebnih strani [q]" accesskey="q"><span>Posebne strani</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Geometrija&amp;oldid=6142015" title="Trajna povezava na to redakcijo strani"><span>Trajna povezava</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Geometrija&amp;action=info" title="Več informacij o tej strani"><span>Podatki o strani</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Posebno:Navedi&amp;page=Geometrija&amp;id=6142015&amp;wpFormIdentifier=titleform" title="Informacije o tem, kako navajati to stran"><span>Navedba članka</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Posebno:UrlShortener&amp;url=https%3A%2F%2Fsl.wikipedia.org%2Fwiki%2FGeometrija"><span>Pridobi skrajšani URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Posebno:QrCode&amp;url=https%3A%2F%2Fsl.wikipedia.org%2Fwiki%2FGeometrija"><span>Prenesi kodo QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Tiskanje/izvoz </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Posebno:Book&amp;bookcmd=book_creator&amp;referer=Geometrija"><span>Ustvari e-knjigo</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Posebno:DownloadAsPdf&amp;page=Geometrija&amp;action=show-download-screen"><span>Prenesi kot PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Geometrija&amp;printable=yes" title="Različica te strani za tisk [p]" accesskey="p"><span>Različica za tisk</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> V drugih projektih </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Geometry" hreflang="en"><span>Wikimedijina zbirka</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q8087" title="Povezava na ustrezni predmet v podatkovni shrambi [g]" accesskey="g"><span>Predmet v Wikipodatkih</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Orodja strani"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Videz"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Videz</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">prestavi v stransko letvico</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">skrij</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Iz Wikipedije, proste enciklopedije</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="sl" dir="ltr"><style data-mw-deduplicate="TemplateStyles:r5911137">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r5911185">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r5911190">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:#f8f9fa;border:1px solid #aaa;padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:720px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911190"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911190"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911190"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911190"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911137"><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist" style="background:white;"><tbody><tr><th class="sidebar-title"><a class="mw-selflink selflink">Geometrija</a></th></tr><tr><td class="sidebar-image"><span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/Slika:Stereographic_projection_in_3D.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/Stereographic_projection_in_3D.svg/220px-Stereographic_projection_in_3D.svg.png" decoding="async" width="220" height="162" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/Stereographic_projection_in_3D.svg/330px-Stereographic_projection_in_3D.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/88/Stereographic_projection_in_3D.svg/440px-Stereographic_projection_in_3D.svg.png 2x" data-file-width="870" data-file-height="639" /></a></span><div class="sidebar-caption"><a href="/wiki/Projektivna_geometrija" title="Projektivna geometrija">Projeciranje</a> <a href="/wiki/Krogla" title="Krogla">krogle</a> na <a href="/wiki/Ravnina" title="Ravnina">ravnino</a>.</div></td></tr><tr><td class="sidebar-above" style="border:none; background:#ddf;padding:0 0 0.15em;text-align:center; display:block;margin:0 1px 0.4em;"> <div class="hlist"><ul><li><a href="/w/index.php?title=Oris_geometrije&amp;action=edit&amp;redlink=1" class="new" title="Oris geometrije (stran ne obstaja)">Oris</a></li><li><a href="/w/index.php?title=Zgodovina_geometrije&amp;action=edit&amp;redlink=1" class="new" title="Zgodovina geometrije (stran ne obstaja)">Zgodovina</a></li></ul></div></td></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;"><a href="/w/index.php?title=Seznam_geometrijskih_podro%C4%8Dij&amp;action=edit&amp;redlink=1" class="new" title="Seznam geometrijskih področij (stran ne obstaja)">Veje</a></div><div class="sidebar-list-content mw-collapsible-content hlist"><div class="hlist"><ul><li><a href="/wiki/Evklidska_geometrija" title="Evklidska geometrija">Evklidska</a></li><li><a href="/wiki/Neevklidska_geometrija" title="Neevklidska geometrija">Neevklidska</a> (<a href="/wiki/Elipti%C4%8Dna_geometrija" title="Eliptična geometrija">Eliptična</a> (<a href="/w/index.php?title=Sferi%C4%8Dna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Sferična geometrija (stran ne obstaja)">Sferična</a>)</li><li><a href="/wiki/Hiperboli%C4%8Dna_geometrija" title="Hiperbolična geometrija">Hiperbolična</a>)</li><li><a href="/w/index.php?title=Nearhimedska_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Nearhimedska geometrija (stran ne obstaja)">Nearhimedska geometrija</a></li><li><a href="/wiki/Projektivna_geometrija" title="Projektivna geometrija">Projektivna</a></li><li><a href="/wiki/Afina_geometrija" title="Afina geometrija">Afina</a></li><li><a href="/w/index.php?title=Sinteti%C4%8Dna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Sintetična geometrija (stran ne obstaja)">Sintetična</a></li><li><a href="/w/index.php?title=Analiti%C4%8Dna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Analitična geometrija (stran ne obstaja)">Analitična</a></li><li><a href="/w/index.php?title=Algebrai%C4%8Dna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Algebraična geometrija (stran ne obstaja)">Algebraična</a> (<a href="/w/index.php?title=Aritmeti%C4%8Dna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Aritmetična geometrija (stran ne obstaja)">Aritmetična</a></li><li><a href="/w/index.php?title=Diofantska_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Diofantska geometrija (stran ne obstaja)">Diofantska</a>)</li><li><a href="/w/index.php?title=Diferencialna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Diferencialna geometrija (stran ne obstaja)">Diferencialna</a> (<a href="/wiki/Riemannova_geometrija" class="mw-redirect" title="Riemannova geometrija">Riemannova</a></li><li><a href="/w/index.php?title=Simplekti%C4%8Dna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Simplektična geometrija (stran ne obstaja)">Simplektična</a></li><li><a href="/w/index.php?title=Diskretna_diferencialna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Diskretna diferencialna geometrija (stran ne obstaja)">Diskretna diferencialna</a>)</li><li><a href="/w/index.php?title=Kompleksna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Kompleksna geometrija (stran ne obstaja)">Kompleksna</a></li><li><a href="/w/index.php?title=Kon%C4%8Dna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Končna geometrija (stran ne obstaja)">Končna</a></li><li><a href="/w/index.php?title=Diskretna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Diskretna geometrija (stran ne obstaja)">Diskretna/Kombinatorična</a> (<a href="/w/index.php?title=Digitalna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Digitalna geometrija (stran ne obstaja)">Digitalna</a>)</li><li><a href="/w/index.php?title=Konveksna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Konveksna geometrija (stran ne obstaja)">Konveksna</a></li><li><a href="/wiki/Ra%C4%8Dunalni%C5%A1ka_geometrija" title="Računalniška geometrija">Računalniška</a></li><li><a href="/w/index.php?title=Fraktalna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Fraktalna geometrija (stran ne obstaja)">Fraktalna</a></li><li><a href="/w/index.php?title=Vpadna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Vpadna geometrija (stran ne obstaja)">Vpadna </a></li></ul></div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;"><div class="hlist"><ul><li>Koncepti</li><li>Značilnosti</li></ul></div></div><div class="sidebar-list-content mw-collapsible-content hlist"><a href="/wiki/Razse%C5%BEnost" class="mw-redirect" title="Razsežnost">Razsežnost</a> <div class="hlist"><ul><li><a href="/w/index.php?title=Konstrukcija_z_ravnilom_in_%C5%A1estilom&amp;action=edit&amp;redlink=1" class="new" title="Konstrukcija z ravnilom in šestilom (stran ne obstaja)">Konstrukcije z ravnilom in šestilom</a></li></ul></div> <div class="hlist"><ul><li><a href="/wiki/Kot" title="Kot">Kot</a></li><li><a href="/wiki/Krivulja" title="Krivulja">Krivulja</a></li><li><a href="/wiki/Diagonala" title="Diagonala">Diagonala</a></li><li><a href="/wiki/Ortogonalnost" title="Ortogonalnost">Ortogonalnost</a> (<a href="/wiki/Pravokotnost" title="Pravokotnost">Pravokotnost</a>)</li><li><a href="/wiki/Vzporednost" title="Vzporednost">Vzporednost</a></li><li><a href="/wiki/Prese%C4%8Di%C5%A1%C4%8De" title="Presečišče">Presečišče</a></li></ul></div> <div class="hlist"><ul><li><a href="/wiki/Kongruenca_(geometrija)" class="mw-redirect" title="Kongruenca (geometrija)">Kongruenca</a></li><li><a href="/wiki/Podobnost_(geometrija)" title="Podobnost (geometrija)">Podobnost</a></li><li><a href="/wiki/Simetrija" title="Simetrija">Simetrija</a></li></ul></div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;"><a href="/wiki/Ni%C4%8Drazse%C5%BEni_prostor" title="Ničrazsežni prostor">Ničrazsežni prostor</a></div><div class="sidebar-list-content mw-collapsible-content hlist"><div class="hlist"><ul><li><a href="/wiki/To%C4%8Dka_(geometrija)" title="Točka (geometrija)">Točka</a></li></ul></div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;"><a href="/w/index.php?title=Enorazse%C5%BEni_prostor&amp;action=edit&amp;redlink=1" class="new" title="Enorazsežni prostor (stran ne obstaja)">Enorazsežni prostor</a></div><div class="sidebar-list-content mw-collapsible-content hlist"><div class="hlist"><ul><li><a href="/wiki/Premica" title="Premica">Premica</a> (<a href="/wiki/Daljica" title="Daljica">Daljica</a></li><li><a href="/wiki/Poltrak" title="Poltrak">Poltrak</a>)</li><li><a href="/wiki/Dol%C5%BEina" title="Dolžina">Dolžina</a></li></ul></div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;"><a href="/w/index.php?title=Dvorazse%C5%BEni_prostor&amp;action=edit&amp;redlink=1" class="new" title="Dvorazsežni prostor (stran ne obstaja)">Dvorazsežni prostor</a></div><div class="sidebar-list-content mw-collapsible-content hlist" style="padding-bottom:0;"><table class="sidebar nomobile nowraplinks" style="border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <div class="hlist"><ul><li><a href="/wiki/Ravnina" title="Ravnina">Ravnina</a></li><li><a href="/wiki/Plo%C5%A1%C4%8Dina" title="Ploščina">Ploščina</a></li><li><a href="/wiki/Ve%C4%8Dkotnik" class="mw-redirect" title="Večkotnik">Večkotnik</a></li></ul></div></td> </tr><tr><th class="sidebar-heading" style="background:#e6e6ff; font-weight:normal;"> <a href="/wiki/Trikotnik" title="Trikotnik">Trikotnik</a></th></tr><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <div class="hlist"><ul><li><a href="/wiki/Vi%C5%A1ina_(trikotnik)" class="mw-redirect" title="Višina (trikotnik)">Višina</a></li><li><a href="/wiki/Hipotenuza" title="Hipotenuza">Hipotenuza</a></li><li><a href="/wiki/Pitagorov_izrek" title="Pitagorov izrek">Pitagorov izrek</a></li></ul></div></td> </tr><tr><th class="sidebar-heading" style="background:#e6e6ff; font-weight:normal;"> <a href="/wiki/Paralelogram" title="Paralelogram">Paralelogram</a></th></tr><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <div class="hlist"><ul><li><a href="/wiki/Kvadrat_(geometrija)" title="Kvadrat (geometrija)">Kvadrat</a></li><li><a href="/wiki/Pravokotnik" title="Pravokotnik">Pravokotnik</a></li><li><a href="/wiki/Romb" title="Romb">Romb</a></li><li><a href="/wiki/Romboid" title="Romboid">Romboid</a></li></ul></div></td> </tr><tr><th class="sidebar-heading" style="background:#e6e6ff; font-weight:normal;"> <a href="/wiki/%C5%A0tirikotnik" title="Štirikotnik">Štirikotnik</a></th></tr><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <div class="hlist"><ul><li><a href="/wiki/Trapezoid" title="Trapezoid">Trapezoid</a></li><li><a href="/wiki/Deltoid" title="Deltoid">Deltoid</a></li></ul></div></td> </tr><tr><th class="sidebar-heading" style="background:#e6e6ff; font-weight:normal;"> <a href="/wiki/Krog" title="Krog">Krog</a></th></tr><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <div class="hlist"><ul><li><a href="/wiki/Premer" title="Premer">Premer</a></li><li><a href="/wiki/Obseg" title="Obseg">Obseg</a></li><li><a href="/w/index.php?title=Plo%C5%A1%C4%8Dina_kroga&amp;action=edit&amp;redlink=1" class="new" title="Ploščina kroga (stran ne obstaja)">Ploščina</a></li></ul></div></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;"><a href="/wiki/Trirazse%C5%BEni_prostor" title="Trirazsežni prostor">Trirazsežni prostor</a></div><div class="sidebar-list-content mw-collapsible-content hlist"><div class="hlist"><ul><li><a href="/wiki/Prostornina" title="Prostornina">Prostornina</a></li></ul></div> <div class="hlist"><ul><li><a href="/wiki/Kocka" title="Kocka">Kocka</a> (<a href="/wiki/Kuboid" class="mw-redirect" title="Kuboid">Kuboid</a>)</li><li><a href="/wiki/Valj" title="Valj">Valj</a></li><li><a href="/wiki/Piramida_(geometrija)" title="Piramida (geometrija)">Piramida</a></li><li><a href="/wiki/Krogla" title="Krogla">Krogla</a></li></ul></div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;"><a href="/w/index.php?title=%C5%A0tirirazse%C5%BEni_prostor&amp;action=edit&amp;redlink=1" class="new" title="Štirirazsežni prostor (stran ne obstaja)">Štiri</a>-&#160;/&#32;večrazsežni prostor</div><div class="sidebar-list-content mw-collapsible-content hlist"><div class="hlist"><ul><li><a href="/wiki/Teserakt" title="Teserakt">Teserakt</a></li><li><a href="/w/index.php?title=Hipersfera&amp;action=edit&amp;redlink=1" class="new" title="Hipersfera (stran ne obstaja)">Hipersfera</a></li></ul></div></div></div></td> </tr><tr><th class="sidebar-heading" style="padding-bottom:0.2em;"> <a href="/w/index.php?title=Seznam_geometristov&amp;action=edit&amp;redlink=1" class="new" title="Seznam geometristov (stran ne obstaja)">Geometristi</a></th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;">po imenu</div><div class="sidebar-list-content mw-collapsible-content hlist"><div class="hlist"><ul><li><a href="/w/index.php?title=Jasuaki_Aida&amp;action=edit&amp;redlink=1" class="new" title="Jasuaki Aida (stran ne obstaja)">Aida</a></li><li><a href="/w/index.php?title=Arjabhata_I.