CINXE.COM
Search results for: reactivity
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: reactivity</title> <meta name="description" content="Search results for: reactivity"> <meta name="keywords" content="reactivity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="reactivity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="reactivity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 274</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: reactivity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">274</span> Reactivity Study on South African Calcium Based Material Using a pH-Stat and Citric Acid: A Statistical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto">Hilary Rutto</a>, <a href="https://publications.waset.org/abstracts/search?q=Mbali%20Chiliza"> Mbali Chiliza</a>, <a href="https://publications.waset.org/abstracts/search?q=Tumisang%20Seodigeng"> Tumisang Seodigeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study on reactivity of calcined calcium-based material is very important in dry flue gas desulphurisation (FGD) process, so as to produce absorbent with high sulphur dioxide capture capacity during the hydration process. The effect of calcining temperature and time on the reactivity of calcined limestone material were investigated. In this study, the reactivity was measured using a pH stat apparatus and also confirming the result by performing citric acid reactivity test. The reactivity was calculated using the shrinking core model. Based on the experiments, a mathematical model is developed to correlate the effect of time and temperature to the reactivity of absorbent. The calcination process variables were temperature (700 -1000°C) and time (1-6 hrs). It was found that reactivity increases with an increase in time and temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reactivity" title="reactivity">reactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=citric%20acid" title=" citric acid"> citric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=calcination" title=" calcination"> calcination</a>, <a href="https://publications.waset.org/abstracts/search?q=time" title=" time"> time</a> </p> <a href="https://publications.waset.org/abstracts/57923/reactivity-study-on-south-african-calcium-based-material-using-a-ph-stat-and-citric-acid-a-statistical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">273</span> Investigation of the GFR2400 Reactivity Control System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J%C3%A1n%20Ha%C5%A1%C4%8D%C3%ADk">Ján Haščík</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%A0tefan%20%C4%8Cerba"> Štefan Čerba</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20L%C3%BCley"> Jakub Lüley</a>, <a href="https://publications.waset.org/abstracts/search?q=Branislav%20Vrban"> Branislav Vrban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presented paper is related to the design methods and neutronic characterization of the reactivity control system in the large power unit of Generation IV Gas cooled Fast Reactor – GFR2400. The reactor core is based on carbide pin fuel type with the application of refractory metallic liners used to enhance the fission product retention of the SiC cladding. The heterogeneous design optimization of control rod is presented and the results of rods worth and their interferences in a core are evaluated. In addition, the idea of reflector removal as an additive reactivity management option is investigated and briefly described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20rods%20design" title="control rods design">control rods design</a>, <a href="https://publications.waset.org/abstracts/search?q=GFR2400" title=" GFR2400"> GFR2400</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20spot" title=" hot spot"> hot spot</a>, <a href="https://publications.waset.org/abstracts/search?q=movable%20reflector" title=" movable reflector"> movable reflector</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity" title=" reactivity "> reactivity </a> </p> <a href="https://publications.waset.org/abstracts/9596/investigation-of-the-gfr2400-reactivity-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">272</span> Histamine Skin Reactivity Increased with Body Mass Index in Korean Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Hong%20Kim">Jeong Hong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Wan%20Kang"> Ju Wan Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Histamine skin prick testing is most commonly used to diagnose immunoglobulin E (IgE)-mediated allergic diseases, and histamine reactivity is used as a standardized positive control in the interpretation of a skin prick test. However, reactivity to histamine differs among individuals for reasons that are poorly understood. The present study aimed to evaluate the potential association between body mass index (BMI) and histamine skin reactivity in children. Methods: A total of 451 children (246 boys, 205 girls) aged 7–8 years were enrolled in this study. The skin prick test was performed with 26 aeroallergens commonly found in Korea. Other information was collected, including sex, age, BMI, parental allergy history, and parental smoking status. Multivariate analysis was used to confirm the association between histamine skin reactivity and BMI. Results: The histamine wheal size was revealed to be associated with BMI (Spearman's Rho 0.161, p < 0.001). This association was confirmed by multivariate analysis, after adjusting for sex, age, parental allergy history, parental smoking status, and allergic sensitization (coefficient B 0.071, 95% confidence interval 0.030–0.112). Conclusions: Skin responses to histamine were primarily correlated with increased BMI. Further studies are needed to understand the clinical implication of BMI when interpreting the results of skin prick test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allergy" title="allergy">allergy</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index" title=" body mass index"> body mass index</a>, <a href="https://publications.waset.org/abstracts/search?q=histamine" title=" histamine"> histamine</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20prick%20test" title=" skin prick test"> skin prick test</a> </p> <a href="https://publications.waset.org/abstracts/21778/histamine-skin-reactivity-increased-with-body-mass-index-in-korean-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">271</span> Antibody Reactivity of Synthetic Peptides Belonging to Proteins Encoded by Genes Located in Mycobacterium tuberculosis-Specific Genomic Regions of Differences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abu%20Salim%20Mustafa">Abu Salim Mustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The comparisons of mycobacterial genomes have identified several <em>Mycobacterium tuberculosis</em>-specific genomic regions that are absent in other mycobacteria and are known as regions of differences. Due to <em>M. tuberculosis</em>-specificity, the peptides encoded by these regions could be useful in the specific diagnosis of tuberculosis. To explore this possibility, overlapping synthetic peptides corresponding to 39 proteins predicted to be encoded by genes present in regions of differences were tested for antibody-reactivity with sera from tuberculosis patients and healthy subjects. The results identified four immunodominant peptides corresponding to four different proteins, with three of the peptides showing significantly stronger antibody reactivity and rate of positivity with sera from tuberculosis patients than healthy subjects. The fourth peptide was recognized equally well by the sera of tuberculosis patients as well as healthy subjects. Predication of antibody epitopes by bioinformatics analyses using ABCpred server predicted multiple linear epitopes in each peptide. Furthermore, peptide sequence analysis for sequence identity using BLAST suggested <em>M. tuberculosis</em>-specificity for the three peptides that had preferential reactivity with sera from tuberculosis patients, but the peptide with equal reactivity with sera of TB patients and healthy subjects showed significant identity with sequences present in nob-tuberculous mycobacteria. The three identified <em>M. tuberculosis</em>-specific immunodominant peptides may be useful in the serological diagnosis of tuberculosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genomic%20regions%20of%20differences" title="genomic regions of differences">genomic regions of differences</a>, <a href="https://publications.waset.org/abstracts/search?q=Mycobacterium%20tuberculossis" title=" Mycobacterium tuberculossis"> Mycobacterium tuberculossis</a>, <a href="https://publications.waset.org/abstracts/search?q=peptides" title=" peptides"> peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=serodiagnosis" title=" serodiagnosis"> serodiagnosis</a> </p> <a href="https://publications.waset.org/abstracts/83354/antibody-reactivity-of-synthetic-peptides-belonging-to-proteins-encoded-by-genes-located-in-mycobacterium-tuberculosis-specific-genomic-regions-of-differences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> Comparing Spontaneous Hydrolysis Rates of Activated Models of DNA and RNA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Sasi">Mohamed S. Sasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20M.%20Mlitan"> Adel M. Mlitan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulfattah%20M.