CINXE.COM
[2407.12254] COKE: Causal Discovery with Chronological Order and Expert Knowledge in High Proportion of Missing Manufacturing Data
<!DOCTYPE html> <html lang="en"> <head> <title>[2407.12254] COKE: Causal Discovery with Chronological Order and Expert Knowledge in High Proportion of Missing Manufacturing Data</title> <meta name="viewport" content="width=device-width, initial-scale=1"> <link rel="apple-touch-icon" sizes="180x180" href="/static/browse/0.3.4/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="/static/browse/0.3.4/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="/static/browse/0.3.4/images/icons/favicon-16x16.png"> <link rel="manifest" href="/static/browse/0.3.4/images/icons/site.webmanifest"> <link rel="mask-icon" href="/static/browse/0.3.4/images/icons/safari-pinned-tab.svg" color="#5bbad5"> <meta name="msapplication-TileColor" content="#da532c"> <meta name="theme-color" content="#ffffff"> <link rel="stylesheet" type="text/css" media="screen" href="/static/browse/0.3.4/css/arXiv.css?v=20241206" /> <link rel="stylesheet" type="text/css" media="print" href="/static/browse/0.3.4/css/arXiv-print.css?v=20200611" /> <link rel="stylesheet" type="text/css" media="screen" href="/static/browse/0.3.4/css/browse_search.css" /> <script language="javascript" src="/static/browse/0.3.4/js/accordion.js" /></script> <link rel="canonical" href="https://arxiv.org/abs/2407.12254"/> <meta name="description" content="Abstract page for arXiv paper 2407.12254: COKE: Causal Discovery with Chronological Order and Expert Knowledge in High Proportion of Missing Manufacturing Data"><meta property="og:type" content="website" /> <meta property="og:site_name" content="arXiv.org" /> <meta property="og:title" content="COKE: Causal Discovery with Chronological Order and Expert Knowledge in High Proportion of Missing Manufacturing Data" /> <meta property="og:url" content="https://arxiv.org/abs/2407.12254v2" /> <meta property="og:image" content="/static/browse/0.3.4/images/arxiv-logo-fb.png" /> <meta property="og:image:secure_url" content="/static/browse/0.3.4/images/arxiv-logo-fb.png" /> <meta property="og:image:width" content="1200" /> <meta property="og:image:height" content="700" /> <meta property="og:image:alt" content="arXiv logo"/> <meta property="og:description" content="Understanding causal relationships between machines is crucial for fault diagnosis and optimization in manufacturing processes. Real-world datasets frequently exhibit up to 90% missing data and high dimensionality from hundreds of sensors. These datasets also include domain-specific expert knowledge and chronological order information, reflecting the recording order across different machines, which is pivotal for discerning causal relationships within the manufacturing data. However, previous methods for handling missing data in scenarios akin to real-world conditions have not been able to effectively utilize expert knowledge. Conversely, prior methods that can incorporate expert knowledge struggle with datasets that exhibit missing values. Therefore, we propose COKE to construct causal graphs in manufacturing datasets by leveraging expert knowledge and chronological order among sensors without imputing missing data. Utilizing the characteristics of the recipe, we maximize the use of samples with missing values, derive embeddings from intersections with an initial graph that incorporates expert knowledge and chronological order, and create a sensor ordering graph. The graph-generating process has been optimized by an actor-critic architecture to obtain a final graph that has a maximum reward. Experimental evaluations in diverse settings of sensor quantities and missing proportions demonstrate that our approach compared with the benchmark methods shows an average improvement of 39.9% in the F1-score. Moreover, the F1-score improvement can reach 62.6% when considering the configuration similar to real-world datasets, and 85.0% in real-world semiconductor datasets. The source code is available at https://github.com/OuTingYun/COKE."/> <meta name="twitter:site" content="@arxiv"/> <meta name="twitter:card" content="summary"/> <meta name="twitter:title" content="COKE: Causal Discovery with Chronological Order and Expert..."/> <meta name="twitter:description" content="Understanding causal relationships between machines is crucial for fault diagnosis and optimization in manufacturing processes. Real-world datasets frequently exhibit up to 90% missing data and..."