CINXE.COM
Search results for: tuneable resistors
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tuneable resistors</title> <meta name="description" content="Search results for: tuneable resistors"> <meta name="keywords" content="tuneable resistors"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tuneable resistors" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tuneable resistors"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 31</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tuneable resistors</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Comparative Performance Analysis of Nonlinearity Cancellation Techniques for MOS-C Realization in Integrator Circuits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20%C3%87i%C3%A7ekli">Hasan Çiçekli</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20G%C3%B6k%C3%A7en"> Ahmet Gökçen</a>, <a href="https://publications.waset.org/abstracts/search?q=U%C4%9Fur%20%C3%87am"> Uğur Çam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a comparative performance analysis of mostly used four nonlinearity cancellation techniques used to realize the passive resistor by MOS transistors is presented. The comparison is done by using an integrator circuit which is employing sequentially Op-amp, OTRA and ICCII as active element. All of the circuits are implemented by MOS-C realization and simulated by PSPICE program using 0.35 µm process TSMC MOSIS model parameters. With MOS-C realization, the circuits became electronically tunable and fully integrable which is very important in IC design. The output waveforms, frequency responses, THD analysis results and features of the nonlinearity cancellation techniques are also given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrator%20circuits" title="integrator circuits">integrator circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=MOS-C%20realization" title=" MOS-C realization"> MOS-C realization</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinearity%20cancellation" title=" nonlinearity cancellation"> nonlinearity cancellation</a>, <a href="https://publications.waset.org/abstracts/search?q=tuneable%20resistors" title=" tuneable resistors"> tuneable resistors</a> </p> <a href="https://publications.waset.org/abstracts/38167/comparative-performance-analysis-of-nonlinearity-cancellation-techniques-for-mos-c-realization-in-integrator-circuits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Ge₁₋ₓSnₓ Alloys with Tuneable Energy Band Gap on GaAs (100) Substrate Manufactured by a Modified Magnetron Co-Sputtering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Qian">Li Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinchao%20Tong"> Jinchao Tong</a>, <a href="https://publications.waset.org/abstracts/search?q=Daohua%20Zhang"> Daohua Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weijun%20Fan"> Weijun Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Suo"> Fei Suo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photonic applications based on group IV semiconductors have always been an interest but also a challenge for the research community. We report manufacturing group IV Ge₁₋ₓSnₓ alloys with tuneable energy band gap on (100) GaAs substrate by a modified radio frequency magnetron co-sputtering. Images were taken by atomic force microscope, and scanning electron microscope clearly demonstrates a smooth surface profile, and Ge₁₋ₓSnₓ nano clusters are with the size of several tens of nanometers. Transmittance spectra were measured by Fourier Transform Infrared Spectroscopy that showed changing energy gaps with the variation in elementary composition. Calculation results by 8-band k.p method are consistent with measured gaps. Our deposition system realized direct growth of Ge₁₋ₓSnₓ thin film on GaAs (100) substrate by sputtering. This simple deposition method was modified to be able to grow high-quality photonic materials with tuneable energy gaps. This work provides an alternative and successful method for fabricating Group IV photonic semiconductor materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GeSn" title="GeSn">GeSn</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20growth" title=" crystal growth"> crystal growth</a>, <a href="https://publications.waset.org/abstracts/search?q=sputtering" title=" sputtering"> sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic" title=" photonic"> photonic</a> </p> <a href="https://publications.waset.org/abstracts/96173/ge1sn-alloys-with-tuneable-energy-band-gap-on-gaas-100-substrate-manufactured-by-a-modified-magnetron-co-sputtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> CMOS Positive and Negative Resistors Based on Complementary Regulated Cascode Topology with Cross-Coupled Regulated Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kittipong%20Tripetch">Kittipong Tripetch</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobuhiko%20Nakano"> Nobuhiko Nakano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two types of floating active resistors based on a complementary regulated cascode topology with cross-coupled regulated transistors are presented in this paper. The first topology is a high swing complementary regulated cascode active resistor. The second topology is a complementary common gate with a regulated cross coupled transistor. The small-signal input resistances of the floating resistors are derived. Three graphs of the input current versus the input voltage for different aspect ratios are designed and plotted using the Cadence Spectre 0.18-µm Rohm Semiconductor process. The total harmonic distortion graphs are plotted for three different aspect ratios with different input-voltage amplitudes and different input frequencies. From the simulation results, it is observed that a resistance of approximately 8.52 MΩ can be obtained from supply voltage at ±0.9 V. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20active%20resistor" title="floating active resistor">floating active resistor</a>, <a href="https://publications.waset.org/abstracts/search?q=complementary%20common%20gate" title=" complementary common gate"> complementary common gate</a>, <a href="https://publications.waset.org/abstracts/search?q=complementary%20regulated%20cascode" title=" complementary regulated cascode"> complementary regulated cascode</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20mirror" title=" current mirror"> current mirror</a> </p> <a href="https://publications.waset.org/abstracts/82300/cmos-positive-and-negative-resistors-based-on-complementary-regulated-cascode-topology-with-cross-coupled-regulated-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Analyzing the Effectiveness of a Bank of Parallel Resistors, as a Burden Compensation Technique for Current Transformer's Burden, Using LabVIEW™ Data Acquisition Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dilson%20Subedi">Dilson Subedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current transformers are an integral part of power system because it provides a proportional safe amount of current for protection and measurement applications. However, due to upgradation of electromechanical relays to numerical relays and electromechanical energy meters to digital meters, the connected burden, which defines some of the CT characteristics, has drastically reduced. This has led to the system experiencing high currents damaging the connected relays and meters. Since the protection and metering equipment's are designed to withstand only certain amount of current with respect to time, these high currents pose a risk to man and equipment. Therefore, during such instances, the CT saturation characteristics have a huge influence on the safety of both man and equipment and on the reliability of the protection and metering system. This paper shows the effectiveness of a bank of parallel connected resistors, as a burden compensation technique, in compensating the burden of under-burdened CT’s. The response of the CT in the case of failure of one or more resistors at different levels of overcurrent will be captured using the LabVIEWTM data acquisition hardware (DAQ). The analysis is done on the real-time data gathered using LabVIEWTM. Variation of current transformer saturation characteristics with changes in burden will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy%20limiting%20factor" title="accuracy limiting factor">accuracy limiting factor</a>, <a href="https://publications.waset.org/abstracts/search?q=burden" title=" burden"> burden</a>, <a href="https://publications.waset.org/abstracts/search?q=burden%20compensation" title=" burden compensation"> burden compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20transformer" title=" current transformer"> current transformer</a> </p> <a href="https://publications.waset.org/abstracts/53689/analyzing-the-effectiveness-of-a-bank-of-parallel-resistors-as-a-burden-compensation-technique-for-current-transformers-burden-using-labview-data-acquisition-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Teaching the Temperature Dependence of Electrical Resistance of Materials through Arduino Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinit%20Srivastava">Vinit Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhay%20Singh%20Thakur"> Abhay Singh Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivam%20Dubey"> Shivam Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Vaish"> Rahul Vaish</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Singh%20Rajpurohit"> Bharat Singh Rajpurohit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the problem of students' poor comprehension of the thermal dependence of resistance by investigating this idea using an evidence-based inquiry approach. It suggests a practical exercise to improve secondary school students' comprehension of how materials' resistance to temperature changes. The suggested exercise uses an Arduino and Peltier device to test