CINXE.COM
Memristor - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Memristor - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"b0fbcc61-e68f-486d-a23f-641ca9ce5218","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Memristor","wgTitle":"Memristor","wgCurRevisionId":1265796564,"wgRevisionId":1265796564,"wgArticleId":14246162,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: multiple names: authors list","Articles with short description","Short description is different from Wikidata","Use dmy dates from May 2022","All articles with vague or ambiguous time","Vague or ambiguous time from September 2024","All articles with unsourced statements","Articles with unsourced statements from January 2020","Wikipedia articles needing clarification from January 2020","Commons category link is on Wikidata","Electrical components","American inventions", "Electronic circuits in computer storage","Experimental electrical components"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Memristor","wgRelevantArticleId":14246162,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false, "wgWikibaseItemId":"Q212923","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready", "jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/00/Memristor_%2850665029093%29_%28cropped%29.jpg/1200px-Memristor_%2850665029093%29_%28cropped%29.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1243"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/00/Memristor_%2850665029093%29_%28cropped%29.jpg/800px-Memristor_%2850665029093%29_%28cropped%29.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="829"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/00/Memristor_%2850665029093%29_%28cropped%29.jpg/640px-Memristor_%2850665029093%29_%28cropped%29.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="663"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Memristor - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Memristor"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Memristor&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Memristor"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Memristor rootpage-Memristor skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Memristor" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Memristor" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Memristor" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Memristor" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-As_a_fundamental_electrical_component" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#As_a_fundamental_electrical_component"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>As a fundamental electrical component</span> </div> </a> <button aria-controls="toc-As_a_fundamental_electrical_component-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle As a fundamental electrical component subsection</span> </button> <ul id="toc-As_a_fundamental_electrical_component-sublist" class="vector-toc-list"> <li id="toc-Derivation_and_characteristics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Derivation_and_characteristics"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Derivation and characteristics</span> </div> </a> <ul id="toc-Derivation_and_characteristics-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Modelling_and_validation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Modelling_and_validation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Modelling and validation</span> </div> </a> <button aria-controls="toc-Modelling_and_validation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Modelling and validation subsection</span> </button> <ul id="toc-Modelling_and_validation-sublist" class="vector-toc-list"> <li id="toc-Superconducting_memristor_component" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Superconducting_memristor_component"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Superconducting memristor component</span> </div> </a> <ul id="toc-Superconducting_memristor_component-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Memristor_circuits" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Memristor_circuits"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Memristor circuits</span> </div> </a> <ul id="toc-Memristor_circuits-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Criticisms" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Criticisms"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Criticisms</span> </div> </a> <ul id="toc-Criticisms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Experimental_tests" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Experimental_tests"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Experimental tests</span> </div> </a> <ul id="toc-Experimental_tests-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Theory" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Theory</span> </div> </a> <button aria-controls="toc-Theory-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Theory subsection</span> </button> <ul id="toc-Theory-sublist" class="vector-toc-list"> <li id="toc-Operation_as_a_switch" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Operation_as_a_switch"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Operation as a switch</span> </div> </a> <ul id="toc-Operation_as_a_switch-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Memristive_systems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Memristive_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Memristive systems</span> </div> </a> <ul id="toc-Memristive_systems-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Pinched_hysteresis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pinched_hysteresis"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Pinched hysteresis</span> </div> </a> <ul id="toc-Pinched_hysteresis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Memristive_networks_and_mathematical_models_of_circuit_interactions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Memristive_networks_and_mathematical_models_of_circuit_interactions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Memristive networks and mathematical models of circuit interactions</span> </div> </a> <ul id="toc-Memristive_networks_and_mathematical_models_of_circuit_interactions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Extended_systems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Extended_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Extended systems</span> </div> </a> <ul id="toc-Extended_systems-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Implementation_of_hysteretic_current-voltage_memristors" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Implementation_of_hysteretic_current-voltage_memristors"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Implementation of hysteretic current-voltage memristors</span> </div> </a> <button aria-controls="toc-Implementation_of_hysteretic_current-voltage_memristors-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Implementation of hysteretic current-voltage memristors subsection</span> </button> <ul id="toc-Implementation_of_hysteretic_current-voltage_memristors-sublist" class="vector-toc-list"> <li id="toc-Titanium_dioxide_memristor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Titanium_dioxide_memristor"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Titanium dioxide memristor</span> </div> </a> <ul id="toc-Titanium_dioxide_memristor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Silicon_dioxide_memristor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Silicon_dioxide_memristor"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Silicon dioxide memristor</span> </div> </a> <ul id="toc-Silicon_dioxide_memristor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Polymeric_memristor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Polymeric_memristor"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Polymeric memristor</span> </div> </a> <ul id="toc-Polymeric_memristor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Layered_memristor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Layered_memristor"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Layered memristor</span> </div> </a> <ul id="toc-Layered_memristor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Atomristor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Atomristor"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Atomristor</span> </div> </a> <ul id="toc-Atomristor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ferroelectric_memristor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ferroelectric_memristor"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Ferroelectric memristor</span> </div> </a> <ul id="toc-Ferroelectric_memristor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Carbon_nanotube_memristor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Carbon_nanotube_memristor"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7</span> <span>Carbon nanotube memristor</span> </div> </a> <ul id="toc-Carbon_nanotube_memristor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Biomolecular_memristor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Biomolecular_memristor"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.8</span> <span>Biomolecular memristor</span> </div> </a> <ul id="toc-Biomolecular_memristor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spin_memristive_systems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spin_memristive_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.9</span> <span>Spin memristive systems</span> </div> </a> <ul id="toc-Spin_memristive_systems-sublist" class="vector-toc-list"> <li id="toc-Spintronic_memristor" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Spintronic_memristor"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.9.1</span> <span>Spintronic memristor</span> </div> </a> <ul id="toc-Spintronic_memristor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Memristance_in_a_magnetic_tunnel_junction" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Memristance_in_a_magnetic_tunnel_junction"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.9.2</span> <span>Memristance in a magnetic tunnel junction</span> </div> </a> <ul id="toc-Memristance_in_a_magnetic_tunnel_junction-sublist" class="vector-toc-list"> <li id="toc-Extrinsic_mechanism" class="vector-toc-list-item vector-toc-level-4"> <a class="vector-toc-link" href="#Extrinsic_mechanism"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.9.2.1</span> <span>Extrinsic mechanism</span> </div> </a> <ul id="toc-Extrinsic_mechanism-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Intrinsic_mechanism" class="vector-toc-list-item vector-toc-level-4"> <a class="vector-toc-link" href="#Intrinsic_mechanism"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.9.2.2</span> <span>Intrinsic mechanism</span> </div> </a> <ul id="toc-Intrinsic_mechanism-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Spin_memristive_system" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Spin_memristive_system"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.9.3</span> <span>Spin memristive system</span> </div> </a> <ul id="toc-Spin_memristive_system-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Self-directed_channel_memristor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Self-directed_channel_memristor"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.10</span> <span>Self-directed channel memristor</span> </div> </a> <ul id="toc-Self-directed_channel_memristor-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Implementation_of_hysteretic_flux-charge_memristors" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Implementation_of_hysteretic_flux-charge_memristors"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Implementation of hysteretic flux-charge memristors</span> </div> </a> <button aria-controls="toc-Implementation_of_hysteretic_flux-charge_memristors-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Implementation of hysteretic flux-charge memristors subsection</span> </button> <ul id="toc-Implementation_of_hysteretic_flux-charge_memristors-sublist" class="vector-toc-list"> <li id="toc-Time-integrated_Formingfree_memristor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Time-integrated_Formingfree_memristor"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Time-integrated Formingfree memristor</span> </div> </a> <ul id="toc-Time-integrated_Formingfree_memristor-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Potential_applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Potential_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Potential applications</span> </div> </a> <ul id="toc-Potential_applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Derivative_devices" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Derivative_devices"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Derivative devices</span> </div> </a> <button aria-controls="toc-Derivative_devices-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Derivative devices subsection</span> </button> <ul id="toc-Derivative_devices-sublist" class="vector-toc-list"> <li id="toc-Memistor_and_memtransistor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Memistor_and_memtransistor"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Memistor and memtransistor</span> </div> </a> <ul id="toc-Memistor_and_memtransistor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Memcapacitors_and_meminductors" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Memcapacitors_and_meminductors"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Memcapacitors and meminductors</span> </div> </a> <ul id="toc-Memcapacitors_and_meminductors-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Memfractance_and_memfractor,_2nd-_and_3rd-order_memristor,_memcapacitor_and_meminductor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Memfractance_and_memfractor,_2nd-_and_3rd-order_memristor,_memcapacitor_and_meminductor"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Memfractance and memfractor, 2nd- and 3rd-order memristor, memcapacitor and meminductor</span> </div> </a> <ul id="toc-Memfractance_and_memfractor,_2nd-_and_3rd-order_memristor,_memcapacitor_and_meminductor-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>History</span> </div> </a> <button aria-controls="toc-History-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle History subsection</span> </button> <ul id="toc-History-sublist" class="vector-toc-list"> <li id="toc-Precursors" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Precursors"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Precursors</span> </div> </a> <ul id="toc-Precursors-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Theoretical_description" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Theoretical_description"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Theoretical description</span> </div> </a> <ul id="toc-Theoretical_description-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Twenty-first_century" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Twenty-first_century"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Twenty-first century</span> </div> </a> <ul id="toc-Twenty-first_century-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Footnotes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Footnotes"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Footnotes</span> </div> </a> <ul id="toc-Footnotes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Memristor</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 37 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-37" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">37 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D9%82%D8%A7%D9%88%D9%85%D8%A9_%D8%B0%D8%A7%D9%83%D8%B1%D9%8A%D8%A9" title="مقاومة ذاكرية – Arabic" lang="ar" hreflang="ar" data-title="مقاومة ذاكرية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AE%E0%A7%87%E0%A6%AE%E0%A6%B0%E0%A6%BF%E0%A6%B8%E0%A7%8D%E0%A6%9F%E0%A6%B0" title="মেমরিস্টর – Bangla" lang="bn" hreflang="bn" data-title="মেমরিস্টর" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9C%D0%B5%D0%BC%D1%80%D0%B8%D1%81%D1%82%D0%BE%D1%80" title="Мемристор – Bulgarian" lang="bg" hreflang="bg" data-title="Мемристор" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Memristor" title="Memristor – Catalan" lang="ca" hreflang="ca" data-title="Memristor" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Memristor" title="Memristor – Czech" lang="cs" hreflang="cs" data-title="Memristor" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Memristor" title="Memristor – Danish" lang="da" hreflang="da" data-title="Memristor" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Memristor" title="Memristor – German" lang="de" hreflang="de" data-title="Memristor" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Memristor" title="Memristor – Estonian" lang="et" hreflang="et" data-title="Memristor" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Memristor" title="Memristor – Spanish" lang="es" hreflang="es" data-title="Memristor" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Memristore" title="Memristore – Basque" lang="eu" hreflang="eu" data-title="Memristore" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D9%85%D8%B1%DB%8C%D8%B3%D8%AA%D9%88%D8%B1" title="ممریستور – Persian" lang="fa" hreflang="fa" data-title="ممریستور" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Memristor" title="Memristor – French" lang="fr" hreflang="fr" data-title="Memristor" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A9%A4%EB%A6%AC%EC%8A%A4%ED%84%B0" title="멤리스터 – Korean" lang="ko" hreflang="ko" data-title="멤리스터" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Memristor" title="Memristor – Indonesian" lang="id" hreflang="id" data-title="Memristor" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Memristore" title="Memristore – Italian" lang="it" hreflang="it" data-title="Memristore" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%9E%D7%A8%D7%99%D7%A1%D7%98%D7%95%D7%A8" title="ממריסטור – Hebrew" lang="he" hreflang="he" data-title="ממריסטור" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Memrisztor" title="Memrisztor – Hungarian" lang="hu" hreflang="hu" data-title="Memrisztor" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Memristor" title="Memristor – Dutch" lang="nl" hreflang="nl" data-title="Memristor" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%A1%E3%83%A2%E3%83%AA%E3%82%B9%E3%82%BF" title="メモリスタ – Japanese" lang="ja" hreflang="ja" data-title="メモリスタ" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Memristor" title="Memristor – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Memristor" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Memrystor" title="Memrystor – Polish" lang="pl" hreflang="pl" data-title="Memrystor" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Memristor" title="Memristor – Portuguese" lang="pt" hreflang="pt" data-title="Memristor" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Memristor" title="Memristor – Romanian" lang="ro" hreflang="ro" data-title="Memristor" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D0%BC%D1%80%D0%B8%D1%81%D1%82%D0%BE%D1%80" title="Мемристор – Russian" lang="ru" hreflang="ru" data-title="Мемристор" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Memristor" title="Memristor – Simple English" lang="en-simple" hreflang="en-simple" data-title="Memristor" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Memristor" title="Memristor – Slovak" lang="sk" hreflang="sk" data-title="Memristor" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Memristor" title="Memristor – Slovenian" lang="sl" hreflang="sl" data-title="Memristor" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BC%D0%BF%D0%BE%D1%80%D0%BD%D0%B8%D0%BA" title="Помпорник – Serbian" lang="sr" hreflang="sr" data-title="Помпорник" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Memristor" title="Memristor – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Memristor" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Memristori" title="Memristori – Finnish" lang="fi" hreflang="fi" data-title="Memristori" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Memristor" title="Memristor – Swedish" lang="sv" hreflang="sv" data-title="Memristor" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A8%E0%AE%BF%E0%AE%A9%E0%AF%88%E0%AE%B5%E0%AF%81%E0%AE%95%E0%AF%8A%E0%AE%B3%E0%AF%8D_%E0%AE%AE%E0%AE%BF%E0%AE%A9%E0%AF%8D%E0%AE%A4%E0%AE%9F%E0%AF%88" title="நினைவுகொள் மின்தடை – Tamil" lang="ta" hreflang="ta" data-title="நினைவுகொள் மின்தடை" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%A1%E0%B8%A1%E0%B8%A3%E0%B8%B4%E0%B8%AA%E0%B9%80%E0%B8%95%E0%B8%AD%E0%B8%A3%E0%B9%8C" title="เมมริสเตอร์ – Thai" lang="th" hreflang="th" data-title="เมมริสเตอร์" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Memristor" title="Memristor – Turkish" lang="tr" hreflang="tr" data-title="Memristor" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9C%D0%B5%D0%BC%D1%80%D0%B8%D1%81%D1%82%D0%BE%D1%80" title="Мемристор – Ukrainian" lang="uk" hreflang="uk" data-title="Мемристор" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Memristor" title="Memristor – Vietnamese" lang="vi" hreflang="vi" data-title="Memristor" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%86%B6%E9%98%BB%E5%99%A8" title="憶阻器 – Chinese" lang="zh" hreflang="zh" data-title="憶阻器" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q212923#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Memristor" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Memristor" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Memristor"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Memristor&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Memristor&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Memristor"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Memristor&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Memristor&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Memristor" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Memristor" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Memristor&oldid=1265796564" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Memristor&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Memristor&id=1265796564&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMemristor"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMemristor"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Memristor&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Memristor&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Memristors" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q212923" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Nonlinear two-terminal fundamental circuit element</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Memistor" title="Memistor">Memistor</a> or <a href="/wiki/Memtransistor" title="Memtransistor">Memtransistor</a>.</div> <p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><table class="infobox"><caption class="infobox-title">Memristor</caption><tbody><tr><td colspan="2" class="infobox-image"><span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/File:Memristor_(50665029093)_(cropped).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Memristor_%2850665029093%29_%28cropped%29.jpg/220px-Memristor_%2850665029093%29_%28cropped%29.jpg" decoding="async" width="220" height="228" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Memristor_%2850665029093%29_%28cropped%29.jpg/330px-Memristor_%2850665029093%29_%28cropped%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/00/Memristor_%2850665029093%29_%28cropped%29.jpg/440px-Memristor_%2850665029093%29_%28cropped%29.jpg 2x" data-file-width="4079" data-file-height="4225" /></a></span><div class="infobox-caption">Memristor developed by the <a href="/wiki/University_of_Illinois_at_Urbana-Champaign" class="mw-redirect" title="University of Illinois at Urbana-Champaign">University of Illinois at Urbana-Champaign</a> and <a href="/wiki/National_Energy_Technology_Laboratory" title="National Energy Technology Laboratory">National Energy Technology Laboratory</a></div></td></tr><tr><th scope="row" class="infobox-label"><span class="nowrap">Working principle<span style="visibility:hidden; color:transparent; padding-left:2px">‍</span></span></th><td class="infobox-data">Relating electric charge and magnetic flux linkage</td></tr><tr><th scope="row" class="infobox-label">Inventor</th><td class="infobox-data"><a href="/wiki/Leon_Chua" class="mw-redirect" title="Leon Chua">Leon Chua</a></td></tr><tr><th scope="row" class="infobox-label">Invention year</th><td class="infobox-data">1971<span class="noprint">; 54 years ago</span><span style="display:none"> (<span class="bday dtstart published updated">1971</span>)</span></td></tr><tr><th scope="row" class="infobox-label">Number of <a href="/wiki/Terminal_(electronics)" title="Terminal (electronics)">terminals</a></th><td class="infobox-data">2</td></tr><tr><th scope="row" class="infobox-label"><span class="nowrap">Linear?</span></th><td class="infobox-data">No</td></tr><tr><th colspan="2" class="infobox-header"><a href="/wiki/Electronic_symbol" title="Electronic symbol">Electronic symbol</a></th></tr><tr><td colspan="2" class="infobox-full-data"><span class="mw-default-size" typeof="mw:File"><a href="/wiki/File:Memristor-Symbol.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Memristor-Symbol.svg/35px-Memristor-Symbol.svg.png" decoding="async" width="35" height="71" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Memristor-Symbol.svg/53px-Memristor-Symbol.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Memristor-Symbol.svg/70px-Memristor-Symbol.svg.png 2x" data-file-width="35" data-file-height="71" /></a></span></td></tr></tbody></table> <p>A <b>memristor</b> (<span class="rt-commentedText nowrap"><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="/ˈ/: primary stress follows">ˈ</span><span title="'m' in 'my'">m</span><span title="/ɛ/: 'e' in 'dress'">ɛ</span><span title="'m' in 'my'">m</span><span title="'r' in 'rye'">r</span><span title="/ɪ/: 'i' in 'kit'">ɪ</span><span title="'s' in 'sigh'">s</span><span title="'t' in 'tie'">t</span><span title="/ər/: 'er' in 'letter'">ər</span></span>/</a></span></span>; a <a href="/wiki/Portmanteau" class="mw-redirect" title="Portmanteau">portmanteau</a> of <i>memory resistor</i>) is a non-linear <a href="/wiki/Terminal_(electronics)" title="Terminal (electronics)">two-terminal</a> <a href="/wiki/Electronic_component" title="Electronic component">electrical component</a> relating <a href="/wiki/Electric_charge" title="Electric charge">electric charge</a> and magnetic <a href="/wiki/Flux_linkage" title="Flux linkage">flux linkage</a>. It was described and named in 1971 by <a href="/wiki/Leon_Chua" class="mw-redirect" title="Leon Chua">Leon Chua</a>, completing a theoretical quartet of fundamental electrical components which also comprises the <a href="/wiki/Resistor" title="Resistor">resistor</a>, <a href="/wiki/Capacitor" title="Capacitor">capacitor</a> and <a href="/wiki/Inductor" title="Inductor">inductor</a>.<sup id="cite_ref-chua71_1-0" class="reference"><a href="#cite_note-chua71-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p>Chua and Kang later generalized the concept to <b>memristive systems</b>.<sup id="cite_ref-chua76_2-0" class="reference"><a href="#cite_note-chua76-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Such a system comprises a circuit, of multiple conventional components, which mimics key properties of the ideal memristor component and is also commonly referred to as a memristor. Several such memristor system technologies have been developed, notably <a href="/wiki/ReRAM" class="mw-redirect" title="ReRAM">ReRAM</a>. </p><p>The identification of memristive properties in electronic devices has attracted controversy. Experimentally, the ideal memristor has yet to be demonstrated.<sup id="cite_ref-Pershin_2018_3-0" class="reference"><a href="#cite_note-Pershin_2018-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Kim_2019_4-0" class="reference"><a href="#cite_note-Kim_2019-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="As_a_fundamental_electrical_component">As a fundamental electrical component</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=1" title="Edit section: As a fundamental electrical component"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Two-terminal_non-linear_circuit_elements.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/15/Two-terminal_non-linear_circuit_elements.svg/220px-Two-terminal_non-linear_circuit_elements.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/15/Two-terminal_non-linear_circuit_elements.svg/330px-Two-terminal_non-linear_circuit_elements.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/15/Two-terminal_non-linear_circuit_elements.svg/440px-Two-terminal_non-linear_circuit_elements.svg.png 2x" data-file-width="1024" data-file-height="1024" /></a><figcaption>Conceptual symmetries of resistor, capacitor, inductor, and memristor</figcaption></figure> <p>Chua in his 1971 paper identified a theoretical symmetry between the non-linear resistor (voltage vs. current), non-linear capacitor (voltage vs. charge), and non-linear inductor (magnetic flux linkage vs. current). From this symmetry he inferred the characteristics of a fourth fundamental non-linear circuit element, linking magnetic flux and charge, which he called the memristor. In contrast to a linear (or non-linear) resistor, the memristor has a dynamic relationship between current and voltage, including a memory of past voltages or currents. Other scientists had proposed dynamic memory resistors such as the <a href="/wiki/Memistor" title="Memistor">memistor</a> of Bernard Widrow, but Chua introduced a mathematical generality. </p> <div class="mw-heading mw-heading3"><h3 id="Derivation_and_characteristics">Derivation and characteristics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=2" title="Edit section: Derivation and characteristics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The memristor was originally defined in terms of a non-linear functional relationship between magnetic flux linkage <span class="texhtml">Φ<sub>m</sub>(<i>t</i>)</span> and the amount of electric charge that has flowed, <span class="texhtml"><i>q</i>(<i>t</i>)</span>:<sup id="cite_ref-chua71_1-1" class="reference"><a href="#cite_note-chua71-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\mathrm {\Phi } _{\mathrm {m} }(t),q(t))=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Φ<!-- Φ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\mathrm {\Phi } _{\mathrm {m} }(t),q(t))=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96fff63491f64261d6ee1df829d4d3746af4fe32" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.029ex; height:2.843ex;" alt="{\displaystyle f(\mathrm {\Phi } _{\mathrm {m} }(t),q(t))=0}"></span> </p><p>The <i>magnetic <a href="/wiki/Flux_linkage" title="Flux linkage">flux linkage</a></i>, <span class="texhtml">Φ<sub>m</sub></span>, is generalized from the circuit characteristic of an inductor. It <em>does not</em> represent a magnetic field here. Its physical meaning is discussed below. The symbol <span class="texhtml">Φ<sub>m</sub></span> may be regarded as the integral of voltage over time.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p>In the relationship between <span class="texhtml">Φ<sub>m</sub></span> and <span class="texhtml mvar" style="font-style:italic;">q</span>, the derivative of one with respect to the other depends on the value of one or the other, and so each memristor is characterized by its memristance function describing the charge-dependent rate of change of flux with charge: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(q)={\frac {\mathrm {d} \Phi _{\rm {m}}}{\mathrm {d} q}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>q</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(q)={\frac {\mathrm {d} \Phi _{\rm {m}}}{\mathrm {d} q}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50065bf6c9ea9104a967fd396bbf39cb4ae95f00" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:14.861ex; height:5.843ex;" alt="{\displaystyle M(q)={\frac {\mathrm {d} \Phi _{\rm {m}}}{\mathrm {d} q}}\,.}"></span> </p><p>Substituting the flux as the time integral of the voltage, and charge as the time integral of current, the more convenient forms are: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(q(t))={\cfrac {\mathrm {d} \Phi _{\rm {}}/\mathrm {d} t}{\mathrm {d} q/\mathrm {d} t}}={\frac {V(t)}{I(t)}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>V</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>I</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(q(t))={\cfrac {\mathrm {d} \Phi _{\rm {}}/\mathrm {d} t}{\mathrm {d} q/\mathrm {d} t}}={\frac {V(t)}{I(t)}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93b4372535c28a6de5b653a10e99f56e0b1924ab" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.574ex; height:7.176ex;" alt="{\displaystyle M(q(t))={\cfrac {\mathrm {d} \Phi _{\rm {}}/\mathrm {d} t}{\mathrm {d} q/\mathrm {d} t}}={\frac {V(t)}{I(t)}}\,.}"></span> </p><p>To relate the memristor to the resistor, capacitor, and inductor, it is helpful to isolate the term <span class="texhtml"><i>M</i>(<i>q</i>)</span>, which characterizes the device, and write it as a differential equation. </p> <table class="wikitable"> <caption>Differential equation relationships between resistance, capacitance, inductance, and memristance </caption> <tbody><tr> <th scope="col">Device </th> <th scope="col">Symbol </th> <th scope="col">Characteristic property </th> <th scope="col">Units </th> <th scope="col">Unit ratio (V, A, C, Wb) </th> <th scope="col">Differential equation </th></tr> <tr> <th scope="row"><a href="/wiki/Resistor" title="Resistor">Resistor</a> </th> <td><span class="texhtml mvar" style="font-style:italic;">R</span></td> <td><a href="/wiki/Electrical_resistance" class="mw-redirect" title="Electrical resistance">Resistance</a></td> <td><a href="/wiki/Ohm" title="Ohm">ohm</a> (<span class="texhtml">Ω</span>)</td> <td><a href="/wiki/Volt" title="Volt">volts</a> per <a href="/wiki/Ampere" title="Ampere">ampere</a> (<span class="texhtml"><span style="white-space: nowrap;">V / A</span></span>)</td> <td><span class="texhtml"><i>R</i> = d<i>V</i> / d<i>I</i></span> </td></tr> <tr> <th scope="row"><a href="/wiki/Capacitor" title="Capacitor">Capacitor</a> </th> <td><span class="texhtml mvar" style="font-style:italic;">C</span></td> <td><a href="/wiki/Capacitance" title="Capacitance">Capacitance</a></td> <td><a href="/wiki/Farad" title="Farad">farad</a> (<span class="texhtml">F</span>)</td> <td><a href="/wiki/Coulomb" title="Coulomb">coulombs</a> per volt (<span class="texhtml"><span style="white-space: nowrap;">C / V</span></span>)</td> <td><span class="texhtml"><i>C</i> = d<i>q</i> / d<i>V</i></span> </td></tr> <tr> <th scope="row"><a href="/wiki/Inductor" title="Inductor">Inductor</a> </th> <td><span class="texhtml mvar" style="font-style:italic;">L</span></td> <td><a href="/wiki/Inductance" title="Inductance">Inductance</a></td> <td><a href="/wiki/Henry_(unit)" title="Henry (unit)">henry</a> (<span class="texhtml">H</span>)</td> <td><a href="/wiki/Weber_(unit)" title="Weber (unit)">webers</a> per ampere (<span class="texhtml"><span style="white-space: nowrap;">Wb / A</span></span>)</td> <td><span class="texhtml"><i>L</i> = dΦ<sub>m</sub> / d<i>I</i></span> </td></tr> <tr> <th scope="row">Memristor </th> <td><span class="texhtml mvar" style="font-style:italic;">M</span></td> <td>Memristance</td> <td>ohm (<span class="texhtml">Ω</span>)</td> <td>webers per coulomb (<span class="texhtml"><span style="white-space: nowrap;">Wb / C</span></span>)</td> <td><span class="texhtml"><i>M</i> = dΦ<sub>m</sub> / d<i>q</i></span> </td></tr></tbody></table> <p>The above table covers all meaningful ratios of differentials of <span class="texhtml mvar" style="font-style:italic;">I</span>, <span class="texhtml mvar" style="font-style:italic;">q</span>, <span class="texhtml">Φ<sub>m</sub></span>, and <span class="texhtml mvar" style="font-style:italic;">V</span>. No device can relate <span class="texhtml">d<i>I</i></span> to <span class="texhtml">d<i>q</i></span>, or <span class="texhtml">dΦ<sub>m</sub></span> to <span class="texhtml">d<i>V</i></span>, because <span class="texhtml mvar" style="font-style:italic;">I</span> is the time derivative of <span class="texhtml mvar" style="font-style:italic;">q</span> and <span class="texhtml">Φ<sub>m</sub></span> is the integral of <span class="texhtml mvar" style="font-style:italic;">V</span> with respect to time. </p><p>It can be inferred from this that memristance is charge-dependent <a href="/wiki/Electrical_resistance" class="mw-redirect" title="Electrical resistance">resistance</a>. If <span class="texhtml"><i>M</i>(<i>q</i>(<i>t</i>))</span> is a constant, then we obtain <a href="/wiki/Ohm%27s_law" title="Ohm's law">Ohm's law</a>, <span class="texhtml"><i>R</i>(<i>t</i>) = <i>V</i>(<i>t</i>)/<i>I</i>(<i>t</i>)</span>. If <span class="texhtml"><i>M</i>(<i>q</i>(<i>t</i>))</span> is nontrivial, however, the equation is not equivalent because <span class="texhtml"><i>q</i>(<i>t</i>)</span> and <span class="texhtml"><i>M</i>(<i>q</i>(<i>t</i>))</span> can vary with time. Solving for voltage as a function of time produces </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V(t)=\ M(q(t))I(t)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mtext> </mtext> <mi>M</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mi>I</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V(t)=\ M(q(t))I(t)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80cbbc5ba0bdc971b4a39fa14b98de412cfab355" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.94ex; height:2.843ex;" alt="{\displaystyle V(t)=\ M(q(t))I(t)\,.}"></span> </p><p>This equation reveals that memristance defines a linear relationship between current and voltage, as long as <span class="texhtml mvar" style="font-style:italic;">M</span> does not vary with charge. Nonzero current implies time varying charge. <a href="/wiki/Alternating_current" title="Alternating current">Alternating current</a>, however, may reveal the linear dependence in circuit operation by inducing a measurable voltage without net charge movement—as long as the maximum change in <span class="texhtml mvar" style="font-style:italic;">q</span> does not cause <a href="/wiki/Small_signal_model" class="mw-redirect" title="Small signal model">much</a> change in <span class="texhtml mvar" style="font-style:italic;">M</span>. </p><p>Furthermore, the memristor is static if no current is applied. If <span class="texhtml"><i>I</i>(<i>t</i>) = 0</span>, we find <span class="texhtml"><i>V</i>(<i>t</i>) = 0</span> and <span class="texhtml"><i>M</i>(<i>t</i>)</span> is constant. This is the essence of the memory effect. </p><p>Analogously, we can define a <span class="texhtml"><i>W</i>(<i>ϕ</i>(<i>t</i>))</span> as memductance:<sup id="cite_ref-chua71_1-2" class="reference"><a href="#cite_note-chua71-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i(t)=W(\phi (t))v(t)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>W</mi> <mo stretchy="false">(</mo> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mi>v</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i(t)=W(\phi (t))v(t)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d5255b6040886a237c524c0eeee157a762e0451" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.639ex; height:2.843ex;" alt="{\displaystyle i(t)=W(\phi (t))v(t)\,.}"></span> </p><p>The <a href="/wiki/Power_consumption" class="mw-redirect" title="Power consumption">power consumption</a> characteristic recalls that of a resistor, <span class="texhtml"><i>I</i><sup>2</sup><i>R</i></span>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(t)=\ I(t)V(t)=\ I^{2}(t)M(q(t))\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mtext> </mtext> <mi>I</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>V</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mtext> </mtext> <msup> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(t)=\ I(t)V(t)=\ I^{2}(t)M(q(t))\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6773f3bd2379c93f6b93ae78532163f79f05777b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.933ex; height:3.176ex;" alt="{\displaystyle P(t)=\ I(t)V(t)=\ I^{2}(t)M(q(t))\,.}"></span> </p><p>As long as <span class="texhtml"><i>M</i>(<i>q</i>(<i>t</i>))</span> varies little, such as under alternating current, the memristor will appear as a constant resistor. If <span class="texhtml"><i>M</i>(<i>q</i>(<i>t</i>))</span> increases rapidly, however, current and power consumption will quickly stop. </p><p><span class="texhtml"><i>M</i>(<i>q</i>)</span> is physically restricted to be positive for all values of <span class="texhtml mvar" style="font-style:italic;">q</span> (assuming the device is passive and does not become <a href="/wiki/Superconductive" class="mw-redirect" title="Superconductive">superconductive</a> at some <span class="texhtml mvar" style="font-style:italic;">q</span>). A negative value would mean that it would perpetually supply energy when operated with alternating current. </p> <div class="mw-heading mw-heading2"><h2 id="Modelling_and_validation">Modelling and validation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=3" title="Edit section: Modelling and validation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In order to understand the nature of memristor function, some knowledge of fundamental circuit theoretic concepts is useful, starting with the concept of <a href="/wiki/Semiconductor_device_modeling" title="Semiconductor device modeling">device modeling</a>.<sup id="cite_ref-muthuswamyBanerjee2019_6-0" class="reference"><a href="#cite_note-muthuswamyBanerjee2019-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p><p>Engineers and scientists seldom analyze a physical system in its original form. Instead, they construct a model which approximates the behaviour of the system. By analyzing the behaviour of the model, they hope to predict the behaviour of the actual system. The primary reason for constructing models is that physical systems are usually too complex to be amenable to a practical analysis. </p><p>In the 20th century, work was done on devices where researchers did not recognize the memristive characteristics. This has raised the suggestion that such devices should be recognised as memristors.<sup id="cite_ref-muthuswamyBanerjee2019_6-1" class="reference"><a href="#cite_note-muthuswamyBanerjee2019-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Pershin and Di Ventra<sup id="cite_ref-Pershin_2018_3-1" class="reference"><a href="#cite_note-Pershin_2018-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> have proposed a test that can help to resolve some of the long-standing controversies about whether an ideal memristor does actually exist or is a purely mathematical concept. </p><p>The rest of this article primarily addresses memristors as related to <a href="/wiki/ReRAM" class="mw-redirect" title="ReRAM">ReRAM</a> devices, since the majority of work since 2008 has been concentrated in this area. </p> <div class="mw-heading mw-heading3"><h3 id="Superconducting_memristor_component">Superconducting memristor component</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=4" title="Edit section: Superconducting memristor component"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Dr. Paul Penfield, in a 1974 MIT technical report<sup id="cite_ref-penfield1974_7-0" class="reference"><a href="#cite_note-penfield1974-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> mentions the memristor in connection with <a href="/wiki/Josephson_junctions" class="mw-redirect" title="Josephson junctions">Josephson junctions</a>. This was an early use of the word "memristor" in the context of a circuit device. </p><p>One of the terms in the current through a Josephson junction is of the form: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}i_{M}(v)&=\epsilon \cos(\phi _{0})v\\&=W(\phi _{0})v\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>ϵ<!-- ϵ --></mi> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>v</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>W</mi> <mo stretchy="false">(</mo> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>v</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}i_{M}(v)&=\epsilon \cos(\phi _{0})v\\&=W(\phi _{0})v\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7b49b69e591e0e3135ab04d28a41d22231c4cc2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:19.367ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}i_{M}(v)&=\epsilon \cos(\phi _{0})v\\&=W(\phi _{0})v\end{aligned}}}"></span> where <span class="texhtml mvar" style="font-style:italic;">ϵ</span> is a constant based on the physical superconducting materials, <span class="texhtml mvar" style="font-style:italic;">v</span> is the voltage across the junction and <span class="texhtml mvar" style="font-style:italic;">i<sub>M</sub></span> is the current through the junction. </p><p>Through the late 20th century, research regarding this phase-dependent conductance in Josephson junctions was carried out.<sup id="cite_ref-langenberg74_8-0" class="reference"><a href="#cite_note-langenberg74-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-pedersen1972_9-0" class="reference"><a href="#cite_note-pedersen1972-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-pedersen1974_10-0" class="reference"><a href="#cite_note-pedersen1974-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-thompson1973_11-0" class="reference"><a href="#cite_note-thompson1973-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> A more comprehensive approach to extracting this phase-dependent conductance appeared with Peotta and Di Ventra's seminal paper in 2014.