CINXE.COM

Search results for: C-reactive protein

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: C-reactive protein</title> <meta name="description" content="Search results for: C-reactive protein"> <meta name="keywords" content="C-reactive protein"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="C-reactive protein" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="C-reactive protein"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2355</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: C-reactive protein</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2355</span> Lentil Protein Fortification in Cranberry Squash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandhya%20Devi%20A">Sandhya Devi A</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The protein content of the cranberry squash (protein: 0g) may be increased by extracting protein from the lentils (9 g), which is particularly linked to a lower risk of developing heart disease. Using the technique of alkaline extraction from the lentils flour, protein may be extracted. Alkaline extraction of protein from lentil flour was optimized utilizing response surface approach in order to maximize both protein content and yield. Cranberry squash may be taken if a protein fortification syrup is prepared and processed into the squash. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20extraction" title="alkaline extraction">alkaline extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=cranberry%20squash" title=" cranberry squash"> cranberry squash</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20fortification" title=" protein fortification"> protein fortification</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/153178/lentil-protein-fortification-in-cranberry-squash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2354</span> Hydration of Protein-RNA Recognition Sites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amita%20Barik">Amita Barik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjit%20Prasad%20Bahadur"> Ranjit Prasad Bahadur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the role of water molecules in 89 protein-RNA complexes taken from the Protein Data Bank. Those with tRNA and single-stranded RNA are less hydrated than with duplex or ribosomal proteins. Protein-RNA interfaces are hydrated less than protein-DNA interfaces, but more than protein-protein interfaces. Majority of the waters at protein-RNA interfaces makes multiple H-bonds; however, a fraction does not make any. Those making Hbonds have preferences for the polar groups of RNA than its partner protein. The spatial distribution of waters makes interfaces with ribosomal proteins and single-stranded RNA relatively ‘dry’ than interfaces with tRNA and duplex RNA. In contrast to protein-DNA interfaces, mainly due to the presence of the 2’OH, the ribose in protein-RNA interfaces is hydrated more than the phosphate or the bases. The minor groove in protein-RNA interfaces is hydrated more than the major groove, while in protein-DNA interfaces it is reverse. The strands make the highest number of water-mediated H-bonds per unit interface area followed by the helices and the non-regular structures. The preserved waters at protein-RNA interfaces make higher number of H-bonds than the other waters. Preserved waters contribute toward the affinity in protein-RNA recognition and should be carefully treated while engineering protein-RNA interfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=h-bonds" title="h-bonds">h-bonds</a>, <a href="https://publications.waset.org/abstracts/search?q=minor-major%20grooves" title=" minor-major grooves"> minor-major grooves</a>, <a href="https://publications.waset.org/abstracts/search?q=preserved%20water" title=" preserved water"> preserved water</a>, <a href="https://publications.waset.org/abstracts/search?q=protein-RNA%20interfaces" title=" protein-RNA interfaces"> protein-RNA interfaces</a> </p> <a href="https://publications.waset.org/abstracts/42932/hydration-of-protein-rna-recognition-sites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2353</span> Protein Crystallization Induced by Surface Plasmon Resonance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tetsuo%20Okutsu">Tetsuo Okutsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have developed a crystallization plate with the function of promoting protein crystallization. A gold thin film is deposited on the crystallization plate. A protein solution is dropped thereon, and crystallization is promoted when the protein is irradiated with light of a wavelength that protein does not absorb. Protein is densely adsorbed on the gold thin film surface. The light excites the surface plasmon resonance of the gold thin film, the protein is excited by the generated enhanced electric field induced by surface plasmon resonance, and the amino acid residues are radicalized to produce protein dimers. The dimers function as templates for protein crystals, crystallization is promoted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lysozyme" title="lysozyme">lysozyme</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmon" title=" plasmon"> plasmon</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=RNaseA" title=" RNaseA"> RNaseA</a> </p> <a href="https://publications.waset.org/abstracts/85433/protein-crystallization-induced-by-surface-plasmon-resonance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2352</span> Protein Remote Homology Detection and Fold Recognition by Combining Profiles with Kernel Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bin%20Liu">Bin Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protein remote homology detection and fold recognition are two most important tasks in protein sequence analysis, which is critical for protein structure and function studies. In this study, we combined the profile-based features with various string kernels, and constructed several computational predictors for protein remote homology detection and fold recognition. Experimental results on two widely used benchmark datasets showed that these methods outperformed the competing methods, indicating that these predictors are useful computational tools for protein sequence analysis. By analyzing the discriminative features of the training models, some interesting patterns were discovered, reflecting the characteristics of protein superfamilies and folds, which are important for the researchers who are interested in finding the patterns of protein folds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=protein%20remote%20homology%20detection" title="protein remote homology detection">protein remote homology detection</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20fold%20recognition" title=" protein fold recognition"> protein fold recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=profile-based%20features" title=" profile-based features"> profile-based features</a>, <a href="https://publications.waset.org/abstracts/search?q=Support%20Vector%20Machines%20%28SVMs%29" title=" Support Vector Machines (SVMs)"> Support Vector Machines (SVMs)</a> </p> <a href="https://publications.waset.org/abstracts/104054/protein-remote-homology-detection-and-fold-recognition-by-combining-profiles-with-kernel-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2351</span> Membrane Spanning DNA Origami Nanopores for Protein Translocation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Genevieve%20Pugh">Genevieve Pugh</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnathan%20Burns"> Johnathan Burns</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Howorka"> Stefan Howorka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single-molecule sensing via protein nanopores has achieved a step-change in portable and label-free DNA sequencing. However, protein pores of both natural or engineered origin are not able to produce the tunable diameters needed for effective protein sensing. Here, we describe a generic strategy to build synthetic DNA nanopores that are wide enough to accommodate folded protein. The pores are composed of interlinked DNA duplexes and carry lipid anchors to achieve the required membrane insertion. Our demonstrator pore has a contiguous cross-sectional channel area of 50 nm2 which is 6-times larger than the largest protein pore. Consequently, transport of folded protein across bilayers is possible. The modular design is amenable for different pore dimensions