CINXE.COM

Search results for: infrared

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: infrared</title> <meta name="description" content="Search results for: infrared"> <meta name="keywords" content="infrared"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="infrared" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="infrared"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1160</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: infrared</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1160</span> Infrared Thermography Applications for Building Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Yazdani">Hamid Yazdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Raheleh%20Akbar"> Raheleh Akbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infrared thermography is a modern non-destructive measuring method for the examination of redeveloped and non-renovated buildings. Infrared cameras provide a means for temperature measurement in building constructions from the inside, as well as from the outside. Thus, heat bridges can be detected. It has been shown that infrared thermography is applicable for insulation inspection, identifying air leakage and heat losses sources, finding the exact position of heating tubes or for discovering the reasons why mold, moisture is growing in a particular area, and it is also used in conservation field to detect hidden characteristics, degradations of building structures. The paper gives a brief description of the theoretical background of infrared thermography. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title="infrared thermography">infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=examination%20of%20buildings" title=" examination of buildings"> examination of buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=emissivity" title=" emissivity"> emissivity</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20losses%20sources" title=" heat losses sources"> heat losses sources</a> </p> <a href="https://publications.waset.org/abstracts/15901/infrared-thermography-applications-for-building-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1159</span> The Microwave and Far Infrared Spectra of Acetaldehyde-d1 in vt=2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Larrousi">A. Larrousi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elkeurti"> M. Elkeurti</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Amara"> K. Amara</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zemouli"> M. Zemouli</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20H.%20Coudert"> L. H. Coudert</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20R.%20Medvedev"> I. R. Medvedev</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20C.%20De%20Lucia"> F. C. De Lucia</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsuko%20Maeda"> Atsuko Maeda</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20W.%20C.%20McKellar"> R. W. C. McKellar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Appadoo"> D. Appadoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental and theoretical investigations of the microwave and far infrared spectra of CH3COD are reported. Two hundred twelve lines were identified in the far infrared spectrum recorded using the Canadian synchrotron radiation light source. Two thousand one hundred and sixty-eight lines in vt=0,1 and 216 in vt=2 have been measured in the microwave spectrum obtained using the fast scan submillimeter spectroscopic technique. A global analysis of the new data and of already available microwave lines has been carried out and yielded values for rotation–torsion parameters. The unitless weighted standard deviation of the fit is 1.6. 46 parameters and 216 lines were identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CH3COD" title="CH3COD">CH3COD</a>, <a href="https://publications.waset.org/abstracts/search?q=torsion" title=" torsion"> torsion</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20microwave%20spectra" title=" the microwave spectra"> the microwave spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=far%20infrared%20spectra%20high%20resolution" title=" far infrared spectra high resolution"> far infrared spectra high resolution</a> </p> <a href="https://publications.waset.org/abstracts/18891/the-microwave-and-far-infrared-spectra-of-acetaldehyde-d1-in-vt2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1158</span> Infrared Detection Device for Accurate Scanning 3D Objects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20A.%20Rybakov">Evgeny A. Rybakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20P.%20Starikov"> Dmitry P. Starikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article contains information about creating special unit for scanning 3D objects different nature, different materials, for example plastic, plaster, cardboard, wood, metal and etc. The main part of the unit is infrared transducer, which is sends the wave to the object and receive back wave for calculating distance. After that, microcontroller send to PC data, and computer program create model for printing from the plastic, gypsum, brass, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clutch" title="clutch">clutch</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared" title=" infrared"> infrared</a>, <a href="https://publications.waset.org/abstracts/search?q=microcontroller" title=" microcontroller"> microcontroller</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic" title=" plastic"> plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft" title=" shaft"> shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=stage" title=" stage"> stage</a> </p> <a href="https://publications.waset.org/abstracts/17459/infrared-detection-device-for-accurate-scanning-3d-objects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1157</span> Experimental Chip/Tool Temperature FEM Model Calibration by Infrared Thermography: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20Angiuli">Riccardo Angiuli</a>, <a href="https://publications.waset.org/abstracts/search?q=Michele%20Giannuzzi"> Michele Giannuzzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodolfo%20Franchi"> Rodolfo Franchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriele%20Papadia"> Gabriele Papadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature knowledge in machining is fundamental to improve the numerical and FEM models used for the study of some critical process aspects, such as the behavior of the worked material and tool. The extreme conditions in which they operate make it impossible to use traditional measuring instruments; infrared thermography can be used as a valid measuring instrument for temperature measurement during metal cutting. In the study, a large experimental program on superduplex steel (ASTM A995 gr. 5A) cutting was carried out, the relevant cutting temperatures were measured by infrared thermography when certain cutting parameters changed, from traditional values to extreme ones. The values identified were used to calibrate a FEM model for the prediction of residual life of the tools. During the study, the problems related to the detection of cutting temperatures by infrared thermography were analyzed, and a dedicated procedure was developed that could be used during similar processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machining" title="machining">machining</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title=" infrared thermography"> infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20measurement" title=" temperature measurement"> temperature measurement</a> </p> <a href="https://publications.waset.org/abstracts/92363/experimental-chiptool-temperature-fem-model-calibration-by-infrared-thermography-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1156</span> Hyperspectral Band Selection for Oil Spill Detection Using Deep Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmau%20Mukhtar%20Ahmed">Asmau Mukhtar Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Duran"> Olga Duran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrocarbon (HC) spills constitute a significant problem that causes great concern to the environment. With the latest technology (hyperspectral images) and state of the earth techniques (image processing tools), hydrocarbon spills can easily be detected at an early stage to mitigate the effects caused by such menace. In this study; a controlled laboratory experiment was