/> <meta name="twitter:image" content="https://static.arxiv.org/icons/twitter/arxiv-logo-twitter-square.png"/> <meta name="twitter:image:alt" content="arXiv logo"/> <link rel="stylesheet" media="screen" type="text/css" href="/static/browse/0.3.4/css/tooltip.css"/><link rel="stylesheet" media="screen" type="text/css" href="https://static.arxiv.org/js/bibex-dev/bibex.css?20200709"/> <script src="/static/browse/0.3.4/js/mathjaxToggle.min.js" type="text/javascript"></script> <script src="//code.jquery.com/jquery-latest.min.js" type="text/javascript"></script> <script src="//cdn.jsdelivr.net/npm/js-cookie@2/src/js.cookie.min.js" type="text/javascript"></script> <script src="//cdn.jsdelivr.net/npm/dompurify@2.3.5/dist/purify.min.js"></script> <script src="/static/browse/0.3.4/js/toggle-labs.js?20241022" type="text/javascript"></script> <script src="/static/browse/0.3.4/js/cite.js" type="text/javascript"></script><meta name="citation_title" content="COKE: Causal Discovery with Chronological Order and Expert Knowledge in High Proportion of Missing Manufacturing Data" /><meta name="citation_author" content="Ou, Ting-Yun" /><meta name="citation_author" content="Chang, Ching" /><meta name="citation_author" content="Peng, Wen-Chih" /><meta name="citation_date" content="2024/07/17" /><meta name="citation_online_date" content="2024/08/01" /><meta name="citation_pdf_url" content="http://arxiv.org/pdf/2407.12254" /><meta name="citation_arxiv_id" content="2407.12254" /><meta name="citation_abstract" content="Understanding causal relationships between machines is crucial for fault diagnosis and optimization in manufacturing processes. Real-world datasets frequently exhibit up to 90% missing data and high dimensionality from hundreds of sensors. These datasets also include domain-specific expert knowledge and chronological order information, reflecting the recording order across different machines, which is pivotal for discerning causal relationships within the manufacturing data. However, previous methods for handling missing data in scenarios akin to real-world conditions have not been able to effectively utilize expert knowledge. Conversely, prior methods that can incorporate expert knowledge struggle with datasets that exhibit missing values. Therefore, we propose COKE to construct causal graphs in manufacturing datasets by leveraging expert knowledge and chronological order among sensors without imputing missing data. Utilizing the characteristics of the recipe, we maximize the use of samples with missing values, derive embeddings from intersections with an initial graph that incorporates expert knowledge and chronological order, and create a sensor ordering graph. The graph-generating process has been optimized by an actor-critic architecture to obtain a final graph that has a maximum reward. Experimental evaluations in diverse settings of sensor quantities and missing proportions demonstrate that our approach compared with the benchmark methods shows an average improvement of 39.9% in the F1-score. Moreover, the F1-score improvement can reach 62.6% when considering the configuration similar to real-world datasets, and 85.0% in real-world semiconductor datasets. The source code is available at https://github.com/OuTingYun/COKE." /> </head> <body class="with-cu-identity"> <div class="flex-wrap-footer"> <header> <a href="#content" class="is-sr-only">Skip to main content</a> <!-- start desktop header --> <div class="columns is-vcentered is-hidden-mobile" id="cu-identity"> <div class="column" id="cu-logo"> <a href="https://www.cornell.edu/"><img src="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg" alt="Cornell University" /></a> </div><div class="column" id="support-ack"> <span id="support-ack-url">We gratefully acknowledge support from the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors.</span> <a href="https://info.arxiv.org/about/donate.html" class="btn-header-donate">Donate</a> </div> </div> <div id="header" class="is-hidden-mobile"> <a aria-hidden="true" tabindex="-1" href="/IgnoreMe"></a> <div class="header-breadcrumbs is-hidden-mobile"> <a href="/"><img src="/static/browse/0.3.4/images/arxiv-logo-one-color-white.svg" alt="arxiv logo" style="height:40px;"/></a> <span>></span> <a href="/list/cs/recent">cs</a> <span>></span> arXiv:2407.12254 </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div><!