&amp;action=edit&amp;redlink=1" class="new" title="Arjabhata I. (stran ne obstaja)">Arjabhata I.</a></li><li><a href="/w/index.php?title=Ahmes&amp;action=edit&amp;redlink=1" class="new" title="Ahmes (stran ne obstaja)">Ahmes</a></li><li><a href="/wiki/Alhacen" title="Alhacen">Alhacen</a></li><li><a href="/wiki/Apolonij" title="Apolonij">Apolonij</a></li><li><a href="/wiki/Arhimed" title="Arhimed">Arhimed</a></li><li><a href="/wiki/Michael_Francis_Atiyah" title="Michael Francis Atiyah">Atiyah</a></li><li><a href="/w/index.php?title=Baudhajana&amp;action=edit&amp;redlink=1" class="new" title="Baudhajana (stran ne obstaja)">Baudhajana</a></li><li><a href="/wiki/J%C3%A1nos_Bolyai" title="János Bolyai">Bolyai</a></li><li><a href="/wiki/Brahmagupta" title="Brahmagupta">Brahmagupta</a></li><li><a href="/w/index.php?title=%C3%89lie_Cartan&amp;action=edit&amp;redlink=1" class="new" title="Élie Cartan (stran ne obstaja)">Cartan</a></li><li><a href="/w/index.php?title=Harold_Scott_MacDonald_Coxeter&amp;action=edit&amp;redlink=1" class="new" title="Harold Scott MacDonald Coxeter (stran ne obstaja)">Coxeter</a></li><li><a href="/wiki/%C4%8Cang_Heng" class="mw-redirect" title="Čang Heng">Čang</a></li><li><a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">Descartes</a></li><li><a href="/wiki/Evklid" title="Evklid">Evklid</a></li><li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euler</a></li><li><a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Gauss</a></li><li><a href="/w/index.php?title=Mihail_Leonidovi%C4%8D_Gromov&amp;action=edit&amp;redlink=1" class="new" title="Mihail Leonidovič Gromov (stran ne obstaja)">Gromov</a></li><li><a href="/wiki/Omar_Hajam" title="Omar Hajam">Hajam</a></li><li><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a></li><li><a href="/w/index.php?title=Jye%E1%B9%A3%E1%B9%ADhadeva&amp;action=edit&amp;redlink=1" class="new" title="Jyeṣṭhadeva (stran ne obstaja)">Jyeṣṭhadeva</a></li><li><a href="/w/index.php?title=K%C4%81ty%C4%81yana&amp;action=edit&amp;redlink=1" class="new" title="Kātyāyana (stran ne obstaja)">Kātyāyana</a></li><li><a href="/wiki/Felix_Klein" class="mw-redirect" title="Felix Klein">Klein</a></li><li><a href="/wiki/Nikolaj_Ivanovi%C4%8D_Loba%C4%8Devski" title="Nikolaj Ivanovič Lobačevski">Lobačevski</a></li><li><a href="/w/index.php?title=Manava&amp;action=edit&amp;redlink=1" class="new" title="Manava (stran ne obstaja)">Manava</a></li><li><a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Minkowski</a></li><li><a href="/w/index.php?title=Mingatu&amp;action=edit&amp;redlink=1" class="new" title="Mingatu (stran ne obstaja)">Mingatu</a></li><li><a href="/wiki/Blaise_Pascal" title="Blaise Pascal">Pascal</a></li><li><a href="/wiki/Pitagora" title="Pitagora">Pitagora</a></li><li><a href="/w/index.php?title=Parame%C5%A1vara&amp;action=edit&amp;redlink=1" class="new" title="Paramešvara (stran ne obstaja)">Paramešvara</a></li><li><a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Poincaré</a></li><li><a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Riemann</a></li><li><a href="/w/index.php?title=Sakabe_K%C5%8Dhan&amp;action=edit&amp;redlink=1" class="new" title="Sakabe Kōhan (stran ne obstaja)">Sakabe</a></li><li><a href="/w/index.php?title=Sijzi&amp;action=edit&amp;redlink=1" class="new" title="Sijzi (stran ne obstaja)">Sijzi</a></li><li><a href="/wiki/Nasir_at-Tusi" class="mw-redirect" title="Nasir at-Tusi">at-Tusi</a></li><li><a href="/w/index.php?title=Oswald_Veblen&amp;action=edit&amp;redlink=1" class="new" title="Oswald Veblen (stran ne obstaja)">Veblen</a></li><li><a href="/w/index.php?title=Virasena&amp;action=edit&amp;redlink=1" class="new" title="Virasena (stran ne obstaja)">Virasena</a></li><li><a href="/w/index.php?title=Yang_Hui&amp;action=edit&amp;redlink=1" class="new" title="Yang Hui (stran ne obstaja)">Yang Hui</a></li><li><a href="/w/index.php?title=Ibn_al-Yasamin&amp;action=edit&amp;redlink=1" class="new" title="Ibn al-Yasamin (stran ne obstaja)">al-Yasamin</a></li><li><a href="/w/index.php?title=Seznam_geometristov&amp;action=edit&amp;redlink=1" class="new" title="Seznam geometristov (stran ne obstaja)">seznam geometristov</a></li></ul></div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#ddf; text-align:center;">po obdobju</div><div class="sidebar-list-content mw-collapsible-content hlist" style="padding-bottom:0;"><table class="sidebar nomobile nowraplinks" style="border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><th class="sidebar-heading" style="background:#e6e6ff; font-weight:normal;"> <a href="/wiki/Pred_na%C5%A1im_%C5%A1tetjem" class="mw-redirect" title="Pred našim štetjem">pr. n. št.</a></th></tr><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <div class="hlist"><ul><li><a href="/w/index.php?title=Ahmes&amp;action=edit&amp;redlink=1" class="new" title="Ahmes (stran ne obstaja)">Ahmes</a></li><li><a href="/w/index.php?title=Baudhajana&amp;action=edit&amp;redlink=1" class="new" title="Baudhajana (stran ne obstaja)">Baudhajana</a></li><li><a href="/w/index.php?title=Manava&amp;action=edit&amp;redlink=1" class="new" title="Manava (stran ne obstaja)">Manava</a></li><li><a href="/wiki/Pitagora" title="Pitagora">Pitagora</a></li><li><a href="/wiki/Evklid" title="Evklid">Evklid</a></li><li><a href="/wiki/Arhimed" title="Arhimed">Arhimed</a></li><li><a href="/wiki/Apolonij" title="Apolonij">Apolonij</a></li></ul></div></td> </tr><tr><th class="sidebar-heading" style="background:#e6e6ff; font-weight:normal;"> 1–1400</th></tr><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <div class="hlist"><ul><li><a href="/wiki/%C4%8Cang_Heng" class="mw-redirect" title="Čang Heng">Čang</a></li><li><a href="/w/index.php?title=K%C4%81ty%C4%81yana&amp;action=edit&amp;redlink=1" class="new" title="Kātyāyana (stran ne obstaja)">Kātyāyana</a></li><li><a href="/w/index.php?title=Arjabhata_I.&amp;action=edit&amp;redlink=1" class="new" title="Arjabhata I. (stran ne obstaja)">Arjabhata I.</a></li><li><a href="/wiki/Brahmagupta" title="Brahmagupta">Brahmagupta</a></li><li><a href="/w/index.php?title=Virasena&amp;action=edit&amp;redlink=1" class="new" title="Virasena (stran ne obstaja)">Virasena</a></li><li><a href="/wiki/Alhacen" title="Alhacen">Alhacen</a></li><li><a href="/w/index.php?title=Sijzi&amp;action=edit&amp;redlink=1" class="new" title="Sijzi (stran ne obstaja)">Sijzi</a></li><li><a href="/wiki/Omar_Hajam" title="Omar Hajam">Hajam</a></li><li><a href="/w/index.php?title=Ibn_al-Jasamin&amp;action=edit&amp;redlink=1" class="new" title="Ibn al-Jasamin (stran ne obstaja)">al-Jasamin</a></li><li><a href="/wiki/Nasir_at-Tusi" class="mw-redirect" title="Nasir at-Tusi">at-Tusi</a></li><li><a href="/w/index.php?title=Yang_Hui&amp;action=edit&amp;redlink=1" class="new" title="Yang Hui (stran ne obstaja)">Yang Hui</a></li><li><a href="/w/index.php?title=Parame%C5%A1vara&amp;action=edit&amp;redlink=1" class="new" title="Paramešvara (stran ne obstaja)">Paramešvara</a></li></ul></div></td> </tr><tr><th class="sidebar-heading" style="background:#e6e6ff; font-weight:normal;"> 1400–1700</th></tr><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <div class="hlist"><ul><li><a href="/w/index.php?title=Jye%E1%B9%A3%E1%B9%ADhadeva&amp;action=edit&amp;redlink=1" class="new" title="Jyeṣṭhadeva (stran ne obstaja)">Jyeṣṭhadeva</a></li><li><a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">Descartes</a></li><li><a href="/wiki/Blaise_Pascal" title="Blaise Pascal">Pascal</a></li><li><a href="/w/index.php?title=Minggatu&amp;action=edit&amp;redlink=1" class="new" title="Minggatu (stran ne obstaja)">Minggatu</a></li><li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euler</a></li><li><a href="/w/index.php?title=Sakabe_K%C5%8Dhan&amp;action=edit&amp;redlink=1" class="new" title="Sakabe Kōhan (stran ne obstaja)">Sakabe</a></li><li><a href="/w/index.php?title=Jasuaki_Aida&amp;action=edit&amp;redlink=1" class="new" title="Jasuaki Aida (stran ne obstaja)">Aida</a></li></ul></div></td> </tr><tr><th class="sidebar-heading" style="background:#e6e6ff; font-weight:normal;"> 1700–1900</th></tr><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <div class="hlist"><ul><li><a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Gauss</a></li><li><a href="/wiki/Nikolaj_Ivanovi%C4%8D_Loba%C4%8Devski" title="Nikolaj Ivanovič Lobačevski">Lobačevski</a></li><li><a href="/wiki/J%C3%A1nos_Bolyai" title="János Bolyai">Bolyai</a></li><li><a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Riemann</a></li><li><a href="/wiki/Felix_Klein" class="mw-redirect" title="Felix Klein">Klein</a></li><li><a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Poincaré</a></li><li><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a></li><li><a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Minkowski</a></li><li><a href="/w/index.php?title=%C3%89lie_Cartan&amp;action=edit&amp;redlink=1" class="new" title="Élie Cartan (stran ne obstaja)">Cartan</a></li><li><a href="/w/index.php?title=Oswald_Veblen&amp;action=edit&amp;redlink=1" class="new" title="Oswald Veblen (stran ne obstaja)">Veblen</a></li><li><a href="/w/index.php?title=Harold_Scott_MacDonald_Coxeter&amp;action=edit&amp;redlink=1" class="new" title="Harold Scott MacDonald Coxeter (stran ne obstaja)">Coxeter</a></li></ul></div></td> </tr><tr><th class="sidebar-heading" style="background:#e6e6ff; font-weight:normal;"> Sedanjost</th></tr><tr><td class="sidebar-content" style="padding:0.2em 0.4em 0.6em;"> <div class="hlist"><ul><li><a href="/wiki/Michael_Atiyah" class="mw-redirect" title="Michael Atiyah">Atiyah</a></li><li><a href="/w/index.php?title=Mihail_Leonidovi%C4%8D_Gromov&amp;action=edit&amp;redlink=1" class="new" title="Mihail Leonidovič Gromov (stran ne obstaja)">Gromov</a></li></ul></div></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-navbar"><style data-mw-deduplicate="TemplateStyles:r5911192">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-prikaži"><a href="/wiki/Predloga:Splo%C5%A1na_geometrija" title="Predloga:Splošna geometrija"><abbr title="Prikaži to predlogo">p</abbr></a></li><li class="nv-pogovor"><a href="/w/index.php?title=Pogovor_o_predlogi:Splo%C5%A1na_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Pogovor o predlogi:Splošna geometrija (stran ne obstaja)"><abbr title="Pogovor o tej predlogi">p</abbr></a></li><li class="nv-uredi"><a class="external text" href="https://sl.wikipedia.org/w/index.php?title=Predloga:Splo%C5%A1na_geometrija&amp;action=edit"><abbr title="Uredi to predlogo">u</abbr></a></li></ul></div></td></tr></tbody></table> <figure typeof="mw:File/Thumb"><a href="/wiki/Slika:Table_of_Geometry,_Cyclopaedia,_Volume_1.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Table_of_Geometry%2C_Cyclopaedia%2C_Volume_1.jpg/240px-Table_of_Geometry%2C_Cyclopaedia%2C_Volume_1.jpg" decoding="async" width="240" height="263" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Table_of_Geometry%2C_Cyclopaedia%2C_Volume_1.jpg/360px-Table_of_Geometry%2C_Cyclopaedia%2C_Volume_1.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Table_of_Geometry%2C_Cyclopaedia%2C_Volume_1.jpg/480px-Table_of_Geometry%2C_Cyclopaedia%2C_Volume_1.jpg 2x" data-file-width="2492" data-file-height="2732" /></a><figcaption>Geometrijske tabele iz <a href="/wiki/Cyclopaedia,_or_Universal_Dictionary_of_Arts_and_Sciences" title="Cyclopaedia, or Universal Dictionary of Arts and Sciences">Ciklopedije</a> (1728)</figcaption></figure> <p><b>Geometríja</b> je <a href="/wiki/Znanost" title="Znanost">znanstvena</a> <a href="/w/index.php?title=Matemati%C4%8Dna_disciplina&amp;action=edit&amp;redlink=1" class="new" title="Matematična disciplina (stran ne obstaja)">disciplina</a> <a href="/wiki/Matematika" title="Matematika">matematike</a>, ki se ukvarja s <a href="/wiki/Prostor" title="Prostor">prostorskimi</a> značilnostmi <a href="/wiki/Geometrijsko_telo" title="Geometrijsko telo">teles</a> in njihovimi medsebojnimi odnosi. Geometrija je zgrajena na sestavu <a href="/wiki/Aksiom" title="Aksiom">aksiomov</a>, <a href="/w/index.php?title=Izkustvo&amp;action=edit&amp;redlink=1" class="new" title="Izkustvo (stran ne obstaja)">izkustveno</a> ali <a href="/w/index.php?title=Intuicija&amp;action=edit&amp;redlink=1" class="new" title="Intuicija (stran ne obstaja)">intuitivno</a> določenih značilnosti prostora, ki jih ne moremo dokazati z osnovnejšimi zakonitostmi. Geometrija je ena najstarejših znanosti. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Zemljemerstvo">Zemljemerstvo</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=1" title="Uredi razdelek: Zemljemerstvo" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=1" title="Urejanje izvorne kode razdelka: Zemljemerstvo"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Prve začetke geometrije lahko najdemo v <a href="/wiki/Mezopotamija" title="Mezopotamija">Mezopotamiji</a>, <a href="/wiki/Stari_Egipt" title="Stari Egipt">Egiptu</a> (<a href="/wiki/Rhindov_papirus" class="mw-redirect" title="Rhindov papirus">Rhindov papirus</a>, <a href="/w/index.php?title=Moskovski_papirus&amp;action=edit&amp;redlink=1" class="new" title="Moskovski papirus (stran ne obstaja)">Moskovski papirus</a>) in v dolini <a href="/wiki/Ind" title="Ind">Inda</a> okoli leta 3000 pr. n. št. Ta geometrija je bila predvsem praktično usmerjena. Preučevala je probleme povezane z zemljemerstvom. Tudi sama beseda <i>geometrija</i> izvira iz grških besed <a href="/wiki/Stara_gr%C5%A1%C4%8Dina" class="mw-redirect" title="Stara grščina">starogrško</a> <span lang="grc">γη</span> [ge] (starejša oblika: <a href="/wiki/Stara_gr%C5%A1%C4%8Dina" class="mw-redirect" title="Stara grščina">starogrško</a> <span lang="grc">γαία</span> [gaja]) = <i>zemlja</i> + <a href="/wiki/Stara_gr%C5%A1%C4%8Dina" class="mw-redirect" title="Stara grščina">starogrško</a> <span lang="grc">μετρία</span> [metria] = <i>merjenje</i>. V današnjem času se za zemljemerstvo uporablja besedo <a href="/wiki/Geodezija" title="Geodezija">geodezija</a>, sodobna geometrija pa je matematična panoga, ki ni več povezana z dejanskim merjenjem zemlje. </p> <div class="mw-heading mw-heading2"><h2 id="Pomembni_koncepti_geometrije">Pomembni koncepti geometrije</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=2" title="Uredi razdelek: Pomembni koncepti geometrije" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=2" title="Urejanje izvorne kode razdelka: Pomembni koncepti geometrije"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Aksiom">Aksiom</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=3" title="Uredi razdelek: Aksiom" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=3" title="Urejanje izvorne kode razdelka: Aksiom"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Evklid" title="Evklid">Evklid</a> je v svojih <a href="/wiki/Elementi_(Evklid)" title="Elementi (Evklid)">Elementih</a><sup id="cite_ref-Katz2000_1-0" class="reference"><a href="#cite_note-Katz2000-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup>, ki je ena najvplivnejših knjig napisana doslej, uporabil abstraktni pristop k geometriji.<sup id="cite_ref-Berlinski2014_2-0" class="reference"><a href="#cite_note-Berlinski2014-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> Uvedel je določene <a href="/wiki/Aksiom" title="Aksiom">aksiome</a> ali <a href="/wiki/Aksiom" title="Aksiom">postulate</a>, ki izražajo primarne ali samoumevne lastnosti točk, črt in ravnin.<sup id="cite_ref-Hartshorne2013_3-0" class="reference"><a href="#cite_note-Hartshorne2013-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Z matematičnim sklepanjem je izpeljal druge lastnosti. Značilna lastnost Evklidovega pristopa k geometriji je bila njegova strogost, ki je postala znana kot <i>aksiomatska</i> ali <i><a href="/w/index.php?title=Sinteti%C4%8Dna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Sintetična geometrija (stran ne obstaja)">sintetična</a></i> geometrija.<sup id="cite_ref-HerbstFujita2017_4-0" class="reference"><a href="#cite_note-HerbstFujita2017-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> V začetku 19. stoletja je odkritje <a href="/wiki/Neevklidska_geometrija" title="Neevklidska geometrija">neevklidskih geometrij</a> <a href="/wiki/Nikolaj_Ivanovi%C4%8D_Loba%C4%8Devski" title="Nikolaj Ivanovič Lobačevski">Nikolaja Ivanoviča Lobačevskega</a> (1792–1856), <a href="/wiki/J%C3%A1nos_Bolyai" title="János Bolyai">Jánosa Bolyaija</a> (1802–1860), <a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carla Friedricha Gaussa</a> (1777–1855) in drugih<sup id="cite_ref-Yaglom2012_5-0" class="reference"><a href="#cite_note-Yaglom2012-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> privedlo do oživitve zanimanje za to disciplino, v 20. stoletju pa je <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a> (1862–1943) uporabil aksiomatsko sklepanje, da bi postavil sodoben temelj geometrije.<sup id="cite_ref-Holme2010_6-0" class="reference"><a href="#cite_note-Holme2010-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Točka"><span id="To.C4.8Dka"></span>Točka</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=4" title="Uredi razdelek: Točka" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=4" title="Urejanje izvorne kode razdelka: Točka"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/To%C4%8Dka_(geometrija)" title="Točka (geometrija)">Točke</a> veljajo za temeljne objekte v evklidski geometriji. Definirane so bile na različne načine, vključno z Evklidovo definicijo 'tisto, kar nima delov.'<sup id="cite_ref-EuclidAll_7-0" class="reference"><a href="#cite_note-EuclidAll-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> in z uporabo algebre ali gnezdenih množic.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> Na mnogih področjih geometrije, kot so analitična geometrija, diferencialna geometrija in topologija, velja, da so vsi objekti zgrajeni iz točk. </p> <div class="mw-heading mw-heading3"><h3 id="Premica">Premica</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=5" title="Uredi razdelek: Premica" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=5" title="Urejanje izvorne kode razdelka: Premica"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Premica" title="Premica">Premico</a> je <a href="/wiki/Evklid" title="Evklid">Evklid</a> opisal kot "dolžina brez širine".<sup id="cite_ref-EuclidAll_7-1" class="reference"><a href="#cite_note-EuclidAll-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> V sodobni matematiki je glede na množico geometrij pojem premice tesno povezan z opisom geometrije. Na primer, v <a href="/w/index.php?title=Analiti%C4%8Dna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Analitična geometrija (stran ne obstaja)">analitični geometriji</a> je premica v ravnini pogosto definirana kot množica točk, katerih koordinate ustrezajo dani <a href="/wiki/Linearna_ena%C4%8Dba" title="Linearna enačba">linearni enačbi</a><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup>, v bolj abstraktnem okolju, kot je <a href="/w/index.php?title=Inciden%C4%8Dna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Incidenčna geometrija (stran ne obstaja)">incidenčna geometrija</a>, pa je premica lahko neodvisen objekt, ločen od množice točk, ki na njem ležijo.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> V diferencialni geometriji je <a href="/wiki/Geodetka" title="Geodetka">geodetka</a> posplošitev pojma premice za »ukrivljene prostore«.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Ravnina">Ravnina</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=6" title="Uredi razdelek: Ravnina" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=6" title="Urejanje izvorne kode razdelka: Ravnina"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Ravnina" title="Ravnina">Ravnina</a> je ravna, dvodimenzionalna površina, ki sega neskončno daleč.<sup id="cite_ref-EuclidAll_7-2" class="reference"><a href="#cite_note-EuclidAll-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> Ravnine se uporabljajo na vseh geometrijskih področjih. Na primer, ravnine lahko preučujemo kot <a href="/wiki/Ploskev" title="Ploskev">topološko ploskev</a> brez sklicevanja na razdalje ali kote;<sup id="cite_ref-Munkres_12-0" class="reference"><a href="#cite_note-Munkres-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> lahko jih preučujemo kot <a href="/wiki/Afina_geometrija" title="Afina geometrija">afine ravnine</a>, kjer je mogoče preučevati kolinearnost in razmerja, ne pa tudi razdalj;<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> lahko preučujemo <a href="/wiki/Kompleksna_ravnina" title="Kompleksna ravnina">kompleksna ravnina</a> s tehnikami <a href="/w/index.php?title=Kompleksna_analiza&amp;action=edit&amp;redlink=1" class="new" title="Kompleksna analiza (stran ne obstaja)">kompleksne analize</a>;<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> itd. </p> <div class="mw-heading mw-heading3"><h3 id="Kot">Kot</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=7" title="Uredi razdelek: Kot" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=7" title="Urejanje izvorne kode razdelka: Kot"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Evklid" title="Evklid">Evklid</a> je definiral ravninski <a href="/wiki/Kot" title="Kot">kot</a> kot medsebojni naklon dveh črt v ravnini, ki se srečata in ne ležita vzporedno.<sup id="cite_ref-EuclidAll2_15-0" class="reference"><a href="#cite_note-EuclidAll2-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> V sodobnem smislu je kot lik, ki ga tvorita dva <a href="/wiki/Poltrak" title="Poltrak">poltraka</a>, imenovana <i>stranice</i> kota, ki imata skupno končno točko, imenovano <i>vrh</i> kota.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Slika:Angle_obtuse_acute_straight.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Angle_obtuse_acute_straight.svg/220px-Angle_obtuse_acute_straight.svg.png" decoding="async" width="220" height="122" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Angle_obtuse_acute_straight.svg/330px-Angle_obtuse_acute_straight.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Angle_obtuse_acute_straight.svg/440px-Angle_obtuse_acute_straight.svg.png 2x" data-file-width="800" data-file-height="445" /></a><figcaption>Ostri (a), topi (b) in iztegnjeni (c) koti. Ostri in topi koti so znani tudi kot poševni koti.</figcaption></figure> <p>V <a href="/wiki/Evklidska_geometrija" title="Evklidska geometrija">evklidski geometriji</a> se <a href="/wiki/Kot" title="Kot">koti</a> uporabljajo za preučevanje <a href="/wiki/Mnogokotnik" title="Mnogokotnik">mnogokotnikov</a> in <a href="/wiki/Trikotnik" title="Trikotnik">trikotnikov</a>.<sup id="cite_ref-EuclidAll3_17-0" class="reference"><a href="#cite_note-EuclidAll3-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> Študija kotov trikotnika ali kotov v <a href="/wiki/Enotska_kro%C5%BEnica" title="Enotska krožnica">enotski krožnici</a> je osnova <a href="/wiki/Trigonometrija" title="Trigonometrija">trigonometrije</a>.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p><p>V <a href="/w/index.php?title=Diferencialna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Diferencialna geometrija (stran ne obstaja)">diferencialni geometriji</a> in <a href="/wiki/Infinitezimalni_ra%C4%8Dun" title="Infinitezimalni račun">infinitezimalnem računu</a> lahko kote med <a href="/wiki/Ravninska_krivulja" title="Ravninska krivulja">ravninskimi krivuljami</a> ali <a href="/wiki/Krivulja" title="Krivulja">prostorskimi krivuljami</a> ali <a href="/w/index.php?title=Povr%C5%A1ina_(geometrija)&amp;action=edit&amp;redlink=1" class="new" title="Površina (geometrija) (stran ne obstaja)">površinami</a> izračunamo z <a href="/wiki/Odvod" title="Odvod">odvodom</a>.<sup id="cite_ref-Stewart_19-0" class="reference"><a href="#cite_note-Stewart-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Krivulja">Krivulja</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=8" title="Uredi razdelek: Krivulja" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=8" title="Urejanje izvorne kode razdelka: Krivulja"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Krivulja" title="Krivulja">Krivulja</a> je enodimenzionalni objekt, ki je lahko raven (kot črta) ali ne; krivulje v dvodimenzionalnem prostoru imenujemo <a href="/wiki/Ravninska_krivulja" title="Ravninska krivulja">ravninske krivulje,</a> tiste v tridimenzionalnem prostoru pa <a href="/wiki/Krivulja" title="Krivulja">prostorske krivulje</a>.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Površina"><span id="Povr.C5.A1ina"></span>Površina</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=9" title="Uredi razdelek: Površina" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=9" title="Urejanje izvorne kode razdelka: Površina"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Slika:Sphere_wireframe.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/Sphere_wireframe.svg/220px-Sphere_wireframe.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/Sphere_wireframe.svg/330px-Sphere_wireframe.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/08/Sphere_wireframe.svg/440px-Sphere_wireframe.svg.png 2x" data-file-width="400" data-file-height="400" /></a><figcaption>Krogla je površina, ki jo je mogoče opredeliti parametrično (z <span class="nowrap"><i>x</i> = <i>r</i> sin <i>θ</i> cos <i>φ</i>,</span> <span class="nowrap"><i>y</i> = <i>r</i> sin <i>θ</i> sin <i>φ</i>,</span> <span class="nowrap"><i>z</i> = <i>r</i> cos <i>θ</i>)</span> ali implicitno (z <span class="nowrap"><i>x</i><sup>2</sup> + <i>y</i><sup>2</sup> + <i>z</i><sup>2</sup> − <i>r</i><sup>2</sup> = 0</span>.)</figcaption></figure> <p><a href="/wiki/Povr%C5%A1ina" title="Površina">Površina</a> je dvodimenzionalni objekt, na primer krogla ali paraboloid.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> V <a href="/w/index.php?title=Diferencialna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Diferencialna geometrija (stran ne obstaja)">diferencialni geometriji</a><sup id="cite_ref-Carmo_23-0" class="reference"><a href="#cite_note-Carmo-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> in <a href="/wiki/Topologija" title="Topologija">topologiji</a>,<sup id="cite_ref-Munkres2_24-0" class="reference"><a href="#cite_note-Munkres2-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> so površine opisane z dvodimenzionalnimi <a href="/wiki/Okolica_(matematika)" title="Okolica (matematika)">okolicami</a>, ki so sestavljene z <a href="/w/index.php?title=Difeomorfizem&amp;action=edit&amp;redlink=1" class="new" title="Difeomorfizem (stran ne obstaja)">difeomorfizmi</a> ali <a href="/wiki/Homeomorfizem" title="Homeomorfizem">homeomorfizmi</a>. V algebrski geometriji so površine opisane s <a href="/w/index.php?title=Polinomska_ena%C4%8Dba&amp;action=edit&amp;redlink=1" class="new" title="Polinomska enačba (stran ne obstaja)">polinomskimi enačbami</a>.<sup id="cite_ref-mumford_25-0" class="reference"><a href="#cite_note-mumford-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Mnogoterost">Mnogoterost</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=10" title="Uredi razdelek: Mnogoterost" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=10" title="Urejanje izvorne kode razdelka: Mnogoterost"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Mnogoterost" title="Mnogoterost">Mnogoterost</a> je posploševanje konceptov krivulje in površine. V <a href="/wiki/Topologija" title="Topologija">topologiji</a> je mnogoterost <a href="/wiki/Topolo%C5%A1ki_prostor" title="Topološki prostor">topološki prostor,</a> kjer ima vsaka točka <a href="/wiki/Okolica_(matematika)" title="Okolica (matematika)">okolico,</a> ki je <a href="/wiki/Homeomorfizem" title="Homeomorfizem">homeomorfna</a> evklidskemu prostoru.