%20Alkherraz"> Abdulfattah M. Alkherraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research project aims to investigate difference in relative rates concerning phosphoryl transfer relevant to biological catalysis of DNA and RNA in the pH-independent reactions. Activated Models of DNA and RNA for alkyl-aryl phosphate diesters (with 4-nitrophenyl as a good leaving group) have successfully been prepared to gather kinetic parameters. Eyring plots for the pH–independent hydrolysis of 1 and 2 were established at different temperatures in the range 100–160 °C. These measurements have been used to provide a better estimate for the difference in relative rates between the reactivity of DNA and RNA cleavage. Eyring plot gave an extrapolated rate of kH2O = 1 × 10-10 s -1 for 1 (RNA model) and 2 (DNA model) at 25°C. Comparing the reactivity of RNA model and DNA model shows that the difference in relative rates in the pH-independent reactions is surprisingly very similar at 25°. This allows us to obtain chemical insights into how biological catalysts such as enzymes may have evolved to perform their current functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20and%20RNA%20models" title="DNA and RNA models">DNA and RNA models</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20rates" title=" relative rates"> relative rates</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity" title=" reactivity"> reactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphoryl%20transfe" title=" phosphoryl transfe"> phosphoryl transfe</a> </p> <a href="https://publications.waset.org/abstracts/17090/comparing-spontaneous-hydrolysis-rates-of-activated-models-of-dna-and-rna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">269</span> Profile of Cross-Reactivity Allergens Highlighted by Multiplex Technology “Alex Microchip Technique” in the Diagnosis of Type I Hypersensitivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gadiri%20Sabiha">Gadiri Sabiha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Current allergy diagnostic tools using Multiplex technology have made it possible to increase the efficiency of the search for specific IgE. This opportunity is provided by the newly developed “Alex Biochip”, consisting of a panel of 282 allergens in native and molecular form, a CCD inhibitor, and the potential for detecting cross-reactive allergens. We evaluated the performance of this technology in detecting cross-reactivity in previously explored patients. Material/Method: The sera of 39 patients presenting sensitization and polysensitization profiles were explored. The search for specific IgE is carried out by the Alex ® IgE Biochip, and the results are analyzed by nature and by molecular family of allergens using specific software. Results/Discussion: The analysis gave a particular profile of cross-reactivity allergens: 33% for the Ole e1 family, 31% for NPC2, 26% for storage proteins, 20% for Tropomyosin, 10% for LTPs, 10% for Arginine Kinase and 10% for Uteroglobin CCDs were absent in all patients. The “Ole e1” allergen is responsible for a pollen-pollen cross allergy. The storage proteins found and LTP are not species-specific, causing cross-pollen-food allergy. The nDer p2 of the NPC2 family is responsible for cross-reactivity between mite species. Conclusion: The cross-reactivities responsible for mixed syndromes at diagnosis in our patients were dominated by pollen-pollen and pollen-food syndromes. They allow the identification of severity factors linked to the prognosis and the best-adapted immunotherapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=specific%20IgE" title="specific IgE">specific IgE</a>, <a href="https://publications.waset.org/abstracts/search?q=allergy" title=" allergy"> allergy</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20reactivity" title=" cross reactivity"> cross reactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20allergens" title=" molecular allergens"> molecular allergens</a> </p> <a href="https://publications.waset.org/abstracts/172601/profile-of-cross-reactivity-allergens-highlighted-by-multiplex-technology-alex-microchip-technique-in-the-diagnosis-of-type-i-hypersensitivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">268</span> The Use of Polar Substituent Groups for Promoting Azo Disperse Dye Solubility and Reactivity for More Economic and Environmental Benign Applications: A Computational Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olaide%20O.%20Wahab">Olaide O. Wahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukman%20O.%20Olasunkanmi"> Lukman O. Olasunkanmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishna%20K.%20Govender"> Krishna K. Govender</a>, <a href="https://publications.waset.org/abstracts/search?q=Penny%20P.%20Govender"> Penny P. Govender</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The economic and environmental challenges associated with azo disperse dyes applications are due to poor aqueous solubility and low degradation tendency which stems from low chemical reactivity. Poor aqueous solubility property of this group of dyes necessitates the use of dispersing agents which increase operational costs and also release toxic chemical components into the environment, while their low degradation tendency is due to the high stability of the azo functional group (-N=N-) in their chemical structures. To address these problems, this study investigated theoretically the effects of some polar substituents on the aqueous solubility and reactivity properties of disperse yellow (DY) 119 dye with a view to theoretically develop new azo disperse dyes with improved solubility in water and higher degradation tendency in the environment using DMol³ computational code. All calculations were carried out using the Becke and Perdew version of Volsko-Wilk-Nusair (VWN-BP) level of density functional theory in conjunction with double numerical basis set containing polarization function (DNP). The aqueous solubility determination was achieved with conductor-like screening model for realistic solvation (COSMO-RS) in conjunction with known empirical solubility model, while the reactivity was predicted using frontier molecular orbital calculations. Most of the new derivatives studied showed evidence of higher aqueous solubility and degradation tendency compared to the parent dye. We conclude that these derivatives are promising alternative dyes for more economic and environmental benign dyeing practice and therefore recommend them for synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueous%20solubility" title="aqueous solubility">aqueous solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=azo%20disperse%20dye" title=" azo disperse dye"> azo disperse dye</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=disperse%20yellow%20119" title=" disperse yellow 119"> disperse yellow 119</a>, <a href="https://publications.waset.org/abstracts/search?q=DMol%C2%B3" title=" DMol³"> DMol³</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity" title=" reactivity"> reactivity</a> </p> <a href="https://publications.waset.org/abstracts/86086/the-use-of-polar-substituent-groups-for-promoting-azo-disperse-dye-solubility-and-reactivity-for-more-economic-and-environmental-benign-applications-a-computational-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">267</span> A Rationale to Describe Ambident Reactivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Ryan">David Ryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Breugst"> Martin Breugst</a>, <a href="https://publications.waset.org/abstracts/search?q=Turlough%20Downes"> Turlough Downes</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20A.%20Byrne"> Peter A. Byrne</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerard%20P.%20McGlacken"> Gerard P. McGlacken</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An ambident nucleophile is a nucleophile that possesses two or more distinct nucleophilic sites that are linked through resonance and are effectively “in competition” for reaction with an electrophile. Examples include enolates, pyridone anions, and nitrite anions, among many others. Reactions of ambident nucleophiles and electrophiles are extremely prevalent at all levels of organic synthesis. The principle of hard and soft acids and bases (the “HSAB principle”) is most commonly cited in the explanation of selectivities in such reactions. Although this rationale is pervasive in any discussion on ambident reactivity, the HSAB principle has received considerable criticism. As a result, the principle’s supplantation has become an area of active interest in recent years. This project focuses on developing a model for rationalizing ambident reactivity. Presented here is an approach that incorporates computational calculations and experimental kinetic data to construct Gibbs energy profile diagrams. The preferred site of alkylation of nitrite anion with a range of ‘hard’ and ‘soft’ alkylating agents was established by ¹H NMR spectroscopy. Pseudo-first-order rate constants were measured directly by ¹H NMR reaction monitoring, and the corresponding second-order constants and Gibbs energies of activation were derived. These, in combination with computationally derived standard Gibbs energies of reaction, were sufficient to construct Gibbs energy wells. By representing the ambident system as a series of overlapping Gibbs energy wells, a more intuitive picture of ambident reactivity emerges. Here, previously unexplained switches in reactivity in reactions involving closely related electrophiles are elucidated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambident" title="ambident">ambident</a>, <a href="https://publications.waset.org/abstracts/search?q=Gibbs" title=" Gibbs"> Gibbs</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleophile" title=" nucleophile"> nucleophile</a>, <a href="https://publications.waset.org/abstracts/search?q=rates" title=" rates"> rates</a> </p> <a href="https://publications.waset.org/abstracts/162495/a-rationale-to-describe-ambident-reactivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">266</span> Preliminary Study on the Factors Affecting Safety Parameters of (Th, U)O₂ Fuel Cycle: The Basis for Choosing Three Fissile Enrichment Zones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20H.