-- /end desktop header --> <div class="mobile-header"> <div class="columns is-mobile"> <div class="column logo-arxiv"><a href="https://arxiv.org/"><img src="/static/browse/0.3.4/images/arxiv-logomark-small-white.svg" alt="arXiv logo" style="height:60px;" /></a></div> <div class="column logo-cornell"><a href="https://www.cornell.edu/"> <picture> <source media="(min-width: 501px)" srcset="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg 400w" sizes="400w" /> <source srcset="/static/browse/0.3.4/images/icons/cu/cornell_seal_simple_black.svg 2x" /> <img src="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg" alt="Cornell University Logo" /> </picture> </a></div> <div class="column nav" id="toggle-container" role="menubar"> <button class="toggle-control"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-white"><title>open search</title><path d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"/></svg></button> <div class="mobile-toggle-block toggle-target"> <form class="mobile-search-form" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <input class="input" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <input type="hidden" name="source" value="header"> <input type="hidden" name="searchtype" value="all"> <button class="button">GO</button> </div> </form> </div> <button class="toggle-control"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-white" role="menu"><title>open navigation menu</title><path d="M16 132h416c8.837 0 16-7.163 16-16V76c0-8.837-7.163-16-16-16H16C7.163 60 0 67.163 0 76v40c0 8.837 7.163 16 16 16zm0 160h416c8.837 0 16-7.163 16-16v-40c0-8.837-7.163-16-16-16H16c-8.837 0-16 7.163-16 16v40c0 8.837 7.163 16 16 16zm0 160h416c8.837 0 16-7.163 16-16v-40c0-8.837-7.163-16-16-16H16c-8.837 0-16 7.163-16 16v40c0 8.837 7.163 16 16 16z"/ ></svg></button> <div class="mobile-toggle-block toggle-target"> <nav class="mobile-menu" aria-labelledby="mobilemenulabel"> <h2 id="mobilemenulabel">quick links</h2> <ul> <li><a href="https://arxiv.org/login">Login</a></li> <li><a href="https://info.arxiv.org/help">Help Pages</a></li> <li><a href="https://info.arxiv.org/about">About</a></li> </ul> </nav> </div> </div> </div> </div><!-- /end mobile-header --> </header> <main> <div id="content"> <!-- rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:trackback="http://madskills.com/public/xml/rss/module/trackback/"> <rdf:Description rdf:about="/abs/2407.12254" dc:identifier="/abs/2407.12254" dc:title="COKE: Causal Discovery with Chronological Order and Expert Knowledge in High Proportion of Missing Manufacturing Data" trackback:ping="/trackback/2407.12254" /> </rdf:RDF> --><div id="abs-outer"> <div class="leftcolumn"> <div class="subheader"> <h1>Computer Science > Machine Learning</h1> </div> <div class="header-breadcrumbs-mobile"> <strong>arXiv:2407.12254</strong> (cs) </div> <link rel="stylesheet" type="text/css" href="/static/base/1.0.1/css/abs.css"> <div id="content-inner"> <div id="abs"> <div class="dateline"> [Submitted on 17 Jul 2024 (<a href="https://arxiv.org/abs/2407.12254v1">v1</a>), last revised 1 Aug 2024 (this version, v2)]</div> <h1 class="title mathjax"><span class="descriptor">Title:</span>COKE: Causal Discovery with Chronological Order and Expert Knowledge in High Proportion of Missing Manufacturing Data</h1> <div class="authors"><span class="descriptor">Authors:</span><a href="https://arxiv.org/search/cs?searchtype=author&query=Ou,+T" rel="nofollow">Ting-Yun Ou</a>, <a href="https://arxiv.org/search/cs?searchtype=author&query=Chang,+C" rel="nofollow">Ching Chang</a>, <a href="https://arxiv.org/search/cs?searchtype=author&query=Peng,+W" rel="nofollow">Wen-Chih Peng</a></div> <div id="download-button-info" hidden>View a PDF of the paper titled COKE: Causal Discovery with Chronological Order and Expert Knowledge in High Proportion of Missing Manufacturing Data, by Ting-Yun Ou and 2 other authors</div> <a class="mobile-submission-download" href="/pdf/2407.12254">View PDF</a> <a class="mobile-submission-download" href="https://arxiv.org/html/2407.12254v2">HTML (experimental)</a> <blockquote class="abstract mathjax"> <span class="descriptor">Abstract:</span>Understanding causal relationships between machines is crucial for fault diagnosis and optimization in manufacturing processes. Real-world datasets frequently exhibit up to 90% missing data and high dimensionality from hundreds of sensors. These datasets also include domain-specific expert knowledge and chronological order information, reflecting the recording order across different machines, which is pivotal for discerning causal relationships within the manufacturing data. However, previous methods for handling missing data in scenarios akin to real-world conditions have not been able to effectively utilize expert knowledge. Conversely, prior methods that can incorporate expert knowledge struggle with datasets that exhibit missing values. Therefore, we propose COKE to construct causal graphs in manufacturing datasets by leveraging expert knowledge and chronological order among sensors without imputing missing data. Utilizing the characteristics of the recipe, we maximize the use of samples with missing values, derive embeddings from intersections