CINXE.COM
Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers
<!DOCTYPE html> <html lang="en"> <head> <meta content="text/html; charset=utf-8" http-equiv="content-type"/> <title>Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers</title> <!--Generated on Tue Mar 18 04:06:02 2025 by LaTeXML (version 0.8.8) http://dlmf.nist.gov/LaTeXML/.--> <meta content="width=device-width, initial-scale=1, shrink-to-fit=no" name="viewport"/> <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/css/bootstrap.min.css" rel="stylesheet" type="text/css"/> <link href="/static/browse/0.3.4/css/ar5iv.0.7.9.min.css" rel="stylesheet" type="text/css"/> <link href="/static/browse/0.3.4/css/ar5iv-fonts.0.7.9.min.css" rel="stylesheet" type="text/css"/> <link href="/static/browse/0.3.4/css/latexml_styles.css" rel="stylesheet" type="text/css"/> <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/js/bootstrap.bundle.min.js"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/html2canvas/1.3.3/html2canvas.min.js"></script> <script src="/static/browse/0.3.4/js/addons_new.js"></script> <script src="/static/browse/0.3.4/js/feedbackOverlay.js"></script> <base href="/html/2503.13877v1/"/></head> <body> <nav class="ltx_page_navbar"> <nav class="ltx_TOC"> <ol class="ltx_toclist"> <li class="ltx_tocentry ltx_tocentry_section"><a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S1" title="In Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">1 </span>Introduction</span></a></li> <li class="ltx_tocentry ltx_tocentry_section"> <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2" title="In Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">2 </span>Preliminaries</span></a> <ol class="ltx_toclist ltx_toclist_section"> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.SS1" title="In 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">2.1 </span>Hyperbolic PDE Solvers</span></a></li> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.SS2" title="In 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">2.2 </span>The Lax-Friedrichs Flux</span></a></li> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.SS3" title="In 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">2.3 </span>The Roe Flux</span></a></li> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.SS4" title="In 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">2.4 </span>Flux Extrapolation and Limiters</span></a></li> </ol> </li> <li class="ltx_tocentry ltx_tocentry_section"> <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3" title="In Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">3 </span>Methodology and Results</span></a> <ol class="ltx_toclist ltx_toclist_section"> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3.SS1" title="In 3. Methodology and Results ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">3.1 </span>Automatic Code Generation</span></a></li> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3.SS2" title="In 3. Methodology and Results ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">3.2 </span>Symbolic Theorem-Proving</span></a></li> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3.SS3" title="In 3. Methodology and Results ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">3.3 </span>Automatic Differentiation</span></a></li> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3.SS4" title="In 3. Methodology and Results ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">3.4 </span>Stability, Hyperbolicity and Convexity</span></a></li> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3.SS5" title="In 3. Methodology and Results ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">3.5 </span>Symbolic Limits and Symmetry</span></a></li> <li class="ltx_tocentry ltx_tocentry_subsection"><a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3.SS6" title="In 3. Methodology and Results ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">3.6 </span>Results</span></a></li> </ol> </li> <li class="ltx_tocentry ltx_tocentry_section"><a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S4" title="In Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_title"><span class="ltx_tag ltx_tag_ref">4 </span>Conclusions and Future Work</span></a></li> </ol></nav> </nav> <div class="ltx_page_main"> <div class="ltx_page_content"> <article class="ltx_document ltx_authors_1line ltx_leqno"> <h1 class="ltx_title ltx_title_document">Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers</h1> <div class="ltx_authors"> <span class="ltx_creator ltx_role_author"> <span class="ltx_personname">Jonathan Gorard </span><span class="ltx_author_notes"> <span class="ltx_contact ltx_role_affiliation"><span class="ltx_text ltx_affiliation_institution" id="id2.1.id1">Princeton University</span><span class="ltx_text ltx_affiliation_city" id="id3.2.id2">Princeton, NJ</span><span class="ltx_text ltx_affiliation_country" id="id4.3.id3">USA</span> </span> <span class="ltx_contact ltx_role_email"><a href="mailto:gorard@princeton.edu">gorard@princeton.edu</a> </span></span></span> <span class="ltx_author_before"> and </span><span class="ltx_creator ltx_role_author"> <span class="ltx_personname">Ammar Hakim </span><span class="ltx_author_notes"> <span class="ltx_contact ltx_role_affiliation"><span class="ltx_text ltx_affiliation_institution" id="id5.1.id1">Princeton Plasma Physics Laboratory</span><span class="ltx_text ltx_affiliation_city" id="id6.2.id2">Princeton, NJ</span><span class="ltx_text ltx_affiliation_country" id="id7.3.id3">USA</span> </span> <span class="ltx_contact ltx_role_email"><a href="mailto:ahakim@pppl.gov">ahakim@pppl.gov</a> </span></span></span> </div> <div class="ltx_dates">(2025)</div> <div class="ltx_abstract"> <h6 class="ltx_title ltx_title_abstract">Abstract.</h6> <p class="ltx_p" id="id1.1">First-order systems of hyperbolic partial differential equations (PDEs) occur ubiquitously throughout computational physics, commonly used in simulations of fluid turbulence, shock waves, electromagnetic interactions, and even general relativistic phenomena. Such equations are often challenging to solve numerically in the non-linear case, due to their tendency to form discontinuities even for smooth initial data, which can cause numerical algorithms to become unstable, violate conservation laws, or converge to physically incorrect solutions. In this paper, we introduce a new formal verification pipeline for such algorithms in Racket, which allows a user to construct a bespoke hyperbolic PDE solver for a specified equation system, generate low-level C code which verifiably implements that solver, and then produce formal proofs of various mathematical and physical correctness properties of the resulting implementation, including <math alttext="{L^{2}}" class="ltx_Math" display="inline" id="id1.1.m1.1"><semantics id="id1.1.m1.1a"><msup id="id1.1.m1.1.1" xref="id1.1.m1.1.1.cmml"><mi id="id1.1.m1.1.1.2" xref="id1.1.m1.1.1.2.cmml">L</mi><mn id="id1.1.m1.1.1.3" xref="id1.1.m1.1.1.3.cmml">2</mn></msup><annotation-xml encoding="MathML-Content" id="id1.1.m1.1b"><apply id="id1.1.m1.1.1.cmml" xref="id1.1.m1.1.1"><csymbol cd="ambiguous" id="id1.1.m1.1.1.1.cmml" xref="id1.1.m1.1.1">superscript</csymbol><ci id="id1.1.m1.1.1.2.cmml" xref="id1.1.m1.1.1.2">𝐿</ci><cn id="id1.1.m1.1.1.3.cmml" type="integer" xref="id1.1.m1.