the resistance of aluminum and graphite at various temperatures. The study attempts to close the knowledge gap between the theoretical and practical facets of the subject, which students frequently find difficult to grasp. With the help of a variety of resistors made of various materials and pencils of varying grades, the Arduino experiment investigates the resistance of a metallic conductor (aluminum) and a semiconductor (graphite) at various temperatures. The purpose of the research is to clarify for students the relationship between temperature and resistance and to emphasize the importance of resistor material choice and measurement methods in obtaining precise and stable resistance values over dynamic temperature variations. The findings show that while the resistance of graphite decreases with temperature, the resistance of metallic conductors rises with temperature. The results also show that as softer lead pencils or pencils of a lower quality are used, the resistance values of the resistors drop. In addition, resistors showed greater stability at lower temperatures when their temperature coefficients of resistance (TCR) were smaller. Overall, the results of this article show that the suggested experiment is a useful and practical method for teaching students about resistance's relationship to temperature. It emphasizes how crucial it is to take into account the resistor material selection and the resistance measurement technique when designing and picking out resistors for various uses. The results of the study are anticipated to guide the creation of more efficient teaching methods to close the gap between science education's theoretical and practical components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistance" title="electrical resistance">electrical resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20dependence" title=" temperature dependence"> temperature dependence</a>, <a href="https://publications.waset.org/abstracts/search?q=science%20education" title=" science education"> science education</a>, <a href="https://publications.waset.org/abstracts/search?q=inquiry-based%20activity" title=" inquiry-based activity"> inquiry-based activity</a>, <a href="https://publications.waset.org/abstracts/search?q=resistor%20stability" title=" resistor stability"> resistor stability</a> </p> <a href="https://publications.waset.org/abstracts/165308/teaching-the-temperature-dependence-of-electrical-resistance-of-materials-through-arduino-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Design of Broadband Power Divider for 3G and 4G Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20El-Akhdar">A. M. El-Akhdar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20El-Tager"> A. M. El-Tager</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20El-Hennawy"> H. M. El-Hennawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a broadband power divider with equal power division ratio. Two sections of transmission line transformers based on coupled microstrip lines are applied to obtain broadband performance. In addition, design methodology is proposed for the novel structure. A prototype is designed, simulated to operate in the band from 2.1 to 3.8 GHz to fulfill the requirements of 3G and 4G applications. The proposed structure features reduced size and less resistors than other conventional techniques. Simulation verifies the proposed idea and design methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20dividers" title="power dividers">power dividers</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20lines" title=" coupled lines"> coupled lines</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip" title=" microstrip"> microstrip</a>, <a href="https://publications.waset.org/abstracts/search?q=4G%20applications" title=" 4G applications"> 4G applications</a> </p> <a href="https://publications.waset.org/abstracts/14924/design-of-broadband-power-divider-for-3g-and-4g-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Force Sensing Resistor Testing of Hand Forces and Grasps during Daily Functional Activities in the Covid-19 Pandemic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monique%20M.%20Keller">Monique M. Keller</a>, <a href="https://publications.waset.org/abstracts/search?q=Roline%20Barnes"> Roline Barnes</a>, <a href="https://publications.waset.org/abstracts/search?q=Corlia%20Brandt"> Corlia Brandt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction Scientific evidence on the hand forces and the types of grasps measurement during daily tasks are lacking, leaving a gap in the field of hand rehabilitation and robotics. Measuring the grasp forces and types produced by the individual fingers during daily functional tasks is valuable to inform and grade rehabilitation practices for second to fifth metacarpal fractures with robust scientific evidence. Feix et al, 2016 identified the most extensive and complete grasp study that resulted in the GRASP taxonomy. Covid-19 virus changed data collection across the globe and safety precautions in research are essential to ensure the health of participants and researchers. Methodology A cross-sectional study investigated six healthy adults aged 20 to 59 years, pilot participants’ hand forces during 105 tasks. The tasks were categorized into five sections namely, personal care, transport and moving around, home environment and inside, gardening and outside, and office. The predominant grasp of each task was identified guided by the GRASP Taxonomy. Grasp forces were measured with 13mm force-sensing resistors glued onto a glove attached to each of the dominant and non-dominant hand’s individual fingers. Testing equipment included Flexiforce 13millimetres FSR .5" circle, calibrated prior to testing, 10k 1/4w resistors, Arduino pro mini 5.0v – compatible, Esp-01-kit, Arduino uno r3 – compatible board, USB ab cable - 1m, Ftdi ft232 mini USB to serial, Sil 40 inline connectors, ribbon cable combo male header pins, female to female, male to female, two gloves, glue to attach the FSR to glove, Arduino software programme downloaded on a laptop. Grip strength measurements with Jamar dynamometer prior to testing and after every 25 daily tasks were taken to will avoid fatigue and ensure reliability in testing. Covid-19 precautions included wearing face masks at all times, screening questionnaires, temperatures taken, wearing surgical gloves before putting on the testing gloves 1.5 metres long wires attaching the FSR to the Arduino to maintain social distance. Findings Predominant grasps observed during 105 tasks included, adducted thumb (17), lateral tripod (10), prismatic three fingers (12), small diameter (9), prismatic two fingers (9), medium wrap (7), fixed hook (5), sphere four fingers (4), palmar (4), parallel extension (4), index finger extension (3), distal (3), power sphere (2), tripod (2), quadpod (2), prismatic four fingers (2), lateral (2), large-diameter (2), ventral (2), precision sphere (1), palmar pinch (1), light tool (1), inferior pincher (1), and writing tripod (1). Range of forces applied per category, personal care (1-25N), transport and moving around (1-9 N), home environment and inside (1-41N), gardening and outside (1-26.5N), and office (1-20N). Conclusion Scientifically measurements of finger forces with careful consideration to types of grasps used in daily tasks should guide rehabilitation practices and robotic design to ensure a return to the full participation of the individual into the community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activities%20of%20daily%20living%20%28ADL%29" title="activities of daily living (ADL)">activities of daily living (ADL)</a>, <a href="https://publications.waset.org/abstracts/search?q=Covid-19" title=" Covid-19"> Covid-19</a>, <a href="https://publications.waset.org/abstracts/search?q=force-sensing%20resistors" title=" force-sensing resistors"> force-sensing resistors</a>, <a href="https://publications.waset.org/abstracts/search?q=grasps" title=" grasps"> grasps</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20forces" title=" hand forces"> hand forces</a> </p> <a href="https://publications.waset.org/abstracts/138006/force-sensing-resistor-testing-of-hand-forces-and-grasps-during-daily-functional-activities-in-the-covid-19-pandemic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Compensation of Cable Attenuation in Step Current Generators to Enable the Convolution Method for Calibration of Current Transducers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Treyer">P. Treyer</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kujda"> M. Kujda</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Urs"> H. Urs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to digitally compensate for the apparent discharge time constant of the coaxial cable so that the current step response is flat and can be used to calibrate current transducers using the convolution method. For proper use of convolution, the step response record length is required to be at least the same as the waveform duration to be evaluated. The current step generator based on the cable discharge is compared to the Blumlein generator. Moreover, the influence of each component of the system on the performance of the step is described, which allows building the appropriate measurement set-up. In the end, the calibration of current viewing resistors dedicated to high current impulse is computed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blumlein%20generator" title="Blumlein generator">Blumlein generator</a>, <a href="https://publications.waset.org/abstracts/search?q=cable%20attenuation" title=" cable attenuation"> cable attenuation</a>, <a href="https://publications.waset.org/abstracts/search?q=convolution" title=" convolution"> convolution</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20step%20generator" title=" current step generator"> current step generator</a> </p> <a