with an initial graph that incorporates expert knowledge and chronological order, and create a sensor ordering graph. The graph-generating process has been optimized by an actor-critic architecture to obtain a final graph that has a maximum reward. Experimental evaluations in diverse settings of sensor quantities and missing proportions demonstrate that our approach compared with the benchmark methods shows an average improvement of 39.9% in the F1-score. Moreover, the F1-score improvement can reach 62.6% when considering the configuration similar to real-world datasets, and 85.0% in real-world semiconductor datasets. The source code is available at <a href="https://github.com/OuTingYun/COKE" rel="external noopener nofollow" class="link-external link-https">this https URL</a>. </blockquote> <!--CONTEXT--> <div class="metatable"> <table summary="Additional metadata"> <tr> <td class="tablecell label">Comments:</td> <td class="tablecell comments mathjax">This paper has been accepted by the ACM International Conference on Information and Knowledge Management (CIKM) 2024</td> </tr> <tr> <td class="tablecell label">Subjects:</td> <td class="tablecell subjects"> <span class="primary-subject">Machine Learning (cs.LG)</span>; Methodology (stat.ME)</td> </tr><tr> <td class="tablecell label">Cite as:</td> <td class="tablecell arxivid"><span class="arxivid"><a href="https://arxiv.org/abs/2407.12254">arXiv:2407.12254</a> [cs.LG]</span></td> </tr> <tr> <td class="tablecell label"> </td> <td class="tablecell arxividv">(or <span class="arxivid"> <a href="https://arxiv.org/abs/2407.12254v2">arXiv:2407.12254v2</a> [cs.LG]</span> for this version) </td> </tr> <tr> <td class="tablecell label"> </td> <td class="tablecell arxivdoi"> <a href="https://doi.org/10.48550/arXiv.2407.12254" id="arxiv-doi-link">https://doi.org/10.48550/arXiv.2407.12254</a><div class="button-and-tooltip"> <button class="more-info" aria-describedby="more-info-desc-1"> <svg height="15" role="presentation" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256 8C119.043 8 8 119.083 8 256c0 136.997 111.043 248 248 248s248-111.003 248-248C504 119.083 392.957 8 256 8zm0 110c23.196 0 42 18.804 42 42s-18.804 42-42 42-42-18.804-42-42 18.804-42 42-42zm56 254c0 6.627-5.373 12-12 12h-88c-6.627 0-12-5.373-12-12v-24c0-6.627 5.373-12 12-12h12v-64h-12c-6.627 0-12-5.373-12-12v-24c0-6.627 5.373-12 12-12h64c6.627 0 12 5.373 12 12v100h12c6.627 0 12 5.373 12 12v24z" class=""></path></svg> <span class="visually-hidden">Focus to learn more</span> </button> <!-- tooltip description --> <div role="tooltip" id="more-info-desc-1"> <span class="left-corner"></span> arXiv-issued DOI via DataCite</div> </div> </td> </tr></table> </div> </div> </div> <div class="submission-history"> <h2>Submission history</h2> From: Ching Chang [<a href="/show-email/fc4addc4/2407.12254" rel="nofollow">view email</a>] <br/> <strong><a href="/abs/2407.12254v1" rel="nofollow">[v1]</a></strong> Wed, 17 Jul 2024 01:51:27 UTC (6,783 KB)<br/> <strong>[v2]</strong> Thu, 1 Aug 2024 01:21:57 UTC (6,291 KB)<br/> </div> </div> <!--end leftcolumn--> <div class="extra-services"> <div class="full-text"> <a name="other"></a> <span class="descriptor">Full-text links:</span> <h2>Access Paper:</h2> <ul> <div id="download-button-info" hidden> View a PDF of the paper titled COKE: Causal Discovery with Chronological Order and Expert Knowledge in High Proportion of Missing Manufacturing Data, by Ting-Yun Ou and 2 other authors</div><li><a href="/pdf/2407.12254" aria-describedby="download-button-info" accesskey="f" class="abs-button download-pdf">View PDF</a></li><li><a href="https://arxiv.org/html/2407.12254v2" class="abs-button" id="latexml-download-link">HTML (experimental)</a></li><li><a href="/src/2407.12254" class="abs-button download-eprint">TeX Source</a></li><li><a href="/format/2407.12254" class="abs-button download-format">Other Formats</a></li></ul> <div class="abs-license"><a href="http://arxiv.org/licenses/nonexclusive-distrib/1.0/" title="Rights to this article">view license</a></div> </div> <!