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="id1.1.m1.1c">{L^{2}}</annotation><annotation encoding="application/x-llamapun" id="id1.1.m1.1d">italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT</annotation></semantics></math> stability, flux conservation, and physical validity. We outline how these correctness proofs are generated, using a custom-built theorem-proving and automatic differentiation framework that fully respects the algebraic structure of floating-point arithmetic, and show how the resulting C code may either be used to run standalone simulations, or integrated into a larger computational multiphysics framework such as <span class="ltx_text ltx_font_smallcaps" id="id1.1.1">Gkeyll</span>.</p> </div> <span class="ltx_note ltx_note_frontmatter ltx_role_copyright" id="id1"><sup class="ltx_note_mark">†</sup><span class="ltx_note_outer"><span class="ltx_note_content"><sup class="ltx_note_mark">†</sup><span class="ltx_note_type">copyright: </span>acmlicensed</span></span></span><span class="ltx_note ltx_note_frontmatter ltx_role_journalyear" id="id2"><sup class="ltx_note_mark">†</sup><span class="ltx_note_outer"><span class="ltx_note_content"><sup class="ltx_note_mark">†</sup><span class="ltx_note_type">journalyear: </span>2025</span></span></span><span class="ltx_note ltx_note_frontmatter ltx_role_doi" id="id3"><sup class="ltx_note_mark">†</sup><span class="ltx_note_outer"><span class="ltx_note_content"><sup class="ltx_note_mark">†</sup><span class="ltx_note_type">doi: </span>XXXXXXX.XXXXXXX</span></span></span> <section class="ltx_section" id="S1"> <h2 class="ltx_title ltx_title_section"> <span class="ltx_tag ltx_tag_section">1. </span>Introduction</h2> <div class="ltx_para" id="S1.p1"> <p class="ltx_p" id="S1.p1.1">Systems of hyperbolic partial differential equations (PDEs) constitute a highly general class of mathematical models for phenomena involving waves, or the wave-like propagation of information, including water waves in hydrodynamic modeling<cite class="ltx_cite ltx_citemacro_citep">(Vreugdenhil, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib36" title="">1994</a>)</cite>, blast waves in explosives modeling<cite class="ltx_cite ltx_citemacro_citep">(Fickett, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib8" title="">1985</a>)</cite>, gravitational waves in general relativity<cite class="ltx_cite ltx_citemacro_citep">(Auger and Plagnol, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib2" title="">2017</a>)</cite><span class="ltx_note ltx_role_footnote" id="footnote1"><sup class="ltx_note_mark">1</sup><span class="ltx_note_outer"><span class="ltx_note_content"><sup class="ltx_note_mark">1</sup><span class="ltx_tag ltx_tag_note">1</span>Indeed, the Einstein field equations themselves can be cast in a purely hyperbolic form<cite class="ltx_cite ltx_citemacro_citep">(Gorard, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib10" title="">2024</a>)</cite>.</span></span></span>, and even traffic waves in vehicular traffic flows<cite class="ltx_cite ltx_citemacro_citep">(Musha and Higuchi, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib25" title="">1978</a>)</cite>. When systems of hyperbolic PDEs are non-linear, they have a tendency to form discontinuities after finite time (even for arbitrarily smooth initial data)<cite class="ltx_cite ltx_citemacro_citep">(Toro and Billett, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib32" title="">2000</a>)</cite>, such as <span class="ltx_text ltx_font_italic" id="S1.p1.1.1">shock waves</span> and <span class="ltx_text ltx_font_italic" id="S1.p1.1.2">contact discontinuities</span>. Such discontinuities are notoriously challenging to capture using standard numerical techniques such as finite difference methods, since the discontinuous solution to the PDE system does not exist in the strong sense (only in the <span class="ltx_text ltx_font_italic" id="S1.p1.1.3">weak</span>/<span class="ltx_text ltx_font_italic" id="S1.p1.1.4">distributional</span> sense), and such methods will therefore typically violate certain crucial conservation laws (such as conservation of energy, or conservation of momentum) in the presence of such discontinuities<cite class="ltx_cite ltx_citemacro_citep">(Harten et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib15" title="">1976</a>)</cite>. This has led to the development of a variety of <span class="ltx_text ltx_font_italic" id="S1.p1.1.5">finite volume</span> algorithms, and specifically <span class="ltx_text ltx_font_italic" id="S1.p1.1.6">high-resolution shock-capturing</span> (HRSC) schemes<cite class="ltx_cite ltx_citemacro_citep">(Toro, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib31" title="">2009</a>)</cite>, which capture these non-linear discontinuities by solving the <span class="ltx_text ltx_font_italic" id="S1.p1.1.7">weak</span>/<span class="ltx_text ltx_font_italic" id="S1.p1.1.8">integral</span> form of the PDE system directly, in a manner which fully guarantees conservation. However, Godunov’s theorem<span class="ltx_note ltx_role_footnote" id="footnote2"><sup class="ltx_note_mark">2</sup><span class="ltx_note_outer"><span class="ltx_note_content"><sup class="ltx_note_mark">2</sup><span class="ltx_tag ltx_tag_note">2</span>Linear, monotonicity-preserving schemes cannot be more than first-order accurate<cite class="ltx_cite ltx_citemacro_citep">(Laney, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib20" title="">1998</a>)</cite>.</span></span></span>, a central result in the theory of numerical methods for hyperbolic PDEs, implies that naive algorithms have a tendency to produce spurious oscillations (i.e. violations of the <span class="ltx_text ltx_font_italic" id="S1.p1.1.9">total variation diminishing</span>, or TVD, property<cite class="ltx_cite ltx_citemacro_citep">(Harten, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib14" title="">1983</a>)</cite>), or otherwise to introduce new extrema into the solution (i.e. violations of the <span class="ltx_text ltx_font_italic" id="S1.p1.1.10">monotonicity-preservation</span> property). One way around this highly distressing theorem is to sacrifice either linearity or higher-order accuracy of the method in the vicinity of shock waves. To make matters worse, since thermodynamic quantities such as entropy tend to be discontinuous across shocks, some methods may converge to mathematically correct but physically invalid solutions (e.g. solutions which decrease total entropy), unless certain additional <span class="ltx_text ltx_font_italic" id="S1.p1.1.11">entropy conditions</span> are satisfied<cite class="ltx_cite ltx_citemacro_citep">(Osher, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib26" title="">1984</a>)</cite>.