%20Uguru">E. H. Uguru</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20A.%20Sani"> S. F. A. Sani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20U.%20Khandaker"> M. U. Khandaker</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Rabir"> M. H. Rabir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The beginning of cycle transient safety parameters is paramount for smooth reactor operation. The enhanced operational safety of UO₂ fuelled AP1000 reactor being the first using three fissile enrichment zones motivated this research for (Th, U)O₂ fuel. This study evaluated the impact of fissile enrichment, soluble boron, and gadolinia on the transient safety parameters to determine the basis for choosing the three fissile enrichment zones. Fuel assembly and core model of Westinghouse small modular reactor were investigated using different fuel and reactivity control arrangements. The Monte Carlo N-Particle eXtended (MCNPX) integrated with CINDER90 burn-up code was used for the calculations. The results show that the moderator temperature coefficient of reactivity (MTC) and the fuel temperature coefficient of reactivity (FTC) were respectively negative and decreased with increasing fissile enrichment. Soluble boron significantly decreased the MTC but slightly increased FTC while gadolinia followed the same trend with a minor impact. However, the MTC and FTC respectively decreased significantly with increasing change in temperature. These results provide a guide on the considerable factors in choosing the three fissile enrichment zones for (Th, U)O₂ fuel in anticipation of their impact on safety parameters. Therefore, this study provides foundational results on the factors that must be considered in choosing three fissile arrangement zones for (Th, U)O₂ fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reactivity" title="reactivity">reactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20parameters" title=" safety parameters"> safety parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20modular%20reactor" title=" small modular reactor"> small modular reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=soluble%20boron" title=" soluble boron"> soluble boron</a>, <a href="https://publications.waset.org/abstracts/search?q=thorium%20fuel%20cycle" title=" thorium fuel cycle"> thorium fuel cycle</a> </p> <a href="https://publications.waset.org/abstracts/115492/preliminary-study-on-the-factors-affecting-safety-parameters-of-th-uo2-fuel-cycle-the-basis-for-choosing-three-fissile-enrichment-zones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">265</span> Experimental and Numerical Analyses of Tehran Research Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Lashkari">A. Lashkari</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Khalafi"> H. Khalafi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Khazeminejad"> H. Khazeminejad</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khakshourniya"> S. Khakshourniya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a numerical model is presented. The model is used to analyze a steady state thermo-hydraulic and reactivity insertion transient in TRR reference cores respectively. The model predictions are compared with the experiments and PARET code results. The model uses the piecewise constant and lumped parameter methods for the coupled point kinetics and thermal-hydraulics modules respectively. The advantages of the piecewise constant method are simplicity, efficiency and accuracy. A main criterion on the applicability range of this model is that the exit coolant temperature remains below the saturation temperature, i.e. no bulk boiling occurs in the core. The calculation values of power and coolant temperature, in steady state and positive reactivity insertion scenario, are in good agreement with the experiment values. However, the model is a useful tool for the transient analysis of most research reactor encountered in practice. The main objective of this work is using simple calculation methods and benchmarking them with experimental data. This model can be used for training proposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal-hydraulic" title="thermal-hydraulic">thermal-hydraulic</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20reactor" title=" research reactor"> research reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity%20insertion" title=" reactivity insertion"> reactivity insertion</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a> </p> <a href="https://publications.waset.org/abstracts/13031/experimental-and-numerical-analyses-of-tehran-research-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">264</span> Development of Monoclonal Antibodies against the Acute Hepatopancreatic Necrosis Disease Toxins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Kumar%20B.%20T.">Naveen Kumar B. T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuj%20Tyagi"> Anuj Tyagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Niraj%20Kumar%20Singh"> Niraj Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Visanu%20Boonyawiwat"> Visanu Boonyawiwat</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanthanagouda%20A.%20H."> Shanthanagouda A. H.</a>, <a href="https://publications.waset.org/abstracts/search?q=Orawan%20Boodde"> Orawan Boodde</a>, <a href="https://publications.waset.org/abstracts/search?q=Shankar%20K.%20M."> Shankar K. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakash%20Patil"> Prakash Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubhkaramjeet%20Kaur"> Shubhkaramjeet Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since 2009, Acute Hepatopancreatic Necrosis Disease (AHPND) outbreaks have increased rapidly, and these have led to the major economic losses to the global shrimp industry. In comparison to other treatments, passive immunity and monoclonal antibody (MAb) based farmer level kit have proved their importance in controlling and treating the diseases in the shrimp industry. In the present study, MAbs were produced against the recombinant PirB protein Vibrio parahaemolyticus strain causing AHPND. Briefly, Balb/C mice were immunized with rPirB at 15 days interval, and antibody titer was determined by ELISA. Spleen cells from mice showing high antibody titer were fused with SP2O myeloma cells for hybridoma production. Among 130 hybridomas, four showed high antibody titer and positive reactivity in an immunoblot assay. In Western blot assay, three out of four MAbs (4C4, 2C2 and 4G3) showed reactivity to rPirB protein. However, in the natural host, only Mab clone 4G3 show strong reactivity (with a strain of V. parahemolyticus causing EMS/AHPND). These clones also showed reactivity with less than 20 kDa proteins in AHPND free V. parahaemolyticus (Thailand stain). Further, on from MAb 4G3 clone, four panels of single cell MAbs clones (G3F5, G3B8, G3H2, and G3D6) were produced of which three showed strong positive reactivity to rPirB protein in the Western blot. These MAbs have potential for controlling and prevention of the AHPND through passive immunity and development of filed level rapid diagnostic kits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shrimp" title="shrimp">shrimp</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20loss" title=" economic loss"> economic loss</a>, <a href="https://publications.waset.org/abstracts/search?q=AHPND" title=" AHPND"> AHPND</a>, <a href="https://publications.waset.org/abstracts/search?q=MAb" title=" MAb"> MAb</a> </p> <a href="https://publications.waset.org/abstracts/100048/development-of-monoclonal-antibodies-against-the-acute-hepatopancreatic-necrosis-disease-toxins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">263</span> Prediction of the Regioselectivity of 1,3-Dipolar Cycloaddition Reactions of Nitrile Oxides with 2(5H)-Furanones Using Recent Theoretical Reactivity Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imad%20Eddine%20Charif">Imad Eddine Charif</a>, <a href="https://publications.waset.org/abstracts/search?q=Wafaa%20Benchouk"> Wafaa Benchouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Sidi%20Mohamed%20Mekelleche"> Sidi Mohamed Mekelleche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The regioselectivity of a series of 16 1,3-dipolar cycloaddition reactions of nitrile oxides with 2(5H)-furanones has been analysed by means of global and local electrophilic and nucleophilic reactivity indices using density functional theory at the B3LYP level together with the 6-31G(d) basis set. The local electrophilicity and nucleophilicity indices, based on Fukui and Parr functions, have been calculated for the terminal sites, namely the C1 and O3 atoms of the 1,3-dipole and the C4 and C5 atoms of the dipolarophile. These local indices were calculated using both Mulliken and natural charges and spin densities. The results obtained show that the C5 atom of the 2(5H)-furanones is the most electrophilic site whereas the O3 atom of the nitrile oxides is the most nucleophilic centre. It turns out that the experimental regioselectivity is correctly reproduced, indicating that both Fukui- and Parr-based indices are efficient tools for the prediction of the regiochemistry of the studied reactions and could be used for the prediction of newly designed reactions of the same kind. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1" title="1">1</a>, <a href="https://publications.waset.org/abstracts/search?q=3-dipolar%20cycloaddition" title="3-dipolar cycloaddition">3-dipolar cycloaddition</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title=" density functional theory"> density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrile%20oxides" title=" nitrile oxides"> nitrile oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=regioselectivity" title=" regioselectivity"> regioselectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity%20indices" title=" reactivity indices"> reactivity indices</a> </p> <a href="https://publications.waset.org/abstracts/92661/prediction-of-the-regioselectivity-of-13-dipolar-cycloaddition-reactions-of-nitrile-oxides-with-25h-furanones-using-recent-theoretical-reactivity-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">262</span> Synthesis, Characterization of Benzodiazepine Derivatives through Condensation Reaction, Crystal Structure, and DFT Calculations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Hmaimou">Samir Hmaimou</a>, <a href="https://publications.waset.org/abstracts/search?q=Marouane%20Ait%20Lahcen"> Marouane Ait Lahcen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Adardour"> Mohamed Adardour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Maatallah"> Mohamed Maatallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdesselam%20Baouid"> Abdesselam Baouid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stereoisomers (E)-2,2-dimethyl-4-(4-subsitutedstyryl)-2,3-dihydro-1H-[1,5]-benzodiazepine 3(a-d) were synthesized via the condensation reaction of 2,2,3 4-trimethyl-2,3-dihydro-1H-1,5-benzodiazepine (BZD) 1 with the benzaldehyde derivatives 2(a-d) in polar protic solvent as ethanol. The chemical structure of the prepared products was confirmed by NMR (¹H and ¹³C), HRMS, and X-ray analysis of the crystal structure 3d. The condensation reaction was examined using DFT calculations at the theoretical level of B3LYP/6-311G(d,p). Frontier molecular orbital analysis shows that the most favorable interaction is between the HOMO of BZD 1 and the LUMO of 2(a-d). On the other hand, the calculation of the global reactivity indices (softness, hardness, and chemical potential) confirmed that benzodiazepine BDZ 1 act as a nucleophile, whereas the aldehyde derivatives 2(a-d) play the role of electrophile. Furthermore, we identified each reagent's reactive sites by the measurement of the reactivity indices to explain the experimentally observed regioselectivity, using Fukui local reactivity descriptors. A one-step mechanism reaction and order 2 water elimination were investigated. We also looked at how the electron-withdrawing groups (EWG) of various aldehydes affected the reaction's mechanism and the stability of products 3(a-d). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzodiazepine" title="benzodiazepine">benzodiazepine</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT%20calculations" title=" DFT calculations"> DFT calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20structure" title=" crystal structure"> crystal structure</a>, <a href="https://publications.waset.org/abstracts/search?q=regioselective" title=" regioselective"> regioselective</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation%20Reaction" title=" condensation Reaction"> condensation Reaction</a> </p> <a href="https://publications.waset.org/abstracts/192346/synthesis-characterization-of-benzodiazepine-derivatives-through-condensation-reaction-crystal-structure-and-dft-calculations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">14</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">261</span> Effect of Minerals in Middlings on the Reactivity of Gasification-Coke by Blending a Large Proportion of Long Flame Coal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianjun%20Wu">Jianjun Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Fanhui%20Guo"> Fanhui Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yixin%20Zhang"> Yixin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, gasification-coke were produced by blending the middlings (MC), and coking coal (CC) and a large proportion of long flame coal (Shenfu coal, SC), the effects of blending ratio were investigated. Mineral evolution and crystalline order obtained by XRD methods were reproduced within reasonable accuracy. Structure characteristics of partially gasification-coke such as surface area and porosity were determined using the N₂ adsorption and mercury porosimetry. Experimental data of gasification-coke was dominated by the TGA results provided trend, reactivity differences between gasification-cokes are discussed in terms of structure characteristic, crystallinity, and alkali index (AI). The first-order reaction equation was suitable for the gasification reaction kinetics of CO₂ atmosphere which was represented by the volumetric reaction model with linear correlation coefficient above 0.985. The differences in the microporous structure of gasification-coke and catalysis caused by the minerals in parent coals were supposed to be the main factors which affect its reactivity. The addition of MC made the samples enriched with a large amount of ash causing a higher surface area and a lower crystalline order to gasification-coke which was beneficial to gasification reaction. The higher SiO₂ and Al₂O₃ contents, causing a decreasing AI value and increasing activation energy, which reduced the gasification reaction activity. It was found that the increasing amount of MC got a better performance on the coke gasification reactivity by blending > 30% SC with this coking process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-rank%20coal" title="low-rank coal">low-rank coal</a>, <a href="https://publications.waset.org/abstracts/search?q=middlings" title=" middlings"> middlings</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20characteristic" title=" structure characteristic"> structure characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20evolution" title=" mineral evolution"> mineral evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20index" title=" alkali index"> alkali index</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification-coke" title=" gasification-coke"> gasification-coke</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification%20kinetics" title=" gasification kinetics"> gasification kinetics</a> </p> <a href="https://publications.waset.org/abstracts/100113/effect-of-minerals-in-middlings-on-the-reactivity-of-gasification-coke-by-blending-a-large-proportion-of-long-flame-coal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">260</span> Characterization of the Physicochemical Properties of Raw and Calcined Kaolinitic Clays Using Analytical Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Khaloo">Alireza Khaloo</a>, <a href="https://publications.waset.org/abstracts/search?q=Asghar%20Gholizadeh-Vayghan"> Asghar Gholizadeh-Vayghan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work focuses on the characterization of the physicochemical properties of kaolinitic clays in both raw and calcined (i.e., dehydroxylated) states. The properties investigated included the dehydroxylation temperature, chemical composition and crystalline phases, band types, kaolinite content, vitreous phase, and reactive and unreactive silica and alumina. The thermogravimetric analysis, X-ray diffractometry and infrared spectroscopy results suggest that full dehydroxylation takes place at 639°C, converting kaolinite to reactive metakaolinite (Si₂Al₂O₇). Application of higher temperatures up to 800 °C leads to complete decarbonation of the calcite phase, and the kaolinite converts to mullite at temperatures exceeding 957 °C. Calcination at 639°C was found to cause a 50% increase in the vitreous content of kaolin. Statistically meaningful increases in the reactivity of silica, alumina, calcite and sodium carbonate in kaolin were detected as a result of such thermal treatment. Such increases were found to be 11%, 47%, 240% and 10%, respectively. The ferrite phase, however, showed a 36% decline in reactivity. The proposed approach can be used as an analytical method to determine the viability of the source of kaolinite and proper physical and chemical modifications needed to enhance its suitability for geopolymer production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20properties" title="physicochemical properties">physicochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=dehydroxylation" title=" dehydroxylation"> dehydroxylation</a>, <a href="https://publications.waset.org/abstracts/search?q=kaolinitic%20clays" title=" kaolinitic clays"> kaolinitic clays</a>, <a href="https://publications.waset.org/abstracts/search?q=kaolinite%20content" title=" kaolinite content"> kaolinite content</a>, <a href="https://publications.waset.org/abstracts/search?q=vitreous%20phase" title=" vitreous phase"> vitreous phase</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity" title=" reactivity"> reactivity</a> </p> <a href="https://publications.waset.org/abstracts/92591/characterization-of-the-physicochemical-properties-of-raw-and-calcined-kaolinitic-clays-using-analytical-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">259</span> Reduction Behavior of Some Low-Grade Iron Ores for Application in Blast Furnace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heba%20Al-Kelesh">Heba Al-Kelesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Day after day, high-grade iron ores are consumed. Because of the strong global demand for iron and steel, it has necessitated the utilization of various low-grade iron ores, which are not suitable for direct exploitation in the iron industry. The low-grade ores cannot be dressed using traditional mineral processing methods because of complicated mineral compositions. The present work is aimed to investigate the reducibility of some Egyptian