and can be adapted for protein sensing or to create molecular gates in synthetic biology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensing" title="biosensing">biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20nanotechnology" title=" DNA nanotechnology"> DNA nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20origami" title=" DNA origami"> DNA origami</a>, <a href="https://publications.waset.org/abstracts/search?q=nanopore%20sensing" title=" nanopore sensing"> nanopore sensing</a> </p> <a href="https://publications.waset.org/abstracts/78556/membrane-spanning-dna-origami-nanopores-for-protein-translocation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2350</span> Effect of Electromagnetic Fields on Protein Extraction from Shrimp By-Products for Electrospinning Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guido%20Trautmann-S%C3%A1ez">Guido Trautmann-Sáez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20P%C3%A9rez-Won"> Mario Pérez-Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Vilbett%20Briones"> Vilbett Briones</a>, <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20Jos%C3%A9%20Bugue%C3%B1o"> María José Bugueño</a>, <a href="https://publications.waset.org/abstracts/search?q=Gipsy%20Tabilo-Munizaga"> Gipsy Tabilo-Munizaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Gonz%C3%A1les-Cavieres"> Luis Gonzáles-Cavieres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shrimp by-products are a valuable source of protein. However, traditional protein extraction methods have limitations in terms of their efficiency. Protein extraction from shrimp (Pleuroncodes monodon) industrial by-products assisted with ohmic heating (OH), microwave (MW) and pulsed electric field (PEF). It was performed by chemical method (using NaOH and HCl 2M) assisted with OH, MW and PEF in a continuous flow system (5 ml/s). Protein determination, differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR). Results indicate a 19.25% (PEF) 3.65% (OH) and 28.19% (MW) improvement in protein extraction efficiency. The most efficient method was selected for the electrospinning process and obtaining fiber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning%20process" title="electrospinning process">electrospinning process</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20technology" title=" emerging technology"> emerging technology</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20extraction" title=" protein extraction"> protein extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=shrimp%20by-products" title=" shrimp by-products"> shrimp by-products</a> </p> <a href="https://publications.waset.org/abstracts/171420/effect-of-electromagnetic-fields-on-protein-extraction-from-shrimp-by-products-for-electrospinning-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2349</span> Physicochemical Properties of Soy Protein Isolate (SPI): Starch Conjugates Treated by Sonication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulcin%20Yildiz">Gulcin Yildiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Feng"> Hao Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years there is growing interested in using soy protein because of several advantages compared to other protein sources, such as high nutritional value, steady supply, and low cost. Soy protein isolate (SPI) is the most refined soy protein product. It contains 90% protein in a moisture-free form and has some desirable functionalities. Creating a protein-polysaccharide conjugate to be the emulsifying agent rather than the protein alone can markedly enhance its stability. This study was undertaken to examine the effects of ultrasound treatments on the physicochemical properties of SPI-starch conjugates. The soy protein isolate (SPI, Pro-Fam® 955) samples were obtained from the Archer Daniels Midland Company. Protein concentrations were analyzed by the Bardford method using BSA as the standard. The volume-weighted mean diameters D [4,3] of protein–polysaccharide conjugates were measured by dynamic light scattering (DLS). Surface hydrophobicity of the conjugates was measured by using 1-anilino-8-naphthalenesulfonate (ANS) (Sigma-Aldrich, St. Louis, MO, USA). Increasing the pH from 2 to 12 resulted in increased protein solubility. The highest solubility was 69.2% for the sample treated with ultrasonication at pH 12, while the lowest (9.13%) was observed in the Control. For the other pH conditions, the protein solubility values ranged from 40.53 to 49.65%. The ultrasound treatment significantly decreased the particle sizes of the SPI-modified starch conjugates. While the D [4,3] for the Control was 731.6 nm, it was 293.7 nm for the samples treated by sonication at pH 12. The surface hydrophobicity (H0) of SPI-starch at all pH conditions were significantly higher than those in the Control. Ultrasonication was proven to be effective in improving the solubility and emulsifying properties of soy protein isolate-starch conjugates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title="particle size">particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=solubility" title=" solubility"> solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=soy%20protein%20isolate" title=" soy protein isolate"> soy protein isolate</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonication" title=" ultrasonication"> ultrasonication</a> </p> <a href="https://publications.waset.org/abstracts/64023/physicochemical-properties-of-soy-protein-isolate-spi-starch-conjugates-treated-by-sonication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2348</span> Effect of Removing Hub Domain on Human CaMKII Isoforms Sensitivity to Calcium/Calmodulin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravid%20Inbar">Ravid Inbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CaMKII (calcium-calmodulin dependent protein kinase II) makes up 2% of the protein in our brain and has a critical role in memory formation and long-term potentiation of neurons. Despite this, research has yet to uncover the role of one of the domains on the activation of this kinase. The following proposes to express the protein without the hub domain in E. coli, leaving only the kinase and regulatory segment of the protein. Next, a series of kinase assays will be conducted to elucidate the role the hub domain plays on CaMKII sensitivity to calcium/calmodulin activation. The hub domain may be important for activation; however, it may also be a variety of domains working together to influence protein activation and not the hub alone. Characterization of a protein is critical to the future understanding of the protein's function, as well as for producing pharmacological targets in cases of patients with diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CaMKII" title="CaMKII">CaMKII</a>, <a href="https://publications.waset.org/abstracts/search?q=hub%20domain" title=" hub domain"> hub domain</a>, <a href="https://publications.waset.org/abstracts/search?q=kinase%20assays" title=" kinase assays"> kinase assays</a>, <a href="https://publications.waset.org/abstracts/search?q=kinase%20%2B%20reg%20seg" title=" kinase + reg seg"> kinase + reg seg</a> </p> <a href="https://publications.waset.org/abstracts/157748/effect-of-removing-hub-domain-on-human-camkii-isoforms-sensitivity-to-calciumcalmodulin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2347</span> Fortification of Concentrated Milk Protein Beverages with Soy Proteins: Impact of Divalent Cations and Heating Treatment on the Physical Stability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yichao%20Liang">Yichao Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Biye%20Chen"> Biye Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Li"> Xiang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20R.