CINXE.COM

Search results for: ion-selective electrode

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ion-selective electrode</title> <meta name="description" content="Search results for: ion-selective electrode"> <meta name="keywords" content="ion-selective electrode"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ion-selective electrode" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ion-selective electrode"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 622</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ion-selective electrode</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">472</span> A Novel Environmentally Benign Positive Electrode Material with Improved Energy Density for Lithium Ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wassima%20El%20Mofid">Wassima El Mofid</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlozar%20Ivanov"> Svetlozar Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Bund"> Andreas Bund</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing requirements for high power and energy lithium ion batteries have led to the development of several classes of positive electrode materials. Among those one promising material is LiNixMnyCo1−x−yO2 due to its high reversible capacity and remarkable cycling performance. Further structural stabilization and improved electrochemical performance of this class of cathode materials can be achieved by cationic substitution to a transition metal such as Al, Mg, Cr, etc. The current study discusses a novel NMC type material obtained by simultaneous cationic substitution of the cobalt which is a toxic element, with aluminum and iron. A compound with the composition LiNi0.6Mn0.2Co0.15Al0.025Fe0.025O2 (NMCAF) was synthesized by the self-combustion method using sucrose as fuel. The material has a layered α-NaFeO2 type structure with a good hexagonal ordering. Rietveld refinement analysis of the XRD patterns revealed a very low cationic mixing compared to the non-substituted material LiNi0.6Mn0,2Co0.2O2 suggesting a structural stabilization. Galvanostatic cycling measurements indicate improved electrochemical performance after the metal substitution. An initial discharge capacity of about 190 mAh.g−1 at slow rate (C/20), and a good cycling stability even at moderately faster rates (C/5 and C) have been observed. The long term cycling displayed a capacity retention of about 90% after 10 cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cationic%20substitution" title="cationic substitution">cationic substitution</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20ion%20batteries" title=" lithium ion batteries"> lithium ion batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20electrode%20material" title=" positive electrode material"> positive electrode material</a>, <a href="https://publications.waset.org/abstracts/search?q=self-combustion%20synthesis%20method" title=" self-combustion synthesis method"> self-combustion synthesis method</a> </p> <a href="https://publications.waset.org/abstracts/24180/a-novel-environmentally-benign-positive-electrode-material-with-improved-energy-density-for-lithium-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">471</span> Corrosion of Steel in Relation with Hydrogen Activity of Concentrated HClO4 Media: Realisation Sensor and Reference Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Hammouti">B. Hammouti</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Oudda"> H. Oudda</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benabdellah"> A. Benabdellah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benayada"> A. Benayada</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aouniti"> A. Aouniti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion behaviour of carbon steel was studied in various concentrated HClO4 solutions. To explain the acid attack in relation of H+ activity, new sensor was realised: two carbon paste electrodes (CPE) were constructed by incorporating ferrocene (Fc) and orthoquinone into the carbon paste matrix and crossed by weak current to stabilize potential difference. The potentiometric method at imposed weak current between these two electrodes permits the in situ determination of both concentration and acidity level of various concentrated HClO4 solutions. The different factors affecting the potential at imposed current as current intensity, temperature and H+ ion concentration are studied. The potentials measured between ferrocene and chloranil electrodes are directly linked to the acid concentration. The acidity Ri(H) function defined represents the determination of the H+ activity and constitutes the extend of pH is concentrated acid solutions. Ri(H) has been determined and compared to Strehlow Ro(H), Janata HGF and Hammett Ho functions. The collected data permit to give a scale of strength of mineral concentrated acids at a given concentration. Ri(H) is numerically equal to the thermodynamic Ro(H), but deviated from Hammett functions based on indicator determination. The CPE electrode with inserted ferrocene in presence of ferricinium (Fc+) ion in concentrated HClO4 at various concentrations is realized without junction potential and may plays the role of a practical reference electrode (FRE) in concentrated acids. Fc+ was easily prepared in biphasic medium HClO4-acid by the quantitative oxidation of ferrocene by the ortho-chloranil (oQ). Potential of FRE is stable with time. The variation of equilibrium potential of the interface Fc/ Fc+ at various concentrations of Fc+ (10-4 - 2 10-2 M) obeyed to the Nernst equation with a slope 0.059 Volt per decade. Corrosion rates obtained by weight loss and electrochemical techniques were then easily linked to acidity level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrocene" title="ferrocene">ferrocene</a>, <a href="https://publications.waset.org/abstracts/search?q=strehlow" title=" strehlow"> strehlow</a>, <a href="https://publications.waset.org/abstracts/search?q=concentrated%20acid" title=" concentrated acid"> concentrated acid</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=Generalised%20pH" title=" Generalised pH"> Generalised pH</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20carbon%20paste%20electrode" title=" sensor carbon paste electrode"> sensor carbon paste electrode</a> </p> <a href="https://publications.waset.org/abstracts/17546/corrosion-of-steel-in-relation-with-hydrogen-activity-of-concentrated-hclo4-media-realisation-sensor-and-reference-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">470</span> Electrode Engineering for On-Chip Liquid Driving by Using Electrokinetic Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Hadjiaghaie%20Vafaie">Reza Hadjiaghaie Vafaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysan%20Madanpasandi"> Aysan Madanpasandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Zare%20Desari"> Behrooz Zare Desari</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyedmohammad%20Mousavi"> Seyedmohammad Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High lamination in microchannel is one of the main challenges in on-chip components like micro total analyzer systems and lab-on-a-chips. Electro-osmotic force is highly effective in chip-scale. This research proposes a microfluidic-based micropump for low ionic strength solutions. Narrow microchannels are designed to generate an efficient electroosmotic flow near the walls. Microelectrodes are embedded in the lateral sides and actuated by low electric potential to generate pumping effect inside the channel. Based on the simulation study, the fluid velocity increases by increasing the electric potential amplitude. We achieve a net flow velocity of 100 µm/s, by applying +/- 2 V to the electrode structures. Our proposed low voltage design is of interest in conventional lab-on-a-chip applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integration" title="integration">integration</a>, <a href="https://publications.waset.org/abstracts/search?q=electrokinetic" title=" electrokinetic"> electrokinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=on-chip" title=" on-chip"> on-chip</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20pumping" title=" fluid pumping"> fluid pumping</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic" title=" microfluidic"> microfluidic</a> </p> <a href="https://publications.waset.org/abstracts/74304/electrode-engineering-for-on-chip-liquid-driving-by-using-electrokinetic-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">469</span> Hydrothermal Synthesis of Mesoporous Carbon Nanospheres and Their Electrochemical Properties for Glucose Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akbar%20Kazemi%20Asl">Ali Akbar Kazemi Asl</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Rahsepar"> Mansour Rahsepar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesoporous carbon nanospheres (MCNs) with uniform particle size distribution having an average of 290 nm and large specific surface area (274.4 m²/g) were synthesized by a one-step hydrothermal method followed by the calcination process and then utilized as an enzyme-free glucose biosensor. Morphology, crystal structure, and porous nature of the synthesized nanospheres were characterized by scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis, respectively. Also, the electrochemical performance of the MCNs@GCE electrode for the measurement of glucose concentration in alkaline media was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and chronoamperometry (CA). MCNs@GCE electrode shows good sensing performance, including a rapid glucose oxidation response within 3.1 s, a wide linear range of 0.026-12 mM, a sensitivity