CINXE.COM
Recovery 2.0 - Waste Heat, Heat Recovery, Heat Exchange
<html> <head> <meta name="viewport" content="width=device-width"> <meta name="energy recovery" content="Waste Heat, Heat Recovery, Heat Exchange"> <link rel="stylesheet" type="text/css" href="https://www.cooksmill.net/cooksmill.css"> <title>Recovery 2.0 - Waste Heat, Heat Recovery, Heat Exchange</title> </head> <body> <body bgcolor="#FFFFFF" link="#660066" text="#000000" vlink="#660066"> <div class="box"> <center> <a href="https://www.waste.net"> <img border="0" alt="Waste.net" src="https://www.waste.net/gif-bin/logo22.gif" width="200"></a> </center> </div> <a name="top"></a> <div class="box"> <center> <B>Recovery 2.0</B> <br> <B>Waste Heat</B> <br> <br> <a href="https://www.waste.net/2/"> <img src="https://www.recycling.org/gif-bin/recovery_2.0.gif" alt="recovery2.0" border="0"></a> </center> </div> <div class="box"> <center> <a href="https://www.waste.net/2/waste_heat.html#waste_heat">Waste Heat</a> <a href="https://www.waste.net/2/waste_heat.html#heat_exchange">Heat Exchange</a> <br> <a href="https://www.waste.net/2/waste_heat.html#heat_engine">Heat Engines</a> <br> <a href="https://www.waste.net/2/thermal_storage.html">Thermal Energy Storage</a> <br> <a href="https://www.energychange.com/share/group.html#heat1">Waste Heat Forum</a> <a href="https://www.waste.net/2/waste_heat.html#heat_ladder">Heat Ladder</a> <br> <br> <a href="https://www.waste.net/2/">Recovery 2.0 </a> <br> <a href="https://www.waste.net/2/#energy_menu">Understanding Energy & Recovery</a> <br> <a href="https://www.waste.net/recovery.html#summary">Summary</a> </center> </div> <a name="default"></a> <div class="box"> <center> <a href="https://www.waste.net/2/"> <img src="https://www.waste.net/2/default.gif" alt="default" border="0"></a> </center> </div> <a name="overview"></a> <div class="box"> <p> <B>Overview</B> <br> In the <B>Recovery 2.0</B> system we treat energy like any other commodity and as such we attempt to classify energy into different types. Heat is one major type of energy and within the recovery process we try to define the quality of the Heat into various <a href="https://www.energychange.com/electromagnetic/watts.html#temperature_standards">grades</a>, typically identified by combinations of temperature and pressure that may originate from different <a href="https://www.waste.net/2/reduction.html#heat_source_table">sources</a>. <br> <br> Energy in fluid = kinetic energy (V) + pressure energy (P) + internal or temperature energy (T) <br> Enthalpy = pressure energy (P) + internal or temperature energy (T) <br> <a name="heat_engine"></a> <br> <B>Heat Engines</B> <br> Traditional methods to harness energy from a working fluid commonly rely upon the ability of a heat engine to convert a Pressure/Temperature flow into motion. Historically systems have been set up to operate a Rankine cycle to take <a href="https://www.waste.net/2/condense.html#ratio_table">advantage</a> of a phase change in a working fluid in an <a href="https://www.waste.net/2/thermal_storage.html#compression_expantion">evaporation/condensation</a> cycle to harvest high temperature & high pressure to drive a rotary turbine. <br> <br> The use of an Organic Rankine Cycle <a href="https://www.waste.net/2/waste_heat.html#orc"><b>ORC</b></a> facilitates harvesting energy from lower quality temperature/pressure flows by using carbon or hydrocarbon based working fluids with a lower evaporation point, typically below 300 degree centigrade. <br> The use of inorganic working fluids such as molten metals, minerals or salts may increase the working temperatures up to 1,500 degree centigrade. <br> <br> Heat engines that do not rely on a phase change of the working fluids utilize a Brayton Cycle to convert pressure/temperature into <a href="https://www.waste.net/2/motion.html">motion</a>. This is most commonly seen in the flow of gases in a compression/expansion cycle. <br> <a name="standards"></a> <br> The establishment of general industrial classifications