CINXE.COM

Search results for: human swimming

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: human swimming</title> <meta name="description" content="Search results for: human swimming"> <meta name="keywords" content="human swimming"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="human swimming" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="human swimming"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8441</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: human swimming</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8441</span> Does Creatine Supplementation Improve Swimming Performance?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Catrin%20Morgan">Catrin Morgan</a>, <a href="https://publications.waset.org/abstracts/search?q=Atholl%20Johnston"> Atholl Johnston </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Creatine supplementation should theoretically increase total muscle creatine and so enhance the generation of intramuscular phosphocreatine and subsequent ATP formation. The use of creatine as a potential ergogenic aid in sport has been an area of significant scientific research for a number of years. However the effect of creatine supplementation and swimming performance is a relatively new area of research and is the subject of this review. In swimming creatine supplementation could help maintain maximal power output, aid recovery and increase lean body mass. After investigating the underlying theory and science behind creatine supplementation, a literature review was conducted to identify the best evidence looking at the effect of creatine supplementation on swimming performance. The search identified 27 potential studies, and of these 17 were selected for review. The studies were then categorised into single sprint performance, which involves swimming a short distance race, or repeated interval performance, which involves swimming a series of sprints with intervals of rest between them. None of the studies on the effect of creatine controlled for the multiple confounding factors associated with measurement of swimming performance. The sample size in the studies was limited and this reduced the reliability of the studies and introduced the possibility of bias. The studies reviewed provided insufficient evidence to determine if creatine supplementation is beneficial to swimming performance. However, what data there was supported the use of creatine supplementation in repeated interval swimming rather than in single sprint swimming. From a review of the studies, it was calculated on average, there was a 1.37% increase in swimming performance with the use of creatine for repeated intervals and a 0.86% increase in performance for single sprint. While this may seem minor, it should be remembered that swimming races are often won by much smaller margins. In the 2012 London Olympics the Men’s 100 metres freestyle race was won by a margin of only 0.01 of a second. Therefore any potential benefit could make a dramatic difference to the final outcome of the race. Overall more research is warranted before the benefits of creatine supplementation in swimming performance can be further clarified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creatine%20supplementation" title="creatine supplementation">creatine supplementation</a>, <a href="https://publications.waset.org/abstracts/search?q=repeated%20interval" title=" repeated interval"> repeated interval</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20sprint" title=" single sprint"> single sprint</a>, <a href="https://publications.waset.org/abstracts/search?q=swimming%20performance" title=" swimming performance "> swimming performance </a> </p> <a href="https://publications.waset.org/abstracts/25035/does-creatine-supplementation-improve-swimming-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8440</span> Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simiao%20Ren">Simiao Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=En%20Wei"> En Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title="computer vision">computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=YOLOv8" title=" YOLOv8"> YOLOv8</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=swimming%20pool" title=" swimming pool"> swimming pool</a>, <a href="https://publications.waset.org/abstracts/search?q=drowning" title=" drowning"> drowning</a>, <a href="https://publications.waset.org/abstracts/search?q=domain%20adaptation" title=" domain adaptation"> domain adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=generative%20adversarial%20network" title=" generative adversarial network"> generative adversarial network</a>, <a href="https://publications.waset.org/abstracts/search?q=GAN" title=" GAN"> GAN</a>, <a href="https://publications.waset.org/abstracts/search?q=GP-GAN" title=" GP-GAN"> GP-GAN</a> </p> <a href="https://publications.waset.org/abstracts/163443/domain-adaptation-save-lives-drowning-detection-in-swimming-pool-scene-based-on-yolov8-improved-by-gaussian-poisson-generative-adversarial-network-augmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8439</span> Swimming Pool Water Chlorination Detection System Utilizing TDSTestr </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Alamoudi">Fahad Alamoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Miaji"> Yaser Miaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawzy%20Jalalah"> Fawzy Jalalah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing popularity of swimming pools and other activities in the water for sport, fitness, therapy or just enjoyable relaxation have led to the increased use of swimming pools and the establishment of a variety of specific-use pools such as spa pools, Waterslides and more recently, hydrotherapy and wave pools. In this research a few simple equipments are used for test, Detect and alert for detection of water cleanness and pollution. YSI Photometer Systems, TDSTestr High model, rio 12HF, and Electrode A1. The researchers used electrolysis as a method of separating bonded elements and compounds by passing an electric current through them. The results which use 41 experiments show the higher the salt concentration, the more efficient the electrode and the smaller the gap between the plates and The lower the electrode voltage. Furthermore, it is proved that the larger the surface area, the lower the cell voltage and the higher current used the more chlorine produced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photometer" title="photometer">photometer</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolysis" title=" electrolysis"> electrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=swimming%20pool%20chlorination" title=" swimming pool chlorination"> swimming pool chlorination</a> </p> <a href="https://publications.waset.org/abstracts/26847/swimming-pool-water-chlorination-detection-system-utilizing-tdstestr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8438</span> The Effect of Using Water Wireless Aqua Com System on the Development of Dolphin Kick Movements on the Female Swimming Team at the Faculty of Physical Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wisal%20Alrabadi">Wisal Alrabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study's goal was to see how the use of water wireless Aqua Com System and its accompanying music affected the Female Swimming Team at the Faculty of Physical Education's development of dolphin kick movements. To that end, a training program consisting of (12) training units spread out over four weeks, three units per week, was created and applied to a study sample of (10) students from the swimming pool enrolled in the first semester of the academic year 2022. Pre-measuring and timing the movements of dolphins kicking with and without fins above and below, measuring the water's surface over a distance of 25 meters. The results showed that there are statistically significant differences in favor of telemetry from the start within the limits of the area specified for a distance of 15 m after the comparison between the pre and post-measurement using the test (T) of the double samples, and this indicates the impact of the training program using the Aqua Com System in the swimming team(Female) at Faculty of Physical Education, and in light of this a set of recommendations was developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqua%20com%20system%20training%20program" title="aqua com system training program">aqua com system training program</a>, <a href="https://publications.waset.org/abstracts/search?q=accompanying%20music" title=" accompanying music"> accompanying music</a>, <a href="https://publications.waset.org/abstracts/search?q=dolphin%20kick%20movements" title=" dolphin kick movements"> dolphin kick movements</a>, <a href="https://publications.waset.org/abstracts/search?q=swimming%20team%20female" title=" swimming team female"> swimming team female</a> </p> <a href="https://publications.waset.org/abstracts/148023/the-effect-of-using-water-wireless-aqua-com-system-on-the-development-of-dolphin-kick-movements-on-the-female-swimming-team-at-the-faculty-of-physical-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8437</span> Prototype Development of Knitted Buoyant Swimming Vest for Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nga-Wun%20Li">Nga-Wun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Chu-Po%20Ho"> Chu-Po Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Kit-Lun%20Yick"> Kit-Lun Yick</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Yun%20Zhou"> Jin-Yun Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of buoyant vests incorporated with swimsuits can develop children’s confidence in the water, particularly for novice swimmers. Consequently, parents intend to purchase buoyant swimming vests for the children to reduce their anxiety to water. Although the conventional buoyant swimming vests can provide the buoyant function to the wearer, their bulkiness and hardness make children feel uncomfortable and not willing to wear. This study aimed to apply inlay knitting technology to design new functional buoyant swimming vests for children. This prototype involved a shell and a buoyant knitted layer, which is the main media to provide buoyancy. Polypropylene yarn and 6.4 mm of Expandable Polyethylene (EPE) foam were fabricated in Full needle stitch with inlay knitting technology and were then linked by sewing