of 212.34 μA.mM⁻¹.cm⁻², and a detection limit of 25.7 μM with excellent selectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20carbon" title=" mesoporous carbon"> mesoporous carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=non-enzymatic" title=" non-enzymatic"> non-enzymatic</a> </p> <a href="https://publications.waset.org/abstracts/142299/hydrothermal-synthesis-of-mesoporous-carbon-nanospheres-and-their-electrochemical-properties-for-glucose-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">468</span> Simultaneous Detection of Cd⁺², Fe⁺², Co⁺², and Pb⁺² Heavy Metal Ions by Stripping Voltammetry Using Polyvinyl Chloride Modified Glassy Carbon Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sai%20Snehitha%20Yadavalli">Sai Snehitha Yadavalli</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sruthi"> K. Sruthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Swati%20Ghosh%20Acharyya"> Swati Ghosh Acharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal ions are toxic to humans and all living species when exposed in large quantities or for long durations. Though Fe acts as a nutrient, when intake is in large quantities, it becomes toxic. These toxic heavy metal ions, when consumed through water, will cause many disorders and are harmful to all flora and fauna through biomagnification. Specifically, humans are prone to innumerable diseases ranging from skin to gastrointestinal, neurological, etc. In higher quantities, they even cause cancer in humans. Detection of these toxic heavy metal ions in water is thus important. Traditionally, the detection of heavy metal ions in water has been done by techniques like Inductively Coupled Plasma Mass Spectroscopy (ICPMS) and Atomic Absorption Spectroscopy (AAS). Though these methods offer accurate quantitative analysis, they require expensive equipment and cannot be used for on-site measurements. Anodic Stripping Voltammetry is a good alternative as the equipment is affordable, and measurements can be made at the river basins or lakes. In the current study, Square Wave Anodic Stripping Voltammetry (SWASV) was used to detect the heavy metal ions in water. Literature reports various electrodes on which deposition of heavy metal ions was carried out like Bismuth, Polymers, etc. The working electrode used in this study is a polyvinyl chloride (PVC) modified glassy carbon electrode (GCE). Ag/AgCl reference electrode and Platinum counter electrode were used. Biologic Potentiostat SP 300 was used for conducting the experiments. Through this work of simultaneous detection, four heavy metal ions were successfully detected at a time. The influence of modifying GCE with PVC was studied in comparison with unmodified GCE. The simultaneous detection of Cd⁺², Fe⁺², Co⁺², Pb⁺² heavy metal ions was done using PVC modified GCE by drop casting 1 wt.% of PVC dissolved in Tetra Hydro Furan (THF) solvent onto GCE. The concentration of all heavy metal ions was 0.2 mg/L, as shown in the figure. The scan rate was 0.1 V/s. Detection parameters like pH, scan rate, temperature, time of deposition, etc., were optimized. It was clearly understood that PVC helped in increasing the sensitivity and selectivity of detection as the current values are higher for PVC-modified GCE compared to unmodified GCE. The peaks were well defined when PVC-modified GCE was used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium" title="cadmium">cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt" title=" cobalt"> cobalt</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensing" title=" electrochemical sensing"> electrochemical sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=glassy%20carbon%20electrodes" title=" glassy carbon electrodes"> glassy carbon electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20Ions" title=" heavy metal Ions"> heavy metal Ions</a>, <a href="https://publications.waset.org/abstracts/search?q=Iron" title=" Iron"> Iron</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=polyvinyl%20chloride" title=" polyvinyl chloride"> polyvinyl chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=potentiostat" title=" potentiostat"> potentiostat</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry" title=" square wave anodic stripping voltammetry"> square wave anodic stripping voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/146822/simultaneous-detection-of-cd2-fe2-co2-and-pb2-heavy-metal-ions-by-stripping-voltammetry-using-polyvinyl-chloride-modified-glassy-carbon-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">467</span> Ternary Organic Blend for Semitransparent Solar Cells with Enhanced Short Circuit Current Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Makha">Mohammed Makha</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakob%20Heier"> Jakob Heier</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20N%C3%BCesch"> Frank Nüesch</a>, <a href="https://publications.waset.org/abstracts/search?q=Roland%20Hany"> Roland Hany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic solar cells (OSCs) have made rapid progress and currently achieve power conversion efficiencies (PCE) of over 10%. OSCs have several merits over other direct light-to-electricity generating cells and can be processed at low cost from solution on flexible substrates over large areas. Moreover, combining organic semiconductors with transparent and conductive electrodes allows for the fabrication of semitransparent OSCs (SM-OSCs). For SM-OSCs the challenge is to achieve a high average visible transmission (AVT) while maintaining a high short circuit current (Jsc). Typically, Jsc of SM-OSCs is smaller than when using an opaque metal top electrode. This is because the non-absorbed light during the first transit through the active layer and the transparent electrode is forward-transmitted out of the device. Recently, OSCs using a ternary blend of organic materials have received attention. This strategy was pursued to extend the light harvesting over the visible range. However, it is a general challenge to manipulate the performance of ternary OSCs in a predictable way, because many key factors affect the charge generation and extraction in ternary solar cells. Consequently, the device performance is affected by the compatibility between the blend components and the resulting film morphology, the energy levels and bandgaps, the concentration of the guest material and its location in the active layer. In this work, we report on a solvent-free lamination process for the fabrication of efficient and semitransparent ternary blend OSCs. The ternary blend was composed of PC70BM and the electron donors PBDTTT-C and an NIR cyanine absorbing dye (Cy7T). Using an opaque metal top electrode, a PCE of 6% was achieved for the optimized binary polymer: fullerene blend (AVT = 56%). However, the PCE dropped to ~2% when decreasing (to 30 nm) the active film thickness to increase the AVT value (75%). Therefore we resorted to the ternary blend and measured for non-transparent cells a PCE of 5.5% when using an active polymer: dye: fullerene (0.7: 0.3: 1.5 wt:wt:wt) film of 95 nm thickness (AVT = 65% when omitting the top electrode). In a second step, the optimized ternary blend was used of the fabrication of SM-OSCs. We used a plastic/metal substrate with a light transmission of over 90% as a transparent electrode that was applied via a lamination process. The interfacial layer between the active layer and the top electrode was optimized in order to improve the charge collection and the contact with the laminated top electrode. We demonstrated a PCE of 3% with AVT of 51%. The parameter space for ternary OSCs is large and it is difficult to find the best concentration ratios by trial and error. A rational approach for device optimization is the construction of a ternary blend phase diagram. We discuss our attempts to construct such a phase diagram for the PBDTTT-C: Cy7T: PC70BM system via a combination of using selective Cy7T selective solvents and atomic force microscopy. From the ternary diagram suitable morphologies for efficient light-to-current conversion can be identified. We compare experimental OSC data with these predictions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20photovoltaics" title="organic photovoltaics">organic photovoltaics</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20phase%20diagram" title=" ternary phase diagram"> ternary phase diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20organic%20solar%20cells" title=" ternary organic solar cells"> ternary organic solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=transparent%20solar%20cell" title=" transparent solar cell"> transparent solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=lamination" title=" lamination"> lamination</a> </p> <a href="https://publications.waset.org/abstracts/67034/ternary-organic-blend-for-semitransparent-solar-cells-with-enhanced-short-circuit-current-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">466</span> Application of Carbon Nanotubes as Cathodic Corrosion Protection of Steel Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Perez">M. F. Perez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ysmael%20Verde"> Ysmael Verde</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Escobar"> B. Escobar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Barbosa"> R. Barbosa</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Cruz"> J. C. Cruz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete is one of the most important materials in the construction industry. However, in recent years the durability of concrete structures has been a worrying problem, mainly due to corrosion of reinforcing