used, and clay soil was mixed and homogenized with different hydrocarbon types (diesel, bio-diesel, and petrol). The different mixtures were scanned with HYSPEX hyperspectral camera under constant illumination to generate the hypersectral datasets used for this experiment. So far, the Short Wave Infrared Region (SWIR) has been exploited in detecting HC spills with excellent accuracy. However, the Near-Infrared Region (NIR) is somewhat unexplored with regards to HC contamination and how it affects the spectrum of soils. In this study, Deep Neural Network (DNN) was applied to the controlled datasets to detect and quantify the amount of HC spills in soils in the Near-Infrared Region. The initial results are extremely encouraging because it indicates that the DNN was able to identify features of HC in the Near-Infrared Region with a good level of accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon" title="hydrocarbon">hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=Deep%20Neural%20Network" title=" Deep Neural Network"> Deep Neural Network</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20wave%20infrared%20region" title="short wave infrared region">short wave infrared region</a>, <a href="https://publications.waset.org/abstracts/search?q=near-infrared%20region" title=" near-infrared region"> near-infrared region</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral%20image" title=" hyperspectral image"> hyperspectral image</a> </p> <a href="https://publications.waset.org/abstracts/153072/hyperspectral-band-selection-for-oil-spill-detection-using-deep-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1155</span> Cooling of Exhaust Gases Emitted Into the Atmosphere as the Possibility to Reduce the Helicopter Radiation Emission Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Paszko">Mateusz Paszko</a>, <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Wendeker"> Mirosław Wendeker</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Majczak"> Adam Majczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every material body that temperature is higher than 0K (absolute zero) emits infrared radiation to the surroundings. Infrared radiation is highly meaningful in military aviation, especially in military applications of helicopters. Helicopters, in comparison to other aircraft, have much lower flight speeds and maneuverability, which makes them easy targets for actual combat assets like infrared-guided missiles. When designing new helicopter types, especially for combat applications, it is essential to pay enormous attention to infrared emissions of the solid parts composing the helicopter’s structure, as well as to exhaust gases egressing from the engine’s exhaust system. Due to their high temperature, exhaust gases, egressed to the surroundings are a major factor in infrared radiation emission and, in consequence, detectability of a helicopter performing air combat operations. Protection of the helicopter in flight from early detection, tracking and finally destruction can be realized in many ways. This paper presents the analysis of possibilities to decrease the infrared radiation level that is emitted to the environment by helicopter in flight, by cooling exhaust in special ejection-based coolers. The paper also presents the concept 3D model and results of numeric analysis of ejective-based cooler cooperation with PA-10W turbine engine. Numeric analysis presented promising results in decreasing the infrared emission level by PA W-3 helicopter in flight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exhaust%20cooler" title="exhaust cooler">exhaust cooler</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20propulsion" title=" helicopter propulsion"> helicopter propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20radiation" title=" infrared radiation"> infrared radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=stealth" title=" stealth"> stealth</a> </p> <a href="https://publications.waset.org/abstracts/50177/cooling-of-exhaust-gases-emitted-into-the-atmosphere-as-the-possibility-to-reduce-the-helicopter-radiation-emission-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1154</span> Infrared Lightbox and iPhone App for Improving Detection Limit of Phosphate Detecting Dip Strips</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Heidari-Bafroui">H. Heidari-Bafroui</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ribeiro"> B. Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Charbaji"> A. Charbaji</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Anagnostopoulos"> C. Anagnostopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Faghri"> M. Faghri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we report the development of a portable and inexpensive infrared lightbox for improving the detection limits of paper-based phosphate devices. Commercial paper-based devices utilize the molybdenum blue protocol to detect phosphate in the environment. Although these devices are easy to use and have a long shelf life, their main deficiency is their low sensitivity based on the qualitative results obtained via a color chart. To improve the results, we constructed a compact infrared lightbox that communicates wirelessly with a smartphone. The system measures the absorbance of radiation for the molybdenum blue reaction in the infrared region of the spectrum. It consists of a lightbox illuminated by four infrared light-emitting diodes, an infrared digital camera, a Raspberry Pi microcontroller, a mini-router, and an iPhone to control the microcontroller. An iPhone application was also developed to analyze images captured by the infrared camera in order to quantify phosphate concentrations. Additionally, the app connects to an online data center to present a highly scalable worldwide system for tracking and analyzing field measurements. In this study, the detection limits for two popular commercial devices were improved by a factor of 4 for the Quantofix devices (from 1.3 ppm using visible light to 300 ppb using infrared illumination) and a factor of 6 for the Indigo units (from 9.2 ppm to 1.4 ppm) with repeatability of less than or equal to 1.2% relative standard deviation (RSD). The system also provides more granular concentration information compared to the discrete color chart used by commercial devices and it can be easily adapted for use in other applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infrared%20lightbox" title="infrared lightbox">infrared lightbox</a>, <a href="https://publications.waset.org/abstracts/search?q=paper-based%20device" title=" paper-based device"> paper-based device</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate%20detection" title=" phosphate detection"> phosphate detection</a>, <a href="https://publications.waset.org/abstracts/search?q=smartphone%20colorimetric%20analyzer" title=" smartphone colorimetric analyzer"> smartphone colorimetric analyzer</a> </p> <a href="https://publications.waset.org/abstracts/127794/infrared-lightbox-and-iphone-app-for-improving-detection-limit-of-phosphate-detecting-dip-strips" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1153</span> Fabricating an Infrared-Radar Compatible Stealth Surface with Frequency Selective Surface and Structured Radar-Absorbing Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qingtao%20Yu">Qingtao Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guojia%20Ma"> Guojia Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Approaches to microwave absorption and low infrared emissivity are often conflicting, as the low-emissivity layer, usually consisting of metals, increases the reflection of microwaves, especially in high frequency. In this study, an infrared-radar compatible stealth surface was fabricated by first depositing a layer of low-emissivity metal film on the surface of a layer of radar-absorbing material. Then, ultrafast laser was used to generate patterns on the metal film, forming a frequency selective surface. With proper pattern design, while the majority of the frequency selective surface is covered by the metal film, it has relatively little influence on the reflection of microwaves between 2 to 18 GHz. At last, structures on the radar-absorbing layer were fabricated by ultra-fast laser to further improve the absorbing bandwidth of the microwave. This study demonstrates that the compatibility between microwave absorption and low infrared emissivity can be achieved by properly designing patterns