to form the buoyant layer. The shell of the knitted buoyant vest was made of Polypropylene circular knitted fabric. The structure of knitted fabrics of the buoyant swimsuit makes them inherently stretchable, and the arrangement of the inlaid material was designed based on the body movement that can improve the ease with which the swimmer moves. Further, the shoulder seam is designed at the back to minimize the irritation of the wearer. Apart from maintaining the buoyant function to them, this prototype shows its contribution in reducing bulkiness and improving softness to the conventional buoyant swimming vest by taking the advantages of a knitted garment. The results in this study are significant to the development of the buoyant swimming vest for both the textile and the fast-growing sportswear industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knitting%20technology" title="knitting technology">knitting technology</a>, <a href="https://publications.waset.org/abstracts/search?q=buoyancy" title=" buoyancy"> buoyancy</a>, <a href="https://publications.waset.org/abstracts/search?q=inlay" title=" inlay"> inlay</a>, <a href="https://publications.waset.org/abstracts/search?q=swimming%20vest" title=" swimming vest"> swimming vest</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20garment" title=" functional garment"> functional garment</a> </p> <a href="https://publications.waset.org/abstracts/117992/prototype-development-of-knitted-buoyant-swimming-vest-for-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8436</span> Technological Measures to Reduce the Environmental Impact of Swimming Pools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F%C3%A1tima%20Farinha">Fátima Farinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20J.%20Oliveira"> Miguel J. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Gina%20Matias"> Gina Matias</a>, <a href="https://publications.waset.org/abstracts/search?q=Armando%20Inverno"> Armando Inverno</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%A2nio%20Monteiro"> Jânio Monteiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristiano%20Cabrita"> Cristiano Cabrita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decades, the construction of swimming pools for recreational activities has grown exponentially in southern Europe. Swimming pools are used both for private use in villas and for collective use in hotels or condominiums. However, they have a high environmental impact, mainly in terms of water and energy consumption, being used for a short period of time, depending significantly on favorable atmospheric conditions. Contrary to what would be expected, not enough research has been conducted to reduce the negative impact of this equipment. In this context, this work proposes and analyses technological measures to reduce the environmental impacts of swimming pools, such as thermal insulation of the tank, water balance in order to detect leaks and optimize the backwash process, integration of renewable energy generation, and a smart control system that meets the requirements of the user. The work was developed within the scope of the Ecopool+++ project, which aims to create innovative heated pools with reduced thermal losses and integration of SMART energy plus water management systems. The project is in the final phase of its development, with very encouraging results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swimming%20pools" title="swimming pools">swimming pools</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20losses" title=" thermal losses"> thermal losses</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management%20system" title=" water management system"> water management system</a> </p> <a href="https://publications.waset.org/abstracts/162446/technological-measures-to-reduce-the-environmental-impact-of-swimming-pools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8435</span> Effects of Swimming Exercise Training on Persistent Pain in Rats after Thoracotomy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shao-Cyuan%20Yewang">Shao-Cyuan Yewang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Wen%20Chen"> Yu-Wen Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Exercise training is well known to alleviate chronic pain syndromes improve of chronic pain. This study investigated the effect of swimming exercise training on thoracotomy and rib retraction-induced allodynia. Methods: Male Sprague Dawley rats that received animal model of persistent postthoracotomy pain. All rats were divided into three groups: sham operations group (Sham), thoracotomy and rib retraction group (TRR), and TRR with swimming exercise training for 90min/day, 7 days a week for 4 weeks (TRR-SEW). The sham group did not receive retraction of the ribs. Thus, they received a pleural incision. The levels of mechanical and cold allodynia were measured by von Frey and acetone test. Results: In von Frey test, the level of mechanical allodynia in the TRR group was significantly higher than the sham group. The level of mechanical allodynia in the TRR-SEW group was significantly lower than the TRR group. In acetone test, the level of cold allodynia in the TRR group was significantly higher than the sham group. The level of cold allodynia in the TRR-SEW group was significantly lower than the TRR group. Conclusions: These results suggest that swimming exercise training decreases persistent postthoracotomy pain caused by TRR surgery. It may provide one of the new therapeutic effects of swimming exercise training could alleviate persistent postthoracotomy pain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20pain" title="chronic pain">chronic pain</a>, <a href="https://publications.waset.org/abstracts/search?q=thoracotomy%20pain" title=" thoracotomy pain"> thoracotomy pain</a>, <a href="https://publications.waset.org/abstracts/search?q=swimming" title=" swimming"> swimming</a>, <a href="https://publications.waset.org/abstracts/search?q=von%20Frey%20test" title=" von Frey test"> von Frey test</a>, <a href="https://publications.waset.org/abstracts/search?q=acetone%20test" title=" acetone test"> acetone test</a> </p> <a href="https://publications.waset.org/abstracts/77826/effects-of-swimming-exercise-training-on-persistent-pain-in-rats-after-thoracotomy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8434</span> Knowledge, Attitude and Practice on Swimming Pool Hygiene and Assessment of Microbial Contamination in Educational Institution in Selangor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zarini%20Ismail">Zarini Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Mas%20Ayu%20Arina%20Mohd%20Anuwar"> Mas Ayu Arina Mohd Anuwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling%20Chai%20Ying"> Ling Chai Ying</a>, <a href="https://publications.waset.org/abstracts/search?q=Tengku%20Zetty%20Maztura%20Tengku%20Jamaluddin"> Tengku Zetty Maztura Tengku Jamaluddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Azmawati%20Mohamed"> Nurul Azmawati Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadeeya%20Ayn%20Umaisara%20Mohamad%20Nor"> Nadeeya Ayn Umaisara Mohamad Nor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transmission of infectious diseases can occur anywhere, including in the swimming pools. A large number of swimmers turnover and poor hygienic behaviours will increase the occurrence of direct and indirect water contamination. A wide variety of infections such as the gastrointestinal illnesses, skin rash, eye infections, ear infections and respiratory illnesses had been reported following the exposure to the contaminated water. Understanding the importance of pool hygiene with a healthy practice will reduce the risk of infection. The aims of the study are to investigate the knowledge, attitude and practices on pool hygiene among swimming pool users and to determine the microbial contaminants in swimming pools. A cross-sectional study was conducted using self-administered questionnaires to 600 swimming pool users from four swimming pools belong to the three educational institutions in Selangor. Data was analyzed using SPSS Statistics version 22.0 for Windows. The knowledge, attitude and practice of the study participants were analyzed using the sum score based on Bloom’s cut-off point (80%). Having a score above the cut-off point was classified as having high levels of knowledge, positive attitude and good practice. The association between socio-demographic characteristics, knowledge and attitude with practice on pool hygiene was determined by Chi-Square test. The physicochemical parameters and the microbial contamination were determined using a standard method for examination of waste and wastewater. Of the 600 respondents, 465 (77.5%) were females with the mean age of 21 years old. Most of the respondents are the students (98.8%) which belong to the three educational institutions in Selangor. Overall, the majority of the respondents (89.2%) had low knowledge on pool hygiene, but had positive attitudes (91.3%). Whereas only half of the respondents (50%) practice good hygiene while using the swimming pools. There was a significant association between practice level on pool hygiene with knowledge (p < 0.001) and also the attitude (p < 0.001). The measurements of the physicochemical parameters showed that all 4 swimming pools had low levels of pH and two had low levels of free chlorine. However, all the water samples tested were negative for Escherichia coli. The findings of this study suggested that high knowledge and positive attitude towards pool hygiene ensure a good practice among swimming pool users. Thus, it is recommended that educational interventions should be given to the swimming pool users to increase their knowledge regarding the pool hygiene and this will prevent the unnecessary outbreak of infectious diseases related to swimming pool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attitude" title="attitude">attitude</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge" title=" knowledge"> knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=pool%20hygiene" title=" pool hygiene"> pool hygiene</a>, <a href="https://publications.waset.org/abstracts/search?q=practice" title=" practice"> practice</a> </p> <a href="https://publications.waset.org/abstracts/67187/knowledge-attitude-and-practice-on-swimming-pool-hygiene-and-assessment-of-microbial-contamination-in-educational-institution-in-selangor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8433</span> Association