href="https://publications.waset.org/abstracts/130233/compensation-of-cable-attenuation-in-step-current-generators-to-enable-the-convolution-method-for-calibration-of-current-transducers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Enhanced Properties of Plasma-Induced Two-Dimensional Ga₂O₃/GaS Heterostructures on Liquid Alloy Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Zhuiykov">S. Zhuiykov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karbalaei%20Akbari"> M. Karbalaei Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultra-low-level incorporation of trace impurities and dopants into two-dimensional (2D) semiconductors is a challenging step towards the development of functional electronic instruments based on 2D materials. Herein, the incorporation of sulphur atoms into 2D Ga2O3 surface oxide film of eutectic gallium-indium alloy (EGaIn) is achieved through plasma-enhanced metal-catalyst dissociation of H2S gas on EGaIn substrate. This process led to the growth of GaS crystalline nanodomains inside amorphous 2D Ga2O3 sublayer films. Consequently, 2D lateral heterophase was developed between the amorphous Ga2O3 and crystalline GaS nanodomains. The materials characterization revealed the alteration of photoluminescence (PL) characteristics and change of valence band maximum (VBM) of functionalized 2D films. The comprehensive studies by conductive atomic force microscopy (c-AFM) showed considerable enhancement of conductivity of 2D Ga2O3/GaS materials (300 times improvement) compared with that of 2D Ga2O3 film. This technique has a great potential for the fabrication of 2D metal oxide devices with tuneable electronic characteristics similar to nano junction memristors and transistors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20semiconductors" title="2D semiconductors">2D semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=Ga%E2%82%82O%E2%82%83" title=" Ga₂O₃"> Ga₂O₃</a>, <a href="https://publications.waset.org/abstracts/search?q=GaS" title=" GaS"> GaS</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma-induced%20functionalization" title=" plasma-induced functionalization"> plasma-induced functionalization</a> </p> <a href="https://publications.waset.org/abstracts/151056/enhanced-properties-of-plasma-induced-two-dimensional-ga2o3gas-heterostructures-on-liquid-alloy-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Proactive SoC Balancing of Li-ion Batteries for Automotive Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mashayekh">Ali Mashayekh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdiye%20Khorasani"> Mahdiye Khorasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20weyh"> Thomas weyh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for battery electric vehicles (BEV) is steadily increasing, and it can be assumed that electric mobility will dominate the market for individual transportation in the future. Regarding BEVs, the focus of state-of-the-art research and development is on vehicle batteries since their properties primarily determine vehicles' characteristic parameters, such as price, driving range, charging time, and lifetime. State-of-the-art battery packs consist of invariable configurations of battery cells, connected in series and parallel. A promising alternative is battery systems based on multilevel inverters, which can alter the configuration of the battery cells during operation via semiconductor switches. The main benefit of such topologies is that a three-phase AC voltage can be directly generated from the battery pack, and no separate power inverters are required. Therefore, modular battery systems based on different multilevel inverter topologies and reconfigurable battery systems are currently under investigation. Another advantage of the multilevel concept is that the possibility to reconfigure the battery pack allows battery cells with different states of charge (SoC) to be connected in parallel, and thus low-loss balancing can take place between such cells. In contrast, in conventional battery systems, parallel connected (hard-wired) battery cells are discharged via bleeder resistors to keep the individual SoCs of the parallel battery strands balanced, ultimately reducing the vehicle range. Different multilevel inverter topologies and reconfigurable batteries have been described in the available literature that makes the before-mentioned advantages possible. However, what has not yet been described is how an intelligent operating algorithm needs to look like to keep the SoCs of the individual battery strands of a modular battery system with integrated power electronics balanced. Therefore, this paper suggests an SoC balancing approach for Battery Modular Multilevel Management (BM3) converter systems, which can be similarly used for reconfigurable battery systems or other multilevel inverter topologies with parallel connectivity. The here suggested approach attempts to simultaneously utilize all converter modules (bypassing individual modules should be avoided) because the parallel connection of adjacent modules reduces the phase-strand's battery impedance. Furthermore, the presented approach tries to reduce the number of switching events when changing the switching state combination. Thereby, the ohmic battery losses and switching losses are kept as low as possible. Since no power is dissipated in any designated bleeder resistors and no designated active balancing circuitry is required, the suggested approach can be categorized as a proactive balancing approach. To verify the algorithm's validity, simulations are used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20management%20system" title="battery management system">battery management system</a>, <a href="https://publications.waset.org/abstracts/search?q=BEV" title=" BEV"> BEV</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20modular%20multilevel%20management%20%28BM3%29" title=" battery modular multilevel management (BM3)"> battery modular multilevel management (BM3)</a>, <a href="https://publications.waset.org/abstracts/search?q=SoC%20balancing" title=" SoC balancing"> SoC balancing</a> </p> <a href="https://publications.waset.org/abstracts/144196/proactive-soc-balancing-of-li-ion-batteries-for-automotive-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Molecular Motors in Smart Drug Delivery Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ainoa%20Guinart">Ainoa Guinart</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Korpidou"> Maria Korpidou</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Doellerer"> Daniel Doellerer</a>, <a href="https://publications.waset.org/abstracts/search?q=Cornelia%20Palivan"> Cornelia Palivan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20L.%20Feringa"> Ben L. Feringa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stimuli responsive systems arise from the need to meet unsolved needs of current molecular drugs. Our study presents the design of a delivery system with high spatiotemporal control and tuneable release profiles. We study the incorporation of a hydrophobic synthetic molecular motor into PDMS-b-PMOXA block copolymer vesicles to create a self-assembled system. We prove their successful incorporation and selective activation by low powered visible light (λ 430 nm, 6.9 mW). We trigger the release of a fluorescent dye with high release efficiencies over sequential cycles (up to 75%) with the ability to turn on and off the release behaviour on demand by light irradiation. Low concentrations of photo-responsive units are proven to trigger release down to 1 mol% of molecular motor. Finally, we test our system in relevant physiological conditions using a lung cancer cell line and the encapsulation of an approved drug. Similar levels of cell viability are observed compared to the free-given drugshowing the potential of our platform to deliver functional drugs on demand with the same efficiency and lower toxicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20motor" title="molecular motor">molecular motor</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=light-responsive" title=" light-responsive"> light-responsive</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=selfassembly" title=" selfassembly"> selfassembly</a> </p> <a href="https://publications.waset.org/abstracts/158502/molecular-motors-in-smart-drug-delivery-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Metal-Oxide-Semiconductor-Only Process Corner Monitoring Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davit%20Mirzoyan">Davit Mirzoyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ararat%20Khachatryan"> Ararat Khachatryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A process corner monitoring circuit (PCMC) is presented in this work. The circuit generates a signal, the logical value of which depends on the process corner only. The signal can be used in both digital and analog circuits for testing and compensation of process variations (PV). The presented circuit uses only metal-oxide-semiconductor (MOS) transistors, which allow increasing its detection accuracy, decrease power consumption and area. Due to its simplicity the presented circuit can be easily modified to monitor parametrical variations of only n-type and p-type MOS (NMOS and PMOS, respectively) transistors, resistors, as well as their combinations. Post-layout simulation results prove correct functionality of the proposed circuit, i.e. ability to monitor the process corner (equivalently die-to-die variations) even in the presence of within-die variations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detection" title="detection">detection</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20corner" title=" process corner"> process corner</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20variation" title=" process variation"> process variation</a> </p> <a href="https://publications.waset.org/abstracts/65067/metal-oxide-semiconductor-only-process-corner-monitoring-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Estimation of the State of Charge of the Battery Using EFK and Sliding Mode Observer in MATLAB-Arduino/Labview</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mouna%20Abarkan">Mouna Abarkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelillah%20Byou"> Abdelillah Byou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacer%20M%27Sirdi"> Nacer M'Sirdi</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Hossain%20Abarkan"> El Hossain Abarkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the estimation of the state of charge of the battery using two types of observers. The battery model used is the combination of a voltage source, which is the open circuit battery voltage of a strength corresponding to the connection of resistors and electrolyte and a series of parallel RC circuits representing charge transfer phenomena and diffusion. An adaptive observer applied to this model is proposed, this observer to estimate the battery state of charge of the battery is based on EFK and sliding mode that is known for their robustness and simplicity implementation. The results are validated by simulation under MATLAB/Simulink and implemented in Arduino-LabView. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20of%20the%20battery" title="model of the battery">model of the battery</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20sliding%20mode%20observer" title=" adaptive sliding mode observer"> adaptive sliding mode observer</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20EFK%20observer" title=" the EFK observer"> the EFK observer</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation%20of%20state%20of%20charge" title=" estimation of state of charge"> estimation of state of charge</a>, <a href="https://publications.waset.org/abstracts/search?q=SOC" title=" SOC"> SOC</a>, <a href="https://publications.waset.org/abstracts/search?q=implementation%20in%20Arduino%2FLabView" title=" implementation in Arduino/LabView"> implementation in Arduino/LabView</a> </p> <a href="https://publications.waset.org/abstracts/88834/estimation-of-the-state-of-charge-of-the-battery-using-efk-and-sliding-mode-observer-in-matlab-arduinolabview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Compact Low-Voltage Biomedical Instrumentation Amplifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phanumas%20Khumsat">Phanumas Khumsat</a>, <a href="https://publications.waset.org/abstracts/search?q=Chalermchai%20Janmane"> Chalermchai Janmane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low-voltage instrumentation amplifier has been proposed for 3-lead electrocardiogram measurement system. The circuit’s interference rejection technique is based upon common-mode feed-forwarding where common-mode currents have cancelled each other at the output nodes. The common-mode current for cancellation is generated by means of common-mode sensing and emitter or source followers with resistors employing only one transistor. Simultaneously this particular transistor also provides common-mode feedback to the patient’s right/left leg to further reduce interference entering the amplifier. The proposed designs have been verified with simulations in 0.18-µm CMOS process operating under 1.0-V supply with CMRR greater than 80dB. Moreover ECG signals have experimentally recorded with the proposed instrumentation amplifiers implemented from discrete BJT (BC547, BC558) and MOSFET (ALD1106, ALD1107) transistors working with 1.5-V supply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram" title="electrocardiogram">electrocardiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=common-mode%20feedback" title=" common-mode feedback"> common-mode feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=common-mode%20feedforward" title=" common-mode feedforward"> common-mode feedforward</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20engineering" title=" communication engineering"> communication engineering</a> </p> <a href="https://publications.waset.org/abstracts/4913/compact-low-voltage-biomedical-instrumentation-amplifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Electronic/Optoelectronic Property Tuning in Two-Dimensional Transition Metal Dichalcogenides via High Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Xia">Juan Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiaxu%20Yan"> Jiaxu Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ze%20Xiang%20Shen"> Ze Xiang Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tuneable interlayer interactions in two-dimensional (2D) transition metal dichlcogenides (TMDs) offer an exciting platform for exploring new physics and applications by material variety, thickness, stacking sequence, electromagnetic filed, and stress/strain. Compared with the five methods mentioned above, high pressure is a clean and powerful tool to induce dramatic changes in lattice parameters and physical properties for 2D TMD materials. For instance, high pressure can strengthen the van der Waals interactions along c-axis and shorten the covalent bonds in atomic plane, leading to the typical first-order structural transition (2Hc to 2Ha for MoS2), or metallization. In particular, in the case of WTe₂, its unique symmetry endows the significant anisotropy and the corresponding unexpected properties including the giant magnetoresistance, pressure-induced superconductivity and Weyl semimetal states. Upon increasing pressure, the Raman peaks for WTe₂ at ~120 cm⁻¹, are gradually red-shifted and totally suppressed above 10 GPa, attributed to the possible structural instability of orthorhombic Td phase under high pressure and phase transition to a new monoclinic T' phase with inversion symmetry. Distinct electronic structures near Fermi level between the Td and T' phases may pave a feasible way to achieve the Weyl state tuning in one material without doping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20TMDs" title="2D TMDs">2D TMDs</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20property" title=" electronic property"> electronic property</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure" title=" high pressure"> high pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=first-principles%20calculations" title=" first-principles calculations"> first-principles calculations</a> </p> <a href="https://publications.waset.org/abstracts/76856/electronicoptoelectronic-property-tuning-in-two-dimensional-transition-metal-dichalcogenides-via-high-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Magnetic Structure and Transitions in 45% Mn Substituted HoFeO₃: A Neutron Diffraction Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karthika%20Chandran">Karthika Chandran</a>, <a href="https://publications.waset.org/abstracts/search?q=Pulkit%20Prakash"> Pulkit Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Amitabh%20Das"> Amitabh Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhosh%20P.%20N."> Santhosh P. N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rare earth orthoferrites (RFeO₃) exhibit interesting and useful magnetic properties like multiferroicity, magnetodielectric coupling, spin reorientation (SR) and exchange bias. B site doped RFeO₃ are attracting attention due to the complex and tuneable magnetic transitions. In this work, 45% Mn-doped HoFeO₃ polycrystalline sample (HoFe₀.₅₅Mn₀.₄₅O₃) was synthesized by a solid-state reaction method. The magnetic structure and transitions were studied by magnetization measurements and neutron powder diffraction methods. The neutron diffraction patterns were taken at 13 different temperatures from 7°K to 300°K (7°K and 25°K to 300°K in 25°K intervals). The Rietveld refinement was carried out by using a FULLPROF suite. The magnetic space groups and the irreducible representations were obtained by SARAh module. The room temperature neutron diffraction refinement results indicate that the sample crystallizes in an orthorhombic perovskite structure with Pnma space group with lattice parameters a = 5.6626(3) Ǻ, b = 7.5241(3) Ǻ and c = 5.2704(2) Ǻ. The temperature dependent magnetization (M-T) studies indicate the presence of two magnetic transitions in the system ( TN Fe/Mn~330°K and TSR Fe/Mn ~290°K). The inverse susceptibility vs. temperature curve shows a linear behavior above 330°K. The Curie-Weiss fit in this region gives negative Curie constant (-34.9°K) indicating the antiferromagnetic nature of the transition. The neutron diffraction refinement results indicate the presence of mixed magnetic phases Γ₄(AₓFᵧG <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron%20powder%20diffraction" title="neutron powder diffraction">neutron powder diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20orthoferrites" title=" rare earth orthoferrites"> rare earth orthoferrites</a>, <a href="https://publications.waset.org/abstracts/search?q=Rietveld%20analysis" title=" Rietveld analysis"> Rietveld analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20reorientation" title=" spin reorientation"> spin reorientation</a> </p> <a href="https://publications.waset.org/abstracts/105883/magnetic-structure-and-transitions-in-45-mn-substituted-hofeo3-a-neutron-diffraction-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> The Kinks, the Solitons, and the Shocks in Series Connected Discrete Josephson Transmission Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Kogan">Eugene Kogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We analytically study the localized running waves in the discrete Josephson transmission lines (JTL), constructed from Josephson junctions (JJ) and capacitors. The quasi-continuum approximation reduces the calculation of the running wave properties to the problem of equilibrium of an elastic rod in the potential field. Making additional approximations, we reduce the problem to the motion of the