and structures on the metal film and the radar-absorbing layer accordingly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface" title="frequency selective surface">frequency selective surface</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared-radar%20compatible" title=" infrared-radar compatible"> infrared-radar compatible</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20infrared%20emissivity" title=" low infrared emissivity"> low infrared emissivity</a>, <a href="https://publications.waset.org/abstracts/search?q=radar-absorbing%20material" title=" radar-absorbing material"> radar-absorbing material</a>, <a href="https://publications.waset.org/abstracts/search?q=patterns" title=" patterns"> patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=structures" title=" structures"> structures</a> </p> <a href="https://publications.waset.org/abstracts/115550/fabricating-an-infrared-radar-compatible-stealth-surface-with-frequency-selective-surface-and-structured-radar-absorbing-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1152</span> Phase Detection Using Infrared Spectroscopy: A Build up to Inline Gas–Liquid Flow Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwame%20Sarkodie">Kwame Sarkodie</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Cheung"> William Cheung</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20R.%20Fergursson"> Andrew R. Fergursson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The characterization of multiphase flow has gained enormous attention for most petroleum and chemical industrial processes. In order to fully characterize fluid phases in a stream or containment, there needs to be a profound knowledge of the existing composition of fluids present. This introduces a problem for real-time monitoring of fluid dynamics such as fluid distributions, and phase fractions. This work presents a simple technique of correlating absorbance spectrums of water, oil and air bubble present in containment. These spectra absorption outputs are derived by using an Fourier Infrared spectrometer. During the testing, air bubbles were introduced into static water column and oil containment and with light absorbed in the infrared regions of specific wavelength ranges. Attenuation coefficients are derived for various combinations of water, gas and oil which reveal the presence of each phase in the samples. The results from this work are preliminary and viewed as a build up to the design of a multiphase flow rig which has an infrared sensor pair to be used for multiphase flow characterization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attenuation" title="attenuation">attenuation</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared" title=" infrared"> infrared</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase" title=" multiphase"> multiphase</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/71887/phase-detection-using-infrared-spectroscopy-a-build-up-to-inline-gas-liquid-flow-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1151</span> Asymmetrically Contacted Tellurium Short-Wave Infrared Photodetector with Low Dark Current and High Sensitivity at Room Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huang%20Haoxin">Huang Haoxin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large dark current at room temperature has long been the major bottleneck that impedes the development of high-performance infrared photodetectors towards miniaturization and integration. Although infrared photodetectors based on layered 2D narrow bandgap semiconductors have shown admirable advantages compared with those based on conventional compounds, which typically suffer from expensive cryogenic operations, it is still urgent to develop a simple but effective strategy to further reduce the dark current. Herein, a tellurium (Te) based infrared photodetector is reported with a specifically designed asymmetric electrical contact area. The deliberately introduced asymmetric electrical contact raises the electric field intensity difference in the Te channel near the drain and the source electrodes, resulting in spontaneous asymmetric carrier diffusion under global infrared light illumination under zero bias. Specifically, the Te-based photodetector presents promising detector performance at room temperature, including a low dark current of≈1 nA, an ultrahigh photocurrent/dark current ratio of 1.57×10⁴, a high specific detectivity (D*) of 3.24×10⁹ Jones, and relatively fast response speed of ≈720 μs at zero bias. The results prove that the simple design of asymmetric electrical contact areas can provide a promising solution to high-performance 2D semiconductor-based infrared photodetectors working at room temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetrical%20contact" title="asymmetrical contact">asymmetrical contact</a>, <a href="https://publications.waset.org/abstracts/search?q=tellurium" title=" tellurium"> tellurium</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20current" title=" dark current"> dark current</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20photodetector" title=" infrared photodetector"> infrared photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/185792/asymmetrically-contacted-tellurium-short-wave-infrared-photodetector-with-low-dark-current-and-high-sensitivity-at-room-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1150</span> Classification of Germinatable Mung Bean by Near Infrared Hyperspectral Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaewkarn%20Phuangsombat">Kaewkarn Phuangsombat</a>, <a href="https://publications.waset.org/abstracts/search?q=Arthit%20Phuangsombat"> Arthit Phuangsombat</a>, <a href="https://publications.waset.org/abstracts/search?q=Anupun%20Terdwongworakul"> Anupun Terdwongworakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hard seeds will not grow and can cause mold in sprouting process. Thus, the hard seeds need to be separated from the normal seeds. Near infrared hyperspectral imaging in a range of 900 to 1700 nm was implemented to develop a model by partial least squares discriminant analysis to discriminate the hard seeds from the normal seeds. The orientation of the seeds was also studied to compare the performance of the models. The model based on hilum-up orientation achieved the best result giving the coefficient of determination of 0.98, and root mean square error of prediction of 0.07 with classification accuracy was equal to 100%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mung%20bean" title="mung bean">mung bean</a>, <a href="https://publications.waset.org/abstracts/search?q=near%20infrared" title=" near infrared"> near infrared</a>, <a href="https://publications.waset.org/abstracts/search?q=germinatability" title=" germinatability"> germinatability</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20seed" title=" hard seed"> hard seed</a> </p> <a href="https://publications.waset.org/abstracts/66730/classification-of-germinatable-mung-bean-by-near-infrared-hyperspectral-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1149</span> Development of a Non-Dispersive Infrared Multi Gas Analyzer for a TMS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20V.%20Dinh">T. V. Dinh</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Y.%20Choi"> I. Y. Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20W.%20Ahn"> J. W. Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Oh"> Y. H. Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Bo"> G. Bo</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Y.%20Lee"> J. Y. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Kim"> J. C. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Non-Dispersive Infrared (NDIR) multi-gas analyzer has been developed to monitor the emission of carbon monoxide (CO) and sulfur dioxide (SO2) from various industries. The NDIR technique for gas measurement is based on the wavelength absorption in the infrared spectrum as a way to detect particular gasses. NDIR analyzers have popularly applied in the Tele-Monitoring System (TMS). The advantage of the NDIR analyzer is low energy consumption and cost compared with other spectroscopy methods. However, zero/span drift and interference are its urgent issues to be solved. Multi-pathway technique based on optical White cell was employed to improve the sensitivity of the analyzer in this work. A pyroelectric detector was used to detect the Infrared radiation. The analytical range of the analyzer was 0 ~ 200 ppm. The instrument response time was < 2 min. The detection limits of CO and SO2 were < 4 ppm and < 6 ppm, respectively. The zero and span drift of 24 h was less than 3%. The linearity of the analyzer was less than 2.5% of reference values. The precision and accuracy of both CO and SO2 channels were < 2.5% of relative standard deviation. In general, the analyzer performed well. However, the detection limit and 24h drift should be improved to be a more competitive instrument. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analyzer" title="analyzer">analyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=CEMS" title=" CEMS"> CEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=NDIR" title=" NDIR"> NDIR</a>, <a href="https://publications.waset.org/abstracts/search?q=TMS" title=" TMS"> TMS</a> </p> <a href="https://publications.waset.org/abstracts/50922/development-of-a-non-dispersive-infrared-multi-gas-analyzer-for-a-tms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1148</span> Possibilities of Output Technology the Project ADAPTIV for Use in Infrared Camouflage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Barta">Jiří Barta</a>, <a href="https://publications.waset.org/abstracts/search?q=Teodor%20Bal%C3%A1%C5%BE"> Teodor Baláž</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%C3%A1%C5%A1%20Lud%C3%ADk"> Tomáš Ludík</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD.%20F.%20Urb%C3%A1nek"> Jiří. F. Urbánek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article deals with the outputs of project acronym ADAPTIV of Czech Defence Research Project. This Project solved tends to adaptive camouflage. The camouflage is concealment by means of disguise. Perceptive interface between recipient and camouflaged object is visualized by means of textile modular screens. Screens special light semi-permeability enables front/ back projection with nearly identical light parameters. Information permeability, towards illusion creation, must be controlled by the camouflage provider by means sophisticated and mastered illusion with perfect scenarios. The project ADAPTIV was primarily funded with the maximum possible use of COTS (Commercial-Off-The-Shelf) principle asks special definition of feasibility conditions, especially recipient space position. This paper deals with uses the ADAPTIV output with name DATAsam with modification for infrared camouflage. It is focused on active camouflage in infrared spectrum of emissivity at <8;14> μm for laboratory conditions. The main chapter provides basic experiments and testing physical properties needed for camouflage in infrared environment. The evaluation experiments revealed the possibility of use case in various types of camouflage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camouflage" title="camouflage">camouflage</a>, <a href="https://publications.waset.org/abstracts/search?q=ADAPTIV" title=" ADAPTIV"> ADAPTIV</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20camouflage" title=" infrared camouflage"> infrared camouflage</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-aided" title=" computer-aided"> computer-aided</a>, <a href="https://publications.waset.org/abstracts/search?q=COTS" title=" COTS"> COTS</a> </p> <a href="https://publications.waset.org/abstracts/15714/possibilities-of-output-technology-the-project-adaptiv-for-use-in-infrared-camouflage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1147</span> Automatic Diagnosis of Electrical Equipment Using Infrared Thermography </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Laib%20Dit%20Leksir">Y. Laib Dit Leksir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bouhouche"> S. Bouhouche </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis and processing of data bases resulting from infrared thermal measurements made on the electrical installation requires the development of new tools in order to obtain correct and additional information to the visual inspections. Consequently, the methods based on the capture of infrared digital images show a great potential and are employed increasingly in various fields. Although, there is an enormous need for the development of effective techniques to analyse these data base in order to extract relevant information relating to the state of the equipments. Our goal consists in introducing recent techniques of modeling based on new methods, image and signal processing to develop mathematical models in this field. The aim of this work is to capture the anomalies existing in electrical equipments during an inspection of some machines using A40 Flir camera. After, we use binarisation techniques in order to select the region of interest and we make comparison between these methods of thermal images obtained to choose the best one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title="infrared thermography">infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20detection" title=" defect detection"> defect detection</a>, <a href="https://publications.waset.org/abstracts/search?q=troubleshooting" title=" troubleshooting"> troubleshooting</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20equipment" title=" electrical equipment "> electrical equipment </a> </p> <a href="https://publications.waset.org/abstracts/21224/automatic-diagnosis-of-electrical-equipment-using-infrared-thermography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1146</span> Different Ergonomic Exposures and Infrared Thermal Temperature on Low Back</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sihao%20Lin">Sihao Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Infrared thermography (IRT) has been little documented in the objective measurement of ergonomic exposure. We aimed to examine the association between different ergonomic exposures and low back skin temperature measured by IRT. Methods: A total of 114 subjects among sedentary students, sports students and cleaning workers were selected as different ergonomic exposure levels. Low back skin temperature was measured by infrared thermography before and post ergonomic exposure. Ergonomic exposure was assessed by Quick Exposure Check (QEC) and quantitative scores were calculated on the low back. Multiple regressions were constructed to examine the possible associations between ergonomic risk exposures and the skin temperature over the low back. Results: Compared to the two student groups, clean workers had significantly higher ergonomic exposure scores on the low back. The low back temperature variations were different among the three groups. The temperature decreased significantly among students with ergonomic exposure (P < 0.01), while it increased among cleaning workers. With adjustment of confounding, the post-exposure temperature and the temperature changes after exposure showed a significantly negative association with ergonomic exposure scores. For maximum temperature, one increasing ergonomic score decreased -0.23◦C (95% CI -0.37, -0.10) of temperature after ergonomic exposure over the low back. Conclusion: There was a significant association between ergonomic exposures and infrared thermal temperature over low back. IRT could be used as an objective assessment of ergonomic exposure on the low back. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ergonomic%20exposure" title="ergonomic exposure">ergonomic exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title=" infrared thermography"> infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=musculoskeletal%20disorders" title=" musculoskeletal disorders"> musculoskeletal disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20temperature" title=" skin temperature"> skin temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20back" title=" low back"> low back</a> </p> <a href="https://publications.waset.org/abstracts/168788/different-ergonomic-exposures-and-infrared-thermal-temperature-on-low-back" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1145</span> Nondestructive Testing for Reinforced Concrete Buildings with Active Infrared Thermography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huy%20Q.%20Tran">Huy Q. Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungwon%20Huh"> Jungwon Huh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiseok%20Kwak"> Kiseok Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Choonghyun%20Kang"> Choonghyun Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infrared thermography (IRT) technique has been proven to be a good method for nondestructive evaluation of concrete material. In the building, a broad range of applications has been used such as subsurface defect inspection, energy loss, and moisture detection. The purpose of this research is to consider the qualitative and quantitative performance of reinforced concrete deteriorations using active infrared thermography technique. An experiment of three different heating regimes was conducted on a concrete slab in the laboratory. The thermal characteristics of the IRT method, i.e., absolute contrast and observation time, are investigated. A linear relationship between the observation time and the real depth was established with a well linear regression R-squared of 0.931. The results showed that the absolute contrast above defective area increases with the rise of the size of delamination and the heating time. In addition, the depth of delamination can be predicted by using the proposal relationship of this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20building" title="concrete building">concrete building</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title=" infrared thermography"> infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=nondestructive%20evaluation" title=" nondestructive evaluation"> nondestructive evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=subsurface%20delamination" title=" subsurface delamination"> subsurface delamination</a> </p> <a href="https://publications.waset.org/abstracts/84378/nondestructive-testing-for-reinforced-concrete-buildings-with-active-infrared-thermography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1144</span> Detecting and Disabling Digital Cameras Using D3CIP Algorithm Based on Image Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Vignesh">S. Vignesh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Rangasamy"> K. S. Rangasamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with the device capable of detecting and disabling digital cameras. The system locates the camera and then neutralizes it. Every digital camera has an image sensor known as a CCD, which is retro-reflective and sends light back directly to its original source at the same angle. The device shines infrared LED light, which is invisible to the human eye, at a distance of about 20 feet. It then collects video of these reflections with a camcorder. Then the video of the reflections is transferred to a computer connected to the device, where it is sent through image processing algorithms that pick out infrared light bouncing back. Once the camera is detected, the device would project an invisible infrared laser into the camera's lens, thereby overexposing the photo and rendering it useless. Low levels of infrared laser neutralize digital cameras but are neither a health danger to humans nor a physical damage to cameras. We also discuss the simplified design of the above device that can used in theatres to prevent piracy. The domains being covered here are optics and image processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CCD" title="CCD">CCD</a>, <a href="https://publications.waset.org/abstracts/search?q=optics" title=" optics"> optics</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=D3CIP" title=" D3CIP"> D3CIP</a> </p> <a href="https://publications.waset.org/abstracts/1736/detecting-and-disabling-digital-cameras-using-d3cip-algorithm-based-on-image-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1143</span> YOLO-IR: Infrared Small Object Detection in High Noise Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yufeng%20Li">Yufeng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yinan%20Ma"> Yinan Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Wu"> Jing Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chengnian%20Long"> Chengnian Long</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infrared object detection aims at separating small and dim target from clutter background and its capabilities extend beyond the limits of visible light, making it invaluable in a wide range of applications such as improving safety, security, efficiency, and functionality. However, existing methods are usually sensitive to the noise of the input infrared image, leading to a decrease in target detection accuracy and an increase in the false alarm rate in high-noise environments. To address this issue, an infrared small target detection algorithm called YOLO-IR is proposed in this paper to improve the robustness to high infrared noise. To address the problem that high noise significantly reduces the clarity and reliability of target features in infrared images, we design a soft-threshold coordinate attention mechanism to improve the model’s ability to extract target features and its robustness to noise. Since the noise may overwhelm the local details of the target, resulting in the loss of small target features during depth down-sampling, we propose a deep and shallow feature fusion neck to improve the detection accuracy. In addition, because the generalized Intersection over Union (IoU)-based loss functions may be sensitive to noise and lead to unstable training in high-noise environments, we introduce a Wasserstein-distance based loss function to improve the training of the model. The experimental results show that YOLO-IR achieves a 5.0% improvement in recall and a 6.6% improvement in F1-score over existing state-of-art model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infrared%20small%20target%20detection" title="infrared small target detection">infrared small target detection</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20noise" title=" high noise"> high noise</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness" title=" robustness"> robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=soft-threshold%20coordinate%20attention" title=" soft-threshold coordinate attention"> soft-threshold coordinate attention</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20fusion" title=" feature fusion"> feature fusion</a> </p> <a href="https://publications.waset.org/abstracts/180574/yolo-ir-infrared-small-object-detection-in-high-noise-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1142</span> Evaluation of Heterogeneity of Paint Coating on Metal Substrate Using Laser Infrared Thermography and Eddy Current</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mezghani">S. Mezghani</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Perrin"> E. Perrin</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20L.%20Bodnar"> J. L. Bodnar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Marthe"> J. Marthe</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Cauwe"> B. Cauwe</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Vrabie"> V. Vrabie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non contact evaluation of the thickness of paint coatings can be attempted by different destructive and nondestructive methods such as cross-section microscopy, gravimetric mass measurement, magnetic gauges, Eddy current, ultrasound or terahertz. Infrared thermography is a nondestructive and non-invasive method that can be envisaged as a useful tool to measure the surface thickness variations by analyzing the temperature response. In this paper, the thermal quadrupole method for two layered samples heated up with a pulsed excitation is firstly used. By analyzing the thermal responses as a function of thermal properties and thicknesses of both layers, optimal parameters for the excitation source can be identified. Simulations show that a pulsed excitation with duration of ten milliseconds allows to obtain a substrate-independent thermal response. Based on this result, an experimental setup consisting of a near-infrared laser diode and an Infrared camera was next used to evaluate the variation of paint coating thickness between 60 µm and 130 µm on two samples. Results show that the parameters extracted for thermal images are correlated with the estimated thicknesses by the Eddy current methods. The laser pulsed thermography is thus an interesting alternative nondestructive method that can be moreover used for non conductive substrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non%20destructive" title="non destructive">non destructive</a>, <a href="https://publications.waset.org/abstracts/search?q=paint%20coating" title=" paint coating"> paint coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title=" infrared