%20Dimler"> Steven R. Dimler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the effects of adding calcium and magnesium chloride on heat and storage stability of milk protein concentrate-soy protein isolate (8:2 respectively) mixtures containing 10% w/w total protein subjected to the in-container sterilization (115 °C x 15 min). The particle size does not change when emulsions are heated at pH between 6.7 and 7.3 irrespective of the mixed protein ratio. Increasing concentration of divalent cation salts resulted in an increase in protein particle size, dry sediment formation and sediment height and a decrease in pH, heat stability and hydration in milk protein concentrate-soy protein isolate mixtures solutions on sterilization at 115°C. Fortification of divalent cation salts in milk protein concentrate-soy protein isolate mixture solutions resulted in an accelerated protein sedimentation and two unique sediment regions during accelerated storage stability testing. Moreover, the heat stability decreased upon sterilization at 115°C, with addition of MgCl₂ causing a greater increase in sedimentation velocity and compressibility than CaCl₂. Increasing pH value of protein milk concentrate-soy protein isolate mixtures solutions from 6.7 to 7.2 resulted in an increase in viscosity following the heat treatment. The study demonstrated that the type and concentration of divalent cation salts used strongly impact heat and storage stability of milk protein concentrate-soy protein isolate mixture nutritional beverages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=divalent%20cation%20salts" title="divalent cation salts">divalent cation salts</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20stability" title=" heat stability"> heat stability</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20protein%20concentrate" title=" milk protein concentrate"> milk protein concentrate</a>, <a href="https://publications.waset.org/abstracts/search?q=soy%20protein%20isolate" title=" soy protein isolate"> soy protein isolate</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20stability" title=" storage stability"> storage stability</a> </p> <a href="https://publications.waset.org/abstracts/94469/fortification-of-concentrated-milk-protein-beverages-with-soy-proteins-impact-of-divalent-cations-and-heating-treatment-on-the-physical-stability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2346</span> The Relation Between Protein-Protein and Polysaccharide-Protein Interaction on Aroma Release from Brined Cheese Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrnaz%20Aminifar">Mehrnaz Aminifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relation between textural parameters and casein network on release of aromatic compounds was investigated over 90-days of ripening. Low DE maltodextrin and WPI were used to modify the textural properties of low fat brined cheese. Hardness, brittleness and compaction of casein network were affected by addition of maltodextrin and WPI. Textural properties and aroma release from cheese texture were affected by interaction of WPI protein-cheese protein and maltodexterin-cheese protein. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aroma%20release" title="aroma release">aroma release</a>, <a href="https://publications.waset.org/abstracts/search?q=brined%20cheese" title=" brined cheese"> brined cheese</a>, <a href="https://publications.waset.org/abstracts/search?q=maltodexterin" title=" maltodexterin"> maltodexterin</a>, <a href="https://publications.waset.org/abstracts/search?q=WPI" title=" WPI"> WPI</a> </p> <a href="https://publications.waset.org/abstracts/6193/the-relation-between-protein-protein-and-polysaccharide-protein-interaction-on-aroma-release-from-brined-cheese-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2345</span> Amino Acid Profile, Protein Digestibility, Antioxidant and Functional Properties of Protein Concentrate of Local Varieties (Kwandala, Yardass, Jeep, and Jamila) of Rice Brands from Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20E.%20Chinma">C. E. Chinma</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Azeez"> S. O. Azeez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Anuonye"> J. C. Anuonye</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20B.%20Ocheme"> O. B. Ocheme</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Yakubu"> C. M. Yakubu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20James"> S. James</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20U.%20Ohuoba"> E. U. Ohuoba</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Baba"> I. A. Baba </a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is growing interest in the use of rice bran protein in food formulation due to its hypoallergenic protein, high nutritional value and health promoting potentials. For the first time, the amino acid profile, protein digestibility, antioxidant, and functional properties of protein concentrate from some local varieties of rice bran from Nigeria were studied for possible food applications. Protein concentrates were prepared from rice bran and analysed using standard methods. Results showed that protein content of Kwandala, Yardass, Jeep, and Jamila were 69.24%, 69.97%, 68.73%, and 71.62%, respectively while total essential amino acid were 52.71, 53.03, 51.86, and 55.75g/100g protein, respectively. In vitro protein digestibility of protein concentrate from Kwandala, Yardass, Jeep and Jamila were 90.70%, 91.39%, 90.57% and 91.63% respectively. DPPH radical inhibition of protein from Kwandala, Yardass, Jeep, and Jamila were 48.15%, 48.90%, 47.56%, and 53.29%, respectively while ferric reducing ability power were 0.52, 0.55, 0.47 and 0.67mmol TE per gram, respectively. Protein concentrate from Jamila had higher onset (92.57oC) and denaturation temperature (102.13oC), and enthalpy (0.72J/g) than Jeep (91.46oC, 101.76oC, and 0.68J/g, respectively), Kwandala (90.32oC, 100.54oC and 0.57J/g, respectively), and Yardass (88.94oC, 99.45oC, and 0.51J/g, respectively). In vitro digestibility of protein from Kwandala, Yardas, Jeep, and Jamila were 90.70%, 91.39%, 90.57% and 91.63% respectively. Oil absorption capacity of Kwandala, Yardass, Jeep, and Jamila were 3.61, 3.73, 3.40, and 4.23g oil/g sample respectively, while water absorption capacity were 4.19, 4.32, 3.55 and 4.48g water/g sample, respectively. Protein concentrates had low bulk density (0.37-0.43g/ml). Protein concentrate from Jamila rice bran had the highest foam capacity (37.25%), followed by Yardass (34.20%), Kwandala (30.14%) and Jeep (28.90%). Protein concentrates showed low emulsifying and gelling capacities. In conclusion, protein concentrate prepared from these local rice bran varieties could serve as functional ingredients in food formulations and for enriching low protein foods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20bran%20protein" title="rice bran protein">rice bran protein</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20profile" title=" amino acid profile"> amino acid profile</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20digestibility" title=" protein digestibility"> protein digestibility</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20and%20functional%20properties" title=" antioxidant and functional properties"> antioxidant and functional properties</a> </p> <a href="https://publications.waset.org/abstracts/17730/amino-acid-profile-protein-digestibility-antioxidant-and-functional-properties-of-protein-concentrate-of-local-varieties-kwandala-yardass-jeep-and-jamila-of-rice-brands-from-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2344</span> Analysis of Formyl Peptide Receptor 1 Protein Value as an Indicator of Neutrophil Chemotaxis Dysfunction in Aggressive Periodontitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prajna%20Metta">Prajna Metta</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanti%20Rusyanti"> Yanti Rusyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Nunung%20Rusminah"> Nunung Rusminah</a>, <a href="https://publications.waset.org/abstracts/search?q=Bremmy%20Laksono"> Bremmy Laksono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The decrease of neutrophil chemotaxis function may cause increased susceptibility to aggressive periodontitis (AP). Neutrophil chemotaxis is affected by formyl peptide receptor 1 (FPR1), which when activated will respond to bacterial chemotactic peptide formyl methionyl leusyl phenylalanine (FMLP). FPR1 protein value is decreased in response to a wide number of inflammatory stimuli in AP patients. This study was aimed to assess the alteration of FPR1 protein value in AP patients and if FPR1 protein value could be used as an indicator of neutrophil chemotaxis dysfunction in AP. This is a case control study with 20 AP patients and 20 control subjects. Three milliliters of peripheral blood were drawn and analyzed for FPR1 protein value with ELISA. The data were statistically analyzed with Mann-Whitney test (p&gt;0,05<u>)</u>. Results showed that the mean value of FPR1 protein value in AP group is 0,353 pg/mL (0,11 to 1,18 pg/mL) and the mean value of FPR1 protein value