iron ores and concentrates by conditions emulate different blast furnace areas. Representative specimens are collected from El-Gedida–Baharia oasis, Eastern South Aswan, and Eastern desert-wadi Kareem (EDC). Some mineralogical and morphological characterizations are executed. The reactivity arrangement of green samples is Baharia>Aswan>EDC. The presence of magnetite decreased reactivity of EDC. The reducibility of the Aswan sample is lower than Baharia due to the presence of agglomerated metallic grain surrounded by semi-melted phases. Specimens are annealed at 1000ᵒC for 3 hours. After firing, the reducibility of Aswan becomes the lowest due to the formation of fayalite and calcium phosphate phases. The relative attitude for green and fired samples reduced at different conditions are studied. For thermal and top areas, the reactivity of fired samples is greater than green ones, which were confirmed by morphological examinations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reducibility" title="reducibility">reducibility</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20grade" title=" low grade"> low grade</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20industry" title=" iron industry"> iron industry</a>, <a href="https://publications.waset.org/abstracts/search?q=blast%20furnace" title=" blast furnace"> blast furnace</a> </p> <a href="https://publications.waset.org/abstracts/111794/reduction-behavior-of-some-low-grade-iron-ores-for-application-in-blast-furnace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">258</span> Structure-Reactivity Relationship of Some Rhᴵᴵᴵ and Osᴵᴵᴵ Complexes with N-Inert Ligands in Ionic Liquids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jovana%20Bogojeski">Jovana Bogojeski</a>, <a href="https://publications.waset.org/abstracts/search?q=Dusan%20Cocic"> Dusan Cocic</a>, <a href="https://publications.waset.org/abstracts/search?q=Nenad%20Jankovic"> Nenad Jankovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Angelina%20Petrovic"> Angelina Petrovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kinetically-inert transition metal complexes, such as Rh(III) and Os(III) complexes, attract increasing attention as leading scaffolds for the development of potential pharmacological agents due to their inertness and stability. Therefore, we have designed and fully characterized a few novel rhodium(III) and osmium(III) complexes with a tridentate nitrogen−donor chelate system. For some complexes, the crystal X-ray structure analysis was performed. Reactivity of the newly synthesized complexes towards small biomolecules, such as L-methionine (L-Met), guanosine-5’-monophosphate (5’-GMP), and glutathione (GSH) has been examined. Also, the reactivity of these complexes towards the DNA/RNA (Ribonucleic acid) duplexes was investigated. Obtained results show that the newly synthesized complexes exhibit good affinity towards the studied ligands. Results also show that the complexes react faster with the RNA duplex than with the DNA and that in the DNA duplex reaction is faster with 15mer GG than with the 22mer GG. The UV-Vis (Ultraviolet-visible spectroscopy) is absorption spectroscopy, and the EB (Ethidium bromide) displacement studies were used to examine the interaction of these complexes with CT-DNA and BSA (Bovine serum albumin). All studied complex showed good interaction ability with both the DNA and BSA. Furthermore, the DFT (Density-functional theory) calculation and docking studies were performed. The impact of the metal complex on the cytotoxicity was tested by MTT assay (a colorimetric assay for assessing cell metabolic activity) on HCT-116 lines (human colon cancer cell line). In addition, all these tests were repeated in the presence of several water-soluble biologically active ionic liquids. Attained results indicate that the ionic liquids increase the activity of the investigated complexes. All obtained results in this study imply that the introduction of different spectator ligand can be used to improve the reactivity of rhodium(III) and osmium(III) complexes. Finally, these results indicate that the examined complexes show reactivity characteristics needed for potential anti-tumor agents, with possible targets being both the DNA and proteins. Every new contribution in this field is highly warranted due to the current lack of clinically used Metallo-based alternatives to cisplatin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomolecules" title="biomolecules">biomolecules</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=osmium%28III%29" title=" osmium(III)"> osmium(III)</a>, <a href="https://publications.waset.org/abstracts/search?q=rhodium%28III%29" title=" rhodium(III)"> rhodium(III)</a> </p> <a href="https://publications.waset.org/abstracts/123362/structure-reactivity-relationship-of-some-rh-and-os-complexes-with-n-inert-ligands-in-ionic-liquids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">257</span> Theoretical Study of Structural Parameters, Chemical Reactivity and Spectral and Thermodynamical Properties of Organometallic Complexes Containing Zinc, Nickel and Cadmium with Nitrilotriacetic Acid and Tea Ligands: Density Functional Theory Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nour%20El%20Houda%20Bensiradj">Nour El Houda Bensiradj</a>, <a href="https://publications.waset.org/abstracts/search?q=Nafila%20Zouaghi"> Nafila Zouaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Taha%20Bensiradj"> Taha Bensiradj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pollution of water resources is characterized by the presence of microorganisms, chemicals, or industrial waste. Generally, this waste generates effluents containing large quantities of heavy metals, making the water unsuitable for consumption and causing the death of aquatic life and associated biodiversity. Currently, it is very important to assess the impact of heavy metals in water pollution as well as the processes for treating and reducing them. Among the methods of water treatment and disinfection, we mention the complexation of metal ions using ligands which serve to precipitate and subsequently eliminate these ions. In this context, we are interested in the study of complexes containing heavy metals such as zinc, nickel, and cadmium, which are present in several industrial discharges and are discharged into water sources. We will use the ligands of triethanolamine (TEA) and nitrilotriacetic acid (NTA). The theoretical study is based on molecular modeling, using the density functional theory (DFT) implemented in the Gaussian 09 program. The geometric and energetic properties of the above complexes will be calculated. Spectral properties such as infrared, as well as reactivity descriptors, and thermodynamic properties such as enthalpy and free enthalpy will also be determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=NTA" title=" NTA"> NTA</a>, <a href="https://publications.waset.org/abstracts/search?q=TEA" title=" TEA"> TEA</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=IR" title=" IR"> IR</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity%20descriptors" title=" reactivity descriptors"> reactivity descriptors</a> </p> <a href="https://publications.waset.org/abstracts/156557/theoretical-study-of-structural-parameters-chemical-reactivity-and-spectral-and-thermodynamical-properties-of-organometallic-complexes-containing-zinc-nickel-and-cadmium-with-nitrilotriacetic-acid-and-tea-ligands-density-functional-theory-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">256</span> Potential Use of Local Materials as Synthesizing One Part Geopolymer Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Areej%20Almalkawi">Areej Almalkawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameer%20Hamadna"> Sameer Hamadna</a>, <a href="https://publications.waset.org/abstracts/search?q=Parviz%20Soroushian"> Parviz Soroushian</a>, <a href="https://publications.waset.org/abstracts/search?q=Nalin%20Darsana"> Nalin Darsana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work on indigenous binders in this paper focused on the following indigenous raw materials: red clay, red lava and pumice (as primary aluminosilicate precursors), wood ash and gypsum (as supplementary minerals), and sodium sulfate and lime (as alkali activators). The experimental methods used for evaluation of these indigenous raw materials included laser granulometry, x-ray fluorescence (XRF) spectroscopy, and chemical reactivity. Formulations were devised for transforming these raw materials into alkali aluminosilicate-based hydraulic cements. These formulations were processed into hydraulic cements via simple heating and milling actions to render thermal activation, mechanochemical and size reduction effects. The resulting hydraulic cements were subjected to laser granulometry, heat of hydration and reactivity tests. These cements were also used to prepare mortar mixtures, which were evaluated via performance of compressive strength tests. The measured values of strength were correlated with the reactivity, size distribution and microstructural features of raw materials. Some of the indigenous hydraulic cements produced in this reporting period yielded viable levels of compressive strength. The correlation trends established in this work are being evaluated for development of simple and thorough methods of qualifying indigenous raw materials for use in production of indigenous hydraulic cements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=one-part%20geopolymer%20cement" title="one-part geopolymer cement">one-part geopolymer cement</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminosilicate%20precursors" title=" aluminosilicate precursors"> aluminosilicate