<sup id="cite_ref-peottaDiVentra2014_12-0" class="reference"><a href="#cite_note-peottaDiVentra2014-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Memristor_circuits">Memristor circuits</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=5" title="Edit section: Memristor circuits"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Due to the practical difficulty of studying the ideal memristor, we will discuss other electrical devices which can be modelled using memristors. For a mathematical description of a memristive device (systems), see <a href="#Theory">§ Theory</a>. </p><p>A discharge tube can be modelled as a memristive device, with resistance being a function of the number of conduction electrons <span class="texhtml"><i>n</i><sub>e</sub></span>.<sup id="cite_ref-chua76_2-1" class="reference"><a href="#cite_note-chua76-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}v_{\mathrm {M} }&=R(n_{\mathrm {e} })i_{\mathrm {M} }\\{\frac {\mathrm {d} n_{\mathrm {e} }}{\mathrm {d} t}}&=\beta n+\alpha R(n_{\mathrm {e} })i_{\mathrm {M} }^{2}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> </mrow> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>R</mi> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> </mrow> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> </mrow> </msub> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>β<!-- β --></mi> <mi>n</mi> <mo>+</mo> <mi>α<!-- α --></mi> <mi>R</mi> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> <msubsup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}v_{\mathrm {M} }&=R(n_{\mathrm {e} })i_{\mathrm {M} }\\{\frac {\mathrm {d} n_{\mathrm {e} }}{\mathrm {d} t}}&=\beta n+\alpha R(n_{\mathrm {e} })i_{\mathrm {M} }^{2}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/565a477b4efca4842b07e0f86ed9290341168a44" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:23.862ex; height:8.509ex;" alt="{\displaystyle {\begin{aligned}v_{\mathrm {M} }&=R(n_{\mathrm {e} })i_{\mathrm {M} }\\{\frac {\mathrm {d} n_{\mathrm {e} }}{\mathrm {d} t}}&=\beta n+\alpha R(n_{\mathrm {e} })i_{\mathrm {M} }^{2}\end{aligned}}}"></span> </p><p><span class="texhtml"><i>v</i><sub>M</sub></span> is the voltage across the discharge tube, <span class="texhtml"><i>i</i><sub>M</sub></span> is the current flowing through it, and<span class="texhtml"><i>n</i><sub>e</sub></span> is the number of conduction electrons. A simple memristance function is <span class="texhtml"><i>R</i>(<i>n</i><sub>e</sub>) = <i>F</i>/<i>n</i><sub>e</sub></span>. The parameters <span class="texhtml mvar" style="font-style:italic;">α</span>, <span class="texhtml mvar" style="font-style:italic;">β</span>, and <span class="texhtml mvar" style="font-style:italic;">F</span> depend on the dimensions of the tube and the gas fillings. An <a href="#Experimental_tests">experimental</a> identification of memristive behaviour is the "pinched hysteresis loop" in the <span class="texhtml mvar" style="font-style:italic;">v-i</span> plane.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-muthuswamy2014_14-0" class="reference"><a href="#cite_note-muthuswamy2014-14"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-sah2015_15-0" class="reference"><a href="#cite_note-sah2015-15"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p>Thermistors can be modeled as memristive devices:<sup id="cite_ref-sah2015_15-1" class="reference"><a href="#cite_note-sah2015-15"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}v&=R_{0}(T_{0})\exp \left[\beta \left({\frac {1}{T}}-{\frac {1}{T_{0}}}\right)\right]i\\&\equiv R(T)i\\{\frac {\mathrm {d} T}{\mathrm {d} t}}&={\frac {1}{C}}\left[-\delta \cdot (T-T_{0})+R(T)i^{2}\right]\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>v</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>exp</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mi>β<!-- β --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mi>i</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>≡<!-- ≡ --></mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mi>i</mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>T</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>C</mi> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>T</mi> <mo>−<!-- − --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}v&=R_{0}(T_{0})\exp \left[\beta \left({\frac {1}{T}}-{\frac {1}{T_{0}}}\right)\right]i\\&\equiv R(T)i\\{\frac {\mathrm {d} T}{\mathrm {d} t}}&={\frac {1}{C}}\left[-\delta \cdot (T-T_{0})+R(T)i^{2}\right]\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc0aa313843800d30c361de2cf8d2d50fd0c8944" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.588ex; margin-bottom: -0.25ex; width:35.684ex; height:14.843ex;" alt="{\displaystyle {\begin{aligned}v&=R_{0}(T_{0})\exp \left[\beta \left({\frac {1}{T}}-{\frac {1}{T_{0}}}\right)\right]i\\&\equiv R(T)i\\{\frac {\mathrm {d} T}{\mathrm {d} t}}&={\frac {1}{C}}\left[-\delta \cdot (T-T_{0})+R(T)i^{2}\right]\end{aligned}}}"></span> </p><p><span class="texhtml mvar" style="font-style:italic;">β</span> is a material constant, <span class="texhtml mvar" style="font-style:italic;">T</span> is the absolute body temperature of the thermistor, <span class="texhtml"><i>T</i><sub>0</sub></span> is the ambient temperature (both temperatures in Kelvin), <span class="texhtml"><i>R</i><sub>0</sub>(<i>T</i><sub>0</sub>)</span> denotes the cold temperature resistance at <span class="texhtml"><i>T</i> = <i>T</i><sub>0</sub></span>, <span class="texhtml mvar" style="font-style:italic;">C</span> is the heat capacitance and <span class="texhtml mvar" style="font-style:italic;">δ</span> is the dissipation constant for the thermistor. </p><p>A fundamental phenomenon that has hardly been studied is memristive behaviour in <a href="/wiki/P-n_junctions" class="mw-redirect" title="P-n junctions">p-n junctions</a>.<sup id="cite_ref-chuaTseng74_16-0" class="reference"><a href="#cite_note-chuaTseng74-16"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> The memristor plays a crucial role in mimicking the charge storage effect in the diode base, and is also responsible for the conductivity modulation phenomenon (that is so important during forward transients). </p> <div class="mw-heading mw-heading3"><h3 id="Criticisms">Criticisms</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=6" title="Edit section: Criticisms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2008, a team at <a href="/wiki/HP_Labs" title="HP Labs">HP Labs</a> found experimental evidence for the Chua's memristor based on an analysis of a <a href="/wiki/Thin_film" title="Thin film">thin film</a> of <a href="/wiki/Titanium_dioxide" title="Titanium dioxide">titanium dioxide</a>, thus connecting the operation of <a href="/wiki/ReRAM" class="mw-redirect" title="ReRAM">ReRAM</a> devices to the memristor concept. According to HP Labs, the memristor would operate in the following way: the memristor's <a href="/wiki/Electrical_resistance" class="mw-redirect" title="Electrical resistance">electrical resistance</a> is not constant but depends on the current that had previously flowed through the device, i.e., its present resistance depends on how much electric charge has previously flowed through it and in what direction; the device remembers its history—the so-called <i><dfn>non-volatility property</dfn></i>.<sup id="cite_ref-chua11_17-0" class="reference"><a href="#cite_note-chua11-17"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> When the electric power supply is turned off, the memristor remembers its most recent resistance until it is turned on again.<sup id="cite_ref-Williams08_18-0" class="reference"><a href="#cite_note-Williams08-18"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> </p><p>The HP Labs result was published in the scientific journal <i><a href="/wiki/Nature_(journal)" title="Nature (journal)">Nature</a></i>.<sup id="cite_ref-Williams08_18-1" class="reference"><a href="#cite_note-Williams08-18"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Williams_-_Spectrum_2008-12_20-0" class="reference"><a href="#cite_note-Williams_-_Spectrum_2008-12-20"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> Following this claim, Leon Chua has argued that the memristor definition could be generalized to cover all forms of two-terminal non-volatile memory devices based on resistance switching effects.<sup id="cite_ref-chua11_17-1" class="reference"><a href="#cite_note-chua11-17"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> Chua also argued that the memristor is the oldest known <a href="/wiki/Circuit_element" class="mw-redirect" title="Circuit element">circuit element</a>, with its effects predating the <a href="/wiki/Resistor" title="Resistor">resistor</a>, <a href="/wiki/Capacitor" title="Capacitor">capacitor</a>, and <a href="/wiki/Inductor" title="Inductor">inductor</a>.<sup id="cite_ref-Memristor200yearsold_21-0" class="reference"><a href="#cite_note-Memristor200yearsold-21"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> However, there are doubts as to whether a memristor can actually exist in physical reality.<sup id="cite_ref-Meuffels_2012_22-0" class="reference"><a href="#cite_note-Meuffels_2012-22"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-DiVentra_2013_23-0" class="reference"><a href="#cite_note-DiVentra_2013-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Sundqvist_2017_24-0" class="reference"><a href="#cite_note-Sundqvist_2017-24"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> Additionally, some experimental evidence contradicts Chua's generalization since a non-passive <a href="/wiki/Nanobatteries" title="Nanobatteries">nanobattery</a> effect is observable in resistance switching memory.<sup id="cite_ref-memristor_nanobattery_26-0" class="reference"><a href="#cite_note-memristor_nanobattery-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> A simple test has been proposed by Pershin and Di Ventra<sup id="cite_ref-Pershin_2018_3-2" class="reference"><a href="#cite_note-Pershin_2018-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> to analyze whether such an ideal or generic memristor does actually exist or is a purely mathematical concept. Up to now,<sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Manual_of_Style/Dates_and_numbers#Chronological_items" title="Wikipedia:Manual of Style/Dates and numbers"><span title="The time period mentioned near this tag is ambiguous. (September 2024)">when?</span></a></i>]</sup> there seems to be no experimental resistance switching device (<a href="/wiki/ReRAM" class="mw-redirect" title="ReRAM">ReRAM</a>) which can pass the test.<sup id="cite_ref-Pershin_2018_3-3" class="reference"><a href="#cite_note-Pershin_2018-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Kim_2019_4-1" class="reference"><a href="#cite_note-Kim_2019-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p><p>These devices are intended for applications in <a href="/wiki/Nanoelectronic" class="mw-redirect" title="Nanoelectronic">nanoelectronic</a> memory devices, computer logic, and <a href="/wiki/Neuromorphic" class="mw-redirect" title="Neuromorphic">neuromorphic</a>/neuromemristive computer architectures.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> In 2013, Hewlett-Packard CTO Martin Fink suggested that memristor memory may become commercially available as early as 2018.<sup id="cite_ref-memristor2018_29-0" class="reference"><a href="#cite_note-memristor2018-29"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> In March 2012, a team of researchers from <a href="/wiki/HRL_Laboratories" title="HRL Laboratories">HRL Laboratories</a> and the <a href="/wiki/University_of_Michigan" title="University of Michigan">University of Michigan</a> announced the first functioning memristor array built on a <a href="/wiki/CMOS" title="CMOS">CMOS</a> chip.<sup id="cite_ref-HRLmemristor_30-0" class="reference"><a href="#cite_note-HRLmemristor-30"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Memristor.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/9/9f/Memristor.jpg/225px-Memristor.jpg" decoding="async" width="225" height="214" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/9/9f/Memristor.jpg 1.5x" data-file-width="324" data-file-height="308" /></a><figcaption>An array of 17 purpose-built <a href="/wiki/Oxygen" title="Oxygen">oxygen</a>-depleted <a href="/wiki/Titanium_dioxide" title="Titanium dioxide">titanium dioxide</a> memristors built at <a href="/wiki/HP_Labs" title="HP Labs">HP Labs</a>, imaged by an <a href="/wiki/Atomic_force_microscope" class="mw-redirect" title="Atomic force microscope">atomic force microscope</a>. The wires are about <span class="nowrap"><span data-sort-value="6992500000000000000♠"></span>50 nm</span>, or 150 atoms, wide.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Electric_current" title="Electric current">Electric current</a> through the memristors shifts the oxygen vacancies, causing a gradual and persistent change in <a href="/wiki/Electrical_resistance" class="mw-redirect" title="Electrical resistance">electrical resistance</a>.<sup id="cite_ref-Kanellos_32-0" class="reference"><a href="#cite_note-Kanellos-32"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>According to the original 1971 definition, the memristor is the fourth fundamental circuit element, forming a non-linear relationship between electric charge and magnetic flux linkage. In 2011, <a href="/wiki/Leon_Chua" class="mw-redirect" title="Leon Chua">Chua</a> argued for a broader definition that includes all two-terminal non-volatile memory devices based on resistance switching.<sup id="cite_ref-chua11_17-2" class="reference"><a href="#cite_note-chua11-17"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> Williams argued that <a href="/wiki/Magnetoresistive_RAM" title="Magnetoresistive RAM">MRAM</a>, <a href="/wiki/Phase-change_memory" title="Phase-change memory">phase-change memory</a> and <a href="/wiki/ReRAM" class="mw-redirect" title="ReRAM">ReRAM</a> are memristor technologies.<sup id="cite_ref-Mellor2011_33-0" class="reference"><a href="#cite_note-Mellor2011-33"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> Some researchers argued that biological structures such as blood<sup id="cite_ref-Courtland2011_34-0" class="reference"><a href="#cite_note-Courtland2011-34"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> and skin<sup id="cite_ref-G_K_Johnsen_et_al_35-0" class="reference"><a href="#cite_note-G_K_Johnsen_et_al-35"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-McAlpine2011_36-0" class="reference"><a href="#cite_note-McAlpine2011-36"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> fit the definition. Others argued that the memory device under development by <a href="/wiki/HP_Labs" title="HP Labs">HP Labs</a> and other forms of <a href="/wiki/ReRAM" class="mw-redirect" title="ReRAM">ReRAM</a> are not memristors, but rather part of a broader class of variable-resistance systems,<sup id="cite_ref-Clarke2012_37-0" class="reference"><a href="#cite_note-Clarke2012-37"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> and that a broader definition of memristor is a scientifically unjustifiable <a href="/wiki/Land_grabbing" title="Land grabbing">land grab</a> that favored HP's memristor patents.<sup id="cite_ref-PaulMarks2012_38-0" class="reference"><a href="#cite_note-PaulMarks2012-38"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> </p><p>In 2011, Meuffels and Schroeder noted that one of the early memristor papers included a mistaken assumption regarding ionic conduction.<sup id="cite_ref-Meuffels_2011_39-0" class="reference"><a href="#cite_note-Meuffels_2011-39"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> In 2012, Meuffels and Soni discussed some fundamental issues and problems in the realization of memristors.<sup id="cite_ref-Meuffels_2012_22-1" class="reference"><a href="#cite_note-Meuffels_2012-22"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> They indicated inadequacies in the electrochemical modeling presented in the <i><a href="/wiki/Nature_(journal)" title="Nature (journal)">Nature</a></i> article "The missing memristor found"<sup id="cite_ref-Williams08_18-2" class="reference"><a href="#cite_note-Williams08-18"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> because the impact of <a href="/wiki/Concentration_polarization" title="Concentration polarization">concentration polarization</a> effects on the behavior of metal−<a href="/wiki/TiO2" class="mw-redirect" title="TiO2">TiO<sub>2−<i>x</i></sub></a>−metal structures under voltage or current stress was not considered.<sup id="cite_ref-memristor_nanobattery_26-1" class="reference"><a href="#cite_note-memristor_nanobattery-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p><p>In a kind of <a href="/wiki/Thought_experiment" title="Thought experiment">thought experiment</a>, Meuffels and Soni<sup id="cite_ref-Meuffels_2012_22-2" class="reference"><a href="#cite_note-Meuffels_2012-22"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> furthermore revealed a severe inconsistency: If a current-controlled memristor with the so-called <i><dfn>non-volatility property</dfn></i><sup id="cite_ref-chua11_17-3" class="reference"><a href="#cite_note-chua11-17"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> exists in physical reality, its behavior would violate <a href="/wiki/Landauer%27s_principle" title="Landauer's principle">Landauer's principle</a>, which places a limit on the minimum amount of energy required to change "information" states of a system. This critique was finally adopted by <a href="/wiki/Di_Ventra" class="mw-redirect" title="Di Ventra">Di Ventra</a> and Pershin<sup id="cite_ref-DiVentra_2013_23-1" class="reference"><a href="#cite_note-DiVentra_2013-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> in 2013. </p><p>Within this context, Meuffels and Soni<sup id="cite_ref-Meuffels_2012_22-3" class="reference"><a href="#cite_note-Meuffels_2012-22"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> pointed to a fundamental thermodynamic principle: Non-volatile information storage requires the existence of <a href="/wiki/Thermodynamic_free_energy" title="Thermodynamic free energy">free-energy</a> barriers that separate the distinct internal memory states of a system from each other; otherwise, one would be faced with an "indifferent" situation, and the system would arbitrarily fluctuate from one memory state to another just under the influence of <a href="/wiki/Thermal_fluctuations" title="Thermal fluctuations">thermal fluctuations</a>. When unprotected against <a href="/wiki/Thermal_fluctuations" title="Thermal fluctuations">thermal fluctuations</a>, the internal memory states exhibit some diffusive dynamics, which causes state degradation.<sup id="cite_ref-DiVentra_2013_23-2" class="reference"><a href="#cite_note-DiVentra_2013-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> The free-energy barriers must therefore be high enough to ensure a low <a href="/wiki/Bit_error_rate" title="Bit error rate">bit-error probability</a> of bit operation.<sup id="cite_ref-Kish_2014_40-0" class="reference"><a href="#cite_note-Kish_2014-40"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> Consequently, there is always a lower limit of energy requirement – depending on the required <a href="/wiki/Bit_error_rate" title="Bit error rate">bit-error probability</a> – for intentionally changing a bit value in any memory device.<sup id="cite_ref-Kish_2014_40-1" class="reference"><a href="#cite_note-Kish_2014-40"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Kish_2015_41-0" class="reference"><a href="#cite_note-Kish_2015-41"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p><p>In the general concept of memristive system the defining equations are (see <a href="#Theory">§ Theory</a>): <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}y(t)&=g(\mathbf {x} ,u,t)u(t),\\{\dot {\mathbf {x} }}&=f(\mathbf {x} ,u,t),\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>u</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>u</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}y(t)&=g(\mathbf {x} ,u,t)u(t),\\{\dot {\mathbf {x} }}&=f(\mathbf {x} ,u,t),\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3eb0482fb035232369677e2d157ac4074123699b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.853ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}y(t)&=g(\mathbf {x} ,u,t)u(t),\\{\dot {\mathbf {x} }}&=f(\mathbf {x} ,u,t),\end{aligned}}}"></span> where <span class="texhtml"><i>u</i>(<i>t</i>)</span> is an input signal, and <span class="texhtml"><i>y</i>(<i>t</i>)</span> is an output signal. The vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> represents a set of <span class="texhtml mvar" style="font-style:italic;">n</span> state variables describing the different internal memory states of the device. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\mathbf {x} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {\mathbf {x} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fce8ab3723fe7f431534391268cdaa9010b2ede3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:2.176ex;" alt="{\displaystyle {\dot {\mathbf {x} }}}"></span> is the time-dependent rate of change of the state vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> with time. </p><p>When one wants to go beyond mere <a href="/wiki/Curve_fitting" title="Curve fitting">curve fitting</a> and aims at a real physical modeling of non-volatile memory elements, e.g., <a href="/wiki/Resistive_random-access_memory" title="Resistive random-access memory">resistive random-access memory</a> devices, one has to keep an eye on the aforementioned physical correlations. To check the adequacy of the proposed model and its resulting state equations, the input signal <span class="texhtml"><i>u</i>(<i>t</i>)</span> can be superposed with a stochastic term <span class="texhtml"><i>ξ</i>(<i>t</i>)</span>, which takes into account the existence of inevitable <a href="/wiki/Thermal_fluctuations" title="Thermal fluctuations">thermal fluctuations</a>. The dynamic state equation in its general form then finally reads: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\mathbf {x} }}=f(\mathbf {x} ,u(t)+\xi (t),t),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {\mathbf {x} }}=f(\mathbf {x} ,u(t)+\xi (t),t),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfbdffb087463be2785af07c96676857c438b859" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.061ex; height:2.843ex;" alt="{\displaystyle {\dot {\mathbf {x} }}=f(\mathbf {x} ,u(t)+\xi (t),t),}"></span> where <span class="texhtml"><i>ξ</i>(<i>t</i>)</span> is, e.g., white <a href="/wiki/Gaussian_noise" title="Gaussian noise">Gaussian</a> <a href="/wiki/Noise_(electronics)" title="Noise (electronics)">current or voltage noise</a>. On the basis of an analytical or numerical analysis of the time-dependent response of the system towards noise, a decision on the physical validity of the modeling approach can be made, e.g., whether the system would be able to retain its memory states in power-off mode. </p><p>Such an analysis was performed by Di Ventra and Pershin<sup id="cite_ref-DiVentra_2013_23-3" class="reference"><a href="#cite_note-DiVentra_2013-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> with regard to the genuine current-controlled memristor. As the proposed dynamic state equation provides no physical mechanism enabling such a memristor to cope with inevitable thermal fluctuations, a current-controlled memristor would erratically change its state in course of time just under the influence of current noise.<sup id="cite_ref-DiVentra_2013_23-4" class="reference"><a href="#cite_note-DiVentra_2013-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Slipko_2013_42-0" class="reference"><a href="#cite_note-Slipko_2013-42"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> Di Ventra and Pershin<sup id="cite_ref-DiVentra_2013_23-5" class="reference"><a href="#cite_note-DiVentra_2013-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> thus concluded that memristors whose resistance (memory) states depend solely on the current or voltage history would be unable to protect their memory states against unavoidable <a href="/wiki/Johnson%E2%80%93Nyquist_noise" title="Johnson–Nyquist noise">Johnson–Nyquist noise</a> and permanently suffer from information loss, a so-called "stochastic catastrophe". A current-controlled memristor can thus not exist as a solid-state device in physical reality. </p><p>The above-mentioned thermodynamic principle furthermore implies that the operation of two-terminal non-volatile memory devices (e.g. "resistance-switching" memory devices (<a href="/wiki/ReRAM" class="mw-redirect" title="ReRAM">ReRAM</a>)) cannot be associated with the memristor concept, i.e., such devices cannot by itself remember their current or voltage history. Transitions between distinct internal memory or resistance states are of <a href="/wiki/Probability" title="Probability">probabilistic</a> nature. The probability for a transition from state <span class="texhtml">{<b>i</b>} </span> to state <span class="texhtml">{<b>j</b>} </span> depends on the height of the free-energy barrier between both states. The transition probability can thus be influenced by suitably driving the memory device, i.e., by "lowering" the free-energy barrier for the transition <span class="texhtml">{<b>i</b>}→{<b>j</b>} </span> by means of, for example, an externally applied bias. </p><p>A "resistance switching" event can simply be enforced by setting the external bias to a value above a certain threshold value. This is the trivial case, i.e., the free-energy barrier for the transition <span class="texhtml">{<b>i</b>}→{<b>j</b>} </span> is reduced to zero. In case one applies biases below the threshold value, there is still a finite probability that the device will switch in course of time (triggered by a random thermal fluctuation), but – as one is dealing with probabilistic processes – it is impossible to predict when the switching event will occur. That is the basic reason for the stochastic nature of all observed resistance-switching (<a href="/wiki/ReRAM" class="mw-redirect" title="ReRAM">ReRAM</a>) processes. If the free-energy barriers are not high enough, the memory device can even switch without having to do anything. </p><p>When a two-terminal non-volatile memory device is found to be in a distinct resistance state <span class="texhtml">{<b>j</b>} </span>, there exists therefore no physical one-to-one relationship between its present state and its foregoing voltage history. The switching behavior of individual non-volatile memory devices thus cannot be described within the mathematical framework proposed for memristor/memristive systems. </p><p>An extra thermodynamic curiosity arises from the definition that memristors/memristive devices should energetically act like resistors. The instantaneous electrical power entering such a device is completely dissipated as <a href="/wiki/Joule_heating" title="Joule heating">Joule heat</a> to the surrounding, so no extra energy remains in the system after it has been brought from one resistance state <span class="texhtml"><b>x</b><sub><i>i</i></sub></span> to another one <span class="texhtml"><b>x</b><sub><i>j</i></sub></span>. Thus, the <a href="/wiki/Internal_energy" title="Internal energy">internal energy</a> of the memristor device in state <span class="texhtml"><b>x</b><sub><i>i</i></sub></span>, <span class="texhtml"><i>U</i>(<i>V</i>, <i>T</i>, <b>x</b><sub><i>i</i></sub>)</span>, would be the same as in state <span class="texhtml"><b>x</b><sub><i>j</i></sub></span>, <span class="texhtml"><i>U</i>(<i>V</i>, <i>T</i>, <b>x</b><sub><i>j</i></sub>)</span>, even though these different states would give rise to different device's resistances, which itself must be caused by physical alterations of the device's material. </p><p>Other researchers noted that memristor models based on the assumption of linear <a href="/wiki/Ionic_mobility" class="mw-redirect" title="Ionic mobility">ionic drift</a> do not account for asymmetry between set time (high-to-low resistance switching) and reset time (low-to-high resistance switching) and do not provide ionic mobility values consistent with experimental data. Non-linear ionic-drift models have been proposed to compensate for this deficiency.<sup id="cite_ref-Mitre_2012_43-0" class="reference"><a href="#cite_note-Mitre_2012-43"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p><p>A 2014 article from researchers of <a href="/wiki/ReRAM" class="mw-redirect" title="ReRAM">ReRAM</a> concluded that Strukov's (HP's) initial/basic memristor modeling equations do not reflect the actual device physics well, whereas subsequent (physics-based) models such as Pickett's model or Menzel's ECM model (Menzel is a co-author of that article) have adequate predictability, but are computationally prohibitive. As of 2014, the search continues for a model that balances these issues; the article identifies Chang's and Yakopcic's models as potentially good compromises.<sup id="cite_ref-E._Linn_et_al_44-0" class="reference"><a href="#cite_note-E._Linn_et_al-44"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> </p><p>Martin Reynolds, an electrical engineering analyst with research outfit <a href="/wiki/Gartner" title="Gartner">Gartner</a>, commented that while HP was being sloppy in calling their device a memristor, critics were being pedantic in saying that it was not a memristor.<sup id="cite_ref-Martin_Reynolds_45-0" class="reference"><a href="#cite_note-Martin_Reynolds-45"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Experimental_tests">Experimental tests</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=7" title="Edit section: Experimental tests"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Leon_Chua" class="mw-redirect" title="Leon Chua">Chua</a> suggested experimental tests to determine if a device may properly be categorized as a memristor:<sup id="cite_ref-chua76_2-2" class="reference"><a href="#cite_note-chua76-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <ul><li>The <a href="/wiki/Lissajous_curve" title="Lissajous curve">Lissajous curve</a> in the voltage–current plane is a pinched <a href="/wiki/Hysteresis" title="Hysteresis">hysteresis</a> loop when driven by any bipolar periodic voltage or current without respect to initial conditions.</li> <li>The area of each lobe of the pinched hysteresis loop shrinks as the frequency of the forcing signal increases.</li> <li>As the frequency tends to infinity, the hysteresis loop degenerates to a straight line through the origin, whose slope depends on the amplitude and shape of the forcing signal.</li></ul> <p>According to Chua<sup id="cite_ref-MemristorExperimentalTests_46-0" class="reference"><a href="#cite_note-MemristorExperimentalTests-46"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-MemristorExperimentalTests2_47-0" class="reference"><a href="#cite_note-MemristorExperimentalTests2-47"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> all resistive switching memories including <a href="/wiki/ReRAM" class="mw-redirect" title="ReRAM">ReRAM</a>, <a href="/wiki/Magnetoresistive_RAM" title="Magnetoresistive RAM">MRAM</a> and <a href="/wiki/Phase-change_memory" title="Phase-change memory">phase-change memory</a> meet these criteria and are memristors. However, the lack of data for the Lissajous curves over a range of initial conditions or over a range of frequencies complicates assessments of this claim. </p><p>Experimental evidence shows that redox-based resistance memory (<a href="/wiki/ReRAM" class="mw-redirect" title="ReRAM">ReRAM</a>) includes a <a href="/wiki/Nanobatteries" title="Nanobatteries">nanobattery</a> effect that is contrary to Chua's memristor model. This indicates that the memristor theory needs to be extended or corrected to enable accurate ReRAM modeling.<sup id="cite_ref-memristor_nanobattery_26-2" class="reference"><a href="#cite_note-memristor_nanobattery-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Theory">Theory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=8" title="Edit section: Theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2008, researchers from <a href="/wiki/HP_Labs" title="HP Labs">HP Labs</a> introduced a model for a memristance function based on thin films of <a href="/wiki/Titanium_dioxide" title="Titanium dioxide">titanium dioxide</a>.<sup id="cite_ref-Williams08_18-3" class="reference"><a href="#cite_note-Williams08-18"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> For <span class="texhtml"><i>R</i><sub>on</sub> ≪ <i>R</i><sub>off</sub></span> the memristance function was determined to be <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(q(t))=R_{\mathrm {off} }\cdot \left(1-{\frac {\mu _{v}R_{\mathrm {on} }}{D^{2}}}q(t)\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">f</mi> <mi mathvariant="normal">f</mi> </mrow> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">n</mi> </mrow> </mrow> </msub> </mrow> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(q(t))=R_{\mathrm {off} }\cdot \left(1-{\frac {\mu _{v}R_{\mathrm {on} }}{D^{2}}}q(t)\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7060d65101744cc5471c35f27dbdd6eed621c1dc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:34.931ex; height:6.176ex;" alt="{\displaystyle M(q(t))=R_{\mathrm {off} }\cdot \left(1-{\frac {\mu _{v}R_{\mathrm {on} }}{D^{2}}}q(t)\right)}"></span> where <span class="texhtml"><i>R</i><sub>off</sub></span> represents the high resistance state, <span class="texhtml"><i>R</i><sub>on</sub></span> represents the low resistance state, <span class="texhtml mvar" style="font-style:italic;">μ<sub>v</sub></span> represents the mobility of dopants in the thin film, and <span class="texhtml mvar" style="font-style:italic;">D</span> represents the film thickness. The HP Labs group noted that "window functions" were necessary to compensate for differences between experimental measurements and their memristor model due to non-linear ionic drift and boundary effects. </p> <div class="mw-heading mw-heading3"><h3 id="Operation_as_a_switch">Operation as a switch</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=9" title="Edit section: Operation as a switch"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For some memristors, applied current or voltage causes substantial change in resistance. Such devices may be characterized as switches by investigating the time and energy that must be spent to achieve a desired change in resistance. This assumes that the applied voltage remains constant. Solving for energy dissipation during a single switching event reveals that for a memristor to switch from <span class="texhtml"><i>R</i><sub>on</sub></span> to <span class="texhtml"><i>R</i><sub>off</sub></span> in time <span class="texhtml"><i>T</i><sub>on</sub></span> to <span class="texhtml"><i>T</i><sub>off</sub></span>, the charge must change by <span class="texhtml">Δ<i>Q</i> = <i>Q</i><sub>on</sub> − <i>Q</i><sub>off</sub></span>. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}E_{\mathrm {switch} }&=V^{2}\int _{T_{\mathrm {off} }}^{T_{\mathrm {on} }}{\frac {\mathrm {d} t}{M(q(t))}}\\&=V^{2}\int _{Q_{\mathrm {off} }}^{Q_{\mathrm {on} }}{\frac {\mathrm {d} q}{I(q)M(q)}}\\&=V^{2}\int _{Q_{\mathrm {off} }}^{Q_{\mathrm {on} }}{\frac {\mathrm {d} q}{V(q)}}\\&=V\Delta Q\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">s</mi> <mi mathvariant="normal">w</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">h</mi> </mrow> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">f</mi> <mi mathvariant="normal">f</mi> </mrow> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">n</mi> </mrow> </mrow> </msub> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> <mrow> <mi>M</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">f</mi> <mi mathvariant="normal">f</mi> </mrow> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">n</mi> </mrow> </mrow> </msub> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>q</mi> </mrow> <mrow> <mi>I</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">f</mi> <mi mathvariant="normal">f</mi> </mrow> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">n</mi> </mrow> </mrow> </msub> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>q</mi> </mrow> <mrow> <mi>V</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>V</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>Q</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}E_{\mathrm {switch} }&=V^{2}\int _{T_{\mathrm {off} }}^{T_{\mathrm {on} }}{\frac {\mathrm {d} t}{M(q(t))}}\\&=V^{2}\int _{Q_{\mathrm {off} }}^{Q_{\mathrm {on} }}{\frac {\mathrm {d} q}{I(q)M(q)}}\\&=V^{2}\int _{Q_{\mathrm {off} }}^{Q_{\mathrm {on} }}{\frac {\mathrm {d} q}{V(q)}}\\&=V\Delta Q\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83a4f653e2941423dd5e60f28cca4aaf596b3995" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.171ex; width:29.896ex; height:23.509ex;" alt="{\displaystyle {\begin{aligned}E_{\mathrm {switch} }&=V^{2}\int _{T_{\mathrm {off} }}^{T_{\mathrm {on} }}{\frac {\mathrm {d} t}{M(q(t))}}\\&=V^{2}\int _{Q_{\mathrm {off} }}^{Q_{\mathrm {on} }}{\frac {\mathrm {d} q}{I(q)M(q)}}\\&=V^{2}\int _{Q_{\mathrm {off} }}^{Q_{\mathrm {on} }}{\frac {\mathrm {d} q}{V(q)}}\\&=V\Delta Q\end{aligned}}}"></span> </p><p>Substituting <span class="texhtml"><i>V</i> = <i>I</i>(<i>q</i>)<i>M</i>(<i>q</i>)</span>, and then <span class="texhtml"><span style="position:relative; top:0.2em"><span style="font-style:italic; margin-right:0.3em;">∫</span><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span>d<i>q</i>/<i>V</i> = ∆<i>Q</i>/<i>V</i></span> for constant <span class="texhtml mvar" style="font-style:italic;">V</span> to produces the final expression. This power characteristic differs fundamentally from that of a <a href="/wiki/Metal_oxide_semiconductor" class="mw-redirect" title="Metal oxide semiconductor">metal oxide semiconductor</a> <a href="/wiki/Transistor" title="Transistor">transistor</a>, which is capacitor-based. Unlike the transistor, the final state of the memristor in terms of charge does not depend on bias voltage. </p><p>The type of memristor described by Williams ceases to be ideal after switching over its entire resistance range, creating <a href="/wiki/Hysteresis" title="Hysteresis">hysteresis</a>, also called the "hard-switching regime".<sup id="cite_ref-Williams08_18-4" class="reference"><a href="#cite_note-Williams08-18"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> Another kind of switch would have a cyclic <span class="texhtml"><i>M</i>(<i>q</i>)</span> so that each <i>off-on</i> event would be followed by an <i>on-off</i> event under constant bias. Such a device would act as a memristor under all conditions, but would be less practical. </p> <div class="mw-heading mw-heading3"><h3 id="Memristive_systems">Memristive systems</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=10" title="Edit section: Memristive systems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the more general concept of an <span class="texhtml mvar" style="font-style:italic;">n</span>-th order memristive system the defining equations are </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}y(t)&=g({\textbf {x}},u,t)u(t),\\{\dot {\textbf {x}}}&=f({\textbf {x}},u,t)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">x</mtext> </mrow> </mrow> <mo>,</mo> <mi>u</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">x</mtext> </mrow> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">x</mtext> </mrow> </mrow> <mo>,</mo> <mi>u</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}y(t)&=g({\textbf {x}},u,t)u(t),\\{\dot {\textbf {x}}}&=f({\textbf {x}},u,t)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/783a4ac19fa5bb889d478ebcfe31b3dc993613f6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.853ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}y(t)&=g({\textbf {x}},u,t)u(t),\\{\dot {\textbf {x}}}&=f({\textbf {x}},u,t)\end{aligned}}}"></span> </p><p>where <span class="texhtml"><i>u</i>(<i>t</i>)</span> is an input signal, <span class="texhtml"><i>y</i>(<i>t</i>)</span> is an output signal, the vector <span class="texhtml"><b>x</b></span> represents a set of <span class="texhtml mvar" style="font-style:italic;">n</span> state variables describing the device, and <span class="texhtml mvar" style="font-style:italic;">g</span> and <span class="texhtml mvar" style="font-style:italic;">f</span> are <a href="/wiki/Continuous_functions" class="mw-redirect" title="Continuous functions">continuous functions</a>. For a current-controlled memristive system the signal <span class="texhtml"><i>u</i>(<i>t</i>)</span> represents the current signal <span class="texhtml"><i>i</i>(<i>t</i>)</span> and the signal <span class="texhtml"><i>y</i>(<i>t</i>)</span> represents the voltage signal <span class="texhtml"><i>v</i>(<i>t</i>)</span>. For a voltage-controlled memristive system the signal <span class="texhtml"><i>u</i>(<i>t</i>)</span> represents the voltage signal <span class="texhtml"><i>v</i>(<i>t</i>)</span> and the signal <span class="texhtml"><i>y</i>(<i>t</i>)</span> represents the current signal <span class="texhtml"><i>i</i>(<i>t</i>)</span>. </p><p>The <em>pure</em> memristor is a particular case of these equations, namely when <span class="texhtml mvar" style="font-style:italic;">x</span> depends only on charge (<span class="texhtml"><b>x</b> = <i>q</i></span>) and since the charge is related to the current via the time derivative <span class="texhtml">d<i>q</i>/d<i>t</i> = <i>i</i>(<i>t</i>)</span>. Thus for <em>pure</em> memristors <span class="texhtml mvar" style="font-style:italic;">f</span> (i.e. the rate of change of the state) must be equal or proportional to the current <span class="texhtml"><i>i</i>(<i>t</i>)</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Pinched_hysteresis">Pinched hysteresis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=11" title="Edit section: Pinched hysteresis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Pinched_crossing_hysteresis.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Pinched_crossing_hysteresis.png/220px-Pinched_crossing_hysteresis.png" decoding="async" width="220" height="143" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/0/0c/Pinched_crossing_hysteresis.png 1.5x" data-file-width="302" data-file-height="196" /></a><figcaption>Example of pinched hysteresis curve, V versus I</figcaption></figure> <p>One of the resulting properties of memristors and memristive systems is the existence of a pinched <a href="/wiki/Hysteresis" title="Hysteresis">hysteresis</a> effect.<sup id="cite_ref-DiVentraPershin2011_48-0" class="reference"><a href="#cite_note-DiVentraPershin2011-48"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> For a current-controlled memristive system, the input <i>u</i>(<i>t</i>) is the current <i>i</i>(<i>t</i>), the output <i>y</i>(<i>t</i>) is the voltage <i>v</i>(<i>t</i>), and the slope of the curve represents the electrical resistance. The change in slope of the pinched hysteresis curves demonstrates switching between different resistance states which is a phenomenon central to <a href="/wiki/ReRAM" class="mw-redirect" title="ReRAM">ReRAM</a> and other forms of two-terminal resistance memory. At high frequencies, memristive theory predicts the pinched hysteresis effect will degenerate, resulting in a straight line representative of a linear resistor. It has been proven that some types of non-crossing pinched hysteresis curves (denoted Type-II) cannot be described by memristors.<sup id="cite_ref-Biolek2011_49-0" class="reference"><a href="#cite_note-Biolek2011-49"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Memristive_networks_and_mathematical_models_of_circuit_interactions">Memristive networks and mathematical models of circuit interactions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=12" title="Edit section: Memristive networks and mathematical models of circuit interactions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The concept of memristive networks was first introduced by Leon Chua in his 1965 paper "Memristive Devices and Systems." Chua proposed the use of memristive devices as a means of building artificial neural networks that could simulate the behavior of the human brain. In fact, memristive devices in circuits have complex interactions due to Kirchhoff's laws. A memristive network is a type of artificial neural network that is based on memristive devices, which are electronic components that exhibit the property of memristance. In a memristive network, the memristive devices are used to simulate the behavior of neurons and synapses in the human brain. The network consists of layers of memristive devices, each of which is connected to other layers through a set of weights. These weights are adjusted during the training process, allowing the network to learn and adapt to new input data. One advantage of memristive networks is that they can be implemented using relatively simple and inexpensive hardware, making them an attractive option for developing low-cost artificial intelligence systems. They also have the potential to be more energy efficient than traditional artificial neural networks, as they can store and process information using less power. However, the field of memristive networks is still in the early stages of development, and more research is needed to fully understand their capabilities and limitations. For the simplest model with only memristive devices with voltage generators in series, there is an exact and in closed form equation (<a href="/wiki/Caravelli-Traversa-Di_Ventra_equation" title="Caravelli-Traversa-Di Ventra equation">Caravelli–Traversa–Di Ventra equation</a>, CTDV)<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> which describes the evolution of the internal memory of the network for each device. For a simple memristor model (but not realistic) of a switch between two resistance values, given by the Williams-Strukov model <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R(x)=R_{off}(1-x)+R_{on}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R(x)=R_{off}(1-x)+R_{on}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/971a2bea93def4d901f39ef68bf812539df58d3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.695ex; height:3.009ex;" alt="{\displaystyle R(x)=R_{off}(1-x)+R_{on}x}"></span>, with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dx/dt=I/\beta -\alpha x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>β<!