between Physical Composition, Swimming Performance and Somatotype of Male Competitive Swimmers of Age Group 10-13 Years</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ranjit%20Singh">Ranjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Body fat % lean body mass and body type play vital role in sports performance. A sports person who is having optional body composition can show its performance flawlessly whereas other who is not physical fit may be more prone to injury. Competitive swimming is an association of plethora of aspects like morphological, physiological, biochemical, biomechanical and psychological. The primary key of the present research is to examine the correlation among selected morphological dimensions such as height, weight, body fat%, lean body mass, somatotype and swimming performance. The present study also focused to investigate by potential deficiencies if any and to find out remedial measures to curb the training stresses. Thirty (age group 10-14 years) swimmers undergoing training under skilled and professional coaches were selected in the present study. The morphological variables and performance criterion like 50 meter swimming time and speed were calculated by using standard training methodology. Correlation coefficient among body composition, somatotype and performance variables were assessed by using standard statistical package SPSS. Mean height, weight, fat% and lean body mass of the present group is 150.97±8.68 cm, 44.0±9.34 kg., 15.97±4.42 % and 37.10±8.77 kg respectively. Somatotype of the young swimmers of this research is revealed ectomorphic mesomorph. The analysis of the results Illustrated that swimming performance is significantly correlated (p<0.05) with height, body weight, mesomorphoic component and lean body mass. Body fat is significantly and negatively correlated (p<0.05) with mesomorphic component, lean body mass and swimming speed. From this present study, it can be concluded that along with techniques and tactics other the physical attributes also play significant role in swimming performance which can help the swimmers to excel in higher level of competition and swimmers having improved morphological qualities can ultimately perform well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20fat" title="body fat">body fat</a>, <a href="https://publications.waset.org/abstracts/search?q=mass" title=" mass"> mass</a>, <a href="https://publications.waset.org/abstracts/search?q=mesomorphic%20component" title=" mesomorphic component"> mesomorphic component</a>, <a href="https://publications.waset.org/abstracts/search?q=somatotype" title=" somatotype"> somatotype</a> </p> <a href="https://publications.waset.org/abstracts/56057/association-between-physical-composition-swimming-performance-and-somatotype-of-male-competitive-swimmers-of-age-group-10-13-years" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8432</span> Assessment of the Physico-Chemical Parameters and Heavy Metal Concentration in Water and Callinectes amnicola (Swimming Crab) in a Crude Oil Exposed Community (Bodo Creek), Rivers State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehiedu%20Philomina%20Kika">Ehiedu Philomina Kika</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Chinonso%20Ehilegbu"> Jessica Chinonso Ehilegbu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exploration and production of fossil fuel particularly crude oil has led to some serious environmental damage in some oil producing communities like the Bodo Community who rely heavily on their aquatic environment for food and water. This study was therefore carried out to investigate the level of some heavy metals in water and Callinectes amnicola (Swimming Crab) in the month of August, September and October from Bodo creek, Rivers State, Nigeria. The physico-chemical parameters of the water were also analyzed in-situ. The levels of heavy metals, Lead (Pb), Cadmium (Cd), Chromium (Cr), Zinc (Zn), Copper (Cu) were analyzed in water and in Callinectes amnicola (Swimming Crab), using Atomic Absorption Spectrophotometer (AAS) after acid digestion. For the concentration of heavy metals in water, Pb ranged from 0.103 - 0.791 mg/l, Zn 0.0025 - 0.342 mg/l, Cr < 0.001 - 0.304 mg/l, Cd 0.011 - 0.116 mg/l and Cu <0.001 - 0.079 mg/l. For the concentration of heavy metals in Callinectes amnicola (Swimming Crab), the level of Pb ranged from 0.359 - 0.849 mg/l, Zn 0.134 - 0.342 mg/l, Cd 0.053 - 0.103 mg/l, Cr < 0.001 - <0.001 mg/l, Cu < 0.001 - 0.131 mg/l. The concentrations of Pb, Cd and Cr for all water and crab samples collected from the various stations were higher than permissible level suggesting serious anthropogenic influence. Thus, precaution needs to be taken to prevent further contamination and adequate purification measures need to be put in place. Therefore, there should be periodic environmental pollution monitoring, for assessment and awareness especially with regards heavy metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bodo%20creek" title="Bodo creek">Bodo creek</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=swimming%20crab" title=" swimming crab"> swimming crab</a> </p> <a href="https://publications.waset.org/abstracts/93484/assessment-of-the-physico-chemical-parameters-and-heavy-metal-concentration-in-water-and-callinectes-amnicola-swimming-crab-in-a-crude-oil-exposed-community-bodo-creek-rivers-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8431</span> The Effect of 6 Weeks Endurance Swimming Training on Blood Glucose and Cardiac Tissue Antioxidants in Diabetic Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kh.%20Dehkordi">Kh. Dehkordi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sharifi%20Gholam"> R. Sharifi Gholam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Arshadi"> S. Arshadi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Oxidative stress is produced under diabetic conditions and possibly causes various forms of tissue damage inpatients with diabetes. Antioxidants defend against the harmful effect of free radicals, which are associated with heart disease, cancer, arthritis, aging and many other diseases1). Antioxidants are very stable molecules capable of neutralizing free radicals by donating an electron to them.The aim of this study was to examine the effect of swimming training, fenugreek seed extract and glibenclamide on plasma glucose and cardiac antioxidants activity in diabetic rats. Design: For this purpose, fifty male wistar rats were divided into five groups, two groups of control rats (diabetic control [DC] and healthy control [HC]), one group of endurance swimming training (EST), one group of fenugreek seed extract highdose (F1, 1.74 g/kg b.w), one group of fenugreek seed extract middle dose (F2, 0.87 g/kg b.w), one group of glibenclamide (G, 0.5 mg/kg b.w). Materials and Methods: Diabetes induced by streptozotocine (STZ), data was analyzed using the one-way ANOVA followed by a Tukey test. Significance level was 0.05. Results: All of the groups' exception of HC showed significant decrease in body weight (P < 0.05), but the diabetic control and swimming training group exhibited a more decrease. All of the groups have shown a significant decrease in plasma glucose than DC group (P < 0.05) but this reduction was more in G group than DC no HC group. S, G and HC groups have shown significant increase in cardiac antioxidant than DC group (P < 0.05) but there wasn't significant difference in other groups (P > 0.05). Conclusion: The present results indicate that regular swimming training lead to decrease in plasma glucose and enhanced cardiac antioxidants in diabetic rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swimming" title="swimming">swimming</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiac" title=" cardiac"> cardiac</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title=" antioxidants"> antioxidants</a> </p> <a href="https://publications.waset.org/abstracts/34943/the-effect-of-6-weeks-endurance-swimming-training-on-blood-glucose-and-cardiac-tissue-antioxidants-in-diabetic-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8430</span> An Exploitation of Electrical Sensors in Monitoring Pool Chlorination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Alamoudi">Fahad Alamoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Miaji"> Yaser Miaji </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing popularity of swimming pools and other activities in the water for sport, fitness, therapy or just enjoyable relaxation have led to the increased use of swimming pools and the establishment of a variety of specific-use pools such as spa pools, water slides, and more recently, hydrotherapy and wave pools. In this research, a few simple equipment is used for test, detect and alert for detection of water cleanness and pollution. YSI Photometer Systems, TDSTestr High model, Rio 12HF and Electrode A1. The researchers used electrolysis as a method of separating bonded elements and compounds by passing an electric current through them. The results which use 41 experiments show the higher the salt concentration, the more efficient the electrode and the smaller the gap between the plates, the lower the electrode voltage. Furthermore, it is proved that the larger the surface area, the lower the cell voltage and the higher current used the more chlorine produced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photometer" title="photometer">photometer</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolysis" title=" electrolysis"> electrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=swimming%20pool%20chlorination" title=" swimming pool chlorination"> swimming pool chlorination</a> </p> <a href="https://publications.waset.org/abstracts/24384/an-exploitation-of-electrical-sensors-in-monitoring-pool-chlorination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8429</span> Approximate Spring Balancing for Swimming Pool Lift Mechanism to Reduce Actuator Torque</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apurva%20Patil">Apurva Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujatha%20Srinivasan"> Sujatha Srinivasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reducing actuator loads is important for applications in which human effort is required for actuation. The potential benefit of applying spring balancing to rehabilitation