steel; the consequences of corrosion in all cases lead to shortening of the life of the structure and decrease in quality of service. Since the emergence of this problem, they have implemented different methods or techniques to reduce damage by corrosion of reinforcing steel in concrete structures; as the use of polymeric materials as coatings for the steel rod, spiked inhibitors of concrete during mixing, among others, presenting different limitations in the application of these methods. Because of this, it has been used a method that has proved effective, cathodic protection. That is why due to the properties attributed to carbon nanotubes (CNT), these could act as cathodic corrosion protection. Mounting a three-electrode electrochemical cell, carbon steel as working electrode, saturated calomel electrode (SCE) as the reference electrode, and a graphite rod as a counter electrode to close the system is performed. Samples made were subjected to a cycling process in order to compare the results in the corrosion performance of a coating composed of CNT and the others based on an anticorrosive commercial painting. The samples were tested at room temperature using an electrolyte consisting NaCl and NaOH simulating the typical pH of concrete, ranging from 12.6 to 13.9. Three test samples were made of steel rod, white, with commercial anticorrosive paint and CNT based coating; delimiting the work area to a section of 0.71 cm2. Tests cyclic voltammetry and linear voltammetry electrochemical spectroscopy each impedance of the three samples were made with a window of potential vs SCE 0.7 -1.7 a scan rate of 50 mV / s and 100 mV / s. The impedance values were obtained by applying a sine wave of amplitude 50 mV in a frequency range of 100 kHz to 100 MHz. The results obtained in this study show that the CNT based coating applied to the steel rod considerably decreased the corrosion rate compared to the commercial coating of anticorrosive paint, because the Ecorr was passed increase as the cycling process. The samples tested in all three cases were observed by light microscopy throughout the cycling process and micrographic analysis was performed using scanning electron microscopy (SEM). Results from electrochemical measurements show that the application of the coating containing carbon nanotubes on the surface of the steel rod greatly increases the corrosion resistance, compared to commercial anticorrosive coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anticorrosive" title="anticorrosive">anticorrosive</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a> </p> <a href="https://publications.waset.org/abstracts/29249/application-of-carbon-nanotubes-as-cathodic-corrosion-protection-of-steel-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">465</span> Characterization of Inkjet-Printed Carbon Nanotube Electrode Patterns on Cotton Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Najafi">N. Najafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Laleh%20Maleknia"> Laleh Maleknia </a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Olya"> M. E. Olya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An aqueous conductive ink of single-walled carbon nanotubes for inkjet printing was formulated. To prepare the homogeneous SWCNT ink in a size small enough not to block a commercial inkjet printer nozzle, we used a kinetic ball-milling process to disperse the SWCNTs in an aqueous suspension. When a patterned electrode was overlaid by repeated inkjet printings of the ink on various types of fabric, the fabric resistance decreased rapidly following a power law, reaching approximately 760 X/sq, which is the lowest value ever for a dozen printings. The Raman and Fourier transform infrared spectra revealed that the oxidation of the SWCNTs was the source of the doped impurities. This study proved also that the droplet ejection velocity can have an impact on the CNT distribution and consequently on the electrical performances of the ink. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ink-jet%20printing" title="ink-jet printing">ink-jet printing</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title=" carbon nanotube"> carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20ink" title=" fabric ink"> fabric ink</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20fabric" title=" cotton fabric"> cotton fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=raman%20spectroscopy" title=" raman spectroscopy"> raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=fourier%20transform%20infrared%20spectroscopy" title=" fourier transform infrared spectroscopy"> fourier transform infrared spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=dozen%20printings" title=" dozen printings"> dozen printings</a> </p> <a href="https://publications.waset.org/abstracts/35339/characterization-of-inkjet-printed-carbon-nanotube-electrode-patterns-on-cotton-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">464</span> Application of Hydrogen Peroxide and Polialuminum Chloride to Treat Palm Oil Mill Wastewater by Electrocoagulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nasrullah">M. Nasrullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Norsita"> Siti Norsita</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhveer%20Singh"> Lakhveer Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Zulrisam"> A. W. Zulrisam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mimi%20Sakinah"> Mimi Sakinah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purposes of this study were to investigate the effects of polyaluminum chloride (PAC) and hydrogen peroxide on COD removal by electrocoagulation. The current density was varied between 30-80 mA cm−2, polyaluminum chloride (1-3 g L-1) as coagulant aid and 1 and 2 percent of hydrogen peroxide as an oxidizing agent. It has been shown that 86.67% of COD was removed by the iron electrode in 180 min while 81.11% of COD was removed by the aluminum electrode in 210 min which indicate that iron was more effective than aluminum. As much as 88.25% COD was removed by using 80 mA cm−2 as compared to 72.86% by using 30 mA cm−2 in 240 min. When PAC and H2O2 increased, the percent of COD removal was increasing as well. The highest removal efficiency of 95.08% was achieved by adding 2% of H2O2 in addition of 3 g L−1 PAC. The general results demonstrate that electrocoagulation is very efficient and able to achieve more than 70% COD removal in 180 min at current density 30-80 mAcm-2 depending on the concentration of H2O2 and coagulant aid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocaogulation" title="electrocaogulation">electrocaogulation</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent" title=" palm oil mill effluent"> palm oil mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=polialuminum%20chloride" title=" polialuminum chloride"> polialuminum chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand" title=" chemical oxygen demand"> chemical oxygen demand</a> </p> <a href="https://publications.waset.org/abstracts/39820/application-of-hydrogen-peroxide-and-polialuminum-chloride-to-treat-palm-oil-mill-wastewater-by-electrocoagulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">463</span> Thin and Flexible Zn-Air Battery by Inexpensive Screen Printing Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sira%20Suren">Sira Suren</a>, <a href="https://publications.waset.org/abstracts/search?q=Soorathep%20Kheawhom"> Soorathep Kheawhom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work focuses the development of thin and flexible zinc-air battery. The battery with an overall thickness of about 300 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder and ZnO was used to prepare the anode electrode. Types of conductive materials (Bi2O3, Na2O3Si and carbon black) for the anode and its concentration were investigated. Results showed that the battery using 29% carbon black showed the best performance. The open-circuit voltage and energy density observed were 1.6 V and 694 Wh/kg, respectively. When the battery was discharged at 10 mA/cm2, the potential voltage observed was 1.35 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible" title="flexible">flexible</a>, <a href="https://publications.waset.org/abstracts/search?q=Gel%20Electrolyte" title=" Gel Electrolyte"> Gel Electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20printing" title=" screen printing"> screen printing</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20battery" title=" thin battery"> thin battery</a>, <a href="https://publications.waset.org/abstracts/search?q=Zn-Air%20battery" title=" Zn-Air battery "> Zn-Air battery </a> </p> <a href="https://publications.waset.org/abstracts/53818/thin-and-flexible-zn-air-battery-by-inexpensive-screen-printing-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">462</span> Dispersions of Carbon Black in Microemulsions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Youssry">Mohamed Youssry</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominique%20Guyomard"> Dominique Guyomard</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Lestriez"> Bernard Lestriez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to enhance the energy and power densities of electrodes for energy storage systems, the formulation and processing of electrode slurries proved to be a critical issue in determining the electrode performance. In this study, we introduce novel approach to formulate carbon black slurries based on microemulsion and lyotropic liquid crystalline phases (namely, lamellar phase) composed of non-ionic surfactant (Triton X100), decanol and water. Simultaneous measurements of electrical properties of slurries under shear flow (rheology) have been conducted to elucidate the microstructure evolution with the surfactant concentration and decanol/water ratio at rest, as well as, the structural transition under steady-shear which has been confirmed by rheo-microscopy. Interestingly, the carbon black slurries at low decanol/water ratio are weak-gel (flowable) with higher electrical conductivity than those at higher ratio which behave strong-gel viscoelastic response. In addition, the slurries show recoverable electrical behaviour under shear flow in tandem with the viscosity trend. It is likely that oil-in-water microemulsion enhances slurries’ stability without affecting on the percolating network of carbon black. On the other hand, the oil-in-water analogous and bilayer structure of lamellar phase cause the slurries less conductive as a consequence of losing the network percolation. These findings are encouraging to formulate microemulsion-based electrodes for energy storage system (lithium-ion batteries). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrode%20slurries" title="electrode slurries">electrode slurries</a>, <a href="https://publications.waset.org/abstracts/search?q=microemulsion" title=" microemulsion"> microemulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20transition" title=" microstructure transition"> microstructure transition</a>, <a href="https://publications.waset.org/abstracts/search?q=rheo-electrical%20properties" title=" rheo-electrical properties"> rheo-electrical properties</a> </p> <a href="https://publications.waset.org/abstracts/43527/dispersions-of-carbon-black-in-microemulsions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">461</span> Performance and Processing Evaluation of Solid Oxide Cells by Co-Sintering of GDC Buffer Layer and LSCF Air Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Jong%20Choi">Hyun-Jong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minjun%20Kwak"> Minjun Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Doo-Won%20Seo"> Doo-Won Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Kuk%20Woo"> Sang-Kuk Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Dong%20Kim"> Sun-Dong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid Oxide Cell(SOC) systems can contribute to the transition to the hydrogen society by utilized as a power and hydrogen generator by the electrochemical reaction with high efficiency at high operation temperature (>750 ℃). La1-xSrxCo1-yFeyO3, which is an air electrode, is occurred stability degradations due to reaction and delamination with yittria stabilized zirconia(YSZ) electrolyte in a water electrolysis mode. To complement this phenomenon SOCs need gadolinium doped ceria(GDC) buffer layer between electrolyte and air electrode. However, GDC buffer layer requires a high sintering temperature and it causes a reaction with YSZ electrolyte. This study carried out low temperature sintering of GDC layer by applying Cu-oxide as a sintering aid. The effect of a copper additive as a sintering aid to lower the sintering temperature for the construction of solid oxide fuel cells (SOFCs) was investigated. GDC buffer layer with 0.25-10 mol% CuO sintering aid was prepared by reacting GDC power and copper nitrate solution followed by heating at 600 ℃. The sintering of CuO-added GDC powder was optimized by investigating linear shrinkage, microstructure, grain size, ionic conductivity, and activation energy of CuO-GDC electrolytes at temperatures ranging from 1100 to 1400 ℃. The sintering temperature of the CuO-GDC electrolyte decreases from 1400 ℃ to 1100 ℃ by adding the CuO sintering aid. The ionic conductivity of the CuO-GDC electrolyte shows a maximum value at 0.5 mol% of CuO. However, the addition of CuO has no significant effects on the activation energy of GDC electrolyte. GDC-LSCF layers were co-sintering at 1050 and 1100 ℃ and button cell tests were carried out at 750 ℃. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Co-Sintering" title="Co-Sintering">Co-Sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=GDC-LSCF" title=" GDC-LSCF"> GDC-LSCF</a>, <a href="https://publications.waset.org/abstracts/search?q=Sintering%20Aid" title=" Sintering Aid"> Sintering Aid</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20Oxide%20Cells" title=" solid Oxide Cells"> solid Oxide Cells</a> </p> <a href="https://publications.waset.org/abstracts/66228/performance-and-processing-evaluation-of-solid-oxide-cells-by-co-sintering-of-gdc-buffer-layer-and-lscf-air-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">460</span> Three-Dimensional Carbon Foam Based Asymmetric Assembly of Metal Oxides Electrodes for High-Performance Solid-State Micro-Supercapacitor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumana%20Kumar">Sumana Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abha%20Misra"> Abha Misra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro-supercapacitors hold great attention as one of the promising energy storage devices satisfying the increasing quest for miniaturized and portable devices. Despite having impressive power density, superior cyclic lifetime, and high charge-discharge rates, micro-supercapacitors still suffer from low energy density, which limits their practical application. The energy density (E=1/2CV²) can be increased either by increasing specific capacitance (C) or voltage range (V). Asymmetric micro-supercapacitors have attracted great attention by using two different electrode materials to expand the voltage window and thus increase the energy density. Currently, versatile fabrication technologies such as inkjet printing, lithography, laser scribing, etc., are used to directly or indirectly pattern the electrode material; these techniques still suffer from scalable production and cost inefficiency. Here, we demonstrate the scalable production of a three-dimensional (3D) carbon foam (CF) based asymmetric micro-supercapacitor by spray printing technique on an array of interdigital electrodes. The solid-state asymmetric micro-supercapacitor comprised of CF-MnO positive electrode and CF-Fe₂O₃ negative electrode achieves a high areal capacitance of 18.4 mF/cm² (2326.8 mF/cm³) at 5 mV/s and a wider potential window of 1.4 V. Consequently, a superior energy density of 5 µWh/cm² is obtained, and high cyclic stability is confirmed with retention of the initial capacitance by 86.1% after 10000 electrochemical cycles. The optimized decoration of pseudocapacitive metal oxides in the 3D carbon network helps in high electrochemical utilization of materials where the 3D interconnected network of carbon provides overall electrical conductivity and structural integrity. The research provides a simple and scalable spray printing method to fabricate an asymmetric micro-supercapacitor using a custom-made mask that can be integrated on a large scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20micro-supercapacitors" title="asymmetric micro-supercapacitors">asymmetric micro-supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20energy-density" title=" high energy-density"> high energy-density</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20materials" title=" hybrid materials"> hybrid materials</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20carbon-foam" title=" three-dimensional carbon-foam"> three-dimensional carbon-foam</a> </p> <a href="https://publications.waset.org/abstracts/148421/three-dimensional-carbon-foam-based-asymmetric-assembly-of-metal-oxides-electrodes-for-high-performance-solid-state-micro-supercapacitor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">459</span> Facile, Cost Effective and Green Synthesis of Graphene in Alkaline Aqueous Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Illyas%20Isa">Illyas Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nur%20Akmar%20Mohd%20Yazid"> Siti Nur Akmar Mohd Yazid</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhayati%20Hashim"> Norhayati Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report a simple, green and cost effective synthesis of graphene via chemical reduction of graphene oxide in alkaline aqueous solution. Extensive characterizations have been studied to confirm the formation of graphene in sodium carbonate solution. Cyclic voltammetry was used to study the electrochemical properties of the prepared graphene-modified glassy carbon electrode using potassium ferricyanide as a redox probe. Based on the result, with the addition of graphene to the glassy carbon electrode the current flow increases and the peak also broadens as compared to graphite and graphene oxide. This method is fast, cost effective, and green as nontoxic solvents are used which will not result in contamination of the products. Thus, this method can serve for the preparation of graphene which can be effectively used in sensors, electronic devices and supercapacitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20reduction" title="chemical reduction">chemical reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title=" green synthesis"> green synthesis</a> </p> <a href="https://publications.waset.org/abstracts/45193/facile-cost-effective-and-green-synthesis-of-graphene-in-alkaline-aqueous-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">458</span> Binderless Naturally-extracted Metal-free Electrocatalyst for Efficient NOₓ Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Muhammad%20Adeel%20Sharif">Hafiz Muhammad Adeel Sharif</a>, <a href="https://publications.waset.org/abstracts/search?q=Tian%20Li"> Tian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Changping%20Li"> Changping Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the emission of nitrogen-sulphur