--end full-text--> <div class="browse"> Current browse context: <div class="current">cs.LG</div> <div class="prevnext"> <span class="arrow"> <a class="abs-button prev-url" href="/prevnext?id=2407.12254&function=prev&context=cs.LG" accesskey="p" title="previous in cs.LG (accesskey p)" rel="nofollow">< prev</a> </span> <span class="is-hidden-mobile"> | </span> <span class="arrow"> <a class="abs-button next-url" href="/prevnext?id=2407.12254&function=next&context=cs.LG" accesskey="n" title="next in cs.LG (accesskey n)" rel="nofollow">next ></a> </span><br/> </div><div class="list"> <a class="abs-button abs-button-grey abs-button-small context-new" href="/list/cs.LG/new" rel="nofollow">new</a> <span class="is-hidden-mobile"> | </span> <a class="abs-button abs-button-grey abs-button-small context-recent" href="/list/cs.LG/recent" rel="nofollow">recent</a> <span class="is-hidden-mobile"> | </span><a class="abs-button abs-button-grey abs-button-small context-id" href="/list/cs.LG/2024-07" rel="nofollow">2024-07</a> </div><div class="abs-switch-cat"> Change to browse by: <div class="switch context-change"> <a href="/abs/2407.12254?context=cs" rel="nofollow">cs</a><br class="is-hidden-mobile"> <a href="/abs/2407.12254?context=stat" rel="nofollow">stat</a><br class="is-hidden-mobile"> <a class="subclass" href="/abs/2407.12254?context=stat.ME" rel="nofollow">stat.ME</a><br class="is-hidden-mobile"> </div> </div> </div> <div class="extra-ref-cite"> <h3>References & Citations</h3> <ul> <li><a class="abs-button abs-button-small cite-ads" href="https://ui.adsabs.harvard.edu/abs/arXiv:2407.12254">NASA ADS</a></li><li><a class="abs-button abs-button-small cite-google-scholar" href="https://scholar.google.com/scholar_lookup?arxiv_id=2407.12254" target="_blank" rel="noopener">Google Scholar</a></li> <li><a class="abs-button abs-button-small cite-semantic-scholar" href="https://api.semanticscholar.org/arXiv:2407.12254" target="_blank" rel="noopener">Semantic Scholar</a></li> </ul> <div style="clear:both;"></div> </div> <div class='extra-ref-cite'> <a id='bib-cite-css' hidden='true' href='/static/browse/0.3.4/css/cite.css'>a</a> <span id='bib-cite-trigger' class="bib-cite-button abs-button">export BibTeX citation</span> <span id='bib-cite-loading' hidden='true'>Loading...</span> </div> <div id='bib-cite-modal' class='bib-modal' hidden='true'> <div class='bib-modal-content'> <div class='bib-modal-title'> <h2>BibTeX formatted citation</h2> <span class='bib-modal-close' >×</span> </div> <div> <textarea id='bib-cite-target' class="bib-citation-content" aria-label="loading the citation">loading...</textarea> </div> <div> <span>Data provided by: </span> <a id='bib-cite-source-api'></a> </div> </div> </div><div class="bookmarks"> <div><h3>Bookmark</h3></div><a class="abs-button abs-button-grey abs-button-small" href="http://www.bibsonomy.org/BibtexHandler?requTask=upload&url=https://arxiv.org/abs/2407.12254&description=COKE: Causal Discovery with Chronological Order and Expert Knowledge in High Proportion of Missing Manufacturing Data" title="Bookmark on BibSonomy"> <img src="/static/browse/0.3.4/images/icons/social/bibsonomy.png" alt="BibSonomy logo"/> </a> <a class="abs-button abs-button-grey abs-button-small" href="https://reddit.com/submit?url=https://arxiv.org/abs/2407.12254&title=COKE: Causal Discovery with Chronological Order and Expert Knowledge in High Proportion of Missing Manufacturing Data" title="Bookmark on Reddit"> <img src="/static/browse/0.3.4/images/icons/social/reddit.png" alt="Reddit logo"/> </a> </div> </div> <!--end extra-services--> <!-- LABS AREA --> <div id="labstabs"> <div class="labstabs"><input type="radio" name="tabs" id="tabone"checked="checked"> <label for="tabone">Bibliographic Tools</label> <div class="tab labs-display-bib"> <h1>Bibliographic and Citation Tools</h1> <div class="toggle"> <div class="columns is-mobile lab-row"> <div class="column lab-switch"> <label class="switch"> <input id="bibex-toggle" type="checkbox" class="lab-toggle" data-script-url="/static/browse/0.3.4/bibex/bibex.js?20241202"> <span class="slider"></span> <span class="is-sr-only">Bibliographic Explorer Toggle</span> </label> </div> <div class="column lab-name"> <span id="label-for-bibex">Bibliographic Explorer</span> <em>(<a href="https://info.arxiv.org/labs/showcase.html#arxiv-bibliographic-explorer">What is the Explorer?</a>)</em> </div> </div> <div class="columns is-mobile lab-row"> <div class="column lab-switch"> <label class="switch"> <input id="connectedpapers-toggle" type="checkbox" class="lab-toggle" data-script-url="/static/browse/0.3.4/js/connectedpapers.js" aria-labelledby="label-for-connected-papers"> <span class="slider"></span> <span class="is-sr-only">Connected Papers Toggle</span> </label> </div> <div class="column lab-name"> <span id="label-for-connected-papers">Connected Papers</span> <em>(<a href="https://www.connectedpapers.com/about" target="_blank">What is Connected Papers?</a>)</em> </div> </div><div class="columns is-mobile lab-row"> <div class="column lab-switch"> <label class="switch"> <input id="litmaps-toggle" type="checkbox" class="lab-toggle" data-script-url="/static/browse/0.3.4/js/litmaps.js?20210617" aria-labelledby="label-for-litmaps"> <span class="slider"></span> <span class="is-sr-only">Litmaps Toggle</span> </label> </div> <div class="column lab-name"> <span id="label-for-litmaps">Litmaps</span> <em>(<a href="https://www.litmaps.co/" target="_blank">What is Litmaps?