</p> </div> <div class="ltx_para" id="S1.p2"> <p class="ltx_p" id="S1.p2.3">In this paper, we introduce a new technique for producing <span class="ltx_text ltx_font_italic" id="S1.p2.3.1">formally verified implementations</span> of high-resolution shock-capturing schemes, with provable mathematical and physical correctness properties. We develop a domain-specific language in Racket<cite class="ltx_cite ltx_citemacro_citep">(Felleisen et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib7" title="">2015</a>)</cite> for representing arbitrary first-order systems of hyperbolic PDEs, from which verifiable C code can then be automatically synthesized, implementing a variety of bespoke first- and second-order accurate finite volume algorithms to solve them. We also introduce a suite of novel automated theorem-proving and automatic differentiation tools which fully respect the algebraic properties of floating-point arithmetic (e.g. allowing commutativity but not associativity of floating-point addition and multiplication), and which thus implement only <span class="ltx_text ltx_font_italic" id="S1.p2.3.2">strictly correctness-preserving</span> algebraic transformations of the corresponding C code. We show how it is possible to use these tools to prove fundamental correctness properties of the underlying first-order numerical schemes, such as (strict) hyperbolicity-preservation, <math alttext="{L^{1}}" class="ltx_Math" display="inline" id="S1.p2.1.m1.1"><semantics id="S1.p2.1.m1.1a"><msup id="S1.p2.1.m1.1.1" xref="S1.p2.1.m1.1.1.cmml"><mi id="S1.p2.1.m1.1.1.2" xref="S1.p2.1.m1.1.1.2.cmml">L</mi><mn id="S1.p2.1.m1.1.1.3" xref="S1.p2.1.m1.1.1.3.cmml">1</mn></msup><annotation-xml encoding="MathML-Content" id="S1.p2.1.m1.1b"><apply id="S1.p2.1.m1.1.1.cmml" xref="S1.p2.1.m1.1.1"><csymbol cd="ambiguous" id="S1.p2.1.m1.1.1.1.cmml" xref="S1.p2.1.m1.1.1">superscript</csymbol><ci id="S1.p2.1.m1.1.1.2.cmml" xref="S1.p2.1.m1.1.1.2">𝐿</ci><cn id="S1.p2.1.m1.1.1.3.cmml" type="integer" xref="S1.p2.1.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S1.p2.1.m1.1c">{L^{1}}</annotation><annotation encoding="application/x-llamapun" id="S1.p2.1.m1.1d">italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT</annotation></semantics></math>, <math alttext="{L^{2}}" class="ltx_Math" display="inline" id="S1.p2.2.m2.1"><semantics id="S1.p2.2.m2.1a"><msup id="S1.p2.2.m2.1.1" xref="S1.p2.2.m2.1.1.cmml"><mi id="S1.p2.2.m2.1.1.2" xref="S1.p2.2.m2.1.1.2.cmml">L</mi><mn id="S1.p2.2.m2.1.1.3" xref="S1.p2.2.m2.1.1.3.cmml">2</mn></msup><annotation-xml encoding="MathML-Content" id="S1.p2.2.m2.1b"><apply id="S1.p2.2.m2.1.1.cmml" xref="S1.p2.2.m2.1.1"><csymbol cd="ambiguous" id="S1.p2.2.m2.1.1.1.cmml" xref="S1.p2.2.m2.1.1">superscript</csymbol><ci id="S1.p2.2.m2.1.1.2.cmml" xref="S1.p2.2.m2.1.1.2">𝐿</ci><cn id="S1.p2.2.m2.1.1.3.cmml" type="integer" xref="S1.p2.2.m2.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S1.p2.2.m2.1c">{L^{2}}</annotation><annotation encoding="application/x-llamapun" id="S1.p2.2.m2.1d">italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT</annotation></semantics></math> and <math alttext="{L^{\infty}}" class="ltx_Math" display="inline" id="S1.p2.3.m3.1"><semantics id="S1.p2.3.m3.1a"><msup id="S1.p2.3.m3.1.1" xref="S1.p2.3.m3.1.1.cmml"><mi id="S1.p2.3.m3.1.1.2" xref="S1.p2.3.m3.1.1.2.cmml">L</mi><mi id="S1.p2.3.m3.1.1.3" mathvariant="normal" xref="S1.p2.3.m3.1.1.3.cmml">∞</mi></msup><annotation-xml encoding="MathML-Content" id="S1.p2.3.m3.1b"><apply id="S1.p2.3.m3.1.1.cmml" xref="S1.p2.3.m3.1.1"><csymbol cd="ambiguous" id="S1.p2.3.m3.1.1.1.cmml" xref="S1.p2.3.m3.1.1">superscript</csymbol><ci id="S1.p2.3.m3.1.1.2.cmml" xref="S1.p2.3.m3.1.1.2">𝐿</ci><infinity id="S1.p2.3.m3.1.1.3.cmml" xref="S1.p2.3.m3.1.1.3"></infinity></apply></annotation-xml><annotation encoding="application/x-tex" id="S1.p2.3.m3.1c">{L^{\infty}}</annotation><annotation encoding="application/x-llamapun" id="S1.p2.3.m3.1d">italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT</annotation></semantics></math> stability, local Lipschitz continuity (a sufficient condition for physical correctness), and flux conservation. We also demonstrate how it is possible to prove correctness properties of the flux extrapolation algorithms necessary to extend these schemes to second-order spatial accuracy, such as symmetry and TVD. Each generated proof is, itself, a symbolic piece of Racket code that can be independently run and verified, and is therefore able to act as a standalone <span class="ltx_text ltx_font_italic" id="S1.p2.3.3">certificate of correctness</span> for some aspect of the algorithm. This pipeline is also able to produce both entirely standalone verified solvers, as well as verified solvers that can be integrated into a larger computational multiphysics framework such as <span class="ltx_text ltx_font_smallcaps" id="S1.p2.3.4">Gkeyll<span class="ltx_note ltx_role_footnote" id="footnote3"><sup class="ltx_note_mark">3</sup><span class="ltx_note_outer"><span class="ltx_note_content"><sup class="ltx_note_mark">3</sup><span class="ltx_tag ltx_tag_note"><span class="ltx_text ltx_font_upright" id="footnote3.1.1.1">3</span></span><a class="ltx_ref ltx_url ltx_font_typewriter ltx_font_upright" href="https://gkeyll.readthedocs.io/en/latest/" title="">https://gkeyll.readthedocs.io/en/latest/</a></span></span></span></span> (with the larger framework handling all non-verified simulation tasks, such as parallelism, grid generation, and data input/output). The underlying theory behind the finite volume solvers used within <span class="ltx_text ltx_font_smallcaps" id="S1.p2.3.5">Gkeyll</span> can be found in <cite class="ltx_cite ltx_citemacro_citep">(Hakim et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib13" title="">2006</a>)</cite>.</p> </div> <div class="ltx_para" id="S1.p3"> <p class="ltx_p" id="S1.p3.1">Section <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2" title="2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2</span></a> begins with preliminary background material on the mathematical properties of high-resolution shock-capturing schemes. In <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.SS1" title="2.1. Hyperbolic PDE Solvers ‣ 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2.1</span></a>, we briefly introduce explicitly conservative finite volume numerical methods, as well as the four model equation systems (linear advection, inviscid Burgers’, perfectly hyperbolic Maxwell’s, and isothermal Euler) that will be used throughout the paper. In <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.SS2" title="2.2. The Lax-Friedrichs Flux ‣ 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2.2</span></a>, we introduce the Lax-Friedrichs inter-cell flux function, and outline sufficient conditions to guarantee its hyperbolicity-preservation, CFL stability, and local Lipschitz continuity (with the latter condition itself being a sufficient condition for physical/thermodynamic correctness). In <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.SS3" title="2.3. The Roe Flux ‣ 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2.3</span></a>, we introduce the Roe approximate Riemann solver, and again outline sufficient conditions to guarantee its hyperbolicity-preservation and flux conservation (i.e. jump continuity). In <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.SS4" title="2.4. Flux Extrapolation and Limiters ‣ 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2.4</span></a>, we describe how to extend the first-order Lax-Friedrichs and Roe solvers to be second-order accurate in space via flux extrapolation, outline sufficient conditions on the flux limiters to guarantee that the resulting second-order schemes be symmetric and total variation diminishing (TVD), and also introduce the four flux limiters (minmod, monotonized-centered, superbee and van Leer) that are used throughout the paper.