in control group is 0,296 pg/mL (0,05 to 0,88 pg/mL). P value 0,787 &gt; 0,05 suggested that there is no significant difference of FPR1 protein value in both groups. The present study suggests that FPR1 protein value has no significance alteration in AP patients and could not be used as an indicator of neutrophil chemotaxis dysfunction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggressive%20periodontitis" title="aggressive periodontitis">aggressive periodontitis</a>, <a href="https://publications.waset.org/abstracts/search?q=chemotaxis%20dysfunction" title=" chemotaxis dysfunction"> chemotaxis dysfunction</a>, <a href="https://publications.waset.org/abstracts/search?q=FPR1%20protein%20value" title=" FPR1 protein value"> FPR1 protein value</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrophil" title=" neutrophil"> neutrophil</a> </p> <a href="https://publications.waset.org/abstracts/58541/analysis-of-formyl-peptide-receptor-1-protein-value-as-an-indicator-of-neutrophil-chemotaxis-dysfunction-in-aggressive-periodontitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2343</span> Selection of Pichia kudriavzevii Strain for the Production of Single-Cell Protein from Cassava Processing Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phakamas%20Rachamontree">Phakamas Rachamontree</a>, <a href="https://publications.waset.org/abstracts/search?q=Theerawut%20Phusantisampan"> Theerawut Phusantisampan</a>, <a href="https://publications.waset.org/abstracts/search?q=Natthakorn%20Woravutthikul"> Natthakorn Woravutthikul</a>, <a href="https://publications.waset.org/abstracts/search?q=Peerapong%20Pornwongthong"> Peerapong Pornwongthong</a>, <a href="https://publications.waset.org/abstracts/search?q=Malinee%20Sriariyanun"> Malinee Sriariyanun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A total of 115 yeast strains isolated from local cassava processing wastes were measured for crude protein content. Among these strains, the strain MSY-2 possessed the highest protein concentration (>3.5 mg protein/mL). By using molecular identification tools, it was identified to be a strain of Pichia kudriavzevii based on similarity of D1/D2 domain of 26S rDNA region. In this study, to optimize the protein production by MSY-2 strain, Response Surface Methodology (RSM) was applied. The tested parameters were the carbon content, nitrogen content, and incubation time. Here, the value of regression coefficient (R2) = 0.7194 could be explained by the model, which is high to support the significance of the model. Under the optimal condition, the protein content was produced up to 3.77 g per L of the culture and MSY-2 strain contain 66.8 g protein per 100 g of cell dry weight. These results revealed the plausibility of applying the novel strain of yeast in single-cell protein production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20cell%20protein" title="single cell protein">single cell protein</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=cassava%20processing%20waste" title=" cassava processing waste"> cassava processing waste</a> </p> <a href="https://publications.waset.org/abstracts/27179/selection-of-pichia-kudriavzevii-strain-for-the-production-of-single-cell-protein-from-cassava-processing-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2342</span> Effect of Different Irrigation Intervals on Protein and Gel Production of Aloe Vera (Aloe Barbadensis M.) in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohammad%20Hosein%20Al%20Omrani%20Nejad">Seyed Mohammad Hosein Al Omrani Nejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Rezvani%20Aghdam"> Ali Rezvani Aghdam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was done in order to evaluation different irrigation intervals on amount of protein, and gel production in Aloe vera, a traditional medicinal plant. Plants was plnted in Greenhouse and irrigated according to Accumulative Pan Evaporation(APE). The treatments were included 20, 40, 60, 80, 100, 120, 140, 160, 180, and 200 mm APE which has been showed W1,W2, W3, W4, W5, W6, W7, W8,W9 and W10 respectively.The amount of protein and gel production was measured seperately. Results showed that highest protein and fresh weight of gel obtained plants which irrigated W6 and W7 respectively. According to these results can recomend which if plant irrigatedwhen APE reached 120 and 140 mm by Class A Evaporation Pan method gel production and protein would besuitable in north of khozestan province in limited irrigation conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation" title="irrigation">irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=gel" title=" gel"> gel</a>, <a href="https://publications.waset.org/abstracts/search?q=aloe%20vera" title=" aloe vera"> aloe vera</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/30907/effect-of-different-irrigation-intervals-on-protein-and-gel-production-of-aloe-vera-aloe-barbadensis-m-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2341</span> Bio-Functional Polymeric Protein Based Materials Utilized for Soft Tissue Engineering Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Er-Yuan%20Chuang">Er-Yuan Chuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bio-mimetic matters have biological functionalities. This might be valuable in the development of versatile biomaterials. At biological fields, protein-based materials might be components to form a 3D network of extracellular biomolecules, containing growth factors. Also, the protein-based biomaterial provides biochemical and structural assistance of adjacent cells. In this study, we try to prepare protein based biomaterial, which was harvested from living animal. We analyzed it’s chemical, physical and biological property in vitro. Besides, in vivo bio-interaction of the prepared biomimetic matrix was tested in an animal model. The protein-based biomaterial has degradability and biocompatibility. This development could be used for tissue regenerations and be served as platform technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=protein%20based" title="protein based">protein based</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20study" title=" in vitro study"> in vitro study</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo%20study" title=" in vivo study"> in vivo study</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a> </p> <a href="https://publications.waset.org/abstracts/105449/bio-functional-polymeric-protein-based-materials-utilized-for-soft-tissue-engineering-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2340</span> Protein Isolates from Chickpea (Cicer arietinum L.) and Its Application in Cake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdullah%20Ahmed">Mohamed Abdullah Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a study of chickpea protein isolate (CPI) preparation, the wet alkaline extraction was carried out. The objectives were to determine the optimal extracting conditions of CPI and apply CPI into a sponge cake recipe to replace egg and make acceptable product. The design used in extraction was a central composite design. The response surface methodology was preferred to graphically express the relationship between extraction time and pH with the output variables of percent yield and protein content of CPI. It was noted that optimal extracting conditions were 60 min and pH 10.5 resulting in 90.07% protein content and 89.15% yield of CPI. The protein isolate (CPI) could be incorporated in cake to 20% without adversely affecting the cake physical properties such as cake hardness and sensory attributes. The higher protein content in cake was corresponding to the amount of CPI added. Therefore, adding CPI can significantly (p<0.05) increase protein content in cake. However, sensory evaluation showed that adding more than 20% of CPI decreased the overall acceptability. The results of this investigation could be used as a basic knowledge of CPI utilization in other food products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chick%20bean%20protein%20isolate" title="chick bean protein isolate">chick bean protein isolate</a>, <a href="https://publications.waset.org/abstracts/search?q=sponge%20cake" title=" sponge cake"> sponge cake</a>, <a href="https://publications.waset.org/abstracts/search?q=utilization" title=" utilization"> utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=sponge" title=" sponge "> sponge </a> </p> <a href="https://publications.waset.org/abstracts/10335/protein-isolates-from-chickpea-cicer-arietinum-l-and-its-application-in-cake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2339</span> Combining in vitro Protein Expression with AlphaLISA Technology to Study Protein-Protein Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shayli%20Varasteh%20Moradi">Shayli Varasteh Moradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wayne%20A.