oxides (NOₓ, SO₂) has become a global issue and causing serious threats to health and the environment. Catalytic reduction of NOx and SOₓ gases into friendly gases is considered one of the best approaches. However, regeneration of the catalyst, higher bond-dissociation energy for NOx, i.e., 150.7 kcal/mol, escape of intermediate gas (N₂O, a greenhouse gas) with treated flue-gas, and limited activity of catalyst remains a great challenge. Here, a cheap, binderless naturally-extracted bass-wood thin carbon electrode (TCE) is presented, which shows excellent catalytic activity towards NOx reduction. The bass-wood carbonization at 900 ℃ followed by thermal activation in the presence of CO2 gas at 750 ℃. The thermal activation resulted in an increase in epoxy groups on the surface of the TCE and enhancement in the surface area as well as the degree of graphitization. The TCE unique 3D strongly inter-connected network through hierarchical micro/meso/macro pores that allow large electrode/electrolyte interface. Owing to these characteristics, the TCE exhibited excellent catalytic efficiency towards NOx (~83.3%) under ambient conditions and enhanced catalytic response under pH and sulphite exposure as well as excellent stability up to 168 hours. Moreover, a temperature-dependent activity trend was found where the highest catalytic activity was achieved at 80 ℃, beyond which the electrolyte became evaporative and resulted in a performance decrease. The designed electrocatalyst showed great potential for effective NOx-reduction, which is highly cost-effective, green, and sustainable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocatalyst" title="electrocatalyst">electrocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx-reduction" title=" NOx-reduction"> NOx-reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=bass-wood%20electrode" title=" bass-wood electrode"> bass-wood electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20wet-scrubbing" title=" integrated wet-scrubbing"> integrated wet-scrubbing</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a> </p> <a href="https://publications.waset.org/abstracts/167180/binderless-naturally-extracted-metal-free-electrocatalyst-for-efficient-no-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">457</span> An Electrochemical DNA Biosensor Based on Oracet Blue as a Label for Detection of Helicobacter pylori </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeedeh%20Hajihosseini">Saeedeh Hajihosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Aghili"> Zahra Aghili</a>, <a href="https://publications.waset.org/abstracts/search?q=Navid%20Nasirizadeh"> Navid Nasirizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An innovative method of a DNA electrochemical biosensor based on Oracet Blue (OB) as an electroactive label and gold electrode (AuE) for detection of Helicobacter pylori, was offered. A single–stranded DNA probe with a thiol modification was covalently immobilized on the surface of the AuE by forming an Au–S bond. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of reduction of the OB binding to double– stranded DNA (ds–DNA). Our results showed that OB–based DNA biosensor has a decent potential for detection of single–base mismatch in target DNA. Selectivity of the proposed DNA biosensor was further confirmed in the presence of non–complementary and complementary DNA strands. Under optimum conditions, the electrochemical signal had a linear relationship with the concentration of the target DNA ranging from 0.3 nmol L-1 to 240.0 nmol L-1, and the detection limit was 0.17 nmol L-1, whit a promising reproducibility and repeatability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20biosensor" title="DNA biosensor">DNA biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=oracet%20blue" title=" oracet blue"> oracet blue</a>, <a href="https://publications.waset.org/abstracts/search?q=Helicobacter%20pylori" title=" Helicobacter pylori"> Helicobacter pylori</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode%20%28AuE%29" title=" electrode (AuE)"> electrode (AuE)</a> </p> <a href="https://publications.waset.org/abstracts/53867/an-electrochemical-dna-biosensor-based-on-oracet-blue-as-a-label-for-detection-of-helicobacter-pylori" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">456</span> Optimization of Process Parameters for Rotary Electro Discharge Machining Using EN31 Tool Steel: Present and Future Scope </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goutam%20Dubey">Goutam Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Varun%20Dutta"> Varun Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, rotary-electro discharge machining of EN31 tool steel has been carried out using a pure copper electrode. Various response variables such as Material Removal Rate (MRR), Tool Wear Rate (TWR), and Machining Rate (MR) have been studied against the selected process variables. The selected process variables were peak current (I), voltage (V), duty cycle, and electrode rotation (N). EN31 Tool Steel is hardened, high carbon steel which increases its hardness and reduces its machinability. Reduced machinability means it not economical to use conventional methods to machine EN31 Tool Steel. So, non-conventional methods play an important role in machining of such materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20discharge%20machining" title="electric discharge machining">electric discharge machining</a>, <a href="https://publications.waset.org/abstracts/search?q=EDM" title=" EDM"> EDM</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20steel" title=" tool steel"> tool steel</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear%20rate" title=" tool wear rate"> tool wear rate</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20techniques" title=" optimization techniques"> optimization techniques</a> </p> <a href="https://publications.waset.org/abstracts/88859/optimization-of-process-parameters-for-rotary-electro-discharge-machining-using-en31-tool-steel-present-and-future-scope" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">455</span> Electrochemical Study of Interaction of Thiol Containing Proteins with As (III)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Mittal">Sunil Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhpreet%20Singh"> Sukhpreet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hardeep%20Kaur"> Hardeep Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The affinity of thiol group with heavy metals is a well-established phenomenon. The present investigation has been focused on electrochemical response of cysteine and thioredoxin against arsenite (As III) on indium tin oxide (ITO) electrodes. It was observed that both the compounds produce distinct response in free and immobilised form at the electrode. The SEM, FTIR, and impedance studies of the modified electrode were conducted for characterization. Various parameters were optimized to achieve As (III) effect on the reduction potential of the compounds. Cyclic voltammetry and linear sweep voltammetry were employed as the analysis techniques. The optimum response was observed at neutral pH in both the cases, at optimum concentration of 2 mM and 4.27 µM for cysteine and thioredoxin respectively. It was observed that presence of As (III) increases the reduction current of both the moieties. The linear range of detection for As (III) with cysteine was from 1 to 10 mg L⁻¹ with detection limit of 0.8 mg L⁻¹. The thioredoxin was found more sensitive to As (III) and displayed a linear range from 0.1 to 1 mg L⁻¹ with detection limit of 10 µg L⁻¹. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenite" title="arsenite">arsenite</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title=" cyclic voltammetry"> cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=cysteine" title=" cysteine"> cysteine</a>, <a href="https://publications.waset.org/abstracts/search?q=thioredoxin" title=" thioredoxin "> thioredoxin </a> </p> <a href="https://publications.waset.org/abstracts/84940/electrochemical-study-of-interaction-of-thiol-containing-proteins-with-as-iii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">454</span> Preparation of 3D Graphene with Microwave-Hydrothermal Assistance for Ultrahigh Performance of Capacitive Deionization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wahid%20Dianbudiyanto">Wahid Dianbudiyanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Shou%20Heng%20Liu"> Shou Heng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Capacitive deionization (CDI) is a prospective desalination technology, which can be operated at low voltage, low temperature and potentially consume low energy for brackish water desalination. To obtain the optimal electrosorption, an electrode should possess high electrical conductivity, large surface area, good wettability, highly mesoporous structure which provide efficient pathways for ion distribution. In this work, a 3D structure graphene was fabricated using hydrothermal method which is assisted with microwave treatments to form 3D rGO (3DG-Mw-Hyd). The prepared samples have excellent specific capacitance (189.2 F / g) and ultrahigh electrosorption capacity (30 mg/g) for the desalination of 500 mg / l NaCl. These results are superior to the electrode which is fabricated only using the hydrothermal method without microwave assistance (3DG-Hyd) and traditional reflux method. Physical characterizations such as SEM, TEM, and XRD have been used to study the property difference of the materials. The preliminary results show that 3DG-Mw-Hyd is one of the promising electrodes for CDI in the practical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitive%20deionization" title="capacitive deionization">capacitive deionization</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=electrosorption" title=" electrosorption"> electrosorption</a> </p> <a href="https://publications.waset.org/abstracts/70957/preparation-of-3d-graphene-with-microwave-hydrothermal-assistance-for-ultrahigh-performance-of-capacitive-deionization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">453</span> Electrochemical Synthesis of ZnTe and Cu-ZnTe Thin Films for Low Resistive Ohmic Back Contact for CdS/CdTe Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivaji%20%20M.