thermography"> infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=laser" title=" laser"> laser</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title=" heterogeneity"> heterogeneity</a> </p> <a href="https://publications.waset.org/abstracts/20665/evaluation-of-heterogeneity-of-paint-coating-on-metal-substrate-using-laser-infrared-thermography-and-eddy-current" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">639</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1141</span> Biologically Inspired Small Infrared Target Detection Using Local Contrast Mechanisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tian%20Xia">Tian Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang"> Yuan Yan Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to obtain higher small target detection accuracy, this paper presents an effective algorithm inspired by the local contrast mechanism. The proposed method can enhance target signal and suppress background clutter simultaneously. In the first stage, a enhanced image is obtained using the proposed Weighted Laplacian of Gaussian. In the second stage, an adaptive threshold is adopted to segment the target. Experimental results on two changeling image sequences show that the proposed method can detect the bright and dark targets simultaneously, and is not sensitive to sea-sky line of the infrared image. So it is fit for IR small infrared target detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20target%20detection" title="small target detection">small target detection</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20contrast" title=" local contrast"> local contrast</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20vision%20system" title=" human vision system"> human vision system</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20of%20Gaussian" title=" Laplacian of Gaussian"> Laplacian of Gaussian</a> </p> <a href="https://publications.waset.org/abstracts/19199/biologically-inspired-small-infrared-target-detection-using-local-contrast-mechanisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1140</span> Determination of Klebsiella Pneumoniae Susceptibility to Antibiotics Using Infrared Spectroscopy and Machine Learning Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manal%20Suleiman">Manal Suleiman</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Abu-Aqil"> George Abu-Aqil</a>, <a href="https://publications.waset.org/abstracts/search?q=Uraib%20Sharaha"> Uraib Sharaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaris%20Riesenberg"> Klaris Riesenberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Itshak%20Lapidot"> Itshak Lapidot</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Salman"> Ahmad Salman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Huleihel"> Mahmoud Huleihel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Klebsiella pneumoniae is one of the most aggressive multidrug-resistant bacteria associated with human infections resulting in high mortality and morbidity. Thus, for an effective treatment, it is important to diagnose both the species of infecting bacteria and their susceptibility to antibiotics. Current used methods for diagnosing the bacterial susceptibility to antibiotics are time-consuming (about 24h following the first culture). Thus, there is a clear need for rapid methods to determine the bacterial susceptibility to antibiotics. Infrared spectroscopy is a well-known method that is known as sensitive and simple which is able to detect minor biomolecular changes in biological samples associated with developing abnormalities. The main goal of this study is to evaluate the potential of infrared spectroscopy in tandem with Random Forest and XGBoost machine learning algorithms to diagnose the susceptibility of Klebsiella pneumoniae to antibiotics within approximately 20 minutes following the first culture. In this study, 1190 Klebsiella pneumoniae isolates were obtained from different patients with urinary tract infections. The isolates were measured by the infrared spectrometer, and the spectra were analyzed by machine learning algorithms Random Forest and XGBoost to determine their susceptibility regarding nine specific antibiotics. Our results confirm that it was possible to classify the isolates into sensitive and resistant to specific antibiotics with a success rate range of 80%-85% for the different tested antibiotics. These results prove the promising potential of infrared spectroscopy as a powerful diagnostic method for determining the Klebsiella pneumoniae susceptibility to antibiotics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urinary%20tract%20infection%20%28UTI%29" title="urinary tract infection (UTI)">urinary tract infection (UTI)</a>, <a href="https://publications.waset.org/abstracts/search?q=Klebsiella%20pneumoniae" title=" Klebsiella pneumoniae"> Klebsiella pneumoniae</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial%20susceptibility" title=" bacterial susceptibility"> bacterial susceptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20spectroscopy" title=" infrared spectroscopy"> infrared spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/145001/determination-of-klebsiella-pneumoniae-susceptibility-to-antibiotics-using-infrared-spectroscopy-and-machine-learning-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1139</span> Amorphous Silicon-Based PINIP Structure for Human-Like Photosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng-Chuan%20Hsu">Sheng-Chuan Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because the existing structure of ambient light sensor is most silicon photodiode device, it is extremely sensitive in the red and infrared regions. Even though the IR-Cut filter had added, it still cannot completely eliminate the influence of infrared light, and the spectral response of infrared light was stronger than that of the human eyes. Therefore, it is not able to present the vision spectrum of the human eye reacts with the ambient light. Then it needs to consider that the human eye feels the spectra that show significant differences between light and dark place. Consequently, in practical applications, we must create and develop advanced device of human-like photosensor which can solve these problems of ambient light sensor and let cognitive lighting system to provide suitable light to achieve the goals of vision spectrum of human eye and save energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20light%20sensor" title="ambient light sensor">ambient light sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=vision%20spectrum" title=" vision spectrum"> vision spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20lighting%20system" title=" cognitive lighting system"> cognitive lighting system</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20eye" title=" human eye"> human eye</a> </p> <a href="https://publications.waset.org/abstracts/52063/amorphous-silicon-based-pinip-structure-for-human-like-photosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1138</span> Concealed Objects Detection in Visible, Infrared and Terahertz Ranges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kowalski">M. Kowalski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kastek"> M. Kastek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Szustakowski"> M. Szustakowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multispectral screening systems are becoming more popular because of their very interesting properties and applications. One of the most significant applications of multispectral screening systems is prevention of terrorist attacks. There are many kinds of threats and many methods of detection. Visual detection of objects hidden under clothing of a person is one of the most challenging problems of threats detection. There are various solutions of the problem; however, the most effective utilize multispectral surveillance imagers. The development of imaging devices and exploration of new spectral bands is a chance to introduce new equipment for assuring public safety. We investigate the possibility of long lasting detection of potentially dangerous objects covered with various types of clothing. In the article we present the results of comparative studies of passive imaging in three spectrums – visible, infrared and terahertz <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terahertz" title="terahertz">terahertz</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared" title=" infrared"> infrared</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=screening%20camera" title=" screening