precursors</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20activation" title=" thermal activation"> thermal activation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanochemical" title=" mechanochemical"> mechanochemical</a> </p> <a href="https://publications.waset.org/abstracts/65941/potential-use-of-local-materials-as-synthesizing-one-part-geopolymer-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">255</span> Quantification of Global Cerebrovascular Reactivity in the Principal Feeding Arteries of the Human Brain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravinder%20Kaur">Ravinder Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction Global cerebrovascular reactivity (CVR) mapping is a promising clinical assessment for stress-testing the brain using physiological challenges, such as CO₂, to elicit changes in perfusion. It enables real-time assessment of cerebrovascular integrity and health. Conventional imaging approaches solely use steady-state parameters, like cerebral blood flow (CBF), to evaluate the integrity of the resting parenchyma and can erroneously show a healthy brain at rest, despite the underlying pathogenesis in the presence of cerebrovascular disease. Conversely, coupling CO₂ inhalation with phase-contrast MRI neuroimaging interrogates the capacity of the vasculature to respond to changes under stress. It shows promise in providing prognostic value as a novel health marker to measure neurovascular function in disease and to detect early brain vasculature dysfunction. Objective This exploratory study was established to:(a) quantify the CBF response to CO₂ in hypocapnia and hypercapnia,(b) evaluate disparities in CVR between internal carotid (ICA) and vertebral artery (VA), and (c) assess sex-specific variation in CVR. Methodology Phase-contrast MRI was employed to measure the cerebrovascular reactivity to CO₂ (±10 mmHg). The respiratory interventions were presented using the prospectively end-tidal targeting RespirActTM Gen3 system. Post-processing and statistical analysis were conducted. Results In 9 young, healthy subjects, the CBF increased from hypocapnia to hypercapnia in all vessels (4.21±0.76 to 7.20±1.83 mL/sec in ICA, 1.36±0.55 to 2.33±1.31 mL/sec in VA, p < 0.05). The CVR was quantitatively higher in ICA than VA (slope of linear regression: 0.23 vs. 0.07 mL/sec/mmHg, p < 0.05). No statistically significant effect was observed in CVR between male and female (0.25 vs 0.20 mL/sec/mmHg in ICA, 0.09 vs 0.11 mL/sec/mmHg in VA, p > 0.05). Conclusions The principal finding in this investigation validated the modulation of CBF by CO₂. Moreover, it has indicated that regional heterogeneity in hemodynamic response exists in the brain. This study provides scope to standardize the quantification of CVR prior to its clinical translation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cerebrovascular%20disease" title="cerebrovascular disease">cerebrovascular disease</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroimaging" title=" neuroimaging"> neuroimaging</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20contrast%20MRI" title=" phase contrast MRI"> phase contrast MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=cerebrovascular%20reactivity" title=" cerebrovascular reactivity"> cerebrovascular reactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a> </p> <a href="https://publications.waset.org/abstracts/134610/quantification-of-global-cerebrovascular-reactivity-in-the-principal-feeding-arteries-of-the-human-brain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">254</span> Development of Mineral Carbonation Process from Ultramafic Tailings, Enhancing the Reactivity of Feedstocks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Gardideh">Sara Gardideh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansoor%20Barati"> Mansoor Barati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mineral carbonation approach for reducing global warming has garnered interest on a worldwide scale. Due to the benefits of permanent storage and abundant mineral resources, mineral carbonation (MC) is one of the most effective strategies for sequestering CO₂. The combination of mineral processing for primary metal recovery and mineral carbonation for carbon sequestration is an emerging field of study with the potential to minimize capital costs. A detailed study of low-pressures–solid carbonation of ultramafic tailings in a dry environment has been accomplished. In order to track the changing structure of serpentine minerals and their reactivity as a function of temperature (300-900 ᵒC), CO₂ partial pressure (25-90 mol %), and thermal preconditioning, thermogravimetry has been utilized. The incongruent CO₂ van der Waals molecular diameters with the octahedral-tetrahedral lattice constants of serpentine were used to explain the mild carbonation reactivity. Serpentine requires additional thermal-treatment to remove hydroxyl groups, resulting in the chemical transformation to pseudo-forsterite, which is a mineral composed of isolated SiO₄ tetrahedra linked by octahedrally coordinated magnesium ions. The heating treatment above 850 ᵒC is adequate to remove chemically bound water from the lattice. Particles with a diameter < 34 (μm) are desirable, and thermally treated serpentine at 850 ᵒC for 2.30 hours reached 65% CO₂ storage capacity. The decrease in particle size, increase in temperature, and magnetic separation can dramatically enhance carbonation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title="particle size">particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=thermogravimetry" title=" thermogravimetry"> thermogravimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal-treatment" title=" thermal-treatment"> thermal-treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=serpentine" title=" serpentine"> serpentine</a> </p> <a href="https://publications.waset.org/abstracts/162718/development-of-mineral-carbonation-process-from-ultramafic-tailings-enhancing-the-reactivity-of-feedstocks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">253</span> The Effects of Self-Efficacy on Challenge and Threat States</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadine%20Sammy">Nadine Sammy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Wilson"> Mark Wilson</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Vine"> Samuel Vine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Theory of Challenge and Threat States in Athletes (TCTSA) states that self-efficacy is an antecedent of challenge and threat. These states result from conscious and unconscious evaluations of situational demands and personal resources and are represented by both cognitive and physiological markers. Challenge is considered a more adaptive stress response as it is associated with a more efficient cardiovascular profile, as well as better performance and attention effects compared with threat. Self-efficacy is proposed to influence challenge/threat because an individual’s belief that they have the skills necessary to execute the courses of action required to succeed contributes to a perception that they can cope with the demands of the situation. This study experimentally examined the effects of self-efficacy on cardiovascular responses (challenge and threat), demand and resource evaluations, performance and attention under pressurised conditions. Forty-five university students were randomly assigned to either a control (n=15), low self-efficacy (n=15) or high self-efficacy (n=15) group and completed baseline and pressurised golf putting tasks. Self-efficacy was manipulated using false feedback adapted from previous studies. Measures of self-efficacy, cardiovascular reactivity, demand and resource evaluations, task performance and attention were recorded. The high self-efficacy group displayed more favourable cardiovascular reactivity, indicative of a challenge state, compared with the low self-efficacy group. The former group also reported high resource evaluations, but no task performance or attention effects were detected. These findings demonstrate that levels of self-efficacy influence cardiovascular reactivity and perceptions of resources under pressurised conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiovascular" title="cardiovascular">cardiovascular</a>, <a href="https://publications.waset.org/abstracts/search?q=challenge" title=" challenge"> challenge</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=threat" title=" threat"> threat</a> </p> <a href="https://publications.waset.org/abstracts/75000/the-effects-of-self-efficacy-on-challenge-and-threat-states" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">252</span> Development and Analysis of SFR Control Rod Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lenka%20Duj%C4%8D%C3%ADkov%C3%A1">Lenka Dujčíková</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Buiron"> Laurent Buiron</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%A1n%20Ha%C5%A1%C4%8D%C3%ADk"> Ján Haščík</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is dedicated to safety management of SFR CAPRA core with CFV design improvements. In the case of CAPRA core, demands for reactivity control are higher than for reference core. There are two possible ways how to ensure the certain amount of negative reactivity. One option is to boost control rods worth. The Greater part of the study is aimed at the proposal of appropriate control rod design. At first, the European Fast Reactor (EFR) control rod design with high-enriched boron carbide B4C as absorber material was tested. Considering costly and difficult enrichment process, usage of natural boron carbide absorbator is desired. Obviously, the use of natural boron leads to CR worth reduction. In order