fictitious Newtonian particle in the potential well. We show that there exist running waves in the form of supersonic kinks and solitons and calculate their velocities and profiles. We show that the nonstationary smooth waves, which are small perturbations on the homogeneous non-zero background, are described by Korteweg-de Vries equation, and those on zero background -by the modified Korteweg-de Vries equation. We also study the effect of dissipation on the running waves in JTL and find that in the presence of the resistors, shunting the JJ and/or in series with the ground capacitors, the only possible stationary running waves are the shock waves, whose profiles are also found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josephson%20transmission%20line" title="Josephson transmission line">Josephson transmission line</a>, <a href="https://publications.waset.org/abstracts/search?q=shocks" title=" shocks"> shocks</a>, <a href="https://publications.waset.org/abstracts/search?q=solitary%20waves" title=" solitary waves"> solitary waves</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20waves" title=" nonlinear waves"> nonlinear waves</a> </p> <a href="https://publications.waset.org/abstracts/148051/the-kinks-the-solitons-and-the-shocks-in-series-connected-discrete-josephson-transmission-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Presentation of a Mix Algorithm for Estimating the Battery State of Charge Using Kalman Filter and Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Sedighfar">Amin Sedighfar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Moniri"> M. R. Moniri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determination of state of charge (SOC) in today’s world becomes an increasingly important issue in all the applications that include a battery. In fact, estimation of the SOC is a fundamental need for the battery, which is the most important energy storage in Hybrid Electric Vehicles (HEVs), smart grid systems, drones, UPS and so on. Regarding those applications, the SOC estimation algorithm is expected to be precise and easy to implement. This paper presents an online method for the estimation of the SOC of Valve-Regulated Lead Acid (VRLA) batteries. The proposed method uses the well-known Kalman Filter (KF), and Neural Networks (NNs) and all of the simulations have been done with MATLAB software. The NN is trained offline using the data collected from the battery discharging process. A generic cell model is used, and the underlying dynamic behavior of the model has used two capacitors (bulk and surface) and three resistors (terminal, surface, and end), where the SOC determined from the voltage represents the bulk capacitor. The aim of this work is to compare the performance of conventional integration-based SOC estimation methods with a mixed algorithm. Moreover, by containing the effect of temperature, the final result becomes more accurate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title="Kalman filter">Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=state-of-charge" title=" state-of-charge"> state-of-charge</a>, <a href="https://publications.waset.org/abstracts/search?q=VRLA%20battery" title=" VRLA battery"> VRLA battery</a> </p> <a href="https://publications.waset.org/abstracts/89493/presentation-of-a-mix-algorithm-for-estimating-the-battery-state-of-charge-using-kalman-filter-and-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Simplified 3R2C Building Thermal Network Model: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Mahbobur%20Rahman">S. M. Mahbobur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whole building energy simulation models are widely used for predicting future energy consumption, performance diagnosis and optimum control. Black box building energy modeling approach has been heavily studied in the past decade. The thermal response of a building can also be modeled using a network of interconnected resistors (R) and capacitors (C) at each node called R-C network. In this study, a model building, Case 600, as described in the “Standard Method of Test for the Evaluation of Building Energy Analysis Computer Program”, ASHRAE standard 140, is studied along with a 3R2C thermal network model and the ASHRAE clear sky solar radiation model. Although building an energy model involves two important parts of building component i.e., the envelope and internal mass, the effect of building internal mass is not considered in this study. All the characteristic parameters of the building envelope are evaluated as on Case 600. Finally, monthly building energy consumption from the thermal network model is compared with a simple-box energy model within reasonable accuracy. From the results, 0.6-9.4% variation of monthly energy consumption is observed because of the south-facing windows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ASHRAE%20case%20study" title="ASHRAE case study">ASHRAE case study</a>, <a href="https://publications.waset.org/abstracts/search?q=clear%20sky%20solar%20radiation%20model" title=" clear sky solar radiation model"> clear sky solar radiation model</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20modeling" title=" energy modeling"> energy modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20network%20model" title=" thermal network model"> thermal network model</a> </p> <a href="https://publications.waset.org/abstracts/106581/simplified-3r2c-building-thermal-network-model-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> A Customize Battery Management Approach for Satellite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Affan">Muhammad Affan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ilyas%20Raza"> Muhammad Ilyas Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Harris%20Hashmi"> Muhammad Harris Hashmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is attributed to the battery management unit design of student Satellites under Pakistan National Student Satellite Program (PNSSP). The aim has been to design a customized, low-cost, efficient, reliable and less-complex battery management scheme for the Satellite. Nowadays, Lithium Ion (Li-ion) batteries have become the de-facto standard for remote applications, especially for satellites. Li-ion cells are selected for secondary storage. The design also addresses Li-ion safety requirements by monitoring, balancing and protecting cells for safe and prolonged operation. Accurate voltage measurement of individual cells was the main challenge because all the actions triggered were based on the digital voltage measurement. For this purpose, a resistive-divider network is used to maintain simplicity and cost-effectiveness. To cater the problem of insufficient i/o pins on microcontroller, fast multiplexers and de-multiplexers were used. The discrepancy inherited in the given design is the dissipation of heat due to the dissipative resistors. However, it is still considered to be the optimum adoption, considering the simple and cost-effective nature of the passive balancing technique. Furthermore, it is a completely unique solution, customized to meet specific requirements. However, there is still an option for a more advanced and expensive design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite" title="satellite">satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20module" title=" battery module"> battery module</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20balancing" title=" passive balancing"> passive balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative" title=" dissipative"> dissipative</a> </p> <a href="https://publications.waset.org/abstracts/157071/a-customize-battery-management-approach-for-satellite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> A Test Methodology to Measure the Open-Loop Voltage Gain of an Operational Amplifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maninder%20Kaur%20Gill">Maninder Kaur Gill</a>, <a href="https://publications.waset.org/abstracts/search?q=Alpana%20Agarwal"> Alpana Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is practically not feasible to measure the open-loop voltage gain of the operational amplifier in the open loop configuration. It is because the open-loop voltage gain of the operational amplifier is very large. In order to avoid the saturation of the output voltage, a very small input should be given to operational amplifier which is not possible to be measured practically by a digital multimeter. A test circuit for measurement of open loop voltage gain of an operational amplifier has been proposed and verified using simulation tools as well as by experimental methods on breadboard. The main advantage of this test circuit is that it is simple, fast, accurate, cost effective, and easy to handle even on a breadboard. The test circuit requires only the device under test (DUT) along with resistors. This circuit has been tested for measurement of open loop voltage gain for different operational amplifiers. The underlying goal is to design testable circuits for various analog devices that are simple to realize in VLSI systems, giving accurate results and without changing the characteristics of the original system. The DUTs used are LM741CN and UA741CP. For LM741CN, the simulated gain and experimentally measured gain (average) are calculated as 89.71 dB and 87.71 dB, respectively. For UA741CP, the simulated gain and experimentally measured gain (average) are calculated as 101.15 dB and 105.15 dB, respectively. These values are found to be close to the datasheet values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Device%20Under%20Test%20%28DUT%29" title="Device Under Test (DUT)">Device Under Test (DUT)</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20loop%20voltage%20gain" title=" open loop voltage gain"> open loop voltage gain</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20amplifier" title=" operational amplifier"> operational amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20circuit" title=" test circuit"> test circuit</a> </p> <a href="https://publications.waset.org/abstracts/63309/a-test-methodology-to-measure-the-open-loop-voltage-gain-of-an-operational-amplifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Nonlinear Passive Shunt for Electroacoustic Absorbers Using Nonlinear Energy Sink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diala%20Bitar">Diala Bitar</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Gourdon"> Emmanuel Gourdon</a>, <a href="https://publications.waset.org/abstracts/search?q=Claude%20H.