camera"> screening camera</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a> </p> <a href="https://publications.waset.org/abstracts/6914/concealed-objects-detection-in-visible-infrared-and-terahertz-ranges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1137</span> Design of Regular Communication Area for Infrared Electronic-Toll-Collection Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wern-Yarng%20Shieh">Wern-Yarng Shieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Qian"> Chao Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingnan%20Pei"> Bingnan Pei </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A design of communication area for infrared electronic-toll-collection systems to provide an extended communication interval in the vehicle traveling direction and regular boundary between contiguous traffic lanes is proposed. By utilizing two typical low-cost commercial infrared LEDs with different half-intensity angles Φ1/2 = 22° and 10°, the radiation pattern of the emitter is designed to properly adjust the spatial distribution of the signal power. The aforementioned purpose can be achieved with an LED array in a three-piece structure with appropriate mounting angles. With this emitter, the influence of the mounting parameters, including the mounting height and mounting angles of the on-board unit and road-side unit, on the system performance in terms of the received signal strength and communication area are investigated. The results reveal that, for our emitter proposed in this paper, the ideal "long-and-narrow" characteristic of the communication area is very little affected by these mounting parameters. An optimum mounting configuration is also suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dedicated%20short-range%20communication%20%28DSRC%29" title="dedicated short-range communication (DSRC)">dedicated short-range communication (DSRC)</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20toll%20collection%20%28ETC%29" title=" electronic toll collection (ETC)"> electronic toll collection (ETC)</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20communication" title=" infrared communication"> infrared communication</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20transportation%20system%20%28ITS%29" title=" intelligent transportation system (ITS)"> intelligent transportation system (ITS)</a>, <a href="https://publications.waset.org/abstracts/search?q=multilane%20free%20flow" title=" multilane free flow "> multilane free flow </a> </p> <a href="https://publications.waset.org/abstracts/8678/design-of-regular-communication-area-for-infrared-electronic-toll-collection-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1136</span> Off-Line Detection of &quot;Pannon Wheat&quot; Milling Fractions by Near-Infrared Spectroscopic Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Izs%C3%B3">E. Izsó</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bartaln%C3%A9-Berceli"> M. Bartalné-Berceli</a>, <a href="https://publications.waset.org/abstracts/search?q=Sz.%20Gergely"> Sz. Gergely</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Salg%C3%B3"> A. Salgó </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aims of this investigation is to elaborate near-infrared methods for testing and recognition of chemical components and quality in “Pannon wheat” allied (i.e. true to variety or variety identified) milling fractions as well as to develop spectroscopic methods following the milling processes and evaluate the stability of the milling technology by different types of milling products and according to sampling times, respectively. This wheat categories produced under industrial conditions where samples were collected versus sampling time and maximum or minimum yields. The changes of the main chemical components (such as starch, protein, lipid) and physical properties of fractions (particle size) were analysed by dispersive spectrophotometers using visible (VIS) and near-infrared (NIR) regions of the electromagnetic radiation. Close correlation were obtained between the data of spectroscopic measurement techniques processed by various chemometric methods (e.g. principal component analysis (PCA), cluster analysis (CA) and operation condition of milling technology. Its obvious that NIR methods are able to detect the deviation of the yield parameters and differences of the sampling times by a wide variety of fractions, respectively. NIR technology can be used in the sensitive monitoring of milling technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=near%20infrared%20spectroscopy" title="near infrared spectroscopy">near infrared spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20categories" title=" wheat categories"> wheat categories</a>, <a href="https://publications.waset.org/abstracts/search?q=milling%20process" title=" milling process"> milling process</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring "> monitoring </a> </p> <a href="https://publications.waset.org/abstracts/27640/off-line-detection-of-pannon-wheat-milling-fractions-by-near-infrared-spectroscopic-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1135</span> Simulation and Experimentation Investigation of Infrared Non-Destructive Testing on Thermal Insulation Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bi%20Yan-Qiang">Bi Yan-Qiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shang%20Yonghong"> Shang Yonghong</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Boying"> Lin Boying</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Xinyan"> Ji Xinyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Xiyuan"> Li Xiyuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat-resistant material has important application in the aerospace field. The reliability of the connection between the heat-resisting material and the body determines the success or failure of the project. In this paper, lock-in infrared thermography non-destructive testing technology is used to detect the stability of the thermal-resistant structure. The phase relationship between the temperature and the heat flow is calculated by the numerical method, and the influence of the heating frequency and power is obtained. The correctness of the analysis is verified by the experimental method. Through the research, it can provide the basis for the parameter setting of heat flux including frequency and power, improve the efficiency of detection and the reliability of connection between the heat-resisting material and the body. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infrared%20non-destructive" title="infrared non-destructive">infrared non-destructive</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation%20material" title=" thermal insulation material"> thermal insulation material</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=connection" title=" connection"> connection</a> </p> <a href="https://publications.waset.org/abstracts/63241/simulation-and-experimentation-investigation-of-infrared-non-destructive-testing-on-thermal-insulation-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1134</span> A Survey and Analysis on Inflammatory Pain Detection and Standard Protocol Selection Using Medical Infrared Thermography from Image Processing View Point</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mrinal%20Kanti%20Bhowmik">Mrinal Kanti Bhowmik</a>, <a href="https://publications.waset.org/abstracts/search?q=Shawli%20Bardhan%20Jr."