to increase it to required value, moderator material was inserted inside the control rod. Various materials and geometric configurations were examined to find optimal solution corresponding with EFR based CR worth value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron%20carbide" title="boron carbide">boron carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=CAPRA%20core" title=" CAPRA core"> CAPRA core</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20rod%20design" title=" control rod design"> control rod design</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20void%20effect%20design" title=" low void effect design"> low void effect design</a>, <a href="https://publications.waset.org/abstracts/search?q=melting%20temperature" title=" melting temperature"> melting temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=moderator%20material" title=" moderator material"> moderator material</a> </p> <a href="https://publications.waset.org/abstracts/34110/development-and-analysis-of-sfr-control-rod-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">251</span> Reactivity of Clay Minerals of the Hydrocarbon Reservoir Rocks and the Effect of Zeolites on Operation and Production Costs That the Oil Industry in the World Assumes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Alberto%20R%C3%ADos%20Reyes">Carlos Alberto Ríos Reyes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally, clays have been considered as one of the main problems in the flow of fluids in hydrocarbon reservoirs. However, there is not known the significance of zeolites formed from the reactivity of clays and their effect not only on the costs of operations carried out by the oil industry in the world but also on production. The present work focused on understanding the interaction between clay minerals with brines and alkaline solutions used in the oil industry. For this, a comparative study was conducted where the reaction of sedimentary rocks under laboratory conditions was examined. Original and treated rocks were examined by X-ray powder diffraction (XRPD) and Scanning Electron Microscopy (SEM) to determine the changes that these rocks underwent upon contact with fluids of variable chemical composition. As a result, zeolite Linde Type A (LTA), sodalite (SOD), and cancrinite (CAN) can be formed after experimental work, which coincided with the dissolution of kaolinite and smectite. Results reveal that the Oil Industry should invest efforts and focus its gaze to understand at the pore scale the problem that could arise as a consequence of the clay-fluid interaction in hydrocarbon reservoir rocks due to the presence of clays in their porous system, as well as the formation of zeolites, which are better hydrocarbon absorbents. These issues could be generating losses in world production. We conclude that there is a critical situation that may be occurring in the stimulation of hydrocarbon reservoirs, where real solutions are necessary not only for the formulation of more efficient and effective injection fluids but also to contribute to the improvement of production and avoid considerable losses in operating costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay%20minerals" title="clay minerals">clay minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolites" title=" zeolites"> zeolites</a>, <a href="https://publications.waset.org/abstracts/search?q=rock-fluid%20interaction" title=" rock-fluid interaction"> rock-fluid interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20work" title=" experimental work"> experimental work</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity" title=" reactivity"> reactivity</a> </p> <a href="https://publications.waset.org/abstracts/165555/reactivity-of-clay-minerals-of-the-hydrocarbon-reservoir-rocks-and-the-effect-of-zeolites-on-operation-and-production-costs-that-the-oil-industry-in-the-world-assumes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> Benzene Sulfonamide Derivatives: Synthesis, Absorption, Distribution, Metabolism, and Excretion (ADME) Studies, Anti-proliferative Activity, and Docking Simulation with Theoretical Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmaa%20M.%20Fahim">Asmaa M. Fahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this elucidation, we synthesized different heterocyclic compounds attached to Benzene sulfonamide moiety via (E)-N-(4-(3-(4-bromophenyl)acryloyl)phenyl)-4-methyl benzene sulfonamide which is obtained from Nucleophilic substitution reaction between 4-methylbenzene sulfonyl chloride and 1-(4-aminophenyl)ethan-1-one in pyridine to get N-(4-acetyl phenyl)-4-methyl benzenesulfonamide which reacted 4-bromobenzal dehyde undergoes aldol condensation in NaOH to afford the corresponding chalchone 4. Moreover, the reactivity of chalchone 4 showed several active methylene derivatives utilized the pressurized microwave irradiation as a green energy resource. Chalcone 4 was allowed to react with ethyl cyanoacetate and acetylacetone, respectively, at 70 °C with pressure under microwave reaction condition to afford the 5-cyano-6-oxo-1,2,5,6-tetrahydropyridin-2-yl)-4-methylbenzenesulfonamide 6 and N-(4'-acetyl-4''-bromo-5'-oxo-2',3',4',5'-tetrahydro-[1,1':3',1''-terphenyl]-4-yl)-4-methylbenzenesulfonamide 8 derivatives. Moreover, the reactivity of this sulphonamide chalchone with NH2NH2 in EtOH and acetic acid, which gave 2,5-dihydro-1H-imidazol-4-yl)-4-methyl benzenesulfonamide, 1H-pyrazol-3-yl)-4-methyl and reactivity with NH2OH.HCl gave isoxazol-3-yl)-4-methylbenzenesulfonamide derivatives. The synthesized compounds were screened for their ADME properties and directed to antitumor activity on HepG2 hepatocellular carcinoma and MCF-7 breast cancer and exhibited excellent behavior against standard drugs; these results were confirmed through molecular simulations with different proteins. Additionally, the Density Functional Theory analysis of optimized structures investigated their physical descriptors, FMO, ESP and MEP, which correlated with biological evaluation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthesis" title="synthesis">synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20chemistry" title=" green chemistry"> green chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=antitumor%20activity" title=" antitumor activity"> antitumor activity</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT%20study" title=" DFT study"> DFT study</a> </p> <a href="https://publications.waset.org/abstracts/174378/benzene-sulfonamide-derivatives-synthesis-absorption-distribution-metabolism-and-excretion-adme-studies-anti-proliferative-activity-and-docking-simulation-with-theoretical-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> Investigation of the Mechanism, Régio and Sterioselectivity Using the 1,3-Dipolar Cycloaddition Reaction of Fused 1h-Pyrrole-2,3-Diones with Nitrones: Molecular Electron Density Theory Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ameur%20Soukaina">Ameur Soukaina</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeroual%20Abdellah"> Zeroual Abdellah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazoir%20Noureddine"> Mazoir Noureddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molecular Electron Density Theory (MEDT) elucidates the regioselectivity of the [4+2] cycloaddition reaction between 3-aroylpyrrolo[1,2-α]quinoxaline-1,2,4(5H)-trione and butyl vinyl ether Regioselectivity and stereoselectivity. The regioselectivity mechanisms of these reactions were investigated by evaluating potential energy surfaces calculated for cycloaddition processes and DFT density-based reactivity indices. These methods have been successfully applied to predict preferred regioisomers for different method alternatives. Reactions were monitored by performing transition state optimizations, calculations of intrinsic reaction coordinates, and activation energies. The observed regioselectivity was rationalized using DFT-based reactivity descriptors such as the Parr function. Solvent effects were also investigated in 1,4-dioxane solvent using a field model for self-consistent reactions. The results were compared with experimental data to find good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cycloaddition" title="cycloaddition">cycloaddition</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=ELF" title=" ELF"> ELF</a>, <a href="https://publications.waset.org/abstracts/search?q=MEDT" title=" MEDT"> MEDT</a>, <a href="https://publications.waset.org/abstracts/search?q=parr" title=" parr"> parr</a>, <a href="https://publications.waset.org/abstracts/search?q=stereoselectivit%C3%A9" title=" stereoselectivité"> stereoselectivité</a> </p> <a href="https://publications.waset.org/abstracts/148675/investigation-of-the-mechanism-regio-and-sterioselectivity-using-the-13-dipolar-cycloaddition-reaction-of-fused-1h-pyrrole-23-diones-with-nitrones-molecular-electron-density-theory-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Gomes">D. S. Gomes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Silva"> A. T. Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title="logistic regression">logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity-initiated%20accident" title=" reactivity-initiated accident"> reactivity-initiated accident</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20margins" title=" safety margins"> safety margins</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20propagation" title=" uncertainty propagation"> uncertainty propagation</a> </p> <a href="https://publications.waset.org/abstracts/65731/nuclear-fuel-safety-threshold-determined-by-logistic-regression-plus-uncertainty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> Optical Ignition of Nanoenergetic Materials with Tunable Explosion Reactivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Hoon%20Kim">Ji Hoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Man%20Kim"> Jong Man Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Woo%20Lee"> Hyung Woo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Hyung%20Kim"> Soo Hyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The applications of nanoenergetic materials (nEMs) could be extended by developing more convenient and reliable ignition methods. However, the underwater ignition of nEMs is a significant challenge because water perturbs the reactants prior to ignition and also quenches the subsequent combustion reaction of nEMs upon ignition. In this study, we developed flash and laser-ignitable nEMs for underwater explosion. This was achieved by adding various carbon nanotubes (CNTs) as the optical igniter into an nEM matrix, composed of Al/CuO nanoparticles. The CNTs absorb the irradiated optical energy and rapidly convert it into thermal energy, and then the thermal energy is concentrated to ignite the core catalysts and neighboring nEMs. The maximum burn rate was achieved by adding 1 wt% CNTs into the nEM matrix. The burn rate significantly decreased with increasing amount of CNTs (≥ 2 wt%), indicating that the optical ignition and controlled-explosion reactivity of nEMs are possible by incorporating an appropriate amount of CNTs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoenergetic%20materials" title="nanoenergetic materials">nanoenergetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20ignition" title=" optical ignition"> optical ignition</a>, <a href="https://publications.waset.org/abstracts/search?q=tunable%20explosion" title=" tunable explosion"> tunable explosion</a> </p> <a href="https://publications.waset.org/abstracts/45744/optical-ignition-of-nanoenergetic-materials-with-tunable-explosion-reactivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">246</span> Kinetic Studies on CO₂ Gasification of Low and High Ash Indian Coals in Context of Underground Coal Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geeta%20Kumari">Geeta Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabu%20Vairakannu"> Prabu Vairakannu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Underground coal gasification (UCG) technology is an efficient and an economic in-situ clean coal technology, which converts unmineable coals into calorific valuable gases. This technology avoids ash disposal, coal mining, and storage problems. CO₂ gas can be a potential gasifying medium for UCG. CO₂ is a greenhouse gas and, the liberation of this gas to the atmosphere from thermal power plant industries leads to global warming. Hence, the capture and reutilization of CO₂ gas are crucial for clean energy production. However, the reactivity of high ash Indian coals with CO₂ needs to be assessed. In the present study, two varieties of Indian coals (low ash and high ash) are used for thermogravimetric analyses (TGA). Two low ash north east Indian coals (LAC) and a typical high ash Indian coal (HAC) are procured from the coal mines of India. Low ash coal with 9% ash (LAC-1) and 4% ash (LAC-2) and high ash coal (HAC) with 42% ash are used for the study. TGA studies are carried out to evaluate the activation energy for pyrolysis and gasification of coal under N₂ and CO₂ atmosphere. Coats and Redfern method is used to estimate the activation energy of coal under different temperature regimes. Volumetric model is assumed for the estimation of the activation energy. The activation energy estimated under different temperature range. The inherent properties of coals play a major role in their reactivity. The results show that the activation energy decreases with the decrease in the inherent percentage of coal ash due to the ash layer hindrance. A reverse trend was observed with volatile matter. High volatile matter of coal leads to the estimation of low activation energy. It was observed that the activation energy under CO₂ atmosphere at 400-600°C is less as compared to N₂ inert atmosphere. At this temperature range, it is estimated that 15-23% reduction in the activation energy under CO₂ atmosphere. This shows the reactivity of CO₂ gas with higher hydrocarbons of the coal volatile matters. The reactivity of CO₂ with the volatile matter of coal might occur through dry reforming reaction in which CO₂ reacts with higher hydrocarbon, aromatics of the tar content. The observed trend of Ea in the temperature range of 150-200˚C and 400-600˚C is HAC > LAC-1 >LAC-2 in both N₂ and CO₂ atmosphere. At the temperature range of 850-1000˚C, higher activation energy is estimated when compared to those values in the temperature range of 400-600°C. Above 800°C, char gasification through Boudouard reaction progressed under CO₂ atmosphere. It was observed that 8-20 kJ/mol of activation energy is increased during char gasification above 800°C compared to volatile matter pyrolysis between the temperature ranges of 400-600°C. The overall activation energy of the coals in the temperature range of 30-1000˚C is higher in N₂ atmosphere than CO₂ atmosphere. It can be concluded that higher hydrocarbons such as tar effectively undergoes cracking and reforming reactions in presence of CO₂. Thus, CO₂ gas is beneficial for the production of high calorific value syngas using high ash Indian coals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clean%20coal%20technology" title="clean coal technology">clean coal technology</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20gasification" title=" CO₂ gasification"> CO₂ gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title=" activation energy"> activation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20coal%20gasification" title=" underground coal gasification"> underground coal gasification</a> </p> <a href="https://publications.waset.org/abstracts/90934/kinetic-studies-on-co2-gasification-of-low-and-high-ash-indian-coals-in-context-of-underground-coal-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">245</span> Redirection of Cytokine Production Patterns by Dydrogesterone, an Orally-Administered Progestogen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raj%20Raghupathy">Raj Raghupathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recurrent Spontaneous Miscarriage (RSM) is a common form of pregnancy loss, 50% of which are due to ‘unexplained’ causes. Evidence exists to suggest that RSM may be caused by immunologic factors such as cytokines which are critical molecules of the immune system, with an impressive array of capabilities. An association appears to exist between Th2-type reactivity (mediated by Th2 or anti-inflammatory cytokines) and normal, successful pregnancy, and between unexplained RSM and Th1 cytokine dominance. If pro-inflammatory cytokines are indeed associated with pregnancy loss, the suppression of these cytokines, and thus the ‘redirection’ of maternal reactivity, may help prevent cytokine-mediated pregnancy loss. The objective of this study was to explore the possibility of modulating cytokine production using Dydrogesterone (Duphaston®), an orally-administered progestogen. Peripheral blood mononuclear cells from 34 women with a history of at least 3 unexplained recurrent miscarriages were stimulated in vitro with a mitogen (to elicit cytokine production) in the presence and absence of dydrogesterone. Levels of selected pro- and anti-inflammatory cytokines produced by peripheral blood mononuclear cells were measured after exposure to these progestogens. Dydrogesterone down-regulates the production of pro-inflammatory cytokines and up-regulates the production of anti-inflammatory cytokines. The ratios of Th2 to Th1 cytokines are markedly elevated in the presence of dydrogesterone, indicating a shift from potentially harmful maternal Th1 reactivity to a more pregnancy-conducive Th2 profile. We used a progesterone receptor antagonist to show that this cytokine-modulating effect of dydrogesterone is mediated via the progesterone receptor. Dydrogesterone also induces the production of the Progesterone-Induced Blocking Factor (PIBF); lymphocytes exposed to PIBF produce higher levels of Th2 cytokines, affecting a Th1 → Th2 cytokine shift which could be favourable to the success of pregnancy. We conclude that modulation of maternal cytokine production profiles is possible with dydrogesterone which has the merits that it can be administered orally and that it is safe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytokines" title="cytokines">cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=dydrogesterone" title=" dydrogesterone"> dydrogesterone</a>, <a href="https://publications.waset.org/abstracts/search?q=progesterone" title=" progesterone"> progesterone</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20spontaneous%20miscarriage" title=" recurrent spontaneous miscarriage"> recurrent spontaneous miscarriage</a> </p> <a href="https://publications.waset.org/abstracts/34106/redirection-of-cytokine-production-patterns-by-dydrogesterone-an-orally-administered-progestogen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactivity&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactivity&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactivity&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactivity&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactivity&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactivity&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactivity&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactivity&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactivity&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactivity&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>