CINXE.COM

Search results for: pellet extrusion

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pellet extrusion</title> <meta name="description" content="Search results for: pellet extrusion"> <meta name="keywords" content="pellet extrusion"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pellet extrusion" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pellet extrusion"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 258</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pellet extrusion</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">258</span> Effect of Rapeseed Press Cake on Extrusion System Parameters and Physical Pellet Quality of Fish Feed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Martin">Anna Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=Raffael%20Osen"> Raffael Osen </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for fish from aquaculture is constantly growing. Concurrently, due to a shortage of fishmeal caused by extensive overfishing, fishmeal substitution by plant proteins is getting increasingly important for the production of sustainable aquafeed. Several research studies evaluated the impact of plant protein meals, concentrates or isolates on fish health and fish feed quality. However, these protein raw materials often require elaborate and expensive manufacturing and their availability is limited. Rapeseed press cake (RPC) – a side product of de-oiling processes – exhibits a high potential as a plant-based fishmeal alternative in fish feed for carnivorous species due to its availability, low costs and protein content. In order to produce aquafeed with RPC, it is important to systematically assess i) inclusion levels of RPC with similar pellet qualities compared to fishmeal containing formulations and ii) how extrusion parameters can be adjusted to achieve targeted pellet qualities. However, the effect of RPC on extrusion system parameters and pellet quality has only scarcely been investigated. Therefore, the aim of this study was to evaluate the impact of feed formulation, extruder barrel temperature (90, 100, 110 °C) and screw speed (200, 300, 400 rpm) on extrusion system parameters and the physical properties of fish feed pellets. A co-rotating pilot-scale twin screw extruder was used to produce five iso-nitrogenous feed formulations: a fish meal based reference formulation including 16 g/100g fishmeal and four formulations in which fishmeal was substituted by RPC to 25, 50, 75 or 100 %. Extrusion system parameters, being product temperature, pressure at the die, specific mechanical energy (SME) and torque, were monitored while samples were taken. After drying, pellets were analyzed regarding to optical appearance, sectional and longitudinal expansion, sinking velocity, bulk density, water stability, durability and specific hardness. In our study, the addition of minor amounts of RPC already had high impact on pellet quality parameters, especially on expansion but only marginally affected extrusion system parameters. Increasing amounts of RPC reduced sectional expansion, sinking velocity, bulk density and specific hardness and increased longitudinal expansion compared to a reference formulation without RPC. Water stability and durability were almost not affected by RPC addition. Moreover, pellets with rapeseed components showed a more coarse structure than pellets containing only fishmeal. When the adjustment of barrel temperature and screw speed was investigated, it could be seen that the increase of extruder barrel temperature led to a slight decrease of SME and die pressure and an increased sectional expansion of the reference pellets but did almost not affect rapeseed containing fish feed pellets. Also changes in screw speed had little effects on the physical properties of pellets however with raised screw speed the SME and the product temperature increased. In summary, a one-to-one substitution of fishmeal with RPC without the adjustment of extrusion process parameters does not result in fish feed of a designated quality. Therefore, a deeper knowledge of raw materials and their behavior under thermal and mechanical stresses as applied during extrusion is required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extrusion" title="extrusion">extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20feed" title=" fish feed"> fish feed</a>, <a href="https://publications.waset.org/abstracts/search?q=press%20cake" title=" press cake"> press cake</a>, <a href="https://publications.waset.org/abstracts/search?q=rapeseed" title=" rapeseed "> rapeseed </a> </p> <a href="https://publications.waset.org/abstracts/95338/effect-of-rapeseed-press-cake-on-extrusion-system-parameters-and-physical-pellet-quality-of-fish-feed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">257</span> Performance and Pellet Quality in Broiler Fed with Different Levels of Fat and Pellet Binders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Vakili">Reza Vakili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To assess the effect of different levels of soybean oil (SO: 1, 2%) and different types of pellet binders (sodium bentonite (SB), calcium lignosulfonate (Ca-Ls), and plant compounds (PC) on the pellet quality, and broilers’ performance, 480 one-day-old male broiler chickens (Ross 308) were used. The results showed that in the starter diet, the 1-PC group had the highest pellet durability index (PDI) (P<0.05). The PDI of the grower diet containing SB and PC was higher than others (P<0.05). The highest pellet hardness was observed in groups 1-SB, 1-PC, 2-SB, and 2-PC for the starter diet (P<0.05). For the finisher diet, the hardness of pellets containing SB and PC was higher (P<0.05). During the starter phase, the best feed conversion ratio (FCR) was obtained in 1-SB (P<0.05). The lowest and highest daily feed intake was observed in groups 2-PC and 1-SB, respectively, during the finisher phase. During the finisher and whole phases, the most daily body weight gain was observed in the SB group (P<0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bentonite" title="bentonite">bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=birds" title=" birds"> birds</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20weight" title=" body weight"> body weight</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20processing" title=" feed processing"> feed processing</a>, <a href="https://publications.waset.org/abstracts/search?q=pellet%20durability" title=" pellet durability"> pellet durability</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20oil" title=" soybean oil"> soybean oil</a> </p> <a href="https://publications.waset.org/abstracts/189018/performance-and-pellet-quality-in-broiler-fed-with-different-levels-of-fat-and-pellet-binders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">256</span> Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20Artiukhina">Ekaterina Artiukhina</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Grammelis"> Panagiotis Grammelis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion and co-firing applications. In the course of torrefaction the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The non-stationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=torrefaction" title="torrefaction">torrefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20pellets" title=" biomass pellets"> biomass pellets</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=heat" title=" heat"> heat</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a> </p> <a href="https://publications.waset.org/abstracts/36273/torrefaction-of-biomass-pellets-modeling-of-the-process-in-a-fixed-bed-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">255</span> FEM Investigation of Inhomogeneous Wall Thickness Backward Extrusion for Aerosol Can Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jemal%20Ebrahim%20Dessie">Jemal Ebrahim Dessie</a>, <a href="https://publications.waset.org/abstracts/search?q=Zsolt%20Lukacs"> Zsolt Lukacs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wall of the aerosol can is extruded from the backward extrusion process. Necking is another forming process stage developed on the can shoulder after the backward extrusion process. Due to the thinner thickness of the wall, buckling is the critical challenge for current pure aluminum aerosol can industries. Design and investigation of extrusion with inhomogeneous wall thickness could be the best solution for reducing and optimization of neck retraction numbers. FEM simulation of inhomogeneous wall thickness has been simulated through this investigation. From axisymmetric Deform-2D backward extrusion, an aerosol can with a thickness of 0.4 mm at the top and 0.33 mm at the bottom of the aerosol can have been developed. As the result, it can optimize the number of retractions of the necking process and manufacture defect-free aerosol can shoulder due to the necking process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20can" title="aerosol can">aerosol can</a>, <a href="https://publications.waset.org/abstracts/search?q=backward%20extrusion" title=" backward extrusion"> backward extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=Deform-2D" title=" Deform-2D"> Deform-2D</a>, <a href="https://publications.waset.org/abstracts/search?q=necking" title=" necking"> necking</a> </p> <a href="https://publications.waset.org/abstracts/135808/fem-investigation-of-inhomogeneous-wall-thickness-backward-extrusion-for-aerosol-can-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">254</span> Effect of Copper Addition at a Rate of 4% Weight on the Microstructure, Mechanical Characteristics, and Surface Roughness on the Hot Extrusion of Aluminum </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20A.