of heat is important in the understanding of how to manage the wide range of temperature <a href="https://www.waste.net/2/gradient.html#temperature">Gradients</a>. The <a href="https://www.waste.net/2/#joule">standards</a> for the classification of enthalpy in relationship to Ambient, above ambient and below ambient pressures and temperature may be a benchmark for the heat energy and waste heat recovery industry. This standardization is a key factor to establish defined, tradable grades of thermal energy which allow for the classification of potential recovery rates and harvesting methods. <br> <br> Understanding the dynamics of <a href="https://www.waste.net/2/waste_heat.html#waste_heat">Waste Heat</a> and recognizing the potential opportunities to harvest energy through <a href="https://www.waste.net/2/waste_heat.html#heat_exchange">Heat Exchange</a> or other methods is a critical skill. </p> </div> <a name="waste_heat"></a> <div class="box"> <center> <a href="https://www.energychange.com/share/group.html#heat1"> <img border="0" alt="Waste.net" src="https://www.energychange.com/gif-bin/aa704071.gif"></a> </center> </div> <div class="box"> <p> <B>Waste Heat</B> <br> Co-locating a thermal waste recovery facility at a source site that generates <a href="https://www.energychange.com/share/group.html#heat1">Waste Heat</a> may provide a ongoing supply of low cost energy. This site choice ties the destiny of the facility directly to the ongoing operation of a third party. <br> <br> Waste Heat may be channeled through a heat exchanger or into a <a href="https://www.waste.net/2/gradient.html#temperature">Temperature Gradient</a> capture system. Scavenging waste heat may be achieved through various <a href="https://www.waste.net/2/sidestream.html#harvest">Harvesting Methods</a> and may provide an extraordinary yield from a passive opportunity. </p> </div> <a name="hotside_coldside"></a> <div class="box"> <center> <a href="https://www.waste.net/2/sidestream.html#module"> <img src="https://www.waste.net/2/waste_heat.gif" alt="default" border="0"></a> </center> </div> <div class="box"> <p> <B>Potential Heat Recovery</B> <br> In an operation like the Recovery 2.0 system, where you have access to both steam heat and compressed air expansion cooling, you have a continuos potential temperature differential <a href="https://www.waste.net/2/gradient.html#temperature">gradient</a> of hundreds of degrees. By designing a structurally engineered environment you may be able to optimize the collection to <a href="https://www.waste.net/2/sidestream.html#harvest">harness</a> this massive energy potential. Strategic use of thermal insulation materials with a reflective surface may also enhance the energy recovery rate and <a href="https://www.waste.net/2/thermal_storage.html#hot_vs_cold">storage</a> potential. <br> <br> Smaller temperature gradients exist throughout the Recovery 2.0 facility and provide many opportunities to <a href="https://www.waste.net/2/sidestream.html#harvest">harvest</a> heat energy for direct onsite electricity generation or for <a href="https://www.waste.net/2/waste_heat.html#heat_exchange">Heat Exchange</a>. <br> <br> This approach represents an example of a symbiotic <a href="https://www.waste.net/2/energy.html#muli_stage">Multi-Stage</a> Energy Management Strategy. It is important in a Multi-Stage approach to be aware that the total available harvestable energy diminishes at each step. The <a href="https://www.waste.net/2/energy.html#spectrum">scale</a> of the energy harvest can get quite small rapidly (in only a couple of stages). This low recovery yield situation may be somewhat offset due to the passive nature of some of the steps. </p> </div> <a name="heat_ladder"></a> <div class="box"> <p> <b>Heat Ladder</b> <br> There exists an opportunity to benefit from a symbiotic flow that acts as a downward thermal path stairway. Harnessing the waste heat from an energetic (high heat) processes to fuel processes with a lesser thermal demand, may result