> Shawli Bardhan Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Debotosh%20Bhattacharjee"> Debotosh Bhattacharjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human skin containing temperature value more than absolute zero, discharges infrared radiation related to the frequency of the body temperature. The difference in infrared radiation from the skin surface reflects the abnormality present in human body. Considering the difference, detection and forecasting the temperature variation of the skin surface is the main objective of using Medical Infrared Thermography(MIT) as a diagnostic tool for pain detection. Medical Infrared Thermography(MIT) is a non-invasive imaging technique that records and monitors the temperature flow in the body by receiving the infrared radiated from the skin and represent it through thermogram. The intensity of the thermogram measures the inflammation from the skin surface related to pain in human body. Analysis of thermograms provides automated anomaly detection associated with suspicious pain regions by following several image processing steps. The paper represents a rigorous study based survey related to the processing and analysis of thermograms based on the previous works published in the area of infrared thermal imaging for detecting inflammatory pain diseases like arthritis, spondylosis, shoulder impingement, etc. The study also explores the performance analysis of thermogram processing accompanied by thermogram acquisition protocols, thermography camera specification and the types of pain detected by thermography in summarized tabular format. The tabular format provides a clear structural vision of the past works. The major contribution of the paper introduces a new thermogram acquisition standard associated with inflammatory pain detection in human body to enhance the performance rate. The FLIR T650sc infrared camera with high sensitivity and resolution is adopted to increase the accuracy of thermogram acquisition and analysis. The survey of previous research work highlights that intensity distribution based comparison of comparable and symmetric region of interest and their statistical analysis assigns adequate result in case of identifying and detecting physiological disorder related to inflammatory diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acquisition%20protocol" title="acquisition protocol">acquisition protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammatory%20pain%20detection" title=" inflammatory pain detection"> inflammatory pain detection</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20infrared%20thermography%20%28MIT%29" title=" medical infrared thermography (MIT)"> medical infrared thermography (MIT)</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a> </p> <a href="https://publications.waset.org/abstracts/22181/a-survey-and-analysis-on-inflammatory-pain-detection-and-standard-protocol-selection-using-medical-infrared-thermography-from-image-processing-view-point" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1133</span> Semiconductor Variable Wavelength Generator of Near-Infrared-to-Terahertz Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isao%20Tomita">Isao Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power characteristics are obtained for laser beams of near-infrared and terahertz wavelengths when produced by difference-frequency generation with a quasi-phase-matched (QPM) waveguide made of gallium phosphide (GaP). A refractive-index change of the QPM GaP waveguide is included in computations with Sellmeier’s formula for varying input wavelengths, where optical loss is also included. Although the output power decreases with decreasing photon energy as the beam wavelength changes from near-infrared to terahertz wavelengths, the beam generation with such greatly different wavelengths, which is not achievable with an ordinary laser diode without the replacement of semiconductor material with a different bandgap one, can be made with the same semiconductor (GaP) by changing the QPM period, where a way of changing the period is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=difference-frequency%20generation" title="difference-frequency generation">difference-frequency generation</a>, <a href="https://publications.waset.org/abstracts/search?q=gallium%20phosphide" title=" gallium phosphide"> gallium phosphide</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-phase-matching" title=" quasi-phase-matching"> quasi-phase-matching</a>, <a href="https://publications.waset.org/abstracts/search?q=waveguide" title=" waveguide"> waveguide</a> </p> <a href="https://publications.waset.org/abstracts/145853/semiconductor-variable-wavelength-generator-of-near-infrared-to-terahertz-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1132</span> Improvement of Ground Truth Data for Eye Location on Infrared Driver Recordings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sorin%20Valcan">Sorin Valcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihail%20Gaianu"> Mihail Gaianu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Labeling is a very costly and time consuming process which aims to generate datasets for training neural networks in several functionalities and projects. For driver monitoring system projects, the need for labeled images has a significant impact on the budget and distribution of effort. This paper presents the modifications done to an algorithm used for the generation of ground truth data for 2D eyes location on infrared images with drivers in order to improve the quality of the data and performance of the trained neural networks. The algorithm restrictions become tougher, which makes it more accurate but also less constant. The resulting dataset becomes smaller and shall not be altered by any kind of manual label adjustment before being used in the neural networks training process. These changes resulted in a much better performance of the trained neural networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=labeling%20automation" title="labeling automation">labeling automation</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20camera" title=" infrared camera"> infrared camera</a>, <a href="https://publications.waset.org/abstracts/search?q=driver%20monitoring" title=" driver monitoring"> driver monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=eye%20detection" title=" eye detection"> eye detection</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a> </p> <a href="https://publications.waset.org/abstracts/148969/improvement-of-ground-truth-data-for-eye-location-on-infrared-driver-recordings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1131</span> Gait Biometric for Person Re-Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lavanya%20Srinivasan">Lavanya Srinivasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biometric identification is to identify unique features in a person like fingerprints, iris, ear, and voice recognition that need the subject's permission and physical contact. Gait biometric is used to identify the unique gait of the person by extracting moving features. The main advantage of gait biometric to identify the gait of a person at a distance, without any physical contact. In this work, the gait biometric is used for person re-identification. The person walking naturally compared with the same person walking with bag, coat, and case recorded using longwave infrared, short wave infrared, medium wave infrared, and visible cameras. The videos are recorded in rural and in urban environments. The pre-processing technique includes human identified using YOLO, background subtraction, silhouettes extraction, and synthesis Gait Entropy Image by averaging the silhouettes. The moving features are extracted from the Gait Entropy Energy Image. The extracted features are dimensionality reduced by the principal component analysis and recognised using different classifiers. The comparative results with the different classifier show that linear discriminant analysis outperforms other classifiers with 95.8% for visible in the rural dataset and 94.8% for longwave infrared in the urban dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biometric" title="biometric">biometric</a>, <a href="https://publications.waset.org/abstracts/search?q=gait" title=" gait"> gait</a>, <a href="https://publications.waset.org/abstracts/search?q=silhouettes" title=" silhouettes"> silhouettes</a>, <a href="https://publications.waset.org/abstracts/search?q=YOLO" title=" YOLO"> YOLO</a> </p> <a href="https://publications.waset.org/abstracts/136879/gait-biometric-for-person-re-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrared&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrared&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrared&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrared&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrared&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrared&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrared&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrared&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrared&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrared&amp;page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrared&amp;page=39">39</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrared&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10