devices which work against gravity on a nonhorizontal plane is well recognized, but practical applications have been elusive. Although existing methods provide exact spring balance, they require additional masses or auxiliary links, or all the springs used originate from the ground, which makes the resulting device bulky and space-inefficient. This paper uses a method of static balancing of mechanisms with conservative loads such as gravity and spring loads using non-zero-free-length springs and no auxiliary links. Application of this method to a manually operated swimming pool lift mechanism which lowers and raises the physically challenged users into or out of the swimming pool is presented here. Various possible configurations using extension and compression springs as well as gas spring in the mechanism are compared. This work involves approximate spring balancing of the mechanism using minimization of potential energy variance. It uses the approach of flattening the potential energy distribution over the workspace and fuses it with numerical optimization. The results show the considerable reduction in actuator torque requirement with practical spring design and arrangement. Although the method provides only an approximate balancing, it is versatile, flexible in choosing appropriate control variables that are relevant to the design problem and easy to implement. The true potential of this technique lies in the fact that it uses a very simple optimization to find the spring constant, free length of the spring and the optimal attachment points subject to the optimization constraints. Also, it uses physically realizable non-zero-free-length springs directly, thereby reducing the complexity involved in simulating zero-free-length springs from non-zero-free-length springs. This method allows springs to be attached inside the mechanism, which makes the implementation of spring balancing practical. Because auxiliary linkages can be avoided, the resultant swimming pool lift mechanism is compact. The cost benefits and reduced complexity can be significant advantages in the development of this user-actuated swimming pool lift for developing countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20spring" title="gas spring">gas spring</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation%20device" title=" rehabilitation device"> rehabilitation device</a>, <a href="https://publications.waset.org/abstracts/search?q=spring%20balancing" title=" spring balancing"> spring balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=swimming%20pool%20lift" title=" swimming pool lift "> swimming pool lift </a> </p> <a href="https://publications.waset.org/abstracts/67372/approximate-spring-balancing-for-swimming-pool-lift-mechanism-to-reduce-actuator-torque" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8428</span> Design, Modelling, and Fabrication of Bioinspired Frog Robot for Synchronous and Asynchronous Swimming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afaque%20Manzoor%20Soomro">Afaque Manzoor Soomro</a>, <a href="https://publications.waset.org/abstracts/search?q=Faheem%20Ahmed"> Faheem Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Fida%20Hussain%20Memon"> Fida Hussain Memon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung%20Hyun%20Choi"> Kyung Hyun Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes the bioinspired soft frog robot. All printing technology was used for the fabrication of the robot. Polyjet printing was used to print the front and back limbs, while ultrathin filament was used to print the body of the robot, which makes it a complete soft swimming robot. The dual thrust generation approach has been proposed by embedding the main muscle and antagonistic muscle in all the limbs, which enables it to attain high speed (18 mm/s), and significant control of swimming in dual modes (synchronous and asynchronous modes). To achieve the swimming motion of the frog, the design, motivated by the rigorous modelling and real frog dynamics analysis, enabled the as-developed frog robot (FROBOT) to swim at a significant level of consistency with the real frog. The FROBOT (weighing 65 g) can swim at different controllable frequencies (0.5–2Hz) and can turn in any direction by following custom-made LabVIEW software’s commands which enables it to swim at speed up to 18 mm/s on the surface of deep water (100 cm) with excellent weight balance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soft%20robotics" title="soft robotics">soft robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20actuator" title=" soft actuator"> soft actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=frog%20robot" title=" frog robot"> frog robot</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a> </p> <a href="https://publications.waset.org/abstracts/151715/design-modelling-and-fabrication-of-bioinspired-frog-robot-for-synchronous-and-asynchronous-swimming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8427</span> The Effect of Relaxing Exercises in Water on Endorphin Hormone for the Beginner in Swimming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasmin%20Hussein%20Embaby">Yasmin Hussein Embaby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Athletic Training has its essentials, rules, and methods that help individual in reaching the maximum possible athletic level during the exercised physical activity, therefore; it is important for those working in athletic field to recognize and understand what is going on inside our bodies. This will show the close relationship between physiology and athletic training as the science that explains the various changes that happen to respond to the practice of physical activities. Swimming is one of the water sports that play a major role in influencing the full compatibility of body parts and its systems during the practice of different swimming methods, which uses aqueous to move. It is the initial nucleus in swimming learning and through which the beginner gain a sense of security, safety and the ability to move in aqueous by learning basic skills. Research Methodology: The researcher used the experimental methodology by using pre and post measurement on two equal groups (experimental – control) because it is appropriate for the research. Conclusions: Through the results and information found by the researcher, and in light of the related studies, theoretical readings and the statistical treatments of data; the researcher reached the following conclusions: 1. Muscle relaxation exercises have a positive effect on performance level in crawl swimming and on endorphin hormone as it helps in increasing its normal rater in body, the improvement percentage for experimental group in the relaxation ability, level of endorphin hormone exceeds those of control group. 2. The validity of muscle relaxation exercises proposed for the application, which achieved its objectives, namely increasing the level of endorphin hormone in the body; where research results showed a statistically significant difference in the level of endorphin hormone in favor of the experimental sample. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beginners" title="beginners">beginners</a>, <a href="https://publications.waset.org/abstracts/search?q=endorphin%20hormone" title=" endorphin hormone"> endorphin hormone</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxing%20exercises" title=" relaxing exercises"> relaxing exercises</a>, <a href="https://publications.waset.org/abstracts/search?q=swimming" title=" swimming"> swimming</a> </p> <a href="https://publications.waset.org/abstracts/72368/the-effect-of-relaxing-exercises-in-water-on-endorphin-hormone-for-the-beginner-in-swimming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8426</span> Heating System for Water Pool by Solar Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmo%20Thiago%20Lins%20C%C3%B6uras%20Ford">Elmo Thiago Lins Cöuras Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Alessandra%20Carvalho%20do%20Vale"> Valentina Alessandra Carvalho do Vale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A swimming pool heating system is presented, composed of two alternative collectors with serial PVC absorber tubes that work in regimen of forced stream that is gotten through a bomb. A 500 liters reservoir was used, simulating the swimming pool, being raised some data that show the viability of the considered system. The chosen outflow was corresponding to 100 l/h. In function of the low outflow it was necessary the use of a not popular bomb, choosing the use of a low outflow alternative pumping system, using an air conditioner engine with three different rotations for the desired end. The thermal data related to each collector and their developed system will be presented. The UV and thermal degradations of the PVC exposed to solar radiation will be also boarded, demonstrating the viability of using tubes of this material as absorber elements of radiation in water heating solar collectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20swimming%20pool" title=" solar swimming pool"> solar swimming pool</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20heating" title=" water heating"> water heating</a>, <a href="https://publications.waset.org/abstracts/search?q=PVC%20tubes" title=" PVC tubes"> PVC tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20system" title=" alternative system"> alternative system</a> </p> <a href="https://publications.waset.org/abstracts/18363/heating-system-for-water-pool-by-solar-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8425</span> (Anti)Depressant Effects of Non-Steroidal Antiinflammatory Drugs in Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Horia%20P%C4%83unescu">Horia Păunescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The study aimed to assess the depressant or antidepressant effects of several Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) in mice: the selective cyclooxygenase-2 (COX-2) inhibitor meloxicam, and the non-selective COX-1 and COX-2 inhibitors lornoxicam, sodium metamizole, and ketorolac. The current literature data regarding such effects of these agents are scarce. Materials and methods: The study was carried out on NMRI mice weighing 20-35 g, kept in a standard laboratory environment. The study was approved by the Ethics Committee of the University of Medicine and Pharmacy „Carol Davila”, Bucharest. The study