-- β --></mi> <mo>−<!-- − --></mo> <mi>α<!-- α --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dx/dt=I/\beta -\alpha x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c44a625ab56c0df067efb4788110b4c9235ae6fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.186ex; height:2.843ex;" alt="{\displaystyle dx/dt=I/\beta -\alpha x}"></span>, there is a set of nonlinearly coupled differential equations that takes the form: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d{\vec {x}}}{dt}}=-\alpha {\vec {x}}+{\frac {1}{\beta }}(I-\chi \Omega X)^{-1}\Omega {\vec {S}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>β<!-- β --></mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>I</mi> <mo>−<!-- − --></mo> <mi>χ<!-- χ --></mi> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mi>X</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>S</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d{\vec {x}}}{dt}}=-\alpha {\vec {x}}+{\frac {1}{\beta }}(I-\chi \Omega X)^{-1}\Omega {\vec {S}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18f8f1d3088cb456d246d646dc97fe050f1bc401" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:32.598ex; height:5.843ex;" alt="{\displaystyle {\frac {d{\vec {x}}}{dt}}=-\alpha {\vec {x}}+{\frac {1}{\beta }}(I-\chi \Omega X)^{-1}\Omega {\vec {S}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is the diagonal matrix with elements <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e87000dd6142b81d041896a30fe58f0c3acb2158" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.129ex; height:2.009ex;" alt="{\displaystyle x_{i}}"></span> on the diagonal, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha ,\beta ,\chi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>,</mo> <mi>β<!-- β --></mi> <mo>,</mo> <mi>χ<!-- χ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha ,\beta ,\chi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e96a1425ab129ea3d883276563102044ae5c344f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.343ex; height:2.509ex;" alt="{\displaystyle \alpha ,\beta ,\chi }"></span> are based on the memristors physical parameters. The vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {S}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>S</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {S}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c71a6b104c40975c738d5f0e22d445ebd509eb81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.538ex; height:3.009ex;" alt="{\displaystyle {\vec {S}}}"></span> is the vector of voltage generators in series to the memristors. The circuit topology enters only in the projector operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega ^{2}=\Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega ^{2}=\Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65b3b54e74f9031fe9986bc3834ad73d29723caa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.509ex; height:2.676ex;" alt="{\displaystyle \Omega ^{2}=\Omega }"></span>, defined in terms of the cycle matrix of the graph. The equation provides a concise mathematical description of the interactions due to Kirchhoff 's laws. Interestingly, the equation shares many properties in common with a <a href="/wiki/Hopfield_network" title="Hopfield network">Hopfield network</a>, such as the existence of Lyapunov functions and classical tunnelling phenomena.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> In the context of memristive networks, the CTD equation may be used to predict the behavior of memristive devices under different operating conditions, or to design and optimize memristive circuits for specific applications. </p> <div class="mw-heading mw-heading3"><h3 id="Extended_systems">Extended systems</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=13" title="Edit section: Extended systems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Some researchers have raised the question of the scientific legitimacy of HP's memristor models in explaining the behavior of <a href="/wiki/ReRAM" class="mw-redirect" title="ReRAM">ReRAM</a>.<sup id="cite_ref-Clarke2012_37-1" class="reference"><a href="#cite_note-Clarke2012-37"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-PaulMarks2012_38-1" class="reference"><a href="#cite_note-PaulMarks2012-38"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> and have suggested extended memristive models to remedy perceived deficiencies.<sup id="cite_ref-memristor_nanobattery_26-3" class="reference"><a href="#cite_note-memristor_nanobattery-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p><p>One example<sup id="cite_ref-memresistor_52-0" class="reference"><a href="#cite_note-memresistor-52"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> attempts to extend the memristive systems framework by including dynamic systems incorporating higher-order derivatives of the input signal <i>u</i>(<i>t</i>) as a series expansion </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}y(t)&=g_{0}({\textbf {x}},u)u(t)+g_{1}({\textbf {x}},u){\operatorname {d} ^{2}u \over \operatorname {d} t^{2}}+g_{2}({\textbf {x}},u){\operatorname {d} ^{4}u \over \operatorname {d} t^{4}}+\ldots +g_{m}({\textbf {x}},u){\operatorname {d} ^{2m}u \over \operatorname {d} t^{2m}},\\{\dot {\textbf {x}}}&=f({\textbf {x}},u)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">x</mtext> </mrow> </mrow> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">x</mtext> </mrow> </mrow> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>u</mi> </mrow> <mrow> <mi mathvariant="normal">d</mi> <mo>⁡<!-- --></mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">x</mtext> </mrow> </mrow> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>u</mi> </mrow> <mrow> <mi mathvariant="normal">d</mi> <mo>⁡<!-- --></mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>…<!-- … --></mo> <mo>+</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">x</mtext> </mrow> </mrow> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>m</mi> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>u</mi> </mrow> <mrow> <mi mathvariant="normal">d</mi> <mo>⁡<!-- --></mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>m</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">x</mtext> </mrow> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">x</mtext> </mrow> </mrow> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}y(t)&=g_{0}({\textbf {x}},u)u(t)+g_{1}({\textbf {x}},u){\operatorname {d} ^{2}u \over \operatorname {d} t^{2}}+g_{2}({\textbf {x}},u){\operatorname {d} ^{4}u \over \operatorname {d} t^{4}}+\ldots +g_{m}({\textbf {x}},u){\operatorname {d} ^{2m}u \over \operatorname {d} t^{2m}},\\{\dot {\textbf {x}}}&=f({\textbf {x}},u)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53e25128f3a4a38cede40af83ab0acc65a51aeff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.681ex; margin-bottom: -0.324ex; width:74.116ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}y(t)&=g_{0}({\textbf {x}},u)u(t)+g_{1}({\textbf {x}},u){\operatorname {d} ^{2}u \over \operatorname {d} t^{2}}+g_{2}({\textbf {x}},u){\operatorname {d} ^{4}u \over \operatorname {d} t^{4}}+\ldots +g_{m}({\textbf {x}},u){\operatorname {d} ^{2m}u \over \operatorname {d} t^{2m}},\\{\dot {\textbf {x}}}&=f({\textbf {x}},u)\end{aligned}}}"></span></dd></dl> <p>where <i>m</i> is a positive integer, <i>u</i>(<i>t</i>) is an input signal, <i>y</i>(<i>t</i>) is an output signal, the vector <b>x</b> represents a set of <i>n</i> state variables describing the device, and the functions <i>g</i> and <i>f</i> are <a href="/wiki/Continuous_function" title="Continuous function">continuous functions</a>. This equation produces the same zero-crossing hysteresis curves as memristive systems but with a different <a href="/wiki/Frequency_response" title="Frequency response">frequency response</a> than that predicted by memristive systems. </p><p>Another example suggests including an offset value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> to account for an observed nanobattery effect which violates the predicted zero-crossing pinched hysteresis effect.<sup id="cite_ref-memristor_nanobattery_26-4" class="reference"><a href="#cite_note-memristor_nanobattery-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}y(t)&=g_{0}({\textbf {x}},u)(u(t)-a),\\{\dot {\textbf {x}}}&=f({\textbf {x}},u)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">x</mtext> </mrow> </mrow> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">x</mtext> </mrow> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">x</mtext> </mrow> </mrow> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}y(t)&=g_{0}({\textbf {x}},u)(u(t)-a),\\{\dot {\textbf {x}}}&=f({\textbf {x}},u)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d63c91907666526775ed2924a48c922e884396b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:25.906ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}y(t)&=g_{0}({\textbf {x}},u)(u(t)-a),\\{\dot {\textbf {x}}}&=f({\textbf {x}},u)\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Implementation_of_hysteretic_current-voltage_memristors">Implementation of hysteretic current-voltage memristors</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=14" title="Edit section: Implementation of hysteretic current-voltage memristors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There exist implementations of memristors with a hysteretic current-voltage curve or with both hysteretic current-voltage curve and hysteretic flux-charge curve [arXiv:2403.20051]. Memristors with hysteretic current-voltage curve use a resistance dependent on the history of the current and voltage and bode well for the future of memory technology due to their simple structure, high energy efficiency, and high integration [DOI: 10.1002/aisy.202200053]. </p> <div class="mw-heading mw-heading3"><h3 id="Titanium_dioxide_memristor">Titanium dioxide memristor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=15" title="Edit section: Titanium dioxide memristor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Interest in the memristor revived when an experimental solid-state version was reported by <a href="/wiki/R._Stanley_Williams" title="R. Stanley Williams">R. Stanley Williams</a> of <a href="/wiki/Hewlett_Packard" class="mw-redirect" title="Hewlett Packard">Hewlett Packard</a> in 2007.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> The article was the first to demonstrate that a solid-state device could have the characteristics of a memristor based on the behavior of <a href="/wiki/Nanoscopic_scale" class="mw-redirect" title="Nanoscopic scale">nanoscale</a> thin films. The device neither uses magnetic flux as the theoretical memristor suggested, nor stores charge as a capacitor does, but instead achieves a resistance dependent on the history of current. </p><p>Although not cited in HP's initial reports on their <a href="/wiki/TiO2" class="mw-redirect" title="TiO2">TiO<sub>2</sub></a> memristor, the resistance switching characteristics of titanium dioxide were originally described in the 1960s.<sup id="cite_ref-Argall1968_56-0" class="reference"><a href="#cite_note-Argall1968-56"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> </p><p>The HP device is composed of a thin (50 <a href="/wiki/Nanometer" class="mw-redirect" title="Nanometer">nm</a>) <a href="/wiki/Titanium_dioxide" title="Titanium dioxide">titanium dioxide</a> film between two 5 nm thick <a href="/wiki/Electrode" title="Electrode">electrodes</a>, one <a href="/wiki/Titanium" title="Titanium">titanium</a>, the other <a href="/wiki/Platinum" title="Platinum">platinum</a>. Initially, there are two layers to the titanium dioxide film, one of which has a slight depletion of <a href="/wiki/Oxygen" title="Oxygen">oxygen</a> atoms. The oxygen vacancies act as <a href="/wiki/Charge_carrier" title="Charge carrier">charge carriers</a>, meaning that the depleted layer has a much lower resistance than the non-depleted layer. When an electric field is applied, the oxygen vacancies drift (see <i><a href="/wiki/Fast-ion_conductor" title="Fast-ion conductor">Fast-ion conductor</a></i>), changing the boundary between the high-resistance and low-resistance layers. Thus the resistance of the film as a whole is dependent on how much charge has been passed through it in a particular direction, which is reversible by changing the direction of current.<sup id="cite_ref-Williams08_18-5" class="reference"><a href="#cite_note-Williams08-18"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> Since the HP device displays fast-ion conduction at nanoscale, it is considered a <a href="/wiki/Nanoionic_device" class="mw-redirect" title="Nanoionic device">nanoionic device</a>.<sup id="cite_ref-Terabe2007_57-0" class="reference"><a href="#cite_note-Terabe2007-57"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> </p><p>Memristance is displayed only when both the doped layer and depleted layer contribute to resistance. When enough charge has passed through the memristor that the ions can no longer move, the device enters <a href="/wiki/Hysteresis" title="Hysteresis">hysteresis</a>. It ceases to integrate <i>q</i>=∫<i>I</i> d<i>t</i>, but rather keeps <i>q</i> at an upper bound and <i>M</i> fixed, thus acting as a constant resistor until current is reversed. </p><p>Memory applications of thin-film oxides had been an area of active investigation for some time. <a href="/wiki/IBM" title="IBM">IBM</a> published an article in 2000 regarding structures similar to that described by Williams.<sup id="cite_ref-Beck2000_58-0" class="reference"><a href="#cite_note-Beck2000-58"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Samsung" title="Samsung">Samsung</a> has a U.S. patent for oxide-vacancy based switches similar to that described by Williams.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> </p><p>In April 2010, HP labs announced that they had practical memristors working at 1 <a href="/wiki/Nanosecond" title="Nanosecond">ns</a> (~1 GHz) switching times and 3 nm by 3 nm sizes,<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> which bodes well for the future of the technology.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> At these densities it could easily rival the current sub-25 nm <a href="/wiki/Flash_memory" title="Flash memory">flash memory</a> technology. </p> <div class="mw-heading mw-heading3"><h3 id="Silicon_dioxide_memristor">Silicon dioxide memristor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=16" title="Edit section: Silicon dioxide memristor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It seems that memristance has been reported in <a href="/wiki/Nanoscale" class="mw-redirect" title="Nanoscale">nanoscale</a> thin films of silicon dioxide as early as the 1960s .<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> </p><p>However, hysteretic conductance in silicon was associated to memristive effects only in 2009.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> </p><p>More recently, beginning in 2012, Tony Kenyon, Adnan Mehonic and their group clearly demonstrated that the resistive switching in silicon oxide thin films is due to the formation of oxygen vacancy filaments in defect-engineered silicon dioxide, having probed directly the movement of oxygen under electrical bias, and imaged the resultant conductive filaments using conductive atomic force microscopy. <sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Polymeric_memristor">Polymeric memristor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=17" title="Edit section: Polymeric memristor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2004, Krieger and Spitzer described dynamic doping of polymer and inorganic dielectric-like materials that improved the switching characteristics and retention required to create functioning nonvolatile memory cells.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> They used a passive layer between electrode and active thin films, which enhanced the extraction of ions from the electrode. It is possible to use <a href="/wiki/Fast-ion_conductor" title="Fast-ion conductor">fast-ion conductor</a> as this passive layer, which allows a significant reduction of the ionic extraction field. </p><p>In July 2008, Erokhin and Fontana claimed to have developed a polymeric memristor before the more recently announced titanium dioxide memristor.<sup id="cite_ref-Erokhin2008_66-0" class="reference"><a href="#cite_note-Erokhin2008-66"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> </p><p>In 2010, Alibart, Gamrat, Vuillaume et al.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> introduced a new hybrid organic/<a href="/wiki/Nanoparticle" title="Nanoparticle">nanoparticle</a> device (the <a href="/wiki/NOMFET" title="NOMFET">NOMFET</a> : Nanoparticle Organic Memory Field Effect Transistor), which behaves as a memristor<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup> and which exhibits the main behavior of a biological spiking synapse. This device, also called a synapstor (synapse transistor), was used to demonstrate a neuro-inspired circuit (associative memory showing a pavlovian learning).<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> </p><p>In 2012, Crupi, Pradhan and Tozer described a proof of concept design to create neural synaptic memory circuits using organic ion-based memristors.<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> The synapse circuit demonstrated <a href="/wiki/Long-term_potentiation" title="Long-term potentiation">long-term potentiation</a> for learning as well as inactivity based forgetting. Using a grid of circuits, a pattern of light was stored and later recalled. This mimics the behavior of the V1 neurons in the <a href="/wiki/Primary_visual_cortex" class="mw-redirect" title="Primary visual cortex">primary visual cortex</a> that act as spatiotemporal filters that process visual signals such as edges and moving lines. </p><p>In 2012, Erokhin and co-authors have demonstrated a stochastic three-dimensional matrix with capabilities for learning and adapting based on polymeric memristor.<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Layered_memristor">Layered memristor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=18" title="Edit section: Layered memristor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2014, Bessonov et al. reported a flexible memristive device comprising a <a href="/wiki/Molybdenum_oxide" title="Molybdenum oxide">MoO<sub>x</sub></a>/<a href="/wiki/MoS2" class="mw-redirect" title="MoS2">MoS<sub>2</sub></a> heterostructure sandwiched between silver electrodes on a plastic foil.<sup id="cite_ref-flexible_memristor_72-0" class="reference"><a href="#cite_note-flexible_memristor-72"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> The fabrication method is entirely based on printing and solution-processing technologies using two-dimensional layered <a href="/wiki/Transition_metal_dichalcogenides" class="mw-redirect" title="Transition metal dichalcogenides">transition metal dichalcogenides</a> (TMDs). The memristors are mechanically flexible, <a href="/wiki/Transparency_and_translucency" title="Transparency and translucency">optically transparent</a> and produced at low cost. The memristive behaviour of switches was found to be accompanied by a prominent memcapacitive effect. High switching performance, demonstrated synaptic plasticity and sustainability to mechanical deformations promise to emulate the appealing characteristics of biological neural systems in novel computing technologies. </p> <div class="mw-heading mw-heading3"><h3 id="Atomristor">Atomristor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=19" title="Edit section: Atomristor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Atomristor is defined as the electrical devices showing memristive behavior in atomically thin <a href="/wiki/Nanomaterials" title="Nanomaterials">nanomaterials</a> or atomic sheets. In 2018, Ge and Wu et al.<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup> in the <a href="/wiki/Deji_Akinwande" title="Deji Akinwande">Akinwande</a> group at the University of Texas, first reported a universal memristive effect in single-layer <a href="/wiki/Transition_metal_dichalcogenide_monolayers" title="Transition metal dichalcogenide monolayers">TMD</a> (MX<sub>2</sub>, M = Mo, W; and X = S, Se) atomic sheets based on vertical <a href="/wiki/Metal-insulator-metal" class="mw-redirect" title="Metal-insulator-metal">metal-insulator-metal</a> (MIM) device structure. The work was later extended to monolayer <a href="/wiki/Boron_nitride" title="Boron nitride">hexagonal boron nitride</a>, which is the thinnest memory material of around 0.33 nm.<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup> These atomristors offer forming-free switching and both unipolar and bipolar operation. The switching behavior is found in single-crystalline and poly-crystalline films, with various conducting electrodes (gold, silver and graphene). Atomically thin TMD sheets are prepared via <a href="/wiki/Chemical_vapor_deposition" title="Chemical vapor deposition">CVD</a>/<a href="/wiki/MOCVD" class="mw-redirect" title="MOCVD">MOCVD</a>, enabling low-cost fabrication. Afterwards, taking advantage of the low "on" resistance and large on/off ratio, a high-performance zero-power <a href="/wiki/RF_switch" title="RF switch">RF switch</a> is proved based on MoS<sub>2</sub> or h-BN atomristors, indicating a new application of memristors for <a href="/wiki/5G" title="5G">5G</a>, <a href="/wiki/6G_(network)" class="mw-redirect" title="6G (network)">6G</a> and THz communication and connectivity systems.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup> In 2020, atomistic understanding of the conductive virtual point mechanism was elucidated in an article in nature nanotechnology.<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Ferroelectric_memristor">Ferroelectric memristor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=20" title="Edit section: Ferroelectric memristor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Ferroelectric" class="mw-redirect" title="Ferroelectric">ferroelectric</a> memristor<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup> is based on a thin ferroelectric barrier sandwiched between two metallic electrodes. Switching the polarization of the <a href="/wiki/Ferroelectric" class="mw-redirect" title="Ferroelectric">ferroelectric</a> material by applying a positive or negative voltage across the junction can lead to a two order of magnitude resistance variation: <span class="nowrap">R<sub>OFF</sub> ≫ R<sub>ON</sub></span> (an effect called Tunnel Electro-Resistance). In general, the polarization does not switch abruptly. The reversal occurs gradually through the nucleation and growth of ferroelectric domains with opposite polarization. During this process, the resistance is neither R<sub>ON</sub> or R<sub>OFF</sub>, but in between. When the voltage is cycled, the ferroelectric domain configuration evolves, allowing a fine tuning of the resistance value. The ferroelectric memristor's main advantages are that ferroelectric domain dynamics can be tuned, offering a way to engineer the memristor response, and that the resistance variations are due to purely electronic phenomena, aiding device reliability, as no deep change to the material structure is involved. </p> <div class="mw-heading mw-heading3"><h3 id="Carbon_nanotube_memristor">Carbon nanotube memristor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=21" title="Edit section: Carbon nanotube memristor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2013, Ageev, Blinov et al.<sup id="cite_ref-Rubashkina2013_79-0" class="reference"><a href="#cite_note-Rubashkina2013-79"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> reported observing memristor effect in structure based on vertically aligned carbon nanotubes studying bundles of CNT by <a href="/wiki/Scanning_tunneling_microscope" title="Scanning tunneling microscope">scanning tunneling microscope</a>. </p><p>Later it was found<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup> that CNT memristive switching is observed when a nanotube has a non-uniform elastic strain Δ<i>L</i>0. It was shown that the memristive switching mechanism of strained СNT is based on the formation and subsequent redistribution of non-uniform elastic strain and piezoelectric field <i>Edef</i> in the nanotube under the influence of an external electric field <i>E</i>(<i>x</i>,<i>t</i>). </p> <div class="mw-heading mw-heading3"><h3 id="Biomolecular_memristor">Biomolecular memristor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=22" title="Edit section: Biomolecular memristor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Biomaterials have been evaluated for use in artificial synapses and have shown potential for application in neuromorphic systems.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup> In particular, the feasibility of using a collagen‐based biomemristor as an artificial synaptic device has been investigated,<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup> whereas a synaptic device based on lignin demonstrated rising or lowering current with consecutive voltage sweeps depending on the sign of the voltage<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">[</span>82<span class="cite-bracket">]</span></a></sup> furthermore a natural silk fibroin demonstrated memristive properties;<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup> spin-memristive systems based on biomolecules are also being studied.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup> </p><p>In 2012, <a href="/wiki/Sandro_Carrara" title="Sandro Carrara">Sandro Carrara</a> and co-authors have proposed the first biomolecular memristor with aims to realize highly sensitive biosensors.<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup> Since then, several memristive <a href="/wiki/Sensors" class="mw-redirect" title="Sensors">sensors</a> have been demonstrated.<sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Spin_memristive_systems">Spin memristive systems</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=23" title="Edit section: Spin memristive systems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Spintronic_memristor">Spintronic memristor</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=24" title="Edit section: Spintronic memristor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Chen and Wang, researchers at disk-drive manufacturer <a href="/wiki/Seagate_Technology" title="Seagate Technology">Seagate Technology</a> described three examples of possible magnetic memristors.<sup id="cite_ref-Xiaobin2009_88-0" class="reference"><a href="#cite_note-Xiaobin2009-88"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup> In one device resistance occurs when the spin of electrons in one section of the device points in a different direction from those in another section, creating a "domain wall", a boundary between the two sections. Electrons flowing into the device have a certain spin, which alters the device's magnetization state. Changing the magnetization, in turn, moves the domain wall and changes the resistance. The work's significance led to an interview by <a href="/wiki/IEEE_Spectrum" title="IEEE Spectrum">IEEE Spectrum</a>.<sup id="cite_ref-Neil2009_89-0" class="reference"><a href="#cite_note-Neil2009-89"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup> A first experimental proof of the <a href="/wiki/Spintronic" class="mw-redirect" title="Spintronic">spintronic</a> memristor based on domain wall motion by spin currents in a magnetic tunnel junction was given in 2011.<sup id="cite_ref-Chanthbouala2011_90-0" class="reference"><a href="#cite_note-Chanthbouala2011-90"><span class="cite-bracket">[</span>89<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Memristance_in_a_magnetic_tunnel_junction">Memristance in a magnetic tunnel junction</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=25" title="Edit section: Memristance in a magnetic tunnel junction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Magnetic_tunnel_junction" class="mw-redirect" title="Magnetic tunnel junction">magnetic tunnel junction</a> has been proposed to act as a memristor through several potentially complementary mechanisms, both extrinsic (redox reactions, charge trapping/detrapping and electromigration within the barrier) and intrinsic (<a href="/wiki/Spin-transfer_torque" title="Spin-transfer torque">spin-transfer torque</a>). </p> <div class="mw-heading mw-heading5"><h5 id="Extrinsic_mechanism">Extrinsic mechanism</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=26" title="Edit section: Extrinsic mechanism"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Based on research performed between 1999 and 2003, Bowen et al. published experiments in 2006 on a <a href="/wiki/Magnetic_tunnel_junction" class="mw-redirect" title="Magnetic tunnel junction">magnetic tunnel junction</a> (MTJ) endowed with bi-stable spin-dependent states<sup id="cite_ref-BowenAPL2006_91-0" class="reference"><a href="#cite_note-BowenAPL2006-91"><span class="cite-bracket">[</span>90<span class="cite-bracket">]</span></a></sup>(<a href="/wiki/Resistive_random-access_memory" title="Resistive random-access memory">resistive switching</a>). The MTJ consists in a SrTiO3 (STO) tunnel barrier that separates <a href="/wiki/Half-metal" title="Half-metal">half-metallic oxide</a> LSMO and ferromagnetic metal CoCr electrodes. The MTJ's usual two device resistance states, characterized by a parallel or antiparallel alignment of electrode magnetization, are altered by applying an electric field. When the electric field is applied from the CoCr to the LSMO electrode, the <a href="/wiki/Tunnel_magnetoresistance" title="Tunnel magnetoresistance">tunnel magnetoresistance</a> (TMR) ratio is positive. When the direction of electric field is reversed, the TMR is negative. In both cases, large amplitudes of TMR on the order of 30% are found. Since a fully spin-polarized current flows from the <a href="/wiki/Half-metal" title="Half-metal">half-metallic</a> LSMO electrode, within the <a href="/wiki/Tunnel_magnetoresistance" title="Tunnel magnetoresistance">Julliere model</a>, this sign change suggests a sign change in the effective spin polarization of the STO/CoCr interface. The origin to this multistate effect lies with the observed migration of Cr into the barrier and its state of oxidation. The sign change of TMR can originate from modifications to the STO/CoCr interface density of states, as well as from changes to the tunneling landscape at the STO/CoCr interface induced by CrOx redox reactions. </p><p>Reports on MgO-based memristive switching within MgO-based MTJs appeared starting in 2008<sup id="cite_ref-HalleyAPL2008_92-0" class="reference"><a href="#cite_note-HalleyAPL2008-92"><span class="cite-bracket">[</span>91<span class="cite-bracket">]</span></a></sup> and 2009.<sup id="cite_ref-krzysteczko2009apl_93-0" class="reference"><a href="#cite_note-krzysteczko2009apl-93"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup> While the drift of oxygen vacancies within the insulating MgO layer has been proposed to describe the observed memristive effects,<sup id="cite_ref-krzysteczko2009apl_93-1" class="reference"><a href="#cite_note-krzysteczko2009apl-93"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup> another explanation could be charge trapping/detrapping on the localized states of oxygen vacancies<sup id="cite_ref-BertinJAP2011_94-0" class="reference"><a href="#cite_note-BertinJAP2011-94"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup> and its impact<sup id="cite_ref-schleicherNC2014_95-0" class="reference"><a href="#cite_note-schleicherNC2014-95"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup> on spintronics. This highlights the importance of understanding what role oxygen vacancies play in the memristive operation of devices that deploy complex oxides with an intrinsic property such as ferroelectricity<sup id="cite_ref-garciaS2010_96-0" class="reference"><a href="#cite_note-garciaS2010-96"><span class="cite-bracket">[</span>95<span class="cite-bracket">]</span></a></sup> or multiferroicity.<sup id="cite_ref-pantelAM2012_97-0" class="reference"><a href="#cite_note-pantelAM2012-97"><span class="cite-bracket">[</span>96<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading5"><h5 id="Intrinsic_mechanism">Intrinsic mechanism</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=27" title="Edit section: Intrinsic mechanism"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The magnetization state of a MTJ can be controlled by <a href="/wiki/Spin-transfer_torque" title="Spin-transfer torque">Spin-transfer torque</a>, and can thus, through this intrinsic physical mechanism, exhibit memristive behavior. This spin torque is induced by current flowing through the junction, and leads to an efficient means of achieving a <a href="/wiki/Magnetoresistive_RAM" title="Magnetoresistive RAM">MRAM</a>. However, the length of time the current flows through the junction determines the amount of current needed, i.e., charge is the key variable.<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">[</span>97<span class="cite-bracket">]</span></a></sup> </p><p>The combination of intrinsic (spin-transfer torque) and extrinsic (resistive switching) mechanisms naturally leads to a second-order memristive system described by the state vector <b>x</b> = (<i>x</i><sub>1</sub>,<i>x</i><sub>2</sub>), where <i>x</i><sub>1</sub> describes the magnetic state of the electrodes and <i>x</i><sub>2</sub> denotes the resistive state of the MgO barrier. In this case the change of <i>x</i><sub>1</sub> is current-controlled (spin torque is due to a high current density) whereas the change of <i>x</i><sub>2</sub> is voltage-controlled (the drift of oxygen vacancies is due to high electric fields). The presence of both effects in a memristive magnetic tunnel junction led to the idea of a nanoscopic synapse-neuron system.<sup id="cite_ref-krzysteczko2012advmat_99-0" class="reference"><a href="#cite_note-krzysteczko2012advmat-99"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Spin_memristive_system">Spin memristive system</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=28" title="Edit section: Spin memristive system"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A fundamentally different mechanism for memristive behavior has been proposed by Pershin and <a href="/wiki/Di_Ventra" class="mw-redirect" title="Di Ventra">Di Ventra</a>.<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">[</span>99<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Pershin2008_101-0" class="reference"><a href="#cite_note-Pershin2008-101"><span class="cite-bracket">[</span>100<span class="cite-bracket">]</span></a></sup> The authors show that certain types of semiconductor spintronic structures belong to a broad class of memristive systems as defined by Chua and Kang.<sup id="cite_ref-chua76_2-3" class="reference"><a href="#cite_note-chua76-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> The mechanism of memristive behavior in such structures is based entirely on the electron spin degree of freedom which allows for a more convenient control than the ionic transport in nanostructures. When an external control parameter (such as voltage) is changed, the adjustment of electron spin polarization is delayed because of the diffusion and relaxation processes causing hysteresis. This result was anticipated in the study of spin extraction at semiconductor/ferromagnet interfaces,<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">[</span>101<span class="cite-bracket">]</span></a></sup> but was not described in terms of memristive behavior. On a short time scale, these structures behave almost as an ideal memristor.<sup id="cite_ref-chua71_1-3" class="reference"><a href="#cite_note-chua71-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> This result broadens the possible range of applications of semiconductor spintronics and makes a step forward in future practical applications. </p> <div class="mw-heading mw-heading3"><h3 id="Self-directed_channel_memristor">Self-directed channel memristor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=29" title="Edit section: Self-directed channel memristor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2017, Kris Campbell formally introduced the self-directed channel (SDC) memristor.<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">[</span>102<span class="cite-bracket">]</span></a></sup> The SDC device is the first memristive device available commercially to researchers, students and electronics enthusiast worldwide.<sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup> The SDC device is operational immediately after fabrication. In the Ge<sub>2</sub>Se<sub>3</sub> active layer, Ge-Ge homopolar bonds are found and switching occurs. The three layers consisting of Ge<sub>2</sub>Se<sub>3</sub>/Ag/Ge<sub>2</sub>Se<sub>3</sub>, directly below the top tungsten electrode, mix together during deposition and jointly form the silver-source layer. A layer of SnSe is between these two layers ensuring that the silver-source layer is not in direct contact with the active layer. Since silver does not migrate into the active layer at high temperatures, and the active layer maintains a high glass transition temperature of about 350 °C (662 °F), the device has significantly higher processing and operating temperatures at 250 °C (482 °F) and at least 150 °C (302 °F), respectively. These processing and operating temperatures are higher than most ion-conducting chalcogenide device types, including the S-based glasses (e.g. GeS) that need to be photodoped or thermally annealed. These factors allow the SDC device to operate over a wide range of temperatures, including long-term continuous operation at 150 °C (302 °F). </p> <div class="mw-heading mw-heading2"><h2 id="Implementation_of_hysteretic_flux-charge_memristors">Implementation of hysteretic flux-charge memristors</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=30" title="Edit section: Implementation of hysteretic flux-charge memristors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There exist implementations of memristors with both hysteretic current-voltage curve and hysteretic flux-charge curve [arXiv:2403.20051]. Memristors with both hysteretic current-voltage curve and hysteretic flux-charge curve use a memristance dependent on the history of the flux and charge. Those memristors can merge the functionality of the arithmetic logic unit and of the memory unit without data transfer [DOI: 10.1002/adfm.201303365].  </p> <div class="mw-heading mw-heading3"><h3 id="Time-integrated_Formingfree_memristor">Time-integrated Formingfree memristor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=31" title="Edit section: Time-integrated Formingfree memristor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Time-integrated Formingfree (TiF) memristors reveal a hysteretic flux-charge curve with two distinguishable branches in the positive bias range and with two distinguishable branches in the negative bias range. And TiF memristors also reveal a hysteretic current-voltage curve with two distinguishable branches in the positive bias range and with two distinguishable branches in the negative bias range. The memristance state of a TiF memristor can be controlled by both the flux and the charge [DOI: 10.1063/1.4775718]. A TiF memristor was first demonstrated by <a href="/wiki/Heidemarie_Schmidt" title="Heidemarie Schmidt">Heidemarie Schmidt</a> and her team in 2011 [DOI: 10.1063/1.3601113]. This TiF memristor is composed of a BiFeO<sub>3</sub> thin film between metallically conducting electrodes, one gold, the other platinum. The hysteretic flux-charge curve of the TiF memristor changes its slope continuously in one branch in the positive and in one branch in the negative bias range (write branches) and has a constant slope in one branch in the positive and in one branch in the negative bias range (read branches) [arXiv:2403.20051]. According to Leon O. Chua [Reference 1: <i>10.1.1.189.3614</i>] the slope of the flux-charge curve corresponds to the memristance of a memristor or to its internal state variables. The TiF memristors can be considered as memristors with a constant memristance in the two read branches and with a reconfigurable memristance in the two write branches. The physical memristor model which describes the hysteretic current-voltage curves of the TiF memristor implements static and dynamic internal state variables in the two read branches and in the two write branches [arXiv:2402.10358]. </p><p>The static and dynamic internal state variables of a non-linear memristors can be used to implement operations on non-linear memristors representing linear, non-linear, and even transcendental, e.g. exponential or logarithmic, input-output functions. </p><p>The transport characteristics of the TiF memristor in the small current – small voltage range are non-linear. This non-linearity well compares to the non-linear characteristics in the small current – small voltage range of the basic former and present building blocks in the arithmetic logic unit of von-Neumann computers, i.e. of vacuum tubes and of transistors. In contrast to vacuum tubes and transistors, the signal output of hysteretic flux-charge memristors, i.e. of TiF memristors, is not lost when the operation power is switched off before storing the signal output to the memory. Therefore, hysteretic flux-charge memristors are said to merge the functionality of the arithmetic logic unit and of the memory unit without data transfer [DOI: 10.1002/adfm.201303365]. The transport characteristics in the small current – small voltage range of hysteretic current-voltage memristors are linear. This explains why hysteretic current-voltage memristors are well established memory units and why they can not merge the functionality of the arithmetic logic unit and of the memory unit without data transfer [arXiv:2403.20051]. </p> <div class="mw-heading mw-heading2"><h2 id="Potential_applications">Potential applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=32" title="Edit section: Potential applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Memristors remain a laboratory curiosity, as yet made in insufficient numbers to gain any commercial applications. </p><p>A potential application of memristors is in analog memories for superconducting quantum computers.