</p> </div> <div class="ltx_para" id="S1.p4"> <p class="ltx_p" id="S1.p4.1">Section <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3" title="3. Methodology and Results ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">3</span></a> presents the main methodology and results of the paper. In <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3.SS1" title="3.1. Automatic Code Generation ‣ 3. Methodology and Results ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">3.1</span></a>, we outline how we encode hyperbolic PDE systems in Racket, and how the automatic C code generator works. In <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3.SS2" title="3.2. Symbolic Theorem-Proving ‣ 3. Methodology and Results ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">3.2</span></a>, we introduce the core of the symbolic theorem-prover, outlining the algorithm for reducing an arbitrary symbolic Racket expression to a normal form, whilst respecting the algebraic structure of floating-point arithmetic. In <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3.SS3" title="3.3. Automatic Differentiation ‣ 3. Methodology and Results ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">3.3</span></a>, we describe the algorithm for performing automatic differentiation on arbitrary Racket expressions, enabling one to compute symbolic gradients, Jacobians, Hessians, etc. In <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3.SS4" title="3.4. Stability, Hyperbolicity and Convexity ‣ 3. Methodology and Results ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">3.4</span></a>, we outline how these methods may be combined to produce automatic proofs of (strict) hyperbolicity, CFL stability, convexity/local Lipschitz continuity, and flux continuity properties of Lax-Friedrichs and Roe solvers. In <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3.SS5" title="3.5. Symbolic Limits and Symmetry ‣ 3. Methodology and Results ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">3.5</span></a>, we describe the algorithm for performing variable transformations and evaluating symbolic limits of Racket expressions for the purpose of proving symmetry and second-order TVD properties of flux limiters.</p> </div> <div class="ltx_para" id="S1.p5"> <p class="ltx_p" id="S1.p5.1">In <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3.SS6" title="3.6. Results ‣ 3. Methodology and Results ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">3.6</span></a>, we present our main results: full proofs of correctness for Lax-Friedrichs and Roe solvers for the linear advection, inviscid Burgers’, and perfectly hyperbolic Maxwell’s equations, with partial/conditional proofs of correctness in the case of the isothermal Euler equations, along with full proofs of correctness for the minmod and monotonized-centered flux limiters, with partial proofs of correctness for the superbee and van Leer limiters. We end in Section <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S4" title="4. Conclusions and Future Work ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">4</span></a> with some concluding remarks and directions for future research.</p> </div> <div class="ltx_para" id="S1.p6"> <p class="ltx_p" id="S1.p6.1">Our Racket implementation of the formal verification pipeline can be found at<span class="ltx_note ltx_role_footnote" id="footnote4"><sup class="ltx_note_mark">4</sup><span class="ltx_note_outer"><span class="ltx_note_content"><sup class="ltx_note_mark">4</sup><span class="ltx_tag ltx_tag_note">4</span><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://github.com/ammarhakim/gkylcas/" title="">https://github.com/ammarhakim/gkylcas/</a></span></span></span>. The corresponding provably-correct C implementations, which have been integrated into the <span class="ltx_text ltx_font_smallcaps" id="S1.p6.1.1">Gkeyll</span> code, can be found at<span class="ltx_note ltx_role_footnote" id="footnote5"><sup class="ltx_note_mark">5</sup><span class="ltx_note_outer"><span class="ltx_note_content"><sup class="ltx_note_mark">5</sup><span class="ltx_tag ltx_tag_note">5</span><a class="ltx_ref ltx_url ltx_font_typewriter" href="https://github.com/ammarhakim/gkylzero/" title="">https://github.com/ammarhakim/gkylzero/</a></span></span></span>.</p> </div> </section> <section class="ltx_section" id="S2"> <h2 class="ltx_title ltx_title_section"> <span class="ltx_tag ltx_tag_section">2. </span>Preliminaries</h2> <section class="ltx_subsection" id="S2.SS1"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">2.1. </span>Hyperbolic PDE Solvers</h3> <div class="ltx_para" id="S2.SS1.p1"> <p class="ltx_p" id="S2.SS1.p1.1">For the purposes of this paper, we consider homogeneous systems of (potentially non-linear) first-order hyperbolic PDEs, expressed in the generic <span class="ltx_text ltx_font_italic" id="S2.SS1.p1.1.1">conservation law</span> form:</p> </div> <div class="ltx_para" id="S2.SS1.p2"> <table class="ltx_equation ltx_eqn_table" id="S2.E1"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(1)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\frac{\partial\mathbf{U}}{\partial t}+\nabla\cdot\mathbf{F}\left(\mathbf{U}% \right)=\mathbf{0}," class="ltx_Math" display="block" id="S2.E1.m1.2"><semantics id="S2.E1.m1.2a"><mrow id="S2.E1.m1.2.2.1" xref="S2.E1.m1.2.2.1.1.cmml"><mrow id="S2.E1.m1.2.2.1.1" xref="S2.E1.m1.2.2.1.1.cmml"><mrow id="S2.E1.m1.2.2.1.1.2" xref="S2.E1.m1.2.2.1.1.2.cmml"><mfrac id="S2.E1.m1.2.2.1.1.2.2" xref="S2.E1.m1.2.2.1.1.2.2.cmml"><mrow id="S2.E1.m1.2.2.1.1.2.2.2" xref="S2.E1.m1.2.2.1.1.2.2.2.cmml"><mo id="S2.E1.m1.2.2.1.1.2.2.2.1" rspace="0em" xref="S2.E1.m1.2.2.1.1.2.2.2.1.cmml">∂</mo><mi id="S2.E1.m1.2.2.1.1.2.2.2.2" xref="S2.E1.m1.2.2.1.1.2.2.2.2.cmml">𝐔</mi></mrow><mrow id="S2.E1.m1.2.2.1.1.2.2.3" xref="S2.E1.m1.2.2.1.1.2.2.3.cmml"><mo id="S2.E1.m1.2.2.1.1.2.2.3.1" rspace="0em" xref="S2.E1.m1.2.2.1.1.2.2.3.1.cmml">∂</mo><mi id="S2.E1.m1.2.2.1.1.2.2.3.2" xref="S2.E1.m1.2.2.1.1.2.2.3.2.cmml">t</mi></mrow></mfrac><mo id="S2.E1.m1.2.2.1.1.2.1" xref="S2.E1.m1.2.2.1.1.2.1.cmml">+</mo><mrow id="S2.E1.m1.2.2.1.1.2.3" xref="S2.E1.m1.2.2.1.1.2.3.cmml"><mrow id="S2.E1.m1.2.2.1.1.2.3.2" xref="S2.E1.m1.2.2.1.1.2.3.2.cmml"><mo id="S2.E1.m1.2.2.1.1.2.3.2.2" xref="S2.E1.m1.2.2.1.1.2.3.2.2.cmml">∇</mo><mo id="S2.E1.m1.2.2.1.1.2.3.2.1" lspace="0em" rspace="0.222em" xref="S2.E1.m1.2.2.1.1.2.3.2.1.cmml">⋅</mo><mi id="S2.E1.m1.2.2.1.1.2.3.2.3" xref="S2.E1.m1.2.2.1.1.2.3.2.3.cmml">𝐅</mi></mrow><mo id="S2.E1.m1.2.2.1.1.2.3.1" xref="S2.E1.m1.2.2.1.1.2.3.1.cmml"></mo><mrow id="S2.E1.m1.2.2.1.1.2.3.3.2" xref="S2.E1.m1.2.2.1.1.2.3.cmml"><mo id="S2.E1.m1.2.2.1.1.2.3.3.2.1" xref="S2.E1.m1.2.2.1.1.2.3.cmml">(</mo><mi id="S2.E1.m1.1.1" xref="S2.E1.m1.1.1.cmml">𝐔</mi><mo id="S2.E1.m1.2.2.1.1.2.3.3.2.2" xref="S2.E1.m1.2.2.1.1.2.3.cmml">)</mo></mrow></mrow></mrow><mo id="S2.E1.m1.2.2.1.1.1" xref="S2.E1.m1.2.2.1.1.1.cmml">=</mo><mn id="S2.E1.m1.2.2.1.1.3" xref="S2.E1.m1.2.2.1.1.3.cmml">𝟎</mn></mrow><mo id="S2.E1.m1.2.2.1.2" xref="S2.E1.m1.2.2.