agents were injected intraperitoneally, 10 mL/kg body weight (bw) 1 hour before the assessment of the locomotor activity by cage testing (n=10 mice/ group) and 2 hours before the forced swimming tests (n=15). The study agents were dissolved in normal saline (meloxicam, sodium metamizole), ethanol 11.8% v/v in normal saline (ketorolac), or water (lornoxicam), respectively. Negative and positive control agents were also given (amitryptilline in the forced swimming test). The cage floor used in the locomotor activity assessment was divided into 20 equal 10 cm squares. The forced swimming test involved partial immersion of the mice in cylinders (15/9cm height/diameter) filled with water (10 cm depth at 28C), where they were left for 6 minutes. The cage endpoint used in the locomotor activity assessment was the number of treaded squares. Four endpoints were used in the forced swimming test (immobility latency for the entire 6 minutes, and immobility, swimming, and climbing scores for the final 4 minutes of the swimming session), recorded by an observer that was "blinded" to the experimental design. The statistical analysis used the Levene test for variance homogeneity, ANOVA and post-hoc analysis as appropriate, Tukey or Tamhane tests.Results: No statistically significant increase or decrease in the number of treaded squares was seen in the locomotor activity assessment of any mice group. In the forced swimming test, amitryptilline showed an antidepressant effect in each experiment, at the 10 mg/kg bw dosage. Sodium metamizole was depressant at 100 mg/kg bw (increased the immobility score, p=0.049, Tamhane test), but not in lower dosages as well (25 and 50 mg/kg bw). Ketorolac showed an antidepressant effect at the intermediate dosage of 5 mg/kg bw, but not so in the dosages of 2.5 and 10 mg/kg bw, respectively (increased the swimming score, p=0.012, Tamhane test). Meloxicam and lornoxicam did not alter the forced swimming endpoints at any dosage level. Discussion: 1) Certain NSAIDs caused changes in the forced swimming patterns without interfering with locomotion. 2) Sodium metamizole showed a depressant effect, whereas ketorolac proved antidepressant. Conclusion: NSAID-induced mood changes are not class effects of these agents and apparently are independent of the type of inhibited cyclooxygenase (COX-1 or COX-2). Disclosure: This paper was co-financed from the European Social Fund, through the Sectorial Operational Programme Human Resources Development 2007-2013, project number POSDRU /159 /1.5 /S /138907 "Excellence in scientific interdisciplinary research, doctoral and postdoctoral, in the economic, social and medical fields -EXCELIS", coordinator The Bucharest University of Economic Studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antidepressant" title="antidepressant">antidepressant</a>, <a href="https://publications.waset.org/abstracts/search?q=depressant" title=" depressant"> depressant</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20swim" title=" forced swim"> forced swim</a>, <a href="https://publications.waset.org/abstracts/search?q=NSAIDs" title=" NSAIDs"> NSAIDs</a> </p> <a href="https://publications.waset.org/abstracts/25255/antidepressant-effects-of-non-steroidal-antiinflammatory-drugs-in-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8424</span> Effective Teaching Pyramid and Its Impact on Enhancing the Participation of Students in Swimming Classes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salam%20M.%20H.%20Kareem">Salam M. H. Kareem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Instructional or teaching procedures and their proper sequence are essential for high-quality learning outcomes. These actions are the path that the teacher takes during the learning process after setting the learning objectives. Teachers and specialists in the education field should include teaching procedures with putting in place an effective mechanism for the procedure&rsquo;s implementation to achieve a logical sequence with the desired output of overall education process. Determining the sequence of these actions may be a strategic process outlined by a strategic educational plan or drawn by teachers with a high level of experience, enabling them to determine those logical procedures. While specific actions may be necessary for a specific form, many Physical Education (PE) teachers can work out on various sports disciplines. This study was conducted to investigate the impact of using the teaching sequence of the teaching pyramid in raising the level of enjoyment in swimming classes. Four months later of teaching swimming skills to the control and experimental groups of the study, we figured that using the tools shown in the teaching pyramid with the experimental group led to statistically significant differences in the positive tendencies of students to participate in the swimming classes by using the traditional procedures of teaching and using of successive procedures in the teaching pyramid, and in favor of the teaching pyramid, The students are influenced by enhancing their tendency to participate in swimming classes when the teaching procedures followed are sensitive to individual differences and are based on the element of pleasure in learning, and less positive levels of the tendency of students when using traditional teaching procedures, by getting the level of skills&#39; requirements higher and more difficult to perform. The level of positive tendencies of students when using successive procedures in the teaching pyramid was increased, by getting the level of skills&#39; requirements higher and more difficult to perform, because of the high level of motivation and the desire to challenge the self-provided by the teaching pyramid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20education" title="physical education">physical education</a>, <a href="https://publications.waset.org/abstracts/search?q=swimming%20classes" title=" swimming classes"> swimming classes</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20process" title=" teaching process"> teaching process</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20pyramid" title=" teaching pyramid"> teaching pyramid</a> </p> <a href="https://publications.waset.org/abstracts/112082/effective-teaching-pyramid-and-its-impact-on-enhancing-the-participation-of-students-in-swimming-classes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8423</span> Effect of cold water immersion on bone mineral metabolism in aging rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irena%20Baranowska-Bosiacka">Irena Baranowska-Bosiacka</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Bosiacki"> Mateusz Bosiacki</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrycja%20Kupnicka"> Patrycja Kupnicka</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Lubkowska"> Anna Lubkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Dariusz%20Chlubek"> Dariusz Chlubek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical activity and a balanced diet are among the key factors of "healthy ageing". Physical effort, including swimming in cold water (including bathing in natural water reservoirs), is widely recognized as a hardening factor, with a positive effect on the mental and physical health. At the same time, there is little scientific evidence to verify this hypothesis. In the literature to date, it is possible to obtain data on the impact of these factors on selected physiological and biochemical parameters of the blood, at the same time there are no results of research on the effect of immersing in cold water on mineral metabolism, especially bones, hence it seems important to perform such an analysis in relation to the key elements such as calcium (Ca), magnesium (Mg) and phosphorus (P). Taking the above into account, a hypothesis was put forward about the possibility of a positive effect of exercise in cold water on mineral metabolism and bone density in aging rats. The aim of the study was to evaluate the effect of an 8-week swimming training on mineral metabolism and bone density in aging rats in response to exercise in cold water (5oC) in comparison to swimming in thermal comfort (36oC) and sedentary (control) rats of both sexes. The examination of the concentration of the examined elements in the bones was carried out using inductively coupled plasma atomic emission spectrometry (ICP-OES). The mineral density of the femurs of the rats was measured using the Hologic Horizon DEXA System® densitometer. The results of our study showed that swimming in cold water affects bone mineral metabolism in aging rats by changing the Ca, Mg, P concentration and at the same time increasing their bone density. In males, a decrease in Mg concentration and no changes in bone density were observed. In the light of the research results, it seems that swimming in cold water may be a factor that positively modifies the bone aging process by improving the mechanisms affecting their density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swimming%20in%20cold%20water" title="swimming in cold water">swimming in cold water</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptation%20to%20cold%20water" title=" adaptation to cold water"> adaptation to cold water</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20metabolism" title=" bone mineral metabolism"> bone mineral metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a> </p> <a href="https://publications.waset.org/abstracts/163011/effect-of-cold-water-immersion-on-bone-mineral-metabolism-in-aging-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8422</span> Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Larry%20Powell">Larry Powell</a>, <a href="https://publications.waset.org/abstracts/search?q=Seth%20Polsley"> Seth Polsley</a>, <a href="https://publications.waset.org/abstracts/search?q=Drew%20Casey"> Drew Casey</a>, <a href="https://publications.waset.org/abstracts/search?q=Tracy%20Hammond"> Tracy Hammond</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20window" title="time window">time window</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%2Fvalley%20segmentation" title=" peak/valley segmentation"> peak/valley segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=beginner%20swimming" title=" beginner swimming"> beginner swimming</a>, <a href="https://publications.waset.org/abstracts/search?q=activity%20recognition" title=" activity recognition"> activity recognition</a> </p> <a href="https://publications.waset.org/abstracts/156773/improving-activity-recognition-classification-of-repetitious-beginner-swimming-using-a-2-step-peakvalley-segmentation-method-with-smoothing-and-resampling-for-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8421</span> Forced Swim Stress Does Not Induce Structural Chromosomal Aberrations in Rat Bone Marrow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Y.