<sup id="cite_ref-peottaDiVentra2014_12-1" class="reference"><a href="#cite_note-peottaDiVentra2014-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar sidebar-collapse nomobile nowraplinks hlist"><tbody><tr><th class="sidebar-title"><a href="/wiki/Computer_memory" title="Computer memory">Computer memory</a> and <a href="/wiki/Computer_data_storage" title="Computer data storage">data storage</a> types</th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">General</div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Memory_cell_(computing)" title="Memory cell (computing)">Memory cell</a></li> <li><a href="/wiki/Memory_coherence" title="Memory coherence">Memory coherence</a></li> <li><a href="/wiki/Cache_coherence" title="Cache coherence">Cache coherence</a></li> <li><a href="/wiki/Memory_hierarchy" title="Memory hierarchy">Memory hierarchy</a></li> <li><a href="/wiki/Memory_access_pattern" title="Memory access pattern">Memory access pattern</a></li> <li><a href="/wiki/Memory_map" title="Memory map">Memory map</a></li> <li><a href="/wiki/Computer_data_storage#Secondary_storage" title="Computer data storage">Secondary storage</a></li> <li><a href="/wiki/Semiconductor_memory" title="Semiconductor memory">MOS memory</a> <ul><li><a href="/wiki/Floating-gate_MOSFET" title="Floating-gate MOSFET">floating-gate</a></li></ul></li> <li><a href="/wiki/Continuous_availability" title="Continuous availability">Continuous availability</a></li> <li><a href="/wiki/Areal_density_(computer_storage)" class="mw-redirect" title="Areal density (computer storage)">Areal density (computer storage)</a></li> <li><a href="/wiki/Block_(data_storage)" title="Block (data storage)">Block (data storage)</a></li> <li><a href="/wiki/Object_storage" title="Object storage">Object storage</a></li> <li><a href="/wiki/Direct-attached_storage" title="Direct-attached storage">Direct-attached storage</a></li> <li><a href="/wiki/Network-attached_storage" title="Network-attached storage">Network-attached storage</a> <ul><li><a href="/wiki/Storage_area_network" title="Storage area network">Storage area network</a></li> <li><a href="/wiki/Block-level_storage" title="Block-level storage">Block-level storage</a></li></ul></li> <li><a href="/wiki/Single-instance_storage" title="Single-instance storage">Single-instance storage</a></li> <li><a href="/wiki/Data" title="Data">Data</a></li> <li><a href="/wiki/Data_model" title="Data model">Structured data</a></li> <li><a href="/wiki/Unstructured_data" title="Unstructured data">Unstructured data</a></li> <li><a href="/wiki/Big_data" title="Big data">Big data</a></li> <li><a href="/wiki/Metadata" title="Metadata">Metadata</a></li> <li><a href="/wiki/Data_compression" title="Data compression">Data compression</a></li> <li><a href="/wiki/Data_corruption" title="Data corruption">Data corruption</a></li> <li><a href="/wiki/Data_cleansing" title="Data cleansing">Data cleansing</a></li> <li><a href="/wiki/Data_degradation" title="Data degradation">Data degradation</a></li> <li><a href="/wiki/Data_integrity" title="Data integrity">Data integrity</a></li> <li><a href="/wiki/Data_security" title="Data security">Data security</a></li> <li><a href="/wiki/Data_validation" title="Data validation">Data validation</a></li> <li><a href="/wiki/Data_validation_and_reconciliation" title="Data validation and reconciliation">Data validation and reconciliation</a></li> <li><a href="/wiki/Data_recovery" title="Data recovery">Data recovery</a></li> <li><a href="/wiki/Computer_data_storage" title="Computer data storage">Storage</a></li> <li><a href="/wiki/Data_cluster" class="mw-redirect" title="Data cluster">Data cluster</a></li> <li><a href="/wiki/Directory_(computing)" title="Directory (computing)">Directory</a></li> <li><a href="/wiki/Shared_resource" title="Shared resource">Shared resource</a></li> <li><a href="/wiki/File_sharing" title="File sharing">File sharing</a></li> <li><a href="/wiki/File_system" title="File system">File system</a></li> <li><a href="/wiki/Clustered_file_system" title="Clustered file system">Clustered file system</a></li> <li><a href="/wiki/Clustered_file_system#Distributed_file_systems" title="Clustered file system">Distributed file system</a></li> <li><a href="/wiki/Distributed_file_system_for_cloud" title="Distributed file system for cloud">Distributed file system for cloud</a></li> <li><a href="/wiki/Distributed_data_store" title="Distributed data store">Distributed data store</a></li> <li><a href="/wiki/Distributed_database" title="Distributed database">Distributed database</a></li> <li><a href="/wiki/Database" title="Database">Database</a></li> <li><a href="/wiki/Data_bank" title="Data bank">Data bank</a></li> <li><a href="/wiki/Data_storage" title="Data storage">Data storage</a></li> <li><a href="/wiki/Data_store" title="Data store">Data store</a></li> <li><a href="/wiki/Data_deduplication" title="Data deduplication">Data deduplication</a></li> <li><a href="/wiki/Data_structure" title="Data structure">Data structure</a></li> <li><a href="/wiki/Data_redundancy" title="Data redundancy">Data redundancy</a></li> <li><a href="/wiki/Replication_(computing)" title="Replication (computing)">Replication (computing)</a></li> <li><a href="/wiki/Memory_refresh" title="Memory refresh">Memory refresh</a></li> <li><a href="/wiki/Storage_record" title="Storage record">Storage record</a></li> <li><a href="/wiki/Information_repository" title="Information repository">Information repository</a></li> <li><a href="/wiki/Knowledge_base" title="Knowledge base">Knowledge base</a></li> <li><a href="/wiki/Computer_file" title="Computer file">Computer file</a></li> <li><a href="/wiki/Object_file" title="Object file">Object file</a></li> <li><a href="/wiki/File_deletion" title="File deletion">File deletion</a></li> <li><a href="/wiki/File_copying" title="File copying">File copying</a></li> <li><a href="/wiki/Backup" title="Backup">Backup</a></li> <li><a href="/wiki/Core_dump" title="Core dump">Core dump</a></li> <li><a href="/wiki/Hex_dump" title="Hex dump">Hex dump</a></li> <li><a href="/wiki/Data_communication" title="Data communication">Data communication</a></li> <li><a href="/wiki/Information_transfer" title="Information transfer">Information transfer</a></li> <li><a href="/wiki/Temporary_file" title="Temporary file">Temporary file</a></li> <li><a href="/wiki/Copy_protection" title="Copy protection">Copy protection</a></li> <li><a href="/wiki/Digital_rights_management" title="Digital rights management">Digital rights management</a></li> <li><a href="/wiki/Volume_(computing)" title="Volume (computing)">Volume (computing)</a></li> <li><a href="/wiki/Boot_sector" title="Boot sector">Boot sector</a></li> <li><a href="/wiki/Master_boot_record" title="Master boot record">Master boot record</a></li> <li><a href="/wiki/Volume_boot_record" title="Volume boot record">Volume boot record</a></li> <li><a href="/wiki/Disk_array" title="Disk array">Disk array</a></li> <li><a href="/wiki/Disk_image" title="Disk image">Disk image</a></li> <li><a href="/wiki/Disk_mirroring" title="Disk mirroring">Disk mirroring</a></li> <li><a href="/wiki/Disk_aggregation" title="Disk aggregation">Disk aggregation</a></li> <li><a href="/wiki/Disk_partitioning" title="Disk partitioning">Disk partitioning</a></li> <li><a href="/wiki/Memory_segmentation" title="Memory segmentation">Memory segmentation</a></li> <li><a href="/wiki/Locality_of_reference" title="Locality of reference">Locality of reference</a></li> <li><a href="/wiki/Logical_disk" title="Logical disk">Logical disk</a></li> <li><a href="/wiki/Storage_virtualization" title="Storage virtualization">Storage virtualization</a></li> <li><a href="/wiki/Virtual_memory" title="Virtual memory">Virtual memory</a></li> <li><a href="/wiki/Memory-mapped_file" title="Memory-mapped file">Memory-mapped file</a></li> <li><a href="/wiki/Software_entropy" class="mw-redirect" title="Software entropy">Software entropy</a></li> <li><a href="/wiki/Software_rot" title="Software rot">Software rot</a></li> <li><a href="/wiki/In-memory_database" title="In-memory database">In-memory database</a></li> <li><a href="/wiki/In-memory_processing" title="In-memory processing">In-memory processing</a></li> <li><a href="/wiki/Persistence_(computer_science)" title="Persistence (computer science)">Persistence (computer science)</a></li> <li><a href="/wiki/Persistent_data_structure" title="Persistent data structure">Persistent data structure</a></li> <li><a href="/wiki/RAID" title="RAID">RAID</a></li> <li><a href="/wiki/Non-RAID_drive_architectures" title="Non-RAID drive architectures">Non-RAID drive architectures</a></li> <li><a href="/wiki/Memory_paging" title="Memory paging">Memory paging</a></li> <li><a href="/wiki/Bank_switching" title="Bank switching">Bank switching</a></li> <li><a href="/wiki/Grid_computing" title="Grid computing">Grid computing</a></li> <li><a href="/wiki/Cloud_computing" title="Cloud computing">Cloud computing</a></li> <li><a href="/wiki/Cloud_storage" title="Cloud storage">Cloud storage</a></li> <li><a href="/wiki/Fog_computing" title="Fog computing">Fog computing</a></li> <li><a href="/wiki/Edge_computing" title="Edge computing">Edge computing</a></li> <li><a href="/wiki/Dew_computing" title="Dew computing">Dew computing</a></li> <li><a href="/wiki/Amdahl%27s_law" title="Amdahl's law">Amdahl's law</a></li> <li><a href="/wiki/Moore%27s_law" title="Moore's law">Moore's law</a></li> <li><a href="/wiki/Mark_Kryder#Kryder's_law_projection" title="Mark Kryder">Kryder's law</a></li></ul></div></div></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/Volatile_memory" title="Volatile memory">Volatile</a></th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Random-access_memory" title="Random-access memory">RAM</a></div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Cache_(computing)#HARDWARE" title="Cache (computing)">Hardware cache</a> <ul><li><a href="/wiki/CPU_cache" title="CPU cache">CPU cache</a></li> <li><a href="/wiki/Scratchpad_memory" title="Scratchpad memory">Scratchpad memory</a></li></ul></li> <li><a href="/wiki/Dynamic_random-access_memory" title="Dynamic random-access memory">DRAM</a> <ul><li><a href="/wiki/EDRAM" title="EDRAM">eDRAM</a></li> <li><a href="/wiki/Synchronous_dynamic_random-access_memory" title="Synchronous dynamic random-access memory">SDRAM</a></li> <li><a href="/wiki/Synchronous_dynamic_random-access_memory#Synchronous_Graphics_RAM_(SGRAM)" title="Synchronous dynamic random-access memory">SGRAM</a></li> <li><a href="/wiki/DDR_SDRAM" title="DDR SDRAM">DDR</a></li> <li><a href="/wiki/GDDR_SDRAM" title="GDDR SDRAM">GDDR</a></li> <li><a href="/wiki/LPDDR" title="LPDDR">LPDDR</a></li> <li><a href="/wiki/Quad_Data_Rate_SRAM" title="Quad Data Rate SRAM">QDRSRAM</a></li> <li><a href="/wiki/Dynamic_random-access_memory#Extended_data_out_DRAM" title="Dynamic random-access memory">EDO DRAM</a></li> <li><a href="/wiki/XDR_DRAM" title="XDR DRAM">XDR DRAM</a></li> <li><a href="/wiki/RDRAM" title="RDRAM">RDRAM</a></li> <li><a href="/wiki/High_Bandwidth_Memory" title="High Bandwidth Memory">HBM</a></li></ul></li> <li><a href="/wiki/Static_random-access_memory" title="Static random-access memory">SRAM</a> <ul><li><a href="/wiki/1T-SRAM" title="1T-SRAM">1T-SRAM</a></li></ul></li> <li><a href="/wiki/Resistive_random-access_memory" title="Resistive random-access memory">ReRAM</a></li> <li><a href="/wiki/Quantum_memory" title="Quantum memory">QRAM</a></li> <li><a href="/wiki/Content-addressable_memory" title="Content-addressable memory">Content-addressable memory</a> (CAM)</li> <li><a href="/wiki/Computational_RAM" title="Computational RAM">Computational RAM</a></li> <li><a href="/wiki/Video_random_access_memory" class="mw-redirect" title="Video random access memory">VRAM</a></li> <li><a href="/wiki/Dual-ported_RAM" title="Dual-ported RAM">Dual-ported RAM</a> <ul><li><a href="/wiki/Video_RAM_(dual-ported_DRAM)" class="mw-redirect" title="Video RAM (dual-ported DRAM)">Video RAM (dual-ported DRAM)</a></li></ul></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Historical</div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Williams_tube" title="Williams tube">Williams–Kilburn tube</a> (1946–1947)</li> <li><a href="/wiki/Delay-line_memory" title="Delay-line memory">Delay-line memory</a> (1947)</li> <li><a href="/wiki/Mellon_optical_memory" title="Mellon optical memory">Mellon optical memory</a> (1951)</li> <li><a href="/wiki/Selectron_tube" title="Selectron tube">Selectron tube</a> (1952)</li> <li><a href="/wiki/Dekatron" title="Dekatron">Dekatron</a></li> <li><a href="/wiki/T-RAM" title="T-RAM">T-RAM</a> (2009)</li> <li><a href="/wiki/Z-RAM" title="Z-RAM">Z-RAM</a> (2002–2010)</li></ul></div></div></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/Non-volatile_memory" title="Non-volatile memory">Non-volatile</a></th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Read-only_memory" title="Read-only memory">ROM</a></div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Diode_matrix" title="Diode matrix">Diode matrix</a></li> <li><a href="/wiki/Read-only_memory#Factory-programmed" title="Read-only memory">MROM</a></li> <li><a href="/wiki/Programmable_ROM" title="Programmable ROM">PROM</a> <ul><li><a href="/wiki/EPROM" title="EPROM">EPROM</a></li> <li><a href="/wiki/EEPROM" title="EEPROM">EEPROM</a></li></ul></li> <li><a href="/wiki/ROM_cartridge" title="ROM cartridge">ROM cartridge</a></li> <li><a href="/wiki/Solid-state_storage" title="Solid-state storage">Solid-state storage</a> (SSS) <ul><li><a href="/wiki/Flash_memory" title="Flash memory">Flash memory</a> is used in:</li> <li><a href="/wiki/Solid-state_drive" title="Solid-state drive">Solid-state drive</a> (SSD)</li> <li><a href="/wiki/Solid-state_hybrid_drive" class="mw-redirect" title="Solid-state hybrid drive">Solid-state hybrid drive</a> (SSHD)</li> <li><a href="/wiki/USB_flash_drive" title="USB flash drive">USB flash drive</a></li> <li><a href="/wiki/IBM_FlashSystem" title="IBM FlashSystem">IBM FlashSystem</a></li> <li><a href="/wiki/Flash_Core_Module" title="Flash Core Module">Flash Core Module</a></li></ul></li> <li><a href="/wiki/Memory_card" title="Memory card">Memory card</a> <ul><li><a href="/wiki/Memory_Stick" title="Memory Stick">Memory Stick</a></li> <li><a href="/wiki/CompactFlash" title="CompactFlash">CompactFlash</a></li> <li><a href="/wiki/PC_Card" title="PC Card">PC Card</a></li> <li><a href="/wiki/MultiMediaCard" title="MultiMediaCard">MultiMediaCard</a></li> <li><a href="/wiki/SD_card" title="SD card">SD card</a></li> <li><a href="/wiki/SIM_card" title="SIM card">SIM card</a></li> <li><a href="/wiki/SmartMedia" title="SmartMedia">SmartMedia</a></li> <li><a href="/wiki/Universal_Flash_Storage" title="Universal Flash Storage">Universal Flash Storage</a></li> <li><a href="/wiki/SxS" title="SxS">SxS</a></li> <li><a href="/wiki/MicroP2" title="MicroP2">MicroP2</a></li> <li><a href="/wiki/XQD_card" title="XQD card">XQD card</a></li></ul></li> <li><a href="/wiki/Programmable_metallization_cell" title="Programmable metallization cell">Programmable metallization cell</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Non-volatile_random-access_memory" title="Non-volatile random-access memory">NVRAM</a></div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Memistor" title="Memistor">Memistor</a></li> <li><a class="mw-selflink selflink">Memristor</a></li> <li><a href="/wiki/Phase-change_memory" title="Phase-change memory">PCM</a> (<a href="/wiki/3D_XPoint" title="3D XPoint">3D XPoint</a>)</li> <li><a href="/wiki/Magnetoresistive_RAM" title="Magnetoresistive RAM">MRAM</a></li> <li><a href="/wiki/Electrochemical_RAM" title="Electrochemical RAM">Electrochemical RAM</a> (ECRAM)</li> <li><a href="/wiki/Nano-RAM" title="Nano-RAM">Nano-RAM</a></li> <li><a href="/wiki/Programmable_metallization_cell" title="Programmable metallization cell">CBRAM</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Early-stage <a href="/wiki/Non-volatile_random-access_memory" title="Non-volatile random-access memory">NVRAM</a></div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Ferroelectric_RAM" title="Ferroelectric RAM">FeRAM</a></li> <li><a href="/wiki/Resistive_random-access_memory" title="Resistive random-access memory">ReRAM</a></li> <li><a href="/wiki/Fe_FET" title="Fe FET">FeFET memory</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Analog_recording" title="Analog recording">Analog recording</a></div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Phonograph_cylinder" title="Phonograph cylinder">Phonograph cylinder</a></li> <li><a href="/wiki/Phonograph_record" title="Phonograph record">Phonograph record</a></li> <li><a href="/wiki/Quadruplex_videotape" title="Quadruplex videotape">Quadruplex videotape</a></li> <li><a href="/wiki/Vision_Electronic_Recording_Apparatus" title="Vision Electronic Recording Apparatus">Vision Electronic Recording Apparatus</a></li> <li><a href="/wiki/Magnetic_recording" class="mw-redirect" title="Magnetic recording">Magnetic recording</a> <ul><li><a href="/wiki/Magnetic_storage" title="Magnetic storage">Magnetic storage</a></li> <li><a href="/wiki/Magnetic_tape" title="Magnetic tape">Magnetic tape</a></li> <li><a href="/wiki/Magnetic-tape_data_storage" title="Magnetic-tape data storage">Magnetic-tape data storage</a></li> <li><a href="/wiki/Tape_drive" title="Tape drive">Tape drive</a></li> <li><a href="/wiki/Tape_library" title="Tape library">Tape library</a></li> <li><a href="/wiki/Digital_Data_Storage" title="Digital Data Storage">Digital Data Storage</a> (DDS)</li> <li><a href="/wiki/Videotape" title="Videotape">Videotape</a></li> <li><a href="/wiki/Videocassette" class="mw-redirect" title="Videocassette">Videocassette</a></li> <li><a href="/wiki/Cassette_tape" title="Cassette tape">Cassette tape</a></li> <li><a href="/wiki/Linear_Tape-Open" title="Linear Tape-Open">Linear Tape-Open</a></li> <li><a href="/wiki/Betamax" title="Betamax">Betamax</a></li> <li><a href="/wiki/8_mm_video_format" title="8 mm video format">8 mm video format</a></li> <li><a href="/wiki/DV_(video_format)" title="DV (video format)">DV</a></li> <li><a href="/wiki/MiniDV" class="mw-redirect" title="MiniDV">MiniDV</a></li> <li><a href="/wiki/MicroMV" title="MicroMV">MicroMV</a></li> <li><a href="/wiki/U-matic" title="U-matic">U-matic</a></li> <li><a href="/wiki/VHS" title="VHS">VHS</a></li> <li><a href="/wiki/S-VHS" title="S-VHS">S-VHS</a></li> <li><a href="/wiki/VHS-C" title="VHS-C">VHS-C</a></li> <li><a href="/wiki/D-VHS" title="D-VHS">D-VHS</a></li></ul></li> <li><a href="/wiki/Hard_disk_drive" title="Hard disk drive">Hard disk drive</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Optical_storage" title="Optical storage">Optical</a></div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/3D_optical_data_storage" title="3D optical data storage">3D optical data storage</a> <ul><li><a href="/wiki/Optical_disc" title="Optical disc">Optical disc</a></li> <li><a href="/wiki/LaserDisc" title="LaserDisc">LaserDisc</a></li> <li><a href="/wiki/Compact_Disc_Digital_Audio" title="Compact Disc Digital Audio">Compact Disc Digital Audio</a> (CDDA)</li> <li><a href="/wiki/Compact_disc" title="Compact disc">CD</a></li> <li><a href="/wiki/CD_Video" title="CD Video">CD Video</a></li> <li><a href="/wiki/CD-R" title="CD-R">CD-R</a></li> <li><a href="/wiki/CD-RW" title="CD-RW">CD-RW</a></li> <li><a href="/wiki/Video_CD" title="Video CD">Video CD</a></li> <li><a href="/wiki/Super_Video_CD" title="Super Video CD">Super Video CD</a></li> <li><a href="/wiki/Mini_CD" title="Mini CD">Mini CD</a></li> <li><a href="/wiki/Nintendo_optical_discs" title="Nintendo optical discs">Nintendo optical discs</a></li> <li><a href="/wiki/CD-ROM" title="CD-ROM">CD-ROM</a></li> <li><a href="/wiki/Hyper_CD-ROM" title="Hyper CD-ROM">Hyper CD-ROM</a></li> <li><a href="/wiki/DVD" title="DVD">DVD</a></li> <li><a href="/wiki/DVD_recordable#DVD+R_and_DVD+RW_(DVD_"plus")" title="DVD recordable">DVD+R</a></li> <li><a href="/wiki/DVD-Video" title="DVD-Video">DVD-Video</a></li> <li><a href="/wiki/DVD_card" title="DVD card">DVD card</a></li> <li><a href="/wiki/DVD-RAM" title="DVD-RAM">DVD-RAM</a></li> <li><a href="/wiki/MiniDVD" title="MiniDVD">MiniDVD</a></li> <li><a href="/wiki/HD_DVD" title="HD DVD">HD DVD</a></li> <li><a href="/wiki/Blu-ray" title="Blu-ray">Blu-ray</a></li> <li><a href="/wiki/Ultra_HD_Blu-ray" title="Ultra HD Blu-ray">Ultra HD Blu-ray</a></li> <li><a href="/wiki/Holographic_Versatile_Disc" title="Holographic Versatile Disc">Holographic Versatile Disc</a></li></ul></li> <li><a href="/wiki/Write_once_read_many" title="Write once read many">WORM</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">In development</div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Programmable_metallization_cell" title="Programmable metallization cell">CBRAM</a></li> <li><a href="/wiki/Racetrack_memory" title="Racetrack memory">Racetrack memory</a></li> <li><a href="/wiki/Nano-RAM" title="Nano-RAM">NRAM</a></li> <li><a href="/wiki/Millipede_memory" title="Millipede memory">Millipede memory</a></li> <li><a href="/wiki/Electrochemical_RAM" title="Electrochemical RAM">ECRAM</a></li> <li><a href="/wiki/Patterned_media" title="Patterned media">Patterned media</a></li> <li><a href="/wiki/Holographic_data_storage" title="Holographic data storage">Holographic data storage</a> <ul><li><a href="/wiki/Electronic_quantum_holography" title="Electronic quantum holography">Electronic quantum holography</a></li></ul></li> <li><a href="/wiki/5D_optical_data_storage" title="5D optical data storage">5D optical data storage</a></li> <li><a href="/wiki/DNA_digital_data_storage" title="DNA digital data storage">DNA digital data storage</a></li> <li><a href="/wiki/Universal_memory" title="Universal memory">Universal memory</a></li> <li><a href="/wiki/Time_crystal" title="Time crystal">Time crystal</a></li> <li><a href="/wiki/Quantum_memory" title="Quantum memory">Quantum memory</a></li> <li><a href="/wiki/UltraRAM" title="UltraRAM">UltraRAM</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Historical</div><div class="sidebar-list-content mw-collapsible-content"> <ul><li><a href="/wiki/Paper_data_storage" title="Paper data storage">Paper data storage</a> (1725)</li> <li><a href="/wiki/Punched_card" title="Punched card">Punched card</a> (1725)</li> <li><a href="/wiki/Punched_tape" title="Punched tape">Punched tape</a> (1725)</li> <li><a href="/wiki/Plugboard" title="Plugboard">Plugboard</a></li> <li><a href="/wiki/Drum_memory" title="Drum memory">Drum memory</a> (1932)</li> <li><a href="/wiki/Magnetic-core_memory" title="Magnetic-core memory">Magnetic-core memory</a> (1949)</li> <li><a href="/wiki/Plated-wire_memory" title="Plated-wire memory">Plated-wire memory</a> (1957)</li> <li><a href="/wiki/Core_rope_memory" title="Core rope memory">Core rope memory</a> (1960s)</li> <li><a href="/wiki/Thin-film_memory" title="Thin-film memory">Thin-film memory</a> (1962)</li> <li><a href="/wiki/Disk_pack" title="Disk pack">Disk pack</a> (1962)</li> <li><a href="/wiki/Twistor_memory" title="Twistor memory">Twistor memory</a> (~1968)</li> <li><a href="/wiki/Bubble_memory" title="Bubble memory">Bubble memory</a> (~1970)</li> <li><a href="/wiki/Floppy_disk" title="Floppy disk">Floppy disk</a> (1971)</li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Memory_types" title="Template:Memory types"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Memory_types" title="Template talk:Memory types"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Memory_types" title="Special:EditPage/Template:Memory types"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>Memristors can potentially be fashioned into <a href="/wiki/Non-volatile_memory" title="Non-volatile memory">non-volatile solid-state memory</a>, which could allow greater data density than hard drives with access times similar to <a href="/wiki/Dynamic_random-access_memory" title="Dynamic random-access memory">DRAM</a>, replacing both components.<sup id="cite_ref-Kanellos_32-1" class="reference"><a href="#cite_note-Kanellos-32"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> HP prototyped a crossbar latch memory that can fit 100 <a href="/wiki/Gigabit" class="mw-redirect" title="Gigabit">gigabits</a> in a square centimeter,<sup id="cite_ref-EETimes_105-0" class="reference"><a href="#cite_note-EETimes-105"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup> and proposed a scalable 3D design (consisting of up to 1000 layers or 1 <a href="/wiki/Petabit" class="mw-redirect" title="Petabit">petabit</a> per cm<sup>3</sup>).<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">[</span>105<span class="cite-bracket">]</span></a></sup> In May 2008 HP reported that its device reaches currently about one-tenth the speed of DRAM.<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">[</span>106<span class="cite-bracket">]</span></a></sup> The devices' resistance would be read with <a href="/wiki/Alternating_current" title="Alternating current">alternating current</a> so that the stored value would not be affected.<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup> In May 2012, it was reported that the access time had been improved to 90 nanoseconds, which is nearly one hundred times faster than the contemporaneous Flash memory. At the same time, the energy consumption was just one percent of that consumed by Flash memory.<sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">[</span>108<span class="cite-bracket">]</span></a></sup> </p><p>Memristors have applications in <a href="/wiki/Programmable_logic_device" title="Programmable logic device">programmable logic</a><sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">[</span>109<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Signal_processing" title="Signal processing">signal processing</a>,<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">[</span>110<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Super-resolution_imaging" title="Super-resolution imaging">super-resolution imaging</a><sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">[</span>111<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Physical_neural_network" title="Physical neural network">physical neural networks</a>,<sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">[</span>112<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Control_theory" title="Control theory">control systems</a>,<sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">[</span>113<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Reconfigurable_computing" title="Reconfigurable computing">reconfigurable computing</a>,<sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">[</span>114<span class="cite-bracket">]</span></a></sup> <a href="/wiki/In-memory_computing" class="mw-redirect" title="In-memory computing">in-memory computing</a>,<sup id="cite_ref-116" class="reference"><a href="#cite_note-116"><span class="cite-bracket">[</span>115<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Brain%E2%80%93computer_interfaces" class="mw-redirect" title="Brain–computer interfaces">brain–computer interfaces</a><sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">[</span>116<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/RFID" class="mw-redirect" title="RFID">RFID</a>.<sup id="cite_ref-118" class="reference"><a href="#cite_note-118"><span class="cite-bracket">[</span>117<span class="cite-bracket">]</span></a></sup> Memristive devices are potentially used for stateful logic implication, allowing a replacement for CMOS-based logic computation<sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">[</span>118<span class="cite-bracket">]</span></a></sup> Several early works have been reported in this direction.<sup id="cite_ref-120" class="reference"><a href="#cite_note-120"><span class="cite-bracket">[</span>119<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-121" class="reference"><a href="#cite_note-121"><span class="cite-bracket">[</span>120<span class="cite-bracket">]</span></a></sup> </p><p>In 2009, a simple electronic circuit<sup id="cite_ref-122" class="reference"><a href="#cite_note-122"><span class="cite-bracket">[</span>121<span class="cite-bracket">]</span></a></sup> consisting of an LC network and a memristor was used to model experiments on adaptive behavior of unicellular organisms.<sup id="cite_ref-amoebaexp_123-0" class="reference"><a href="#cite_note-amoebaexp-123"><span class="cite-bracket">[</span>122<span class="cite-bracket">]</span></a></sup> It was shown that subjected to a train of periodic pulses, the circuit learns and anticipates the next pulse similar to the behavior of slime molds <i><a href="/wiki/Physarum_polycephalum" title="Physarum polycephalum">Physarum polycephalum</a></i> where the viscosity of channels in the cytoplasm responds to periodic environment changes.<sup id="cite_ref-amoebaexp_123-1" class="reference"><a href="#cite_note-amoebaexp-123"><span class="cite-bracket">[</span>122<span class="cite-bracket">]</span></a></sup> Applications of such circuits may include, e.g., <a href="/wiki/Pattern_recognition" title="Pattern recognition">pattern recognition</a>. The <a href="/wiki/DARPA" title="DARPA">DARPA</a> <a href="/wiki/SyNAPSE" title="SyNAPSE">SyNAPSE</a> project funded HP Labs, in collaboration with the <a href="/wiki/Boston_University" title="Boston University">Boston University</a> Neuromorphics Lab, has been developing neuromorphic architectures which may be based on memristive systems. In 2010, <a href="/wiki/Massimiliano_Versace" title="Massimiliano Versace">Versace</a> and Chandler described the MoNETA (Modular Neural Exploring Traveling Agent) model.<sup id="cite_ref-124" class="reference"><a href="#cite_note-124"><span class="cite-bracket">[</span>123<span class="cite-bracket">]</span></a></sup> MoNETA is the first large-scale neural network model to implement whole-brain circuits to power a virtual and robotic agent using memristive hardware.<sup id="cite_ref-125" class="reference"><a href="#cite_note-125"><span class="cite-bracket">[</span>124<span class="cite-bracket">]</span></a></sup> Application of the memristor crossbar structure in the construction of an analog soft computing system was demonstrated by Merrikh-Bayat and Shouraki.<sup id="cite_ref-126" class="reference"><a href="#cite_note-126"><span class="cite-bracket">[</span>125<span class="cite-bracket">]</span></a></sup> In 2011, they showed<sup id="cite_ref-127" class="reference"><a href="#cite_note-127"><span class="cite-bracket">[</span>126<span class="cite-bracket">]</span></a></sup> how memristor crossbars can be combined with <a href="/wiki/Fuzzy_logic" title="Fuzzy logic">fuzzy logic</a> to create an analog memristive <a href="/wiki/Neuro-fuzzy" title="Neuro-fuzzy">neuro-fuzzy</a> computing system with fuzzy input and output terminals. Learning is based on the creation of fuzzy relations inspired from <a href="/wiki/Hebbian_theory" title="Hebbian theory">Hebbian learning rule</a>. </p><p>In 2013 Leon Chua published a tutorial underlining the broad span of complex phenomena and applications that memristors span and how they can be used as non-volatile analog memories and can mimic classic habituation and learning phenomena.<sup id="cite_ref-128" class="reference"><a href="#cite_note-128"><span class="cite-bracket">[</span>127<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Derivative_devices">Derivative devices</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=33" title="Edit section: Derivative devices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Memistor_and_memtransistor">Memistor and memtransistor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=34" title="Edit section: Memistor and memtransistor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Memistor" title="Memistor">memistor</a> and <a href="/wiki/Memtransistor" title="Memtransistor">memtransistor</a> are transistor-based devices which include memristor function. </p> <div class="mw-heading mw-heading3"><h3 id="Memcapacitors_and_meminductors">Memcapacitors and meminductors</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=35" title="Edit section: Memcapacitors and meminductors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2009, <a href="/wiki/Massimiliano_Di_Ventra" title="Massimiliano Di Ventra">Di Ventra</a>, Pershin, and Chua extended<sup id="cite_ref-DiVentra2009_129-0" class="reference"><a href="#cite_note-DiVentra2009-129"><span class="cite-bracket">[</span>128<span class="cite-bracket">]</span></a></sup> the notion of memristive systems to capacitive and inductive elements in the form of memcapacitors and meminductors, whose properties depend on the state and history of the system, further extended in 2013 by Di Ventra and Pershin.<sup id="cite_ref-DiVentra_2013_23-6" class="reference"><a href="#cite_note-DiVentra_2013-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Memfractance_and_memfractor,_2nd-_and_3rd-order_memristor,_memcapacitor_and_meminductor"><span id="Memfractance_and_memfractor.2C_2nd-_and_3rd-order_memristor.2C_memcapacitor_and_meminductor"></span>Memfractance and memfractor, 2nd- and 3rd-order memristor, memcapacitor and meminductor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=36" title="Edit section: Memfractance and memfractor, 2nd- and 3rd-order memristor, memcapacitor and meminductor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In September 2014, <a href="/w/index.php?title=Mohamed-Salah_Abdelouahab&action=edit&redlink=1" class="new" title="Mohamed-Salah Abdelouahab (page does not exist)">Mohamed-Salah Abdelouahab</a>, <a href="/w/index.php?title=Rene_Lozi&action=edit&redlink=1" class="new" title="Rene Lozi (page does not exist)">Rene Lozi</a>, and <a href="/wiki/Leon_Chua" class="mw-redirect" title="Leon Chua">Leon Chua</a> published a general theory of 1st-, 2nd-, 3rd-, and nth-order memristive elements using <a href="/wiki/Fractional_calculus" title="Fractional calculus">fractional derivatives</a>.<sup id="cite_ref-130" class="reference"><a href="#cite_note-130"><span class="cite-bracket">[</span>129<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=37" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Precursors">Precursors</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=38" title="Edit section: Precursors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Sir_Humphry_Davy" class="mw-redirect" title="Sir Humphry Davy">Sir Humphry Davy</a> is said by some to have performed the first experiments which can be explained by memristor effects as long ago as 1808.<sup id="cite_ref-Memristor200yearsold_21-1" class="reference"><a href="#cite_note-Memristor200yearsold-21"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-131" class="reference"><a href="#cite_note-131"><span class="cite-bracket">[</span>130<span class="cite-bracket">]</span></a></sup> However the first device of a related nature to be constructed was the <a href="/wiki/Memistor" title="Memistor">memistor</a> (i.e. memory resistor), a term coined in 1960 by <a href="/wiki/Bernard_Widrow" title="Bernard Widrow">Bernard Widrow</a> to describe a circuit element of an early artificial neural network called <a href="/wiki/ADALINE" title="ADALINE">ADALINE</a>. A few years later, in 1968, Argall published an article showing the resistance switching effects of TiO<sub>2</sub> which was later claimed by researchers from Hewlett Packard to be evidence of a memristor.<sup id="cite_ref-Argall1968_56-1" class="reference"><a href="#cite_note-Argall1968-56"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup><sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="2008 claim by HP needs citing (January 2020)">citation needed</span></a></i>]</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Theoretical_description">Theoretical description</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=39" title="Edit section: Theoretical description"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Leon_Chua" class="mw-redirect" title="Leon Chua">Leon Chua</a> postulated his new two-terminal circuit element in 1971. It was characterized by a relationship between charge and flux linkage as a fourth fundamental circuit element.<sup id="cite_ref-chua71_1-4" class="reference"><a href="#cite_note-chua71-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Five years later he and his student Sung Mo Kang generalized the theory of memristors and memristive systems including a property of zero crossing in the <a href="/wiki/Lissajous_curve" title="Lissajous curve">Lissajous curve</a> characterizing current vs. voltage behavior.<sup id="cite_ref-chua76_2-4" class="reference"><a href="#cite_note-chua76-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Twenty-first_century">Twenty-first century</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=40" title="Edit section: Twenty-first century"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>On May 1, 2008, Strukov, Snider, Stewart, and Williams published an article in <i>Nature</i> identifying a link between the two-terminal resistance switching behavior found in nanoscale systems and memristors.<sup id="cite_ref-Williams08_18-6" class="reference"><a href="#cite_note-Williams08-18"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>On 23 January 2009, <a href="/wiki/Di_Ventra" class="mw-redirect" title="Di Ventra">Di Ventra</a>, Pershin, and Chua extended the notion of memristive systems to capacitive and inductive elements, namely <a href="/wiki/Capacitor" title="Capacitor">capacitors</a> and <a href="/wiki/Inductor" title="Inductor">inductors</a>, whose properties depend on the state and history of the system.<sup id="cite_ref-DiVentra2009_129-1" class="reference"><a href="#cite_note-DiVentra2009-129"><span class="cite-bracket">[</span>128<span class="cite-bracket">]</span></a></sup> </p><p>In July 2014, the MeMOSat/<a href="/wiki/LabOSat" class="mw-redirect" title="LabOSat">LabOSat</a> group<sup id="cite_ref-labosat1_132-0" class="reference"><a href="#cite_note-labosat1-132"><span class="cite-bracket">[</span>131<span class="cite-bracket">]</span></a></sup> (composed of researchers from <a href="/w/index.php?title=Universidad_Nacional_de_General_San_Mart%C3%ADn_(Argentina)&action=edit&redlink=1" class="new" title="Universidad Nacional de General San Martín (Argentina) (page does not exist)">Universidad Nacional de General San Martín (Argentina)</a>, INTI, <a href="/wiki/CNEA" class="mw-redirect" title="CNEA">CNEA</a>, and <a href="/wiki/CONICET" class="mw-redirect" title="CONICET">CONICET</a>) put memory devices into a <a href="/wiki/Low_Earth_orbit" title="Low Earth orbit">Low Earth orbit</a>.<sup id="cite_ref-133" class="reference"><a href="#cite_note-133"><span class="cite-bracket">[</span>132<span class="cite-bracket">]</span></a></sup> Since then, seven missions with different devices<sup id="cite_ref-labosat2_134-0" class="reference"><a href="#cite_note-labosat2-134"><span class="cite-bracket">[</span>133<span class="cite-bracket">]</span></a></sup> are performing experiments in low orbits, onboard <a href="/wiki/Satellogic" title="Satellogic">Satellogic</a>'s <a href="/w/index.php?title=%C3%91u-Sat&action=edit&redlink=1" class="new" title="Ñu-Sat (page does not exist)">Ñu-Sat</a> satellites.<sup id="cite_ref-135" class="reference"><a href="#cite_note-135"><span class="cite-bracket">[</span>134<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-136" class="reference"><a href="#cite_note-136"><span class="cite-bracket">[</span>135<span class="cite-bracket">]</span></a></sup> <sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="What is the relation of these devices to memristors? (January 2020)">clarification needed</span></a></i>]</sup> </p><p>On 7 July 2015, Knowm Inc announced Self Directed Channel (SDC) memristors commercially.<sup id="cite_ref-137" class="reference"><a href="#cite_note-137"><span class="cite-bracket">[</span>136<span class="cite-bracket">]</span></a></sup> These devices remain available in small numbers. </p><p>On 13 July 2018, MemSat (Memristor Satellite) was launched to fly a memristor evaluation payload.<sup id="cite_ref-138" class="reference"><a href="#cite_note-138"><span class="cite-bracket">[</span>137<span class="cite-bracket">]</span></a></sup> </p><p><span class="anchor" id="Lithionics"></span>In 2021, <a href="/wiki/Jennifer_Rupp" title="Jennifer Rupp">Jennifer Rupp</a> and Martin Bazant of <a href="/wiki/MIT" class="mw-redirect" title="MIT">MIT</a> started a "Lithionics" research programme to investigate applications of <a href="/wiki/Lithium" title="Lithium">lithium</a> beyond their use in <a href="/wiki/Battery_electrode" class="mw-redirect" title="Battery electrode">battery electrodes</a>, including <a href="/wiki/Lithium_oxide" title="Lithium oxide">lithium oxide</a>-based memristors in <a href="/wiki/Neuromorphic_computing" title="Neuromorphic computing">neuromorphic computing</a>.<sup id="cite_ref-139" class="reference"><a href="#cite_note-139"><span class="cite-bracket">[</span>138<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-140" class="reference"><a href="#cite_note-140"><span class="cite-bracket">[</span>139<span class="cite-bracket">]</span></a></sup> </p><p>In May 2023, TECHiFAB GmbH [https://techifab.com/] announced TiF memristors commercially. [arXiv: 2403.20051, arXiv: 2402.10358] These TiF memristors remain available in small and medium numbers. </p><p>In the September 2023 issue of <a href="/wiki/Science_(journal)" title="Science (journal)"><i>Science Magazine</i></a>, Chinese scientists Wenbin Zhang <i>et al.</i> described the development and testing of a memristor-based <a href="/wiki/Integrated_circuit" title="Integrated circuit">integrated circuit</a>.<sup id="cite_ref-141" class="reference"><a href="#cite_note-141"><span class="cite-bracket">[</span>140<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=41" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1266661725">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_ksim.png" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Nuvola_apps_ksim.png/28px-Nuvola_apps_ksim.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Nuvola_apps_ksim.png/42px-Nuvola_apps_ksim.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Nuvola_apps_ksim.png/56px-Nuvola_apps_ksim.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Electronics" title="Portal:Electronics">Electronics portal</a></span></li></ul> <ul><li><a href="/wiki/3D_XPoint" title="3D XPoint">3D XPoint</a></li> <li><a href="/wiki/Electrical_element" title="Electrical element">Electrical element</a></li> <li><a href="/wiki/Hybrid_Memory_Cube" title="Hybrid Memory Cube">Hybrid Memory Cube</a></li> <li><a href="/wiki/List_of_emerging_technologies" title="List of emerging technologies">List of emerging technologies</a></li> <li><a href="/wiki/Neuromorphic_engineering" class="mw-redirect" title="Neuromorphic engineering">Neuromorphic engineering</a></li> <li><a href="/wiki/Trancitor" title="Trancitor">Trancitor</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Footnotes">Footnotes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=42" title="Edit section: Footnotes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">For an experiment that shows such a characteristic for a common discharge tube, see <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation audio-visual cs1">Bharathwaj Muthuswamy (2013-10-03). <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=hDfJoXrCSxk"><i>A physical memristor Lissajous figure</i></a> – via YouTube.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=A+physical+memristor+Lissajous+figure&rft.date=2013-10-03&rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DhDfJoXrCSxk&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span> The video also illustrates how to understand deviations in the pinched hysteresis characteristics of physical memristors.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=43" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-chua71-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-chua71_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-chua71_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-chua71_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-chua71_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-chua71_1-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChua1971" class="citation journal cs1">Chua, L. (1971). "Memristor-The missing circuit element". <i>IEEE Transactions on Circuit Theory</i>. <b>18</b> (5): <span class="nowrap">507–</span>519. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.189.3614">10.1.1.189.3614</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTCT.1971.1083337">10.1109/TCT.1971.1083337</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Circuit+Theory&rft.atitle=Memristor-The+missing+circuit+element&rft.volume=18&rft.issue=5&rft.pages=%3Cspan+class%3D%22nowrap%22%3E507-%3C%2Fspan%3E519&rft.date=1971&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.189.3614%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1109%2FTCT.1971.1083337&rft.aulast=Chua&rft.aufirst=L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-chua76-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-chua76_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-chua76_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-chua76_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-chua76_2-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-chua76_2-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChuaKang1976" class="citation cs2">Chua, L. O.; Kang, S. M. (1976-01-01), "Memristive devices and systems", <i><a href="/wiki/Proceedings_of_the_IEEE" title="Proceedings of the IEEE">Proceedings of the IEEE</a></i>, <b>64</b> (2): <span class="nowrap">209–</span>223, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FPROC.1976.10092">10.1109/PROC.1976.10092</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6008332">6008332</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+IEEE&rft.atitle=Memristive+devices+and+systems&rft.volume=64&rft.issue=2&rft.pages=%3Cspan+class%3D%22nowrap%22%3E209-%3C%2Fspan%3E223&rft.date=1976-01-01&rft_id=info%3Adoi%2F10.1109%2FPROC.1976.10092&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6008332%23id-name%3DS2CID&rft.aulast=Chua&rft.aufirst=L.+O.&rft.au=Kang%2C+S.+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Pershin_2018-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-Pershin_2018_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Pershin_2018_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Pershin_2018_3-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Pershin_2018_3-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPershinDi_Ventra2019" class="citation journal cs1">Pershin, Y. V.; Di Ventra, M. (2019). "A simple test for ideal memristors". <i>Journal of Physics D: Applied Physics</i>. <b>52</b> (1): 01LT01. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1806.07360">1806.07360</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019JPhD...52aLT01P">2019JPhD...52aLT01P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1361-6463%2Faae680">10.1088/1361-6463/aae680</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53506924">53506924</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+D%3A+Applied+Physics&rft.atitle=A+simple+test+for+ideal+memristors&rft.volume=52&rft.issue=1&rft.pages=01LT01&rft.date=2019&rft_id=info%3Aarxiv%2F1806.07360&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53506924%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1361-6463%2Faae680&rft_id=info%3Abibcode%2F2019JPhD...52aLT01P&rft.aulast=Pershin&rft.aufirst=Y.+V.&rft.au=Di+Ventra%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Kim_2019-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-Kim_2019_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kim_2019_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKimPershinYinDatta2019" class="citation journal cs1">Kim, J.; Pershin, Y. V.; Yin, M.; Datta, T.; Di Ventra, M. (2019). "An experimental proof that resistance-switching memories are not memristors". <i>Advanced Electronic Materials</i>. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1909.07238">1909.07238</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Faelm.202000010">10.1002/aelm.202000010</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:202577242">202577242</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advanced+Electronic+Materials&rft.atitle=An+experimental+proof+that+resistance-switching+memories+are+not+memristors&rft.date=2019&rft_id=info%3Aarxiv%2F1909.07238&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A202577242%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1002%2Faelm.202000010&rft.aulast=Kim&rft.aufirst=J.&rft.au=Pershin%2C+Y.+V.&rft.au=Yin%2C+M.&rft.au=Datta%2C+T.&rft.au=Di+Ventra%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnoepfel1970" class="citation cs2">Knoepfel, H. (1970), <i>Pulsed high magnetic fields</i>, New York: <a href="/wiki/North-Holland_Publishing_Company" class="mw-redirect" title="North-Holland Publishing Company">North-Holland</a>, p. 37, Eq. (2.80)</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Pulsed+high+magnetic+fields&rft.place=New+York&rft.pages=p.