%20Sonawane">Shivaji M. Sonawane</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20B.%20Chaure"> N. B. Chaure</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ZnTe is direct band gap, the P-type semiconductor with the high absorption coefficient of the order of 104cm-1 is suitable for solar cell development. It can be used as a low resistive ohmic contact to CdS/CdTe or tandem solar cell application. ZnTe and Cu-ZnTe thin film have been electrochemically synthesized on to fluorine-doped tin oxide coated glass substrates using three electrode systems containing Ag/AgCl, graphite and FTO as reference, counter and working electrode respectively were used to deposit the thin films. The aqueous electrolytic solution consist of 0.5M TeO2, 0.2M ZnSO4, and 0.1M Na3C6H5O7:2H2O, 0.1MC6H8O7:H2O and 0.1mMCuSO4 with PH 2.5 at room temperature was used. The reaction mechanism is studied in the cyclic voltammetry to identify the deposition potentials of ZnTe and Cu-ZnTe.The potential was optimized in the range -0,9 to -1,1 V. Vs Ag/AgCl reference electrode. The effect of deposition potential on the structural properties was studied by using X-ray diffraction. The X-ray diffraction result reveled cubic crystal structure of ZnTe with preferential (111) orientation with cubic structure. The surface morphology and film composition were analyzed by means of Scanning electron microscopy (SEM) and Energy Dispersive Analysis of X- Rays (EDAX). The optical absorption measurement has been analyzed for the band gap determination of deposited layers about 2.26 eV by UV-Visible spectroscopy. The drastic change in resistivity has been observed due to incorporation of copper probably due to the diffusion of Cu into grain boundaries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ohmic%20back%20contact" title="ohmic back contact">ohmic back contact</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20telluride" title=" zinc telluride"> zinc telluride</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20devices" title=" photovoltaic devices"> photovoltaic devices</a> </p> <a href="https://publications.waset.org/abstracts/75786/electrochemical-synthesis-of-znte-and-cu-znte-thin-films-for-low-resistive-ohmic-back-contact-for-cdscdte-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">452</span> Strategies for the Optimization of Ground Resistance in Large Scale Foundations for Optimum Lightning Protection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oibar%20Martinez">Oibar Martinez</a>, <a href="https://publications.waset.org/abstracts/search?q=Clara%20Oliver"> Clara Oliver</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Miguel%20Miranda"> Jose Miguel Miranda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we discuss the standard improvements which can be made to reduce the earth resistance in difficult terrains for optimum lightning protection, what are the practical limitations, and how the modeling can be refined for accurate diagnostics and ground resistance minimization. Ground resistance minimization can be made via three different approaches: burying vertical electrodes connected in parallel, burying horizontal conductive plates or meshes, or modifying the own terrain, either by changing the entire terrain material in a large volume or by adding earth-enhancing compounds. The use of vertical electrodes connected in parallel pose several practical limitations. In order to prevent loss of effectiveness, it is necessary to keep a minimum distance between each electrode, which is typically around five times larger than the electrode length. Otherwise, the overlapping of the local equipotential lines around each electrode reduces the efficiency of the configuration. The addition of parallel electrodes reduces the resistance and facilitates the measurement, but the basic parallel resistor formula of circuit theory will always underestimate the final resistance. Numerical simulation of equipotential lines around the electrodes overcomes this limitation. The resistance of a single electrode will always be proportional to the soil resistivity. The electrodes are usually installed with a backfilling material of high conductivity, which increases the effective diameter. However, the improvement is marginal, since the electrode diameter counts in the estimation of the ground resistance via a logarithmic function. Substances that are used for efficient chemical treatment must be environmentally friendly and must feature stability, high hygroscopicity, low corrosivity, and high electrical conductivity. A number of earth enhancement materials are commercially available. Many are comprised of carbon-based materials or clays like bentonite. These materials can also be used as backfilling materials to reduce the resistance of an electrode. Chemical treatment of soil has environmental issues. Some products contain copper sulfate or other copper-based compounds, which may not be environmentally friendly. Carbon-based compounds are relatively inexpensive and they do have very low resistivities, but they also feature corrosion issues. Typically, the carbon can corrode and destroy a copper electrode in around five years. These compounds also have potential environmental concerns. Some earthing enhancement materials contain cement, which, after installation acquire properties that are very close to concrete. This prevents the earthing enhancement material from leaching into the soil. After analyzing different configurations, we conclude that a buried conductive ring with vertical electrodes connected periodically should be the optimum baseline solution for the grounding of a large size structure installed on a large resistivity terrain. In order to show this, a practical example is explained here where we simulate the ground resistance of a conductive ring buried in a terrain with a resistivity in the range of 1 kOhm·m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grounding%20improvements" title="grounding improvements">grounding improvements</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20scale%20scientific%20instrument" title=" large scale scientific instrument"> large scale scientific instrument</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20risk%20assessment" title=" lightning risk assessment"> lightning risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20standards" title=" lightning standards"> lightning standards</a> </p> <a href="https://publications.waset.org/abstracts/109485/strategies-for-the-optimization-of-ground-resistance-in-large-scale-foundations-for-optimum-lightning-protection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">451</span> Effect of Pulse Duration and Current to the EDM Process on Allegheny Ludlum D2 Tool Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sulaiman">S. Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Razak"> M. A. Razak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Ibrahim"> M. R. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Khan"> A. A. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental work on the effect of different current and pulse duration on performance of EDM process of Allegheny Ludlum D2 Tool Steel (UNS T30402). The effect of varying the machining parameters on the machining responses such as material removal rate (MRR), electrode wear rate (EWR), and surface roughness (Ra) have been investigated. In this study, triangular shape and circular shape of copper was used as an electrode with surface area of 100 mm². The experiments were repeated for three different values of pulse duration (100 µs, 200 µs and 400 µs) with combination of three different values of discharge current (12 A, 16 A and 24 A). It was found that the pulse duration and current have significant effect on MRR, EWR and Ra. An increase in the pulse durations causes an increase in the MRR and Ra, but a decrease in the EWR. Meanwhile, the effect of currents on EDM performance shows that the increasing currents lead to an increase in the MRR, EWR and Ra. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allegheny%20ludlum%20D2%20tool%20steel" title="allegheny ludlum D2 tool steel">allegheny ludlum D2 tool steel</a>, <a href="https://publications.waset.org/abstracts/search?q=current" title=" current"> current</a>, <a href="https://publications.waset.org/abstracts/search?q=EDM" title=" EDM"> EDM</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20duration" title=" pulse duration"> pulse duration</a> </p> <a href="https://publications.waset.org/abstracts/7844/effect-of-pulse-duration-and-current-to-the-edm-process-on-allegheny-ludlum-d2-tool-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">450</span> A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Gokceli">G. Gokceli</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Eksik"> O. Eksik</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ozkan%20Zayim"> E. Ozkan Zayim</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Karatepe"> N. Karatepe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO<sub>3</sub>:H<sub>2</sub>SO<sub>4</sub>), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 &deg;C for 1 hour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNT%20incorporation" title="CNT incorporation">CNT incorporation</a>, <a href="https://publications.waset.org/abstracts/search?q=ITO%20electrode" title=" ITO electrode"> ITO electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20coating" title=" spin coating"> spin coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a> </p> <a href="https://publications.waset.org/abstracts/101020/a-comparative-study-of-single-and-multi-walled-carbon-nanotube-incorporation-to-indium-tin-oxide-electrodes-for-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">449</span> Semi-Transparent Dye-Sensitized Solar Panels for Energy Autonomous Greenhouses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mourtzikou">A. Mourtzikou</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Sygkridou"> D. Sygkridou</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Georgakopoulos"> T. Georgakopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Katsagounos"> G. Katsagounos</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Stathatos"> E. Stathatos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over 60% highly transparent quasi-solid-state dye-sensitized solar cells (DSSCs) with dimension of 50x50 cm<sup>2</sup> were fabricated via inkjet printing process using nanocomposite inks as raw materials and tested under outdoor illumination conditions. The cells were electrically characterized, and their possible application to the shell of greenhouses was also examined. The panel design was in Z-interconnection, where the working electrode was inkjet printed on one conductive glass and the counter electrode on a second glass in a sandwich configuration. Silver current collective fingers were printed on the glasses to make the internal electrical connections. In that case, the adjacent cells were connected in series via silver fingers and finally insulated using a UV curing resin to protect them from the corrosive (I<sup>-</sup>/I<sub>3</sub><sup>-</sup>) redox couple of the electrolyte. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dye-sensitized%20solar%20panels" title="Dye-sensitized solar panels">Dye-sensitized solar panels</a>, <a href="https://publications.waset.org/abstracts/search?q=inkjet%20printing" title=" inkjet printing"> inkjet printing</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-solid%20state%20electrolyte" title=" quasi-solid state electrolyte"> quasi-solid state electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-transparency" title=" semi-transparency"> semi-transparency</a>, <a href="https://publications.waset.org/abstracts/search?q=scale%20up" title=" scale up"> scale up</a> </p> <a href="https://publications.waset.org/abstracts/120655/semi-transparent-dye-sensitized-solar-panels-for-energy-autonomous-greenhouses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">448</span> Study The Role Effect of Poly Pyrrole on LiFePO4 as Positive Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atef%20Youssef">Atef Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwa%20Mostafa%20Moharam"> Marwa Mostafa Moharam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of poly pyrrole (PP) addition on LiFePO4 have been studied by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic measurements. PP was prepared with LiFePO₄ in different ways, such as chemically dispersion, insinuation polymerization, and electrochemically polymerization. The EIS results showed that the charge transfer resistance (Rct) of LiFePO₄ was decreased by adding 10% PP polymerized in a situation to 153 vs. 1660  for bare LiFePO₄. The CV curves show that 10% PP added LiFePO₄ had higher electrochemical reactivity for lithium insertion and extraction than the un-doped material. The mean redox potential is E1/2 = 3.45 V vs. Li+/Li. The first discharge curve of the 10% poly pyrrole doped LiFePO₄ showed a mainly flat voltage plateau over the 3.45–3.5 V range, indicating the lithium extraction and insertion reactions between LiFePO₄ and FePO₄. A specific discharge capacity of cells prepared from in-situ 10% PP added LiFePO4to was about 210 vs. 65 mAhg-1 for bare LiFePO₄. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liFePO%E2%82%84" title="liFePO₄">liFePO₄</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20pyrrole%20addition" title="poly pyrrole addition">poly pyrrole addition</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20electrode" title=" positive electrode"> positive electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20battery" title=" lithium battery"> lithium battery</a> </p> <a href="https://publications.waset.org/abstracts/142587/study-the-role-effect-of-poly-pyrrole-on-lifepo4-as-positive-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">447</span> Mixed Model Sequencing in Painting Production Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Unchalee%20Inkampa">Unchalee Inkampa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuanjai%20Somboonwiwat"> Tuanjai Somboonwiwat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Painting process of automobiles and automobile parts, which is a continuous process based on EDP (Electrode position paint, EDP). Through EDP, all work pieces will be continuously sent to the painting process. Work process can be divided into 2 groups based on the running time: Painting Room 1 and Painting Room 2. This leads to continuous operation. The problem that arises is waiting for workloads onto Painting Room. The grading process EDP to Painting Room is a major problem. Therefore, this paper aim to develop production sequencing method by applying EDP to painting process. It also applied fixed rate launching for painting room and earliest due date (EDD) for EDP process and swap pairwise interchange for waiting time to a minimum of machine. The result found that the developed method could improve painting reduced waiting time, on time delivery, meeting customers wants and improved productivity of painting unit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sequencing" title="sequencing">sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20model%20lines" title=" mixed model lines"> mixed model lines</a>, <a href="https://publications.waset.org/abstracts/search?q=painting%20process" title=" painting process"> painting process</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode%20position%20paint" title=" electrode position paint"> electrode position paint</a> </p> <a href="https://publications.waset.org/abstracts/34291/mixed-model-sequencing-in-painting-production-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">446</span> Detection of Nutrients Using Honeybee-Mimic Bioelectronic Tongue Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soo%20Ho%20Lim">Soo Ho Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minju%20Lee"> Minju Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20In%20Kim"> Dong In Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gi%20Youn%20Han"> Gi Youn Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghun%20Hong"> Seunghun Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Wook%20Kwon"> Hyung Wook Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report a floating electrode-based bioelectronic tongue mimicking honeybee taste systems for the detection and discrimination of various nutrients. Here, carbon nanotube field effect transistors with floating electrodes (CNT-FET) were hybridized with nanovesicles containing honeybee nutrient receptors, gustatory receptors of Apis mellifera. This strategy enables us to detect nutrient substance with a high sensitivity and selectivity. It could also be utilized for the detection of nutrients in liquid food. This floating electrode-based bioelectronic tongue mimicking insect taste systems can be a simple, but highly effective strategy in many different basic research areas about sensory systems. Moreover, our research provides opportunities to develop various applications such as food screening, and it also can provide valuable insights on insect taste systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=taste%20system" title="taste system">taste system</a>, <a href="https://publications.waset.org/abstracts/search?q=CNT-FET" title=" CNT-FET"> CNT-FET</a>, <a href="https://publications.waset.org/abstracts/search?q=insect%20gustatory%20receptor" title=" insect gustatory receptor"> insect gustatory receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=biolelectronic%20tongue" title=" biolelectronic tongue"> biolelectronic tongue</a> </p> <a href="https://publications.waset.org/abstracts/84686/detection-of-nutrients-using-honeybee-mimic-bioelectronic-tongue-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">445</span> Improving Alkaline Water Electrolysis by Using an Asymmetrical Electrode Cell Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Wosiak">Gabriel Wosiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Staciaki"> Felipe Staciaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Eryka%20Nobrega"> Eryka Nobrega</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernesto%20Pereira"> Ernesto Pereira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen is an energy carrier with potential applications in various industries. Alkaline electrolysis is a commonly used method for hydrogen production; however, its energy cost remains relatively high compared to other methods. This is due in part to interfacial pH changes that occur during the electrolysis process. Interfacial pH changes refer to the changes in pH that occur at the interface between the cathode electrode and the electrolyte