%20Johnston"> Wayne A. Johnston</a>, <a href="https://publications.waset.org/abstracts/search?q=Dejan%20Gagoski"> Dejan Gagoski</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirill%20Alexandrov"> Kirill Alexandrov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for a rapid and more efficient technique to identify protein-protein interaction particularly in the areas of therapeutics and diagnostics development is growing. The method described here is a rapid in vitro protein-protein interaction analysis approach based on AlphaLISA technology combined with Leishmania tarentolae cell-free protein production (LTE) system. Cell-free protein synthesis allows the rapid production of recombinant proteins in a multiplexed format. Among available in vitro expression systems, LTE offers several advantages over other eukaryotic cell-free systems. It is based on a fast growing fermentable organism that is inexpensive in cultivation and lysate production. High integrity of proteins produced in this system and the ability to co-express multiple proteins makes it a desirable method for screening protein interactions. Following the translation of protein pairs in LTE system, the physical interaction between proteins of interests is analysed by AlphaLISA assay. The assay is performed using unpurified in vitro translation reaction and therefore can be readily multiplexed. This approach can be used in various research applications such as epitope mapping, antigen-antibody analysis and protein interaction network mapping. The intra-viral protein interaction network of Zika virus was studied using the developed technique. The viral proteins were co-expressed pair-wise in LTE and all possible interactions among viral proteins were tested using AlphaLISA. The assay resulted to the identification of 54 intra-viral protein-protein interactions from which 19 binary interactions were found to be novel. The presented technique provides a powerful tool for rapid analysis of protein-protein interaction with high sensitivity and throughput. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlphaLISA%20technology" title="AlphaLISA technology">AlphaLISA technology</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-free%20protein%20expression" title=" cell-free protein expression"> cell-free protein expression</a>, <a href="https://publications.waset.org/abstracts/search?q=epitope%20mapping" title=" epitope mapping"> epitope mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=Leishmania%20tarentolae" title=" Leishmania tarentolae"> Leishmania tarentolae</a>, <a href="https://publications.waset.org/abstracts/search?q=protein-protein%20interaction" title=" protein-protein interaction"> protein-protein interaction</a> </p> <a href="https://publications.waset.org/abstracts/81407/combining-in-vitro-protein-expression-with-alphalisa-technology-to-study-protein-protein-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2338</span> An Efficient Algorithm for Global Alignment of Protein-Protein Interaction Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duc%20Dong%20Do">Duc Dong Do</a>, <a href="https://publications.waset.org/abstracts/search?q=Ngoc%20Ha%20Tran"> Ngoc Ha Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanh%20Hai%20Dang"> Thanh Hai Dang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cao%20Cuong%20Dang"> Cao Cuong Dang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuan%20Huan%20Hoang"> Xuan Huan Hoang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global aligning two protein-protein interaction networks is an essentially important task in bioinformatics/computational biology field of study. It is a challenging and widely studied research topic in recent years. Accurately aligned networks allow us to identify functional modules of proteins and/ororthologous proteins from which unknown functions of a protein can be inferred. We here introduce a novel efficient heuristic global network alignment algorithm called FASTAn, including two phases: the first to construct an initial alignment and the second to improve such alignment by exerting a local optimization repeated procedure. The experimental results demonstrated that FASTAn outperformed the state-of-the-art global network alignment algorithm namely SPINAL in terms of both commonly used objective scores and the run-time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FASTAn" title="FASTAn">FASTAn</a>, <a href="https://publications.waset.org/abstracts/search?q=Heuristic%20algorithm" title=" Heuristic algorithm"> Heuristic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20network%20alignment" title=" biological network alignment"> biological network alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=protein-protein%20interaction%20networks" title=" protein-protein interaction networks"> protein-protein interaction networks</a> </p> <a href="https://publications.waset.org/abstracts/17228/an-efficient-algorithm-for-global-alignment-of-protein-protein-interaction-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">603</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2337</span> DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Zhou">Xiao Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianlin%20Cheng"> Jianlin Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A single amino acid mutation can have a significant impact on the stability of protein structure. Thus, the prediction of protein stability change induced by single site mutations is critical and useful for studying protein function and structure. Here, we presented a deep learning network with the dropout technique for predicting protein stability changes upon single amino acid substitution. While using only protein sequence as input, the overall prediction accuracy of the method on a standard benchmark is >85%, which is higher than existing sequence-based methods and is comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results demonstrate that deep learning is a promising technique for protein stability prediction. The good performance of this sequence-based method makes it a valuable tool for predicting the impact of mutations on most proteins whose experimental structures are not available. Both the downloadable software package and the user-friendly web server (DNpro) that implement the method for predicting protein stability changes induced by amino acid mutations are freely available for the community to use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title="bioinformatics">bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20stability%20prediction" title=" protein stability prediction"> protein stability prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20data%20mining" title=" biological data mining"> biological data mining</a> </p> <a href="https://publications.waset.org/abstracts/48058/dnpro-a-deep-learning-network-approach-to-predicting-protein-stability-changes-induced-by-single-site-mutations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2336</span> Magnetic Nanoparticles for Protein C Purification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duygu%20%C3%87imen">Duygu Çimen</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilay%20Bereli"> Nilay Bereli</a>, <a href="https://publications.waset.org/abstracts/search?q=Adil%20Denizli"> Adil Denizli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study is to synthesis magnetic nanoparticles for purify protein C. For this aim, N-Methacryloyl-(L)-histidine methyl ester (MAH) containing 2-hydroxyethyl methacrylate (HEMA) based magnetic nanoparticles were synthesized by using micro-emulsion polymerization technique for templating protein C via metal chelation. The obtained nanoparticles were characterized with Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), zeta-size analysis and electron spin resonance (ESR) spectroscopy. After that, they were used for protein C purification from aqueous solution to evaluate/optimize the adsorption condition. Hereby, the effecting factors such as concentration, pH, ionic strength, temperature, and reusability were evaluated. As the last step, protein C was determined with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immobilized%20metal%20affinity%20chromatography%20%28IMAC%29" title="immobilized metal affinity chromatography (IMAC)">immobilized metal affinity chromatography (IMAC)</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticle" title=" magnetic nanoparticle"> magnetic nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20C" title=" protein C"> protein C</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyethyl%20methacrylate%20%28HEMA%29" title=" hydroxyethyl methacrylate (HEMA)"> hydroxyethyl methacrylate (HEMA)</a> </p> <a href="https://publications.waset.org/abstracts/30767/magnetic-nanoparticles-for-protein-c-purification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2335</span> Comprehending the Relationship between the Red Blood Cells of a Protein 4.1 -/- Patient and Those of Healthy Controls: A Comprehensive Analysis of Tandem Mass Spectrometry Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Hjazi">Ahmed M. Hjazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bader%20M.