+37%2C+Eq.+%282.80%29&rft.pub=North-Holland&rft.date=1970&rft.aulast=Knoepfel&rft.aufirst=H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-muthuswamyBanerjee2019-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-muthuswamyBanerjee2019_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-muthuswamyBanerjee2019_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMuthuswamyBanerjee2019" class="citation book cs1">Muthuswamy, Bharathwaj; Banerjee, Santo (2019). <i>Introduction to Nonlinear Circuits and Networks</i>. Springer International. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-67325-7" title="Special:BookSources/978-3-319-67325-7"><bdi>978-3-319-67325-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Nonlinear+Circuits+and+Networks&rft.pub=Springer+International&rft.date=2019&rft.isbn=978-3-319-67325-7&rft.aulast=Muthuswamy&rft.aufirst=Bharathwaj&rft.au=Banerjee%2C+Santo&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-penfield1974-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-penfield1974_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPaul_L._Penfield_Jr.1974" class="citation report cs1">Paul L. Penfield Jr. (1974). "1. Frequency-Power Formulas for Josephson Junctions". <a rel="nofollow" class="external text" href="https://dspace.mit.edu/bitstream/handle/1721.1/56460/RLE_QPR_113_V.pdf">V. Microwave and Millimeter Wave Techniques</a> <span class="cs1-format">(PDF)</span> (Report). pp. <span class="nowrap">31–</span>32. QPR No. 113.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=report&rft.btitle=V.+Microwave+and+Millimeter+Wave+Techniques&rft.pages=%3Cspan+class%3D%22nowrap%22%3E31-%3C%2Fspan%3E32&rft.date=1974&rft.au=Paul+L.+Penfield+Jr.&rft_id=https%3A%2F%2Fdspace.mit.edu%2Fbitstream%2Fhandle%2F1721.1%2F56460%2FRLE_QPR_113_V.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-langenberg74-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-langenberg74_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLangenberg1974" class="citation cs2">Langenberg, D. N. (1974), <a rel="nofollow" class="external text" href="https://hal.archives-ouvertes.fr/jpa-00243770/file/ajp-rphysap_1974_9_1_35_0.pdf">"Physical Interpretation of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98a7ed057494fc925837ca7d6aa0ccf2cc948d82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.884ex; height:2.509ex;" alt="{\displaystyle \cos \phi }"></span> term and implications for detectors"</a> <span class="cs1-format">(PDF)</span>, <i>Revue de Physique Appliquée</i>, <b>9</b>: <span class="nowrap">35–</span>40, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2Frphysap%3A019740090103500">10.1051/rphysap:019740090103500</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Revue+de+Physique+Appliqu%C3%A9e&rft.atitle=Physical+Interpretation+of+the+MATH+RENDER+ERROR+term+and+implications+for+detectors&rft.volume=9&rft.pages=%3Cspan+class%3D%22nowrap%22%3E35-%3C%2Fspan%3E40&rft.date=1974&rft_id=info%3Adoi%2F10.1051%2Frphysap%3A019740090103500&rft.aulast=Langenberg&rft.aufirst=D.+N.&rft_id=https%3A%2F%2Fhal.archives-ouvertes.fr%2Fjpa-00243770%2Ffile%2Fajp-rphysap_1974_9_1_35_0.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-pedersen1972-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-pedersen1972_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPedersen1972" class="citation cs2">Pedersen, N.F.; et al. (1972), <a rel="nofollow" class="external text" href="https://backend.orbit.dtu.dk/ws/files/3534398/NF.pdf">"Magnetic field dependence and Q of the Josephson plasma resonance"</a> <span class="cs1-format">(PDF)</span>, <i>Physical Review B</i>, <b>11</b> (6): <span class="nowrap">4151–</span>4159, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1972PhRvB...6.4151P">1972PhRvB...6.4151P</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevB.6.4151">10.1103/PhysRevB.6.4151</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+B&rft.atitle=Magnetic+field+dependence+and+Q+of+the+Josephson+plasma+resonance&rft.volume=11&rft.issue=6&rft.pages=%3Cspan+class%3D%22nowrap%22%3E4151-%3C%2Fspan%3E4159&rft.date=1972&rft_id=info%3Adoi%2F10.1103%2FPhysRevB.6.4151&rft_id=info%3Abibcode%2F1972PhRvB...6.4151P&rft.aulast=Pedersen&rft.aufirst=N.F.&rft_id=https%3A%2F%2Fbackend.orbit.dtu.dk%2Fws%2Ffiles%2F3534398%2FNF.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-pedersen1974-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-pedersen1974_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPedersenFinneganLangenberg1974" class="citation book cs1">Pedersen, N. F.; Finnegan, T. F.; Langenberg, D. N. (1974). "Evidence for the Existence of the Josephson Quasiparticle-Pair Interference Current". <i>Low Temperature Physics-LT 13</i>. Boston, MA: Springer US. pp. <span class="nowrap">268–</span>271. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4684-2688-5_52">10.1007/978-1-4684-2688-5_52</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4684-2690-8" title="Special:BookSources/978-1-4684-2690-8"><bdi>978-1-4684-2690-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Evidence+for+the+Existence+of+the+Josephson+Quasiparticle-Pair+Interference+Current&rft.btitle=Low+Temperature+Physics-LT+13&rft.place=Boston%2C+MA&rft.pages=%3Cspan+class%3D%22nowrap%22%3E268-%3C%2Fspan%3E271&rft.pub=Springer+US&rft.date=1974&rft_id=info%3Adoi%2F10.1007%2F978-1-4684-2688-5_52&rft.isbn=978-1-4684-2690-8&rft.aulast=Pedersen&rft.aufirst=N.+F.&rft.au=Finnegan%2C+T.+F.&rft.au=Langenberg%2C+D.+N.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-thompson1973-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-thompson1973_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThompson1973" class="citation cs2">Thompson, E.D. (1973), "Power flow for Josephson Elements", <i>IEEE Trans. Electron Devices</i>, <b>20</b> (8): <span class="nowrap">680–</span>683, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1973ITED...20..680T">1973ITED...20..680T</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FT-ED.1973.17728">10.1109/T-ED.1973.17728</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Trans.+Electron+Devices&rft.atitle=Power+flow+for+Josephson+Elements&rft.volume=20&rft.issue=8&rft.pages=%3Cspan+class%3D%22nowrap%22%3E680-%3C%2Fspan%3E683&rft.date=1973&rft_id=info%3Adoi%2F10.1109%2FT-ED.1973.17728&rft_id=info%3Abibcode%2F1973ITED...20..680T&rft.aulast=Thompson&rft.aufirst=E.D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-peottaDiVentra2014-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-peottaDiVentra2014_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-peottaDiVentra2014_12-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeottaDi_Ventra2014" class="citation cs2">Peotta, A.; Di Ventra, M. (2014), "Superconducting Memristors", <i>Physical Review Applied</i>, <b>2</b> (3): <span class="nowrap">034011-1 –</span> <span class="nowrap">034011-10</span>, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1311.2975">1311.2975</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014PhRvP...2c4011P">2014PhRvP...2c4011P</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevApplied.2.034011">10.1103/PhysRevApplied.2.034011</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119020953">119020953</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Applied&rft.atitle=Superconducting+Memristors&rft.volume=2&rft.issue=3&rft.pages=%3Cspan+class%3D%22nowrap%22%3E034011-1+-%3C%2Fspan%3E+%3Cspan+class%3D%22nowrap%22%3E034011-10%3C%2Fspan%3E&rft.date=2014&rft_id=info%3Aarxiv%2F1311.2975&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119020953%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevApplied.2.034011&rft_id=info%3Abibcode%2F2014PhRvP...2c4011P&rft.aulast=Peotta&rft.aufirst=A.&rft.au=Di+Ventra%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-muthuswamy2014-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-muthuswamy2014_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMuthuswamyJevticIuSubramaniam2014" class="citation book cs1">Muthuswamy, B.; Jevtic, J.; Iu, H. H. C.; Subramaniam, C. K.; Ganesan, K.; Sankaranarayanan, V.; Sethupathi, K.; Kim, H.; Shah, M. Pd.; Chua, L. O. (2014). "Memristor modelling". <i>2014 IEEE International Symposium on Circuits and Systems (ISCAS)</i>. pp. <span class="nowrap">490–</span>493. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FISCAS.2014.6865179">10.1109/ISCAS.2014.6865179</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4799-3432-4" title="Special:BookSources/978-1-4799-3432-4"><bdi>978-1-4799-3432-4</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:13061426">13061426</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Memristor+modelling&rft.btitle=2014+IEEE+International+Symposium+on+Circuits+and+Systems+%28ISCAS%29&rft.pages=%3Cspan+class%3D%22nowrap%22%3E490-%3C%2Fspan%3E493&rft.date=2014&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A13061426%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1109%2FISCAS.2014.6865179&rft.isbn=978-1-4799-3432-4&rft.aulast=Muthuswamy&rft.aufirst=B.&rft.au=Jevtic%2C+J.&rft.au=Iu%2C+H.+H.+C.&rft.au=Subramaniam%2C+C.+K.&rft.au=Ganesan%2C+K.&rft.au=Sankaranarayanan%2C+V.&rft.au=Sethupathi%2C+K.&rft.au=Kim%2C+H.&rft.au=Shah%2C+M.+Pd.&rft.au=Chua%2C+L.+O.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-sah2015-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-sah2015_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-sah2015_15-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSah2015" class="citation cs2">Sah, M.; et al. (2015), "A Generic Model of Memristors with Parasitic Components", <i>IEEE TCAS I: Regular Papers</i>, <b>62</b> (3): <span class="nowrap">891–</span>898</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+TCAS+I%3A+Regular+Papers&rft.atitle=A+Generic+Model+of+Memristors+with+Parasitic+Components&rft.volume=62&rft.issue=3&rft.pages=%3Cspan+class%3D%22nowrap%22%3E891-%3C%2Fspan%3E898&rft.date=2015&rft.aulast=Sah&rft.aufirst=M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-chuaTseng74-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-chuaTseng74_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChuaTseng1974" class="citation cs2">Chua, L. O.; Tseng, C. (1974), "A memristive circuit model for p-n junction diodes", <i><a href="/wiki/International_Journal_of_Circuit_Theory_and_Applications" title="International Journal of Circuit Theory and Applications">International Journal of Circuit Theory and Applications</a></i>, <b>2</b> (4): <span class="nowrap">367–</span>389, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fcta.4490020406">10.1002/cta.4490020406</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Circuit+Theory+and+Applications&rft.atitle=A+memristive+circuit+model+for+p-n+junction+diodes&rft.volume=2&rft.issue=4&rft.pages=%3Cspan+class%3D%22nowrap%22%3E367-%3C%2Fspan%3E389&rft.date=1974&rft_id=info%3Adoi%2F10.1002%2Fcta.4490020406&rft.aulast=Chua&rft.aufirst=L.+O.&rft.au=Tseng%2C+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-chua11-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-chua11_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-chua11_17-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-chua11_17-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-chua11_17-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChua2011" class="citation journal cs1">Chua, Leon (2011-01-28). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00339-011-6264-9">"Resistance switching memories are memristors"</a>. <i>Applied Physics A</i>. <b>102</b> (4): <span class="nowrap">765–</span>783. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011ApPhA.102..765C">2011ApPhA.102..765C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00339-011-6264-9">10.1007/s00339-011-6264-9</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Applied+Physics+A&rft.atitle=Resistance+switching+memories+are+memristors&rft.volume=102&rft.issue=4&rft.pages=%3Cspan+class%3D%22nowrap%22%3E765-%3C%2Fspan%3E783&rft.date=2011-01-28&rft_id=info%3Adoi%2F10.1007%2Fs00339-011-6264-9&rft_id=info%3Abibcode%2F2011ApPhA.102..765C&rft.aulast=Chua&rft.aufirst=Leon&rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs00339-011-6264-9&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Williams08-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-Williams08_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Williams08_18-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Williams08_18-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Williams08_18-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Williams08_18-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Williams08_18-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Williams08_18-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStrukovSniderStewartWilliams2008" class="citation journal cs1">Strukov, Dmitri B.; Snider, Gregory S.; Stewart, Duncan R.; Williams, R. Stanley (2008). <a rel="nofollow" class="external text" href="http://www.ece.ucsb.edu/~strukov/papers/2008/Nature2008.pdf">"The missing memristor found"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Nature_(journal)" title="Nature (journal)">Nature</a></i>. <b>453</b> (7191): <span class="nowrap">80–</span>83. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008Natur.453...80S">2008Natur.453...80S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature06932">10.1038/nature06932</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18451858">18451858</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4367148">4367148</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=The+missing+memristor+found&rft.volume=453&rft.issue=7191&rft.pages=%3Cspan+class%3D%22nowrap%22%3E80-%3C%2Fspan%3E83&rft.date=2008&rft_id=info%3Adoi%2F10.1038%2Fnature06932&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4367148%23id-name%3DS2CID&rft_id=info%3Apmid%2F18451858&rft_id=info%3Abibcode%2F2008Natur.453...80S&rft.aulast=Strukov&rft.aufirst=Dmitri+B.&rft.au=Snider%2C+Gregory+S.&rft.au=Stewart%2C+Duncan+R.&rft.au=Williams%2C+R.+Stanley&rft_id=http%3A%2F%2Fwww.ece.ucsb.edu%2F~strukov%2Fpapers%2F2008%2FNature2008.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="http://www.hpl.hp.com/news/2008/apr-jun/memristor_faq.html"><i>Memristor FAQ</i></a>, <a href="/wiki/Hewlett-Packard" title="Hewlett-Packard">Hewlett-Packard</a><span class="reference-accessdate">, retrieved <span class="nowrap">2010-09-03</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Memristor+FAQ&rft.pub=Hewlett-Packard&rft_id=http%3A%2F%2Fwww.hpl.hp.com%2Fnews%2F2008%2Fapr-jun%2Fmemristor_faq.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Williams_-_Spectrum_2008-12-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-Williams_-_Spectrum_2008-12_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliams2008" class="citation journal cs1">Williams, R. S. (2008). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180326202533/http://personal.delen.polito.it/mario.biey/SupportiDidattici/rnl/memristor/spectrum08.pdf">"How We Found The Missing Memristor"</a> <span class="cs1-format">(PDF)</span>. <i>IEEE Spectrum</i>. <b>45</b> (12): <span class="nowrap">28–</span>35. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FMSPEC.2008.4687366">10.1109/MSPEC.2008.4687366</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:27319894">27319894</a>. Archived from <a rel="nofollow" class="external text" href="http://personal.delen.polito.it/mario.biey/SupportiDidattici/rnl/memristor/spectrum08.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2018-03-26<span class="reference-accessdate">. Retrieved <span class="nowrap">2018-03-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Spectrum&rft.atitle=How+We+Found+The+Missing+Memristor&rft.volume=45&rft.issue=12&rft.pages=%3Cspan+class%3D%22nowrap%22%3E28-%3C%2Fspan%3E35&rft.date=2008&rft_id=info%3Adoi%2F10.1109%2FMSPEC.2008.4687366&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A27319894%23id-name%3DS2CID&rft.aulast=Williams&rft.aufirst=R.+S.&rft_id=http%3A%2F%2Fpersonal.delen.polito.it%2Fmario.biey%2FSupportiDidattici%2Frnl%2Fmemristor%2Fspectrum08.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Memristor200yearsold-21"><span class="mw-cite-backlink">^ <a href="#cite_ref-Memristor200yearsold_21-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Memristor200yearsold_21-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClarke2012" class="citation cs2">Clarke, P. (2012-05-23), <a rel="nofollow" class="external text" href="http://www.eetimes.com/electronics-news/4373652/Academics-Memristor-is-200-years-old">"Memristor is 200 years old, say academics"</a>, <i><a href="/wiki/EE_Times" title="EE Times">EE Times</a></i><span class="reference-accessdate">, retrieved <span class="nowrap">2012-05-25</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=EE+Times&rft.atitle=Memristor+is+200+years+old%2C+say+academics&rft.date=2012-05-23&rft.aulast=Clarke&rft.aufirst=P.&rft_id=http%3A%2F%2Fwww.eetimes.com%2Felectronics-news%2F4373652%2FAcademics-Memristor-is-200-years-old&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Meuffels_2012-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-Meuffels_2012_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Meuffels_2012_22-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Meuffels_2012_22-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Meuffels_2012_22-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeuffelsSoni2012" class="citation arxiv cs1">Meuffels, P.; Soni, R. (2012). "Fundamental Issues and Problems in the Realization of Memristors". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1207.7319">1207.7319</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/cond-mat.mes-hall">cond-mat.mes-hall</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Fundamental+Issues+and+Problems+in+the+Realization+of+Memristors&rft.date=2012&rft_id=info%3Aarxiv%2F1207.7319&rft.aulast=Meuffels&rft.aufirst=P.&rft.au=Soni%2C+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-DiVentra_2013-23"><span class="mw-cite-backlink">^ <a href="#cite_ref-DiVentra_2013_23-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-DiVentra_2013_23-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-DiVentra_2013_23-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-DiVentra_2013_23-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-DiVentra_2013_23-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-DiVentra_2013_23-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-DiVentra_2013_23-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDi_VentraPershin2013" class="citation cs2">Di Ventra, M.; Pershin, Y. V. (2013), "On the physical properties of memristive, memcapacitive and meminductive systems", <i><a href="/wiki/Nanotechnology_(journal)" title="Nanotechnology (journal)">Nanotechnology</a></i>, <b>24</b> (25): 255201, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1302.7063">1302.7063</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013Nanot..24y5201D">2013Nanot..24y5201D</a>, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.745.8657">10.1.1.745.8657</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0957-4484%2F24%2F25%2F255201">10.1088/0957-4484/24/25/255201</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23708238">23708238</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14892809">14892809</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nanotechnology&rft.atitle=On+the+physical+properties+of+memristive%2C+memcapacitive+and+meminductive+systems&rft.volume=24&rft.issue=25&rft.pages=255201&rft.date=2013&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14892809%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2013Nanot..24y5201D&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.745.8657%23id-name%3DCiteSeerX&rft_id=info%3Apmid%2F23708238&rft_id=info%3Adoi%2F10.1088%2F0957-4484%2F24%2F25%2F255201&rft_id=info%3Aarxiv%2F1302.7063&rft.aulast=Di+Ventra&rft.aufirst=M.&rft.au=Pershin%2C+Y.+V.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Sundqvist_2017-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sundqvist_2017_24-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSundqvistFerryKish2017" class="citation journal cs1">Sundqvist, Kyle M.; Ferry, David K.; Kish, Laszlo B. (2017-11-21). "Memristor Equations: Incomplete Physics and Undefined Passivity/Activity". <i>Fluctuation and Noise Letters</i>. <b>16</b> (4): <span class="nowrap">1771001–</span>519. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1703.09064">1703.09064</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017FNL....1671001S">2017FNL....1671001S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS0219477517710018">10.1142/S0219477517710018</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1408810">1408810</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Fluctuation+and+Noise+Letters&rft.atitle=Memristor+Equations%3A+Incomplete+Physics+and+Undefined+Passivity%2FActivity&rft.volume=16&rft.issue=4&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1771001-%3C%2Fspan%3E519&rft.date=2017-11-21&rft_id=info%3Aarxiv%2F1703.09064&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1408810%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1142%2FS0219477517710018&rft_id=info%3Abibcode%2F2017FNL....1671001S&rft.aulast=Sundqvist&rft.aufirst=Kyle+M.&rft.au=Ferry%2C+David+K.&rft.au=Kish%2C+Laszlo+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbraham2018" class="citation journal cs1">Abraham, Isaac (2018-07-20). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054652">"The case for rejecting the memristor as a fundamental circuit element"</a>. <i>Scientific Reports</i>. <b>8</b> (1): 10972. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018NatSR...810972A">2018NatSR...810972A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41598-018-29394-7">10.1038/s41598-018-29394-7</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054652">6054652</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30030498">30030498</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scientific+Reports&rft.atitle=The+case+for+rejecting+the+memristor+as+a+fundamental+circuit+element&rft.volume=8&rft.issue=1&rft.pages=10972&rft.date=2018-07-20&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6054652%23id-name%3DPMC&rft_id=info%3Apmid%2F30030498&rft_id=info%3Adoi%2F10.1038%2Fs41598-018-29394-7&rft_id=info%3Abibcode%2F2018NatSR...810972A&rft.aulast=Abraham&rft.aufirst=Isaac&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6054652&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-memristor_nanobattery-26"><span class="mw-cite-backlink">^ <a href="#cite_ref-memristor_nanobattery_26-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-memristor_nanobattery_26-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-memristor_nanobattery_26-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-memristor_nanobattery_26-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-memristor_nanobattery_26-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFValov2013" class="citation cs2">Valov, I.; et al. (2013), "Nanobatteries in redox-based resistive switches require extension of memristor theory", <i><a href="/wiki/Nature_Communications" title="Nature Communications">Nature Communications</a></i>, <b>4</b> (4): 1771, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1303.2589">1303.2589</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013NatCo...4.1771V">2013NatCo...4.1771V</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncomms2784">10.1038/ncomms2784</a>, <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644102">3644102</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23612312">23612312</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=Nanobatteries+in+redox-based+resistive+switches+require+extension+of+memristor+theory&rft.volume=4&rft.issue=4&rft.pages=1771&rft.date=2013&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3644102%23id-name%3DPMC&rft_id=info%3Abibcode%2F2013NatCo...4.1771V&rft_id=info%3Aarxiv%2F1303.2589&rft_id=info%3Apmid%2F23612312&rft_id=info%3Adoi%2F10.1038%2Fncomms2784&rft.aulast=Valov&rft.aufirst=I.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarks2008" class="citation cs2">Marks, P. (2008-04-30), <a rel="nofollow" class="external text" href="https://www.newscientist.com/article/dn13812">"Engineers find 'missing link' of electronics"</a>, <i><a href="/wiki/New_Scientist" title="New Scientist">New Scientist</a></i><span class="reference-accessdate">, retrieved <span class="nowrap">2008-04-30</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=Engineers+find+%27missing+link%27+of+electronics&rft.date=2008-04-30&rft.aulast=Marks&rft.aufirst=P.&rft_id=https%3A%2F%2Fwww.newscientist.com%2Farticle%2Fdn13812&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZidanStrachanLu2018" class="citation journal cs1">Zidan, Mohammed A.; Strachan, John Paul; Lu, Wei D. (2018-01-08). "The future of electronics based on memristive systems". <i>Nature Electronics</i>. <b>1</b> (1): <span class="nowrap">22–</span>29. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41928-017-0006-8">10.1038/s41928-017-0006-8</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:187510377">187510377</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Electronics&rft.atitle=The+future+of+electronics+based+on+memristive+systems&rft.volume=1&rft.issue=1&rft.pages=%3Cspan+class%3D%22nowrap%22%3E22-%3C%2Fspan%3E29&rft.date=2018-01-08&rft_id=info%3Adoi%2F10.1038%2Fs41928-017-0006-8&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A187510377%23id-name%3DS2CID&rft.aulast=Zidan&rft.aufirst=Mohammed+A.&rft.au=Strachan%2C+John+Paul&rft.au=Lu%2C+Wei+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-memristor2018-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-memristor2018_29-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.theregister.co.uk/2013/11/01/hp_memristor_2018/"><i>HP 100TB Memristor drives by 2018 – if you're lucky, admits tech titan</i></a>, 2013-11-01</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=HP+100TB+Memristor+drives+by+2018+%E2%80%93+if+you%27re+lucky%2C+admits+tech+titan&rft.date=2013-11-01&rft_id=https%3A%2F%2Fwww.theregister.co.uk%2F2013%2F11%2F01%2Fhp_memristor_2018%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-HRLmemristor-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-HRLmemristor_30-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="http://www.hrl.com/hrlDocs/pressreleases/2012/prsRls_120323.html"><i>Artificial synapses could lead to advanced computer memory and machines that mimic biological brains</i></a>, <a href="/wiki/HRL_Laboratories" title="HRL Laboratories">HRL Laboratories</a>, 2012-03-23<span class="reference-accessdate">, retrieved <span class="nowrap">2012-03-30</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Artificial+synapses+could+lead+to+advanced+computer+memory+and+machines+that+mimic+biological+brains&rft.pub=HRL+Laboratories&rft.date=2012-03-23&rft_id=http%3A%2F%2Fwww.hrl.com%2FhrlDocs%2Fpressreleases%2F2012%2FprsRls_120323.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBush2008" class="citation cs2">Bush, S. (2008-05-02), <a rel="nofollow" class="external text" href="http://www.electronicsweekly.com/Articles/2008/05/02/43658/hp-nano-device-implements-memristor.htm">"HP nano device implements memristor"</a>, <i><a href="/wiki/Electronics_Weekly" title="Electronics Weekly">Electronics Weekly</a></i></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Electronics+Weekly&rft.atitle=HP+nano+device+implements+memristor&rft.date=2008-05-02&rft.aulast=Bush&rft.aufirst=S.&rft_id=http%3A%2F%2Fwww.electronicsweekly.com%2FArticles%2F2008%2F05%2F02%2F43658%2Fhp-nano-device-implements-memristor.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Kanellos-32"><span class="mw-cite-backlink">^ <a href="#cite_ref-Kanellos_32-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kanellos_32-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKanellos2008" class="citation cs2">Kanellos, M. (2008-04-30), <a rel="nofollow" class="external text" href="http://news.cnet.com/8301-10784_3-9932054-7.html">"HP makes memory from a once theoretical circuit"</a>, <i><a href="/wiki/CNET" title="CNET">CNET</a> News</i><span class="reference-accessdate">, retrieved <span class="nowrap">2008-04-30</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=CNET+News&rft.atitle=HP+makes+memory+from+a+once+theoretical+circuit&rft.date=2008-04-30&rft.aulast=Kanellos&rft.aufirst=M.&rft_id=http%3A%2F%2Fnews.cnet.com%2F8301-10784_3-9932054-7.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Mellor2011-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-Mellor2011_33-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMellor2011" class="citation cs2">Mellor, C. (2011-10-10), <a rel="nofollow" class="external text" href="https://www.theregister.co.uk/2011/10/10/memristor_in_18_months/">"HP and Hynix to produce the memristor goods by 2013"</a>, <i>The Register</i><span class="reference-accessdate">, retrieved <span class="nowrap">2012-03-07</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Register&rft.atitle=HP+and+Hynix+to+produce+the+memristor+goods+by+2013&rft.date=2011-10-10&rft.aulast=Mellor&rft.aufirst=C.&rft_id=https%3A%2F%2Fwww.theregister.co.uk%2F2011%2F10%2F10%2Fmemristor_in_18_months%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Courtland2011-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-Courtland2011_34-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCourtland2011" class="citation web cs1">Courtland, R. (2011-04-01). <a rel="nofollow" class="external text" href="https://spectrum.ieee.org/blood-memristor">"Memristors...Made of Blood?"</a>. <i><a href="/wiki/IEEE_Spectrum" title="IEEE Spectrum">IEEE Spectrum</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">2012-03-07</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=IEEE+Spectrum&rft.atitle=Memristors...Made+of+Blood%3F&rft.date=2011-04-01&rft.aulast=Courtland&rft.aufirst=R.&rft_id=https%3A%2F%2Fspectrum.ieee.org%2Fblood-memristor&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-G_K_Johnsen_et_al-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-G_K_Johnsen_et_al_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnsen2011" class="citation journal cs1">Johnsen, G. K. (2011-03-24). "Memristive model of electro-osmosis in skin". <i>Physical Review E</i>. <b>83</b> (3): 031916. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011PhRvE..83c1916J">2011PhRvE..83c1916J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevE.83.031916">10.1103/PhysRevE.83.031916</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21517534">21517534</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:46437206">46437206</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+E&rft.atitle=Memristive+model+of+electro-osmosis+in+skin&rft.volume=83&rft.issue=3&rft.pages=031916&rft.date=2011-03-24&rft_id=info%3Adoi%2F10.1103%2FPhysRevE.83.031916&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A46437206%23id-name%3DS2CID&rft_id=info%3Apmid%2F21517534&rft_id=info%3Abibcode%2F2011PhRvE..83c1916J&rft.aulast=Johnsen&rft.aufirst=G.+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-McAlpine2011-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-McAlpine2011_36-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcAlpine2011" class="citation cs2">McAlpine, K. (2011-03-02), <a rel="nofollow" class="external text" href="https://www.newscientist.com/article/mg20928024.500-sweat-ducts-make-skin-a-memristor.html">"Sweat ducts make skin a memristor"</a>, <i><a href="/wiki/New_Scientist" title="New Scientist">New Scientist</a></i>, <b>209</b> (2802): 16, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011NewSc.209...16M">2011NewSc.209...16M</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0262-4079%2811%2960481-8">10.1016/S0262-4079(11)60481-8</a><span class="reference-accessdate">, retrieved <span class="nowrap">2012-03-07</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=Sweat+ducts+make+skin+a+memristor&rft.volume=209&rft.issue=2802&rft.pages=16&rft.date=2011-03-02&rft_id=info%3Adoi%2F10.1016%2FS0262-4079%2811%2960481-8&rft_id=info%3Abibcode%2F2011NewSc.209...16M&rft.aulast=McAlpine&rft.aufirst=K.&rft_id=https%3A%2F%2Fwww.newscientist.com%2Farticle%2Fmg20928024.500-sweat-ducts-make-skin-a-memristor.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Clarke2012-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-Clarke2012_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Clarke2012_37-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClarke2012" class="citation cs2">Clarke, P. (2012-01-16), <a rel="nofollow" class="external text" href="http://www.eetimes.com/electronics-news/4234678/Memristor-brouhaha-bubbles-under">"Memristor brouhaha bubbles under"</a>, <i><a href="/wiki/EETimes" class="mw-redirect" title="EETimes">EETimes</a></i><span class="reference-accessdate">, retrieved <span class="nowrap">2012-03-02</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=EETimes&rft.atitle=Memristor+brouhaha+bubbles+under&rft.date=2012-01-16&rft.aulast=Clarke&rft.aufirst=P.&rft_id=http%3A%2F%2Fwww.eetimes.com%2Felectronics-news%2F4234678%2FMemristor-brouhaha-bubbles-under&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-PaulMarks2012-38"><span class="mw-cite-backlink">^ <a href="#cite_ref-PaulMarks2012_38-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-PaulMarks2012_38-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarks2012" class="citation cs2">Marks, P. (2012-02-23), <a rel="nofollow" class="external text" href="https://www.newscientist.com/article/mg21328535.200-online-spat-over-who-joins-memristor-club.html">"Online spat over who joins memristor club"</a>, <i><a href="/wiki/New_Scientist" title="New Scientist">New Scientist</a></i><span class="reference-accessdate">, retrieved <span class="nowrap">2012-03-19</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=Online+spat+over+who+joins+memristor+club&rft.date=2012-02-23&rft.aulast=Marks&rft.aufirst=P.&rft_id=https%3A%2F%2Fwww.newscientist.com%2Farticle%2Fmg21328535.200-online-spat-over-who-joins-memristor-club.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Meuffels_2011-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-Meuffels_2011_39-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeuffelsSchroeder2011" class="citation cs2">Meuffels, P.; Schroeder, H. (2011), "Comment on "Exponential ionic drift: fast switching and low volatility of thin-film memristors" by D. B. Strukov and R. S. Williams in Appl. Phys. A (2009) 94: 515–519", <i><a href="/wiki/Applied_Physics_A" title="Applied Physics A">Applied Physics A</a></i>, <b>105</b> (1): <span class="nowrap">65–</span>67, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011ApPhA.105...65M">2011ApPhA.105...65M</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00339-011-6578-7">10.1007/s00339-011-6578-7</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:95168959">95168959</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Applied+Physics+A&rft.atitle=Comment+on+%22Exponential+ionic+drift%3A+fast+switching+and+low+volatility+of+thin-film+memristors%22+by+D.+B.+Strukov+and+R.+S.+Williams+in+Appl.+Phys.+A+%282009%29+94%3A+515%E2%80%93519&rft.volume=105&rft.issue=1&rft.pages=%3Cspan+class%3D%22nowrap%22%3E65-%3C%2Fspan%3E67&rft.date=2011&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A95168959%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs00339-011-6578-7&rft_id=info%3Abibcode%2F2011ApPhA.105...65M&rft.aulast=Meuffels&rft.aufirst=P.&rft.au=Schroeder%2C+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Kish_2014-40"><span class="mw-cite-backlink">^ <a href="#cite_ref-Kish_2014_40-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kish_2014_40-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKishGranqvistKhatriWen2014" class="citation journal cs1">Kish, Laszlo B.; Granqvist, Claes G.; Khatri, Sunil P.; Wen, He (2014). "Demons: Maxwell's demon, Szilard's engine and Landauer's erasure–dissipation". <i>International Journal of Modern Physics: Conference Series</i>. <b>33</b>: 1460364. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1412.2166">1412.2166</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014IJMPS..3360364K">2014IJMPS..3360364K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2Fs2010194514603640">10.1142/s2010194514603640</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:44851287">44851287</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Modern+Physics%3A+Conference+Series&rft.atitle=Demons%3A+Maxwell%27s+demon%2C+Szilard%27s+engine+and+Landauer%27s+erasure%E2%80%93dissipation&rft.volume=33&rft.pages=1460364&rft.date=2014&rft_id=info%3Aarxiv%2F1412.2166&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A44851287%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1142%2Fs2010194514603640&rft_id=info%3Abibcode%2F2014IJMPS..3360364K&rft.aulast=Kish&rft.aufirst=Laszlo+B.&rft.au=Granqvist%2C+Claes+G.&rft.au=Khatri%2C+Sunil+P.&rft.au=Wen%2C+He&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Kish_2015-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kish_2015_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKishKhatriGranqvistSmulko2015" class="citation book cs1">Kish, L. B.; Khatri, S. P.; Granqvist, C. G.; Smulko, J. M. (2015). "Critical remarks on Landauer's principle of erasure-dissipation: Including notes on Maxwell demons and Szilard engines". <i>2015 International Conference on Noise and Fluctuations (ICNF)</i>. pp. <span class="nowrap">1–</span>4. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FICNF.2015.7288632">10.1109/ICNF.2015.7288632</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4673-8335-6" title="Special:BookSources/978-1-4673-8335-6"><bdi>978-1-4673-8335-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Critical+remarks+on+Landauer%27s+principle+of+erasure-dissipation%3A+Including+notes+on+Maxwell+demons+and+Szilard+engines&rft.btitle=2015+International+Conference+on+Noise+and+Fluctuations+%28ICNF%29&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E4&rft.date=2015&rft_id=info%3Adoi%2F10.1109%2FICNF.2015.7288632&rft.isbn=978-1-4673-8335-6&rft.aulast=Kish&rft.aufirst=L.+B.&rft.au=Khatri%2C+S.+P.&rft.au=Granqvist%2C+C.+G.&rft.au=Smulko%2C+J.+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Slipko_2013-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-Slipko_2013_42-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSlipkoPershinDi_Ventra2013" class="citation cs2">Slipko, V. A.; Pershin, Y. V.; Di Ventra, M. (2013), "Changing the state of a memristive system with white noise", <i><a href="/wiki/Physical_Review_E" title="Physical Review E">Physical Review E</a></i>, <b>87</b> (1): 042103, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1209.4103">1209.4103</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013PhRvE..87a2103L">2013PhRvE..87a2103L</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevE.87.012103">10.1103/PhysRevE.87.012103</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23410279">23410279</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2237458">2237458</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+E&rft.atitle=Changing+the+state+of+a+memristive+system+with+white+noise&rft.volume=87&rft.issue=1&rft.pages=042103&rft.date=2013&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2237458%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2013PhRvE..87a2103L&rft_id=info%3Aarxiv%2F1209.4103&rft_id=info%3Apmid%2F23410279&rft_id=info%3Adoi%2F10.1103%2FPhysRevE.87.012103&rft.aulast=Slipko&rft.aufirst=V.+A.&rft.au=Pershin%2C+Y.+V.&rft.au=Di+Ventra%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Mitre_2012-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-Mitre_2012_43-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHashemDas2012" class="citation cs2">Hashem, N.; Das, S. (2012), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150924045230/http://www.mitre.org/sites/default/files/pdf/11_3987.pdf">"Switching-time analysis of binary-oxide memristors via a non-linear model"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/Applied_Physics_Letters" title="Applied Physics Letters">Applied Physics Letters</a></i>, <b>100</b> (26): 262106, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012ApPhL.100z2106H">2012ApPhL.100z2106H</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.4726421">10.1063/1.4726421</a>, archived from <a rel="nofollow" class="external text" href="http://www.mitre.org/sites/default/files/pdf/11_3987.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2015-09-24<span class="reference-accessdate">, retrieved <span class="nowrap">2012-08-09</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Applied+Physics+Letters&rft.atitle=Switching-time+analysis+of+binary-oxide+memristors+via+a+non-linear+model&rft.volume=100&rft.issue=26&rft.pages=262106&rft.date=2012&rft_id=info%3Adoi%2F10.1063%2F1.4726421&rft_id=info%3Abibcode%2F2012ApPhL.100z2106H&rft.aulast=Hashem&rft.aufirst=N.&rft.au=Das%2C+S.&rft_id=http%3A%2F%2Fwww.mitre.org%2Fsites%2Fdefault%2Ffiles%2Fpdf%2F11_3987.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-E._Linn_et_al-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-E._Linn_et_al_44-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLinnSiemonWaserMenzel2014" class="citation journal cs1">Linn, E.; Siemon, A.; <a href="/wiki/Rainer_Waser" title="Rainer Waser">Waser, R.</a>; Menzel, S. (2014-03-23). "Applicability of Well-Established Memristive Models for Simulations of Resistive Switching Devices". <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i>. <b>61</b> (8): <span class="nowrap">2402–</span>2410. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1403.5801">1403.5801</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014arXiv1403.5801L">2014arXiv1403.5801L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTCSI.2014.2332261">10.1109/TCSI.2014.2332261</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18673562">18673562</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Circuits+and+Systems+I%3A+Regular+Papers&rft.atitle=Applicability+of+Well-Established+Memristive+Models+for+Simulations+of+Resistive+Switching+Devices&rft.volume=61&rft.issue=8&rft.pages=%3Cspan+class%3D%22nowrap%22%3E2402-%3C%2Fspan%3E2410&rft.date=2014-03-23&rft_id=info%3Aarxiv%2F1403.5801&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18673562%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1109%2FTCSI.2014.2332261&rft_id=info%3Abibcode%2F2014arXiv1403.5801L&rft.aulast=Linn&rft.aufirst=E.&rft.au=Siemon%2C+A.&rft.au=Waser%2C+R.&rft.au=Menzel%2C+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Martin_Reynolds-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-Martin_Reynolds_45-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGarling2012" class="citation cs2">Garling, C. (2012-07-25), <a rel="nofollow" class="external text" href="https://www.wired.com/wiredenterprise/2012/07/memristors/">"Wonks question HP's claim to computer-memory missing link"</a>, <i>Wired.com</i><span class="reference-accessdate">, retrieved <span class="nowrap">2012-09-23</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Wired.com&rft.atitle=Wonks+question+HP%27s+claim+to+computer-memory+missing+link&rft.date=2012-07-25&rft.aulast=Garling&rft.aufirst=C.&rft_id=https%3A%2F%2Fwww.wired.com%2Fwiredenterprise%2F2012%2F07%2Fmemristors%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-MemristorExperimentalTests-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-MemristorExperimentalTests_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChua2012" class="citation cs2">Chua, L. (2012-06-13), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140308025032/http://sti.epfl.ch/files/content/sites/sti/files/shared/sel/pdf/Abstract_Prof_Chua.pdf"><i>Memristors: Past, Present and future</i></a> <span class="cs1-format">(PDF)</span>, archived from <a rel="nofollow" class="external text" href="http://sti.epfl.ch/files/content/sites/sti/files/shared/sel/pdf/Abstract_Prof_Chua.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2014-03-08<span class="reference-accessdate">, retrieved <span class="nowrap">2013-01-12</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Memristors%3A+Past%2C+Present+and+future&rft.date=2012-06-13&rft.aulast=Chua&rft.aufirst=L.&rft_id=http%3A%2F%2Fsti.epfl.ch%2Ffiles%2Fcontent%2Fsites%2Fsti%2Ffiles%2Fshared%2Fsel%2Fpdf%2FAbstract_Prof_Chua.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-MemristorExperimentalTests2-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-MemristorExperimentalTests2_47-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAdhikariSahHyongsukChua2013" class="citation cs2">Adhikari, S. P.; Sah, M. P.; Hyongsuk, K.; Chua, L. O. (2013), "Three Fingerprints of Memristor", <i><a href="/wiki/IEEE_Transactions_on_Circuits_and_Systems_I" class="mw-redirect" title="IEEE Transactions on Circuits and Systems I">IEEE Transactions on Circuits and Systems I</a></i>, <b>60</b> (11): <span class="nowrap">3008–</span>3021, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTCSI.2013.2256171">10.1109/TCSI.2013.2256171</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:12665998">12665998</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Circuits+and+Systems+I&rft.atitle=Three+Fingerprints+of+Memristor&rft.volume=60&rft.issue=11&rft.pages=%3Cspan+class%3D%22nowrap%22%3E3008-%3C%2Fspan%3E3021&rft.date=2013&rft_id=info%3Adoi%2F10.1109%2FTCSI.2013.2256171&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A12665998%23id-name%3DS2CID&rft.aulast=Adhikari&rft.aufirst=S.+P.&rft.au=Sah%2C+M.+P.&rft.au=Hyongsuk%2C+K.&rft.au=Chua%2C+L.+O.