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E1.m1.2b"><apply id="S2.E1.m1.2.2.1.1.cmml" xref="S2.E1.m1.2.2.1"><eq id="S2.E1.m1.2.2.1.1.1.cmml" xref="S2.E1.m1.2.2.1.1.1"></eq><apply id="S2.E1.m1.2.2.1.1.2.cmml" xref="S2.E1.m1.2.2.1.1.2"><plus id="S2.E1.m1.2.2.1.1.2.1.cmml" xref="S2.E1.m1.2.2.1.1.2.1"></plus><apply id="S2.E1.m1.2.2.1.1.2.2.cmml" xref="S2.E1.m1.2.2.1.1.2.2"><divide id="S2.E1.m1.2.2.1.1.2.2.1.cmml" xref="S2.E1.m1.2.2.1.1.2.2"></divide><apply id="S2.E1.m1.2.2.1.1.2.2.2.cmml" xref="S2.E1.m1.2.2.1.1.2.2.2"><partialdiff id="S2.E1.m1.2.2.1.1.2.2.2.1.cmml" xref="S2.E1.m1.2.2.1.1.2.2.2.1"></partialdiff><ci id="S2.E1.m1.2.2.1.1.2.2.2.2.cmml" xref="S2.E1.m1.2.2.1.1.2.2.2.2">𝐔</ci></apply><apply id="S2.E1.m1.2.2.1.1.2.2.3.cmml" xref="S2.E1.m1.2.2.1.1.2.2.3"><partialdiff id="S2.E1.m1.2.2.1.1.2.2.3.1.cmml" xref="S2.E1.m1.2.2.1.1.2.2.3.1"></partialdiff><ci id="S2.E1.m1.2.2.1.1.2.2.3.2.cmml" xref="S2.E1.m1.2.2.1.1.2.2.3.2">𝑡</ci></apply></apply><apply id="S2.E1.m1.2.2.1.1.2.3.cmml" xref="S2.E1.m1.2.2.1.1.2.3"><times id="S2.E1.m1.2.2.1.1.2.3.1.cmml" xref="S2.E1.m1.2.2.1.1.2.3.1"></times><apply id="S2.E1.m1.2.2.1.1.2.3.2.cmml" xref="S2.E1.m1.2.2.1.1.2.3.2"><ci id="S2.E1.m1.2.2.1.1.2.3.2.1.cmml" xref="S2.E1.m1.2.2.1.1.2.3.2.1">⋅</ci><ci id="S2.E1.m1.2.2.1.1.2.3.2.2.cmml" xref="S2.E1.m1.2.2.1.1.2.3.2.2">∇</ci><ci id="S2.E1.m1.2.2.1.1.2.3.2.3.cmml" xref="S2.E1.m1.2.2.1.1.2.3.2.3">𝐅</ci></apply><ci id="S2.E1.m1.1.1.cmml" xref="S2.E1.m1.1.1">𝐔</ci></apply></apply><cn id="S2.E1.m1.2.2.1.1.3.cmml" type="integer" xref="S2.E1.m1.2.2.1.1.3">0</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E1.m1.2c">\frac{\partial\mathbf{U}}{\partial t}+\nabla\cdot\mathbf{F}\left(\mathbf{U}% \right)=\mathbf{0},</annotation><annotation encoding="application/x-llamapun" id="S2.E1.m1.2d">divide start_ARG ∂ bold_U end_ARG start_ARG ∂ italic_t end_ARG + ∇ ⋅ bold_F ( bold_U ) = bold_0 ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS1.p2.6">where <math alttext="{\mathbf{U}}" class="ltx_Math" display="inline" id="S2.SS1.p2.1.m1.1"><semantics id="S2.SS1.p2.1.m1.1a"><mi id="S2.SS1.p2.1.m1.1.1" xref="S2.SS1.p2.1.m1.1.1.cmml">𝐔</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p2.1.m1.1b"><ci id="S2.SS1.p2.1.m1.1.1.cmml" xref="S2.SS1.p2.1.m1.1.1">𝐔</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p2.1.m1.1c">{\mathbf{U}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p2.1.m1.1d">bold_U</annotation></semantics></math> represents the vector of <span class="ltx_text ltx_font_italic" id="S2.SS1.p2.6.1">conserved variables</span> and <math alttext="{\mathbf{F}\left(\mathbf{U}\right)}" class="ltx_Math" display="inline" id="S2.SS1.p2.2.m2.1"><semantics id="S2.SS1.p2.2.m2.1a"><mrow id="S2.SS1.p2.2.m2.1.2" xref="S2.SS1.p2.2.m2.1.2.cmml"><mi id="S2.SS1.p2.2.m2.1.2.2" xref="S2.SS1.p2.2.m2.1.2.2.cmml">𝐅</mi><mo id="S2.SS1.p2.2.m2.1.2.1" xref="S2.SS1.p2.2.m2.1.2.1.cmml"></mo><mrow id="S2.SS1.p2.2.m2.1.2.3.2" xref="S2.SS1.p2.2.m2.1.2.cmml"><mo id="S2.SS1.p2.2.m2.1.2.3.2.1" xref="S2.SS1.p2.2.m2.1.2.cmml">(</mo><mi id="S2.SS1.p2.2.m2.1.1" xref="S2.SS1.p2.2.m2.1.1.cmml">𝐔</mi><mo id="S2.SS1.p2.2.m2.1.2.3.2.2" xref="S2.SS1.p2.2.m2.1.2.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.SS1.p2.2.m2.1b"><apply id="S2.SS1.p2.2.m2.1.2.cmml" xref="S2.SS1.p2.2.m2.1.2"><times id="S2.SS1.p2.2.m2.1.2.1.cmml" xref="S2.SS1.p2.2.m2.1.2.1"></times><ci id="S2.SS1.p2.2.m2.1.2.2.cmml" xref="S2.SS1.p2.2.m2.1.2.2">𝐅</ci><ci id="S2.SS1.p2.2.m2.1.1.cmml" xref="S2.SS1.p2.2.m2.1.1">𝐔</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p2.2.m2.1c">{\mathbf{F}\left(\mathbf{U}\right)}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p2.2.m2.1d">bold_F ( bold_U )</annotation></semantics></math> represents the matrix of <span class="ltx_text ltx_font_italic" id="S2.SS1.p2.6.2">fluxes</span> of those variables. We can discretize such a system of PDEs in both space and time, using a uniform grid spacing of <math alttext="{\Delta x}" class="ltx_Math" display="inline" id="S2.SS1.p2.3.m3.1"><semantics id="S2.SS1.p2.3.m3.1a"><mrow id="S2.SS1.p2.3.m3.1.1" xref="S2.SS1.p2.3.m3.1.1.cmml"><mi id="S2.SS1.p2.3.m3.1.1.2" mathvariant="normal" xref="S2.SS1.p2.3.m3.1.1.2.cmml">Δ</mi><mo id="S2.SS1.p2.3.m3.1.1.1" xref="S2.SS1.p2.3.m3.1.1.1.cmml"></mo><mi id="S2.SS1.p2.3.m3.1.1.3" xref="S2.SS1.p2.3.m3.1.1.3.cmml">x</mi></mrow><annotation-xml encoding="MathML-Content" id="S2.SS1.p2.3.m3.1b"><apply id="S2.SS1.p2.3.m3.1.1.cmml" xref="S2.SS1.p2.3.m3.1.1"><times id="S2.SS1.p2.3.m3.1.1.1.cmml" xref="S2.SS1.p2.3.m3.1.1.1"></times><ci id="S2.SS1.p2.3.m3.1.1.2.cmml" xref="S2.SS1.p2.3.m3.1.1.2">Δ</ci><ci id="S2.SS1.p2.3.m3.1.1.3.cmml" xref="S2.SS1.p2.3.m3.1.1.3">𝑥</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p2.3.m3.1c">{\Delta x}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p2.3.m3.1d">roman_Δ italic_x</annotation></semantics></math> and a time-step of <math alttext="{\Delta t}" class="ltx_Math" display="inline" id="S2.SS1.p2.4.m4.1"><semantics id="S2.SS1.p2.4.m4.1a"><mrow id="S2.SS1.p2.4.m4.1.1" xref="S2.SS1.p2.4.m4.1.1.cmml"><mi id="S2.SS1.p2.4.m4.1.1.2" mathvariant="normal" xref="S2.SS1.p2.4.m4.1.1.2.cmml">Δ</mi><mo id="S2.SS1.p2.4.m4.1.1.1" xref="S2.SS1.p2.4.m4.1.1.1.cmml"></mo><mi id="S2.SS1.p2.4.m4.1.1.3" xref="S2.SS1.p2.4.m4.1.1.3.cmml">t</mi></mrow><annotation-xml encoding="MathML-Content" id="S2.SS1.p2.4.m4.1b"><apply id="S2.SS1.p2.4.m4.1.1.cmml" xref="S2.SS1.p2.4.m4.1.1"><times id="S2.SS1.p2.4.m4.1.1.1.cmml" xref="S2.SS1.p2.4.m4.1.1.1"></times><ci id="S2.SS1.p2.4.m4.1.1.2.cmml" xref="S2.SS1.p2.4.m4.1.1.2">Δ</ci><ci id="S2.SS1.p2.4.m4.1.1.3.cmml" xref="S2.SS1.p2.4.m4.1.1.3">𝑡</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p2.4.m4.1c">{\Delta t}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p2.4.m4.1d">roman_Δ italic_t</annotation></semantics></math>, indexed by subscripts (<math alttext="i" class="ltx_Math" display="inline" id="S2.SS1.p2.5.m5.1"><semantics id="S2.SS1.p2.5.m5.1a"><mi id="S2.SS1.p2.5.m5.1.1" xref="S2.SS1.p2.5.m5.1.1.cmml">i</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p2.5.m5.1b"><ci