</a>)</em> </div> </div> <div class="columns is-mobile lab-row"> <div class="column lab-switch"> <label class="switch"> <input id="scite-toggle" type="checkbox" class="lab-toggle" data-script-url="/static/browse/0.3.4/js/scite.js?20210617" aria-labelledby="label-for-scite"> <span class="slider"></span> <span class="is-sr-only">scite.ai Toggle</span> </label> </div> <div class="column lab-name"> <span id="label-for-scite">scite Smart Citations</span> <em>(<a href="https://www.scite.ai/" target="_blank">What are Smart Citations?</a>)</em> </div> </div> </div> <div class="labs-content-placeholder labs-display" style="display: none;"></div> <div style="min-height: 15px" id="connectedpapers-output"></div> <div style="min-height: 15px" id="litmaps-open-in"></div> <div style="min-height: 15px" id="scite-open-in"></div> </div> <input type="radio" name="tabs" id="tabtwo"> <label for="tabtwo">Code, Data, Media</label> <div class="tab"> <h1>Code, Data and Media Associated with this Article</h1> <div class="toggle"> <div class="columns is-mobile lab-row"> <div class="column lab-switch"> <label class="switch"> <input id="alphaxiv-toggle" data-script-url="/static/browse/0.3.4/js/alphaxiv.js" type="checkbox" class="lab-toggle" aria-labelledby="label-for-alphaxiv"> <span class="slider"></span> <span class="is-sr-only">alphaXiv Toggle</span> </label> </div> <div class="column lab-name"> <span id="label-for-alphaxiv">alphaXiv</span> <em>(<a href="https://alphaxiv.org/" target="_blank">What is alphaXiv?</a>)</em> </div> </div> <div class="columns is-mobile lab-row"> <div class="column lab-switch"> <label class="switch"> <input id="catalyzex-toggle" data-script-url="/static/browse/0.3.4/js/catalyzex.js" type="checkbox" class="lab-toggle" aria-labelledby="label-for-cx"> <span class="slider"></span> <span class="is-sr-only">Links to Code Toggle</span> </label> </div> <div class="column lab-name"> <span id="label-for-cx">CatalyzeX Code Finder for Papers</span> <em>(<a href="https://www.catalyzex.com" target="_blank">What is CatalyzeX?</a>)</em> </div> </div> <div class="columns is-mobile lab-row"> <div class="column lab-switch"> <label class="switch"> <input id="dagshub-toggle" data-script-url="/static/browse/0.3.4/js/dagshub.js" type="checkbox" class="lab-toggle" aria-labelledby="label-for-dagshub"> <span class="slider"></span> <span class="is-sr-only">DagsHub Toggle</span> </label> </div> <div class="column lab-name"> <span id="label-for-dagshub">DagsHub</span> <em>(<a href="https://dagshub.com/" target="_blank">What is DagsHub?</a>)</em> </div> </div> <div class="columns is-mobile lab-row"> <div class="column lab-switch"> <label class="switch"> <input id="gotitpub-toggle" data-script-url="/static/browse/0.3.4/js/gotitpub.js" type="checkbox" class="lab-toggle" aria-labelledby="label-for-gotitpub"> <span class="slider"></span> <span class="is-sr-only">GotitPub Toggle</span> </label> </div> <div class="column lab-name"> <span id="label-for-gotitpub">Gotit.pub</span> <em>(<a href="http://gotit.pub/faq" target="_blank">What is GotitPub?</a>)</em> </div> </div> <div class="columns is-mobile lab-row"> <div class="column lab-switch"> <label class="switch"> <input id="huggingface-toggle" data-script-url="/static/browse/0.3.4/js/huggingface.js" type="checkbox" class="lab-toggle" aria-labelledby="label-for-huggingface"> <span class="slider"></span> <span class="is-sr-only">Huggingface Toggle</span> </label> </div> <div class="column lab-name"> <span id="label-for-huggingface">Hugging Face</span> <em>(<a href="https://huggingface.co/huggingface" target="_blank">What is Huggingface?</a>)</em> </div> </div> <div class="columns is-mobile lab-row"> <div class="column lab-switch"> <label class="switch"> <input id="paperwithcode-toggle" data-script-url="/static/browse/0.3.4/js/paperswithcode.js" type="checkbox" class="lab-toggle" aria-labelledby="label-for-pwc"> <span class="slider"></span> <span class="is-sr-only">Links to Code Toggle</span> </label> </div> <div class="column lab-name"> <span id="label-for-pwc">Papers with Code</span> <em>(<a href="https://paperswithcode.com/" target="_blank">What is Papers with Code?</a>)</em> </div> </div> <div class="columns is-mobile lab-row"> <div class="column lab-switch"> <label class="switch"> <input id="sciencecast-toggle" data-script-url="/static/browse/0.3.4/js/sciencecast.js" type="checkbox" class="lab-toggle" aria-labelledby="label-for-sciencecast"> <span class="slider"></span> <span class="is-sr-only">ScienceCast Toggle</span> </label> </div> <div class="column lab-name"> <span id="label-for-sciencecast">ScienceCast</span> <em>(<a href="https://sciencecast.org/welcome" target="_blank">What is ScienceCast?