%20Alfaifi">Mohammad Y. Alfaifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anything that poses a challenge or a threat to our well-being is a stress. Understanding the genetic material and cellular response of rats threatened with Repeated swimming stress provides insights that can influence human health. The aim of the present study was to assess the genetical damage and cytological changes caused by exposure of the test organism (Rattus rattus) to forced swimming stress. For this purpose, animals have been submerged in water path 15 minutes daily for 2 weeks. Following that, we performed a micronuclei (MN) test using MNNCE (Micronucleated normocromatic erythrocytes) and MNPCE (Micronucleated polychromatic erythrocytes), NDI (Nuclear division index) and cytological parameters using NDCI (nuclear division cytotoxicity index), necrotic and apoptotic cells in rat's bone marrow samples. Results showed that there was a slightly but not significant increase in the frequency of micronucleated as well as in cytological parameters in bone marrow cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=submergence%20stress" title="submergence stress">submergence stress</a>, <a href="https://publications.waset.org/abstracts/search?q=micronucleus" title=" micronucleus"> micronucleus</a>, <a href="https://publications.waset.org/abstracts/search?q=NDI" title=" NDI"> NDI</a>, <a href="https://publications.waset.org/abstracts/search?q=NDCI" title=" NDCI"> NDCI</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosomal%20aberrations" title=" chromosomal aberrations"> chromosomal aberrations</a> </p> <a href="https://publications.waset.org/abstracts/13505/forced-swim-stress-does-not-induce-structural-chromosomal-aberrations-in-rat-bone-marrow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8420</span> Analysis of the Feasibility of Using a Solar Spiral Type Water Heater for Swimming Pool Application in Physiotherapy and Sports Centers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20B.%20M.%20Carvalho">G. B. M. Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20C.%20Vale"> V. A. C. Vale</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20T.%20L.%20C%C3%B6uras%20Ford"> E. T. L. Cöuras Ford</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A heated pool makes it possible to use it during all hours of the day and in the seasons, especially in physiotherapies and sports centers. However, the cost of installation, operation and maintenance often makes it difficult to deploy. In addition, the current global policy for the use of natural resources from energy sources contradicts the most common means of heating swimming pools, such as the use of gas (Natural Gas and Liquefied Petroleum Gas), the use of firewood or oil and the use of electricity (heat pumps and electrical resistances). In this sense, this work focuses on the use of solar water heaters to be used in swimming pools of physiotherapy centers, in order to analyze their viability for this purpose in view of the costs linked to the medium and/or long term heating. For this, materials of low cost, low weight, easy commercial acquisition were used besides easy manufacture. Parameters such as flow, temperature distribution, efficiency and technical-economic feasibility were evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heating" title="heating">heating</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=pool" title=" pool"> pool</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collectors" title=" solar collectors"> solar collectors</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/74801/analysis-of-the-feasibility-of-using-a-solar-spiral-type-water-heater-for-swimming-pool-application-in-physiotherapy-and-sports-centers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8419</span> Assessment of Efficiency of Underwater Undulatory Swimming Strategies Using a Two-Dimensional CFD Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dorian%20Audot">Dorian Audot</a>, <a href="https://publications.waset.org/abstracts/search?q=Isobel%20Margaret%20Thompson"> Isobel Margaret Thompson</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominic%20Hudson"> Dominic Hudson</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Banks"> Joseph Banks</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Warner"> Martin Warner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In competitive swimming, after dives and turns, athletes perform underwater undulatory swimming (UUS), copying marine mammals’ method of locomotion. The body, performing this wave-like motion, accelerates the fluid downstream in its vicinity, generating propulsion with minimal resistance. Through this technique, swimmers can maintain greater speeds than surface swimming and take advantage of the overspeed granted by the dive (or push-off). Almost all previous work has considered UUS when performed at maximum effort. Critical parameters to maximize UUS speed are frequently discussed; however, this does not apply to most races. In only 3 out of the 16 individual competitive swimming events are athletes likely to attempt to perform UUS with the greatest speed, without thinking of the cost of locomotion. In the other cases, athletes will want to control the speed of their underwater swimming, attempting to maximise speed whilst considering energy expenditure appropriate to the duration of the event. Hence, there is a need to understand how swimmers adapt their underwater strategies to optimize the speed within the allocated energetic cost. This paper develops a consistent methodology that enables different sets of UUS kinematics to be investigated. These may have different propulsive efficiencies and force generation mechanisms (e.g.: force distribution along with the body and force magnitude). The developed methodology, therefore, needs to: (i) provide an understanding of the UUS propulsive mechanisms at different speeds, (ii) investigate the key performance parameters when UUS is not performed solely for maximizing speed; (iii) consistently determine the propulsive efficiency of a UUS technique. The methodology is separated into two distinct parts: kinematic data acquisition and computational fluid dynamics (CFD) analysis. For the kinematic acquisition, the position of several joints along the body and their sequencing were either obtained by video digitization or by underwater motion capture (Qualisys system). During data acquisition, the swimmers were asked to perform UUS at a constant depth in a prone position (facing the bottom of the pool) at different speeds: maximum effort, 100m pace, 200m pace and 400m pace. The kinematic data were input to a CFD algorithm employing a two-dimensional Large Eddy Simulation (LES). The algorithm adopted was specifically developed in order to perform quick unsteady simulations of deforming bodies and is therefore suitable for swimmers performing UUS. Despite its approximations, the algorithm is applied such that simulations are performed with the inflow velocity updated at every time step. It also enables calculations of the resistive forces (total and applied to each segment) and the power input of the modeled swimmer. Validation of the methodology is achieved by comparing the data obtained from the computations with the original data (e.g.: sustained swimming speed). This method is applied to the different kinematic datasets and provides data on swimmers’ natural responses to pacing instructions. The results show how kinematics affect force generation mechanisms and hence how the propulsive efficiency of UUS varies for different race strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20swimming" title=" human swimming"> human swimming</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=underwater%20undulatory%20swimming" title=" underwater undulatory swimming"> underwater undulatory swimming</a> </p> <a href="https://publications.waset.org/abstracts/137171/assessment-of-efficiency-of-underwater-undulatory-swimming-strategies-using-a-two-dimensional-cfd-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8418</span> A Laboratory Study into the Effects of Surface Waves on Freestyle Swimming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Scott%20Draper">Scott Draper</a>, <a href="https://publications.waset.org/abstracts/search?q=Nat%20Benjanuvatra"> Nat Benjanuvatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Grant%20Landers"> Grant Landers</a>, <a href="https://publications.waset.org/abstracts/search?q=Terry%20Griffiths"> Terry Griffiths</a>, <a href="https://publications.waset.org/abstracts/search?q=Justin%20Geldard"> Justin Geldard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Open water swimming has been an Olympic sport since 2008 and is growing in popularity world-wide as a low impact form of exercise. Unlike pool swimming, open water swimmers experience a range of different environmental conditions, including surface waves, variable water temperature, aquatic life, and ocean currents. This presentation will describe experimental research to investigate how freestyle swimming behaviour and performance is influenced by surface waves. A group of 12 swimmers were instructed to swim freestyle in the 54 m long wave flume located at The University of Western Australia’s Coastal and Offshore Engineering Laboratory. A variety of different regular waves were simulated, varying in height (up to 0.3 m), period (1.25 – 4s), and direction (with or against the swimmer). Swimmer’s velocity and acceleration, respectively, were determined from video recording and inertial sensors attached to five different parts of the swimmer’s body. The results illustrate how the swimmers stroke rate and the wave encounter frequency influence their forward speed and how particular wave conditions can benefit or hinder performance. Comparisons to simplified mathematical models provide insight into several aspects of performance, including: (i) how much faster swimmers can travel