%20Hjazi"> Bader M. Hjazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protein 4.1 is a crucial component of complex interactions between the cytoskeleton and other junctional complex proteins. When the gene encoding this protein is altered, resulting in reduced expression, or when the protein is absent, the red cell undergoes a significant structural change. This research aims to achieve a deeper comprehension of the biochemical effects of red cell protein deficiency. A Tandem Mass Spectrometry Analysis (TMT-MS/MS) of patient cells lacking protein 4.1 compared to three healthy controls was achieved by the Proteomics Institute of the University of Bristol. The SDS-PAGE and Western blotting were utilized on the original patient sample and controls to partially confirm TMT MS/MS data analysis of the protein-4.1-deficient cells. Compared to healthy controls, protein levels in samples lacking protein 4.1 had a significantly higher concentration of proteins that probably originated from reticulocytes. This could occur if the patient has an elevated reticulocyte count. The increase in chaperone and reticulocyte-associated proteins was most notable in this study. This may result from elevated quantities of reticulocytes in patients with hereditary elliptocytosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hereditary%20elliptocytosis" title="hereditary elliptocytosis">hereditary elliptocytosis</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%204.1" title=" protein 4.1"> protein 4.1</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20cells" title=" red cells"> red cells</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem%20mass%20spectrometry%20data." title=" tandem mass spectrometry data."> tandem mass spectrometry data.</a> </p> <a href="https://publications.waset.org/abstracts/165174/comprehending-the-relationship-between-the-red-blood-cells-of-a-protein-41-patient-and-those-of-healthy-controls-a-comprehensive-analysis-of-tandem-mass-spectrometry-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2334</span> A Novel Protein Elicitor Extracted From Lecanicillium lecanii Induced Resistance Against Whitefly, Bemisia tabaci in Cotton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Ali%20Abdulle">Yusuf Ali Abdulle</a>, <a href="https://publications.waset.org/abstracts/search?q=Azhar%20Uddin%20Keerio"> Azhar Uddin Keerio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Protein elicitors play a key role in signaling or displaying plant defense mechanisms and emerging as vital tools for bio-control of insects. This study was aimed at the characterization of the novel protein elicitor isolated from entomopathogenic fungi Lecanicillium lecanii (V3) strain and its activity against Whitefly, Bemisia tabaci in cotton. The sequence of purified elicitor protein showed 100% similarity with hypothetical protein LEL_00878 [Cordyceps confragosa RCEF 1005], GenBank no (OAA81333.1). This novel protein elicitor has 253 amino acid residues and 762bp with a molecular mass of 29 kDa. The protein recombinant was expressed in Escherichia coli using pET‐28a (+) plasmid. Effects of purified novel protein elicitor on Bemisia tabaci were determined at three concentrations of protein (i.e., 58.32, 41.22, 35.41 μg mL⁻¹) on cotton plants and were exposed to newly molted adult B.tabaci. Bioassay results showed a significant effect of the exogenous application of novel protein elicitor on B. tabaci in cotton. In addition, the gene expression analysis found a significant up-regulation of the major genes associated with salicylic acid (SA) and jasmonic acid (JA) linked plant defense pathways in elicitor protein-treated plants. Our results suggested the potential application of a novel protein elicitor derived from Lecanicillium lecanii as a future bio-intensive controlling approach against the whitefly, Bemisia tabaci. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resistance" title="resistance">resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=Lecanicillium%20lecanii" title=" Lecanicillium lecanii"> Lecanicillium lecanii</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20metabolites" title=" secondary metabolites"> secondary metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=whitefly" title=" whitefly"> whitefly</a> </p> <a href="https://publications.waset.org/abstracts/151545/a-novel-protein-elicitor-extracted-from-lecanicillium-lecanii-induced-resistance-against-whitefly-bemisia-tabaci-in-cotton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2333</span> Computational Identification of Signalling Pathways in Protein Interaction Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angela%20U.%20Makolo">Angela U. Makolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Temitayo%20A.%20Olagunju"> Temitayo A. Olagunju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge of signaling pathways is central to understanding the biological mechanisms of organisms since it has been identified that in eukaryotic organisms, the number of signaling pathways determines the number of ways the organism will react to external stimuli. Signaling pathways are studied using protein interaction networks constructed from protein-protein interaction data obtained using high throughput experimental procedures. However, these high throughput methods are known to produce very high rates of false positive and negative interactions. In order to construct a useful protein interaction network from this noisy data, computational methods are applied to validate the protein-protein interactions. In this study, a computational technique to identify signaling pathways from a protein interaction network constructed using validated protein-protein interaction data was designed. A weighted interaction graph of the Saccharomyces cerevisiae (Baker’s Yeast) organism using the proteins as the nodes and interactions between them as edges was constructed. The weights were obtained using Bayesian probabilistic network to estimate the posterior probability of interaction between two proteins given the gene expression measurement as biological evidence. Only interactions above a threshold were accepted for the network model. A pathway was formalized as a simple path in the interaction network from a starting protein and an ending protein of interest. We were able to identify some pathway segments, one of which is a segment of the pathway that signals the start of the process of meiosis in S. cerevisiae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20networks" title="Bayesian networks">Bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20interaction%20networks" title=" protein interaction networks"> protein interaction networks</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title=" Saccharomyces cerevisiae"> Saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=signalling%20pathways" title=" signalling pathways"> signalling pathways</a> </p> <a href="https://publications.waset.org/abstracts/22095/computational-identification-of-signalling-pathways-in-protein-interaction-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2332</span> Inheritance of Protein Content and Grain Yield in Half Diallel Maize (Zea mays L.) Populations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%20Ebru%20Orhun">Gül Ebru Orhun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A