</a>)</em> </div> </div> </div> <div id="alphaxiv-output" style="display:none"></div> <div id="catalyzex-output" style="display:none"></div> <div id="dagshub-output" style="display:none"></div> <div id="gotitpub-output" style="display:none"></div> <div id="pwc-output" style="display:none"></div> <div id="pwc-data-output" style="display:none"></div> <div id="sciencecast-output" style="display:none"></div> <div id="huggingface-output" style="display:none"></div> </div> <input type="radio" name="tabs" id="labstabs-demos-input"> <label for="labstabs-demos-input" id="labstabs-demos-label">Demos</label> <div class="tab"> <h1>Demos</h1> <div class="toggle"> <div class="columns is-mobile lab-row"> <div class="column lab-switch"> <label class="switch"> <input id="replicate-toggle" data-script-url="/static/browse/0.3.4/js/replicate.js" type="checkbox" class="lab-toggle" aria-labelledby="label-for-replicate"> <span class="slider"></span> <span class="is-sr-only">Replicate Toggle</span> </label> </div> <div class="column lab-name"> <span id="label-for-replicate">Replicate</span> <em>(<a href="https://replicate.com/docs/arxiv/about" target="_blank">What is Replicate?</a>)</em> </div> </div> <div class="columns is-mobile lab-row"> <div class="column lab-switch"> <label class="switch"> <input id="spaces-toggle" data-script-url="/static/browse/0.3.4/js/spaces.js" type="checkbox" class="lab-toggle" aria-labelledby="label-for-spaces"> <span class="slider"></span> <span class="is-sr-only">Spaces Toggle</span> </label> </div> <div class="column lab-name"> <span id="label-for-spaces">Hugging Face Spaces</span> <em>(<a href="https://huggingface.co/docs/hub/spaces" target="_blank">What is Spaces?</a>)</em> </div> </div> <div class="columns is-mobile lab-row"> <div class="column lab-switch"> <label class="switch"> <input id="txyz-toggle" data-script-url="/static/browse/0.3.4/js/txyz.js" type="checkbox" class="lab-toggle" aria-labelledby="label-for-txyz"> <span class="slider"></span> <span class="is-sr-only">Spaces Toggle</span> </label> </div> <div class="column lab-name"> <span id="label-for-txyz">TXYZ.AI</span> <em>(<a href="https://txyz.ai" target="_blank">What is TXYZ.AI?</a>)</em> </div> </div> </div> <div id="replicate-output"></div> <div id="spaces-output"></div> <div id="txyz-output"></div> </div> <input type="radio" name="tabs" id="tabfour"> <label for="tabfour">Related Papers</label> <div class="tab"> <h1>Recommenders and Search Tools</h1> <div class="toggle"> <div class="columns is-mobile lab-row"> <div class="column lab-switch"> <label class="switch"> <input id="influenceflower-toggle" data-script-url="/static/browse/0.3.4/js/influenceflower.js" type="checkbox" class="lab-toggle" aria-labelledby="label-for-influenceflower"> <span class="slider"></span> <span class="is-sr-only">Link to Influence Flower</span> </label> </div> <div class="column lab-name"> <span id="label-for-influenceflower">Influence Flower</span> <em>(<a href="https://influencemap.cmlab.dev/" target="_blank">What are Influence Flowers?</a>)</em> </div> </div> <div class="columns is-mobile lab-row"> <div class="column lab-switch"> <label class="switch"> <input id="core-recommender-toggle" type="checkbox" class="lab-toggle" aria-labelledby="label-for-core"> <span class="slider"></span> <span class="is-sr-only">Core recommender toggle</span> </label> </div> <div class="column lab-name"> <span id="label-for-core">CORE Recommender</span> <em>(<a href="https://core.ac.uk/services/recommender">What is CORE?</a>)</em> </div> </div> <div class="columns is-mobile lab-row"> <div class="column lab-switch"> <label class="switch"> <input id="iarxiv-toggle" type="checkbox" class="lab-toggle" data-script-url="/static/browse/0.3.4/js/iarxiv.js" aria-labelledby="label-for-iarxiv"> <span class="slider"></span> <span class="is-sr-only">IArxiv recommender toggle</span> </label> </div> <div class="column lab-name"> <span id="label-for-iarxiv">IArxiv Recommender</span> <em>(<a href="https://iarxiv.org/about">What is IArxiv?