when swimming with as opposed to against the waves, and (ii) why swimmers of lesser ability are expected to be affected proportionally more by waves than elite swimmers. These findings have implications across the spectrum from elite to ‘weekend’ swimmers, including how they are coached and their ability to win (or just successfully complete) iconic open water events such as the Rottnest Channel Swim held annually in Western Australia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=open%20water" title="open water">open water</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20waves" title=" surface waves"> surface waves</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20height%2Flength" title=" wave height/length"> wave height/length</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20flume" title=" wave flume"> wave flume</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke%20rate" title=" stroke rate"> stroke rate</a> </p> <a href="https://publications.waset.org/abstracts/147896/a-laboratory-study-into-the-effects-of-surface-waves-on-freestyle-swimming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8417</span> Bone Mineral Density of the Lumbar Spine, Femur in Elite Egyptian Male Swimmers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdy%20Abouzeid">Magdy Abouzeid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Physical activity has been shown to have a positive effect on bone mineral density (BMD) and bone mineral content (BMC) among children, adolescents, and adults. Sports characterized by little or moderate weight bearing or impact have a low osteogenic effect. However, the action of such sports on bone turnover remains unclear. Swimming, as a non-weight-bearing sport, has been considered to be insignificant in the maintenance of bone mass. Purpose: To examine this issue we measured (BMD) and(BMC) of the lumbar spine, proximal femur via dual energy x-ray absorptiometry in the group of elite male swimmers, and determine the effect of swimming training on bone health and compared the results with matched controls group in age, body weight and height. Materials and Methods: Twenty-five male swimmers (age 20.7+/-0.8 years) training for 12-15 hours/week; and the controls group consisted of 25 non-active male (age 21.3 +/-1.3 years) were studied BMD and BMC of lumbar spine, femur were assessed via (DXA) absorptiometry. Results: There was significant difference between swimmers and control group in BMD and BMC, BMD of Swimmers was significantly greater than controls at all sites. The lumbar spine (1, 08 +/-0.202 vs., 0717+0.57 gxcm (-2), right proximal femur (1, 02 +/-, 044 vs., 771+/-, 027 gxcm (-2), and left proximal femur (1.374+/-0.212 vs. 1.01 +/-0.141 gxcm (-2). Swimmers were significantly taller, and had greater BMC and BMD compared to the controls group (P<0.001). Conclusions: These results suggest that swimming training may be beneficial in the prevention or therapy of OSTEOPENIA, and may lead to increased (BMD) and (BMC) for male swimmers. Swimming may be an effective non-pharmacological intervention for the adults and adolescent. Further research with younger athletes of another type of aquatics sport is warranted to better identify the periods of BMD development during which Aquatics sport has the greatest impact on bone health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20density" title="bone mineral density">bone mineral density</a>, <a href="https://publications.waset.org/abstracts/search?q=lumbar%20spine" title=" lumbar spine"> lumbar spine</a>, <a href="https://publications.waset.org/abstracts/search?q=femur" title=" femur"> femur</a>, <a href="https://publications.waset.org/abstracts/search?q=swimming" title=" swimming"> swimming</a>, <a href="https://publications.waset.org/abstracts/search?q=DXA%20absorptiometry" title=" DXA absorptiometry"> DXA absorptiometry</a> </p> <a href="https://publications.waset.org/abstracts/45726/bone-mineral-density-of-the-lumbar-spine-femur-in-elite-egyptian-male-swimmers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8416</span> Comparing Practices of Swimming in the Netherlands against a Global Model for Integrated Development of Mass and High Performance Sport: Perceptions of Coaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melissa%20de%20Zeeuw">Melissa de Zeeuw</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Smolianov"> Peter Smolianov</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnold%20Bohl"> Arnold Bohl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was designed to help and improve international performance as well increase swimming participation in the Netherlands. Over 200 sources of literature on sport delivery systems from 28 Australasian, North and South American, Western and Eastern European countries were analyzed to construct a globally applicable model of high performance swimming integrated with mass participation, comprising of the following seven elements and three levels: Micro level (operations, processes, and methodologies for development of individual athletes): 1. Talent search and development, 2. Advanced athlete support. Meso level (infrastructures, personnel, and services enabling sport programs): 3. Training centers, 4. Competition systems, 5. Intellectual services. Macro level (socio-economic, cultural, legislative, and organizational): 6. Partnerships with supporting agencies, 7. Balanced and integrated funding and structures of mass and elite sport. This model emerged from the integration of instruments that have been used to analyse and compare national sport systems. The model has received scholarly validation and showed to be a framework for program analysis that is not culturally bound. It has recently been accepted as a model for further understanding North American sport systems, including (in chronological order of publications) US rugby, tennis, soccer, swimming and volleyball. The above model was used to design a questionnaire of 42 statements reflecting desired practices. The statements were validated by 12 international experts, including executives from sport governing bodies, academics who published on high performance and sport development, and swimming coaches and administrators. In this study both a highly structured and open ended qualitative analysis tools were used. This included a survey of swim coaches where open responses accompanied structured questions. After collection of the surveys, semi-structured discussions with Federation coaches were conducted to add triangulation to the findings. Lastly, a content analysis of Dutch Swimming’s website and organizational documentation was conducted. A representative sample of 1,600 Dutch Swim coaches and administrators was collected via email addresses from Royal Dutch Swimming Federation' database. Fully completed questionnaires were returned by 122 coaches from all key country’s regions for a response rate of 7,63% - higher than the response rate of the previously mentioned US studies which used the same model and method. Results suggest possible enhancements at macro level (e.g., greater public and corporate support to prepare and hire more coaches and to address the lack of facilities, monies and publicity at mass participation level in order to make swimming affordable for all), at meso level (e.g., comprehensive education for all coaches and full spectrum of swimming pools particularly 50 meters long), and at micro level (e.g., better preparation of athletes for a future outside swimming and better use of swimmers to stimulate swimming development). Best Dutch swimming management practices (e.g., comprehensive support to most talented swimmers who win Olympic medals) as well as relevant international practices available for transfer to the Netherlands (e.g., high school competitions) are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sport%20development" title="sport development">sport development</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance" title=" high performance"> high performance</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20participation" title=" mass participation"> mass participation</a>, <a href="https://publications.waset.org/abstracts/search?q=swimming" title=" swimming"> swimming</a> </p> <a href="https://publications.waset.org/abstracts/49524/comparing-practices-of-swimming-in-the-netherlands-against-a-global-model-for-integrated-development-of-mass-and-high-performance-sport-perceptions-of-coaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8415</span> The Research of the Relationship between Triathlon Competition Results with Physical Fitness Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen%20Chan%20Wei">Chen Chan Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to investigate the impact of swim 1500m, 10000m run, VO2 max, and body fat on Olympic distance triathlon competition performance. The subjects were thirteen college triathletes with endurance training, with an average age, height and weight of 20.61±1.04 years (mean ± SD), 171.76±8.54 cm and 65.32±8.14 kg respectively. All subjects were required to take the tests of swim 1500m, run 10000m, VO2 max, body fat, and participate in the Olympic distance triathlon competition. First, the swim 1500m test was taken in the standardized 50m pool, with a depth of 2m, and the 10000m run test on the standardized 400m track. After three days, VO2 max was tested with the MetaMax 3B and body fat was measured with the DEXA machine. After two weeks, all 13 subjects joined the Olympic distance triathlon competition at the 2016 New Taipei City Asian Cup. The relationships between swim 1500m, 10000m run, VO2 max, body fat test, and Olympic distance triathlon competition performance were evaluated using Pearson's product-moment correlation. The results show that 10000m run and body fat had a significant positive correlation with Olympic distance triathlon performance (r=.830, .768), but VO2 max has a significant negative correlation with Olympic distance triathlon performance (r=-.735). In conclusion, for improved non-draft Olympic distance triathlon performance, triathletes should focus on running than swimming training and can be measure VO2 max to prediction triathlon performance. Also, managing body fat can improve Olympic distance triathlon performance. In addition, swimming performance was not significantly correlated to Olympic distance triathlon performance, possibly because the 