%20Al%20Qawabah">S. M. A. Al Qawabah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20O.%20Zaid"> A. I. O. Zaid </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Al-4%Cu alloys are now widely used in many engineering applications especially in robotic, aerospace and vibration control area. The main problem arises from the weakness of their mechanical characteristics. Therefore, this study is directed towards enhancing the mechanical properties through severe plastic deformation. In this work, the hot direct extrusion process was chosen to provide the required hot work for this purpose. A direct extrusion die was designed and manufactured to be used in this investigation. The general microstructure, microhardness, surface roughness, and compression tests were performed on specimens from the produced Al-4%Cu alloy both in the as cast and after extrusion conditions. It was found that a pronounced enhancement in the mechanical characteristics of the produced Al-4%Cu after extrusion was achieved. The microhardness increased by 89.3%, the flow stress was decreased by 10% at 0.2 strain and finally the surface roughness was reduced by 81.6%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum" title="aluminum">aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20extrusion" title=" hot extrusion "> hot extrusion </a> </p> <a href="https://publications.waset.org/abstracts/10018/effect-of-copper-addition-at-a-rate-of-4-weight-on-the-microstructure-mechanical-characteristics-and-surface-roughness-on-the-hot-extrusion-of-aluminum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">253</span> Development of a Table-Top Composite Wire Fabrication System for Additive Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Nand">Krishna Nand</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Taufik"> Mohammad Taufik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fused Filament Fabrication (FFF) is one of the most popular additive manufacturing (AM) technology. In FFF technology, a wire form material (filament) is fed inside a heated chamber, where it gets converted into semi-solid form and extruded out of a nozzle to be deposited on the build platform to fabricate the part. FFF technology is expanding and covering the market at a very rapid rate, so the need of raw materials for 3D printing is also increasing. The cost of 3D printing is directly affected by filament cost. To make 3D printing more economic, a compact and portable filament/wire extrusion system is needed. Wire extrusion systems to extrude ordinary wire/filament made of a single material are available in the market. However, extrusion system to make a composite wire/filament are not available. Hence, in this study, initial efforts have been made to develop a table-top composite wire extruder. The developed system is consisted of mechanical parts, electronics parts, and a control system. A multiple channel hopper, extrusion screw, melting chamber and nozzle, cooling zone, and spool winder are some mechanical parts. While motors, heater, temperature sensor, cooling fans are some electronics parts, which are used to develop this system. A control board has been used to control the various process parameters like – temperature and speed of motors. For the production of composite wire/filament, two different materials could be fed through two channels of hopper, which will be mixed and carried to the heated zone by extrusion screw. The extrusion screw is rotated by a motor, and the speed of this motor will be controlled by the controller as per the requirement of material extrusion rate. In the heated zone, the material will melt with the help of a heating element and extruded out of the nozzle in the form of wire. The developed system occupies less floor space due to the vertical orientation of its heating chamber. It is capable to extrude ordinary filament as well as composite filament, which are compatible with 3D printers available in the market. Further, the developed system could be employed in the research and development of materials, processing, and characterization for 3D printer. The developed system presented in this study could be a better choice for hobbyists and researchers dealing with the fused filament fabrication process to reduce the 3D printing cost significantly by recycling the waste material into 3D printer feed material. Further, it could also be explored as a better alternative for filament production at the commercial level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20Printing" title=" 3D Printing"> 3D Printing</a>, <a href="https://publications.waset.org/abstracts/search?q=filament%20extrusion" title=" filament extrusion"> filament extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=pellet%20extrusion" title=" pellet extrusion"> pellet extrusion</a> </p> <a href="https://publications.waset.org/abstracts/139720/development-of-a-table-top-composite-wire-fabrication-system-for-additive-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">252</span> The Application of to Optimize Pellet Quality in Broiler Feeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Vakili">Reza Vakili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this experiment was to optimize the effect of moisture, the production rate, grain particle size and steam conditioning temperature on pellet quality in broiler feed using Taguchi method and a 43 fractional factorial arrangement was conducted. Production rate, steam conditioning temperatures, particle sizes and moisture content were performed. During the production process, sampling was done, and then pellet durability index (PDI) and hardness evaluated in broiler feed grower and finisher. There was a significant effect of processing parameters on PDI and hardness. Based on the results of this experiment Taguchi method can be used to find the best combination of factors for optimal pellet quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler" title="broiler">broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20physical%20quality" title=" feed physical quality"> feed physical quality</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=processing%20parameters" title=" processing parameters"> processing parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=PDI" title=" PDI"> PDI</a> </p> <a href="https://publications.waset.org/abstracts/90201/the-application-of-to-optimize-pellet-quality-in-broiler-feeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">251</span> Effect of Tube Backward Extrusion (TBE) Process on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Abdolvand">H. Abdolvand</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Riazat"> M. Riazat</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Sohrabi"> H. Sohrabi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Faraji"> G. Faraji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental investigation into the Tube Backward Extrusion (TBE) process on AZ31 magnesium alloy is studied. Microstructures and grain size distribution of the specimens before and after TBE process are investigated by optical microscopy. Tensile and Vickers microhardness tests along extrusion direction were performed at room temperature. It is found that the average grain size is refined remarkably from the initial 33 µm down to 3.5 µm after TBE process. Also, the microhardness increased significantly to 58 HV after the process from an initial value of 36 HV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tube%20backward%20extrusion" title="tube backward extrusion">tube backward extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=AZ31" title=" AZ31"> AZ31</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20size%20distribution" title=" grain size distribution"> grain size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20refinement" title=" grain refinement "> grain refinement </a> </p> <a href="https://publications.waset.org/abstracts/20480/effect-of-tube-backward-extrusion-tbe-process-on-the-microstructure-and-mechanical-properties-of-az31-magnesium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> Normal