</a>)</em> </div> </div> </div> <div id="influenceflower-output"></div> <div id="influenceflower-output-graph" style="display:none"> <ul class="flower-tabs"> <li class="active"><a class="btn tab-btn" onclick="openTab(event, 'tab-author')">Author</a></li> <li><a class="btn tab-btn" onclick="openTab(event, 'tab-venue')">Venue</a></li> <li><a class="btn tab-btn" onclick="openTab(event, 'tab-inst')">Institution</a></li> <li><a class="btn tab-btn" onclick="openTab(event, 'tab-topic')">Topic</a></li> </ul> <div class="flower-tab-content"> <div class="tab-flower active" id="tab-author"><svg id="flower-graph-author"></svg></div> <div class="tab-flower" id="tab-venue"><svg id="flower-graph-venue"></svg></div> <div class="tab-flower" id="tab-inst"><svg id="flower-graph-inst"></svg></div> <div class="tab-flower" id="tab-topic"><svg id="flower-graph-topic"></svg></div> </div> </div> <div id="coreRecommenderOutput"></div> <div id="iarxivOutput"></div> </div> <input type="radio" name="tabs" id="tabfive"> <label for="tabfive"> About arXivLabs </label> <div class="tab"> <div class="columns"> <div class="column"> <h1>arXivLabs: experimental projects with community collaborators</h1> <p>arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.</p> <p>Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.</p> <p>Have an idea for a project that will add value for arXiv's community? <a href="https://info.arxiv.org/labs/index.html"><strong>Learn more about arXivLabs</strong></a>.</p> </div> <div class="column is-narrow is-full-mobile"> <p class="icon-labs"><svg xmlns="http://www.w3.org/2000/svg" role="presentation" viewBox="0 0 635.572 811"><path d="M175.6 676v27h-27v-27zm-54 27v27h27v-27zm-27 27v27h27v-27zm396-54v27h-27v-27zm0 27v27h27v-27zm27 27v27h27v-27zm-27-414h27v27h-27zm27 0h27v-27h-27zm27-27h27v-27h-27zm-396 45h-27v-27h27zm-27-54h-27v27h27zm-27-27h-27v27h27z"/><path d="M94.6 730v27h-27v-27zm477 0v27h-27v-27zm-27-495h27v27h-27zm-450 18h-27v-27h27zm477 9h27v27h-27zm-54 495h27v27h-27zm-423 0h27v27h-27zm-54-504h27v27h-27z" fill="#666"/><path d="M67.6 730v27h-27v-27zm54 54v27h-27v-27zm0-108v27h27v-27zm-27 27v27h27v-27zm-81 0v27h27v-27zm585 27v27h-27v-27zm-108-54v27h27v-27zm27 27v27h27v-27zm81 0v27h27v-27zm-54-495h27v27h-27zm-54 108h27v-27h-27zm27-27h27v-27h-27zm0-81h27v-27h-27zm-423 18h-27v-27h27zm54 54h-27v27h27zm-27-27h-27v27h27zm0-81h-27v27h27zm423 612v27h-27v-27zm81-522v27h-27v-27zm-585-9v27h-27v-27z" fill="#999"/><path d="M94.6 784v27h-27v-27zm-27-27v27h27v-27zm-27-54v27h27v-27zm27 0v27h27v-27zm0-27v27h27v-27zm27 0v27h27v-27zm0-27v27h27v-27zm27 0v27h27v-27zm-108 81v27h27v-27zm558 54v27h-27v-27zm-27-27v27h27v-27zm27-54v27h27v-27zm-27 0v27h27v-27zm0-27v27h27v-27zm-27 0v27h27v-27zm0-27v27h27v-27zm-27 0v27h27v-27zm108 81v27h27v-27zm0-495h27v27h-27zm-27 27h27v-27h-27zm-54-27h27v-27h-27zm0 27h27v-27h-27zm-27 0h27v-27h-27zm0 27h27v-27h-27zm-27 0h27v-27h-27zm0 27h27v-27h-27zm81-108h27v-27h-27zm-504 45h-27v-27h27zm27-27h-27v27h27zm54-27h-27v27h27zm0 27h-27v27h27zm27 0h-27v27h27zm0 27h-27v27h27zm27 0h-27v27h27zm0 27h-27v27h27zm-81-108h-27v27h27z" fill="#ccc"/><path d="M598.6 665.1H41.5C-76.5 667 176 280.2 176 280.2h53a46.5 46.5 0 0162.8-56.3 29.2 29.2 0 1128.5 35.9h-1a46.5 46.5 0 01-1.5 20.3l142.5-.1s255.3 387 138.3 385.1zM291 181a29.3 29.3 0 10-29.2-29.3A29.3 29.3 0 00291 181zm65.4-66.8a22.4 22.4 0 10-22.5-22.4 22.4 22.4 0 0022.5 22.4z" fill="#fc0"/><path d="M245.5 172V10h153v162s324 495 198 495h-558c-126 0 207-495 207-495zm126 54h56m-13 72h56m-9 72h56m-20 72h56m-22 72h56m-29 72h56m-457-45c20.8 41.7 87.3 81 160.7 81 72.1 0 142.1-38.2 163.4-81" fill="none" stroke="#000" stroke-miterlimit="10" stroke-width="20"/><path d="M273.3 421.7c0 31-9.8 56.3-21.9 56.3s-21.8-25.2-21.8-56.3 9.8-56.3 21.8-56.3 21.9 25.2 21.9 56.3zm114.4-56.3c-12 0-21.8 25.2-21.8 56.3s9.7 56.3 21.8 56.3 21.9-25.2 21.9-56.3-9.8-56.3-21.9-56.3zM150.1 526.6c-18.2 6.7-27.5 22.9-23.2 30.2s14.8-5.5 33-12.2 37.4-4.9 33-12.2-24.5-12.6-42.8-5.8zm296 5.8c-4.2 7.3 14.9 5.5 33.1 12.2s28.7 19.5 33 12.2-5-23.5-23.2-30.2-38.5-1.5-42.8 5.8z"/></svg></p> </div> </div> </div> </div> </div> <!-- END LABS AREA --> <div class="endorsers"> <a href="/auth/show-endorsers/2407.12254" class="endorser-who" rel="nofollow">Which authors of this paper are endorsers?</a> | <a id="mathjax_toggle" href="javascript:setMathjaxCookie()">Disable MathJax</a> (<a href="https://info.arxiv.org/help/mathjax.html">What is MathJax?</a>) <span class="help" style="font-style: normal; float: right; margin-top: 0; margin-right: 1em;"></span> </div> <script type="text/javascript" language="javascript">mathjaxToggle();</script> </div> </div> </main> <footer style="clear: both;"> <div class="columns is-desktop" role="navigation" aria-label="Secondary" style="margin: -0.75em -0.75em 0.75em -0.75em"> <!-- Macro-Column 1 --> <div class="column" style="padding: 0;"> <div class="columns"> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- End Macro-Column 1 --> <!-- Macro-Column 2 --> <div class="column" style="padding: 0;"> <div class="columns"> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> <!-- End Macro-Column 2 --> </div> </footer> </div> <script src="/static/base/1.0.1/js/member_acknowledgement.js"></script> </body> </html>