2016 New Taipei City Asian Cup age group was not a drafting competition. The swimming race is the shortest component of Olympic distance triathlons. Therefore, in a non-draft competition, swimming ability is not significantly correlated with overall performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=triathletes" title="triathletes">triathletes</a>, <a href="https://publications.waset.org/abstracts/search?q=olympic" title=" olympic"> olympic</a>, <a href="https://publications.waset.org/abstracts/search?q=non-drafting" title=" non-drafting"> non-drafting</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a> </p> <a href="https://publications.waset.org/abstracts/53713/the-research-of-the-relationship-between-triathlon-competition-results-with-physical-fitness-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8414</span> Suitable Operating Conditions of Hot Water Generators Combined with Central Air Package Units: A Case Study of Tipco Building Group</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chalermporn%20Jindapeng">Chalermporn Jindapeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of the study of the suitable operating conditions of hot water generators combined with central air package units: a case study of Tipco Building Group was to analyze the suitable operating conditions and energy-related costs in each operating condition of hot water generators combined with central air package units which resulted in water-cooled packages. Thermal energy from vapor form refrigerants at high pressures and temperatures was exchanged with thermal energy of the water in the swimming pool that required suitable temperature control for users with the use of plate heat exchangers before refrigerants could enter the condenser in its function to change the status of vapor form refrigerants at high pressures and temperatures to liquid form at high pressures and temperatures. Thus, if this was used to replace heat pumps it could reduce the electrical energy that was used to make hot water and reduce the cost of the electrical energy of air package units including the increased efficacy of air package units. Of the analyses of the suitable operating conditions by means of the study of the elements involved with actual measurements from the system that had been installed at the Tipco Building Group hot water generators were combined with air package units which resulted in water-cooled packages with a cooling capacity of 75 tonnes. Plate heat exchangers were used in the transfer of thermal energy from refrigerants to one set of water with a heat exchanger area of 1.5 m² which was used to increase the temperature of swimming pool water that has a capacity of 240 m³. From experimental results, it was discovered after continuous temperature measurements in the swimming pool every 15 minutes that swimming pool water temperature increased by 0.78 ⁰C 0.75 ⁰C 0.74 ⁰C and 0.71 ⁰C. The rates of flow of hot water through the heat exchangers were equal to 14, 16, 18 and 20 litres per minute respectively where the swimming pool water temperature was at a constant value and when the rate of flow of hot water increased this caused hot water temperatures to decrease and the coefficient of performance of the air package units to increase from 5.9 to 6.3, 6.7, 6.9 and 7.6 while the rates of flow of hot water were equal to 14, 16, 18 and 20 litres per minute, respectively. As for the cooling systems, there were no changes and the system cooling functions were normal as the cooling systems were able to continuously transfer incoming heat for the swimming pool water which resulted in a constant pressure in the cooling system that allowed its cooling functions to work normally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20air%20package%20units" title="central air package units">central air package units</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchange" title=" heat exchange"> heat exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20water%20generators" title=" hot water generators"> hot water generators</a>, <a href="https://publications.waset.org/abstracts/search?q=swimming%20pool" title=" swimming pool"> swimming pool</a> </p> <a href="https://publications.waset.org/abstracts/51917/suitable-operating-conditions-of-hot-water-generators-combined-with-central-air-package-units-a-case-study-of-tipco-building-group" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8413</span> Fecundity of Blue Swimming Crab, Portunus segnis (Forskal, 1775)&#039; in Yumurtalık Cove, Iskenderun Bay, Northeastern Mediterranean, Adana, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Canan%20T%C3%BCreli%CC%87">Canan Türeli̇</a>, <a href="https://publications.waset.org/abstracts/search?q=I%CC%87rem%20Nur%20Ye%C5%9Fi%CC%87lyurt"> İrem Nur Yeşi̇lyurt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blue swimming crab, Portunus segnis (Forskal, 1775) entered to the Mediterranean with Suez Canal. It is economically important species and consumed as food in Turkey. At this study, fecundity of P. segnis was investigated in Yumurtalık Cove, Turkey. Samples were collected monthly from July 2014 to June 2015 (except February), using bottom trawl into three different depth strata; 0-10 m, 10-20 m and 20-50 m. Sand crab samples were caught all studied months. 110 Males, 70 juvenile and 140 female; 44 of them ovigerous, totally 320 samples were collected during the study period. The size of all samples varied from 38.1 to 163.17 mm carapace width and from 3.46 to 324.36 g weight. All the ovigerous crabs were caught at 0-10 m depth between July to November and in April and May, the highest number of them was observed in August and September. Mean carapace width and weight of ovigerous crabs were calculated respectively, 130.36 ± 12.82 mm (101.39-154.03), 191.02 ± 59.00 g (88.26-324.36). Mean fecundity determined 1.186.185 ± 819.510 (1.393.79-4.513.034) eggs. More fecundity and reproduction biology studies are necessary for monitoring the P. segnis population structure in Northeastern Mediterranean of Turkey. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blue%20swimming%20crab" title="blue swimming crab">blue swimming crab</a>, <a href="https://publications.waset.org/abstracts/search?q=fecundity" title=" fecundity"> fecundity</a>, <a href="https://publications.waset.org/abstracts/search?q=portunus%20segnis" title=" portunus segnis"> portunus segnis</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/45729/fecundity-of-blue-swimming-crab-portunus-segnis-forskal-1775-in-yumurtalik-cove-iskenderun-bay-northeastern-mediterranean-adana-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8412</span> Impact of an Exercise Program on Physical Fitness of a Candidate to Naval Academy: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Chaves">Ricardo Chaves</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Vasconcelos"> Carlos Vasconcelos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Candidates to join the Naval Academy have to take a set of physical tests, which is crucial for a high level of physical fitness. Thus, the planning of physical exercises for candidates to the Naval School must take into account the improvement of their physical fitness. The aim of this study was to investigate the impact of a 6-month exercise program to improve the physical fitness of an individual who will apply for the Naval Academy. This was a non-experimental pre-post-evaluation study. The patient was male, had 18 years old, and a body mass index of 21.1 kg.m². The patient participated in a 6-month aerobic and strength exercise program (3 sessions per week, 75 minutes duration each session). Physical fitness tests were performed according to the physical fitness requirements for entry into the Naval academy (muscle strength [maximum number of lifts and maximum number of sit-ups for 1 minute]; aerobic fitness [2.4 km run and 200 m swimming test]) before (baseline) and after the exercise intervention (6 months). Regarding muscle strength, in the abdominal test, the improvements between the pre-test (39 abdominals.) and post-test (61 abdominals) were 56.4%. For elevations, there was an increase in its number by 150% between the pre-test (4 elevations) and post-test (10 elevations). With regard to aerobic fitness, in the 2.4 km race, there was an evolution of 32.0% between the pre-test (16.46 min.) and the post-test (12.42 min.). For the 200-meter swimming test, there was a negative variation of 2% between the pre-test (2.25 min.) and post-test (2.28 min). A 6-month aerobic and strength exercise program leads to a positive evolution in the muscular strength of the patient. Regarding aerobic fitness, opposite results were found, with a positive evolution in the 2.4 km running test and a negative evolution in the swimming test. In future exercise programs for the improvement of the physical fitness of candidates for the Naval Academy, more emphasis has to be done on specific swimming training. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=case%20study" title="case study">case study</a>, <a href="https://publications.waset.org/abstracts/search?q=exercise%20program" title=" exercise program"> exercise program</a>, <a href="https://publications.waset.org/abstracts/search?q=Naval%20Academy" title=" Naval Academy"> Naval Academy</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20fitness" title=" physical fitness"> physical fitness</a> </p> <a href="https://publications.waset.org/abstracts/160040/impact-of-an-exercise-program-on-physical-fitness-of-a-candidate-to-naval-academy-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20swimming&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20swimming&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20swimming&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20swimming&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20swimming&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20swimming&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20swimming&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20swimming&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20swimming&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20swimming&amp;page=281">281</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20swimming&amp;page=282">282</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20swimming&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10