in a reduced energy input requirement. <br> <br> For example, waste <a href="https://www.energychange.com/electromagnetic/watts.html#temperature_standards">heat generated</a> from Ultra High Heat, High temperature operations such as <a href="https://www.waste.net/2/oxidation_reaction.html">Oxide Reduction</a> & Displacement processes may assist with the thermal energy requirements to operate <a href="https://www.waste.net/2/calcium.html#stage_1">Kilns</a>. <br> The waste heat from the Kiln operations may be sufficient to fuel the solid waste pyrolysis (pyro zone) process. As the Heat Ladder steps down to the exhausted heat from the pyro systems the heat may be adequate to drive or treat the waste water distillation steam generation system. <br> <br> The Steam <a href="https://www.waste.net/2/condense.html">Condensing Stage</a> is a supply for the <a href="https://www.waste.net/2/water_pipeline.html#hot_water_cycle">Hot Water Harvesting Cycle</a> which enables further cool/cold side heat exchange opportunities. <br> <br> The development of a <b>Heat Ladder</b> sequence may allow for several "Kicks at the Can" in the <a href="https://www.waste.net/2/sidestream.html#thermal_harvestor">energy harvesting</a> chain. Stair stepping down from a primary heat source, a well designed multi-stage harvesting strategy may be implemented throughout the <a href="https://www.waste.net/2/"> <font color="FF0000"><b>Recovery 2.0</b></font></a> system. </p> </div> <a name="heat_exchange"></a> <div class="box"> <center> <a href="https://www.waste.net/2/waste_heat.html#heat_exchanger"> <img src="https://www.waste.net/2/heat_exchange.gif" alt="Heat Exchange" border="0"></a> </center> </div> <div class="box"> <p> <B>Heat Exchange</B> <br> I heard a rumor that there is no such thing as cold, only the absence of heat. <br> The natural flow is always from HOT to COLD. <br> <br> Traditional <a href="https://www.waste.net/2/waste_heat.html#heat_exchanger">Heat Exchange</a> systems are thought of as a method for cooling, refrigeration or freezing. The extraction of heat from hot areas to cold areas (or to areas where there is an absence of heat) presents an opportunity to capture or harness energy from that <a href="https://www.waste.net/2/energy.html#fluids">transfer</a>. <br> <a href="https://www.waste.net/2/gradient.html#temperature">Temperature Gradient</a> and <a href="https://www.waste.net/2/thermal_storage.html">Thermal Energy Storage</a> <br> One common method to make use of a heat <a href="https://www.waste.net/2/reduction.html#heat_source_table">source</a> is to transfer it into a district heat distribution network. Current efforts are more focused on the development of on site direct heat to electricity technologies. <br> <br> There is an ongoing challenge to maintain a continuous Cold Side Heat Sink to maximize the energy conversion potential of the available Hot Side Heat Source. This factor may determine the choice of the style or method selected for use in the Recovery 2.0 system. </p> </div> <a name="heat_exchanger"></a> <div class="box"> <center> <a href="https://www.waste.net/2/thermal_storage.html#compression_expantion"> <img src="https://www.waste.net/2/heat_exchanger_600.gif" alt="Heat Exchanger - Energy Transfer" border="0" width="300"></a> </center> </div> <a name="orc"></a> <div class="box"> <p> <B>Organic Rankine Cycle (ORC)</B> <br> The use of any number of <a href="https://www.waste.net/2/energy.html#fluids">working fluids</a> may provide some unique combinations for specific heat transfer parameters. An Organic Rankine Cycle (ORC) system has the potential to convert low grade heat sources directly into <a href="https://www.waste.net/2/electricity.html">electricity</a>. <br> <a name="ammonia_cycle"></a> <br> <B>Ammonia ORC Cycle</B> <br> The use of <a href="https://www.energychange.com/gases/group.html#ammonia1">Ammonia</a> as a working fluid in an Organic Rankine Cycle (ORC) may have some specific advantages. With a small differential in hot side to cold side