id="S2.SS1.p2.5.m5.1.1.cmml" xref="S2.SS1.p2.5.m5.1.1">𝑖</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p2.5.m5.1c">i</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p2.5.m5.1d">italic_i</annotation></semantics></math>) and superscripts (<math alttext="n" class="ltx_Math" display="inline" id="S2.SS1.p2.6.m6.1"><semantics id="S2.SS1.p2.6.m6.1a"><mi id="S2.SS1.p2.6.m6.1.1" xref="S2.SS1.p2.6.m6.1.1.cmml">n</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p2.6.m6.1b"><ci id="S2.SS1.p2.6.m6.1.1.cmml" xref="S2.SS1.p2.6.m6.1.1">𝑛</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p2.6.m6.1c">n</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p2.6.m6.1d">italic_n</annotation></semantics></math>):</p> </div> <div class="ltx_para" id="S2.SS1.p3"> <table class="ltx_equation ltx_eqn_table" id="S2.E2"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(2)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="x_{i+1}=x_{i}+\Delta x,\qquad\text{ and }\qquad t^{n+1}=t^{n}+\Delta t," class="ltx_Math" display="block" id="S2.E2.m1.2"><semantics id="S2.E2.m1.2a"><mrow id="S2.E2.m1.2.2.1"><mrow id="S2.E2.m1.2.2.1.1.2" xref="S2.E2.m1.2.2.1.1.3.cmml"><mrow id="S2.E2.m1.2.2.1.1.1.1" xref="S2.E2.m1.2.2.1.1.1.1.cmml"><msub id="S2.E2.m1.2.2.1.1.1.1.3" xref="S2.E2.m1.2.2.1.1.1.1.3.cmml"><mi id="S2.E2.m1.2.2.1.1.1.1.3.2" xref="S2.E2.m1.2.2.1.1.1.1.3.2.cmml">x</mi><mrow id="S2.E2.m1.2.2.1.1.1.1.3.3" xref="S2.E2.m1.2.2.1.1.1.1.3.3.cmml"><mi id="S2.E2.m1.2.2.1.1.1.1.3.3.2" xref="S2.E2.m1.2.2.1.1.1.1.3.3.2.cmml">i</mi><mo id="S2.E2.m1.2.2.1.1.1.1.3.3.1" xref="S2.E2.m1.2.2.1.1.1.1.3.3.1.cmml">+</mo><mn id="S2.E2.m1.2.2.1.1.1.1.3.3.3" xref="S2.E2.m1.2.2.1.1.1.1.3.3.3.cmml">1</mn></mrow></msub><mo id="S2.E2.m1.2.2.1.1.1.1.2" xref="S2.E2.m1.2.2.1.1.1.1.2.cmml">=</mo><mrow id="S2.E2.m1.2.2.1.1.1.1.1.1" xref="S2.E2.m1.2.2.1.1.1.1.1.2.cmml"><mrow id="S2.E2.m1.2.2.1.1.1.1.1.1.1" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1.cmml"><msub id="S2.E2.m1.2.2.1.1.1.1.1.1.1.2" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1.2.cmml"><mi id="S2.E2.m1.2.2.1.1.1.1.1.1.1.2.2" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1.2.2.cmml">x</mi><mi id="S2.E2.m1.2.2.1.1.1.1.1.1.1.2.3" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1.2.3.cmml">i</mi></msub><mo id="S2.E2.m1.2.2.1.1.1.1.1.1.1.1" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1.1.cmml">+</mo><mrow id="S2.E2.m1.2.2.1.1.1.1.1.1.1.3" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1.3.cmml"><mi id="S2.E2.m1.2.2.1.1.1.1.1.1.1.3.2" mathvariant="normal" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1.3.2.cmml">Δ</mi><mo id="S2.E2.m1.2.2.1.1.1.1.1.1.1.3.1" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1.3.1.cmml"></mo><mi id="S2.E2.m1.2.2.1.1.1.1.1.1.1.3.3" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1.3.3.cmml">x</mi></mrow></mrow><mo id="S2.E2.m1.2.2.1.1.1.1.1.1.2" rspace="2.167em" xref="S2.E2.m1.2.2.1.1.1.1.1.2.cmml">,</mo><mtext id="S2.E2.m1.1.1" xref="S2.E2.m1.1.1a.cmml"> and </mtext></mrow></mrow><mspace id="S2.E2.m1.2.2.1.1.2.3" width="2em" xref="S2.E2.m1.2.2.1.1.3a.cmml"></mspace><mrow id="S2.E2.m1.2.2.1.1.2.2" xref="S2.E2.m1.2.2.1.1.2.2.cmml"><msup id="S2.E2.m1.2.2.1.1.2.2.2" xref="S2.E2.m1.2.2.1.1.2.2.2.cmml"><mi id="S2.E2.m1.2.2.1.1.2.2.2.2" xref="S2.E2.m1.2.2.1.1.2.2.2.2.cmml">t</mi><mrow id="S2.E2.m1.2.2.1.1.2.2.2.3" xref="S2.E2.m1.2.2.1.1.2.2.2.3.cmml"><mi id="S2.E2.m1.2.2.1.1.2.2.2.3.2" xref="S2.E2.m1.2.2.1.1.2.2.2.3.2.cmml">n</mi><mo id="S2.E2.m1.2.2.1.1.2.2.2.3.1" xref="S2.E2.m1.2.2.1.1.2.2.2.3.1.cmml">+</mo><mn id="S2.E2.m1.2.2.1.1.2.2.2.3.3" xref="S2.E2.m1.2.2.1.1.2.2.2.3.3.cmml">1</mn></mrow></msup><mo id="S2.E2.m1.2.2.1.1.2.2.1" xref="S2.E2.m1.2.2.1.1.2.2.1.cmml">=</mo><mrow id="S2.E2.m1.2.2.1.1.2.2.3" xref="S2.E2.m1.2.2.1.1.2.2.3.cmml"><msup id="S2.E2.m1.2.2.1.1.2.2.3.2" xref="S2.E2.m1.2.2.1.1.2.2.3.2.cmml"><mi id="S2.E2.m1.2.2.1.1.2.2.3.2.2" xref="S2.E2.m1.2.2.1.1.2.2.3.2.2.cmml">t</mi><mi id="S2.E2.m1.2.2.1.1.2.2.3.2.3" xref="S2.E2.m1.2.2.1.1.2.2.3.2.3.cmml">n</mi></msup><mo id="S2.E2.m1.2.2.1.1.2.2.3.1" xref="S2.E2.m1.2.2.1.1.2.2.3.1.cmml">+</mo><mrow id="S2.E2.m1.2.2.1.1.2.2.3.3" xref="S2.E2.m1.2.2.1.1.2.2.3.3.cmml"><mi id="S2.E2.m1.2.2.1.1.2.2.3.3.2" mathvariant="normal" xref="S2.E2.m1.2.2.1.1.2.2.3.3.2.cmml">Δ</mi><mo id="S2.E2.m1.2.2.1.1.2.2.3.3.1" xref="S2.E2.m1.2.2.1.1.2.2.3.3.1.cmml"></mo><mi id="S2.E2.m1.2.2.1.1.2.2.3.3.3" xref="S2.E2.m1.2.2.1.1.2.2.3.3.3.cmml">t</mi></mrow></mrow></mrow></mrow><mo id="S2.E2.m1.2.2.1.2">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E2.m1.2b"><apply id="S2.E2.m1.2.2.1.1.3.cmml" xref="S2.E2.m1.2.2.1.1.2"><csymbol cd="ambiguous" id="S2.E2.m1.2.2.1.1.3a.cmml" xref="S2.E2.m1.2.2.1.1.2.3">formulae-sequence</csymbol><apply id="S2.E2.m1.2.2.1.1.1.1.cmml" xref="S2.E2.m1.2.2.1.1.1.1"><eq id="S2.E2.m1.2.2.1.1.1.1.2.cmml" xref="S2.E2.m1.2.2.1.1.1.1.2"></eq><apply id="S2.E2.m1.2.2.1.1.1.1.3.cmml" xref="S2.E2.m1.2.2.1.1.1.1.3"><csymbol cd="ambiguous" id="S2.E2.m1.2.2.1.1.1.1.3.1.cmml" xref="S2.E2.m1.2.2.1.1.1.1.3">subscript</csymbol><ci id="S2.E2.m1.2.2.1.1.1.1.3.2.cmml" xref="S2.E2.m1.2.2.1.1.1.1.3.2">𝑥</ci><apply id="S2.E2.m1.2.2.1.1.1.1.3.3.cmml" xref="S2.E2.m1.2.2.1.1.1.1.3.3"><plus id="S2.E2.m1.2.2.1.1.1.1.3.3.1.cmml" xref="S2.E2.m1.2.2.1.1.1.1.3.3.1"></plus><ci id="S2.E2.m1.2.2.1.1.1.1.3.3.2.cmml" xref="S2.E2.m1.2.2.1.1.1.1.3.3.2">𝑖</ci><cn id="S2.E2.m1.2.2.1.1.1.1.3.3.3.cmml" type="integer" xref="S2.E2.m1.2.2.1.1.1.1.3.3.3">1</cn></apply></apply><list id="S2.E2.m1.2.2.1.1.1.1.1.2.cmml" xref="S2.E2.m1.2.2.1.1.1.1.1.1"><apply id="S2.E2.m1.2.2.1.1.1.1.1.1.1.cmml" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1"><plus id="S2.E2.m1.2.2.1.1.1.1.1.1.1.1.cmml" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1.1"></plus><apply id="S2.E2.m1.2.2.1.1.1.1.1.1.1.2.cmml" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1.2"><csymbol cd="ambiguous" id="S2.E2.m1.2.2.1.1.1.1.1.1.1.2.1.cmml" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1.2">subscript</csymbol><ci id="S2.E2.m1.2.2.1.1.1.1.1.1.1.2.2.cmml" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1.2.2">𝑥</ci><ci id="S2.E2.m1.2.2.1.1.1.1.1.1.1.2.3.cmml" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1.2.3">𝑖</ci></apply><apply id="S2.E2.m1.2.2.1.1.1.1.1.1.1.3.cmml" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1.3"><times id="S2.E2.m1.2.2.1.1.1.1.1.1.1.3.1.cmml" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1.3.1"></times><ci id="S2.E2.m1.2.2.1.1.1.1.1.1.1.3.2.cmml" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1.3.2">Δ</ci><ci id="S2.E2.m1.2.2.1.1.1.1.1.1.1.3.3.cmml" xref="S2.E2.m1.2.2.1.1.1.1.1.1.1.3.3">𝑥</ci></apply></apply><ci id="S2.E2.m1.1.1a.cmml" xref="S2.E2.m1.1.1"><mtext id="S2.E2.m1.1.1.cmml" xref="S2.E2.m1.1.1"> and </mtext></ci></list></apply><apply id="S2.E2.m1.2.2.1.1.2.2.cmml" xref="S2.E2.m1.2.2.1.1.2.2"><eq id="S2.E2.m1.2.2.1.1.2.2.1.cmml" xref="S2.E2.m1.2.2.1.1.2.2.1"></eq><apply id="S2.E2.m1.2.2.1.1.2.2.2.cmml" xref="S2.E2.m1.2.2.1.1.2.2.2"><csymbol