%20%20Lamarque"> Claude H. Lamarque</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Collet"> Manuel Collet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acoustic absorber devices play an important role reducing the noise at the propagation and reception paths. An electroacoustic absorber consists of a loudspeaker coupled to an electric shunt circuit, where the membrane is playing the role of an absorber/reflector of sound. Although the use of linear shunt resistors at the transducer terminals, has shown to improve the performances of the dynamical absorbers, it is nearly efficient in a narrow frequency band. Therefore, and since nonlinear phenomena are promising for their ability to absorb the vibrations and sound on a larger frequency range, we propose to couple a nonlinear electric shunt circuit at the loudspeaker terminals. Then, the equivalent model can be described by a 2 degrees of freedom system, consisting of a primary linear oscillator describing the dynamics of the loudspeaker membrane, linearly coupled to a cubic nonlinear energy sink (NES). The system is analytically treated for the case of 1:1 resonance, using an invariant manifold approach at different time scales. The proposed methodology enables us to detect the equilibrium points and fold singularities at the first slow time scales, providing a predictive tool to design the nonlinear circuit shunt during the energy exchange process. The preliminary results are promising; a significant improvement of acoustic absorption performances are obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroacoustic%20absorber" title="electroacoustic absorber">electroacoustic absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-time-scale%20with%20small%20finite%20parameter" title=" multiple-time-scale with small finite parameter"> multiple-time-scale with small finite parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20energy%20sink" title=" nonlinear energy sink"> nonlinear energy sink</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20passive%20shunt" title=" nonlinear passive shunt"> nonlinear passive shunt</a> </p> <a href="https://publications.waset.org/abstracts/82596/nonlinear-passive-shunt-for-electroacoustic-absorbers-using-nonlinear-energy-sink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Effect of Segregation on the Reaction Rate of Sewage Sludge Pyrolysis in a Bubbling Fluidized Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Soria-Verdugo">A. Soria-Verdugo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Morato-Godino"> A. Morato-Godino</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Garc%C3%ADa-Guti%C3%A9rrez"> L. M. García-Gutiérrez</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Garc%C3%ADa-Hernando"> N. García-Hernando</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evolution of the pyrolysis of sewage sludge in a fixed and a fluidized bed was analyzed using a novel measuring technique. This original measuring technique consists of installing the whole reactor over a precision scale, capable of measuring the mass of the complete reactor with enough precision to detect the mass released by the sewage sludge sample during its pyrolysis. The inert conditions required for the pyrolysis process were obtained supplying the bed with a nitrogen flowrate, and the bed temperature was adjusted to either 500 ºC or 600 ºC using a group of three electric resistors. The sewage sludge sample was supplied through the top of the bed in a batch of 10 g. The measurement of the mass released by the sewage sludge sample was employed to determine the evolution of the reaction rate during the pyrolysis, the total amount of volatile matter released, and the pyrolysis time. The pyrolysis tests of sewage sludge in the fluidized bed were conducted using two different bed materials of the same size but different densities: silica sand and sepiolite particles. The higher density of silica sand particles induces a flotsam behavior for the sewage sludge particles which move close to the bed surface. In contrast, the lower density of sepiolite produces a neutrally-buoyant behavior for the sewage sludge particles, which shows a proper circulation throughout the whole bed in this case. The analysis of the evolution of the pyrolysis process in both fluidized beds show that the pyrolysis is faster when buoyancy effects are negligible, i.e. in the bed conformed by sepiolite particles. Moreover, sepiolite was found to show an absorbent capability for the volatile matter released during the pyrolysis of sewage sludge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubbling%20fluidized%20bed" title="bubbling fluidized bed">bubbling fluidized bed</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20rate" title=" reaction rate"> reaction rate</a>, <a href="https://publications.waset.org/abstracts/search?q=segregation%20effects" title=" segregation effects"> segregation effects</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/63611/effect-of-segregation-on-the-reaction-rate-of-sewage-sludge-pyrolysis-in-a-bubbling-fluidized-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Luminescent Dye-Doped Polymer Nanofibers Produced by Electrospinning Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monica%20Enculescu">Monica Enculescu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Evanghelidis"> A. Evanghelidis</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Enculescu"> I. Enculescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the numerous methods for obtaining polymer nanofibers, the electrospinning technique distinguishes itself due to the more growing interest induced by its proved utility leading to developing and improving of the method and the appearance of novel materials. In particular, production of polymeric nanofibers in which different dopants are introduced was intensively studied in the last years because of the increased interest for the obtaining of functional electrospun nanofibers. Electrospinning is a facile method of obtaining polymer nanofibers with diameters from tens of nanometers to micrometrical sizes that are cheap, flexible, scalable, functional and biocompatible. Besides the multiple applications in medicine, polymeric nanofibers obtained by electrospinning permit manipulation of light at nanometric dimensions when doped with organic dyes or different nanoparticles. It is a simple technique that uses an electrical field to draw fine polymer nanofibers from solutions and does not require complicated devices or high temperatures. Different morphologies of the electrospun nanofibers can be obtained for the same polymeric host when different parameters of the electrospinning process are used. Consequently, we can obtain tuneable optical properties of the electrospun nanofibers (e.g. changing the wavelength of the emission peak) by varying the parameters of the fabrication method. We focus on obtaining doped polymer nanofibers with enhanced optical properties using the electrospinning technique. The aim of the paper is to produce dye-doped polymer nanofibers’ mats incorporating uniformly dispersed dyes. Transmission and fluorescence of the fibers will be evaluated by spectroscopy methods. The morphological properties of the electrospun dye-doped polymer fibers will be evaluated using scanning electron microscopy (SEM). We will tailor the luminescent properties of the material by doping the polymer (polyvinylpyrrolidone or polymethylmetacrilate) with different dyes (coumarins, rhodamines and sulforhodamines). The tailoring will be made taking into consideration the possibility of changing the luminescent properties of electrospun polymeric nanofibers that are doped with different dyes by using different parameters for the electrospinning technique (electric voltage, distance between electrodes, flow rate of the solution, etc.). Furthermore, we can evaluated the influence of the concentration of the dyes on the emissive properties of dye-doped polymer nanofibers using different concentrations. The advantages offered by the electrospinning technique when producing polymeric fibers are given by the simplicity of the method, the tunability of the morphology allowed by the possibility of controlling all the process parameters (temperature, viscosity of polymeric solution, applied voltage, distance between electrodes, etc.), and by the absence of necessity of using harsh and supplementary chemicals such as the ones used in the traditional nanofabrication techniques. Acknowledgments: The authors acknowledge the financial support received through IFA CEA Project No. C5-08/2016. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20nanofibers" title=" polymer nanofibers"> polymer nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a> </p> <a href="https://publications.waset.org/abstracts/77211/luminescent-dye-doped-polymer-nanofibers-produced-by-electrospinning-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arpita%20Mondal">Arpita Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurobinda%20Routray"> Aurobinda Routray</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreeraj%20Puravankara"> Sreeraj Puravankara</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajashree%20Biswas"> Rajashree Biswas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalent%20circuit%20model" title="equivalent circuit model">equivalent circuit model</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20estimation" title=" frequency estimation"> frequency estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title=" parameter estimation"> parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=subspace%20decomposition" title=" subspace decomposition"> subspace decomposition</a> </p> <a href="https://publications.waset.org/abstracts/108720/frequency-selective-filters-for-estimating-the-equivalent-circuit-parameters-of-li-ion-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Effect of Multi-Walled Carbon Nanotubes on Fuel Cell Membrane Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabindranath%20Jana">Rabindranath Jana</a>, <a href="https://publications.waset.org/abstracts/search?q=Biswajit%20Maity"> Biswajit Maity</a>, <a href="https://publications.waset.org/abstracts/search?q=Keka%20Rana"> Keka Rana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most promising clean energy source is the fuel cell, since it does not generate toxic gases and other hazardous compounds. Again the direct methanol fuel cell (DMFC) is more user-friendly as it is easy to be miniaturized and suited as energy source for automobiles as well as domestic applications and portable devices. And unlike the hydrogen used for some fuel cells, methanol is a liquid that is easy to store and transport in conventional tanks. The most important part of a fuel cell is its membrane. Till now, an overall efficiency for a methanol fuel cell is reported to be about 20 ~ 25%. The lower efficiency of the cell may be due to the critical factors, e.g. slow reaction kinetics at the anode and methanol crossover. The oxidation of methanol is composed of a series of successive reactions creating formaldehyde and formic acid as intermediates that contribute to slow reaction rates and decreased cell voltage. Currently, the investigation of new anode catalysts to improve oxidation reaction rates is an active area of research as it applies to the methanol fuel cell. Surprisingly, there are very limited reports on nanostructured membranes, which are rather simple to manufacture with different tuneable compositions and are expected to allow only the proton permeation but not the methanol due to their molecular sizing effects and affinity to the membrane surface. We have developed a nanostructured fuel cell membrane from polydimethyl siloxane rubber (PDMS), ethylene methyl co-acrylate (EMA) and multi-walled carbon nanotubes (MWNTs). The effect of incorporating different proportions of f-MWNTs in polymer membrane has been studied. The introduction of f-MWNTs in polymer matrix modified the polymer structure, and therefore the properties of the device. The proton conductivity, measured by an AC impedance technique using open-frame and two-electrode cell and methanol permeability of the membranes was found to be dependent on the f-MWNTs loading. The proton conductivity of the membranes increases with increase in concentration of f-MWNTs concentration due to increased content of conductive materials. Measured methanol permeabilities at 60oC were found to be dependant on loading of f-MWNTs. The methanol permeability decreased from 1.5 x 10-6 cm²/s for pure film to 0.8 x 10-7 cm²/s for a membrane containing 0.5wt % f-MWNTs. This is due to increasing proportion of f-MWNTs, the matrix becomes more compact. From DSC melting curves it is clear that the polymer matrix with f-MWNTs is thermally stable. FT-IR studies show good interaction between EMA and f-MWNTs. XRD analysis shows good crystalline behavior of the prepared membranes. Significant cost savings can be achieved when using the blended films which contain less expensive polymers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell%20membrane" title="fuel cell membrane">fuel cell membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=polydimethyl%20siloxane%20rubber" title=" polydimethyl siloxane rubber"> polydimethyl siloxane rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20conductivity" title=" proton conductivity"> proton conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol%20permeability" title=" methanol permeability"> methanol permeability</a> </p> <a href="https://publications.waset.org/abstracts/15331/effect-of-multi-walled-carbon-nanotubes-on-fuel-cell-membrane-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Real-Time Working Environment Risk Analysis with Smart Textiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jose%20A.%20Diaz-Olivares">Jose A. Diaz-Olivares</a>, <a href="https://publications.waset.org/abstracts/search?q=Nafise%20Mahdavian"> Nafise Mahdavian</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Abtahi"> Farhad Abtahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaj%20Lindecrantz"> Kaj Lindecrantz</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelakram%20Hafid"> Abdelakram Hafid</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Seoane"> Fernando Seoane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite new recommendations and guidelines for the evaluation of occupational risk assessments and their prevention, work-related musculoskeletal disorders are still one of the biggest causes of work activity disruption, productivity loss, sick leave and chronic work disability. It affects millions of workers throughout Europe, with a large-scale economic and social burden. These specific efforts have failed to produce significant results yet, probably due to the limited availability and high costs of occupational risk assessment at work, especially when the methods are complex, consume excessive resources or depend on self-evaluations and observations of poor accuracy. To overcome these limitations, a pervasive system of risk assessment tools in real time has been developed, which has the characteristics of a systematic approach, with good precision, usability and resource efficiency, essential to facilitate the prevention of musculoskeletal disorders in the long term. The system allows the combination of different wearable sensors, placed on different limbs, to be used for data collection and evaluation by a software solution, according to the needs and requirements in each individual working environment. This is done in a non-disruptive manner for both the occupational health expert and the workers. The creation of this solution allows us to attend different research activities that require, as an essential starting point, the recording of data with ergonomic value of very diverse origin, especially in real work environments. The software platform is here presented with a complimentary smart clothing system for data acquisition, comprised of a T-shirt containing inertial measurement units (IMU), a vest sensorized with textile electronics, a wireless electrocardiogram (ECG) and thoracic electrical bio-impedance (TEB) recorder and a glove sensorized with variable resistors, dependent on the angular position of the wrist. The collected data is processed in real-time through a mobile application software solution, implemented in commercially available Android-based smartphones and tablet platforms. Based on the collection of this information and its analysis, real-time risk assessment and feedback about postural improvement is possible, adapted to different contexts. The result is a tool which provides added value to ergonomists and occupational health agents, as in situ analysis of postural behavior can assist in a quantitative manner in the evaluation of work techniques and the occupational environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ergonomics" title="ergonomics">ergonomics</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20technologies" title=" mobile technologies"> mobile technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20textiles" title=" smart textiles"> smart textiles</a> </p> <a href="https://publications.waset.org/abstracts/92309/real-time-working-environment-risk-analysis-with-smart-textiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Modelling and Assessment of an Off-Grid Biogas Powered Mini-Scale Trigeneration Plant with Prioritized Loads Supported by Photovoltaic and Thermal Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lorenzo%20Petrucci">Lorenzo Petrucci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is intended to give insight into the potential use of small-scale off-grid trigeneration systems powered by biogas generated in a dairy farm. The off-grid plant object of analysis comprises a dual-fuel Genset as well as electrical and thermal storage equipment and an adsorption machine. The loads are the different apparatus used in the dairy farm, a household where the workers live and a small electric vehicle whose batteries can also be used as a power source in case of emergency. The insertion in the plant of an adsorption machine is mainly justified by the abundance of thermal energy and the simultaneous high cooling demand associated with the milk-chilling process. In the evaluated operational scenario, our research highlights the importance of prioritizing specific small loads which cannot sustain an interrupted supply of power over time. As a consequence, a photovoltaic and thermal panel is included in the plant and is tasked with providing energy independently of potentially disruptive events such as engine malfunctioning or scarce and unstable supplies of fuels. To efficiently manage the plant an energy dispatch strategy is created in order to control the flow of energy between the power sources and the thermal and electric storages. In this article we elaborate on models of the equipment and from these models, we extract parameters useful to build load-dependent profiles of the prime movers and storage efficiencies. We show that under reasonable assumptions the analysis provides a sensible estimate of the generated energy. The