gradient manipulation, that hovers above and below the phase change point, an Ammonia cycle may be a viable <a href="https://www.waste.net/2/sidestream.html">sidestream</a> energy harvesting loop. <br> <br> A rapid repeating cycle of the Ammonia phase change may be able to produce adequate pressure to drive a turbo that enables the generation of electricity. Ammonia expands with an 850:1 volume ratio at the phase change from <a href="https://www.waste.net/2/condense.html#ratio_table"><b>liquid to gas</b></a>. <br> The strategic location of an Ammonia ORC Transfer Loop in line with existing working fluid pipelines that are able to supply the required Hot Side / Cold Side temperature gradient differential, may drive an Ammonia Cycle module. <br> <a name="pumped_heat"></a> <br> <B>Pumped Heat Energy Storage</B> <br> Pumped Heat Energy Storage working fluids energy transfer. <br> <a href="https://www.waste.net/2/compressed_air.html#expansion">Compressed Air Expansion</a> and <a href="https://www.waste.net/2/thermal_storage.html#compression_expantion">Pumped Heat</a> Storage may be used to meet some of this Cold Side demand. </p> </div> <a name="heat_pump"></a> <div class="box"> <p> <B>Heat Pump</B> <br> Energy Transfer through the use of a heat exchanger is used for various applications most commonly known as heat pumps. <br> <br> <B>HVAC Heat Pumps</B> <br> Building Heating, Ventilation and Air Conditioning, <a href="https://www.energychange.com/hvac/group.html">HVAC</a>, uses a heat pump to exchange temperature between an indoor environment with the ambient outdoors. <br> <a name="refrigeration"></a> <br> <B>Refrigeration</B> <br> Residential home refrigerators and commercial refrigeration systems are examples of specific heat pump applications. Domestic home freezers and industrial freezers operate on the same principals. <br> <br> The Refrigeration Cycle is based on the natural equilibrium forces of hot moving to cold. A heat Exchanger will extract any remaining heat from one medium into a colder medium, so it is possible to cool a cold medium even further as long as the other side of the heat exchanger is an even colder medium. <br> The heat is rapidly driven and will naturally transport toward the cold side so a typical heat exchange system will require a pressure or pump to drive the cold side medium through the system. The speed of the heat transfer is largely determined by the size of the temperature gradient between the hot side and cold side. <br> <br> One method to generate a rapid cold side heat sink is with the expansion of a compressed gas or vapor, this may result in a cryo temperature effect. <br> <a name="ice"></a> <br> <B>Ice Making</B> <br> Commercial ice making, ice is a temporary portable cooling source <br> We also need to explore the potential of eutectic freeze crystallization as an <a href="https://www.waste.net/2/thermal_storage.html">energy storage</a> method. </p> </div> <a name="energy_recovery_options"></a> <div class="box"> <center> <a href="https://www.waste.net/2/waste_heat.html#hotside_coldside"> <img border="0" alt="Hot Side Cold Side" width="90" src="https://www.waste.net/2/waste_heat.gif"></a> <a href="https://www.waste.net/2/sidestream.html#module"> <img border="0" alt="Waste.net" width="90" src="https://www.waste.net/gif-bin/energy_harvest_module.gif"></a> <a href="https://www.waste.net/2/energy.html#harvest_array"> <img border="0" alt="Waste.net" width="90" src="https://www.waste.net/gif-bin/energy_harvesting.gif"></a> </center> </div> <a name="storage"></a> <div class="box"> <center> <a href="https://www.energychange.com/renewable/group.html#energy_storage_group"> <img border="0" alt="Waste.net" src="https://www.waste.net/gif-bin/energy_storage.gif"></a> </center> </div> <a name="path"></a> <div class="box"> <p> <b>Energy Storage</b> <br> <a name="sidestream"></a> - <a href="https://www.waste.net/2/battery.html">Battery Banks</a> <br> - <a href="https://www.waste.net/2/thermal_storage.html">Thermal Energy