cd="ambiguous" id="S2.E2.m1.2.2.1.1.2.2.2.1.cmml" xref="S2.E2.m1.2.2.1.1.2.2.2">superscript</csymbol><ci id="S2.E2.m1.2.2.1.1.2.2.2.2.cmml" xref="S2.E2.m1.2.2.1.1.2.2.2.2">𝑡</ci><apply id="S2.E2.m1.2.2.1.1.2.2.2.3.cmml" xref="S2.E2.m1.2.2.1.1.2.2.2.3"><plus id="S2.E2.m1.2.2.1.1.2.2.2.3.1.cmml" xref="S2.E2.m1.2.2.1.1.2.2.2.3.1"></plus><ci id="S2.E2.m1.2.2.1.1.2.2.2.3.2.cmml" xref="S2.E2.m1.2.2.1.1.2.2.2.3.2">𝑛</ci><cn id="S2.E2.m1.2.2.1.1.2.2.2.3.3.cmml" type="integer" xref="S2.E2.m1.2.2.1.1.2.2.2.3.3">1</cn></apply></apply><apply id="S2.E2.m1.2.2.1.1.2.2.3.cmml" xref="S2.E2.m1.2.2.1.1.2.2.3"><plus id="S2.E2.m1.2.2.1.1.2.2.3.1.cmml" xref="S2.E2.m1.2.2.1.1.2.2.3.1"></plus><apply id="S2.E2.m1.2.2.1.1.2.2.3.2.cmml" xref="S2.E2.m1.2.2.1.1.2.2.3.2"><csymbol cd="ambiguous" id="S2.E2.m1.2.2.1.1.2.2.3.2.1.cmml" xref="S2.E2.m1.2.2.1.1.2.2.3.2">superscript</csymbol><ci id="S2.E2.m1.2.2.1.1.2.2.3.2.2.cmml" xref="S2.E2.m1.2.2.1.1.2.2.3.2.2">𝑡</ci><ci id="S2.E2.m1.2.2.1.1.2.2.3.2.3.cmml" xref="S2.E2.m1.2.2.1.1.2.2.3.2.3">𝑛</ci></apply><apply id="S2.E2.m1.2.2.1.1.2.2.3.3.cmml" xref="S2.E2.m1.2.2.1.1.2.2.3.3"><times id="S2.E2.m1.2.2.1.1.2.2.3.3.1.cmml" xref="S2.E2.m1.2.2.1.1.2.2.3.3.1"></times><ci id="S2.E2.m1.2.2.1.1.2.2.3.3.2.cmml" xref="S2.E2.m1.2.2.1.1.2.2.3.3.2">Δ</ci><ci id="S2.E2.m1.2.2.1.1.2.2.3.3.3.cmml" xref="S2.E2.m1.2.2.1.1.2.2.3.3.3">𝑡</ci></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E2.m1.2c">x_{i+1}=x_{i}+\Delta x,\qquad\text{ and }\qquad t^{n+1}=t^{n}+\Delta t,</annotation><annotation encoding="application/x-llamapun" id="S2.E2.m1.2d">italic_x start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT = italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + roman_Δ italic_x , and italic_t start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT = italic_t start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT + roman_Δ italic_t ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS1.p3.5">respectively. Specifically, we employ a <span class="ltx_text ltx_font_italic" id="S2.SS1.p3.5.1">finite volume</span> discretization, in which the conserved variable vector <math alttext="{\mathbf{U}}" class="ltx_Math" display="inline" id="S2.SS1.p3.1.m1.1"><semantics id="S2.SS1.p3.1.m1.1a"><mi id="S2.SS1.p3.1.m1.1.1" xref="S2.SS1.p3.1.m1.1.1.cmml">𝐔</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p3.1.m1.1b"><ci id="S2.SS1.p3.1.m1.1.1.cmml" xref="S2.SS1.p3.1.m1.1.1">𝐔</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p3.1.m1.1c">{\mathbf{U}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p3.1.m1.1d">bold_U</annotation></semantics></math> at time <math alttext="{t^{n}}" class="ltx_Math" display="inline" id="S2.SS1.p3.2.m2.1"><semantics id="S2.SS1.p3.2.m2.1a"><msup id="S2.SS1.p3.2.m2.1.1" xref="S2.SS1.p3.2.m2.1.1.cmml"><mi id="S2.SS1.p3.2.m2.1.1.2" xref="S2.SS1.p3.2.m2.1.1.2.cmml">t</mi><mi id="S2.SS1.p3.2.m2.1.1.3" xref="S2.SS1.p3.2.m2.1.1.3.cmml">n</mi></msup><annotation-xml encoding="MathML-Content" id="S2.SS1.p3.2.m2.1b"><apply id="S2.SS1.p3.2.m2.1.1.cmml" xref="S2.SS1.p3.2.m2.1.1"><csymbol cd="ambiguous" id="S2.SS1.p3.2.m2.1.1.1.cmml" xref="S2.SS1.p3.2.m2.1.1">superscript</csymbol><ci id="S2.SS1.p3.2.m2.1.1.2.cmml" xref="S2.SS1.p3.2.m2.1.1.2">𝑡</ci><ci id="S2.SS1.p3.2.m2.1.1.3.cmml" xref="S2.SS1.p3.2.m2.1.1.3">𝑛</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p3.2.m2.1c">{t^{n}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p3.2.m2.1d">italic_t start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT</annotation></semantics></math> is taken to be constant within each cell <math alttext="{x_{i}}" class="ltx_Math" display="inline" id="S2.SS1.p3.3.m3.1"><semantics id="S2.SS1.p3.3.m3.1a"><msub id="S2.SS1.p3.3.m3.1.1" xref="S2.SS1.p3.3.m3.1.1.cmml"><mi id="S2.SS1.p3.3.m3.1.1.2" xref="S2.SS1.p3.3.m3.1.1.2.cmml">x</mi><mi id="S2.SS1.p3.3.m3.1.1.3" xref="S2.SS1.p3.3.m3.1.1.3.cmml">i</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS1.p3.3.m3.1b"><apply id="S2.SS1.p3.3.m3.1.1.cmml" xref="S2.SS1.p3.3.m3.1.1"><csymbol cd="ambiguous" id="S2.SS1.p3.3.m3.1.1.1.cmml" xref="S2.SS1.p3.3.m3.1.1">subscript</csymbol><ci id="S2.SS1.p3.3.m3.1.1.2.cmml" xref="S2.SS1.p3.3.m3.1.1.2">𝑥</ci><ci id="S2.SS1.p3.3.m3.1.1.3.cmml" xref="S2.SS1.p3.3.m3.1.1.3">𝑖</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p3.3.m3.1c">{x_{i}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p3.3.m3.1d">italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT</annotation></semantics></math> (and therefore piecewise constant across the entire domain), and we adopt the shorthand <math alttext="{\mathbf{U}_{i}^{n}=\mathbf{U}\left(x_{i},t^{n}\right)}" class="ltx_Math" display="inline" id="S2.SS1.p3.4.m4.2"><semantics id="S2.SS1.p3.4.m4.2a"><mrow id="S2.SS1.p3.4.m4.2.2" xref="S2.SS1.p3.4.m4.2.2.cmml"><msubsup id="S2.SS1.p3.4.m4.2.2.4" xref="S2.SS1.p3.4.m4.2.2.4.cmml"><mi id="S2.SS1.p3.4.m4.2.2.4.2.2" xref="S2.SS1.p3.4.m4.2.2.4.2.2.cmml">𝐔</mi><mi id="S2.SS1.p3.4.m4.2.2.4.2.3" xref="S2.SS1.p3.4.m4.2.2.4.2.3.cmml">i</mi><mi id="S2.SS1.p3.4.m4.2.2.4.3" xref="S2.SS1.p3.4.m4.2.2.4.3.cmml">n</mi></msubsup><mo id="S2.SS1.p3.4.m4.2.2.3" xref="S2.SS1.p3.4.m4.2.2.3.cmml">=</mo><mrow id="S2.SS1.p3.4.m4.2.2.2" xref="S2.SS1.p3.4.m4.2.2.2.cmml"><mi id="S2.SS1.p3.4.m4.2.2.2.4" xref="S2.SS1.p3.4.m4.2.2.2.4.cmml">𝐔</mi><mo id="S2.SS1.p3.4.m4.2.2.2.3" xref="S2.SS1.p3.4.m4.2.2.2.3.cmml"></mo><mrow id="S2.SS1.p3.4.m4.2.2.2.2.2" xref="S2.SS1.p3.4.m4.2.2.2.2.3.cmml"><mo id="S2.SS1.p3.4.m4.2.2.2.2.2.3" xref="S2.SS1.p3.4.m4.2.2.2.2.3.cmml">(</mo><msub id="S2.SS1.p3.4.m4.1.1.1.1.1.1" xref="S2.SS1.p3.4.m4.1.1.1.1.1.1.cmml"><mi id="S2.SS1.p3.4.m4.1.1.1.1.1.1.2" xref="S2.SS1.p3.4.m4.1.1.1.1.1.1.2.cmml">x</mi><mi id="S2.SS1.p3.4.m4.1.1.1.1.1.1.3" xref="S2.SS1.p3.4.m4.1.1.1.1.1.1.3.cmml">i</mi></msub><mo id="S2.SS1.p3.4.m4.2.2.2.2.2.4" xref="S2.SS1.p3.4.m4.2.2.2.2.3.cmml">,</mo><msup id="S2.SS1.p3.4.m4.2.2.2.2.2.2" xref="S2.SS1.p3.4.m4.2.2.2.2.2.2.cmml"><mi id="S2.SS1.p3.4.m4.2.2.2.2.2.2.2" xref="S2.SS1.p3.4.m4.2.2.2.2.2.2.2.cmml">t</mi><mi id="S2.SS1.p3.4.m4.2.2.2.2.2.2.3" xref="S2.SS1.p3.4.m4.2.2.2.2.2.2.3.cmml">n</mi></msup><mo id="S2.SS1.p3.4.m4.2.2.2.2.2.5" xref="S2.SS1.p3.4.m4.2.2.2.2.3.cmml">)</mo></mrow></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.SS1.p3.4.m4.2b"><apply id="S2.SS1.p3.4.m4.2.2.cmml" xref="S2.SS1.p3.4.m4.2.2"><eq id="S2.SS1.p3.4.m4.2.2.3.cmml" xref="S2.SS1.p3.4.m4.2.2.3"></eq><apply id="S2.SS1.p3.4.m4.2.2.4.cmml" xref="S2.SS1.p3.4.m4.2.2.4"><csymbol cd="ambiguous" id="S2.SS1.p3.4.m4.2.2.4.1.cmml" xref="S2.SS1.p3.4.m4.2.2.4">superscript</csymbol><apply id="S2.SS1.p3.4.m4.2.2.4.2.cmml" xref="S2.SS1.p3.4.m4.2.2.4"><csymbol cd="ambiguous" id="S2.SS1.p3.4.m4.2.2.4.2.1.cmml" xref="S2.SS1.p3.4.m4.2.2.4">subscript</csymbol><ci id="S2.SS1.p3.4.m4.2.2.4.2.2.cmml" xref="S2.SS1.p3.4.m4.2.2.4.2.2">𝐔</ci><ci id="S2.SS1.p3.4.m4.2.2.4.2.3.cmml" xref="S2.SS1.p3.4.m4.2.2.4.2.3">𝑖</ci></apply><ci id="S2.SS1.p3.4.m4.2.2.4.3.cmml" xref="S2.SS1.p3.4.m4.2.2.4.3">𝑛</ci></apply><apply id="S2.SS1.p3.4.m4.2.2.2.cmml" xref="S2.SS1.p3.4.m4.2.2.2"><times id="S2.SS1.p3.4.m4.2.2.2.3.cmml" xref="S2.SS1.p3.4.m4.2.2.2.3"></times><ci id="S2.SS1.p3.4.m4.2.2.2.4.cmml" xref="S2.SS1.p3.4.m4.2.2.2.4">𝐔</ci><interval closure="open" id="S2.SS1.p3.4.m4.2.2.2.2.3.cmml" xref="S2.SS1.p3.4.m4.2.2.2.2.2"><apply id="S2.SS1.p3.4.m4.1.1.1.1.1.1.cmml" xref="S2.SS1.p3.4.m4.