half diallel crossing design was carried out during 2011 and 2012 growing seasons under Çanakkale-Turkey ecological conditions. In this research, 20 F1 maize hybrids obtained by 6x6 half diallel crossing were used. Gene action for protein content and grain yield traits were explored in half set involving six elite inbred lines. According to the results diallel analysis dominance and additive gene variances were determined for protein content. Variance/Co-variance graphs revealed for grain yield and protein content traits. In this study, inheritance of grain yield and protein content demonstrated over-dominance type of gene action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=protein" title="protein">protein</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=inheritance" title=" inheritance"> inheritance</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20action" title=" gene action"> gene action</a> </p> <a href="https://publications.waset.org/abstracts/17608/inheritance-of-protein-content-and-grain-yield-in-half-diallel-maize-zea-mays-l-populations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2331</span> Interaction of Dietary Protein and Vitamin E Supplementation on Gastrointestinal Nematode (Gnt) Parasitism of Naturally Infected Lambs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayobami%20Adeyemo">Ayobami Adeyemo</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20%20Chimonyo"> Michael Chimonyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Munyaradzi%20Marufu"> Munyaradzi Marufu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gastrointestinal nematode (GNT) infection significantly hinder sustainable and profitable sheep production on rangelands. While vitamin E and protein supplementation have individually proven to improve host immunity to parasitism in lambs, to our knowledge, there is no information on the interaction of dietary vitamin E and protein supplementation on lamb growth and GIN faecal egg counts in naturally infected lambs. Therefore, the current study investigated the interaction of dietary protein and vitamin E supplementation on faecal egg counts (FEC) and growth performance of lambs. Twenty four Dohne Merino lambs aged 12 months were allocated equally to each of four treatment combinations, with six lambs in each treatment group for a period of eight weeks. Treatment one lambs received dietary protein and vitamin E (PE), treatment two lambs received dietary protein and no vitamin E (PNE), treatment three received dietary vitamin E and no protein (NPE), and treatment four received no dietary protein and vitamin E supplementation (NPNE). The lambs were allowed to graze on Pennisetum clandestinum contaminated with a heavy load of nematodes. Dietary protein supplementation increased (P < 0.01) average daily gain (ADG) and body condition scores (BCS). Dietary vitamin E supplementation had no effect (P > 0.05) on ADG and BCS. There was no interaction (P > 0.05) between dietary protein and vitamin E supplementation on ADG and BCS. Combined supplementation of dietary protein and vitamin E supplementation significantly reduced (P < 0.01) faecal egg counts and larval counts, respectively. Also, dietary protein and vitamin E supplementation reduced GNT faecal egg counts over the exposure period. The current findings support the hypothesis that the interaction of dietary protein and vitamin E supplementation reduced faecal egg counts and larval counts in lambs. This necessitates future findings on the interaction of dietary protein and vitamin E supplementation on blood associated profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gastrointestinal%20nematodes" title="gastrointestinal nematodes">gastrointestinal nematodes</a>, <a href="https://publications.waset.org/abstracts/search?q=nematode%20eggs" title=" nematode eggs"> nematode eggs</a>, <a href="https://publications.waset.org/abstracts/search?q=Haemonchus" title=" Haemonchus"> Haemonchus</a>, <a href="https://publications.waset.org/abstracts/search?q=Trichostrongylus" title=" Trichostrongylus"> Trichostrongylus</a> </p> <a href="https://publications.waset.org/abstracts/88994/interaction-of-dietary-protein-and-vitamin-e-supplementation-on-gastrointestinal-nematode-gnt-parasitism-of-naturally-infected-lambs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2330</span> Effects of Dietary Protein and Lipid Levels on Growth and Body Composition of Juvenile Fancy Carp, Cyprinus carpio var. Koi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Choi">Jin Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Aminikhoei"> Zahra Aminikhoei</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Oh%20Kim"> Yi-Oh Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Min%20Lee"> Sang-Min Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 4 × 2 factorial experiment was conducted to determine the optimum dietary protein and lipid levels for juvenile fancy carp, Cyprinus carpio var. koi. Eight experimental diets were formulated to contain four protein levels (200, 300, 400, and 500 g kg-1) with two lipid levels (70 and 140 g kg-1). Triplicate groups of fish (initial weight, 12.1±0.2 g fish-1) were hand-fed the diets to apparent satiation for 8 weeks. Weight gain, daily feed intake, feed efficiency ratio and protein efficiency ratio were significantly (P < 0.0001) affected by dietary protein level, but not by dietary lipid level (P > 0.05). Weight gain and feed efficiency ratio tended to increase as dietary protein level increased up to 400 and 500 g kg-1, respectively. Daily feed intake of fish decreased with increasing dietary protein level and that of fish fed diet contained 500 g kg-1 protein was significantly lower than other fish groups. The protein efficiency ratio of fish fed 400 and 500 g kg-1 protein was lower than that of fish fed 200 and 300 g kg-1 protein. Moisture, crude protein and crude lipid contents of muscle and liver were significantly affected by dietary protein, but not by dietary lipid level (P > 0.05). The increase in dietary lipid level resulted in an increase in linoleic acid in liver and muscle paralleled with a decrease in n-3 highly unsaturated fatty acids content in muscle of fish. In considering these results, it was concluded that the diet containing 400 g kg-1 protein with 70 g kg-1 lipid level is optimal for growth and efficient feed utilization of juvenile fancy carp. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fancy%20carp" title="fancy carp">fancy carp</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20protein" title=" dietary protein"> dietary protein</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20lipid" title=" dietary lipid"> dietary lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyprinus%20carpio" title=" Cyprinus carpio"> Cyprinus carpio</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a> </p> <a href="https://publications.waset.org/abstracts/17701/effects-of-dietary-protein-and-lipid-levels-on-growth-and-body-composition-of-juvenile-fancy-carp-cyprinus-carpio-var-koi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2329</span> Isolation, Preparation and Biological Properties of Soybean-Flaxseed Protein Co-Precipitates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20H.%20Alu%E2%80%99datt">Muhammad H. Alu’datt</a>, <a href="https://publications.waset.org/abstracts/search?q=Inteaz%20Alli"> Inteaz Alli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to prepare and evaluate the biological properties of protein co-precipitates from flaxseed and soybean. Protein was prepared by NaOH extraction through the mixing of soybean flour (Sf) and flaxseed flour (Ff) or mixtures of soybean extract (Se) and flaxseed extract (Fe). The protein co-precipitates were precipitated by isoelectric (IEP) and isoelectric-heating (IEPH) co-precipitation techniques. Effects of extraction and co-precipitation techniques on co-precipitate yield were investigated. Native-PAGE, SDS-PAGE were used to study the molecular characterization. Content and antioxidant activity of extracted free and bound phenolic compounds were evaluated for protein co-precipitates. Removal of free and bound phenolic compounds from protein co-precipitates showed little effects on the electrophoretic behavior of the proteins or the protein subunits of protein co-precipitates. Results showed that he highest protein contents and yield were obtained in for Sf-Ff/IEP co-precipitate with values of 53.28 and 25.58% respectively as compared to protein isolates and other co-precipitates. Results revealed that the Sf-Ff/IEP showed a higher content of bound phenolic compounds (53.49% from total phenolic content) as compared to free phenolic compounds (46.51% from total phenolic content). Antioxidant activities of extracted bound phenolic compounds with and without heat treatment from Sf-Ff/IEHP were higher as compared to free phenolic compounds extracted from other protein co-precipitates (29.68 and 22.84%, respectively). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20co-precipitate" title=" protein co-precipitate"> protein co-precipitate</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/47994/isolation-preparation-and-biological-properties-of-soybean-flaxseed-protein-co-precipitates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2328</span> Antifungal Protein ~35kDa Produced by Bacillus cereus Inhibits the Growth of Some Molds and Yeasts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleh%20H.%20Salmen">Saleh H. Salmen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Ali%20Alharbi"> Sulaiman Ali Alharbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hany%20M.%20Yehia"> Hany M. Yehia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20Khiyami"> Mohammad A. Khiyami</a>, <a href="https://publications.waset.org/abstracts/search?q=Milton%20Wainwright"> Milton Wainwright</a>, <a href="https://publications.waset.org/abstracts/search?q=Naiyf%20S.%20Alharbi"> Naiyf S. Alharbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arunachalam%20Chinnathambi"> Arunachalam Chinnathambi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An antifungal protein synthesized by Bacillus cereus has been partially purified by the use of ammonium sulfate precipitation and Sephadex-G-200 column chromatography. The protein was produced from Bacillus cereus grown in potato Dextrose Broth Medium (PDB) at 30 ºC for 3 days at 100 rpm. The protein showed antagonistic effect against some fungi and yeasts. Crude extract from medium and semi-purified protein were tested in vitro against both fungi and yeasts using the disc diffusion method in order to detect the inhibitory effect of the protein. Zones of inhibition of the following diameter were found (mm) were Alternaria alternate (28), Rhodotorula glutinis (20), Fusarium sp. (16), Rhizopus sp. (15), Penicillium digitatum (13), Mucor sp. (13) and Aspergillus niger (10). The isolated protein was found to have a molecular weight of ~35kDa by sodium deodecyl sulfate-poly acrylamide gel electrophoresis. The data showed that the protein of Bacillus cereus has antifungal activity, a fact which points to the possibility of using it as a bio-control agent against some fungi, findings which emphasize the potential role of B. cereus as an important bio-control agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacillus%20cereus" title="bacillus cereus">bacillus cereus</a>, <a href="https://publications.waset.org/abstracts/search?q=~35kDa%20protein" title=" ~35kDa protein"> ~35kDa protein</a>, <a href="https://publications.waset.org/abstracts/search?q=molds" title=" molds"> molds</a>, <a href="https://publications.waset.org/abstracts/search?q=yeasts" title=" yeasts"> yeasts</a> </p> <a href="https://publications.waset.org/abstracts/3422/antifungal-protein-35kda-produced-by-bacillus-cereus-inhibits-the-growth-of-some-molds-and-yeasts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2327</span> The Effect of Sorafenibe on Soat1 Protein by Using Molecular Docking Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdiyeh%20Gholaminezhad">Mahdiyeh Gholaminezhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: The study focuses on the potential impact of Sorafenib on SOAT1 protein in liver cancer treatment, addressing the need for more effective therapeutic options. Research aim: To explore the effects of Sorafenib on the activity of SOAT1 protein in liver cancer cells. Methodology: Molecular docking was employed to analyze the interaction between Sorafenib and SOAT1 protein. Findings: The study revealed a significant effect of Sorafenib on the stability and activity of SOAT1 protein, suggesting its potential as a treatment for liver cancer. Theoretical importance: This research highlights the molecular mechanism underlying Sorafenib's anti-cancer properties, contributing to the understanding of its therapeutic effects. Data collection: Data on the molecular structure of Sorafenib and SOAT1 protein were obtained from computational simulations and databases. Analysis procedures: Molecular docking simulations were performed to predict the binding interactions between Sorafenib and SOAT1 protein. Question addressed: How does Sorafenib influence the activity of SOAT1 protein and what are the implications for liver cancer treatment? Conclusion: The study demonstrates the potential of Sorafenib as a targeted therapy for liver cancer by affecting the activity of SOAT1 protein. Reviewers' Comments: The study provides valuable insights into the molecular basis of Sorafenib's action on SOAT1 protein, suggesting its therapeutic potential. To enhance the methodology, the authors could consider validating the docking results with experimental data for further validation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liver%20cancer" title="liver cancer">liver cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=sorafenib" title=" sorafenib"> sorafenib</a>, <a href="https://publications.waset.org/abstracts/search?q=SOAT1" title=" SOAT1"> SOAT1</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a> </p> <a href="https://publications.waset.org/abstracts/189263/the-effect-of-sorafenibe-on-soat1-protein-by-using-molecular-docking-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2326</span> Protein and Lipid Extraction from Microalgae with Ultrasound Assisted Osmotic Shock Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nais%20Pinta%20Adetya">Nais Pinta Adetya</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hadiyanto"> H. Hadiyanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microalgae has a potential to be utilized as food and natural colorant. The microalgae components consists of three main parts, these are lipid, protein, and carbohydrate. Crucial step in producing lipid and protein from microalgae is extraction. Microalgae has high water level (70-90%), it causes drying process of biomass needs much more energy and also has potential to distract lipid and protein from microalgae. Extraction of lipid from wet biomass is able to take place efficiently with cell disruption of microalgae by osmotic shock method. In this study, osmotic shock method was going to be integrated with ultrasound to maximalize the extraction yield of lipid and protein from wet biomass Spirulina sp. with osmotic shock method assisted ultrasound. This study consisted of two steps, these were osmotic shock process toward wet biomass and ultrasound extraction assisted. NaCl solution was used as osmotic agent, with the variation of concentrations were 10%, 20%, and 30%. Extraction was conducted in 40°C for 20 minutes with frequency of ultrasound wave was 40kHz. The optimal yield of protein (2.7%) and (lipid 38%) were achieved at 20% osmotic agent concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=osmotic%20shock" title=" osmotic shock"> osmotic shock</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/76886/protein-and-lipid-extraction-from-microalgae-with-ultrasound-assisted-osmotic-shock-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=C-reactive%20protein&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=C-reactive%20protein&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=C-reactive%20protein&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=C-reactive%20protein&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=C-reactive%20protein&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=C-reactive%20protein&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=C-reactive%20protein&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=C-reactive%20protein&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=C-reactive%20protein&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=C-reactive%20protein&amp;page=78">78</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=C-reactive%20protein&amp;page=79">79</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=C-reactive%20protein&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10