Meniscal Extrusion Using Ultrasonography during the Different Range of Motion Running Head: Sonography for Meniscal Extrusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Sharafat%20Vaziri">Arash Sharafat Vaziri</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Aghaghazvini"> Leila Aghaghazvini</a>, <a href="https://publications.waset.org/abstracts/search?q=Soodeh%20Jahangiri"> Soodeh Jahangiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Tahami"> Mohammad Tahami</a>, <a href="https://publications.waset.org/abstracts/search?q=Roham%20Borazjani"> Roham Borazjani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Naghi%20Tahmasebi"> Mohammad Naghi Tahmasebi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Rabie"> Hamid Rabie</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesan%20Jelodari%20Mamaghani"> Hesan Jelodari Mamaghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Fardis%20Vosoughi"> Fardis Vosoughi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Salimi"> Maryam Salimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: It is essential to know the normal extrusion measures in order to detect pathological ones. In this study, we aimed to define some normal reference values for meniscal extrusion in the normal knees during different ranges of motion. Methods: The amount of anterior and posterior portion of meniscal extrusion among twenty-one asymptomatic volunteers (42 knees) were tracked at 0, 45, and 90 degrees of knee flexion using an ultrasound machine. The repeated measures analysis of variance (ANOVA) was used to show the interaction between the amounts of meniscal extrusion and the different degrees of knee flexion. Result: The anterior portion of the lateral menisci at full knee extension (0.59±1.40) and the posterior portion of the medial menisci during 90° flexion (3.06±2.36) showed the smallest and the highest mean amount of extrusion, respectively. The normal average amounts of anterior extrusion were 1.12± 1.17 mm and 0.99± 1.34 mm for medial and lateral menisci, respectively. The posterior meniscal normal extrusions were significantly increasing in both medial and lateral menisci during the survey (F= 20.250 and 11.298; both P-values< 0.001) as they were measured at 2.37± 2.16 mm and 1.53± 2.18 mm in order. Conclusion: The medial meniscus can extrude 1.74± 1.84 mm normally, while this amount was 1.26± 1.82 mm for the lateral meniscus. These measures commonly increased with the rising of knee flexion motion. Likewise, the posterior portion showed more extrusion than the anterior portion on both sides. These measures commonly increased with higher knee flexion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meniscal%20extrusion" title="meniscal extrusion">meniscal extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonography" title=" ultrasonography"> ultrasonography</a>, <a href="https://publications.waset.org/abstracts/search?q=knee" title=" knee"> knee</a> </p> <a href="https://publications.waset.org/abstracts/154526/normal-meniscal-extrusion-using-ultrasonography-during-the-different-range-of-motion-running-head-sonography-for-meniscal-extrusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> Relationship between Extrusion Ratio and Mechanical Properties of Magnesium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Jeon">C. H. Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Kim"> Y. H. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Lee"> G. A. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reducing resource consumption and carbon dioxide emission are recognized as urgent issues. One way of resolving these issues is to reduce product weight. Magnesium alloys are considered promising candidates because of their lightness. Various studies have been conducted on using magnesium alloy instead of conventional iron or aluminum in mechanical parts, due to the light weight and superior specific strength of magnesium alloy. However, even stronger magnesium alloys are needed for mechanical parts. One common way to enhance the strength of magnesium alloy is by extruding the ingot. In order to enhance the mechanical properties, magnesium alloy ingot were extruded at various extrusion ratios. Relationship between extrusion ratio and mechanical properties was examined on extruded material of magnesium alloy. And Textures and microstructures of the extruded materials were investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extrusion" title="extrusion">extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=extrusion%20ratio" title=" extrusion ratio"> extrusion ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20property" title=" mechanical property"> mechanical property</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20material" title=" lightweight material"> lightweight material</a> </p> <a href="https://publications.waset.org/abstracts/30018/relationship-between-extrusion-ratio-and-mechanical-properties-of-magnesium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> Effect of Hot Extrusion on the Mechanical and Corrosion Properties of Mg-Zn-Ca and Mg-Zn-Ca-Mn Alloys for Medical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20E.%20Bazhenov">V. E. Bazhenov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Li"> A. V. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Komissarov"> A. A. Komissarov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Koltygin"> A. V. Koltygin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Tavolzhanskii"> S. A. Tavolzhanskii</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20O.%20Voropaeva"> O. O. Voropaeva</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Mukhametshina"> A. M. Mukhametshina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Tokar"> A. A. Tokar</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Bautin"> V. A. Bautin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnesium-based alloys are considered as effective materials in the development of biodegradable implants. The magnesium alloys containing Mg, Zn, Ca as an alloying element are the subject of the particular interest. These elements are the nutrients for the human body, which provide their high biocompatibility. In this work, we investigated the effect of severe plastic deformation (SPD) on the mechanical and corrosion properties of Mg-Zn-Ca and Mg-Zn-Ca-Mn alloys containing from 2 to 4 wt.% Zn; 0.7 wt.% Ca and up to 1 wt.% Mn. Hot extrusion was used as a method of intensive plastic deformation. The temperature of hot extrusion was set to 220 °C and 300 °C. Metallographic analysis after hot extrusion shows that the grain size in the studied alloys depends on the deformation temperature. The grain size for all of investigated alloys is in the range from 3 to 7 microns, and 3 μm corresponds to the extrusion temperature of 220 °C. Analysis of mechanical properties after extrusion shows that extrusion at a temperature of 220 °C and alloying with Mn increase the strength characteristics and decrease the ductility of studied alloys. A slight anisotropy of properties in the longitudinal and transverse directions was also observed. Measurements of corrosion properties revealed that the addition of Mn to Mg-Zn-Ca alloys reduces the corrosion rate. On the other hand, increasing the Zn content in alloys increases the corrosion rate. The extrusion temperature practically does not affect the corrosion rate. Acknowledgement: The authors gratefully acknowledge the financial support of the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (No K2-2019-008), implemented by a governmental decree dated 16th of March 2013, N 211. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title="biocompatibility">biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20extrusion" title=" hot extrusion"> hot extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloys" title=" magnesium alloys"> magnesium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation"> severe plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/130867/effect-of-hot-extrusion-on-the-mechanical-and-corrosion-properties-of-mg-zn-ca-and-mg-zn-ca-mn-alloys-for-medical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> Effect of Coffee Grounds on Physical and Heating Value Properties of Sugarcane Bagasse Pellets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Rattawan">K. Rattawan</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Intagun"> W. Intagun</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Kanoksilapatham"> W. Kanoksilapatham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective of this research is to study effect of coffee grounds on physical and heating value properties of sugarcane bagasse pellets. The coffee grounds were tested as an additive for pelletizing process of bagasse pellets. Pelletizing was performed using a Flat&ndash;die pellet mill machine. Moisture content of raw materials was controlled at 10-13%. Die temperature range during the process was 75-80 <sup>o</sup>C. Physical characteristics (bulk density and durability) of the bagasse pellet and pellets with 1-5% coffee ground were determined following the standard assigned by the Pellet Fuel Institute (PFI). The results revealed increasing values of 648&plusmn;3.4, 659 &plusmn; 3.1, 679 &plusmn; 3.3 and 685 &plusmn; 3.1 kg/m<sup>3</sup> (for pellet bulk density); and 98.7 &plusmn; 0.11, 99.2 &plusmn; 0.26, 99.3 &plusmn; 0.19 and 99.4 &plusmn; 0.07% (for pellet durability), respectively. In addition, the heating values of the coffee ground supplemented pellets (15.9 &plusmn; 1.16, 17.0 &plusmn; 1.23 and 18.8 &plusmn; 1.34 MJ/kg) were improved comparing to the non-supplemented control (14.9 &plusmn; 1.14 MJ/kg), respectively. The results indicated that both the bulk density and durability values of the bagasse pellets were increased with the increasing proportion of the coffee ground additive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bagasse" title="bagasse">bagasse</a>, <a href="https://publications.waset.org/abstracts/search?q=coffee%20grounds" title=" coffee grounds"> coffee grounds</a>, <a href="https://publications.waset.org/abstracts/search?q=pelletizing" title=" pelletizing"> pelletizing</a>, <a href="https://publications.waset.org/abstracts/search?q=heating%20value" title=" heating value"> heating value</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20cane%20bagasse" title=" sugar cane bagasse"> sugar cane bagasse</a> </p> <a href="https://publications.waset.org/abstracts/90942/effect-of-coffee-grounds-on-physical-and-heating-value-properties-of-sugarcane-bagasse-pellets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">246</span> Advances in Food Processing Using Extrusion Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javeed%20Akhtar">Javeed Akhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Pandey"> R. K. Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20R.%20Azaz%20Ahmad%20Azad"> Z. R. Azaz Ahmad Azad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the purpose of making different uses of food material for the development of extruded foods are produced using single and twin extruders. Extrusion cooking is a useful and economical tool for processing of novel food. This high temperature, short time processing technology causes chemical and physical changes that alter the nutritional and physical quality of the product. Extrusion processing of food ingredients characteristically depends on associating process conditions that influence the product qualities. The process parameters are optimized for extrusion of food material in order to obtain the maximum nutritive value by inactivating the anti-nutritional factors. The processing conditions such as moisture content, temperature and time are controlled to avoid over heating or under heating which otherwise would result in a product of lower nutritional quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extrusion%20processing" title="extrusion processing">extrusion processing</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20and%20twin%20extruder" title=" single and twin extruder"> single and twin extruder</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20condition%20of%20extruders%20and%20extruded%20novel%20foods" title=" operating condition of extruders and extruded novel foods"> operating condition of extruders and extruded novel foods</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20and%20agricultural%20engineering" title=" food and agricultural engineering"> food and agricultural engineering</a> </p> <a href="https://publications.waset.org/abstracts/21673/advances-in-food-processing-using-extrusion-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">245</span> Thermomechanical Processing of a CuZnAl Shape-Memory Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Henrique%20Alves%20Martins">Pedro Henrique Alves Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Guilherme%20%20Ferreira%20De%20Siqueira"> Paulo Guilherme Ferreira De Siqueira</a>, <a href="https://publications.waset.org/abstracts/search?q=Franco%20De%20Castro%20Bubani"> Franco De Castro Bubani</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Teresa%20Paulino%20Aguilar"> Maria Teresa Paulino Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Roberto%20%20Cetlin"> Paulo Roberto Cetlin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cu-base shape-memory alloys (CuZnAl, CuAlNi, CuAlBe, etc.) are promising engineering materials for several unconventional devices, such as sensors, actuators, and mechanical vibration dampers. Brittleness is one of the factors that limit the commercial use of these alloys, as it makes thermomechanical processing difficult. In this work, a method for the hot extrusion of a 75.50% Cu, 16,74% Zn, 7,76% Al (weight %) alloy is presented. The effects of the thermomechanical processing in the microstructure and the pseudoelastic behavior of the alloy are assessed by optical metallography, compression and hardness tests. Results show that hot extrusion is a suitable method to obtain severe cross-section reductions in the CuZnAl shape-memory alloy studied. The alloy maintained its pseudoelastic effect after the extrusion and the modifications in the mechanical behavior caused by precipitation during hot extrusion can be minimized by a suitable precipitate dissolution heat treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20extrusion" title="hot extrusion">hot extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudoelastic" title=" pseudoelastic"> pseudoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=shape-memory%20alloy" title=" shape-memory alloy"> shape-memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20processing" title=" thermomechanical processing"> thermomechanical processing</a> </p> <a href="https://publications.waset.org/abstracts/70427/thermomechanical-processing-of-a-cuznal-shape-memory-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">244</span> Influence of Iron Ore Mineralogy on Cluster Formation inside the Shaft Furnace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bahgat">M. Bahgat</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Hanafy"> H. A. Hanafy</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lakdawala"> S. Lakdawala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clustering phenomenon of pellets was observed frequently in shaft processes operating at higher temperatures. Clustering is a result of the growth of fibrous iron precipitates (iron whiskers) that become hooked to each other and finally become crystallized during the initial stages of metallization. If the pellet clustering is pronounced, sometimes leads to blocking inside the furnace and forced shutdown takes place. This work clarifies further the relation between metallic iron whisker growth and iron ore mineralogy. Various pellet sizes (6 &ndash; 12.0 &amp; +12.0 mm) from three different ores (A, B &amp; C) were (completely and partially) reduced at 985 <sup>o</sup>C with H<sub>2</sub>/CO gas mixture using thermos-gravimetric technique. It was found that reducibility increases by decreasing the iron ore pellet&rsquo;s size. Ore (A) has the highest reducibility than ore (B) and ore (C). Increasing the iron ore pellet&rsquo;s size leads to increase the probability of metallic iron whisker formation. Ore (A) has the highest tendency for metallic iron whisker formation than ore (B) and ore (C). The reduction reactions for all iron ores A, B and C are mainly controlled by diffusion reaction mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shaft%20furnace" title="shaft furnace">shaft furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster" title=" cluster"> cluster</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20iron%20whisker" title=" metallic iron whisker"> metallic iron whisker</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogy" title=" mineralogy"> mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrous%20metallurgy" title=" ferrous metallurgy"> ferrous metallurgy</a> </p> <a href="https://publications.waset.org/abstracts/42409/influence-of-iron-ore-mineralogy-on-cluster-formation-inside-the-shaft-furnace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">243</span> The Effects of Different Amounts of Additional Moisture on the Physical Properties of Cow Pea (Vigna unguiculata (L.) Walp.) Extrudates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Strauta">L. Strauta</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mui%C5%BEniece-Brasava"> S. Muižniece-Brasava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even though legumes possess high nutritional value and have a rather high protein content for plant origin products, they are underutilized mostly due to their lengthy cooking time. To increase the presence of legume-based products in human diet, new extruded products were made of cow peas (<em>Vigna unguiculata </em>(L.) Walp.). But as it is known, adding different moisture content to flour before extrusion can change the physical properties of the extruded product. Experiments were carried out to estimate the optimal moisture content for cow pea extrusion. After extrusion, the pH level had dropped from 6.7 to 6.5 and the lowest hardness rate was observed in the samples with additional 9 g 100g<sup>-1</sup> of moisture - 28&plusmn;4N, but the volume mass of the samples with additional 9 g100g<sup>-1</sup> of water was 263&plusmn;3 g L<sup>-1</sup>; all samples were approximately 7&plusmn;1mm long. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cow%20pea" title="cow pea">cow pea</a>, <a href="https://publications.waset.org/abstracts/search?q=extrusion%E2%80%93cooking" title=" extrusion–cooking"> extrusion–cooking</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture" title=" moisture"> moisture</a>, <a href="https://publications.waset.org/abstracts/search?q=size" title=" size"> size</a> </p> <a href="https://publications.waset.org/abstracts/59031/the-effects-of-different-amounts-of-additional-moisture-on-the-physical-properties-of-cow-pea-vigna-unguiculata-l-walp-extrudates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> A Study on Weight-Reduction of Double Deck High-Speed Train Using Size Optimization Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong-Yeon%20Kim">Jong-Yeon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang-Bok%20Shin"> Kwang-Bok Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Hwan%20Ko"> Tae-Hwan Ko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to suggest a weight-reduction design method for the aluminum extrusion carbody structure of a double deck high-speed train using size optimization method. The size optimization method was used to optimize thicknesses of skin and rib of the aluminum extrusion for the carbody structure. Thicknesses of 1st underframe, 2nd underframe, solebar and roof frame were selected by design variables in order to conduct size optimization. The results of the size optimization analysis showed that the weight of the aluminum extrusion could be reduced by 0.61 tons (5.60%) compared to the weight of the original carbody structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20deck%20high-speed%20train" title="double deck high-speed train">double deck high-speed train</a>, <a href="https://publications.waset.org/abstracts/search?q=size%20optimization" title=" size optimization"> size optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=weigh-reduction" title=" weigh-reduction"> weigh-reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20extrusion" title=" aluminum extrusion"> aluminum extrusion</a> </p> <a href="https://publications.waset.org/abstracts/54728/a-study-on-weight-reduction-of-double-deck-high-speed-train-using-size-optimization-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> Pollution Associated with Combustion in Stove to Firewood (Eucalyptus) and Pellet (Radiate Pine): Effect of UVA Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20V%C3%A1squez">Y. Vásquez</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Reyes"> F. Reyes</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Oyola"> P. Oyola</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rubio"> M. Rubio</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Mu%C3%B1oz"> J. Muñoz</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Lissi"> E. Lissi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In several cities in Chile, there is significant urban pollution, particularly in Santiago and in cities in the south where biomass is used as fuel in heating and cooking in a large proportion of homes. This has generated interest in knowing what factors can be modulated to control the level of pollution. In this project was conditioned and set up a photochemical chamber (14m3) equipped with gas monitors e.g. CO, NOX, O3, others and PM monitors e.g. dustrack, DMPS, Harvard impactors, etc. This volume could be exposed to UVA lamps, producing a spectrum similar to that generated by the sun. In this chamber, PM and gas emissions associated with biomass burning were studied in the presence and absence of radiation. From the comparative analysis of wood stove (eucalyptus globulus) and pellet (radiata pine), it can be concluded that, in the first approximation, 9-nitroanthracene, 4-nitropyrene, levoglucosan, water soluble potassium and CO present characteristics of the tracers. However, some of them show properties that interfere with this possibility. For example, levoglucosan is decomposed by radiation. The 9-nitroanthracene, 4-nitropyrene are emitted and formed under radiation. The 9-nitroanthracene has a vapor pressure that involves a partition involving the gas phase and particulate matter. From this analysis, it can be concluded that K+ is compound that meets the properties known to be tracer. The PM2.5 emission measured in the automatic pellet stove that was used in this thesis project was two orders of magnitude smaller than that registered by the manual wood stove. This has led to encouraging the use of pellet stoves in indoor heating, particularly in south-central Chile. However, it should be considered, while the use of pellet is not without problems, due to pellet stove generate high concentrations of Nitro-HAP's (secondary organic contaminants). In particular, 4-nitropyrene, compound of high toxicity, also primary and secondary particulate matter, associated with pellet burning produce a decrease in the size distribution of the PM, which leads to a depth penetration of the particles and their toxic components in the respiratory system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20burning" title="biomass burning">biomass burning</a>, <a href="https://publications.waset.org/abstracts/search?q=photochemical%20chamber" title=" photochemical chamber"> photochemical chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a>, <a href="https://publications.waset.org/abstracts/search?q=tracers" title=" tracers"> tracers</a> </p> <a href="https://publications.waset.org/abstracts/73231/pollution-associated-with-combustion-in-stove-to-firewood-eucalyptus-and-pellet-radiate-pine-effect-of-uva-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> The Influence of Clayey Pellet Size on Adsorption Efficiency of Metal Ions Removal from Waste Printing Developer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiurski%20S.%20Jelena">Kiurski S. Jelena</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranogajec%20G.%20Jonjaua"> Ranogajec G. Jonjaua</a>, <a href="https://publications.waset.org/abstracts/search?q=Oros%20B.%20Ivana"> Oros B. Ivana</a>, <a href="https://publications.waset.org/abstracts/search?q=Keci%C4%87%20S.%20Vesna"> Kecić S. Vesna </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption efficiency of fired clayey pellets of 5 and 8 mm diameter size for Cu(II) and Zn(II) ions removal from a waste printing developer was studied. In order to investigate the influence of contact time, adsorbent mass and pellet size on the adsorption efficiency the batch mode was carried out. Faster uptake of copper ions was obtained with the fired clay pellets of 5 mm diameter size within 30 minutes. The pellets of 8 mm diameter size showed the higher equilibrium time (60 to 75 minutes) for copper and zinc ions. The results pointed out that adsorption efficiency increases with the increase of adsorbent mass. The maximal efficiency is different for Cu(II) and Zn(II) ions due to the pellet size. Therefore, the fired clay pellets of 5 mm diameter size present an effective adsorbent for Cu(II) ions removal (adsorption efficiency is 63.6%), whereas the fired clay pellets of 8 mm diameter size are the best alternative for Zn(II) ions removal (adsorption efficiency is 92.8%) from a waste printing developer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption%20efficiency" title="adsorption efficiency">adsorption efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=clayey%20pellet" title=" clayey pellet"> clayey pellet</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ions" title=" metal ions"> metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20printing%20developer" title=" waste printing developer"> waste printing developer</a> </p> <a href="https://publications.waset.org/abstracts/22917/the-influence-of-clayey-pellet-size-on-adsorption-efficiency-of-metal-ions-removal-from-waste-printing-developer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">239</span> Effect of Zr Addition to Aluminum Grain Refined by Ti+B on Its Wear Resistance after Extrusion Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20I.%20O.%20Zaid">Adnan I. O. Zaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Safwan%20M.%20A.