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-DiVentraPershin2011-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-DiVentraPershin2011_48-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPershinDi_Ventra2011" class="citation cs2">Pershin, Y. V.; Di Ventra, M. (2011), "Memory effects in complex materials and nanoscale systems", <i><a href="/wiki/Advances_in_Physics" title="Advances in Physics">Advances in Physics</a></i>, <b>60</b> (2): <span class="nowrap">145–</span>227, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1011.3053">1011.3053</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011AdPhy..60..145P">2011AdPhy..60..145P</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00018732.2010.544961">10.1080/00018732.2010.544961</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119098973">119098973</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advances+in+Physics&rft.atitle=Memory+effects+in+complex+materials+and+nanoscale+systems&rft.volume=60&rft.issue=2&rft.pages=%3Cspan+class%3D%22nowrap%22%3E145-%3C%2Fspan%3E227&rft.date=2011&rft_id=info%3Aarxiv%2F1011.3053&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119098973%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1080%2F00018732.2010.544961&rft_id=info%3Abibcode%2F2011AdPhy..60..145P&rft.aulast=Pershin&rft.aufirst=Y.+V.&rft.au=Di+Ventra%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Biolek2011-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-Biolek2011_49-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBiolekBiolekBiolkova2011" class="citation cs2">Biolek, D.; Biolek, Z.; Biolkova, V. (2011), "Pinched hysteresis loops of ideal memristors, memcapacitors and meminductors must be 'self-crossing'<span class="cs1-kern-right"></span>", <i><a href="/wiki/Electronics_Letters" title="Electronics Letters">Electronics Letters</a></i>, <b>47</b> (25): <span class="nowrap">1385–</span>1387, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011ElL....47.1385B">2011ElL....47.1385B</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1049%2Fel.2011.2913">10.1049/el.2011.2913</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Electronics+Letters&rft.atitle=Pinched+hysteresis+loops+of+ideal+memristors%2C+memcapacitors+and+meminductors+must+be+%27self-crossing%27&rft.volume=47&rft.issue=25&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1385-%3C%2Fspan%3E1387&rft.date=2011&rft_id=info%3Adoi%2F10.1049%2Fel.2011.2913&rft_id=info%3Abibcode%2F2011ElL....47.1385B&rft.aulast=Biolek&rft.aufirst=D.&rft.au=Biolek%2C+Z.&rft.au=Biolkova%2C+V.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaravelli2017" class="citation journal cs1">Caravelli; et al. (2017). "The complex dynamics of memristive circuits: analytical results and universal slow relaxation". <i>Physical Review E</i>. <b>95</b> (2): 022140. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1608.08651">1608.08651</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017PhRvE..95b2140C">2017PhRvE..95b2140C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevE.95.022140">10.1103/PhysRevE.95.022140</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28297937">28297937</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6758362">6758362</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+E&rft.atitle=The+complex+dynamics+of+memristive+circuits%3A+analytical+results+and+universal+slow+relaxation&rft.volume=95&rft.issue=2&rft.pages=022140&rft.date=2017&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6758362%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2017PhRvE..95b2140C&rft_id=info%3Aarxiv%2F1608.08651&rft_id=info%3Apmid%2F28297937&rft_id=info%3Adoi%2F10.1103%2FPhysRevE.95.022140&rft.au=Caravelli&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaravelli2021" class="citation journal cs1">Caravelli; et al. (2021). "Global minimization via classical tunnelling assisted by collective force field formation". <i>Science Advances</i>. <b>7</b> (52): 022140. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1608.08651">1608.08651</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021SciA....7.1542C">2021SciA....7.1542C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fsciadv.abh1542">10.1126/sciadv.abh1542</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28297937">28297937</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:231847346">231847346</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science+Advances&rft.atitle=Global+minimization+via+classical+tunnelling+assisted+by+collective+force+field+formation&rft.volume=7&rft.issue=52&rft.pages=022140&rft.date=2021&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A231847346%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2021SciA....7.1542C&rft_id=info%3Aarxiv%2F1608.08651&rft_id=info%3Apmid%2F28297937&rft_id=info%3Adoi%2F10.1126%2Fsciadv.abh1542&rft.au=Caravelli&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-memresistor-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-memresistor_52-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMouttet2012" class="citation arxiv cs1">Mouttet, B. (2012). "Memresistors and non-memristive zero-crossing hysteresis curves". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1201.2626">1201.2626</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/cond-mat.mes-hall">cond-mat.mes-hall</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Memresistors+and+non-memristive+zero-crossing+hysteresis+curves&rft.date=2012&rft_id=info%3Aarxiv%2F1201.2626&rft.aulast=Mouttet&rft.aufirst=B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFildes2007" class="citation cs2">Fildes, J. (2007-11-13), <a rel="nofollow" class="external text" href="http://news.bbc.co.uk/2/hi/technology/7080772.stm"><i>Getting More from Moore's Law</i></a>, <a href="/wiki/BBC_News" title="BBC News">BBC News</a><span class="reference-accessdate">, retrieved <span class="nowrap">2008-04-30</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Getting+More+from+Moore%27s+Law&rft.pub=BBC+News&rft.date=2007-11-13&rft.aulast=Fildes&rft.aufirst=J.&rft_id=http%3A%2F%2Fnews.bbc.co.uk%2F2%2Fhi%2Ftechnology%2F7080772.stm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaylor2007" class="citation cs2">Taylor, A. G. (2007), <a rel="nofollow" class="external text" href="http://www.ieee-or.org/beeep/2007/sep/beeep_sep07.pdf">"Nanotechnology in the Northwest"</a> <span class="cs1-format">(PDF)</span>, <i>Bulletin for Electrical and Electronic Engineers of Oregon</i>, <b>51</b> (1): 1</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+for+Electrical+and+Electronic+Engineers+of+Oregon&rft.atitle=Nanotechnology+in+the+Northwest&rft.volume=51&rft.issue=1&rft.pages=1&rft.date=2007&rft.aulast=Taylor&rft.aufirst=A.+G.&rft_id=http%3A%2F%2Fwww.ieee-or.org%2Fbeeep%2F2007%2Fsep%2Fbeeep_sep07.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110719014357/http://www.hpl.hp.com/people/stan_williams/"><i>Stanley Williams</i></a>, <a href="/wiki/Hewlett-Packard" title="Hewlett-Packard">HP Labs</a>, archived from <a rel="nofollow" class="external text" href="http://www.hpl.hp.com/people/stan_williams/">the original</a> on 2011-07-19<span class="reference-accessdate">, retrieved <span class="nowrap">2011-03-20</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Stanley+Williams&rft.pub=HP+Labs&rft_id=http%3A%2F%2Fwww.hpl.hp.com%2Fpeople%2Fstan_williams%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Argall1968-56"><span class="mw-cite-backlink">^ <a href="#cite_ref-Argall1968_56-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Argall1968_56-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArgall1968" class="citation cs2">Argall, F. (1968), "Switching Phenomena in Titanium Oxide Thin Films", <i><a href="/w/index.php?title=Solid-State_Electronics&action=edit&redlink=1" class="new" title="Solid-State Electronics (page does not exist)">Solid-State Electronics</a></i>, <b>11</b> (5): <span class="nowrap">535–</span>541, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1968SSEle..11..535A">1968SSEle..11..535A</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0038-1101%2868%2990092-0">10.1016/0038-1101(68)90092-0</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Solid-State+Electronics&rft.atitle=Switching+Phenomena+in+Titanium+Oxide+Thin+Films&rft.volume=11&rft.issue=5&rft.pages=%3Cspan+class%3D%22nowrap%22%3E535-%3C%2Fspan%3E541&rft.date=1968&rft_id=info%3Adoi%2F10.1016%2F0038-1101%2868%2990092-0&rft_id=info%3Abibcode%2F1968SSEle..11..535A&rft.aulast=Argall&rft.aufirst=F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Terabe2007-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-Terabe2007_57-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTerabeHasegawaLiangAono2007" class="citation cs2">Terabe, K.; Hasegawa, T.; Liang, C.; Aono, M. (2007), "Control of local ion transport to create unique functional nanodevices based on ionic conductors", <i><a href="/wiki/Science_and_Technology_of_Advanced_Materials" title="Science and Technology of Advanced Materials">Science and Technology of Advanced Materials</a></i>, <b>8</b> (6): <span class="nowrap">536–</span>542, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007STAdM...8..536T">2007STAdM...8..536T</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.stam.2007.08.002">10.1016/j.stam.2007.08.002</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science+and+Technology+of+Advanced+Materials&rft.atitle=Control+of+local+ion+transport+to+create+unique+functional+nanodevices+based+on+ionic+conductors&rft.volume=8&rft.issue=6&rft.pages=%3Cspan+class%3D%22nowrap%22%3E536-%3C%2Fspan%3E542&rft.date=2007&rft_id=info%3Adoi%2F10.1016%2Fj.stam.2007.08.002&rft_id=info%3Abibcode%2F2007STAdM...8..536T&rft.aulast=Terabe&rft.aufirst=K.&rft.au=Hasegawa%2C+T.&rft.au=Liang%2C+C.&rft.au=Aono%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Beck2000-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-Beck2000_58-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeck2000" class="citation cs2">Beck, A.; et al. (2000), "Reproducible switching effect in thin oxide films for memory applications", <i><a href="/wiki/Applied_Physics_Letters" title="Applied Physics Letters">Applied Physics Letters</a></i>, <b>77</b> (1): 139, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000ApPhL..77..139B">2000ApPhL..77..139B</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.126902">10.1063/1.126902</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Applied+Physics+Letters&rft.atitle=Reproducible+switching+effect+in+thin+oxide+films+for+memory+applications&rft.volume=77&rft.issue=1&rft.pages=139&rft.date=2000&rft_id=info%3Adoi%2F10.1063%2F1.126902&rft_id=info%3Abibcode%2F2000ApPhL..77..139B&rft.aulast=Beck&rft.aufirst=A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text">Stefanovich, Genrikh; Cho, Choong-rae; Yoo, In-kyeong; Lee, Eun-hong; Cho, Sung-il; Moon, Chang-wook (2006) "Electrode structure having at least two oxide layers and non-volatile memory device having the same" <span><a rel="nofollow" class="external text" href="https://patents.google.com/patent/US7417271">U.S. patent 7,417,271</a></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=bKGhvKyjgLY"><i>Finding the Missing Memristor - R. Stanley Williams</i></a>, 2010-01-21</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Finding+the+Missing+Memristor+-+R.+Stanley+Williams&rft.date=2010-01-21&rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbKGhvKyjgLY&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarkoff2010" class="citation cs2">Markoff, J. (2010-04-07), <a rel="nofollow" class="external text" href="https://www.nytimes.com/2010/04/08/science/08chips.html?hpw">"H.P. Sees a Revolution in Memory Chip"</a>, <i><a href="/wiki/New_York_Times" class="mw-redirect" title="New York Times">New York Times</a></i></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+York+Times&rft.atitle=H.P.+Sees+a+Revolution+in+Memory+Chip&rft.date=2010-04-07&rft.aulast=Markoff&rft.aufirst=J.&rft_id=https%3A%2F%2Fwww.nytimes.com%2F2010%2F04%2F08%2Fscience%2F08chips.html%3Fhpw&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaveheiIqbalKimEshraghian2010" class="citation journal cs1">Kavehei, O.; Iqbal, A.; Kim, Y.S.; Eshraghian, K.; Al-Sarawi, S. F.; Abbott, D. (2010). "The fourth element: characteristics, modelling and electromagnetic theory of the memristor". <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i>. <b>466</b> (2120): <span class="nowrap">2175–</span>2202. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1002.3210">1002.3210</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010RSPSA.466.2175K">2010RSPSA.466.2175K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.2009.0553">10.1098/rspa.2009.0553</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7625839">7625839</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+A%3A+Mathematical%2C+Physical+and+Engineering+Sciences&rft.atitle=The+fourth+element%3A+characteristics%2C+modelling+and+electromagnetic+theory+of+the+memristor&rft.volume=466&rft.issue=2120&rft.pages=%3Cspan+class%3D%22nowrap%22%3E2175-%3C%2Fspan%3E2202&rft.date=2010&rft_id=info%3Aarxiv%2F1002.3210&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7625839%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1098%2Frspa.2009.0553&rft_id=info%3Abibcode%2F2010RSPSA.466.2175K&rft.aulast=Kavehei&rft.aufirst=O.&rft.au=Iqbal%2C+A.&rft.au=Kim%2C+Y.S.&rft.au=Eshraghian%2C+K.&rft.au=Al-Sarawi%2C+S.+F.&rft.au=Abbott%2C+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBen-JamaaCarraraGeorgiouArchontas2009" class="citation cs2">Ben-Jamaa, M. H.; Carrara, S.; Georgiou, J.; Archontas, N.; De Micheli, G. (2009), "Fabrication of memristors with poly-crystalline silicon nanowires", <i>Proceedings of 9th IEEE Conference on Nanotechnology</i>, <b>1</b> (1): <span class="nowrap">152–</span>154</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+9th+IEEE+Conference+on+Nanotechnology&rft.atitle=Fabrication+of+memristors+with+poly-crystalline+silicon+nanowires&rft.volume=1&rft.issue=1&rft.pages=%3Cspan+class%3D%22nowrap%22%3E152-%3C%2Fspan%3E154&rft.date=2009&rft.aulast=Ben-Jamaa&rft.aufirst=M.+H.&rft.au=Carrara%2C+S.&rft.au=Georgiou%2C+J.&rft.au=Archontas%2C+N.&rft.au=De+Micheli%2C+G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMehonicCueffWojdakKenyon2012" class="citation journal cs1">Mehonic, A.; Cueff, S.; Wojdak, M., …; Kenyon, A. J. (2012). <a rel="nofollow" class="external text" href="https://hal.archives-ouvertes.fr/hal-01148232v2/file/Memristor%20manuscript%20_%20JAP_FINAL.pdf">"Resistive switching in silicon suboxide films"</a> <span class="cs1-format">(PDF)</span>. <i>Journal of Applied Physics</i>. <b>111</b> (7): 074507–074507–9. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012JAP...111g4507M">2012JAP...111g4507M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.3701581">10.1063/1.3701581</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Applied+Physics&rft.atitle=Resistive+switching+in+silicon+suboxide+films&rft.volume=111&rft.issue=7&rft.pages=074507-074507-9&rft.date=2012&rft_id=info%3Adoi%2F10.1063%2F1.3701581&rft_id=info%3Abibcode%2F2012JAP...111g4507M&rft.aulast=Mehonic&rft.aufirst=A.&rft.au=Cueff%2C+S.&rft.au=Wojdak%2C+M.%2C+%E2%80%A6&rft.au=Kenyon%2C+A.+J.&rft_id=https%3A%2F%2Fhal.archives-ouvertes.fr%2Fhal-01148232v2%2Ffile%2FMemristor%2520manuscript%2520_%2520JAP_FINAL.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKriegerSpitzer2004" class="citation cs2">Krieger, J. H.; Spitzer, S. M. (2004), "Non-traditional, Non-volatile Memory Based on Switching and Retention Phenomena in Polymeric Thin Films", <i>Proceedings of the 2004 Non-Volatile Memory Technology Symposium</i>, <a href="/wiki/IEEE" class="mw-redirect" title="IEEE">IEEE</a>, p. 121, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FNVMT.2004.1380823">10.1109/NVMT.2004.1380823</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7803-8726-3" title="Special:BookSources/978-0-7803-8726-3"><bdi>978-0-7803-8726-3</bdi></a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7189710">7189710</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Non-traditional%2C+Non-volatile+Memory+Based+on+Switching+and+Retention+Phenomena+in+Polymeric+Thin+Films&rft.btitle=Proceedings+of+the+2004+Non-Volatile+Memory+Technology+Symposium&rft.pages=121&rft.pub=IEEE&rft.date=2004&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7189710%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1109%2FNVMT.2004.1380823&rft.isbn=978-0-7803-8726-3&rft.aulast=Krieger&rft.aufirst=J.+H.&rft.au=Spitzer%2C+S.+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Erokhin2008-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-Erokhin2008_66-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFErokhinFontana2008" class="citation arxiv cs1">Erokhin, V.; Fontana, M. P. (2008). "Electrochemically controlled polymeric device: A memristor (and more) found two years ago". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0807.0333">0807.0333</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/cond-mat.soft">cond-mat.soft</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Electrochemically+controlled+polymeric+device%3A+A+memristor+%28and+more%29+found+two+years+ago&rft.date=2008&rft_id=info%3Aarxiv%2F0807.0333&rft.aulast=Erokhin&rft.aufirst=V.&rft.au=Fontana%2C+M.+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnAlibartPleutinGuerin2010" class="citation journal cs1">An; Alibart, F.; Pleutin, S.; Guerin, D.; Novembre, C.; Lenfant, S.; Lmimouni, K.; Gamrat, C.; Vuillaume, D. (2010). "An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse". <i>Advanced Functional Materials</i>. <b>20</b> (2): <span class="nowrap">330–</span>337. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0907.2540">0907.2540</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadfm.200901335">10.1002/adfm.200901335</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16335153">16335153</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advanced+Functional+Materials&rft.atitle=An+Organic+Nanoparticle+Transistor+Behaving+as+a+Biological+Spiking+Synapse&rft.volume=20&rft.issue=2&rft.pages=%3Cspan+class%3D%22nowrap%22%3E330-%3C%2Fspan%3E337&rft.date=2010&rft_id=info%3Aarxiv%2F0907.2540&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16335153%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1002%2Fadfm.200901335&rft.au=An&rft.au=Alibart%2C+F.&rft.au=Pleutin%2C+S.&rft.au=Guerin%2C+D.&rft.au=Novembre%2C+C.&rft.au=Lenfant%2C+S.&rft.au=Lmimouni%2C+K.&rft.au=Gamrat%2C+C.&rft.au=Vuillaume%2C+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlibartPleutinBichlerGamrat2012" class="citation journal cs1">Alibart, F.; Pleutin, S.; Bichler, O.; Gamrat, C.; Serrano-Gotarredona, T.; Linares-Barranco, B.; Vuillaume, D. (2012). "A Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired Computing". <i>Advanced Functional Materials</i>. <b>22</b> (3): <span class="nowrap">609–</span>616. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1112.3138">1112.3138</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadfm.201101935">10.1002/adfm.201101935</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/10261%2F83537">10261/83537</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18687826">18687826</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advanced+Functional+Materials&rft.atitle=A+Memristive+Nanoparticle%2FOrganic+Hybrid+Synapstor+for+Neuroinspired+Computing&rft.volume=22&rft.issue=3&rft.pages=%3Cspan+class%3D%22nowrap%22%3E609-%3C%2Fspan%3E616&rft.date=2012&rft_id=info%3Aarxiv%2F1112.3138&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18687826%23id-name%3DS2CID&rft_id=info%3Ahdl%2F10261%2F83537&rft_id=info%3Adoi%2F10.1002%2Fadfm.201101935&rft.aulast=Alibart&rft.aufirst=F.&rft.au=Pleutin%2C+S.&rft.au=Bichler%2C+O.&rft.au=Gamrat%2C+C.&rft.au=Serrano-Gotarredona%2C+T.&rft.au=Linares-Barranco%2C+B.&rft.au=Vuillaume%2C+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPavlov'sTransistorsBichlerZhao2013" class="citation journal cs1">Pavlov's; Transistors, Organic; Bichler, O.; Zhao, W.; Alibart, F.; Pleutin, S.; Lenfant, S.; Vuillaume, D.; Gamrat, C. (2013). "Pavlov's Dog Associative Learning Demonstrated on Synaptic-Like Organic Transistors". <i>Neural Computation</i>. <b>25</b> (2): <span class="nowrap">549–</span>566. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1302.3261">1302.3261</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013arXiv1302.3261B">2013arXiv1302.3261B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1162%2FNECO_a_00377">10.1162/NECO_a_00377</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22970878">22970878</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16972302">16972302</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Neural+Computation&rft.atitle=Pavlov%27s+Dog+Associative+Learning+Demonstrated+on+Synaptic-Like+Organic+Transistors&rft.volume=25&rft.issue=2&rft.pages=%3Cspan+class%3D%22nowrap%22%3E549-%3C%2Fspan%3E566&rft.date=2013&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16972302%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2013arXiv1302.3261B&rft_id=info%3Aarxiv%2F1302.3261&rft_id=info%3Apmid%2F22970878&rft_id=info%3Adoi%2F10.1162%2FNECO_a_00377&rft.au=Pavlov%27s&rft.au=Transistors%2C+Organic&rft.au=Bichler%2C+O.&rft.au=Zhao%2C+W.&rft.au=Alibart%2C+F.&rft.au=Pleutin%2C+S.&rft.au=Lenfant%2C+S.&rft.au=Vuillaume%2C+D.&rft.au=Gamrat%2C+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCrupiPradhanTozer2012" class="citation cs2">Crupi, M.; Pradhan, L.; Tozer, S. (2012), <a rel="nofollow" class="external text" href="http://www.ieee.ca/canrev/cr68/IEEECanadianReview_no68.pdf">"Modelling Neural Plasticity with Memristors"</a> <span class="cs1-format">(PDF)</span>, <i>IEEE Canadian Review</i>, <b>68</b>: <span class="nowrap">10–</span>14</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Canadian+Review&rft.atitle=Modelling+Neural+Plasticity+with+Memristors&rft.volume=68&rft.pages=%3Cspan+class%3D%22nowrap%22%3E10-%3C%2Fspan%3E14&rft.date=2012&rft.aulast=Crupi&rft.aufirst=M.&rft.au=Pradhan%2C+L.&rft.au=Tozer%2C+S.&rft_id=http%3A%2F%2Fwww.ieee.ca%2Fcanrev%2Fcr68%2FIEEECanadianReview_no68.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFErokhinBerzinaGorshkovCamorani2012" class="citation journal cs1">Erokhin, V.; Berzina, T.; Gorshkov, K.; Camorani, P.; Pucci, A.; Ricci, L.; Ruggeri, G.; Signala, R.; Schüz, A. (2012). "Stochastic hybrid 3D matrix: learning and adaptation of electrical properties". <i>Journal of Materials Chemistry</i>. <b>22</b> (43): 22881. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC2JM35064E">10.1039/C2JM35064E</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Materials+Chemistry&rft.atitle=Stochastic+hybrid+3D+matrix%3A+learning+and+adaptation+of+electrical+properties&rft.volume=22&rft.issue=43&rft.pages=22881&rft.date=2012&rft_id=info%3Adoi%2F10.1039%2FC2JM35064E&rft.aulast=Erokhin&rft.aufirst=V.&rft.au=Berzina%2C+T.&rft.au=Gorshkov%2C+K.&rft.au=Camorani%2C+P.&rft.au=Pucci%2C+A.&rft.au=Ricci%2C+L.&rft.au=Ruggeri%2C+G.&rft.au=Signala%2C+R.&rft.au=Sch%C3%BCz%2C+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-flexible_memristor-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-flexible_memristor_72-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBessonov2014" class="citation cs2">Bessonov, A. A.; et al. (2014), "Layered memristive and memcapacitive switches for printable electronics", <i><a href="/wiki/Nature_Materials" title="Nature Materials">Nature Materials</a></i>, <b>14</b> (2): <span class="nowrap">199–</span>204, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015NatMa..14..199B">2015NatMa..14..199B</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnmat4135">10.1038/nmat4135</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25384168">25384168</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Materials&rft.atitle=Layered+memristive+and+memcapacitive+switches+for+printable+electronics&rft.volume=14&rft.issue=2&rft.pages=%3Cspan+class%3D%22nowrap%22%3E199-%3C%2Fspan%3E204&rft.date=2014&rft_id=info%3Apmid%2F25384168&rft_id=info%3Adoi%2F10.1038%2Fnmat4135&rft_id=info%3Abibcode%2F2015NatMa..14..199B&rft.aulast=Bessonov&rft.aufirst=A.+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeWuKimShi2017" class="citation journal cs1">Ge, Ruijing; Wu, Xiaohan; Kim, Myungsoo; Shi, Jianping; Sonde, Sushant; Tao, Li; Zhang, Yanfeng; Lee, Jack C.; Akinwande, Deji (2017-12-19). <a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.nanolett.7b04342">"Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides"</a>. <i>Nano Letters</i>. <b>18</b> (1): <span class="nowrap">434–</span>441. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018NanoL..18..434G">2018NanoL..18..434G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.nanolett.7b04342">10.1021/acs.nanolett.7b04342</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29236504">29236504</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nano+Letters&rft.atitle=Atomristor%3A+Nonvolatile+Resistance+Switching+in+Atomic+Sheets+of+Transition+Metal+Dichalcogenides&rft.volume=18&rft.issue=1&rft.pages=%3Cspan+class%3D%22nowrap%22%3E434-%3C%2Fspan%3E441&rft.date=2017-12-19&rft_id=info%3Apmid%2F29236504&rft_id=info%3Adoi%2F10.1021%2Facs.nanolett.7b04342&rft_id=info%3Abibcode%2F2018NanoL..18..434G&rft.aulast=Ge&rft.aufirst=Ruijing&rft.au=Wu%2C+Xiaohan&rft.au=Kim%2C+Myungsoo&rft.au=Shi%2C+Jianping&rft.au=Sonde%2C+Sushant&rft.au=Tao%2C+Li&rft.au=Zhang%2C+Yanfeng&rft.au=Lee%2C+Jack+C.&rft.au=Akinwande%2C+Deji&rft_id=https%3A%2F%2Fdoi.org%2F10.1021%252Facs.nanolett.7b04342&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWuGeChenChou2019" class="citation journal cs1">Wu, Xiaohan; Ge, Ruijing; Chen, Po-An; Chou, Harry; Zhang, Zhepeng; Zhang, Yanfeng; Banerjee, Sanjay; Chiang, Meng-Hsueh; Lee, Jack C.; Akinwande, Deji (April 2019). "Thinnest Nonvolatile Memory Based on Monolayer h-BN". <i>Advanced Materials</i>. <b>31</b> (15): 1806790. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019AdM....3106790W">2019AdM....3106790W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.201806790">10.1002/adma.201806790</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30773734">30773734</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:73505661">73505661</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advanced+Materials&rft.atitle=Thinnest+Nonvolatile+Memory+Based+on+Monolayer+h-BN&rft.volume=31&rft.issue=15&rft.pages=1806790&rft.date=2019-04&rft_id=info%3Adoi%2F10.1002%2Fadma.201806790&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A73505661%23id-name%3DS2CID&rft_id=info%3Apmid%2F30773734&rft_id=info%3Abibcode%2F2019AdM....3106790W&rft.aulast=Wu&rft.aufirst=Xiaohan&rft.au=Ge%2C+Ruijing&rft.au=Chen%2C+Po-An&rft.au=Chou%2C+Harry&rft.au=Zhang%2C+Zhepeng&rft.au=Zhang%2C+Yanfeng&rft.au=Banerjee%2C+Sanjay&rft.au=Chiang%2C+Meng-Hsueh&rft.au=Lee%2C+Jack+C.&rft.au=Akinwande%2C+Deji&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKimGeWuLan2018" class="citation journal cs1">Kim, Myungsoo; Ge, Ruijing; Wu, Xiaohan; Lan, Xing; Tice, Jesse; Lee, Jack C.; Akinwande, Deji (2018). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023925">"Zero-static power radio-frequency switches based on MoS<sub>2</sub> atomristors"</a>. <i>Nature Communications</i>. <b>9</b> (1): 2524. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018NatCo...9.2524K">2018NatCo...9.2524K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41467-018-04934-x">10.1038/s41467-018-04934-x</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023925">6023925</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29955064">29955064</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=Zero-static+power+radio-frequency+switches+based+on+MoS%3Csub%3E2%3C%2Fsub%3E+atomristors&rft.volume=9&rft.issue=1&rft.pages=2524&rft.date=2018&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6023925%23id-name%3DPMC&rft_id=info%3Apmid%2F29955064&rft_id=info%3Adoi%2F10.1038%2Fs41467-018-04934-x&rft_id=info%3Abibcode%2F2018NatCo...9.2524K&rft.aulast=Kim&rft.aufirst=Myungsoo&rft.au=Ge%2C+Ruijing&rft.au=Wu%2C+Xiaohan&rft.au=Lan%2C+Xing&rft.au=Tice%2C+Jesse&rft.au=Lee%2C+Jack+C.&rft.au=Akinwande%2C+Deji&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6023925&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1">"Towards zero-power 6G communication switches using atomic sheets". <i>Nature Electronics</i>. <b>5</b> (6): <span class="nowrap">331–</span>332. June 2022. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41928-022-00767-1">10.1038/s41928-022-00767-1</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:249221166">249221166</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Electronics&rft.atitle=Towards+zero-power+6G+communication+switches+using+atomic+sheets&rft.volume=5&rft.issue=6&rft.pages=%3Cspan+class%3D%22nowrap%22%3E331-%3C%2Fspan%3E332&rft.date=2022-06&rft_id=info%3Adoi%2F10.1038%2Fs41928-022-00767-1&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A249221166%23id-name%3DS2CID&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHusGeChenLiang2021" class="citation journal cs1">Hus, Saban M.; Ge, Ruijing; Chen, Po-An; Liang, Liangbo; Donnelly, Gavin E.; Ko, Wonhee; Huang, Fumin; Chiang, Meng-Hsueh; Li, An-Ping; Akinwande, Deji (January 2021). <a rel="nofollow" class="external text" href="https://pure.qub.ac.uk/en/publications/observation-of-singledefect-memristor-in-an-mos2-atomic-sheet(1dd31266-03d2-4ba0-b1b7-71b701f6a9d6).html">"Observation of single-defect memristor in an MoS<sub>2</sub> atomic sheet"</a>. <i>Nature Nanotechnology</i>. <b>16</b> (1): <span class="nowrap">58–</span>62. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021NatNa..16...58H">2021NatNa..16...58H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41565-020-00789-w">10.1038/s41565-020-00789-w</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33169008">33169008</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:226285710">226285710</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Nanotechnology&rft.atitle=Observation+of+single-defect+memristor+in+an+MoS%3Csub%3E2%3C%2Fsub%3E+atomic+sheet&rft.volume=16&rft.issue=1&rft.pages=%3Cspan+class%3D%22nowrap%22%3E58-%3C%2Fspan%3E62&rft.date=2021-01&rft_id=info%3Adoi%2F10.1038%2Fs41565-020-00789-w&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A226285710%23id-name%3DS2CID&rft_id=info%3Apmid%2F33169008&rft_id=info%3Abibcode%2F2021NatNa..16...58H&rft.aulast=Hus&rft.aufirst=Saban+M.&rft.au=Ge%2C+Ruijing&rft.au=Chen%2C+Po-An&rft.au=Liang%2C+Liangbo&rft.au=Donnelly%2C+Gavin+E.&rft.au=Ko%2C+Wonhee&rft.au=Huang%2C+Fumin&rft.au=Chiang%2C+Meng-Hsueh&rft.au=Li%2C+An-Ping&rft.au=Akinwande%2C+Deji&rft_id=https%3A%2F%2Fpure.qub.ac.uk%2Fen%2Fpublications%2Fobservation-of-singledefect-memristor-in-an-mos2-atomic-sheet%281dd31266-03d2-4ba0-b1b7-71b701f6a9d6%29.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChanthbouala2012" class="citation cs2">Chanthbouala, A.; et al. (2012), "A ferroelectric memristor", <i><a href="/wiki/Nature_Materials" title="Nature Materials">Nature Materials</a></i>, <b>11</b> (10): <span class="nowrap">860–</span>864, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1206.3397">1206.3397</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012NatMa..11..860C">2012NatMa..11..860C</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnmat3415">10.1038/nmat3415</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22983431">22983431</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10372470">10372470</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Materials&rft.atitle=A+ferroelectric+memristor&rft.volume=11&rft.issue=10&rft.pages=%3Cspan+class%3D%22nowrap%22%3E860-%3C%2Fspan%3E864&rft.date=2012&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10372470%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2012NatMa..11..860C&rft_id=info%3Aarxiv%2F1206.3397&rft_id=info%3Apmid%2F22983431&rft_id=info%3Adoi%2F10.1038%2Fnmat3415&rft.aulast=Chanthbouala&rft.aufirst=A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Rubashkina2013-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rubashkina2013_79-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAgeevBlinovIl’inKolomiitsev2013" class="citation journal cs1">Ageev, O. A.; Blinov, Yu F.; Il’in, O. I.; Kolomiitsev, A. S.; Konoplev, B. G.; Rubashkina, M. V.; Smirnov, V. A.; Fedotov, A. A. (2013-12-11). "Memristor effect on bundles of vertically aligned carbon nanotubes tested by scanning tunnel microscopy". <i>Technical Physics</i>. <b>58</b> (12): <span class="nowrap">1831–</span>1836. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013JTePh..58.1831A">2013JTePh..58.1831A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1134%2FS1063784213120025">10.1134/S1063784213120025</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53003312">53003312</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Technical+Physics&rft.atitle=Memristor+effect+on+bundles+of+vertically+aligned+carbon+nanotubes+tested+by+scanning+tunnel+microscopy&rft.volume=58&rft.issue=12&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1831-%3C%2Fspan%3E1836&rft.date=2013-12-11&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53003312%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1134%2FS1063784213120025&rft_id=info%3Abibcode%2F2013JTePh..58.1831A&rft.aulast=Ageev&rft.aufirst=O.+A.&rft.au=Blinov%2C+Yu+F.&rft.au=Il%E2%80%99in%2C+O.+I.&rft.au=Kolomiitsev%2C+A.+S.&rft.au=Konoplev%2C+B.+G.&rft.au=Rubashkina%2C+M.+V.&rft.au=Smirnov%2C+V.+A.&rft.au=Fedotov%2C+A.+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIl'inaIl'inBlinovSmirnov2017" class="citation journal cs1">Il'ina, Marina V.; Il'in, Oleg I.; Blinov, Yuriy F.; Smirnov, Vladimir A.; Kolomiytsev, Alexey S.; Fedotov, Alexander A.; Konoplev, Boris G.; Ageev, Oleg A. (October 2017). "Memristive switching mechanism of vertically aligned carbon nanotubes". <i>Carbon</i>. <b>123</b>: <span class="nowrap">514–</span>524. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017Carbo.123..514I">2017Carbo.123..514I</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.carbon.2017.07.090">10.1016/j.carbon.2017.07.090</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Carbon&rft.atitle=Memristive+switching+mechanism+of+vertically+aligned+carbon+nanotubes&rft.volume=123&rft.pages=%3Cspan+class%3D%22nowrap%22%3E514-%3C%2Fspan%3E524&rft.date=2017-10&rft_id=info%3Adoi%2F10.1016%2Fj.carbon.2017.07.090&rft_id=info%3Abibcode%2F2017Carbo.123..514I&rft.aulast=Il%27ina&rft.aufirst=Marina+V.&rft.au=Il%27in%2C+Oleg+I.&rft.au=Blinov%2C+Yuriy+F.&rft.au=Smirnov%2C+Vladimir+A.&rft.au=Kolomiytsev%2C+Alexey+S.&rft.au=Fedotov%2C+Alexander+A.&rft.au=Konoplev%2C+Boris+G.&rft.au=Ageev%2C+Oleg+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParkKimLee2020" class="citation journal cs1">Park, Youngjun; Kim, Min-Kyu; Lee, Jang-Sik (2020-07-16). "Emerging memory devices for artificial synapses". <i>Journal of Materials Chemistry C</i>. <b>8</b> (27): <span class="nowrap">9163–</span>9183. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FD0TC01500H">10.1039/D0TC01500H</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:219912115">219912115</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Materials+Chemistry+C&rft.atitle=Emerging+memory+devices+for+artificial+synapses&rft.volume=8&rft.issue=27&rft.pages=%3Cspan+class%3D%22nowrap%22%3E9163-%3C%2Fspan%3E9183&rft.date=2020-07-16&rft_id=info%3Adoi%2F10.1039%2FD0TC01500H&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A219912115%23id-name%3DS2CID&rft.aulast=Park&rft.aufirst=Youngjun&rft.au=Kim%2C+Min-Kyu&rft.au=Lee%2C+Jang-Sik&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRaeis-HosseiniParkLee2018" class="citation journal cs1">Raeis-Hosseini, Niloufar; Park, Youngjun; Lee, Jang-Sik (2018). "Flexible Artificial Synaptic Devices Based on Collagen from Fish Protein with Spike-Timing-Dependent Plasticity". <i>Advanced Functional Materials</i>. <b>28</b> (31): 1800553. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadfm.201800553">10.1002/adfm.201800553</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:104277945">104277945</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advanced+Functional+Materials&rft.atitle=Flexible+Artificial+Synaptic+Devices+Based+on+Collagen+from+Fish+Protein+with+Spike-Timing-Dependent+Plasticity&rft.volume=28&rft.issue=31&rft.pages=1800553&rft.date=2018&rft_id=info%3Adoi%2F10.1002%2Fadfm.201800553&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A104277945%23id-name%3DS2CID&rft.aulast=Raeis-Hosseini&rft.aufirst=Niloufar&rft.au=Park%2C+Youngjun&rft.au=Lee%2C+Jang-Sik&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParkLee2017" class="citation journal cs1">Park, Youngjun; Lee, Jang-Sik (2017-09-26). "Artificial Synapses with Short- and Long-Term Memory for Spiking Neural Networks Based on Renewable Materials". <i>ACS Nano</i>. <b>11</b> (9): <span class="nowrap">8962–</span>8969. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facsnano.7b03347">10.1021/acsnano.7b03347</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28837313">28837313</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ACS+Nano&rft.atitle=Artificial+Synapses+with+Short-+and+Long-Term+Memory+for+Spiking+Neural+Networks+Based+on+Renewable+Materials&rft.volume=11&rft.issue=9&rft.pages=%3Cspan+class%3D%22nowrap%22%3E8962-%3C%2Fspan%3E8969&rft.date=2017-09-26&rft_id=info%3Adoi%2F10.1021%2Facsnano.7b03347&rft_id=info%3Apmid%2F28837313&rft.aulast=Park&rft.aufirst=Youngjun&rft.au=Lee%2C+Jang-Sik&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHotaBeraKunduKundu2012" class="citation journal cs1">Hota, Mrinal K.; Bera, Milan K.; Kundu, Banani; Kundu, Subhas C.; Maiti, Chinmay K. (2012). "A Natural Silk Fibroin Protein-Based Transparent Bio-Memristor". <i>Advanced Functional Materials</i>. <b>22</b> (21): <span class="nowrap">4493–</span>4499. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadfm.201200073">10.1002/adfm.201200073</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:137399893">137399893</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advanced+Functional+Materials&rft.atitle=A+Natural+Silk+Fibroin+Protein-Based+Transparent+Bio-Memristor&rft.volume=22&rft.issue=21&rft.pages=%3Cspan+class%3D%22nowrap%22%3E4493-%3C%2Fspan%3E4499&rft.date=2012&rft_id=info%3Adoi%2F10.1002%2Fadfm.201200073&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A137399893%23id-name%3DS2CID&rft.aulast=Hota&rft.aufirst=Mrinal+K.&rft.au=Bera%2C+Milan+K.&rft.au=Kundu%2C+Banani&rft.au=Kundu%2C+Subhas+C.&rft.au=Maiti%2C+Chinmay+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCardona-SerraRosalenyGiménez-SantamarinaMartínez-Gil2020" class="citation journal cs1">Cardona-Serra, Salvador; Rosaleny, Lorena E.; Giménez-Santamarina, Silvia; Martínez-Gil, Luis; Gaita-Ariño, Alejandro (2020-12-16). "Towards peptide-based tunable multistate memristive materials". <i>Physical Chemistry Chemical Physics</i>. <b>23</b> (3): <span class="nowrap">1802–</span>1810. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FD0CP05236A">10.1039/D0CP05236A</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10550%2F79239">10550/79239</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33434247">33434247</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:231595640">231595640</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Chemistry+Chemical+Physics&rft.atitle=Towards+peptide-based+tunable+multistate+memristive+materials&rft.volume=23&rft.issue=3&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1802-%3C%2Fspan%3E1810&rft.date=2020-12-16&rft_id=info%3Ahdl%2F10550%2F79239&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A231595640%23id-name%3DS2CID&rft_id=info%3Apmid%2F33434247&rft_id=info%3Adoi%2F10.1039%2FD0CP05236A&rft.aulast=Cardona-Serra&rft.aufirst=Salvador&rft.au=Rosaleny%2C+Lorena+E.&rft.au=Gim%C3%A9nez-Santamarina%2C+Silvia&rft.au=Mart%C3%ADnez-Gil%2C+Luis&rft.au=Gaita-Ari%C3%B1o%2C+Alejandro&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMilanoPorroValovRicciardi2019" class="citation journal cs1">Milano, G.; Porro, S.; Valov, I.; Ricciardi, C. (2019). "Recent Developments and Perspectives for Memristive Devices Based on Metal Oxide Nanowires". <i>Advanced Electronic Materials</i>. <b>5</b> (9): 1800909. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Faelm.201800909">10.1002/aelm.201800909</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:139445142">139445142</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advanced+Electronic+Materials&rft.atitle=Recent+Developments+and+Perspectives+for+Memristive+Devices+Based+on+Metal+Oxide+Nanowires&rft.volume=5&rft.issue=9&rft.pages=1800909&rft.date=2019&rft_id=info%3Adoi%2F10.1002%2Faelm.201800909&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A139445142%23id-name%3DS2CID&rft.aulast=Milano&rft.aufirst=G.&rft.au=Porro%2C+S.&rft.au=Valov%2C+I.&rft.au=Ricciardi%2C+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarrara2021" class="citation journal cs1">Carrara, S. (2021). <a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/document/9286539">"The Birth of a New Field: Memristive Sensors. A Review"</a>. <i>IEEE Sensors Journal</i>. <b>21</b> (11): <span class="nowrap">12370–</span>12378. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021ISenJ..2112370C">2021ISenJ..2112370C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FJSEN.2020.3043305">10.1109/JSEN.2020.3043305</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:234542676">234542676</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Sensors+Journal&rft.atitle=The+Birth+of+a+New+Field%3A+Memristive+Sensors.+A+Review&rft.volume=21&rft.issue=11&rft.pages=%3Cspan+class%3D%22nowrap%22%3E12370-%3C%2Fspan%3E12378&rft.date=2021&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A234542676%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1109%2FJSEN.2020.3043305&rft_id=info%3Abibcode%2F2021ISenJ..2112370C&rft.aulast=Carrara&rft.aufirst=S.&rft_id=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F9286539&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Xiaobin2009-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-Xiaobin2009_88-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangChenXiDimitrov2009" class="citation cs2">Wang, X.; Chen, Y.; Xi, H.; Dimitrov, D. (2009), "Spintronic Memristor through Spin Torque Induced Magnetization Motion", <i><a href="/wiki/IEEE_Electron_Device_Letters" title="IEEE Electron Device Letters">IEEE Electron Device Letters</a></i>, <b>30</b> (3): <span class="nowrap">294–</span>297, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009IEDL...30..294W">2009IEDL...30..294W</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FLED.2008.2012270">10.1109/LED.2008.2012270</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:39590957">39590957</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Electron+Device+Letters&rft.atitle=Spintronic+Memristor+through+Spin+Torque+Induced+Magnetization+Motion&rft.volume=30&rft.issue=3&rft.pages=%3Cspan+class%3D%22nowrap%22%3E294-%3C%2Fspan%3E297&rft.date=2009&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A39590957%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1109%2FLED.2008.2012270&rft_id=info%3Abibcode%2F2009IEDL...30..294W&rft.aulast=Wang&rft.aufirst=X.&rft.au=Chen%2C+Y.&rft.au=Xi%2C+H.&rft.au=Dimitrov%2C+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Neil2009-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-Neil2009_89-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSavage2009" class="citation web cs1">Savage, N. (2009-03-16). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20101224201054/https://spectrum.ieee.org/semiconductors/devices/spintronic-memristors">"Spintronic Memristor"</a>. <i>IEEE Spectrum</i>. Archived from <a rel="nofollow" class="external text" href="http://www.spectrum.ieee.org/semiconductors/devices/spintronic-memristors">the original</a> on 2010-12-24<span class="reference-accessdate">. Retrieved <span class="nowrap">2011-03-20</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=IEEE+Spectrum&rft.atitle=Spintronic+Memristor&rft.date=2009-03-16&rft.aulast=Savage&rft.aufirst=N.&rft_id=http%3A%2F%2Fwww.spectrum.ieee.org%2Fsemiconductors%2Fdevices%2Fspintronic-memristors&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Chanthbouala2011-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-Chanthbouala2011_90-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChanthboualaMatsumotoGrollierCros2011" class="citation journal cs1">Chanthbouala, A.; Matsumoto, R.; Grollier, J.; Cros, V.; Anane, A.; Fert, A.; Khvalkovskiy, A. V.; Zvezdin, K. A.; Nishimura, K.; Nagamine, Y.; Maehara, H.; Tsunekawa, K.; Fukushima, A.; Yuasa, S. (2011-04-10). "Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities". <i>Nature Physics</i>. <b>7</b> (8): <span class="nowrap">626–</span>630. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1102.2106">1102.2106</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011NatPh...7..626C">2011NatPh...7..626C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnphys1968">10.1038/nphys1968</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119221544">119221544</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Physics&rft.atitle=Vertical-current-induced+domain-wall+motion+in+MgO-based+magnetic+tunnel+junctions+with+low+current+densities&rft.volume=7&rft.issue=8&rft.pages=%3Cspan+class%3D%22nowrap%22%3E626-%3C%2Fspan%3E630&rft.date=2011-04-10&rft_id=info%3Aarxiv%2F1102.2106&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119221544%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2Fnphys1968&rft_id=info%3Abibcode%2F2011NatPh...7..626C&rft.aulast=Chanthbouala&rft.aufirst=A.&rft.au=Matsumoto%2C+R.&rft.au=Grollier%2C+J.&rft.au=Cros%2C+V.&rft.au=Anane%2C+A.&rft.au=Fert%2C+A.&rft.au=Khvalkovskiy%2C+A.+V.&rft.au=Zvezdin%2C+K.+A.&rft.au=Nishimura%2C+K.&rft.au=Nagamine%2C+Y.&rft.au=Maehara%2C+H.&rft.au=Tsunekawa%2C+K.&rft.au=Fukushima%2C+A.&rft.au=Yuasa%2C+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-BowenAPL2006-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-BowenAPL2006_91-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBowenMauriceBarthe´le´myProd’homme2006" class="citation journal cs1">Bowen, M.; Maurice, J.