simulations indicate that a Diesel Generator sized to a value 25% higher than the total electrical peak demand operates 65% of the time below the minimum acceptable load threshold. To circumvent such a critical operating mode, dump loads are added through the activation and deactivation of small resistors. In this way, the excess of electric energy generated can be transformed into useful heat. The combination of PVT and electrical storage to support the prioritized load in an emergency scenario is evaluated in two different days of the year having the lowest and highest irradiation values, respectively. The results show that the renewable energy component of the plant can successfully sustain the prioritized loads and only during a day with very low irradiation levels it also needs the support of the EVs’ battery. Finally, we show that the adsorption machine can reduce the ice builder and the air conditioning energy consumption by 40%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20power%20plants" title="hybrid power plants">hybrid power plants</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=off-grid%20plants" title=" off-grid plants"> off-grid plants</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=trigeneration" title=" trigeneration "> trigeneration </a> </p> <a href="https://publications.waset.org/abstracts/137343/modelling-and-assessment-of-an-off-grid-biogas-powered-mini-scale-trigeneration-plant-with-prioritized-loads-supported-by-photovoltaic-and-thermal-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Parametric Analysis of Lumped Devices Modeling Using Finite-Difference Time-Domain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felipe%20M.%20de%20Freitas">Felipe M. de Freitas</a>, <a href="https://publications.waset.org/abstracts/search?q=Icaro%20V.%20Soares"> Icaro V. Soares</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucas%20L.%20L.%20Fortes"> Lucas L. L. Fortes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandro%20T.%20M.%20Gon%C3%A7alves"> Sandro T. M. Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%9Arsula%20D.%20C.%20Resende"> Úrsula D. C. Resende</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The SPICE-based simulators are quite robust and widely used for simulation of electronic circuits, their algorithms support linear and non-linear lumped components and they can manipulate an expressive amount of encapsulated elements. Despite the great potential of these simulators based on SPICE in the analysis of quasi-static electromagnetic field interaction, that is, at low frequency, these simulators are limited when applied to microwave hybrid circuits in which there are both lumped and distributed elements. Usually the spatial discretization of the FDTD (Finite-Difference Time-Domain) method is done according to the actual size of the element under analysis. After spatial discretization, the Courant Stability Criterion calculates the maximum temporal discretization accepted for such spatial discretization and for the propagation velocity of the wave. This criterion guarantees the stability conditions for the leapfrogging of the Yee algorithm; however, it is known that for the field update, the stability of the complete FDTD procedure depends on factors other than just the stability of the Yee algorithm, because the FDTD program needs other algorithms in order to be useful in engineering problems. Examples of these algorithms are Absorbent Boundary Conditions (ABCs), excitation sources, subcellular techniques, grouped elements, and non-uniform or non-orthogonal meshes. In this work, the influence of the stability of the FDTD method in the modeling of concentrated elements such as resistive sources, resistors, capacitors, inductors and diode will be evaluated. In this paper is proposed, therefore, the electromagnetic modeling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-wide frequencies. The models of the resistive source, the resistor, the capacitor, the inductor, and the diode will be evaluated, among the mathematical models for lumped components in the LE-FDTD method (Lumped-Element Finite-Difference Time-Domain), through the parametric analysis of Yee cells size which discretizes the lumped components. In this way, it is sought to find an ideal cell size so that the analysis in FDTD environment is in greater agreement with the expected circuit behavior, maintaining the stability conditions of this method. Based on the mathematical models and the theoretical basis of the required extensions of the FDTD method, the computational implementation of the models in Matlab® environment is carried out. The boundary condition Mur is used as the absorbing boundary of the FDTD method. The validation of the model is done through the comparison between the obtained results by the FDTD method through the electric field values and the currents in the components, and the analytical results using circuit parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20circuits" title="hybrid circuits">hybrid circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=LE-FDTD" title=" LE-FDTD"> LE-FDTD</a>, <a href="https://publications.waset.org/abstracts/search?q=lumped%20element" title=" lumped element"> lumped element</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20analysis" title=" parametric analysis"> parametric analysis</a> </p> <a href="https://publications.waset.org/abstracts/107123/parametric-analysis-of-lumped-devices-modeling-using-finite-difference-time-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Carbonyl Iron Particles Modified with Pyrrole-Based Polymer and Electric and Magnetic Performance of Their Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Mrlik">Miroslav Mrlik</a>, <a href="https://publications.waset.org/abstracts/search?q=Marketa%20Ilcikova"> Marketa Ilcikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Cvek"> Martin Cvek</a>, <a href="https://publications.waset.org/abstracts/search?q=Josef%20Osicka"> Josef Osicka</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Sedlacik"> Michal Sedlacik</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Pavlinek"> Vladimir Pavlinek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Mosnacek"> Jaroslav Mosnacek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetorheological elastomers (MREs) are a unique type of materials consisting of two components, magnetic filler, and elastomeric matrix. Their properties can be tailored upon application of an external magnetic field strength. In this case, the change of the viscoelastic properties (viscoelastic moduli, complex viscosity) are influenced by two crucial factors. The first one is magnetic performance of the particles and the second one is off-state stiffness of the elastomeric matrix. The former factor strongly depends on the intended applications; however general rule is that higher magnetic performance of the particles provides higher MR performance of the MRE. Since magnetic particles possess low stability properties against temperature and acidic environment, several methods how to improve these drawbacks have been developed. In the most cases, the preparation of the core-shell structures was employed as a suitable method for preservation of the magnetic particles against thermal and chemical oxidations. However, if the shell material is not single-layer substance, but polymer material, the magnetic performance is significantly suppressed, due to the in situ polymerization technique, when it is very difficult to control the polymerization rate and the polymer shell is too thick. The second factor is the off-state stiffness of the elastomeric matrix. Since the MR effectivity is calculated as the relative value of the elastic modulus upon magnetic field application divided by elastic modulus in the absence of the external field, also the tuneability of the cross-linking reaction is highly desired. Therefore, this study is focused on the controllable modification of magnetic particles using a novel monomeric system based on 2-(1H-pyrrol-1-yl)ethyl methacrylate. In this case, the short polymer chains of different chain lengths and low polydispersity index will be prepared, and thus tailorable stability properties can be achieved. Since the relatively thin polymer chains will be grafted on the surface of magnetic particles, their magnetic performance will be affected only slightly. Furthermore, also the cross-linking density will be affected, due to the presence of the short polymer chains. From the application point of view, such MREs can be utilized for, magneto-resistors, piezoresistors or pressure sensors especially, when the conducting shell on the magnetic particles will be created. Therefore, the selection of the pyrrole-based monomer is very crucial and controllably thin layer of conducting polymer can be prepared. Finally, such composite particle consisting of magnetic core and conducting shell dispersed in elastomeric matrix can find also the utilization in shielding application of electromagnetic waves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atom%20transfer%20radical%20polymerization" title="atom transfer radical polymerization">atom transfer radical polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=core-shell" title=" core-shell"> core-shell</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20modification" title=" particle modification"> particle modification</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20waves%20shielding" title=" electromagnetic waves shielding"> electromagnetic waves shielding</a> </p> <a href="https://publications.waset.org/abstracts/73425/carbonyl-iron-particles-modified-with-pyrrole-based-polymer-and-electric-and-magnetic-performance-of-their-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tuneable%20resistors&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tuneable%20resistors&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>