%20Alqawabah"> Safwan M. A. Alqawabah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Review of the available literature on grain refinement of aluminum and its alloys reveals that little work is published on the effect of refiners on mechanical characteristics and wear resistance. In this paper, the effect of addition of Zr to Al grain refined by Ti+B on its metallurgical, mechanical characteristics and wear resistance both in the as cast and after extrusion condition are presented and discussed. It was found that Addition of Zr to Al resulted in deterioration of its mechanical strength and hardness, whereas it resulted in improvement of both of them when added to Al grain refined by Ti+B. Furthermore it was found that the direct extrusion process resulted in further increase of the mechanical strength and hardness of Al and its micro-alloys. Also it resulted in increase of their work hardening index, n, i.e. improved their formability, hence it reduces the number of stages required for forming at large strains in excess of the plastic instability before Zr addition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum" title="aluminum">aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20refinement" title=" grain refinement"> grain refinement</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20%2B%20boron" title=" titanium + boron"> titanium + boron</a>, <a href="https://publications.waset.org/abstracts/search?q=zirconium" title=" zirconium"> zirconium</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20characteristics" title=" mechanical characteristics"> mechanical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20extrusion" title=" direct extrusion"> direct extrusion</a> </p> <a href="https://publications.waset.org/abstracts/32072/effect-of-zr-addition-to-aluminum-grain-refined-by-tib-on-its-wear-resistance-after-extrusion-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> Investigation of Axisymmetric Bimetallic Tube Extrusion with Conic Die</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Eghbali">A. Eghbali</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Goodarzi"> M. Goodarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hagh%20Panahi"> M. Hagh Panahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article process of direct extrusion of axisymmetric bimetallic tube with conic die profile and constant Mandrel by upper bound method has been analyzed and finite element method is simulated. Deformation area is divided into six smaller deformation areas and are calculated by presenting two generalized velocity field and applicable input and output sections separately (velocity profile with logarithmic curve for input section and spherical velocity profile for materials output ) for each die profile in spherical coordinate system strain rate values in every deformation area. After internal power, shearing power and material friction power is obtained, extrusion force is calculated. The results of upper bound analysis method with given results from other researcher's experiments and simulation by finite parts method (Abaqus software) are compared for conic die. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extrusion" title="extrusion">extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20bound" title=" upper bound"> upper bound</a>, <a href="https://publications.waset.org/abstracts/search?q=axisy%20metric" title=" axisy metric"> axisy metric</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20velocity%20field" title=" deformation velocity field"> deformation velocity field</a> </p> <a href="https://publications.waset.org/abstracts/34856/investigation-of-axisymmetric-bimetallic-tube-extrusion-with-conic-die" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> Investigation on the Effect of Titanium (Ti) Plus Boron (B) Addition to the Mg-AZ31 Alloy in the as Cast and After Extrusion on Its Metallurgical and Mechanical Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20I.%20O.%20Zaid">Adnan I. O. Zaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Raghad%20S.%20Hemeimat"> Raghad S. Hemeimat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnesium - aluminum alloys are versatile materials which are used in manufacturing a number of engineering and industrial parts in the automobile and aircraft industries due to their strength – to –weight -ratio. Against these preferable characteristics, magnesium is difficult to deform at room temperature therefore it is alloyed with other elements mainly Aluminum and Zinc to add some required properties particularly for their high strength - to -weight ratio. Mg and its alloys oxidize rapidly therefore care should be taken during melting or machining them; but they are not fire hazardous. Grain refinement is an important technology to improve the mechanical properties and the micro structure uniformity of the alloys. Grain refinement has been introduced in early fifties; when Cibula showed that the presence of Ti, and Ti+ B, produced a great refining effect in Al. since then it became an industrial practice to grain refine Al. Most of the published work on grain refinement was directed toward grain refining Al and Zinc alloys; however, the effect of the addition of rare earth material on the grain size or the mechanical behavior of Mg alloys has not been previously investigated. This forms the main objective of the research work; where, the effect of Ti addition on the grain size, mechanical behavior, ductility, and the extrusion force & energy consumed in forward extrusion of Mg-AZ31 alloy is investigated and discussed in two conditions, first in the as cast condition and the second after extrusion. It was found that addition of Ti to Mg- AZ31 alloy has resulted in reduction of its grain size by 14%; the reduction in grain size after extrusion was much higher. However the increase in Vicker’s hardness was 3% after the addition of Ti in the as cast condition, and higher values for Vicker’s hardness were achieved after extrusion. Furthermore, an increase in the strength coefficient by 36% was achieved with the addition of Ti to Mg-AZ31 alloy in the as cast condition. Similarly, the work hardening index was also increased indicating an enhancement of the ductility and formability. As for the extrusion process, it was found that the force and energy required for the extrusion were both reduced by 57% and 59% with the addition of Ti. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cast%20condition" title="cast condition">cast condition</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20extrusion" title=" direct extrusion"> direct extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=MgAZ31%20alloy" title=" MgAZ31 alloy"> MgAZ31 alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20-%20plasticity" title=" super - plasticity"> super - plasticity</a> </p> <a href="https://publications.waset.org/abstracts/32854/investigation-on-the-effect-of-titanium-ti-plus-boron-b-addition-to-the-mg-az31-alloy-in-the-as-cast-and-after-extrusion-on-its-metallurgical-and-mechanical-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> Effect of the Initial Billet Shape Parameters on the Final Product in a Backward Extrusion Process for Pressure Vessels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Archana%20Thangavelu">Archana Thangavelu</a>, <a href="https://publications.waset.org/abstracts/search?q=Han-Ik%20Park"> Han-Ik Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Chul%20Park"> Young-Chul Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Joon-Hong%20Park"> Joon-Hong Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this numerical study, we have proposed a method for evaluation of backward extrusion process of pressure vessel made up of steel. Demand for lighter and stiffer products have been increasing in the last years especially in automobile engineering. Through detailed finite element analysis, effective stress, strain and velocity profile have been obtained with optimal range. The process design of a forward and backward extrusion axe-symmetric part has been studied. Forging is mainly carried out because forged products are highly reliable and possess superior mechanical properties when compared to normal products. Performing computational simulations of 3D hot forging with various dimensions of billet and optimization of weight is carried out using Taguchi Orthogonal Array (OA) Optimization technique. The technique used in this study can be used for newly developed materials to investigate its forgeability for much complicated shapes in closed hot die forging process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=backward%20extrusion" title="backward extrusion">backward extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20forging" title=" hot forging"> hot forging</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/38024/effect-of-the-initial-billet-shape-parameters-on-the-final-product-in-a-backward-extrusion-process-for-pressure-vessels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> Development