<sup id="cite_ref-Munkres3_26-0" class="reference"><a href="#cite_note-Munkres3-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> V diferencialni geometriji je <a href="/w/index.php?title=Diferenciabilna_mnogoterost&amp;action=edit&amp;redlink=1" class="new" title="Diferenciabilna mnogoterost (stran ne obstaja)">diferenciabilna mnogoterost</a> prostor, v katerem je vsaka okolica <a href="/w/index.php?title=Difeomorfizem&amp;action=edit&amp;redlink=1" class="new" title="Difeomorfizem (stran ne obstaja)">difeomorfna</a> v evklidskem prostoru.<sup id="cite_ref-Carmo2_27-0" class="reference"><a href="#cite_note-Carmo2-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> </p><p>Mnogoterosti se pogosto uporabljajo v fiziki, v <a href="/wiki/Splo%C5%A1na_teorija_relativnosti" title="Splošna teorija relativnosti">splošni teoriji relativnosti</a> in <a href="/w/index.php?title=Teorija_strun&amp;action=edit&amp;redlink=1" class="new" title="Teorija strun (stran ne obstaja)">teoriji strun</a>.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Dolžina,_površina_in_prostornina"><span id="Dol.C5.BEina.2C_povr.C5.A1ina_in_prostornina"></span>Dolžina, površina in prostornina</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=11" title="Uredi razdelek: Dolžina, površina in prostornina" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=11" title="Urejanje izvorne kode razdelka: Dolžina, površina in prostornina"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Dol%C5%BEina" title="Dolžina">Dolžina</a>, <a href="/wiki/Povr%C5%A1ina" title="Površina">površina</a> in <a href="/wiki/Prostornina" title="Prostornina">prostornina</a> opisujejo velikost ali obseg predmeta v eni, dveh dimenzijah ali treh dimenzijah.<sup id="cite_ref-Treese2018_29-0" class="reference"><a href="#cite_note-Treese2018-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p><p>V <a href="/wiki/Evklidska_geometrija" title="Evklidska geometrija">evklidski</a> in <a href="/w/index.php?title=Analiti%C4%8Dna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Analitična geometrija (stran ne obstaja)">analitični geometriji</a> lahko dolžino dela črte pogosto izračunamo s <a href="/wiki/Pitagorov_izrek" title="Pitagorov izrek">Pitagorjevim izrekom</a>.<sup id="cite_ref-Cannon2017_30-0" class="reference"><a href="#cite_note-Cannon2017-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p><p>Površino in prostornino lahko opredelimo kot temeljne količine ločeno od dolžine, ali pa jih opišemo in izračunamo glede na dolžine v ravnini ali v tridimenzionalnem prostoru.<sup id="cite_ref-Treese20182_31-0" class="reference"><a href="#cite_note-Treese20182-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> Matematiki so iznašli veliko eksplicitnih <a href="/wiki/Povr%C5%A1ina" title="Površina">formul za površino</a> in <a href="/wiki/Prostornina" title="Prostornina">formul za prostornino</a> različnih geometrijskih objektov. V <a href="/wiki/Infinitezimalni_ra%C4%8Dun" title="Infinitezimalni račun">Infinitezimalnem računu</a> lahko površino in prostornino definiramo v smislu <a href="/wiki/Integral" title="Integral">integralov</a>, kot sta <a href="/w/index.php?title=Riemannov_integral&amp;action=edit&amp;redlink=1" class="new" title="Riemannov integral (stran ne obstaja)">Riemannov integral</a><sup id="cite_ref-Strang1991_32-0" class="reference"><a href="#cite_note-Strang1991-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> ali <a href="/w/index.php?title=Lebesgueov_integral&amp;action=edit&amp;redlink=1" class="new" title="Lebesgueov integral (stran ne obstaja)">Lebesgueov integral</a>.<sup id="cite_ref-Bear2002_33-0" class="reference"><a href="#cite_note-Bear2002-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Meritve_in_mere">Meritve in mere</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=12" title="Uredi razdelek: Meritve in mere" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=12" title="Urejanje izvorne kode razdelka: Meritve in mere"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><div class="noprint relarticle mainarticle"><i>Glavna članka&#58; <a href="/wiki/Metrika" title="Metrika">Metrika</a>&#32;in&#32;<a href="/wiki/Mera_(matematika)" title="Mera (matematika)">Mera (matematika)</a>.</i></div></dd></dl> <p>Koncept dolžine ali razdalje je mogoče posplošiti, kar je vodilo v idejo o <a href="/wiki/Metri%C4%8Dni_prostor" title="Metrični prostor">metrikah</a>.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> Na primer, <a href="/w/index.php?title=Evklidska_metrika&amp;action=edit&amp;redlink=1" class="new" title="Evklidska metrika (stran ne obstaja)">evklidska metrika</a> meri razdaljo med točkami v <a href="/wiki/Evklidska_ravnina" class="mw-redirect" title="Evklidska ravnina">evklidski ravnini</a>, medtem ko <a href="/wiki/Hiperboli%C4%8Dna_metrika" class="mw-redirect" title="Hiperbolična metrika">hiperbolična metrika</a> meri razdaljo v <a href="/wiki/Hiperboli%C4%8Dna_metrika" class="mw-redirect" title="Hiperbolična metrika">hiperbolični ravnini</a>. Drugi pomembni primeri meritev vključujejo <a href="/w/index.php?title=Lorentzova_metrika&amp;action=edit&amp;redlink=1" class="new" title="Lorentzova metrika (stran ne obstaja)">Lorentzovo metriko</a> <a href="/wiki/Posebna_teorija_relativnosti" title="Posebna teorija relativnosti">posebne relativnosti</a> in pol-<a href="/w/index.php?title=Riemannova_metrika&amp;action=edit&amp;redlink=1" class="new" title="Riemannova metrika (stran ne obstaja)">Riemannovo metriko</a> <a href="/wiki/Splo%C5%A1na_teorija_relativnosti" title="Splošna teorija relativnosti">splošne relativnosti</a>.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> </p><p>V drugi smeri se koncepti dolžine, površine in prostornine razširijo s <a href="/wiki/Teorija_mere" class="mw-redirect" title="Teorija mere">teorijo mere</a>, ki preučuje metode dodeljevanja velikosti ali <i>mere</i> <a href="/wiki/Mno%C5%BEica" title="Množica">množicam</a>, pri čemer mere sledijo pravilom, podobnim tistim pri klasični površini in prostornini.<sup id="cite_ref-Tao2011_36-0" class="reference"><a href="#cite_note-Tao2011-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Skladnost_in_podobnost">Skladnost in podobnost</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=13" title="Uredi razdelek: Skladnost in podobnost" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=13" title="Urejanje izvorne kode razdelka: Skladnost in podobnost"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Skladnost_(geometrija)" title="Skladnost (geometrija)">Skladnost</a> in <a href="/wiki/Podobnost_(geometrija)" title="Podobnost (geometrija)">podobnost</a> sta pojma, ki opisujeta, kdaj imata dve obliki podobne lastnosti.<sup id="cite_ref-Libeskind2008_37-0" class="reference"><a href="#cite_note-Libeskind2008-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> V evklidski geometriji se podobnost uporablja za opis objektov enake oblike, medtem ko se za opis objektov, ki so po velikosti in obliki enaki, uporablja skladnost.<sup id="cite_ref-Freitag2013_38-0" class="reference"><a href="#cite_note-Freitag2013-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a> je v svojem delu o ustvarjanju strožjih temeljev za geometrijo obravnaval skladnost kot nedefiniran izraz, katerega lastnosti so opredeljene z <a href="/wiki/Aksiom" title="Aksiom">aksiomi</a>. </p><p>Skladnost in podobnost sta posplošeni v <a href="/w/index.php?title=Transformacijska_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Transformacijska geometrija (stran ne obstaja)">transformacijski geometriji</a>, ki preučuje lastnosti geometrijskih objektov, ki jih ohranjajo različne vrste transformacij.<sup id="cite_ref-Martin2012_39-0" class="reference"><a href="#cite_note-Martin2012-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Konstrukcije_z_ravnilom_in_šestilom"><span id="Konstrukcije_z_ravnilom_in_.C5.A1estilom"></span>Konstrukcije z ravnilom in šestilom</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=14" title="Uredi razdelek: Konstrukcije z ravnilom in šestilom" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=14" title="Urejanje izvorne kode razdelka: Konstrukcije z ravnilom in šestilom"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><div class="noprint relarticle mainarticle"><i>Glavni članek&#58; <a href="/wiki/Konstrukcije_z_ravnilom_in_%C5%A1estilom" class="mw-redirect" title="Konstrukcije z ravnilom in šestilom">Konstrukcije z ravnilom in šestilom</a>.</i></div></dd></dl> <p>Klasični geometri so posebno pozornost namenili konstruiranju geometrijskih objektov, ki so bili opisani na kakšen drug način. Klasično sta edina instrumenta, dovoljena v geometrijskih konstrukcijah, <a href="/wiki/%C5%A0estilo" title="Šestilo">šestilo</a> in <a href="/wiki/Ravnilo" title="Ravnilo">ravnilo</a>. Prav tako je morala biti vsaka konstrukcija dokončana v omejenem številu korakov. Vendar se je izkazalo, da je bilo s temi orodji težko ali nemogoče rešiti nekatere težave. </p> <div class="mw-heading mw-heading3"><h3 id="Dimenzija">Dimenzija</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=15" title="Uredi razdelek: Dimenzija" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=15" title="Urejanje izvorne kode razdelka: Dimenzija"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><div class="noprint relarticle mainarticle"><i>Glavni članek&#58; <a href="/wiki/Dimenzija" class="mw-redirect" title="Dimenzija">Dimenzija</a>.</i></div></dd></dl> <p>Kjer je tradicionalna geometrija dovoljevala dimenzije 1 (<a href="/wiki/Premica" title="Premica">premica</a>), 2 (<a href="/wiki/Ravnina" title="Ravnina">ravnina</a>) in 3 (naš okoliški svet, ki smo si ga zamislili kot <a href="/wiki/Trirazse%C5%BEni_prostor" title="Trirazsežni prostor">trirazsežni prostor</a>), so matematiki in fiziki že skoraj dve stoletji <a href="/w/index.php?title=Vi%C5%A1ja_dimenzija&amp;action=edit&amp;redlink=1" class="new" title="Višja dimenzija (stran ne obstaja)">uporabljali višje dimenzije.</a><sup id="cite_ref-Blacklock2018_40-0" class="reference"><a href="#cite_note-Blacklock2018-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> Eden od primerov matematične uporabe višjih dimenzij je <a href="/w/index.php?title=Konfiguracijski_prostor&amp;action=edit&amp;redlink=1" class="new" title="Konfiguracijski prostor (stran ne obstaja)">konfiguracijski prostor</a> fizikalnega sistema, ki ima dimenzijo, ki je enaka <a href="/wiki/Prostostna_stopnja" class="mw-disambig" title="Prostostna stopnja">prostostni stopnji</a> sistema. Na primer, konfiguracijo vijaka lahko opišemo s petimi koordinatami.<sup id="cite_ref-Joly1895_41-0" class="reference"><a href="#cite_note-Joly1895-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> </p><p>V <a href="/w/index.php?title=Splo%C5%A1na_topologija&amp;action=edit&amp;redlink=1" class="new" title="Splošna topologija (stran ne obstaja)">splošni topologiji</a> je bil koncept dimenzije razširjen iz <a href="/wiki/Naravno_%C5%A1tevilo" title="Naravno število">naravnih števil</a> na neskončno dimenzijo (na primer <a href="/wiki/Hilbertov_prostor" title="Hilbertov prostor">Hilbertovi prostori</a>) in pozitivna <a href="/wiki/Realno_%C5%A1tevilo" title="Realno število">realna števila</a> (v <a href="/w/index.php?title=Fraktalna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Fraktalna geometrija (stran ne obstaja)">fraktalni geometriji</a>).<sup id="cite_ref-Temam2013_42-0" class="reference"><a href="#cite_note-Temam2013-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> V <a href="/wiki/Algebrska_geometrija" title="Algebrska geometrija">algebrski geometriji</a> je <a href="/w/index.php?title=Dimenzija_algebrske_varietete&amp;action=edit&amp;redlink=1" class="new" title="Dimenzija algebrske varietete (stran ne obstaja)">dimenzija algebrske varietete</a> dobila številne na videz različne definicije, ki so si najpogosteje med seboj enakovredne.<sup id="cite_ref-JacobLam1994_43-0" class="reference"><a href="#cite_note-JacobLam1994-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Slika:Von_Koch_curve.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Von_Koch_curve.gif/220px-Von_Koch_curve.gif" decoding="async" width="220" height="229" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/f/fd/Von_Koch_curve.gif 1.5x" data-file-width="300" data-file-height="312" /></a><figcaption><a href="/wiki/Kochova_sne%C5%BEinka" title="Kochova snežinka">Kochova snežinka</a> s <a href="/w/index.php?title=Fraktalna_dimenzija&amp;action=edit&amp;redlink=1" class="new" title="Fraktalna dimenzija (stran ne obstaja)">fraktalno dimenzijo</a> = log4/log3 in <a href="/w/index.php?title=Topolo%C5%A1ka_dimenzija&amp;action=edit&amp;redlink=1" class="new" title="Topološka dimenzija (stran ne obstaja)">topološko dimenzijo</a> = 1</figcaption></figure> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Slika:Chinese_pythagoras.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Chinese_pythagoras.jpg/220px-Chinese_pythagoras.jpg" decoding="async" width="220" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Chinese_pythagoras.jpg/330px-Chinese_pythagoras.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Chinese_pythagoras.jpg/440px-Chinese_pythagoras.jpg 2x" data-file-width="871" data-file-height="475" /></a><figcaption>Vizualno preverjanje <a href="/wiki/Pitagorov_izrek" title="Pitagorov izrek">Pitagorjevega izreka</a> za (3, 4, 5) <a href="/wiki/Trikotnik" title="Trikotnik">trikotnik</a> kot v besedilu <a href="/w/index.php?title=Zhoubi_Suanjing&amp;action=edit&amp;redlink=1" class="new" title="Zhoubi Suanjing (stran ne obstaja)">Zhoubi Suanjing</a> 500-200 pr.n.št. Pitagorin izrek je posledica <a href="/w/index.php?title=Evklidska_metrika&amp;action=edit&amp;redlink=1" class="new" title="Evklidska metrika (stran ne obstaja)">evklidske metrike</a>.