-L.; Barthe´le´my, A.; Prod’homme, P.; Jacquet, E.; Contour, J.-P.; Imhoff, D.; Colliex, C. (2006). <a rel="nofollow" class="external text" href="https://hal.archives-ouvertes.fr/hal-00205009">"Bias-crafted magnetic tunnel junctions with bistable spin-dependent states"</a>. <i>Applied Physics Letters</i>. <b>89</b> (10): 103517. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006ApPhL..89j3517B">2006ApPhL..89j3517B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.2345592">10.1063/1.2345592</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Applied+Physics+Letters&rft.atitle=Bias-crafted+magnetic+tunnel+junctions+with+bistable+spin-dependent+states&rft.volume=89&rft.issue=10&rft.pages=103517&rft.date=2006&rft_id=info%3Adoi%2F10.1063%2F1.2345592&rft_id=info%3Abibcode%2F2006ApPhL..89j3517B&rft.aulast=Bowen&rft.aufirst=M.&rft.au=Maurice%2C+J.-L.&rft.au=Barthe%C2%B4le%C2%B4my%2C+A.&rft.au=Prod%E2%80%99homme%2C+P.&rft.au=Jacquet%2C+E.&rft.au=Contour%2C+J.-P.&rft.au=Imhoff%2C+D.&rft.au=Colliex%2C+C.&rft_id=https%3A%2F%2Fhal.archives-ouvertes.fr%2Fhal-00205009&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-HalleyAPL2008-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-HalleyAPL2008_92-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalleyMajjadBowenNajjari2008" class="citation journal cs1">Halley, D.; Majjad, H.; Bowen, M.; Najjari, N.; Henry, Y.; Ulhaq-Bouillet, C.; Weber, W.; Bertoni, G.; Verbeeck, J.; Van Tendeloo, G. (2008). "Electrical switching in Fe/Cr/MgO/Fe magnetic tunnel junctions". <i>Applied Physics Letters</i>. <b>92</b> (21): 212115. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008ApPhL..92u2115H">2008ApPhL..92u2115H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.2938696">10.1063/1.2938696</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Applied+Physics+Letters&rft.atitle=Electrical+switching+in+Fe%2FCr%2FMgO%2FFe+magnetic+tunnel+junctions&rft.volume=92&rft.issue=21&rft.pages=212115&rft.date=2008&rft_id=info%3Adoi%2F10.1063%2F1.2938696&rft_id=info%3Abibcode%2F2008ApPhL..92u2115H&rft.aulast=Halley&rft.aufirst=D.&rft.au=Majjad%2C+H.&rft.au=Bowen%2C+M.&rft.au=Najjari%2C+N.&rft.au=Henry%2C+Y.&rft.au=Ulhaq-Bouillet%2C+C.&rft.au=Weber%2C+W.&rft.au=Bertoni%2C+G.&rft.au=Verbeeck%2C+J.&rft.au=Van+Tendeloo%2C+G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-krzysteczko2009apl-93"><span class="mw-cite-backlink">^ <a href="#cite_ref-krzysteczko2009apl_93-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-krzysteczko2009apl_93-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrzysteczkoGünterThomas2009" class="citation cs2">Krzysteczko, P.; Günter, R.; Thomas, A. (2009), "Memristive switching of MgO based magnetic tunnel junctions", <i><a href="/wiki/Applied_Physics_Letters" title="Applied Physics Letters">Applied Physics Letters</a></i>, <b>95</b> (11): 112508, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0907.3684">0907.3684</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009ApPhL..95k2508K">2009ApPhL..95k2508K</a>, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.313.2571">10.1.1.313.2571</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.3224193">10.1063/1.3224193</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15383692">15383692</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Applied+Physics+Letters&rft.atitle=Memristive+switching+of+MgO+based+magnetic+tunnel+junctions&rft.volume=95&rft.issue=11&rft.pages=112508&rft.date=2009&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15383692%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2009ApPhL..95k2508K&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.313.2571%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1063%2F1.3224193&rft_id=info%3Aarxiv%2F0907.3684&rft.aulast=Krzysteczko&rft.aufirst=P.&rft.au=G%C3%BCnter%2C+R.&rft.au=Thomas%2C+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-BertinJAP2011-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-BertinJAP2011_94-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBertinHalleyHenryNajjari2011" class="citation cs2">Bertin, Eric; Halley, David; Henry, Yves; Najjari, Nabil; Majjad, Hicham; Bowen, Martin; DaCosta, Victor; Arabski, Jacek; Doudin, Bernard (2011), <a rel="nofollow" class="external text" href="http://scitation.aip.org/content/aip/journal/jap/109/8/10.1063/1.3561497">"Random barrier double-well model for resistive switching in tunnel barriers"</a>, <i>Journal of Applied Physics</i>, <b>109</b> (8): 013712–013712–5, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011JAP...109a3712D">2011JAP...109a3712D</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.3530610">10.1063/1.3530610</a><span class="reference-accessdate">, retrieved <span class="nowrap">2014-12-15</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Applied+Physics&rft.atitle=Random+barrier+double-well+model+for+resistive+switching+in+tunnel+barriers&rft.volume=109&rft.issue=8&rft.pages=013712-013712-5&rft.date=2011&rft_id=info%3Adoi%2F10.1063%2F1.3530610&rft_id=info%3Abibcode%2F2011JAP...109a3712D&rft.aulast=Bertin&rft.aufirst=Eric&rft.au=Halley%2C+David&rft.au=Henry%2C+Yves&rft.au=Najjari%2C+Nabil&rft.au=Majjad%2C+Hicham&rft.au=Bowen%2C+Martin&rft.au=DaCosta%2C+Victor&rft.au=Arabski%2C+Jacek&rft.au=Doudin%2C+Bernard&rft_id=http%3A%2F%2Fscitation.aip.org%2Fcontent%2Faip%2Fjournal%2Fjap%2F109%2F8%2F10.1063%2F1.3561497&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-schleicherNC2014-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-schleicherNC2014_95-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchleicherHalisdemirLacourGallart2014" class="citation cs2">Schleicher, F.; Halisdemir, U.; Lacour, D.; Gallart, M.; Boukari, S.; Schmerber, G.; Davesne, V.; Panissod, P.; Halley, D.; Majjad, H.; Henry, Y.; Leconte, B.; Boulard, A.; Spor, D.; Beyer, N.; Kieber, C.; Sternitzky, E.; Cregut, O.; Ziegler, M.; Montaigne, F.; Beaurepaire, E.; Gilliot, P.; Hehn, M.; Bowen, M. (2014-08-04), "Localized states in advanced dielectrics from the vantage of spin- and symmetry-polarized tunnelling across MgO", <i>Nature Communications</i>, <b>5</b>: 4547, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014NatCo...5.4547S">2014NatCo...5.4547S</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncomms5547">10.1038/ncomms5547</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25088937">25088937</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=Localized+states+in+advanced+dielectrics+from+the+vantage+of+spin-+and+symmetry-polarized+tunnelling+across+MgO&rft.volume=5&rft.pages=4547&rft.date=2014-08-04&rft_id=info%3Apmid%2F25088937&rft_id=info%3Adoi%2F10.1038%2Fncomms5547&rft_id=info%3Abibcode%2F2014NatCo...5.4547S&rft.aulast=Schleicher&rft.aufirst=F.&rft.au=Halisdemir%2C+U.&rft.au=Lacour%2C+D.&rft.au=Gallart%2C+M.&rft.au=Boukari%2C+S.&rft.au=Schmerber%2C+G.&rft.au=Davesne%2C+V.&rft.au=Panissod%2C+P.&rft.au=Halley%2C+D.&rft.au=Majjad%2C+H.&rft.au=Henry%2C+Y.&rft.au=Leconte%2C+B.&rft.au=Boulard%2C+A.&rft.au=Spor%2C+D.&rft.au=Beyer%2C+N.&rft.au=Kieber%2C+C.&rft.au=Sternitzky%2C+E.&rft.au=Cregut%2C+O.&rft.au=Ziegler%2C+M.&rft.au=Montaigne%2C+F.&rft.au=Beaurepaire%2C+E.&rft.au=Gilliot%2C+P.&rft.au=Hehn%2C+M.&rft.au=Bowen%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-garciaS2010-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-garciaS2010_96-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGarciaBibesBocherValencia2010" class="citation cs2">Garcia, V.; Bibes, M.; Bocher, L.; Valencia, S.; Kronast, F.; Crassous, A.; Moya, X.; Enouz-Vedrenne, S.; Gloter, A.; Imhoff, D.; Deranlot, C.; Mathur, N. D.; Fusil, S.; Bouzehouane, K.; Barthelemy, A. (2010-02-26), "Ferroelectric Control of Spin Polarization", <i>Science</i>, <b>327</b> (5969): <span class="nowrap">1106–</span>1110, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010Sci...327.1106G">2010Sci...327.1106G</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1184028">10.1126/science.1184028</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20075211">20075211</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:206524358">206524358</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Ferroelectric+Control+of+Spin+Polarization&rft.volume=327&rft.issue=5969&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1106-%3C%2Fspan%3E1110&rft.date=2010-02-26&rft_id=info%3Adoi%2F10.1126%2Fscience.1184028&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A206524358%23id-name%3DS2CID&rft_id=info%3Apmid%2F20075211&rft_id=info%3Abibcode%2F2010Sci...327.1106G&rft.aulast=Garcia&rft.aufirst=V.&rft.au=Bibes%2C+M.&rft.au=Bocher%2C+L.&rft.au=Valencia%2C+S.&rft.au=Kronast%2C+F.&rft.au=Crassous%2C+A.&rft.au=Moya%2C+X.&rft.au=Enouz-Vedrenne%2C+S.&rft.au=Gloter%2C+A.&rft.au=Imhoff%2C+D.&rft.au=Deranlot%2C+C.&rft.au=Mathur%2C+N.+D.&rft.au=Fusil%2C+S.&rft.au=Bouzehouane%2C+K.&rft.au=Barthelemy%2C+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-pantelAM2012-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-pantelAM2012_97-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPantelGoetzeHesseAlexe2012" class="citation cs2">Pantel, D.; Goetze, S.; Hesse, D.; Alexe, M. (2012-02-26), "Reversible electrical switching of spin polarization in multiferroic tunnel junctions", <i>Nature Materials</i>, <b>11</b> (4): <span class="nowrap">289–</span>293, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012NatMa..11..289P">2012NatMa..11..289P</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnmat3254">10.1038/nmat3254</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22367005">22367005</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Materials&rft.atitle=Reversible+electrical+switching+of+spin+polarization+in+multiferroic+tunnel+junctions&rft.volume=11&rft.issue=4&rft.pages=%3Cspan+class%3D%22nowrap%22%3E289-%3C%2Fspan%3E293&rft.date=2012-02-26&rft_id=info%3Apmid%2F22367005&rft_id=info%3Adoi%2F10.1038%2Fnmat3254&rft_id=info%3Abibcode%2F2012NatMa..11..289P&rft.aulast=Pantel&rft.aufirst=D.&rft.au=Goetze%2C+S.&rft.au=Hesse%2C+D.&rft.au=Alexe%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuai2008" class="citation cs2">Huai, Y. (December 2008), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120323215048/http://www.cospa.ntu.edu.tw/aappsbulletin/data/18-6/33spin.pdf">"Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects"</a> <span class="cs1-format">(PDF)</span>, <i>AAPPS Bulletin</i>, <b>18</b> (6): <span class="nowrap">33–</span>40, archived from <a rel="nofollow" class="external text" href="http://www.cospa.ntu.edu.tw/aappsbulletin/data/18-6/33spin.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2012-03-23</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=AAPPS+Bulletin&rft.atitle=Spin-Transfer+Torque+MRAM+%28STT-MRAM%29%3A+Challenges+and+Prospects&rft.volume=18&rft.issue=6&rft.pages=%3Cspan+class%3D%22nowrap%22%3E33-%3C%2Fspan%3E40&rft.date=2008-12&rft.aulast=Huai&rft.aufirst=Y.&rft_id=http%3A%2F%2Fwww.cospa.ntu.edu.tw%2Faappsbulletin%2Fdata%2F18-6%2F33spin.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-krzysteczko2012advmat-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-krzysteczko2012advmat_99-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrzysteczkoMünchenbergerSchäfersReiss2012" class="citation cs2">Krzysteczko, P.; Münchenberger, J.; Schäfers, M.; Reiss, G.; Thomas, A. (2012), "The Memristive Magnetic Tunnel Junction as a Nanoscopic Synapse-Neuron System", <i><a href="/wiki/Advanced_Materials" title="Advanced Materials">Advanced Materials</a></i>, <b>24</b> (6): <span class="nowrap">762–</span>766, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012APS..MAR.H5013T">2012APS..MAR.H5013T</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.201103723">10.1002/adma.201103723</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22223304">22223304</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:205242867">205242867</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advanced+Materials&rft.atitle=The+Memristive+Magnetic+Tunnel+Junction+as+a+Nanoscopic+Synapse-Neuron+System&rft.volume=24&rft.issue=6&rft.pages=%3Cspan+class%3D%22nowrap%22%3E762-%3C%2Fspan%3E766&rft.date=2012&rft_id=info%3Adoi%2F10.1002%2Fadma.201103723&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A205242867%23id-name%3DS2CID&rft_id=info%3Apmid%2F22223304&rft_id=info%3Abibcode%2F2012APS..MAR.H5013T&rft.aulast=Krzysteczko&rft.aufirst=P.&rft.au=M%C3%BCnchenberger%2C+J.&rft.au=Sch%C3%A4fers%2C+M.&rft.au=Reiss%2C+G.&rft.au=Thomas%2C+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://physics.ucsd.edu/~diventra/">"Massimiliano Di Ventra's Homepage"</a>. <i>physics.ucsd.edu</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=physics.ucsd.edu&rft.atitle=Massimiliano+Di+Ventra%27s+Homepage&rft_id=http%3A%2F%2Fphysics.ucsd.edu%2F~diventra%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-Pershin2008-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-Pershin2008_101-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPershinDi_Ventra2008" class="citation cs2">Pershin, Y. V.; Di Ventra, M. (2008), <a rel="nofollow" class="external text" href="https://scholarcommons.sc.edu/phys_facpub/24">"Spin memristive systems: Spin memory effects in semiconductor spintronics"</a>, <i><a href="/wiki/Physical_Review_B" title="Physical Review B">Physical Review B</a></i>, <b>78</b> (11): 113309, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0806.2151">0806.2151</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008PhRvB..78k3309P">2008PhRvB..78k3309P</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevB.78.113309">10.1103/PhysRevB.78.113309</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10938532">10938532</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+B&rft.atitle=Spin+memristive+systems%3A+Spin+memory+effects+in+semiconductor+spintronics&rft.volume=78&rft.issue=11&rft.pages=113309&rft.date=2008&rft_id=info%3Aarxiv%2F0806.2151&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10938532%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevB.78.113309&rft_id=info%3Abibcode%2F2008PhRvB..78k3309P&rft.aulast=Pershin&rft.aufirst=Y.+V.&rft.au=Di+Ventra%2C+M.&rft_id=https%3A%2F%2Fscholarcommons.sc.edu%2Fphys_facpub%2F24&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPershinDi_Ventra2008" class="citation cs2">Pershin, Y. V.; Di Ventra, M. (2008), "Current-voltage characteristics of semiconductor/ferromagnet junctions in the spin-blockade regime", <i><a href="/wiki/Physical_Review_B" title="Physical Review B">Physical Review B</a></i>, <b>77</b> (7): 073301, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0707.4475">0707.4475</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008PhRvB..77g3301P">2008PhRvB..77g3301P</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevB.77.073301">10.1103/PhysRevB.77.073301</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119604218">119604218</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+B&rft.atitle=Current-voltage+characteristics+of+semiconductor%2Fferromagnet+junctions+in+the+spin-blockade+regime&rft.volume=77&rft.issue=7&rft.pages=073301&rft.date=2008&rft_id=info%3Aarxiv%2F0707.4475&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119604218%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevB.77.073301&rft_id=info%3Abibcode%2F2008PhRvB..77g3301P&rft.aulast=Pershin&rft.aufirst=Y.+V.&rft.au=Di+Ventra%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCampbell2017" class="citation cs2">Campbell, K. (January 2017), "Self-directed channel memristor for high temperature operation", <i>Microelectronics Journal</i>, <b>59</b>: <span class="nowrap">10–</span>14, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1608.05357">1608.05357</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.mejo.2016.11.006">10.1016/j.mejo.2016.11.006</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:27889124">27889124</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Microelectronics+Journal&rft.atitle=Self-directed+channel+memristor+for+high+temperature+operation&rft.volume=59&rft.pages=%3Cspan+class%3D%22nowrap%22%3E10-%3C%2Fspan%3E14&rft.date=2017-01&rft_id=info%3Aarxiv%2F1608.05357&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A27889124%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.mejo.2016.11.006&rft.aulast=Campbell&rft.aufirst=K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="http://knowm.org/product/bs-af-w-memristors/"><i>Knowm Memristors</i></a>, <a href="/w/index.php?title=Knowm_Inc&action=edit&redlink=1" class="new" title="Knowm Inc (page does not exist)">Knowm Inc</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Knowm+Memristors&rft.pub=Knowm+Inc&rft_id=http%3A%2F%2Fknowm.org%2Fproduct%2Fbs-af-w-memristors%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-EETimes-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-EETimes_105-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnson2008" class="citation cs2">Johnson, R. C. (2008-04-30), <a rel="nofollow" class="external text" href="http://www.eetimes.com/electronics-news/4076910/-Missing-link-memristor-created-Rewrite-the-textbooks-">"<span class="cs1-kern-left"></span>'Missing link' memristor created"</a>, <i><a href="/wiki/EE_Times" title="EE Times">EE Times</a></i><span class="reference-accessdate">, retrieved <span class="nowrap">2008-04-30</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=EE+Times&rft.atitle=%27Missing+link%27+memristor+created&rft.date=2008-04-30&rft.aulast=Johnson&rft.aufirst=R.+C.&rft_id=http%3A%2F%2Fwww.eetimes.com%2Felectronics-news%2F4076910%2F-Missing-link-memristor-created-Rewrite-the-textbooks-&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=bKGhvKyjgLY&t=37m45s">"Finding the Missing Memristor - R. Stanley Williams"</a>, <i>Youtube</i>, 2010-01-22</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Youtube&rft.atitle=Finding+the+Missing+Memristor+-+R.+Stanley+Williams&rft.date=2010-01-22&rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbKGhvKyjgLY%26t%3D37m45s&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarkoff2008" class="citation cs2">Markoff, J. (2008-05-01), <a rel="nofollow" class="external text" href="https://www.nytimes.com/2008/05/01/technology/01chip.html">"H.P. Reports Big Advance in Memory Chip Design"</a>, <i><a href="/wiki/New_York_Times" class="mw-redirect" title="New York Times">New York Times</a></i><span class="reference-accessdate">, retrieved <span class="nowrap">2008-05-01</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+York+Times&rft.atitle=H.P.+Reports+Big+Advance+in+Memory+Chip+Design&rft.date=2008-05-01&rft.aulast=Markoff&rft.aufirst=J.&rft_id=https%3A%2F%2Fwww.nytimes.com%2F2008%2F05%2F01%2Ftechnology%2F01chip.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGutmann2008" class="citation cs2">Gutmann, E. (2008-05-01), <a rel="nofollow" class="external text" href="https://arstechnica.com/old/content/2008/05/maintaining-moores-law-with-new-memristor-circuits.ars">"Maintaining Moore's law with new memristor circuits"</a>, <i><a href="/wiki/Ars_Technica" title="Ars Technica">Ars Technica</a></i><span class="reference-accessdate">, retrieved <span class="nowrap">2008-05-01</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Ars+Technica&rft.atitle=Maintaining+Moore%27s+law+with+new+memristor+circuits&rft.date=2008-05-01&rft.aulast=Gutmann&rft.aufirst=E.&rft_id=https%3A%2F%2Farstechnica.com%2Fold%2Fcontent%2F2008%2F05%2Fmaintaining-moores-law-with-new-memristor-circuits.ars&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPalmer2012" class="citation cs2">Palmer, J. (2012-05-18), <a rel="nofollow" class="external text" href="https://www.bbc.co.uk/news/science-environment-18103772">"Memristors in silicon promising for dense, fast memory"</a>, <i><a href="/wiki/BBC_News" title="BBC News">BBC News</a></i><span class="reference-accessdate">, retrieved <span class="nowrap">2012-05-18</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=BBC+News&rft.atitle=Memristors+in+silicon+promising+for+dense%2C+fast+memory&rft.date=2012-05-18&rft.aulast=Palmer&rft.aufirst=J.&rft_id=https%3A%2F%2Fwww.bbc.co.uk%2Fnews%2Fscience-environment-18103772&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-110">^</a></b></span> <span class="reference-text">Snider, Gregory Stuart (2004) "Architecture and methods for computing with reconfigurable resistor crossbars" <span><a rel="nofollow" class="external text" href="https://patents.google.com/patent/US7203789">U.S. patent 7,203,789</a></span></span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text">Mouttet, Blaise Laurent (2006) "Programmable crossbar signal processor" <span><a rel="nofollow" class="external text" href="https://patents.google.com/patent/US7302513">U.S. patent 7,302,513</a></span></span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDongSing_LaiHeQi2019" class="citation journal cs1">Dong, Zhekang; Sing Lai, Chun; He, Yufei; Qi, Donglian; Duan, Shukai (2019-11-01). <a rel="nofollow" class="external text" href="https://doi.org/10.1049%2Fiet-cds.2018.5062">"Hybrid dual-complementary metal–oxide–semiconductor/memristor synapse-based neural network with its applications in image super-resolution"</a>. <i>IET Circuits, Devices & Systems</i>. <b>13</b> (8): <span class="nowrap">1241–</span>1248. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1049%2Fiet-cds.2018.5062">10.1049/iet-cds.2018.5062</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IET+Circuits%2C+Devices+%26+Systems&rft.atitle=Hybrid+dual-complementary+metal%E2%80%93oxide%E2%80%93semiconductor%2Fmemristor+synapse-based+neural+network+with+its+applications+in+image+super-resolution&rft.volume=13&rft.issue=8&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1241-%3C%2Fspan%3E1248&rft.date=2019-11-01&rft_id=info%3Adoi%2F10.1049%2Fiet-cds.2018.5062&rft.aulast=Dong&rft.aufirst=Zhekang&rft.au=Sing+Lai%2C+Chun&rft.au=He%2C+Yufei&rft.au=Qi%2C+Donglian&rft.au=Duan%2C+Shukai&rft_id=https%3A%2F%2Fdoi.org%2F10.1049%252Fiet-cds.2018.5062&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text">Snider, Greg (2003) "Molecular-junction-nanowire-crossbar-based neural network" <span><a rel="nofollow" class="external text" href="https://patents.google.com/patent/US7359888">U.S. patent 7,359,888</a></span></span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-114">^</a></b></span> <span class="reference-text">Mouttet, Blaise Laurent (2007) "Crossbar control circuit" <span><a rel="nofollow" class="external text" href="https://patents.google.com/patent/US7609086">U.S. patent 7,609,086</a></span></span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-115">^</a></b></span> <span class="reference-text">Pino, Robinson E. (2010) "Reconfigurable electronic circuit" <span><a rel="nofollow" class="external text" href="https://patents.google.com/patent/US7902857">U.S. patent 7,902,857</a></span></span> </li> <li id="cite_note-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-116">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIelminiWong2018" class="citation journal cs1">Ielmini, D; Wong, H.-S. P. (2018). "In-memory computing with resistive switching devices". <i>Nature Electronics</i>. <b>1</b> (6): <span class="nowrap">333–</span>343. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41928-018-0092-2">10.1038/s41928-018-0092-2</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/11311%2F1056513">11311/1056513</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:57248729">57248729</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Electronics&rft.atitle=In-memory+computing+with+resistive+switching+devices&rft.volume=1&rft.issue=6&rft.pages=%3Cspan+class%3D%22nowrap%22%3E333-%3C%2Fspan%3E343&rft.date=2018&rft_id=info%3Ahdl%2F11311%2F1056513&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A57248729%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2Fs41928-018-0092-2&rft.aulast=Ielmini&rft.aufirst=D&rft.au=Wong%2C+H.-S.+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-117">^</a></b></span> <span class="reference-text">Mouttet, Blaise Laurent (2009) "Memristor crossbar neural interface" <span><a rel="nofollow" class="external text" href="https://patents.google.com/patent/US7902867">U.S. patent 7,902,867</a></span></span> </li> <li id="cite_note-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-118">^</a></b></span> <span class="reference-text">Kang, Hee Bok (2009) "RFID device with memory unit having memristor characteristics" <span><a rel="nofollow" class="external text" href="https://patents.google.com/patent/US8113437">U.S. patent 8,113,437</a></span></span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-119">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuoDongDuanLai2020" class="citation journal cs1">Luo, Li; Dong, Zhekang; Duan, Shukai; Lai, Chun Sing (2020-04-20). <a rel="nofollow" class="external text" href="https://doi.org/10.1049%2Fiet-cds.2019.0422">"Memristor-based stateful logic gates for multi-functional logic circuit"</a>. <i>IET Circuits, Devices & Systems</i>. <b>14</b> (6): <span class="nowrap">811–</span>818. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1049%2Fiet-cds.2019.0422">10.1049/iet-cds.2019.0422</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IET+Circuits%2C+Devices+%26+Systems&rft.atitle=Memristor-based+stateful+logic+gates+for+multi-functional+logic+circuit&rft.volume=14&rft.issue=6&rft.pages=%3Cspan+class%3D%22nowrap%22%3E811-%3C%2Fspan%3E818&rft.date=2020-04-20&rft_id=info%3Adoi%2F10.1049%2Fiet-cds.2019.0422&rft.aulast=Luo&rft.aufirst=Li&rft.au=Dong%2C+Zhekang&rft.au=Duan%2C+Shukai&rft.au=Lai%2C+Chun+Sing&rft_id=https%3A%2F%2Fdoi.org%2F10.1049%252Fiet-cds.2019.0422&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-120">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLehtonenPoikonenLaiho2010" class="citation journal cs1">Lehtonen, E.; Poikonen, J.H.; Laiho, M. (2010). "Two memristors suffice to compute all Boolean functions". <i>Electronics Letters</i>. <b>46</b> (3): 230. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010ElL....46..230L">2010ElL....46..230L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1049%2Fel.2010.3407">10.1049/el.2010.3407</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Electronics+Letters&rft.atitle=Two+memristors+suffice+to+compute+all+Boolean+functions&rft.volume=46&rft.issue=3&rft.pages=230&rft.date=2010&rft_id=info%3Adoi%2F10.1049%2Fel.2010.3407&rft_id=info%3Abibcode%2F2010ElL....46..230L&rft.aulast=Lehtonen&rft.aufirst=E.&rft.au=Poikonen%2C+J.H.&rft.au=Laiho%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-121">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChattopadhyayRakosi2011" class="citation book cs1">Chattopadhyay, A.; Rakosi, Z. (2011). "Combinational logic synthesis for material implication". <i>2011 IEEE/IFIP 19th International Conference on VLSI and System-on-Chip</i>. p. 200. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FVLSISoC.2011.6081665">10.1109/VLSISoC.2011.6081665</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4577-0170-2" title="Special:BookSources/978-1-4577-0170-2"><bdi>978-1-4577-0170-2</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:32278896">32278896</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Combinational+logic+synthesis+for+material+implication&rft.btitle=2011+IEEE%2FIFIP+19th+International+Conference+on+VLSI+and+System-on-Chip&rft.pages=200&rft.date=2011&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A32278896%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1109%2FVLSISoC.2011.6081665&rft.isbn=978-1-4577-0170-2&rft.aulast=Chattopadhyay&rft.aufirst=A.&rft.au=Rakosi%2C+Z.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-122">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPershinLa_FontaineDi_Ventra2009" class="citation cs2">Pershin, Y. V.; La Fontaine, S.; Di Ventra, M. (2009), "Memristive model of amoeba learning", <i><a href="/wiki/Physical_Review_E" title="Physical Review E">Physical Review E</a></i>, <b>80</b> (2): 021926, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0810.4179">0810.4179</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009PhRvE..80b1926P">2009PhRvE..80b1926P</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevE.80.021926">10.1103/PhysRevE.80.021926</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19792170">19792170</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9820970">9820970</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+E&rft.atitle=Memristive+model+of+amoeba+learning&rft.volume=80&rft.issue=2&rft.pages=021926&rft.date=2009&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9820970%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2009PhRvE..80b1926P&rft_id=info%3Aarxiv%2F0810.4179&rft_id=info%3Apmid%2F19792170&rft_id=info%3Adoi%2F10.1103%2FPhysRevE.80.021926&rft.aulast=Pershin&rft.aufirst=Y.+V.&rft.au=La+Fontaine%2C+S.&rft.au=Di+Ventra%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-amoebaexp-123"><span class="mw-cite-backlink">^ <a href="#cite_ref-amoebaexp_123-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-amoebaexp_123-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSaigusaTeroNakagakiKuramoto2008" class="citation cs2">Saigusa, T.; Tero, A.; Nakagaki, T.; Kuramoto, Y. (2008), <a rel="nofollow" class="external text" href="https://lib-repos.fun.ac.jp/dspace/bitstream/10445/4400/2/Final20071109.pdf">"Amoebae Anticipate Periodic Events"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>, <b>100</b> (1): 018101, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008PhRvL.100a8101S">2008PhRvL.100a8101S</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.100.018101">10.1103/PhysRevLett.100.018101</a>, <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2115%2F33004">2115/33004</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18232821">18232821</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14710241">14710241</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Amoebae+Anticipate+Periodic+Events&rft.volume=100&rft.issue=1&rft.pages=018101&rft.date=2008&rft_id=info%3Ahdl%2F2115%2F33004&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14710241%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2008PhRvL.100a8101S&rft_id=info%3Apmid%2F18232821&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.100.018101&rft.aulast=Saigusa&rft.aufirst=T.&rft.au=Tero%2C+A.&rft.au=Nakagaki%2C+T.&rft.au=Kuramoto%2C+Y.&rft_id=https%3A%2F%2Flib-repos.fun.ac.jp%2Fdspace%2Fbitstream%2F10445%2F4400%2F2%2FFinal20071109.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-124">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVersaceChandler2010" class="citation web cs1">Versace, M.; Chandler, B. (2010-11-23). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20101125205953/http://spectrum.ieee.org/robotics/artificial-intelligence/moneta-a-mind-made-from-memristors/0">"MoNETA: A Mind Made from Memristors"</a>. <i><a href="/wiki/IEEE_Spectrum" title="IEEE Spectrum">IEEE Spectrum</a></i>. Archived from <a rel="nofollow" class="external text" href="https://spectrum.ieee.org/robotics/artificial-intelligence/moneta-a-mind-made-from-memristors/0">the original</a> on 2010-11-25.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=IEEE+Spectrum&rft.atitle=MoNETA%3A+A+Mind+Made+from+Memristors&rft.date=2010-11-23&rft.aulast=Versace&rft.aufirst=M.&rft.au=Chandler%2C+B.&rft_id=https%3A%2F%2Fspectrum.ieee.org%2Frobotics%2Fartificial-intelligence%2Fmoneta-a-mind-made-from-memristors%2F0&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span><br /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVersaceChandler2010" class="citation journal cs1">Versace, M.; Chandler, B. (2010). "The brain of a new machine". <i><a href="/wiki/IEEE_Spectrum" title="IEEE Spectrum">IEEE Spectrum</a></i>. <b>47</b> (12): <span class="nowrap">30–</span>37. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FMSPEC.2010.5644776">10.1109/MSPEC.2010.5644776</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:45300119">45300119</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Spectrum&rft.atitle=The+brain+of+a+new+machine&rft.volume=47&rft.issue=12&rft.pages=%3Cspan+class%3D%22nowrap%22%3E30-%3C%2Fspan%3E37&rft.date=2010&rft_id=info%3Adoi%2F10.1109%2FMSPEC.2010.5644776&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A45300119%23id-name%3DS2CID&rft.aulast=Versace&rft.aufirst=M.&rft.au=Chandler%2C+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-125">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSnider2011" class="citation cs2">Snider, G.; et al. (2011), "From Synapses to Circuitry: Using Memristive Memory to Explore the Electronic Brain", <i><a href="/wiki/IEEE_Computer" class="mw-redirect" title="IEEE Computer">IEEE Computer</a></i>, <b>44</b> (2): <span class="nowrap">21–</span>28, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FMC.2011.48">10.1109/MC.2011.48</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16307308">16307308</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Computer&rft.atitle=From+Synapses+to+Circuitry%3A+Using+Memristive+Memory+to+Explore+the+Electronic+Brain&rft.volume=44&rft.issue=2&rft.pages=%3Cspan+class%3D%22nowrap%22%3E21-%3C%2Fspan%3E28&rft.date=2011&rft_id=info%3Adoi%2F10.1109%2FMC.2011.48&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16307308%23id-name%3DS2CID&rft.aulast=Snider&rft.aufirst=G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-126"><span class="mw-cite-backlink"><b><a href="#cite_ref-126">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMerrikh-BayatBagheri-ShourakiRohani2011" class="citation cs2">Merrikh-Bayat, F.; Bagheri-Shouraki, S.; Rohani, A. (2011), "Memristor crossbar-based hardware implementation of IDS method", <i><a href="/wiki/IEEE_Transactions_on_Fuzzy_Systems" title="IEEE Transactions on Fuzzy Systems">IEEE Transactions on Fuzzy Systems</a></i>, <b>19</b> (6): <span class="nowrap">1083–</span>1096, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1008.5133">1008.5133</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTFUZZ.2011.2160024">10.1109/TFUZZ.2011.2160024</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3163846">3163846</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Fuzzy+Systems&rft.atitle=Memristor+crossbar-based+hardware+implementation+of+IDS+method&rft.volume=19&rft.issue=6&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1083-%3C%2Fspan%3E1096&rft.date=2011&rft_id=info%3Aarxiv%2F1008.5133&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3163846%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1109%2FTFUZZ.2011.2160024&rft.aulast=Merrikh-Bayat&rft.aufirst=F.&rft.au=Bagheri-Shouraki%2C+S.&rft.au=Rohani%2C+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-127">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMerrikh-BayatBagheri-Shouraki2011" class="citation arxiv cs1">Merrikh-Bayat, F.; Bagheri-Shouraki, S. (2011). "Efficient neuro-fuzzy system and its Memristor Crossbar-based Hardware Implementation". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1103.1156">1103.1156</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/cs.AI">cs.AI</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Efficient+neuro-fuzzy+system+and+its+Memristor+Crossbar-based+Hardware+Implementation&rft.date=2011&rft_id=info%3Aarxiv%2F1103.1156&rft.aulast=Merrikh-Bayat&rft.aufirst=F.&rft.au=Bagheri-Shouraki%2C+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-128">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChua2013" class="citation journal cs1">Chua, L. (2013). "Memristor, Hodgkin-Huxley, and Edge of Chaos". <i><a href="/wiki/Nanotechnology_(journal)" title="Nanotechnology (journal)">Nanotechnology</a></i>. <b>24</b> (38): 383001. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013Nanot..24L3001C">2013Nanot..24L3001C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0957-4484%2F24%2F38%2F383001">10.1088/0957-4484/24/38/383001</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23999613">23999613</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:34999101">34999101</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nanotechnology&rft.atitle=Memristor%2C+Hodgkin-Huxley%2C+and+Edge+of+Chaos&rft.volume=24&rft.issue=38&rft.pages=383001&rft.date=2013&rft_id=info%3Adoi%2F10.1088%2F0957-4484%2F24%2F38%2F383001&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A34999101%23id-name%3DS2CID&rft_id=info%3Apmid%2F23999613&rft_id=info%3Abibcode%2F2013Nanot..24L3001C&rft.aulast=Chua&rft.aufirst=L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-DiVentra2009-129"><span class="mw-cite-backlink">^ <a href="#cite_ref-DiVentra2009_129-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-DiVentra2009_129-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDi_VentraPershinChua2009" class="citation cs2">Di Ventra, M.; Pershin, Y. V.; Chua, L. (2009), "Circuit elements with memory: memristors, memcapacitors and meminductors", <i><a href="/wiki/Proceedings_of_the_IEEE" title="Proceedings of the IEEE">Proceedings of the IEEE</a></i>, <b>97</b> (10): <span class="nowrap">1717–</span>1724, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0901.3682">0901.3682</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009arXiv0901.3682D">2009arXiv0901.3682D</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FJPROC.2009.2021077">10.1109/JPROC.2009.2021077</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7136764">7136764</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+IEEE&rft.atitle=Circuit+elements+with+memory%3A+memristors%2C+memcapacitors+and+meminductors&rft.volume=97&rft.issue=10&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1717-%3C%2Fspan%3E1724&rft.date=2009&rft_id=info%3Aarxiv%2F0901.3682&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7136764%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1109%2FJPROC.2009.2021077&rft_id=info%3Abibcode%2F2009arXiv0901.3682D&rft.aulast=Di+Ventra&rft.aufirst=M.&rft.au=Pershin%2C+Y.+V.&rft.au=Chua%2C+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-130">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbdelhouahadLoziChua2014" class="citation cs2">Abdelhouahad, M.-S.; Lozi, R.; Chua, L. (September 2014), <a rel="nofollow" class="external text" href="https://hal.archives-ouvertes.fr/hal-01322396/file/Lozi_Memfractance_IJBC_2014_personnal_file_for_HAL.pdf">"Memfractance: A Mathematical Paradigm for Circuit Elements with Memory"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/International_Journal_of_Bifurcation_and_Chaos" class="mw-redirect" title="International Journal of Bifurcation and Chaos">International Journal of Bifurcation and Chaos</a></i>, <b>24</b> (9): 1430023 (29 pages), <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014IJBC...2430023A">2014IJBC...2430023A</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS0218127414300237">10.1142/S0218127414300237</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Bifurcation+and+Chaos&rft.atitle=Memfractance%3A+A+Mathematical+Paradigm+for+Circuit+Elements+with+Memory&rft.volume=24&rft.issue=9&rft.pages=1430023+%2829+pages%29&rft.date=2014-09&rft_id=info%3Adoi%2F10.1142%2FS0218127414300237&rft_id=info%3Abibcode%2F2014IJBC...2430023A&rft.aulast=Abdelhouahad&rft.aufirst=M.-S.&rft.au=Lozi%2C+R.&rft.au=Chua%2C+L.&rft_id=https%3A%2F%2Fhal.archives-ouvertes.fr%2Fhal-01322396%2Ffile%2FLozi_Memfractance_IJBC_2014_personnal_file_for_HAL.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-131"><span class="mw-cite-backlink"><b><a href="#cite_ref-131">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFProdromakisToumazouChua2012" class="citation cs2">Prodromakis, T.; Toumazou, C.; Chua, L. (June 2012), "Two centuries of memristors", <i><a href="/wiki/Nature_Materials" title="Nature Materials">Nature Materials</a></i>, <b>11</b> (6): <span class="nowrap">478–</span>481, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012NatMa..11..478P">2012NatMa..11..478P</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnmat3338">10.1038/nmat3338</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22614504">22614504</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Materials&rft.atitle=Two+centuries+of+memristors&rft.volume=11&rft.issue=6&rft.pages=%3Cspan+class%3D%22nowrap%22%3E478-%3C%2Fspan%3E481&rft.date=2012-06&rft_id=info%3Apmid%2F22614504&rft_id=info%3Adoi%2F10.1038%2Fnmat3338&rft_id=info%3Abibcode%2F2012NatMa..11..478P&rft.aulast=Prodromakis&rft.aufirst=T.&rft.au=Toumazou%2C+C.&rft.au=Chua%2C+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-labosat1-132"><span class="mw-cite-backlink"><b><a href="#cite_ref-labosat1_132-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarella2016" class="citation cs2">Barella, M. (2016), "LabOSat: Low cost measurement platform designed for hazardous environments", <i>2016 Seventh Argentine Conference on Embedded Systems (CASE)</i>, pp. <span class="nowrap">1–</span>6, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FSASE-CASE.2016.7968107">10.1109/SASE-CASE.2016.7968107</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-987-46297-0-8" title="Special:BookSources/978-987-46297-0-8"><bdi>978-987-46297-0-8</bdi></a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10263318">10263318</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=LabOSat%3A+Low+cost+measurement+platform+designed+for+hazardous+environments&rft.btitle=2016+Seventh+Argentine+Conference+on+Embedded+Systems+%28CASE%29&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E6&rft.date=2016&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10263318%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1109%2FSASE-CASE.2016.7968107&rft.isbn=978-987-46297-0-8&rft.aulast=Barella&rft.aufirst=M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-133">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://www.telam.com.ar/notas/201407/71782-satelite-argentino-tita-inti-comision-nacional-de-energia-atomica-memorias-prueba.html">"Probaron con éxito las memorias instaladas en el satélite argentino "Tita"<span class="cs1-kern-right"></span>"</a>. <i><a href="/wiki/Telam" class="mw-redirect" title="Telam">Telam</a></i>. 2014-07-21.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Telam&rft.atitle=Probaron+con+%C3%A9xito+las+memorias+instaladas+en+el+sat%C3%A9lite+argentino+%22Tita%22&rft.date=2014-07-21&rft_id=http%3A%2F%2Fwww.telam.com.ar%2Fnotas%2F201407%2F71782-satelite-argentino-tita-inti-comision-nacional-de-energia-atomica-memorias-prueba.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-labosat2-134"><span class="mw-cite-backlink"><b><a href="#cite_ref-labosat2_134-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarella2019" class="citation cs2">Barella, M. (2019), "Studying ReRAM devices at Low Earth Orbits using the LabOSat platform", <i><a href="/w/index.php?title=Radiation_Physics_and_Chemistry&action=edit&redlink=1" class="new" title="Radiation Physics and Chemistry (page does not exist)">Radiation Physics and Chemistry</a></i>, <b>154</b>: <span class="nowrap">85–</span>90, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019RaPC..154...85B">2019RaPC..154...85B</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.radphyschem.2018.07.005">10.1016/j.radphyschem.2018.07.005</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Radiation+Physics+and+Chemistry&rft.atitle=Studying+ReRAM+devices+at+Low+Earth+Orbits+using+the+LabOSat+platform&rft.volume=154&rft.pages=%3Cspan+class%3D%22nowrap%22%3E85-%3C%2Fspan%3E90&rft.date=2019&rft_id=info%3Adoi%2F10.1016%2Fj.radphyschem.2018.07.005&rft_id=info%3Abibcode%2F2019RaPC..154...85B&rft.aulast=Barella&rft.aufirst=M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-135"><span class="mw-cite-backlink"><b><a href="#cite_ref-135">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.unsam.edu.ar/escuelas/ciencia/labosat/">"UNSAM - Universidad Nacional de San Martín"</a>. <i>www.unsam.edu.ar</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.unsam.edu.ar&rft.atitle=UNSAM+-+Universidad+Nacional+de+San+Mart%C3%ADn&rft_id=http%3A%2F%2Fwww.unsam.edu.ar%2Fescuelas%2Fciencia%2Flabosat%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-136"><span class="mw-cite-backlink"><b><a href="#cite_ref-136">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.lanacion.com.ar/tecnologia/que-hace-labosat-el-laboratorio-electronico-dentro-de-los-nanosatelites-fresco-y-batata-nid1911090">"Qué hace LabOSat, el laboratorio electrónico dentro de los nanosatélites Fresco y Batata"</a>. <i><a href="/wiki/Telam" class="mw-redirect" title="Telam">Telam</a></i>. 2016-06-22.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Telam&rft.atitle=Qu%C3%A9+hace+LabOSat%2C+el+laboratorio+electr%C3%B3nico+dentro+de+los+nanosat%C3%A9lites+Fresco+y+Batata&rft.date=2016-06-22&rft_id=https%3A%2F%2Fwww.lanacion.com.ar%2Ftecnologia%2Fque-hace-labosat-el-laboratorio-electronico-dentro-de-los-nanosatelites-fresco-y-batata-nid1911090&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-137"><span class="mw-cite-backlink"><b><a href="#cite_ref-137">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://www.eetimes.com/document.asp?doc_id=1327068">"Startup Beats HP, Hynix to Memristor Learning"</a>. <i><a href="/wiki/EE_Times" title="EE Times">EE Times</a></i>. 2015-07-05.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=EE+Times&rft.atitle=Startup+Beats+HP%2C+Hynix+to+Memristor+Learning&rft.date=2015-07-05&rft_id=http%3A%2F%2Fwww.eetimes.com%2Fdocument.asp%3Fdoc_id%3D1327068&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-138"><span class="mw-cite-backlink"><b><a href="#cite_ref-138">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://space.skyrocket.de/doc_sdat/memsat.htm">"MemSat"</a>. <i>Gunter Space Page</i>. 2018-05-22.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Gunter+Space+Page&rft.atitle=MemSat&rft.date=2018-05-22&rft_id=http%3A%2F%2Fspace.skyrocket.de%2Fdoc_sdat%2Fmemsat.