solution. These changes are caused by the electrochemical reactions at both electrodes, which consume or produces hydroxide ions (OH-) from the electrolyte solution. This results in an important change in the local pH at the electrode surface, which can have several impacts on the energy consumption and durability of electrolysers. One impact of interfacial pH changes is an increase in the overpotential required for hydrogen production. Overpotential is the difference between the theoretical potential required for a reaction to occur and the actual potential that is applied to the electrodes. In the case of water electrolysis, the overpotential is caused by a number of factors, including the mass transport of reactants and products to and from the electrodes, the kinetics of the electrochemical reactions, and the interfacial pH. An increase in the interfacial pH at the anode surface in alkaline conditions can lead to an increase in the overpotential for hydrogen production. This is because the lower local pH makes it more difficult for the hydroxide ions to be oxidized. As a result, there is an increase in the required energy to the process occur. In addition to increasing the overpotential, interfacial pH changes can also lead to the degradation of the electrodes. This is because the lower pH can make the electrode more susceptible to corrosion. As a result, the electrodes may need to be replaced more frequently, which can increase the overall cost of water electrolysis. The method presented in the paper addresses the issue of interfacial pH changes by using a cell design with a different cell design, introducing the electrode asymmetry. This design helps to mitigate the pH gradient at the anode/electrolyte interface, which reduces the overpotential and improves the energy efficiency of the electrolyser. The method was tested using a multivariate approach in both laboratory and industrial current density conditions and validated the results with numerical simulations. The results demonstrated a clear improvement (11.6%) in energy efficiency, providing an important contribution to the field of sustainable energy production. The findings of the paper have important implications for the development of cost-effective and sustainable hydrogen production methods. By mitigating interfacial pH changes, it is possible to improve the energy efficiency of alkaline electrolysis and make it a more competitive option for hydrogen production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrolyser" title="electrolyser">electrolyser</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20pH" title=" interfacial pH"> interfacial pH</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20cell" title=" asymmetric cell"> asymmetric cell</a> </p> <a href="https://publications.waset.org/abstracts/171271/improving-alkaline-water-electrolysis-by-using-an-asymmetrical-electrode-cell-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">444</span> Detection of Nanotoxic Material Using DNA Based QCM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juneseok%20You">Juneseok You</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanho%20Park"> Chanho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuehwan%20Jang"> Kuehwan Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungsoo%20Na"> Sungsoo Na</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sensing of nanotoxic materials is strongly important, as their engineering applications are growing recently and results in that nanotoxic material can harmfully influence human health and environment. In current study we report the quartz crystal microbalance (QCM)-based, in situ and real-time sensing of nanotoxic-material by frequency shift. We propose the in situ detection of nanotoxic material of zinc oxice by using QCM functionalized with a taget-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz electrode is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated the in-situ and fast detection of zinc oxide using the quartz crystal microbalance (QCM). The detection was derived from the DNA hybridization between the DNA on the quartz electrode. The results suggest that QCM-based detection opens a new avenue for the development of a practical water-testing sensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanotoxic%20material" title="nanotoxic material">nanotoxic material</a>, <a href="https://publications.waset.org/abstracts/search?q=qcm" title=" qcm"> qcm</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20sensing" title=" in situ sensing"> in situ sensing</a> </p> <a href="https://publications.waset.org/abstracts/41494/detection-of-nanotoxic-material-using-dna-based-qcm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">443</span> A 1T1R Nonvolatile Memory with Al/TiO₂/Au and Sol-Gel Processed Barium Zirconate Nickelate Gate in Pentacene Thin Film Transistor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ke-Jing%20Lee">Ke-Jing Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Jung%20Lee"> Cheng-Jung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chi%20Chang"> Yu-Chi Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Wen%20Wang"> Li-Wen Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeong-Her%20Wang"> Yeong-Her Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To avoid the cross-talk issue of only resistive random access memory (RRAM) cell, one transistor and one resistor (1T1R) architecture with a TiO₂-based RRAM cell connected with solution barium zirconate nickelate (BZN) organic thin film transistor (OTFT) device is successfully demonstrated. The OTFT were fabricated on a glass substrate. Aluminum (Al) as the gate electrode was deposited via a radio-frequency (RF) magnetron sputtering system. The barium acetate, zirconium n-propoxide, and nickel II acetylacetone were synthesized by using the sol-gel method. After the BZN solution was completely prepared using the sol-gel process, it was spin-coated onto the Al/glass substrate as the gate dielectric. The BZN layer was baked at 100 °C for 10 minutes under ambient air conditions. The pentacene thin film was thermally evaporated on the BZN layer at a deposition rate of 0.08 to 0.15 nm/s. Finally, gold (Au) electrode was deposited using an RF magnetron sputtering system and defined through shadow masks as both the source and drain. The channel length and width of the transistors were 150 and 1500 μm, respectively. As for the manufacture of 1T1R configuration, the RRAM device was fabricated directly on drain electrodes of TFT device. A simple metal/insulator/metal structure, which consisting of Al/TiO₂/Au structures, was fabricated. First, Au was deposited to be a bottom electrode of RRAM device by RF magnetron sputtering system. Then, the TiO₂ layer was deposited on Au electrode by sputtering. Finally, Al was deposited as the top electrode. The electrical performance of the BZN OTFT was studied, showing superior transfer characteristics with the low threshold voltage of −1.1 V, good saturation mobility of 5 cm²/V s, and low subthreshold swing of 400 mV/decade. The integration of the BZN OTFT and TiO₂ RRAM devices was finally completed to form 1T1R configuration with low power consumption of 1.3 μW, the low operation current of 0.5 μA, and reliable data retention. Based on the I-V characteristics, the different polarities of bipolar switching are found to be determined by the compliance current with the different distribution of the internal oxygen vacancies used in the RRAM and 1T1R devices. Also, this phenomenon can be well explained by the proposed mechanism model. It is promising to make the 1T1R possible for practical applications of low-power active matrix flat-panel displays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=one%20transistor%20and%20one%20resistor%20%281T1R%29" title="one transistor and one resistor (1T1R)">one transistor and one resistor (1T1R)</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20thin-film%20transistor%20%28OTFT%29" title=" organic thin-film transistor (OTFT)"> organic thin-film transistor (OTFT)</a>, <a href="https://publications.waset.org/abstracts/search?q=resistive%20random%20access%20memory%20%28RRAM%29" title=" resistive random access memory (RRAM)"> resistive random access memory (RRAM)</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a> </p> <a href="https://publications.waset.org/abstracts/65265/a-1t1r-nonvolatile-memory-with-altio2au-and-sol-gel-processed-barium-zirconate-nickelate-gate-in-pentacene-thin-film-transistor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ion-selective%20electrode&amp;page=5" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ion-selective%20electrode&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ion-selective%20electrode&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ion-selective%20electrode&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ion-selective%20electrode&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ion-selective%20electrode&amp;page=5">5</a></li> <li class="page-item active"><span class="page-link">6</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ion-selective%20electrode&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ion-selective%20electrode&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ion-selective%20electrode&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ion-selective%20electrode&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ion-selective%20electrode&amp;page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ion-selective%20electrode&amp;page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ion-selective%20electrode&amp;page=7" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10