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Ostalo">Ostalo</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=16" title="Uredi razdelek: Ostalo" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=16" title="Urejanje izvorne kode razdelka: Ostalo"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Daljica" title="Daljica">daljica</a>, <a href="/wiki/Krivulja" title="Krivulja">krivulja</a>,</li> <li><a href="/wiki/Razdalja" title="Razdalja">razdalja</a>,</li> <li><a href="/wiki/Trikotnik" title="Trikotnik">trikotnik</a>, <a href="/wiki/%C5%A0tirikotnik" title="Štirikotnik">štirikotnik</a>, <a href="/wiki/Mnogokotnik" title="Mnogokotnik"><i>n</i>-kotnik</a>,</li> <li><a href="/wiki/Krog" title="Krog">krog</a>, <a href="/wiki/Kro%C5%BEnica" title="Krožnica">krožnica</a>,</li> <li><a href="/wiki/Obseg" title="Obseg">obseg</a>, <a href="/wiki/Plo%C5%A1%C4%8Dina" title="Ploščina">ploščina</a> itd.</li> <li><a href="/wiki/Ploskev" title="Ploskev">ploskev</a>,</li> <li><a href="/wiki/Prizma" title="Prizma">prizma</a>, <a href="/wiki/Piramida" title="Piramida">piramida</a>,</li> <li><a href="/wiki/Valj" title="Valj">valj</a>, <a href="/wiki/Sto%C5%BEec" title="Stožec">stožec</a>, <a href="/wiki/Krogla" title="Krogla">krogla</a>,</li> <li><a href="/wiki/Prostornina" title="Prostornina">prostornina</a> itd.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Sodobna_geometrija">Sodobna geometrija</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=17" title="Uredi razdelek: Sodobna geometrija" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=17" title="Urejanje izvorne kode razdelka: Sodobna geometrija"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Evklidska_geometrija">Evklidska geometrija</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=18" title="Uredi razdelek: Evklidska geometrija" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=18" title="Urejanje izvorne kode razdelka: Evklidska geometrija"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><div class="noprint relarticle mainarticle"><i>Glavna članka&#58; <a href="/wiki/Evklid" title="Evklid">Evklid</a>&#32;in&#32;<a href="/wiki/Evklidska_geometrija" title="Evklidska geometrija">Evklidska geometrija</a>.</i></div></dd></dl> <p>Za očeta sodobne matematične geometrije velja <a href="/wiki/Evklid" title="Evklid">Evklid</a> iz <a href="/wiki/Aleksandrija" title="Aleksandrija">Aleksandrije</a>. Njegovo delo <i><a href="/wiki/Elementi_(Evklid)" title="Elementi (Evklid)">Elementi</a></i> je lahko še danes zgled za znanstveni način pisanja. Evklid je izhajal iz majhnega števila očitnih resnic, ki jih je imenoval <a href="/wiki/Aksiom" title="Aksiom">aksiomi</a> oziroma <a href="/wiki/Postulat" class="mw-redirect" title="Postulat">postulati</a>. Na podlagi teh je potem postopoma izpeljal vse bolj zapletene značilnosti. </p><p><a href="/wiki/Evklidska_geometrija" title="Evklidska geometrija">Evklidska geometrija</a> je dolga stoletja veljala za edino geometrijo sploh in je še danes nezamenljivi temelj vsakega resnega geometrijskega dela. </p><p>Evklidska geometrija zajema naslednja poglavja oziroma téme: </p> <ul><li><a href="/wiki/Planimetrija" title="Planimetrija">Planimetrija</a> ali ravninska geometrija govori o delih <a href="/wiki/Ravnina" title="Ravnina">ravnine</a> – ravninskih <a href="/wiki/Geometrijski_lik" title="Geometrijski lik">likih</a>.</li> <li><a href="/wiki/Stereometrija" title="Stereometrija">Stereometrija</a> ali prostorska geometrija govori o delih <a href="/wiki/Prostor" title="Prostor">prostora</a> – prostorskih <a href="/wiki/Geometrijsko_telo" title="Geometrijsko telo">telesih</a>.</li> <li>Geometrija je bila dolgo časa usmerjena zlasti v risanje (geometrijske kostrukcije), šele pozneje se je močno povečalo zanimanje za računsko geometrijo. Zelo pomemben del računske geometrije je <a href="/wiki/Trigonometrija" title="Trigonometrija">trigonometrija</a>, ki obravnava postopke za računanje dolžin <a href="/wiki/Stranica" title="Stranica">stranic</a> in velikosti <a href="/wiki/Kot" title="Kot">kotov</a> v <a href="/wiki/Trikotnik" title="Trikotnik">trikotniku</a>. Sodobna trigonometrija se je lahko razvila šele po uvedbi <a href="/wiki/Kotna_funkcija" class="mw-redirect" title="Kotna funkcija">kotnih funkcij</a>. Glavna izreka trigonometrije sta <a href="/wiki/Sinusni_izrek" title="Sinusni izrek">sinusni</a> in <a href="/wiki/Kosinusni_izrek" title="Kosinusni izrek">kosinusni izrek</a>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Neevklidska_geometrija">Neevklidska geometrija</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=19" title="Uredi razdelek: Neevklidska geometrija" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=19" title="Urejanje izvorne kode razdelka: Neevklidska geometrija"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><div class="noprint relarticle mainarticle"><i>Glavni članek&#58; <a href="/wiki/Neevklidska_geometrija" title="Neevklidska geometrija">Neevklidska geometrija</a>.</i></div></dd></dl> <p>V 19. stoletju so se pojavile prve ideje o geometriji, ki bi slonela na drugačnih osnovah kot evklidska geometrija. </p><p><a href="/wiki/Nikolaj_Ivanovi%C4%8D_Loba%C4%8Devski" title="Nikolaj Ivanovič Lobačevski">Nikolaj Ivanovič Lobačevski</a> in <a href="/wiki/J%C3%A1nos_Bolyai" title="János Bolyai">János Bolyai</a> sta odkrila <a href="/wiki/Hiperboli%C4%8Dna_geometrija" title="Hiperbolična geometrija">hiperbolično geometrijo</a>, v kateri skozi dano točko <i>T</i>, ki ne leži na premici <i>p</i>, poteka neskončno mnogo vzporednic k premici <i>p</i>. </p><p><a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a> pa je odkril <a href="/wiki/Elipti%C4%8Dna_geometrija" title="Eliptična geometrija">eliptično geometrijo</a>, v kateri vzporednice sploh ne obstajajo. </p> <div class="mw-heading mw-heading3"><h3 id="Analitična_geometrija"><span id="Analiti.C4.8Dna_geometrija"></span>Analitična geometrija</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=20" title="Uredi razdelek: Analitična geometrija" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=20" title="Urejanje izvorne kode razdelka: Analitična geometrija"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Slika:Descartes_La-Geometrie_1637.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Descartes_La-Geometrie_1637.png/220px-Descartes_La-Geometrie_1637.png" decoding="async" width="220" height="258" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Descartes_La-Geometrie_1637.png/330px-Descartes_La-Geometrie_1637.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Descartes_La-Geometrie_1637.png/440px-Descartes_La-Geometrie_1637.png 2x" data-file-width="1100" data-file-height="1288" /></a><figcaption>Naslovnica prve izdaje Descartesove <i>La Geometrie</i> (1637)</figcaption></figure> <p>Dolga stoletja je bila geometrija povsem ločena od <a href="/wiki/Aritmetika" title="Aritmetika">aritmetike</a>. Med geometrijskimi pojmi kot so točke, premice ipd. in <a href="/wiki/%C5%A0tevilo" title="Število">števili</a> ni bilo prave povezave. Šele v 17. stoletju je <a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">René Descartes</a> izumil najpomembnejšo povezavo med geometrijo in aritmetiko: <a href="/wiki/Kartezi%C4%8Dni_koordinatni_sistem" title="Kartezični koordinatni sistem">kartezični koordinatni sistem</a>. </p><p>Koordiantni sistem omogoča, da lego točke opišemo s števili in potem s temi računamo. Premice in krivulje pa opišemo z <a href="/wiki/Ena%C4%8Dba" title="Enačba">enačbami</a>. </p><p>Uvedba koordinatnega sistema je imela za posledico razvoj <a href="/wiki/Matemati%C4%8Dna_analiza" title="Matematična analiza">matematične analize</a>, zlasti <a href="/wiki/Infinitezimalni_ra%C4%8Dun" title="Infinitezimalni račun">infinitezimalnega računa</a>. Od takrat naprej se geometrija deli še na dve vrsti: </p> <div class="mw-heading mw-heading4"><h4 id="Elementarna_geometrija">Elementarna geometrija</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=21" title="Uredi razdelek: Elementarna geometrija" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=21" title="Urejanje izvorne kode razdelka: Elementarna geometrija"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Elementarna geometrija obravnava probleme, ki se jih rešuje na <i>klasični</i> način – brez uporabe orodij matematične analize (<a href="/wiki/Odvod" title="Odvod">odvod</a>, <a href="/wiki/Integral" title="Integral">integral</a> ipd.). </p><p>V elementarno geometrijo sodijo zlasti značilnosti likov, ki so jih preučevali že antični geometri. </p> <div class="mw-heading mw-heading4"><h4 id="Višja_geometrija"><span id="Vi.C5.A1ja_geometrija"></span>Višja geometrija</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=22" title="Uredi razdelek: Višja geometrija" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=22" title="Urejanje izvorne kode razdelka: Višja geometrija"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Višja geometrija obravnava probleme, ki se jih rešuje z uporabo orodij matematične analize (<a href="/wiki/Odvod" title="Odvod">odvod</a>, <a href="/wiki/Integral" title="Integral">integral</a> ipd.). </p><p>V višjo geometrijo sodijo naslednji problemi: </p> <ul><li>računanje dolžine <a href="/w/index.php?title=Lok_(geometrija)&amp;action=edit&amp;redlink=1" class="new" title="Lok (geometrija) (stran ne obstaja)">loka</a> splošne <a href="/wiki/Krivulja" title="Krivulja">krivulje</a>,</li> <li>računanje ploščine lika omejenega s krivuljami,</li> <li>računanje površine splošne <a href="/wiki/Ploskev" title="Ploskev">ploskve</a>,</li> <li>računanje prostornine telesa omejenega s krivimi ploskvami.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Afina_in_projektivna_geometrija">Afina in projektivna geometrija</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=23" title="Uredi razdelek: Afina in projektivna geometrija" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=23" title="Urejanje izvorne kode razdelka: Afina in projektivna geometrija"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><div class="noprint relarticle mainarticle"><i>Glavna članka&#58; <a href="/wiki/Afina_geometrija" title="Afina geometrija">Afina geometrija</a>&#32;in&#32;<a href="/wiki/Projektivna_geometrija" title="Projektivna geometrija">Projektivna geometrija</a>.</i></div></dd></dl> <p>Že <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> (18. stoletje) je premišljeval o posplošitvi geometrije. Njegova odkritja so pripeljala do odkritja <a href="/wiki/Afina_geometrija" title="Afina geometrija">afine geometrije</a>. Nadaljnjo posplošitev imenujemo <a href="/wiki/Projektivna_geometrija" title="Projektivna geometrija">projektivna geometrija</a>. Njene temelje sta postavila <a href="/wiki/G%C3%A9rard_Desargues" title="Gérard Desargues">Gérard Desargues</a> in <a href="/wiki/Jean-Victor_Poncelet" title="Jean-Victor Poncelet">Jean-Victor Poncelet</a>. </p><p>Danes velja projektivna geometrija za najsplošnejšo geometrijo, ki zajema evklidsko in tudi neevklidske geometrije. Skupna značilnost vseh geometrij, ki jih zajema, je <a href="/wiki/Homogenost" class="mw-disambig" title="Homogenost">homogenost</a> – gre za geometrije, ki so povsod enake: v okolici poljubne točke veljajo iste značilnosti. </p> <div class="mw-heading mw-heading3"><h3 id="Mnogoterosti">Mnogoterosti</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=24" title="Uredi razdelek: Mnogoterosti" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=24" title="Urejanje izvorne kode razdelka: Mnogoterosti"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Še splošnejša geometrija se je razvila iz preučevanja značilnosti <a href="/wiki/Ploskev" title="Ploskev">ploskev</a>. Ukrivljena oziroma neravna ploskev ima v okolici različnih točk lahko različne geometrijske značilnosti. Kmalu po tem se je pojavila ideja o ukrivljenem oziroma neravnem prostoru, za katerega velja isto. </p><p>Geometrijske značilnosti posplošenega <i>n</i>-razsežnega neravnega prostora preučuje geometrija <a href="/wiki/Mnogoterost" title="Mnogoterost">mnogoterosti</a>. <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> je izoblikoval svojo <a href="/wiki/Splo%C5%A1na_teorija_relativnosti" title="Splošna teorija relativnosti">splošno teorijo relativnosti</a> na zamisli o ukrivljenem <a href="/wiki/Prostor-%C4%8Das" title="Prostor-čas">prostor-času</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Glej_tudi">Glej tudi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=25" title="Uredi razdelek: Glej tudi" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=25" title="Urejanje izvorne kode razdelka: Glej tudi"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Geometridae" class="mw-redirect" title="Geometridae">Geometridae</a> (slovensko: pedici), družina nočnih metuljev</li></ul> <div class="mw-heading mw-heading2"><h2 id="Sklici">Sklici</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometrija&amp;veaction=edit&amp;section=26" title="Uredi razdelek: Sklici" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Geometrija&amp;action=edit&amp;section=26" title="Urejanje izvorne kode razdelka: Sklici"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist columns references-column-width" style="column-width: 30em; list-style-type: decimal;"> <ol class="references"> <li id="cite_note-Katz2000-1"><span class="mw-cite-backlink"><a href="#cite_ref-Katz2000_1-0">↑</a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r5980307">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"»""«""›""‹"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}</style><cite id="CITEREFVictor_J._Katz2000" class="citation book cs1">Victor J. Katz (21. september 2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=CbZ_YsdCmP0C&amp;pg=PA45"><i>Using History to Teach Mathematics: An International Perspective</i></a>. Cambridge University Press. str.&#160;45–. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-0-88385-163-0" title="Posebno:ViriKnjig/978-0-88385-163-0"><bdi>978-0-88385-163-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=Using+History+to+Teach+Mathematics%3A+An+International+Perspective&amp;rft.pages=45-&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2000-09-21&amp;rft.isbn=978-0-88385-163-0&amp;rft.au=Victor+J.