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-139"><span class="mw-cite-backlink"><b><a href="#cite_ref-139">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://eepower.com/news/mit-and-ericsson-collaborates-to-research-new-generation-of-energy-efficient-computing-networks/">"MIT and Ericsson Collaborates to Research New Generation of Energy-Efficient Computing Networks - News"</a>. <i>eepower.com</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=eepower.com&rft.atitle=MIT+and+Ericsson+Collaborates+to+Research+New+Generation+of+Energy-Efficient+Computing+Networks+-+News&rft_id=https%3A%2F%2Feepower.com%2Fnews%2Fmit-and-ericsson-collaborates-to-research-new-generation-of-energy-efficient-computing-networks%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-140"><span class="mw-cite-backlink"><b><a href="#cite_ref-140">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.allaboutcircuits.com/news/mit-and-ericsson-set-goals-zero-power-devices-new-field-lithionics/">"MIT and Ericsson Set Goals for Zero-power Devices and a New Field—"Lithionics" - News"</a>. <i>www.allaboutcircuits.com</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.allaboutcircuits.com&rft.atitle=MIT+and+Ericsson+Set+Goals+for+Zero-power+Devices+and+a+New+Field%E2%80%94%22Lithionics%22+-+News&rft_id=https%3A%2F%2Fwww.allaboutcircuits.com%2Fnews%2Fmit-and-ericsson-set-goals-zero-power-devices-new-field-lithionics%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> <li id="cite_note-141"><span class="mw-cite-backlink"><b><a href="#cite_ref-141">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhang2023" class="citation journal cs1">Zhang, Wenbin (2023-09-14). <a rel="nofollow" class="external text" href="https://www.science.org/doi/10.1126/science.ade3483">"Edge learning using a fully integrated neuro-inspired memristor chip"</a>. <i>Science</i>. <b>381</b> (6663): <span class="nowrap">1205–</span>1211. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2023Sci...381.1205Z">2023Sci...381.1205Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.ade3483">10.1126/science.ade3483</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/37708281">37708281</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:261736380">261736380</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Edge+learning+using+a+fully+integrated+neuro-inspired+memristor+chip&rft.volume=381&rft.issue=6663&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1205-%3C%2Fspan%3E1211&rft.date=2023-09-14&rft_id=info%3Adoi%2F10.1126%2Fscience.ade3483&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A261736380%23id-name%3DS2CID&rft_id=info%3Apmid%2F37708281&rft_id=info%3Abibcode%2F2023Sci...381.1205Z&rft.aulast=Zhang&rft.aufirst=Wenbin&rft_id=https%3A%2F%2Fwww.science.org%2Fdoi%2F10.1126%2Fscience.ade3483&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=44" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenChuaHwangWang2011" class="citation journal cs1">Chen, Dongmin; Chua, Leon O.; Hwang, Cheol Seong; Wang, Shih-Yuan; Waser, Rainer; Williams, R. Stanley; Yang, Jianhua, eds. (March 2011). "Special Issue: Memristive and Resistive Devices and Systems". <i><a href="/wiki/Applied_Physics_A" title="Applied Physics A">Applied Physics A</a></i>. <b>102</b> (4).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Applied+Physics+A&rft.atitle=Special+Issue%3A+Memristive+and+Resistive+Devices+and+Systems&rft.volume=102&rft.issue=4&rft.date=2011-03&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMazumderKangWaser2012" class="citation journal cs1">Mazumder, P.; Kang, S. M.; Waser, R., eds. (June 2012). "Special Issue: MEMRISTORS: DEVICES, MODELS, AND APPLICATIONS". <i><a href="/wiki/Proceedings_of_the_IEEE" title="Proceedings of the IEEE">Proceedings of the IEEE</a></i>. <b>100</b> (6): <span class="nowrap">1905–</span>2092. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FJPROC.2012.2197452">10.1109/JPROC.2012.2197452</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+IEEE&rft.atitle=Special+Issue%3A+MEMRISTORS%3A+DEVICES%2C+MODELS%2C+AND+APPLICATIONS&rft.volume=100&rft.issue=6&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1905-%3C%2Fspan%3E2092&rft.date=2012-06&rft_id=info%3Adoi%2F10.1109%2FJPROC.2012.2197452&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTetzlaff2013" class="citation book cs1">Tetzlaff, Ronald, ed. (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OOW5BAAAQBAJ"><i>Memristors and Memristive Systems</i></a>. <a href="/wiki/Springer_Science_%26_Business_Media" class="mw-redirect" title="Springer Science & Business Media">Springer Science & Business Media</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4614-9068-5">10.1007/978-1-4614-9068-5</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4614-9068-5" title="Special:BookSources/978-1-4614-9068-5"><bdi>978-1-4614-9068-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Memristors+and+Memristive+Systems&rft.pub=Springer+Science+%26+Business+Media&rft.date=2013&rft_id=info%3Adoi%2F10.1007%2F978-1-4614-9068-5&rft.isbn=978-1-4614-9068-5&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOOW5BAAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAdamatzkyChua2013" class="citation book cs1">Adamatzky, Andrew; Chua, Leon, eds. (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Mxu4BAAAQBAJ"><i>Memristor Networks</i></a>. <a href="/wiki/Springer_Science_%26_Business_Media" class="mw-redirect" title="Springer Science & Business Media">Springer Science & Business Media</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-02630-5">10.1007/978-3-319-02630-5</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-02630-5" title="Special:BookSources/978-3-319-02630-5"><bdi>978-3-319-02630-5</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:39739718">39739718</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Memristor+Networks&rft.pub=Springer+Science+%26+Business+Media&rft.date=2013&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A39739718%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2F978-3-319-02630-5&rft.isbn=978-3-319-02630-5&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DMxu4BAAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtkin2013" class="citation journal cs1">Atkin, Keith (May 2013). "An introduction to the memristor". <i>Physics Education</i>. <b>48</b> (3): <span class="nowrap">317–</span>321. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013PhyEd..48..317A">2013PhyEd..48..317A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0031-9120%2F48%2F3%2F317">10.1088/0031-9120/48/3/317</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121268844">121268844</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Education&rft.atitle=An+introduction+to+the+memristor&rft.volume=48&rft.issue=3&rft.pages=%3Cspan+class%3D%22nowrap%22%3E317-%3C%2Fspan%3E321&rft.date=2013-05&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121268844%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0031-9120%2F48%2F3%2F317&rft_id=info%3Abibcode%2F2013PhyEd..48..317A&rft.aulast=Atkin&rft.aufirst=Keith&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGale2014" class="citation journal cs1">Gale, Ella (2014-10-01). "TiO<sub>2</sub>-based memristors and ReRAM: materials, mechanisms and models (a review)". <i>Semiconductor Science and Technology</i>. <b>29</b> (10): 104004. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1611.04456">1611.04456</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014SeScT..29j4004G">2014SeScT..29j4004G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0268-1242%2F29%2F10%2F104004">10.1088/0268-1242/29/10/104004</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5686212">5686212</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Semiconductor+Science+and+Technology&rft.atitle=TiO%3Csub%3E2%3C%2Fsub%3E-based+memristors+and+ReRAM%3A+materials%2C+mechanisms+and+models+%28a+review%29&rft.volume=29&rft.issue=10&rft.pages=104004&rft.date=2014-10-01&rft_id=info%3Aarxiv%2F1611.04456&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5686212%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0268-1242%2F29%2F10%2F104004&rft_id=info%3Abibcode%2F2014SeScT..29j4004G&rft.aulast=Gale&rft.aufirst=Ella&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTraversaDi_Ventra2015" class="citation journal cs1">Traversa, Fabio Lorenzo; Di Ventra, Massimiliano (November 2015). "Universal Memcomputing Machines". <i>IEEE Transactions on Neural Networks and Learning Systems</i>. <b>26</b> (11): <span class="nowrap">2702–</span>2715. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1405.0931">1405.0931</a></span>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.747.5690">10.1.1.747.5690</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTNNLS.2015.2391182">10.1109/TNNLS.2015.2391182</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25667360">25667360</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1406042">1406042</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Neural+Networks+and+Learning+Systems&rft.atitle=Universal+Memcomputing+Machines&rft.volume=26&rft.issue=11&rft.pages=%3Cspan+class%3D%22nowrap%22%3E2702-%3C%2Fspan%3E2715&rft.date=2015-11&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1406042%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1109%2FTNNLS.2015.2391182&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.747.5690%23id-name%3DCiteSeerX&rft_id=info%3Apmid%2F25667360&rft_id=info%3Aarxiv%2F1405.0931&rft.aulast=Traversa&rft.aufirst=Fabio+Lorenzo&rft.au=Di+Ventra%2C+Massimiliano&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaravelliCarbajal2019" class="citation journal cs1">Caravelli, Francesco; Carbajal, Juan Pablo (January 2019). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Ftechnologies6040118">"Memristors for the curious outsiders"</a>. <i>Technologies</i>. <b>6</b> (4): 118. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1812.03389">1812.03389</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Ftechnologies6040118">10.3390/technologies6040118</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:54464654">54464654</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Technologies&rft.atitle=Memristors+for+the+curious+outsiders&rft.volume=6&rft.issue=4&rft.pages=118&rft.date=2019-01&rft_id=info%3Aarxiv%2F1812.03389&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A54464654%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.3390%2Ftechnologies6040118&rft.aulast=Caravelli&rft.aufirst=Francesco&rft.au=Carbajal%2C+Juan+Pablo&rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Ftechnologies6040118&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaanJayadeviJames2017" class="citation journal cs1">Maan, Akshay Kumar; Jayadevi, Deepthi Anirudhan; James, Alex Pappachen (August 2017). "A Survey of Memristive Threshold Logic Circuits". <i>IEEE Transactions on Neural Networks and Learning Systems</i>. <b>28</b> (8): <span class="nowrap">1734–</span>1746. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1604.07121">1604.07121</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTNNLS.2016.2547842">10.1109/TNNLS.2016.2547842</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27164608">27164608</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1798273">1798273</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Neural+Networks+and+Learning+Systems&rft.atitle=A+Survey+of+Memristive+Threshold+Logic+Circuits&rft.volume=28&rft.issue=8&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1734-%3C%2Fspan%3E1746&rft.date=2017-08&rft_id=info%3Aarxiv%2F1604.07121&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1798273%23id-name%3DS2CID&rft_id=info%3Apmid%2F27164608&rft_id=info%3Adoi%2F10.1109%2FTNNLS.2016.2547842&rft.aulast=Maan&rft.aufirst=Akshay+Kumar&rft.au=Jayadevi%2C+Deepthi+Anirudhan&rft.au=James%2C+Alex+Pappachen&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGhosh,_M.Singh,_A.Borah,_S._S.Vista,_J.2022" class="citation journal cs1">Ghosh, M., Singh, A., Borah, S. S., Vista, J., Ranjan, A., Kumar, S. (2022). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1109/ted.2022.3160940">"MOSFET-based memristor for high-frequency signal processing"</a>. <i>IEEE Transactions on Electron Devices</i>. <b>69</b> (5): <span class="nowrap">2248–</span>2255. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022ITED...69.2248G">2022ITED...69.2248G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Fted.2022.3160940">10.1109/ted.2022.3160940</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0018-9383">0018-9383</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:247889089">247889089</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Electron+Devices&rft.atitle=MOSFET-based+memristor+for+high-frequency+signal+processing&rft.volume=69&rft.issue=5&rft.pages=%3Cspan+class%3D%22nowrap%22%3E2248-%3C%2Fspan%3E2255&rft.date=2022&rft_id=info%3Adoi%2F10.1109%2Fted.2022.3160940&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A247889089%23id-name%3DS2CID&rft.issn=0018-9383&rft_id=info%3Abibcode%2F2022ITED...69.2248G&rft.au=Ghosh%2C+M.&rft.au=Singh%2C+A.&rft.au=Borah%2C+S.+S.&rft.au=Vista%2C+J.&rft.au=Ranjan%2C+A.&rft.au=Kumar%2C+S.&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1109%2Fted.2022.3160940&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSingh,_A.Borah,_S._S.Ghosh,_M.2021" class="citation cs2">Singh, A., Borah, S. S., Ghosh, M. (2021), <i>Simple grounded meminductor emulator using transconductance amplifier</i>, IEEE</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Simple+grounded+meminductor+emulator+using+transconductance+amplifier&rft.pub=IEEE&rft.date=2021&rft.au=Singh%2C+A.&rft.au=Borah%2C+S.+S.&rft.au=Ghosh%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Memristor&action=edit&section=45" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Memristors" class="extiw" title="commons:Category:Memristors">Memristors</a></span>.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=n3XzuBt54ig"><span class="plainlinks">Finding the missing memristor</span></a> on <a href="/wiki/YouTube_video_(identifier)" class="mw-redirect" title="YouTube video (identifier)">YouTube</a></li> <li><a rel="nofollow" class="external text" href="http://memlinks.eu">Interactive database of memristor papers (2013)</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimonite2015" class="citation news cs1">Simonite, Tom (2015-04-21). <a rel="nofollow" class="external text" href="http://www.technologyreview.com/featuredstory/536786/machine-dreams">"Machine Dreams"</a>. Technology Review<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-12-05</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Dreams&rft.date=2015-04-21&rft.aulast=Simonite&rft.aufirst=Tom&rft_id=http%3A%2F%2Fwww.technologyreview.com%2Ffeaturedstory%2F536786%2Fmachine-dreams&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMemristor" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="https://www.sztucznainteligencja.org.pl/leon-chua-a-bulb-versus-google-go-player/">"Leon Chua: A bulb versus Google go player"</a> - (in Polish) an interview with Leon Chua, the creator of memristor</li> <li><a rel="nofollow" class="external text" href="https://www.sztucznainteligencja.org.pl/en/leon-chua-a-bulb-versus-google-go-player/">"Leon Chua: A bulb versus Google go player"</a> - (in English) an interview with Leon Chua, the creator of memristor</li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Emerging_technologies167" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="text-align: center;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Emerging_technologies" title="Template:Emerging technologies"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Emerging_technologies" title="Template talk:Emerging technologies"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Emerging_technologies" title="Special:EditPage/Template:Emerging technologies"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Emerging_technologies167" style="font-size:114%;margin:0 4em"><a href="/wiki/Emerging_technologies" title="Emerging technologies">Emerging technologies</a></div></th></tr><tr><th scope="row" class="navbox-group" style="text-align: center;;width:1%">Fields</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Electronics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/E-textiles" title="E-textiles">E-textiles</a></li> <li><a href="/wiki/Electronic_nose" title="Electronic nose">Electronic nose</a></li> <li><a href="/wiki/Flexible_electronics" title="Flexible electronics">Flexible electronics</a></li> <li><a class="mw-selflink selflink">Memristor</a></li> <li><a href="/wiki/Molecular_electronics" title="Molecular electronics">Molecular electronics</a></li> <li><a href="/wiki/Nanoelectromechanical_systems" title="Nanoelectromechanical systems">Nanoelectromechanical systems</a></li> <li><a href="/wiki/Spintronics" title="Spintronics">Spintronics</a></li> <li><a href="/wiki/Thermal_copper_pillar_bump" title="Thermal copper pillar bump">Thermal copper pillar bump</a></li> <li><a href="/wiki/Twistronics" title="Twistronics">Twistronics</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="text-align: center;;width:1%">Topics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Automation" title="Automation">Automation</a></li> <li><a href="/wiki/Collingridge_dilemma" title="Collingridge dilemma">Collingridge dilemma</a></li> <li><a href="/wiki/Differential_technological_development" title="Differential technological development">Differential technological development</a></li> <li><a href="/wiki/Disruptive_innovation" title="Disruptive innovation">Disruptive innovation</a></li> <li><a href="/wiki/Ephemeralization" title="Ephemeralization">Ephemeralization</a></li> <li><a href="/wiki/Ethics_of_technology" title="Ethics of technology">Ethics</a> <ul><li><a href="/wiki/Bioethics" title="Bioethics">Bioethics</a></li> <li><a href="/wiki/Cyberethics" title="Cyberethics">Cyberethics</a></li> <li><a href="/wiki/Neuroethics" title="Neuroethics">Neuroethics</a></li> <li><a href="/wiki/Robot_ethics" title="Robot ethics">Robot ethics</a></li></ul></li> <li><a href="/wiki/Exploratory_engineering" title="Exploratory engineering">Exploratory engineering</a></li> <li><a href="/wiki/Proactionary_principle" title="Proactionary principle">Proactionary principle</a></li> <li><a href="/wiki/Technological_change" title="Technological change">Technological change</a> <ul><li><a href="/wiki/Technological_unemployment" title="Technological unemployment">Technological unemployment</a></li></ul></li> <li><a href="/wiki/Technological_convergence" title="Technological convergence">Technological convergence</a></li> <li><a href="/wiki/Technological_evolution" title="Technological evolution">Technological evolution</a></li> <li><a href="/wiki/Technological_paradigm" title="Technological paradigm">Technological paradigm</a></li> <li><a href="/wiki/Technology_forecasting" title="Technology forecasting">Technology forecasting</a> <ul><li><a href="/wiki/Accelerating_change" title="Accelerating change">Accelerating change</a></li> <li><a href="/wiki/Future-oriented_technology_analysis" title="Future-oriented technology analysis">Future-oriented technology analysis</a></li> <li><a href="/wiki/Horizon_scanning" title="Horizon scanning">Horizon scanning</a></li> <li><a href="/wiki/Moore%27s_law" title="Moore's law">Moore's law</a></li> <li><a href="/wiki/Technological_singularity" title="Technological singularity">Technological singularity</a></li> <li><a href="/wiki/Technology_scouting" title="Technology scouting">Technology scouting</a></li></ul></li> <li><a href="/wiki/Technology_in_science_fiction" title="Technology in science fiction">Technology in science fiction</a></li> <li><a href="/wiki/Technology_readiness_level" title="Technology readiness level">Technology readiness level</a></li> <li><a href="/wiki/Technology_roadmap" title="Technology roadmap">Technology roadmap</a></li> <li><a href="/wiki/Transhumanism" title="Transhumanism">Transhumanism</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2" style="text-align: center;"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/List_of_emerging_technologies" title="List of emerging technologies">List</a></b></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Electronic_components254" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Electronic_components" title="Template:Electronic components"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Electronic_components" title="Template talk:Electronic components"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Electronic_components" title="Special:EditPage/Template:Electronic components"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Electronic_components254" style="font-size:114%;margin:0 4em"><a href="/wiki/Electronic_component" title="Electronic component">Electronic components</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Semiconductor_device" title="Semiconductor device">Semiconductor<br />devices</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/MOSFET" title="MOSFET">MOS <br />transistors</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Transistor" title="Transistor">Transistor</a></li> <li><a href="/wiki/NMOS_logic" title="NMOS logic">NMOS</a></li> <li><a href="/wiki/PMOS_logic" title="PMOS logic">PMOS</a></li> <li><a href="/wiki/BiCMOS" title="BiCMOS">BiCMOS</a></li> <li><a href="/wiki/Bio-FET" title="Bio-FET">BioFET</a></li> <li><a href="/wiki/Chemical_field-effect_transistor" title="Chemical field-effect transistor">Chemical field-effect transistor</a> (ChemFET)</li> <li><a href="/wiki/CMOS" title="CMOS">Complementary MOS</a> (CMOS)</li> <li><a href="/wiki/Depletion-load_NMOS_logic" title="Depletion-load NMOS logic">Depletion-load NMOS</a></li> <li><a href="/wiki/FinFET" class="mw-redirect" title="FinFET">Fin field-effect transistor</a> (FinFET)</li> <li><a href="/wiki/Floating-gate_MOSFET" title="Floating-gate MOSFET">Floating-gate MOSFET</a> (FGMOS)</li> <li><a href="/wiki/Insulated-gate_bipolar_transistor" title="Insulated-gate bipolar transistor">Insulated-gate bipolar transistor</a> (IGBT)</li> <li><a href="/wiki/ISFET" title="ISFET">ISFET</a></li> <li><a href="/wiki/LDMOS" title="LDMOS">LDMOS</a></li> <li><a href="/wiki/MOSFET" title="MOSFET">MOS field-effect transistor</a> (MOSFET)</li> <li><a href="/wiki/Multigate_device" title="Multigate device">Multi-gate field-effect transistor</a> (MuGFET)</li> <li><a href="/wiki/Power_MOSFET" title="Power MOSFET">Power MOSFET</a></li> <li><a href="/wiki/Thin-film_transistor" title="Thin-film transistor">Thin-film transistor</a> (TFT)</li> <li><a href="/wiki/VMOS" title="VMOS">VMOS</a></li> <li><a href="/wiki/Power_MOSFET#UMOS" title="Power MOSFET">UMOS</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Transistor" title="Transistor">Other <br />transistors</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bipolar_junction_transistor" title="Bipolar junction transistor">Bipolar junction transistor</a> (BJT)</li> <li><a href="/wiki/Darlington_transistor" title="Darlington transistor">Darlington transistor</a></li> <li><a href="/wiki/Diffused_junction_transistor" title="Diffused junction transistor">Diffused junction transistor</a></li> <li><a href="/wiki/Field-effect_transistor" title="Field-effect transistor">Field-effect transistor</a> (FET) <ul><li><a href="/wiki/JFET" title="JFET">Junction Gate FET (JFET)</a></li> <li><a href="/wiki/Organic_field-effect_transistor" title="Organic field-effect transistor">Organic FET (OFET)</a></li></ul></li> <li><a href="/wiki/Light-emitting_transistor" title="Light-emitting transistor">Light-emitting transistor</a> (LET) <ul><li><a href="/wiki/Organic_light-emitting_transistor" title="Organic light-emitting transistor">Organic LET (OLET)</a></li></ul></li> <li><a href="/wiki/Pentode_transistor" title="Pentode transistor">Pentode transistor</a></li> <li><a href="/wiki/Point-contact_transistor" title="Point-contact transistor">Point-contact transistor</a></li> <li><a href="/wiki/Programmable_unijunction_transistor" title="Programmable unijunction transistor">Programmable unijunction transistor</a> (PUT)</li> <li><a href="/wiki/Static_induction_transistor" title="Static induction transistor">Static induction transistor</a> (SIT)</li> <li><a href="/wiki/Tetrode_transistor" title="Tetrode transistor">Tetrode transistor</a></li> <li><a href="/wiki/Unijunction_transistor" title="Unijunction transistor">Unijunction transistor</a> (UJT)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Diode" title="Diode">Diodes</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Avalanche_diode" title="Avalanche diode">Avalanche diode</a></li> <li><a href="/wiki/Constant-current_diode" title="Constant-current diode">Constant-current diode</a> (CLD, CRD)</li> <li><a href="/wiki/Gunn_diode" title="Gunn diode">Gunn diode</a></li> <li><a href="/wiki/Laser_diode" title="Laser diode">Laser diode</a> (LD)</li> <li><a href="/wiki/Light-emitting_diode" title="Light-emitting diode">Light-emitting diode</a> (LED)</li> <li><a href="/wiki/OLED" title="OLED">Organic light-emitting diode</a> (OLED)</li> <li><a href="/wiki/Photodiode" title="Photodiode">Photodiode</a></li> <li><a href="/wiki/PIN_diode" title="PIN diode">PIN diode</a></li> <li><a href="/wiki/Schottky_diode" title="Schottky diode">Schottky diode</a></li> <li><a href="/wiki/Step_recovery_diode" title="Step recovery diode">Step recovery diode</a></li> <li><a href="/wiki/Zener_diode" title="Zener diode">Zener diode</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other <br />devices</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Printed_electronics" title="Printed electronics">Printed electronics</a></li> <li><a href="/wiki/Printed_circuit_board" title="Printed circuit board">Printed circuit board</a></li> <li><a href="/wiki/DIAC" title="DIAC">DIAC</a></li> <li><a href="/wiki/Heterostructure_barrier_varactor" title="Heterostructure barrier varactor">Heterostructure barrier varactor</a></li> <li><a href="/wiki/Integrated_circuit" title="Integrated circuit">Integrated circuit</a> (IC)</li> <li><a href="/wiki/Hybrid_integrated_circuit" title="Hybrid integrated circuit">Hybrid integrated circuit</a></li> <li><a href="/wiki/Light_emitting_capacitor" class="mw-redirect" title="Light emitting capacitor">Light emitting capacitor</a> (LEC)</li> <li><a href="/wiki/Memistor" title="Memistor">Memistor</a></li> <li><a class="mw-selflink selflink">Memristor</a></li> <li><a href="/wiki/Memtransistor" title="Memtransistor">Memtransistor</a></li> <li><a href="/wiki/Memory_cell_(computing)" title="Memory cell (computing)">Memory cell</a></li> <li><a href="/wiki/Metal-oxide_varistor" class="mw-redirect" title="Metal-oxide varistor">Metal-oxide varistor</a> (MOV)</li> <li><a href="/wiki/Mixed-signal_integrated_circuit" title="Mixed-signal integrated circuit">Mixed-signal integrated circuit</a></li> <li><a href="/wiki/MOS_integrated_circuit" class="mw-redirect" title="MOS integrated circuit">MOS integrated circuit</a> (MOS IC)</li> <li><a href="/wiki/Organic_semiconductor" title="Organic semiconductor">Organic semiconductor</a></li> <li><a href="/wiki/Photodetector" title="Photodetector">Photodetector</a></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">Quantum circuit</a></li> <li><a href="/wiki/RF_CMOS" title="RF CMOS">RF CMOS</a></li> <li><a href="/wiki/Silicon_controlled_rectifier" title="Silicon controlled rectifier">Silicon controlled rectifier</a> (SCR)</li> <li><a href="/wiki/Solaristor" title="Solaristor">Solaristor</a></li> <li><a href="/wiki/Static_induction_thyristor" title="Static induction thyristor">Static induction thyristor</a> (SITh)</li> <li><a href="/wiki/Three-dimensional_integrated_circuit" title="Three-dimensional integrated circuit">Three-dimensional integrated circuit</a> (3D IC)</li> <li><a href="/wiki/Thyristor" title="Thyristor">Thyristor</a></li> <li><a href="/wiki/Trancitor" title="Trancitor">Trancitor</a></li> <li><a href="/wiki/TRIAC" title="TRIAC">TRIAC</a></li> <li><a href="/wiki/Varicap" title="Varicap">Varicap</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Voltage_regulator" title="Voltage regulator">Voltage regulators</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Linear_regulator" title="Linear regulator">Linear regulator</a></li> <li><a href="/wiki/Low-dropout_regulator" title="Low-dropout regulator">Low-dropout regulator</a></li> <li><a href="/wiki/Switching_regulator" class="mw-redirect" title="Switching regulator">Switching regulator</a></li> <li><a href="/wiki/Buck_converter" title="Buck converter">Buck</a></li> <li><a href="/wiki/Boost_converter" title="Boost converter">Boost</a></li> <li><a href="/wiki/Buck%E2%80%93boost_converter" title="Buck–boost converter">Buck–boost</a></li> <li><a href="/wiki/Split-pi_topology" title="Split-pi topology">Split-pi</a></li> <li><a href="/wiki/%C4%86uk_converter" title="Ćuk converter">Ćuk</a></li> <li><a href="/wiki/Single-ended_primary-inductor_converter" title="Single-ended primary-inductor converter">SEPIC</a></li> <li><a href="/wiki/Charge_pump" title="Charge pump">Charge pump</a></li> <li><a href="/wiki/Switched_capacitor" title="Switched capacitor">Switched capacitor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Vacuum_tube" title="Vacuum tube">Vacuum tubes</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Acorn_tube" title="Acorn tube">Acorn tube</a></li> <li><a href="/wiki/Audion" title="Audion">Audion</a></li> <li><a href="/wiki/Beam_tetrode" title="Beam tetrode">Beam tetrode</a></li> <li><a href="/wiki/Hot-wire_barretter" title="Hot-wire barretter">Barretter</a></li> <li><a href="/wiki/Compactron" title="Compactron">Compactron</a></li> <li><a href="/wiki/Vacuum_diode" class="mw-redirect" title="Vacuum diode">Diode</a></li> <li><a href="/wiki/Fleming_valve" title="Fleming valve">Fleming valve</a></li> <li><a href="/wiki/Neutron_generator" title="Neutron generator">Neutron tube</a></li> <li><a href="/wiki/Nonode" title="Nonode">Nonode</a></li> <li><a href="/wiki/Nuvistor" title="Nuvistor">Nuvistor</a></li> <li><a href="/wiki/Pentagrid_converter" title="Pentagrid converter">Pentagrid</a> (Hexode, Heptode, Octode)</li> <li><a href="/wiki/Pentode" title="Pentode">Pentode</a></li> <li><a href="/wiki/Photomultiplier_tube" title="Photomultiplier tube">Photomultiplier</a></li> <li><a href="/wiki/Phototube" title="Phototube">Phototube</a></li> <li><a href="/wiki/Tetrode" title="Tetrode">Tetrode</a></li> <li><a href="/wiki/Triode" title="Triode">Triode</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Vacuum_tube" title="Vacuum tube">Vacuum tubes</a> (<a href="/wiki/Electromagnetic_radiation" title="Electromagnetic radiation">RF</a>)</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Backward-wave_oscillator" title="Backward-wave oscillator">Backward-wave oscillator</a> (BWO)</li> <li><a href="/wiki/Cavity_magnetron" title="Cavity magnetron">Cavity magnetron</a></li> <li><a href="/wiki/Crossed-field_amplifier" title="Crossed-field amplifier">Crossed-field amplifier</a> (CFA)</li> <li><a href="/wiki/Gyrotron" title="Gyrotron">Gyrotron</a></li> <li><a href="/wiki/Inductive_output_tube" title="Inductive output tube">Inductive output tube</a> (IOT)</li> <li><a href="/wiki/Klystron" title="Klystron">Klystron</a></li> <li><a href="/wiki/Maser" title="Maser">Maser</a></li> <li><a href="/wiki/Sutton_tube" title="Sutton tube">Sutton tube</a></li> <li><a href="/wiki/Traveling-wave_tube" title="Traveling-wave tube">Traveling-wave tube</a> (TWT)</li> <li><a href="/wiki/X-ray_tube" title="X-ray tube">X-ray tube</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Cathode-ray_tube" title="Cathode-ray tube">Cathode-ray tubes</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Beam_deflection_tube" title="Beam deflection tube">Beam deflection tube</a></li> <li><a href="/wiki/Charactron" title="Charactron">Charactron</a></li> <li><a href="/wiki/Iconoscope" title="Iconoscope">Iconoscope</a></li> <li><a href="/wiki/Magic_eye_tube" title="Magic eye tube">Magic eye tube</a></li> <li><a href="/wiki/Monoscope" title="Monoscope">Monoscope</a></li> <li><a href="/wiki/Selectron_tube" title="Selectron tube">Selectron tube</a></li> <li><a href="/wiki/Storage_tube" title="Storage tube">Storage tube</a></li> <li><a href="/wiki/Trochotron" class="mw-redirect" title="Trochotron">Trochotron</a></li> <li><a href="/wiki/Video_camera_tube" title="Video camera tube">Video camera tube</a></li> <li><a href="/wiki/Williams_tube" title="Williams tube">Williams tube</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Gas-filled_tube" title="Gas-filled tube">Gas-filled tubes</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cold_cathode" title="Cold cathode">Cold cathode</a></li> <li><a href="/wiki/Crossatron" title="Crossatron">Crossatron</a></li> <li><a href="/wiki/Dekatron" title="Dekatron">Dekatron</a></li> <li><a href="/wiki/Ignitron" title="Ignitron">Ignitron</a></li> <li><a href="/wiki/Krytron" title="Krytron">Krytron</a></li> <li><a href="/wiki/Mercury-arc_valve" title="Mercury-arc valve">Mercury-arc valve</a></li> <li><a href="/wiki/Neon_lamp" title="Neon lamp">Neon lamp</a></li> <li><a href="/wiki/Nixie_tube" title="Nixie tube">Nixie tube</a></li> <li><a href="/wiki/Thyratron" title="Thyratron">Thyratron</a></li> <li><a href="/wiki/Trigatron" title="Trigatron">Trigatron</a></li> <li><a href="/wiki/Voltage-regulator_tube" title="Voltage-regulator tube">Voltage-regulator tube</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;">Adjustable</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Potentiometer" title="Potentiometer">Potentiometer</a> <ul><li><a href="/wiki/Digital_potentiometer" title="Digital potentiometer">digital</a></li></ul></li> <li><a href="/wiki/Variable_capacitor" title="Variable capacitor">Variable capacitor</a></li> <li><a href="/wiki/Varicap" title="Varicap">Varicap</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;">Passive</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Connector <ul><li><a href="/wiki/Audio_and_video_interfaces_and_connectors" title="Audio and video interfaces and connectors">audio and video</a></li> <li><a href="/wiki/AC_power_plugs_and_sockets" title="AC power plugs and sockets">electrical power</a></li> <li><a href="/wiki/RF_connector" title="RF connector">RF</a></li></ul></li> <li><a href="/wiki/Electrolytic_detector" title="Electrolytic detector">Electrolytic detector</a></li> <li><a href="/wiki/Ferrite_core" title="Ferrite core">Ferrite</a></li> <li><a href="/wiki/Antifuse" title="Antifuse">Antifuse</a></li> <li><a href="/wiki/Fuse_(electrical)" title="Fuse (electrical)">Fuse</a> <ul><li><a href="/wiki/Resettable_fuse" title="Resettable fuse">resettable</a></li> <li><a href="/wiki/EFUSE" class="mw-redirect" title="EFUSE">eFUSE</a></li></ul></li> <li><a href="/wiki/Resistor" title="Resistor">Resistor</a></li> <li><a href="/wiki/Switch" title="Switch">Switch</a></li> <li><a href="/wiki/Thermistor" title="Thermistor">Thermistor</a></li> <li><a href="/wiki/Transformer" title="Transformer">Transformer</a></li> <li><a href="/wiki/Varistor" title="Varistor">Varistor</a></li> <li><a href="/wiki/Wire" title="Wire">Wire</a> <ul><li><a href="/wiki/Wollaston_wire" title="Wollaston wire">Wollaston wire</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Electrical_reactance" title="Electrical reactance">Reactive</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Capacitor" title="Capacitor">Capacitor</a> <ul><li><a href="/wiki/Capacitor_types" title="Capacitor types">types</a></li></ul></li> <li><a href="/wiki/Ceramic_resonator" title="Ceramic resonator">Ceramic resonator</a></li> <li><a href="/wiki/Crystal_oscillator" title="Crystal oscillator">Crystal oscillator</a></li> <li><a href="/wiki/Inductor" title="Inductor">Inductor</a></li> <li><a href="/wiki/Parametron" title="Parametron">Parametron</a></li> <li><a href="/wiki/Relay" title="Relay">Relay</a> <ul><li><a href="/wiki/Reed_relay" title="Reed relay">reed relay</a></li> <li><a href="/wiki/Mercury_relay" title="Mercury relay">mercury relay</a></li></ul></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Differentiable_computing254" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Differentiable_computing" title="Template:Differentiable computing"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Differentiable_computing" title="Template talk:Differentiable computing"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Differentiable_computing" title="Special:EditPage/Template:Differentiable computing"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Differentiable_computing254" style="font-size:114%;margin:0 4em">Differentiable computing</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Differentiable_function" title="Differentiable function">General</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><b><a href="/wiki/Differentiable_programming" title="Differentiable programming">Differentiable programming</a></b></li> <li><a href="/wiki/Information_geometry" title="Information geometry">Information geometry</a></li> <li><a href="/wiki/Statistical_manifold" title="Statistical manifold">Statistical manifold</a></li> <li><a href="/wiki/Automatic_differentiation" title="Automatic differentiation">Automatic differentiation</a></li> <li><a href="/wiki/Neuromorphic_computing" title="Neuromorphic computing">Neuromorphic computing</a></li> <li><a href="/wiki/Pattern_recognition" title="Pattern recognition">Pattern recognition</a></li> <li><a href="/wiki/Ricci_calculus" title="Ricci calculus">Ricci calculus</a></li> <li><a href="/wiki/Computational_learning_theory" title="Computational learning theory">Computational learning theory</a></li> <li><a href="/wiki/Inductive_bias" title="Inductive bias">Inductive bias</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Hardware</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Graphcore" title="Graphcore">IPU</a></li> <li><a href="/wiki/Tensor_Processing_Unit" title="Tensor Processing Unit">TPU</a></li> <li><a href="/wiki/Vision_processing_unit" title="Vision processing unit">VPU</a></li> <li><a class="mw-selflink selflink">Memristor</a></li> <li><a href="/wiki/SpiNNaker" title="SpiNNaker">SpiNNaker</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Software libraries</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/TensorFlow" title="TensorFlow">TensorFlow</a></li> <li><a href="/wiki/PyTorch" title="PyTorch">PyTorch</a></li> <li><a href="/wiki/Keras" title="Keras">Keras</a></li> <li><a href="/wiki/Scikit-learn" title="Scikit-learn">scikit-learn</a></li> <li><a href="/wiki/Theano_(software)" title="Theano (software)">Theano</a></li> <li><a href="/wiki/JAX_(software)" title="JAX (software)">JAX</a></li> <li><a href="/wiki/Flux_(machine-learning_framework)" title="Flux (machine-learning framework)">Flux.jl</a></li> <li><a href="/wiki/MindSpore" title="MindSpore">MindSpore</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Symbol_portal_class.svg" class="mw-file-description" title="Portal"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/16px-Symbol_portal_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/23px-Symbol_portal_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/31px-Symbol_portal_class.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span> Portals <ul><li><a href="/wiki/Portal:Computer_programming" title="Portal:Computer programming">Computer programming</a></li> <li><a href="/wiki/Portal:Technology" title="Portal:Technology">Technology</a></li></ul></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox1342" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q212923#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/1022027832">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh2011005950">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Memristors"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb17099191k">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Memristors"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb17099191k">BnF data</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="memristory"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph873677&CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.nli.org.il/en/authorities/987007577159805171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐868759585b‐vvrgc Cached time: 20250214185212 Cache expiry: 1228081 Reduced expiry: true Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.982 seconds Real time usage: 2.499 seconds Preprocessor visited node count: 16552/1000000 Post‐expand include size: 461023/2097152 bytes Template argument size: 13782/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 8/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 600284/5000000 bytes Lua time usage: 1.212/10.000 seconds Lua memory usage: 11299271/52428800 bytes Lua Profile: MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 280 ms 21.2% ? 240 ms 18.2% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 160 ms 12.1% dataWrapper <mw.lua:672> 140 ms 10.6% <mw.lua:694> 60 ms 4.5% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::sub 40 ms 3.0% <Module:Citation/CS1/Utilities:472> 40 ms 3.0% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getEntityStatements 40 ms 3.0% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getAllExpandedArguments 40 ms 3.0% select_one <Module:Citation/CS1/Utilities:429> 20 ms 1.5% [others] 260 ms 19.7% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2083.297 1 -total 55.31% 1152.353 2 Template:Reflist 18.72% 389.935 69 Template:Citation 17.52% 365.069 52 Template:Cite_journal 10.47% 218.056 1 Template:Cite_report 5.38% 112.050 86 Template:Math 4.36% 90.789 1 Template:Short_description 4.20% 87.398 1 Template:Memory_types 4.01% 83.497 1 Template:Sidebar_with_collapsible_lists 4.01% 83.455 1 Template:Efn --> <!-- Saved in parser cache with key enwiki:pcache:14246162:|#|:idhash:canonical and timestamp 20250214185212 and revision id 1265796564. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Memristor&oldid=1265796564">https://en.wikipedia.org/w/index.php?title=Memristor&oldid=1265796564</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Electrical_components" title="Category:Electrical components">Electrical components</a></li><li><a href="/wiki/Category:American_inventions" title="Category:American inventions">American inventions</a></li><li><a href="/wiki/Category:Electronic_circuits_in_computer_storage" title="Category:Electronic circuits in computer storage">Electronic circuits in computer storage</a></li><li><a href="/wiki/Category:Experimental_electrical_components" title="Category:Experimental electrical components">Experimental electrical components</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">CS1 maint: multiple names: authors list</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_May_2022" title="Category:Use dmy dates from May 2022">Use dmy dates from May 2022</a></li><li><a href="/wiki/Category:All_articles_with_vague_or_ambiguous_time" title="Category:All articles with vague or ambiguous time">All articles with vague or ambiguous time</a></li><li><a href="/wiki/Category:Vague_or_ambiguous_time_from_September_2024" title="Category:Vague or ambiguous time from September 2024">Vague or ambiguous time from September 2024</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_January_2020" title="Category:Articles with unsourced statements from January 2020">Articles with unsourced statements from January 2020</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_January_2020" title="Category:Wikipedia articles needing clarification from January 2020">Wikipedia articles needing clarification from January 2020</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 28 December 2024, at 18:22<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Memristor&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Memristor</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>37 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-b766959bd-btqzh","wgBackendResponseTime":149,"wgPageParseReport":{"limitreport":{"cputime":"1.982","walltime":"2.499","ppvisitednodes":{"value":16552,"limit":1000000},"postexpandincludesize":{"value":461023,"limit":2097152},"templateargumentsize":{"value":13782,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":8,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":600284,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 2083.297 1 -total"," 55.31% 1152.353 2 Template:Reflist"," 18.72% 389.935 69 Template:Citation"," 17.52% 365.069 52 Template:Cite_journal"," 10.47% 218.056 1 Template:Cite_report"," 5.38% 112.050 86 Template:Math"," 4.36% 90.789 1 Template:Short_description"," 4.20% 87.398 1 Template:Memory_types"," 4.01% 83.497 1 Template:Sidebar_with_collapsible_lists"," 4.01% 83.455 1 Template:Efn"]},"scribunto":{"limitreport-timeusage":{"value":"1.212","limit":"10.000"},"limitreport-memusage":{"value":11299271,"limit":52428800},"limitreport-profile":[["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","280","21.2"],["?","240","18.2"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","160","12.1"],["dataWrapper \u003Cmw.lua:672\u003E","140","10.6"],["\u003Cmw.lua:694\u003E","60","4.5"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::sub","40","3.0"],["\u003CModule:Citation/CS1/Utilities:472\u003E","40","3.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getEntityStatements","40","3.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getAllExpandedArguments","40","3.0"],["select_one \u003CModule:Citation/CS1/Utilities:429\u003E","20","1.5"],["[others]","260","19.7"]]},"cachereport":{"origin":"mw-web.eqiad.main-868759585b-vvrgc","timestamp":"20250214185212","ttl":1228081,"transientcontent":true}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Memristor","url":"https:\/\/en.wikipedia.org\/wiki\/Memristor","sameAs":"http:\/\/www.wikidata.org\/entity\/Q212923","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q212923","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2007-11-14T18:26:48Z","dateModified":"2024-12-28T18:22:16Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/0\/00\/Memristor_%2850665029093%29_%28cropped%29.jpg","headline":"conceptual passive electric dipole with varying yet persistent resistance"}</script> </body> </html>