of Natural Zeolites Adsorbent: Preliminary Study on Water-Isopropyl Alcohol Adsorption in a Close-Loop Continuous Adsorber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang%20Kompiang%20Wirawan">Sang Kompiang Wirawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Pandu%20Prabowo%20Jati"> Pandu Prabowo Jati</a>, <a href="https://publications.waset.org/abstracts/search?q=I%20Wayan%20Warmada"> I Wayan Warmada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Klaten Indonesian natural zeolite can be used as powder or pellet adsorbent. Pellet adsorbent has been made from activated natural zeolite powder by a conventional pressing method. Starch and formaldehyde were added as binder to strengthen the construction of zeolite pellet. To increase the absorptivity and its capacity, natural zeolite was activated first chemically and thermally. This research examined adsorption process of water from Isopropyl Alcohol (IPA)-water system using zeolite adsorbent pellet from natural zeolite powder which has been activated with H2SO4 0.1 M and 0.3 M. Adsorbent was pelleted by pressing apparatus at certain pressure to make specification in 1.96 cm diameter, 0.68 cm thickness which the natural zeolite powder (-80 mesh). The system of isopropyl-alcohol water contained 80% isopropyl-alcohol. Adsorption process was held in close-loop continuous apparatus which the zeolite pellet was put inside a column and the solution of IPA-water was circulated at certain flow. Concentration changing was examined thoroughly at a certain time. This adsorption process included mass transfer from bulk liquid into film layer and from film layer into the solid particle. Analysis of rate constant was using first order isotherm model that simulated with MATLAB. Besides using first order isotherm, intra-particle diffusion model was proposed by using pore diffusion model. The study shows that adsorbent activated by H2SO4 0.1 M has good absorptivity with mass transfer constant at 0.1286 min-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intra-particle%20diffusion" title="intra-particle diffusion">intra-particle diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20attainment" title=" fractional attainment"> fractional attainment</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20order%20isotherm" title=" first order isotherm"> first order isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/30479/development-of-natural-zeolites-adsorbent-preliminary-study-on-water-isopropyl-alcohol-adsorption-in-a-close-loop-continuous-adsorber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">234</span> Water-Bentonite Interaction of Green Pellets through Micro-Structural Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyananda%20Patra">Satyananda Patra</a>, <a href="https://publications.waset.org/abstracts/search?q=Venugopal%20Rayasam"> Venugopal Rayasam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of pellets produced is affected by quality and type of green pellets, amount of addition of binders and fluxing agents along with the provided firing conditions. The green pellet quality depends upon chemistry, mineralogy and granulometry of fines used for pellet making, the feed size, its moisture content and porosity. During firing of green pellets, ingredients present within reacts to form different phases and microstructure. So in turn, physical and metallurgical properties of pellets are influenced by amount and type of binder and flux addition, induration time and temperature. During iron making process, the metallurgical properties of fired pellets are decided by the type and amount of these phases and their chemistry. Green pelletizing and induration studies have been already carried out with magnetite and hematite ore fines but for Indian iron ores of high alumina content showing different pelletizing characters, these studies cannot be directly interpreted. The main objective of proposed research work is to understand the green pelletizing process and determine the water bentonite interaction at different levels. Swelling behavior of bentonite and microstructure of the green pellet are investigated. Conversion of iron ore fines into pellets, the key raw material and process variables that influence the pellet quality needs to be identified and a correlation should be established between them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iron%20ore" title="iron ore">iron ore</a>, <a href="https://publications.waset.org/abstracts/search?q=pelletization" title=" pelletization"> pelletization</a>, <a href="https://publications.waset.org/abstracts/search?q=binders" title=" binders"> binders</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20pellets" title=" green pellets"> green pellets</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/71905/water-bentonite-interaction-of-green-pellets-through-micro-structural-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">233</span> Magnetorheological Elastomer Composites Obtained by Extrusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mas%C5%82owski">M. Masłowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zaborski"> M. Zaborski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetorheological elastomer composites based on micro- and nano-sized magnetite, gamma iron oxide and carbonyl iron powder in ethylene-octene rubber are reported and studied. The method of preparation process influenced the specific properties of MREs (isotropy/anisotropy). The use of extrusion method instead of traditional preparation processes (two-roll mill, mixer) of composites is presented. Micro and nan-sized magnetites as well as gamma iron oxide and carbonyl iron powder were found to be an active fillers improving the mechanical properties of elastomers. They also changed magnetic properties of composites. Application of extrusion process also influenced the mechanical properties of composites and the dispersion of magnetic fillers. Dynamic-mechanical analysis (DMA) indicates the presence of strongly developed secondary structure in vulcanizates. Scanning electron microscopy images (SEM) show that the dispersion improvement had significant effect on the composites properties. Studies investigated by vibration sample magnetometer (VSM) proved that all composites exhibit good magnetic properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extrusion" title="extrusion">extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20fillers" title=" magnetic fillers"> magnetic fillers</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetorheological%20elastomers" title=" magnetorheological elastomers"> magnetorheological elastomers</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/31906/magnetorheological-elastomer-composites-obtained-by-extrusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> Experimental and Numerical Analysis of Wood Pellet Breakage during Pneumatic Transport</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julian%20Jaegers">Julian Jaegers</a>, <a href="https://publications.waset.org/abstracts/search?q=Siegmar%20Wirtz"> Siegmar Wirtz</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktor%20Scherer"> Viktor Scherer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood pellets belong to the most established trade formats of wood-based fuels. Especially, because of the transportability and the storage properties, but also due to low moisture content, high energy density, and the homogeneous particle size and shape, wood pellets are well suited for power generation in power plants and for the use in automated domestic firing systems. Before they are thermally converted, wood pellets pass various transport and storage procedures. There they undergo different mechanical impacts, which leads to pellet breakage and abrasion and to an increase in fines. The fines lead to operational problems during storage, charging, and discharging of pellets, they can increase the risk of dust explosions and can lead to pollutant emissions during combustion. In the current work, the dependence of the formation of fines caused by breakage during pneumatic transport is analyzed experimentally and numerically. The focus lies on the influence of conveying velocity, pellet loading, pipe diameter, and the shape of pipe components like bends or couplings. A test rig has been built, which allows the experimental evaluation of the pneumatic transport varying the above-mentioned parameters. Two high-speed cameras are installed for the quantitative optical access to the particle-particle and particle-wall contacts. The particle size distribution of the bulk before and after a transport process is measured as well as the amount of fines produced. The experiments will be compared with results of corresponding DEM/CFD simulations to provide information on contact frequencies and forces. The contribution proposed will present experimental results and report on the status of the DEM/CFD simulations. The final goal of the project is to provide a better insight into pellet breakage during pneumatic transport and to develop guidelines ensuring a more gentle transport. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEM%2FCFD-simulation%20of%20pneumatic%20conveying" title="DEM/CFD-simulation of pneumatic conveying">DEM/CFD-simulation of pneumatic conveying</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20impact%20on%20wood%20pellets%20during%20transportation" title=" mechanical impact on wood pellets during transportation"> mechanical impact on wood pellets during transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=pellet%20breakage" title=" pellet breakage"> pellet breakage</a>, <a href="https://publications.waset.org/abstracts/search?q=pneumatic%20transport%20of%20wood%20pellets" title=" pneumatic transport of wood pellets"> pneumatic transport of wood pellets</a> </p> <a href="https://publications.waset.org/abstracts/88559/experimental-and-numerical-analysis-of-wood-pellet-breakage-during-pneumatic-transport" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> Semen Characteristics of Ram Semen Frozen in Straw and Pellet in Three Type of Cold Plates </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdurzag%20Kerban">Abdurzag Kerban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Preservation of semen had a major impact on sheep genetic breeding. The aim of this study was to evaluate the viability of ram spermatozoa after freezing pellet using cold surfaces made from cattle fat and paraffin wax. A pool of three to four ejaculates were pooled from six rams within a period of ten weeks. Semen was diluted in egg yolk-Tris diluent and processed in 0.25 ml straw and 0.1 ml pellets. Motility was evaluated after dilution, before freezing and post-thawing at 0, 1, 2 and 3 hour incubation. Viability index, acrosome integrity and leakage of intracellular enzymes (aspartat aminotransferase and alkline phosphatase) were also evaluated. Spermatozoa exhibited highly significant percentages of motility at 0, 1, 2 and 3 hours incubation after thawing and viability index in 0.25 ml straw and 0.1 ml pellets on cattle fat plate as compared to ram spermatozoa frozen on paraffin wax. In conclusion, cattle fat plate could be used as the cold surface of choice for freezing ram semen in form of pellets. Such form of frozen semen could be used as efficiently as semen frozen in straws. This simple method is economical with little expensive equipment or supplies, and may provide an efficient technique to cryopreserve ram spermatozoa in developing countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ram%20semen" title="ram semen">ram semen</a>, <a href="https://publications.waset.org/abstracts/search?q=freezing" title=" freezing"> freezing</a>, <a href="https://publications.waset.org/abstracts/search?q=straw" title=" straw"> straw</a>, <a href="https://publications.waset.org/abstracts/search?q=pellet" title=" pellet"> pellet</a> </p> <a href="https://publications.waset.org/abstracts/11298/semen-characteristics-of-ram-semen-frozen-in-straw-and-pellet-in-three-type-of-cold-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Optimal Performance of Plastic Extrusion Process Using Fuzzy Goal Programming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Al-Refaie">Abbas Al-Refaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study optimized the performance of plastic extrusion process of drip irrigation pipes using fuzzy goal programming. Two main responses were of main interest; roll thickness and hardness. Four main process factors were studied. The L<sub>18</sub> array was then used for experimental design. The individual-moving range control charts were used to assess the stability of the process, while the process capability index was used to assess process performance. Confirmation experiments were conducted at the obtained combination of optimal factor setting by fuzzy goal programming. The results revealed that process capability&nbsp;was improved significantly from -1.129 to 0.8148 for roll thickness and from 0.0965 to 0.714 and hardness. Such improvement results in considerable savings in production and quality costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20goal%20programming" title="fuzzy goal programming">fuzzy goal programming</a>, <a href="https://publications.waset.org/abstracts/search?q=extrusion%20process" title=" extrusion process"> extrusion process</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20capability" title=" process capability"> process capability</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20plastic%20pipes" title=" irrigation plastic pipes"> irrigation plastic pipes</a> </p> <a href="https://publications.waset.org/abstracts/61013/optimal-performance-of-plastic-extrusion-process-using-fuzzy-goal-programming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> High-Frequency Acoustic Microscopy Imaging of Pellet/Cladding Interface in Nuclear Fuel Rods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Saikouk">H. Saikouk</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Laux"> D. Laux</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Le%20Cl%C3%A9zio"> Emmanuel Le Clézio</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Lacroix"> B. Lacroix</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Audic"> K. Audic</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Largenton"> R. Largenton</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Federici"> E. Federici</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Despaux"> G. Despaux</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pressurized Water Reactor (PWR) fuel rods are made of ceramic pellets (e.g. UO2 or (U,Pu) O2) assembled in a zirconium cladding tube. By design, an initial gap exists between these two elements. During irradiation, they both undergo transformations leading progressively to the closure of this gap. A local and non destructive examination of the pellet/cladding interface could constitute a useful help to identify the zones where the two materials are in contact, particularly at high burnups when a strong chemical bonding occurs under nominal operating conditions in PWR fuel rods. The evolution of the pellet/cladding bonding during irradiation is also an area of interest. In this context, the Institute of Electronic and Systems (IES- UMR CNRS 5214), in collaboration with the Alternative Energies and Atomic Energy Commission (CEA), is developing a high frequency acoustic microscope adapted to the control and imaging of the pellet/cladding interface with high resolution. Because the geometrical, chemical and mechanical nature of the contact interface is neither axially nor radially homogeneous, 2D images of this interface need to be acquired via this ultrasonic system with a highly performing processing signal and by means of controlled displacement of the sample rod along both its axis and its circumference. Modeling the multi-layer system (water, cladding, fuel etc.) is necessary in this present study and aims to take into account all the parameters that have an influence on the resolution of the acquired images. The first prototype of this microscope and the first results of the visualization of the inner face of the cladding will be presented in a poster in order to highlight the potentials of the system, whose final objective is to be introduced in the existing bench MEGAFOX dedicated to the non-destructive examination of irradiated fuel rods at LECA-STAR facility in CEA-Cadarache. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-frequency%20acoustic%20microscopy" title="high-frequency acoustic microscopy">high-frequency acoustic microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20model" title=" multi-layer model"> multi-layer model</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20fuel%20rod" title=" nuclear fuel rod"> nuclear fuel rod</a>, <a href="https://publications.waset.org/abstracts/search?q=pellet%2Fcladding%20interface" title=" pellet/cladding interface"> pellet/cladding interface</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/61215/high-frequency-acoustic-microscopy-imaging-of-pelletcladding-interface-in-nuclear-fuel-rods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pellet%20extrusion&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pellet%20extrusion&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pellet%20extrusion&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pellet%20extrusion&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pellet%20extrusion&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pellet%20extrusion&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pellet%20extrusion&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pellet%20extrusion&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pellet%20extrusion&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10