+Katz&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DCbZ_YsdCmP0C%26pg%3DPA45&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-Berlinski2014-2"><span class="mw-cite-backlink"><a href="#cite_ref-Berlinski2014_2-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFDavid_Berlinski2014" class="citation book cs1">David Berlinski (8. april 2014). <a rel="nofollow" class="external text" href="https://archive.org/details/kingofinfinitesp00davi"><i>The King of Infinite Space: Euclid and His Elements</i></a>. Basic Books. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-0-465-03863-3" title="Posebno:ViriKnjig/978-0-465-03863-3"><bdi>978-0-465-03863-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=The+King+of+Infinite+Space%3A+Euclid+and+His+Elements&amp;rft.pub=Basic+Books&amp;rft.date=2014-04-08&amp;rft.isbn=978-0-465-03863-3&amp;rft.au=David+Berlinski&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fkingofinfinitesp00davi&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-Hartshorne2013-3"><span class="mw-cite-backlink"><a href="#cite_ref-Hartshorne2013_3-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFRobin_Hartshorne2013" class="citation book cs1">Robin Hartshorne (11. november 2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=C5fSBwAAQBAJ&amp;pg=PA29"><i>Geometry: Euclid and Beyond</i></a>. Springer Science &amp; Business Media. str.&#160;29–. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-0-387-22676-7" title="Posebno:ViriKnjig/978-0-387-22676-7"><bdi>978-0-387-22676-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=Geometry%3A+Euclid+and+Beyond&amp;rft.pages=29-&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013-11-11&amp;rft.isbn=978-0-387-22676-7&amp;rft.au=Robin+Hartshorne&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DC5fSBwAAQBAJ%26pg%3DPA29&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-HerbstFujita2017-4"><span class="mw-cite-backlink"><a href="#cite_ref-HerbstFujita2017_4-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFPat_HerbstTaro_FujitaStefan_HalverscheidMichael_Weiss2017" class="citation book cs1">Pat Herbst; Taro Fujita; Stefan Halverscheid; Michael Weiss (16. marec 2017). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6DAlDwAAQBAJ&amp;pg=PA20"><i>The Learning and Teaching of Geometry in Secondary Schools: A Modeling Perspective</i></a>. Taylor &amp; Francis. str.&#160;20–. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-1-351-97353-3" title="Posebno:ViriKnjig/978-1-351-97353-3"><bdi>978-1-351-97353-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=The+Learning+and+Teaching+of+Geometry+in+Secondary+Schools%3A+A+Modeling+Perspective&amp;rft.pages=20-&amp;rft.pub=Taylor+%26+Francis&amp;rft.date=2017-03-16&amp;rft.isbn=978-1-351-97353-3&amp;rft.au=Pat+Herbst&amp;rft.au=Taro+Fujita&amp;rft.au=Stefan+Halverscheid&amp;rft.au=Michael+Weiss&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6DAlDwAAQBAJ%26pg%3DPA20&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-Yaglom2012-5"><span class="mw-cite-backlink"><a href="#cite_ref-Yaglom2012_5-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFI.M._Yaglom2012" class="citation book cs1">I.M. Yaglom (6. december 2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=FyToBwAAQBAJ&amp;pg=PR6"><i>A Simple Non-Euclidean Geometry and Its Physical Basis: An Elementary Account of Galilean Geometry and the Galilean Principle of Relativity</i></a>. Springer Science &amp; Business Media. str.&#160;6–. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-1-4612-6135-3" title="Posebno:ViriKnjig/978-1-4612-6135-3"><bdi>978-1-4612-6135-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=A+Simple+Non-Euclidean+Geometry+and+Its+Physical+Basis%3A+An+Elementary+Account+of+Galilean+Geometry+and+the+Galilean+Principle+of+Relativity&amp;rft.pages=6-&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012-12-06&amp;rft.isbn=978-1-4612-6135-3&amp;rft.au=I.M.+Yaglom&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DFyToBwAAQBAJ%26pg%3DPR6&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-Holme2010-6"><span class="mw-cite-backlink"><a href="#cite_ref-Holme2010_6-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFAudun_Holme2010" class="citation book cs1">Audun Holme (23. september 2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=zXwQGo8jyHUC&amp;pg=PA254"><i>Geometry: Our Cultural Heritage</i></a>. Springer Science &amp; Business Media. str.&#160;254–. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-3-642-14441-7" title="Posebno:ViriKnjig/978-3-642-14441-7"><bdi>978-3-642-14441-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=Geometry%3A+Our+Cultural+Heritage&amp;rft.pages=254-&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2010-09-23&amp;rft.isbn=978-3-642-14441-7&amp;rft.au=Audun+Holme&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DzXwQGo8jyHUC%26pg%3DPA254&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-EuclidAll-7"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-EuclidAll_7-0">7,0</a></sup> <sup><a href="#cite_ref-EuclidAll_7-1">7,1</a></sup> <sup><a href="#cite_ref-EuclidAll_7-2">7,2</a></sup></span> <span class="reference-text"><i>Euclid's Elements – All thirteen books in one volume</i>, Based on Heath's translation, Green Lion Press <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/1-888009-18-7" title="Posebno:ViriKnjig/1-888009-18-7">1-888009-18-7</a>.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="#cite_ref-8">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFClark1985" class="citation journal cs1">Clark, Bowman L. (Januar 1985). <a rel="nofollow" class="external text" href="https://doi.org/10.1305%2Fndjfl%2F1093870761">»Individuals and Points«</a>. <i>Notre Dame Journal of Formal Logic</i>. <b>26</b> (1): 61–75. <a href="/wiki/Doi_(identifikator)" class="mw-redirect" title="Doi (identifikator)">doi</a>:<span class="cs1-lock-free" title="Prosto dostopno"><a rel="nofollow" class="external text" href="https://doi.org/10.1305%2Fndjfl%2F1093870761">10.1305/ndjfl/1093870761</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=%C4%8Dlanek&amp;rft.jtitle=Notre+Dame+Journal+of+Formal+Logic&amp;rft.atitle=Individuals+and+Points&amp;rft.volume=26&amp;rft.issue=1&amp;rft.pages=61-75&amp;rft.date=1985-01&amp;rft_id=info%3Adoi%2F10.1305%2Fndjfl%2F1093870761&amp;rft.aulast=Clark&amp;rft.aufirst=Bowman+L.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1305%252Fndjfl%252F1093870761&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><a href="#cite_ref-9">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFJohn_Casey1885" class="citation book cs1"><a href="/w/index.php?title=John_Casey_(mathematician)&amp;action=edit&amp;redlink=1" class="new" title="John Casey (mathematician) (stran ne obstaja)">John Casey</a> (1885). <a rel="nofollow" class="external text" href="https://archive.org/details/cu31924001520455"><i>Analytic Geometry of the Point, Line, Circle, and Conic Sections</i></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=Analytic+Geometry+of+the+Point%2C+Line%2C+Circle%2C+and+Conic+Sections&amp;rft.date=1885&amp;rft.au=John+Casey&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcu31924001520455&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><a href="#cite_ref-10">↑</a></span> <span class="reference-text">Buekenhout, Francis (1995), <i>Handbook of Incidence Geometr: Buildings and Foundations</i>, Elsevier B.V.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><a href="#cite_ref-11">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.oxforddictionaries.com/definition/english/geodesic">»geodesic – definition of geodesic in English from the Oxford dictionary«</a>. <a href="/w/index.php?title=OxfordDictionaries.com&amp;action=edit&amp;redlink=1" class="new" title="OxfordDictionaries.com (stran ne obstaja)">OxfordDictionaries.com</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160715034047/http://www.oxforddictionaries.com/definition/english/geodesic">Arhivirano</a> iz spletišča dne 15. julija 2016<span class="reference-accessdate">. Pridobljeno 20. januarja 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=neznano&amp;rft.btitle=geodesic+%E2%80%93+definition+of+geodesic+in+English+from+the+Oxford+dictionary&amp;rft.pub=OxfordDictionaries.com&amp;rft_id=https%3A%2F%2Fwww.oxforddictionaries.com%2Fdefinition%2Fenglish%2Fgeodesic&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-Munkres-12"><span class="mw-cite-backlink"><a href="#cite_ref-Munkres_12-0">↑</a></span> <span class="reference-text">Munkres, James R. Topology. Vol. 2. Upper Saddle River: Prentice Hall, 2000.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><a href="#cite_ref-13">↑</a></span> <span class="reference-text">Szmielew, Wanda. 'From affine to Euclidean geometry: An axiomatic approach.' Springer, 1983.</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><a href="#cite_ref-14">↑</a></span> <span class="reference-text">Ahlfors, Lars V. <i>Complex analysis: an introduction to the theory of analytic functions of one complex variable.</i> New York, London (1953).</span> </li> <li id="cite_note-EuclidAll2-15"><span class="mw-cite-backlink"><a href="#cite_ref-EuclidAll2_15-0">↑</a></span> <span class="reference-text"><i>Euclid's Elements – All thirteen books in one volume</i>, Based on Heath's translation, Green Lion Press <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/1-888009-18-7" title="Posebno:ViriKnjig/1-888009-18-7">1-888009-18-7</a>.</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><a href="#cite_ref-16">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFSidorov2001" class="citation encyclopaedia cs1">Sidorov, L.A. (2001) [1994]. <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Angle">»Angle«</a>. <i><a href="/w/index.php?title=Encyclopedia_of_Mathematics&amp;action=edit&amp;redlink=1" class="new" title="Encyclopedia of Mathematics (stran ne obstaja)">Encyclopedia of Mathematics</a></i>. <a href="/w/index.php?title=Evropska_matemati%C4%8Dna_zveza&amp;action=edit&amp;redlink=1" class="new" title="Evropska matematična zveza (stran ne obstaja)">EMS Press</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knji%C5%BEni+predmet&amp;rft.atitle=Angle&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft.aulast=Sidorov&amp;rft.aufirst=L.A.&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DAngle&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-EuclidAll3-17"><span class="mw-cite-backlink"><a href="#cite_ref-EuclidAll3_17-0">↑</a></span> <span class="reference-text"><i>Euclid's Elements – All thirteen books in one volume</i>, Based on Heath's translation, Green Lion Press <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/1-888009-18-7" title="Posebno:ViriKnjig/1-888009-18-7">1-888009-18-7</a>.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><a href="#cite_ref-18">↑</a></span> <span class="reference-text">Gelʹfand, Izrailʹ Moiseevič, and Mark Saul. "Trigonometry." 'Trigonometry'. Birkhäuser Boston, 2001. 1–20.</span> </li> <li id="cite_note-Stewart-19"><span class="mw-cite-backlink"><a href="#cite_ref-Stewart_19-0">↑</a></span> <span class="reference-text">Stewart, James (2012). <i>Calculus: Early Transcendentals</i>, 7th ed., Brooks Cole Cengage Learning. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-0-538-49790-9" title="Posebno:ViriKnjig/978-0-538-49790-9">978-0-538-49790-9</a></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><a href="#cite_ref-20">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFJost2002" class="citation book cs1">Jost, Jürgen (2002). <i>Riemannian Geometry and Geometric Analysis</i>. Berlin: Springer-Verlag. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-3-540-42627-1" title="Posebno:ViriKnjig/978-3-540-42627-1"><bdi>978-3-540-42627-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=Riemannian+Geometry+and+Geometric+Analysis&amp;rft.place=Berlin&amp;rft.pub=Springer-Verlag&amp;rft.date=2002&amp;rft.isbn=978-3-540-42627-1&amp;rft.aulast=Jost&amp;rft.aufirst=J%C3%BCrgen&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span>.</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><a href="#cite_ref-21">↑</a></span> <span class="reference-text">Baker, Henry Frederick. Principles of geometry. Vol. 2. CUP Archive, 1954.</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><a href="#cite_ref-22">↑</a></span> <span class="reference-text">Briggs, William L., and Lyle Cochran Calculus. "Early Transcendentals." <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-0-321-57056-7" title="Posebno:ViriKnjig/978-0-321-57056-7">978-0-321-57056-7</a>.</span> </li> <li id="cite_note-Carmo-23"><span class="mw-cite-backlink"><a href="#cite_ref-Carmo_23-0">↑</a></span> <span class="reference-text">Do Carmo, Manfredo Perdigao, and Manfredo Perdigao Do Carmo. Differential geometry of curves and surfaces. Vol. 2. Englewood Cliffs: Prentice-hall, 1976.</span> </li> <li id="cite_note-Munkres2-24"><span class="mw-cite-backlink"><a href="#cite_ref-Munkres2_24-0">↑</a></span> <span class="reference-text">Munkres, James R. Topology. Vol. 2. Upper Saddle River: Prentice Hall, 2000.</span> </li> <li id="cite_note-mumford-25"><span class="mw-cite-backlink"><a href="#cite_ref-mumford_25-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFMumford1999" class="citation book cs1"><a href="/w/index.php?title=David_Mumford&amp;action=edit&amp;redlink=1" class="new" title="David Mumford (stran ne obstaja)">Mumford, David</a> (1999). <a rel="nofollow" class="external text" href="https://archive.org/details/redbookofvarieti0002mumf"><i>The Red Book of Varieties and Schemes Includes the Michigan Lectures on Curves and Their Jacobians</i></a> (2.&#160;izd.). <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer-Verlag</a>. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-3-540-63293-1" title="Posebno:ViriKnjig/978-3-540-63293-1"><bdi>978-3-540-63293-1</bdi></a>. <a href="/w/index.php?title=Zbl_(identifikator)&amp;action=edit&amp;redlink=1" class="new" title="Zbl (identifikator) (stran ne obstaja)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0945.14001">0945.14001</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=The+Red+Book+of+Varieties+and+Schemes+Includes+the+Michigan+Lectures+on+Curves+and+Their+Jacobians&amp;rft.edition=2.&amp;rft.pub=Springer-Verlag&amp;rft.date=1999&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0945.14001%23id-name%3DZbl&amp;rft.isbn=978-3-540-63293-1&amp;rft.aulast=Mumford&amp;rft.aufirst=David&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fredbookofvarieti0002mumf&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-Munkres3-26"><span class="mw-cite-backlink"><a href="#cite_ref-Munkres3_26-0">↑</a></span> <span class="reference-text">Munkres, James R. Topology. Vol. 2. Upper Saddle River: Prentice Hall, 2000.</span> </li> <li id="cite_note-Carmo2-27"><span class="mw-cite-backlink"><a href="#cite_ref-Carmo2_27-0">↑</a></span> <span class="reference-text">Do Carmo, Manfredo Perdigao, and Manfredo Perdigao Do Carmo. Differential geometry of curves and surfaces. Vol. 2. Englewood Cliffs: Prentice-hall, 1976.</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><a href="#cite_ref-28">↑</a></span> <span class="reference-text">Yau, Shing-Tung; Nadis, Steve (2010). The Shape of Inner Space: String Theory and the Geometry of the Universe's Hidden Dimensions. Basic Books. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-0-465-02023-2" title="Posebno:ViriKnjig/978-0-465-02023-2">978-0-465-02023-2</a>.</span> </li> <li id="cite_note-Treese2018-29"><span class="mw-cite-backlink"><a href="#cite_ref-Treese2018_29-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFSteven_A._Treese2018" class="citation book cs1">Steven A. Treese (17. maj 2018). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=bi1bDwAAQBAJ&amp;pg=PA101"><i>History and Measurement of the Base and Derived Units</i></a>. Springer International Publishing. str.&#160;101–. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-3-319-77577-7" title="Posebno:ViriKnjig/978-3-319-77577-7"><bdi>978-3-319-77577-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=History+and+Measurement+of+the+Base+and+Derived+Units&amp;rft.pages=101-&amp;rft.pub=Springer+International+Publishing&amp;rft.date=2018-05-17&amp;rft.isbn=978-3-319-77577-7&amp;rft.au=Steven+A.+Treese&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dbi1bDwAAQBAJ%26pg%3DPA101&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-Cannon2017-30"><span class="mw-cite-backlink"><a href="#cite_ref-Cannon2017_30-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFJames_W._Cannon2017" class="citation book cs1">James W. Cannon (16. november 2017). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=sSI_DwAAQBAJ&amp;pg=PA11"><i>Geometry of Lengths, Areas, and Volumes</i></a>. American Mathematical Soc. str.&#160;11. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-1-4704-3714-5" title="Posebno:ViriKnjig/978-1-4704-3714-5"><bdi>978-1-4704-3714-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=Geometry+of+Lengths%2C+Areas%2C+and+Volumes&amp;rft.pages=11&amp;rft.pub=American+Mathematical+Soc.&amp;rft.date=2017-11-16&amp;rft.isbn=978-1-4704-3714-5&amp;rft.au=James+W.+Cannon&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DsSI_DwAAQBAJ%26pg%3DPA11&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-Treese20182-31"><span class="mw-cite-backlink"><a href="#cite_ref-Treese20182_31-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFSteven_A._Treese2018" class="citation book cs1">Steven A. Treese (17. maj 2018). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=bi1bDwAAQBAJ&amp;pg=PA101"><i>History and Measurement of the Base and Derived Units</i></a>. Springer International Publishing. str.&#160;101–. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-3-319-77577-7" title="Posebno:ViriKnjig/978-3-319-77577-7"><bdi>978-3-319-77577-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=History+and+Measurement+of+the+Base+and+Derived+Units&amp;rft.pages=101-&amp;rft.pub=Springer+International+Publishing&amp;rft.date=2018-05-17&amp;rft.isbn=978-3-319-77577-7&amp;rft.au=Steven+A.+Treese&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dbi1bDwAAQBAJ%26pg%3DPA101&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-Strang1991-32"><span class="mw-cite-backlink"><a href="#cite_ref-Strang1991_32-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFGilbert_Strang1991" class="citation book cs1">Gilbert Strang (1. januar 1991). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OisInC1zvEMC"><i>Calculus</i></a>. SIAM. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-0-9614088-2-4" title="Posebno:ViriKnjig/978-0-9614088-2-4"><bdi>978-0-9614088-2-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=Calculus&amp;rft.pub=SIAM&amp;rft.date=1991-01-01&amp;rft.isbn=978-0-9614088-2-4&amp;rft.au=Gilbert+Strang&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOisInC1zvEMC&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-Bear2002-33"><span class="mw-cite-backlink"><a href="#cite_ref-Bear2002_33-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFH._S._Bear2002" class="citation book cs1">H. S. Bear (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=__AmiGnEEewC"><i>A Primer of Lebesgue Integration</i></a>. Academic Press. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-0-12-083971-1" title="Posebno:ViriKnjig/978-0-12-083971-1"><bdi>978-0-12-083971-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=A+Primer+of+Lebesgue+Integration&amp;rft.pub=Academic+Press&amp;rft.date=2002&amp;rft.isbn=978-0-12-083971-1&amp;rft.au=H.+S.+Bear&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D&#95;_AmiGnEEewC&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><a href="#cite_ref-34">↑</a></span> <span class="reference-text">Dmitri Burago, Yu D Burago, Sergei Ivanov, <i>A Course in Metric Geometry</i>, American Mathematical Society, 2001, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/0-8218-2129-6" title="Posebno:ViriKnjig/0-8218-2129-6">0-8218-2129-6</a>.</span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><a href="#cite_ref-35">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFWald1984" class="citation book cs1"><a href="/wiki/Robert_Wald" title="Robert Wald">Wald, Robert M.</a> (1984). <a rel="nofollow" class="external text" href="https://archive.org/details/generalrelativit0000wald"><i>General Relativity</i></a>. University of Chicago Press. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-0-226-87033-5" title="Posebno:ViriKnjig/978-0-226-87033-5"><bdi>978-0-226-87033-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=General+Relativity&amp;rft.pub=University+of+Chicago+Press&amp;rft.date=1984&amp;rft.isbn=978-0-226-87033-5&amp;rft.aulast=Wald&amp;rft.aufirst=Robert+M.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgeneralrelativit0000wald&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-Tao2011-36"><span class="mw-cite-backlink"><a href="#cite_ref-Tao2011_36-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFTerence_Tao2011" class="citation book cs1">Terence Tao (14. september 2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=HoGDAwAAQBAJ"><i>An Introduction to Measure Theory</i></a>. American Mathematical Soc. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-0-8218-6919-2" title="Posebno:ViriKnjig/978-0-8218-6919-2"><bdi>978-0-8218-6919-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=An+Introduction+to+Measure+Theory&amp;rft.pub=American+Mathematical+Soc.&amp;rft.date=2011-09-14&amp;rft.isbn=978-0-8218-6919-2&amp;rft.au=Terence+Tao&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DHoGDAwAAQBAJ&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-Libeskind2008-37"><span class="mw-cite-backlink"><a href="#cite_ref-Libeskind2008_37-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFShlomo_Libeskind2008" class="citation book cs1">Shlomo Libeskind (12. februar 2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=et6WMlkQlFcC&amp;pg=PA255"><i>Euclidean and Transformational Geometry: A Deductive Inquiry</i></a>. Jones &amp; Bartlett Learning. str.&#160;255. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-0-7637-4366-6" title="Posebno:ViriKnjig/978-0-7637-4366-6"><bdi>978-0-7637-4366-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=Euclidean+and+Transformational+Geometry%3A+A+Deductive+Inquiry&amp;rft.pages=255&amp;rft.pub=Jones+%26+Bartlett+Learning&amp;rft.date=2008-02-12&amp;rft.isbn=978-0-7637-4366-6&amp;rft.au=Shlomo+Libeskind&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Det6WMlkQlFcC%26pg%3DPA255&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-Freitag2013-38"><span class="mw-cite-backlink"><a href="#cite_ref-Freitag2013_38-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFMark_A._Freitag2013" class="citation book cs1">Mark A. Freitag (1. januar 2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=G4BVGFiVKG0C&amp;pg=PA614"><i>Mathematics for Elementary School Teachers: A Process Approach</i></a>. Cengage Learning. str.&#160;614. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-0-618-61008-2" title="Posebno:ViriKnjig/978-0-618-61008-2"><bdi>978-0-618-61008-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=Mathematics+for+Elementary+School+Teachers%3A+A+Process+Approach&amp;rft.pages=614&amp;rft.pub=Cengage+Learning&amp;rft.date=2013-01-01&amp;rft.isbn=978-0-618-61008-2&amp;rft.au=Mark+A.+Freitag&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DG4BVGFiVKG0C%26pg%3DPA614&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-Martin2012-39"><span class="mw-cite-backlink"><a href="#cite_ref-Martin2012_39-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFGeorge_E._Martin2012" class="citation book cs1">George E. Martin (6. december 2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=gevlBwAAQBAJ"><i>Transformation Geometry: An Introduction to Symmetry</i></a>. Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-1-4612-5680-9" title="Posebno:ViriKnjig/978-1-4612-5680-9"><bdi>978-1-4612-5680-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=Transformation+Geometry%3A+An+Introduction+to+Symmetry&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012-12-06&amp;rft.isbn=978-1-4612-5680-9&amp;rft.au=George+E.+Martin&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DgevlBwAAQBAJ&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-Blacklock2018-40"><span class="mw-cite-backlink"><a href="#cite_ref-Blacklock2018_40-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFMark_Blacklock2018" class="citation book cs1">Mark Blacklock (2018). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=nrNSDwAAQBAJ"><i>The Emergence of the Fourth Dimension: Higher Spatial Thinking in the Fin de Siècle</i></a>. Oxford University Press. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-0-19-875548-7" title="Posebno:ViriKnjig/978-0-19-875548-7"><bdi>978-0-19-875548-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=The+Emergence+of+the+Fourth+Dimension%3A+Higher+Spatial+Thinking+in+the+Fin+de+Si%C3%A8cle&amp;rft.pub=Oxford+University+Press&amp;rft.date=2018&amp;rft.isbn=978-0-19-875548-7&amp;rft.au=Mark+Blacklock&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DnrNSDwAAQBAJ&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-Joly1895-41"><span class="mw-cite-backlink"><a href="#cite_ref-Joly1895_41-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFCharles_Jasper_Joly1895" class="citation book cs1">Charles Jasper Joly (1895). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=cOTuAAAAMAAJ&amp;pg=PA62"><i>Papers</i></a>. The Academy. str.&#160;62–.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=Papers&amp;rft.pages=62-&amp;rft.pub=The+Academy&amp;rft.date=1895&amp;rft.au=Charles+Jasper+Joly&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DcOTuAAAAMAAJ%26pg%3DPA62&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-Temam2013-42"><span class="mw-cite-backlink"><a href="#cite_ref-Temam2013_42-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFRoger_Temam2013" class="citation book cs1">Roger Temam (11. december 2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OB_vBwAAQBAJ&amp;pg=PA367"><i>Infinite-Dimensional Dynamical Systems in Mechanics and Physics</i></a>. Springer Science &amp; Business Media. str.&#160;367. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-1-4612-0645-3" title="Posebno:ViriKnjig/978-1-4612-0645-3"><bdi>978-1-4612-0645-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=Infinite-Dimensional+Dynamical+Systems+in+Mechanics+and+Physics&amp;rft.pages=367&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013-12-11&amp;rft.isbn=978-1-4612-0645-3&amp;rft.au=Roger+Temam&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOB_vBwAAQBAJ%26pg%3DPA367&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> <li id="cite_note-JacobLam1994-43"><span class="mw-cite-backlink"><a href="#cite_ref-JacobLam1994_43-0">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5980307"><cite id="CITEREFBill_JacobTsit-Yuen_Lam1994" class="citation book cs1">Bill Jacob; Tsit-Yuen Lam (1994). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=mHwcCAAAQBAJ&amp;pg=PA111"><i>Recent Advances in Real Algebraic Geometry and Quadratic Forms: Proceedings of the RAGSQUAD Year, Berkeley, 1990-1991</i></a>. American Mathematical Soc. str.&#160;111. <a href="/wiki/ISBN_(identifikator)" class="mw-redirect" title="ISBN (identifikator)">ISBN</a>&#160;<a href="/wiki/Posebno:ViriKnjig/978-0-8218-5154-8" title="Posebno:ViriKnjig/978-0-8218-5154-8"><bdi>978-0-8218-5154-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=knjiga&amp;rft.btitle=Recent+Advances+in+Real+Algebraic+Geometry+and+Quadratic+Forms%3A+Proceedings+of+the+RAGSQUAD+Year%2C+Berkeley%2C+1990-1991&amp;rft.pages=111&amp;rft.pub=American+Mathematical+Soc.