Storage</a> <br> - <a href="https://www.waste.net/2/compressed_air.html">Compressed Air Storage</a> <br> - <a href="https://www.waste.net/2/exothermic.html">Exothermic Element Storage</a> <br> <a name="regeneration"></a> <br> <b>Short Cycle Regeneration</b> <br> <a name="hydro"></a> - <a href="https://www.waste.net/2/hydro.html">Hydro Energy</a> <br> <a name="wind"></a> - <a href="https://www.waste.net/2/wind.html">Wind Energy</a> <br> <a name="gravity"></a> - <a href="https://www.waste.net/2/gravity.html">Gravity Energy</a> <br> <a name="gradient"></a> - <a href="https://www.waste.net/2/gradient.html">Gradient Energy</a> <br> <a name="energy_sources"></a> <br> <b>Energy Sources</b> <a name="solar"></a> <br> - <a href="https://www.waste.net/2/solar.html">Solar</a> <br> <a name="electricity"></a> - <a href="https://www.waste.net/2/electricity.html">Electricity</a> <br> <a name="waste_heat"></a> - <a href="https://www.waste.net/2/waste_heat.html">Waste Heat</a> <br>   - <a href="https://www.waste.net/2/sidestream.html">Optional Sidestreams</a> <br> <br> <b>Understanding Energy & Recovery</b> <br> - <a href="https://www.waste.net/2/#energy_commodity">Energy as a Commodity</a> <br> - <a href="https://www.waste.net/2/#recovered_energy">Recovered Energy</a> </p> </div> <a name="summary"></a> <div class="box"> <p> <B>Summary</B> <br> The challenge is to design for optimum operation by engineering a system that has the capability to swap from priority or default pathways as seamlessly and rapidly as possible and the ability to scale up or down each energy pathway module. Check-out <a href="https://www.recycling.org/#2.0">Recovery 2.0</a> <br> </p> </div> <a name="extraction"></a> <div class="box"> <center> <a href="https://www.waste.net/2/cell.html"> <img src="https://www.waste.net/2/electrochemical_cells.gif" alt="Electrochemical Cells" border="0" width="125"></a> <a href="https://www.waste.net/2/oxidation_reaction.html"> <img src="https://www.waste.net/2/oxidation_reduction.gif" alt="Oxidation/Reduction & Displacement" border="0" width="125"></a> <br> <a href="https://www.waste.net/2/molten_media.html"> <img src="https://www.waste.net/2/molten_media.gif" alt="Molten Media Extraction" border="0" width="125"></a> </center> </div> <div class="box"> <hr width="50%" color="#cccccc"> </div> <div class="box"> <center> <a href="https://www.waste.net/disposal.html#desalination">Desalination</a> <a href="https://www.waste.net/brine.html">Brine</a> <a href="https://www.waste.net/water.html#pure">Water Purification</a> <br> <a href="https://www.waste.net/4.html#recover">Resource Recovery</a> <br> <br> <a href="https://www.by-productsynergy.com/biorefining.html#pathway">Bio-Refining</a> <a href="https://www.by-productsynergy.com/refining.html">High Temperature Refining</a> <br> <a href="https://www.by-productsynergy.com/hotgas.html">Hot Gas Refining</a> <br> </center> </div> <div class="box"> <br> <center> <a href="https://www.waste.net/questions.html"> <IMG width"300" SRC="https://www.waste.net/gif-bin/questions.gif"></a> <br> Ask Your Recycling Questions </center> </div> <div class="box"> <center> <a href="https://www.waste.net/4.html">The 4 R's</a> <a href="https://www.grn.com/a/view/9910.html">Events</a> <a href="https://www.waste.net/markets.html">Markets</a> <br> <font color="#FFFFFF" size="-3"> Monday, 22-Jul-2024 14:12:47 EDT - 753 </font> <br> <a href="https://www.waste.net/cgi-bin/feedback3.cgi?id=73&from=waste.net&w=chf:waste">WebMaster FeedBack</a> <a href="https://www.waste.net/cgi-bin/91.cgi?at=000001&kw=waste.net&do=results&w=chf:waste">Privacy Policy</a> <a href="https://www.waste.net/">Home</a> </center> </div> <div class="box"> <hr width="50%" color="#cccccc"> </div> <div class="box"> <center> <a href="https://www.cooksmill.com/"> <IMG SRC="https://www.cooksmill.com/gif-bin/390x67-transpBG.gif" width="300"></a> <br> Waste.net is part of the Cooksmill NetSystem <a href="https://www.cooksmill.net/clients.html">network</a> of websites </center> </div> </body> </html>