&amp;rft.date=1994&amp;rft.isbn=978-0-8218-5154-8&amp;rft.au=Bill+Jacob&amp;rft.au=Tsit-Yuen+Lam&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DmHwcCAAAQBAJ%26pg%3DPA111&amp;rfr_id=info%3Asid%2Fsl.wikipedia.org%3AGeometrija" class="Z3988"></span></span> </li> </ol></div> <style data-mw-deduplicate="TemplateStyles:r5916282">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9;display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><div class="side-box metadata side-box-right plainlinks"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911185"> <div class="side-box-flex"> <div class="side-box-image"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Wiktionary-logo-sl.svg/33px-Wiktionary-logo-sl.svg.png" decoding="async" width="33" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Wiktionary-logo-sl.svg/49px-Wiktionary-logo-sl.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Wiktionary-logo-sl.svg/66px-Wiktionary-logo-sl.svg.png 2x" data-file-width="391" data-file-height="474" /></span></span></div> <div class="side-box-text plainlist">Poglejte si besedo <i><b><a href="https://sl.wiktionary.org/wiki/Posebno:Search/geometrija" class="extiw" title="wikt:Posebno:Search/geometrija">geometrija</a></b></i> v Wikislovarju, prostem slovarju.</div></div> </div> <p><br clear="all" /> </p> <div role="navigation" class="navbox" aria-labelledby="Prostor" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911192"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-prikaži"><a href="/wiki/Predloga:Prostor" title="Predloga:Prostor"><abbr title="Prikaži to predlogo" style=";;background:none transparent;color:inherit;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none;">p</abbr></a></li><li class="nv-pogovor"><a href="/w/index.php?title=Pogovor_o_predlogi:Prostor&amp;action=edit&amp;redlink=1" class="new" title="Pogovor o predlogi:Prostor (stran ne obstaja)"><abbr title="Pogovor o tej predlogi" style=";;background:none transparent;color:inherit;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none;">p</abbr></a></li><li class="nv-uredi"><a class="external text" href="https://sl.wikipedia.org/w/index.php?title=Predloga:Prostor&amp;action=edit"><abbr title="Uredi to predlogo" style=";;background:none transparent;color:inherit;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none;">u</abbr></a></li></ul></div><div id="Prostor" style="font-size:114%;margin:0 4em"><a href="/wiki/Prostor" title="Prostor">Prostor</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/Topologija" title="Topologija">Topologija</a></li> <li><a class="mw-selflink selflink">Geometrija</a></li> <li><a href="/wiki/Evklidska_geometrija" title="Evklidska geometrija">Evklidska geometrija</a></li> <li><a href="/wiki/Neevklidska_geometrija" title="Neevklidska geometrija">Neevklidska geometrija</a></li> <li><a href="/wiki/Trigonometrija" title="Trigonometrija">Trigonometrija</a></li> <li><a href="/wiki/Algebrska_geometrija" title="Algebrska geometrija">Algebrska geometrija</a></li> <li><a href="/w/index.php?title=Diferencialna_geometrija&amp;action=edit&amp;redlink=1" class="new" title="Diferencialna geometrija (stran ne obstaja)">Diferencialna geometrija</a></li> <li><a href="/wiki/Diferencialna_topologija" title="Diferencialna topologija">Diferencialna topologija</a></li> <li><a href="/w/index.php?title=Algebrska_topologija&amp;action=edit&amp;redlink=1" class="new" title="Algebrska topologija (stran ne obstaja)">Algebrska topologija</a></li> <li><a href="/wiki/Linearna_algebra" title="Linearna algebra">Linearna algebra</a></li> <li><a href="/wiki/Fraktal" title="Fraktal">Fraktalna geometrija</a></li></ul> </div></td></tr></tbody></table></div> <div role="navigation" class="navbox" aria-labelledby="Normativna_kontrola_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Uredite_to_na_Wikipodatkih&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q8087#identifiers&amp;#124;class=noprint&amp;#124;Uredite_to_na_Wikipodatkih" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Normativna_kontrola_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Uredite_to_na_Wikipodatkih&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q8087#identifiers&amp;#124;class=noprint&amp;#124;Uredite_to_na_Wikipodatkih" style="font-size:114%;margin:0 4em"><a href="/wiki/Wikipedija:Normativna_kontrola" title="Wikipedija:Normativna kontrola">Normativna kontrola</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q8087#identifiers" title="Uredite to na Wikipodatkih"><img alt="Uredite to na Wikipodatkih" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Narodne knjižnice</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119315301">Francija</a> <a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119315301">(data)</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://esu.com.ua/search_articles.php?id=29142">Ukrajina</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4020236-7">Nemčija</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://uli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007563084805171">Izrael</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/subjects/sh85054133">ZDA</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00565738">Japonska</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph114624&amp;CON_LNG=ENG">Češka republika</a></span></li> <li><span class="error">NLK id KSH1998005448 ni veljaven.</span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Drugo</th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://islamansiklopedisi.org.tr/hendese">İslâm Ansiklopedisi</a></span></li></ul> </div></td></tr></tbody></table></div> <style data-mw-deduplicate="TemplateStyles:r5570670">.mw-parser-output .asbox{position:relative;overflow:hidden}.mw-parser-output .asbox table{background:transparent}.mw-parser-output .asbox p{margin:0}.mw-parser-output .asbox p+p{margin-top:0.25em}.mw-parser-output .asbox-body{font-style:italic}.mw-parser-output .asbox-note{font-size:smaller}.mw-parser-output .asbox .navbar{position:absolute;top:-0.75em;right:1em;display:none}</style><div role="note" class="metadata plainlinks asbox stub"><table role="presentation"><tbody><tr class="noresize"><td><span typeof="mw:File"><a href="/wiki/Slika:E-to-the-i-pi.svg" class="mw-file-description"><img alt="Stub icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/35/E-to-the-i-pi.svg/34px-E-to-the-i-pi.svg.png" decoding="async" width="34" height="30" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/35/E-to-the-i-pi.svg/51px-E-to-the-i-pi.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/35/E-to-the-i-pi.svg/68px-E-to-the-i-pi.svg.png 2x" data-file-width="512" data-file-height="453" /></a></span></td><td><p class="asbox-body">Ta matematični članek je <a href="/wiki/Wikipedija:%C5%A0krbina" title="Wikipedija:Škrbina">škrbina</a>. Pomagajte Wikipediji in ga <a class="external text" href="https://sl.wikipedia.org/w/index.php?title=Geometrija&amp;action=edit">razširite</a>.</p></td></tr></tbody></table><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911192"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-prikaži"><a href="/wiki/Predloga:%C5%A0krbina-mat" title="Predloga:Škrbina-mat"><abbr title="Prikaži to predlogo">p</abbr></a></li><li class="nv-pogovor"><a href="/wiki/Pogovor_o_predlogi:%C5%A0krbina-mat" title="Pogovor o predlogi:Škrbina-mat"><abbr title="Pogovor o tej predlogi">p</abbr></a></li><li class="nv-uredi"><a class="external text" href="https://sl.wikipedia.org/w/index.php?title=Predloga:%C5%A0krbina-mat&amp;action=edit"><abbr title="Uredi to predlogo">u</abbr></a></li></ul></div></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐869fdccf5d‐c7qht Cached time: 20241118090131 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.660 seconds Real time usage: 0.852 seconds Preprocessor visited node count: 4066/1000000 Post‐expand include size: 130058/2097152 bytes Template argument size: 2337/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 9/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 219137/5000000 bytes Lua time usage: 0.414/10.000 seconds Lua memory usage: 25468907/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 740.088 1 -total 40.60% 300.475 1 Predloga:Sklici 21.63% 160.062 23 Predloga:Navedi_knjigo 21.24% 157.219 3 Predloga:Jezik-el2 19.24% 142.400 1 Predloga:Splošna_geometrija 18.63% 137.892 1 Predloga:Sidebar_with_collapsible_lists 8.28% 61.296 7 Predloga:ISBN 7.93% 58.668 22 Predloga:Hlist 6.71% 49.684 1 Predloga:Normativna_kontrola 5.16% 38.157 2 Predloga:Sidebar --> <!-- Saved in parser cache with key slwiki:pcache:idhash:3410-0!canonical and timestamp 20241118090131 and revision id 6142015. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Pridobljeno iz&#160;»<a dir="ltr" href="https://sl.wikipedia.org/w/index.php?title=Geometrija&amp;oldid=6142015">https://sl.wikipedia.org/w/index.php?title=Geometrija&amp;oldid=6142015</a>«</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Posebno:Kategorije" title="Posebno:Kategorije">Kategoriji</a>: <ul><li><a href="/wiki/Kategorija:Matematika" title="Kategorija:Matematika">Matematika</a></li><li><a href="/wiki/Kategorija:Geometrija" title="Kategorija:Geometrija">Geometrija</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Skrite kategorije: <ul><li><a href="/wiki/Kategorija:%C4%8Clanki,_ki_vsebujejo_starogr%C5%A1ko_(do_1453)_besedilo" title="Kategorija:Članki, ki vsebujejo starogrško (do 1453) besedilo">Članki, ki vsebujejo starogrško (do 1453) besedilo</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_BNF" title="Kategorija:Wikipedijini članki z identifikatorji BNF">Wikipedijini članki z identifikatorji BNF</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_EMU" title="Kategorija:Wikipedijini članki z identifikatorji EMU">Wikipedijini članki z identifikatorji EMU</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_GND" title="Kategorija:Wikipedijini članki z identifikatorji GND">Wikipedijini članki z identifikatorji GND</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_J9U" title="Kategorija:Wikipedijini članki z identifikatorji J9U">Wikipedijini članki z identifikatorji J9U</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_LCCN" title="Kategorija:Wikipedijini članki z identifikatorji LCCN">Wikipedijini članki z identifikatorji LCCN</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_NDL" title="Kategorija:Wikipedijini članki z identifikatorji NDL">Wikipedijini članki z identifikatorji NDL</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_NKC" title="Kategorija:Wikipedijini članki z identifikatorji NKC">Wikipedijini članki z identifikatorji NKC</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_okvarjenimi_identifikatorji_NLK" title="Kategorija:Wikipedijini članki z okvarjenimi identifikatorji NLK">Wikipedijini članki z okvarjenimi identifikatorji NLK</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_TDV%C4%B0A" title="Kategorija:Wikipedijini članki z identifikatorji TDVİA">Wikipedijini članki z identifikatorji TDVİA</a></li><li><a href="/wiki/Kategorija:Vsi_%C5%A1krbinski_%C4%8Dlanki" title="Kategorija:Vsi škrbinski članki">Vsi škrbinski članki</a></li><li><a href="/wiki/Kategorija:Matemati%C4%8Dne_%C5%A1krbine" title="Kategorija:Matematične škrbine">Matematične škrbine</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Čas zadnje spremembe strani: 22:47, 22. december 2023.</li> <li id="footer-info-copyright">Besedilo se sme prosto uporabljati v skladu z dovoljenjem <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/">Creative Commons Priznanje avtorstva-Deljenje pod enakimi pogoji 4.0</a>; uveljavljajo se lahko dodatni pogoji. Za podrobnosti glej <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Pogoje uporabe</a>.<br /> Wikipedia® je tržna znamka neprofitne organizacije <a rel="nofollow" class="external text" href="https://wikimediafoundation.org">Wikimedia Foundation Inc.</a></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Pravilnik o zasebnosti</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedija:O_Wikipediji">O Wikipediji</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedija:Splo%C5%A1na_zavrnitev_odgovornosti">Zavrnitve odgovornosti</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Kodeks ravnanja</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Razvijalci</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/sl.wikipedia.org">Statistika</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">O piškotkih</a></li> <li id="footer-places-mobileview"><a href="//sl.m.wikipedia.org/w/index.php?title=Geometrija&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobilni prikaz</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-7sh2w","wgBackendResponseTime":173,"wgPageParseReport":{"limitreport":{"cputime":"0.660","walltime":"0.852","ppvisitednodes":{"value":4066,"limit":1000000},"postexpandincludesize":{"value":130058,"limit":2097152},"templateargumentsize":{"value":2337,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":9,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":219137,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 740.088 1 -total"," 40.60% 300.475 1 Predloga:Sklici"," 21.63% 160.062 23 Predloga:Navedi_knjigo"," 21.24% 157.219 3 Predloga:Jezik-el2"," 19.24% 142.400 1 Predloga:Splošna_geometrija"," 18.63% 137.892 1 Predloga:Sidebar_with_collapsible_lists"," 8.28% 61.296 7 Predloga:ISBN"," 7.93% 58.668 22 Predloga:Hlist"," 6.71% 49.684 1 Predloga:Normativna_kontrola"," 5.16% 38.157 2 Predloga:Sidebar"]},"scribunto":{"limitreport-timeusage":{"value":"0.414","limit":"10.000"},"limitreport-memusage":{"value":25468907,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-869fdccf5d-c7qht","timestamp":"20241118090131","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Geometrija","url":"https:\/\/sl.wikipedia.org\/wiki\/Geometrija","sameAs":"http:\/\/www.wikidata.org\/entity\/Q8087","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q8087","author":{"@type":"Organization","name":"Sodelavci projektov Wikimedie"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-10-30T21:12:30Z","dateModified":"2023-12-22T21:47:58Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/8\/88\/Stereographic_projection_in_3D.svg"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10