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.SS1.p3.4.m4.1.1.1.1.1.1.1.cmml" xref="S2.SS1.p3.4.m4.1.1.1.1.1.1">subscript</csymbol><ci id="S2.SS1.p3.4.m4.1.1.1.1.1.1.2.cmml" xref="S2.SS1.p3.4.m4.1.1.1.1.1.1.2">𝑥</ci><ci id="S2.SS1.p3.4.m4.1.1.1.1.1.1.3.cmml" xref="S2.SS1.p3.4.m4.1.1.1.1.1.1.3">𝑖</ci></apply><apply id="S2.SS1.p3.4.m4.2.2.2.2.2.2.cmml" xref="S2.SS1.p3.4.m4.2.2.2.2.2.2"><csymbol cd="ambiguous" id="S2.SS1.p3.4.m4.2.2.2.2.2.2.1.cmml" xref="S2.SS1.p3.4.m4.2.2.2.2.2.2">superscript</csymbol><ci id="S2.SS1.p3.4.m4.2.2.2.2.2.2.2.cmml" xref="S2.SS1.p3.4.m4.2.2.2.2.2.2.2">𝑡</ci><ci id="S2.SS1.p3.4.m4.2.2.2.2.2.2.3.cmml" xref="S2.SS1.p3.4.m4.2.2.2.2.2.2.3">𝑛</ci></apply></interval></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p3.4.m4.2c">{\mathbf{U}_{i}^{n}=\mathbf{U}\left(x_{i},t^{n}\right)}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p3.4.m4.2d">bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = bold_U ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_t start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT )</annotation></semantics></math> to denote this value. The value of the conserved variable vector <math alttext="{\mathbf{U}_{i}^{n}}" class="ltx_Math" display="inline" id="S2.SS1.p3.5.m5.1"><semantics id="S2.SS1.p3.5.m5.1a"><msubsup id="S2.SS1.p3.5.m5.1.1" xref="S2.SS1.p3.5.m5.1.1.cmml"><mi id="S2.SS1.p3.5.m5.1.1.2.2" xref="S2.SS1.p3.5.m5.1.1.2.2.cmml">𝐔</mi><mi id="S2.SS1.p3.5.m5.1.1.2.3" xref="S2.SS1.p3.5.m5.1.1.2.3.cmml">i</mi><mi id="S2.SS1.p3.5.m5.1.1.3" xref="S2.SS1.p3.5.m5.1.1.3.cmml">n</mi></msubsup><annotation-xml encoding="MathML-Content" id="S2.SS1.p3.5.m5.1b"><apply id="S2.SS1.p3.5.m5.1.1.cmml" xref="S2.SS1.p3.5.m5.1.1"><csymbol cd="ambiguous" id="S2.SS1.p3.5.m5.1.1.1.cmml" xref="S2.SS1.p3.5.m5.1.1">superscript</csymbol><apply id="S2.SS1.p3.5.m5.1.1.2.cmml" xref="S2.SS1.p3.5.m5.1.1"><csymbol cd="ambiguous" id="S2.SS1.p3.5.m5.1.1.2.1.cmml" xref="S2.SS1.p3.5.m5.1.1">subscript</csymbol><ci id="S2.SS1.p3.5.m5.1.1.2.2.cmml" xref="S2.SS1.p3.5.m5.1.1.2.2">𝐔</ci><ci id="S2.SS1.p3.5.m5.1.1.2.3.cmml" xref="S2.SS1.p3.5.m5.1.1.2.3">𝑖</ci></apply><ci id="S2.SS1.p3.5.m5.1.1.3.cmml" xref="S2.SS1.p3.5.m5.1.1.3">𝑛</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p3.5.m5.1c">{\mathbf{U}_{i}^{n}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p3.5.m5.1d">bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT</annotation></semantics></math> within each cell can then be evolved in time by means of the explicitly conservative update formula<cite class="ltx_cite ltx_citemacro_citep">(Toro, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib31" title="">2009</a>)</cite>:</p> </div> <div class="ltx_para" id="S2.SS1.p4"> <table class="ltx_equation ltx_eqn_table" id="S2.E3"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(3)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{U}_{i}^{n+1}=\mathbf{U}_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathbf% {F}_{i+\frac{1}{2}}-\mathbf{F}_{i-\frac{1}{2}}\right]," class="ltx_Math" display="block" id="S2.E3.m1.1"><semantics id="S2.E3.m1.1a"><mrow id="S2.E3.m1.1.1.1" xref="S2.E3.m1.1.1.1.1.cmml"><mrow id="S2.E3.m1.1.1.1.1" xref="S2.E3.m1.1.1.1.1.cmml"><msubsup id="S2.E3.m1.1.1.1.1.3" xref="S2.E3.m1.1.1.1.1.3.cmml"><mi id="S2.E3.m1.1.1.1.1.3.2.2" xref="S2.E3.m1.1.1.1.1.3.2.2.cmml">𝐔</mi><mi id="S2.E3.m1.1.1.1.1.3.2.3" xref="S2.E3.m1.1.1.1.1.3.2.3.cmml">i</mi><mrow id="S2.E3.m1.1.1.1.1.3.3" xref="S2.E3.m1.1.1.1.1.3.3.cmml"><mi id="S2.E3.m1.1.1.1.1.3.3.2" xref="S2.E3.m1.1.1.1.1.3.3.2.cmml">n</mi><mo id="S2.E3.m1.1.1.1.1.3.3.1" xref="S2.E3.m1.1.1.1.1.3.3.1.cmml">+</mo><mn id="S2.E3.m1.1.1.1.1.3.3.3" xref="S2.E3.m1.1.1.1.1.3.3.3.cmml">1</mn></mrow></msubsup><mo id="S2.E3.m1.1.1.1.1.2" xref="S2.E3.m1.1.1.1.1.2.cmml">=</mo><mrow id="S2.E3.m1.1.1.1.1.1" xref="S2.E3.m1.1.1.1.1.1.cmml"><msubsup id="S2.E3.m1.1.1.1.1.1.3" xref="S2.E3.m1.1.1.1.1.1.3.cmml"><mi id="S2.E3.m1.1.1.1.1.1.3.2.2" xref="S2.E3.m1.1.1.1.1.1.3.2.2.cmml">𝐔</mi><mi id="S2.E3.m1.1.1.1.1.1.3.2.3" xref="S2.E3.m1.1.1.1.1.1.3.2.3.cmml">i</mi><mi id="S2.E3.m1.1.1.1.1.1.3.3" xref="S2.E3.m1.1.1.1.1.1.3.3.cmml">n</mi></msubsup><mo id="S2.E3.m1.1.1.1.1.1.2" xref="S2.E3.m1.1.1.1.1.1.2.cmml">−</mo><mrow id="S2.E3.m1.1.1.1.1.1.1" xref="S2.E3.m1.1.1.1.1.1.1.cmml"><mfrac id="S2.E3.m1.1.1.1.1.1.1.3" xref="S2.E3.m1.1.1.1.1.1.1.3.cmml"><mrow id="S2.E3.m1.1.1.1.1.1.1.3.2" xref="S2.E3.m1.1.1.1.1.1.1.3.2.cmml"><mi id="S2.E3.m1.1.1.1.1.1.1.3.2.2" mathvariant="normal" xref="S2.E3.m1.1.1.1.1.1.1.3.2.2.cmml">Δ</mi><mo id="S2.E3.m1.1.1.1.1.1.1.3.2.1" xref="S2.E3.m1.1.1.1.1.1.1.3.2.1.cmml"></mo><mi id="S2.E3.m1.1.1.1.1.1.1.3.2.3" xref="S2.E3.m1.1.1.1.1.1.1.3.2.3.cmml">t</mi></mrow><mrow id="S2.E3.m1.1.1.1.1.1.1.3.3" xref="S2.E3.m1.1.1.1.1.1.1.3.3.cmml"><mi id="S2.E3.m1.1.1.1.1.1.1.3.3.2" mathvariant="normal" xref="S2.E3.m1.1.1.1.1.1.1.3.3.2.cmml">Δ</mi><mo id="S2.E3.m1.1.1.1.1.1.1.3.3.1" xref="S2.E3.m1.1.1.1.1.1.1.3.3.1.cmml"></mo><mi id="S2.E3.m1.1.1.1.1.1.1.3.3.3" xref="S2.E3.m1.1.1.1.1.1.1.3.3.3.cmml">x</mi></mrow></mfrac><mo id="S2.E3.m1.1.1.1.1.1.1.2" xref="S2.E3.m1.1.1.1.1.1.1.2.cmml"></mo><mrow id="S2.E3.m1.1.1.1.1.1.1.1.1" xref="S2.E3.m1.1.1.1.1.1.1.1.2.cmml"><mo id="S2.E3.m1.1.1.1.1.1.1.1.1.2" xref="S2.E3.m1.1.1.1.1.1.1.1.2.1.cmml">[</mo><mrow id="S2.E3.m1.1.1.1.1.1.1.1.1.1" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.cmml"><msub id="S2.E3.m1.1.1.1.1.1.1.1.1.1.2" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.cmml"><mi id="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.2" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.2.cmml">𝐅</mi><mrow id="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.cmml"><mi id="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.2" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.2.cmml">i</mi><mo id="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.1" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.1.cmml">+</mo><mfrac id="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.3" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.3.cmml"><mn id="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.3.2" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.3.2.cmml">1</mn><mn id="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.3.3" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.3.3.cmml">2</mn></mfrac></mrow></msub><mo id="S2.E3.m1.1.1.1.1.1.1.1.1.1.1" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.1.cmml">−</mo><msub id="S2.E3.m1.1.1.1.1.1.1.1.1.1.3" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.cmml"><mi id="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.2" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.2.cmml">𝐅</mi><mrow id="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.cmml"><mi id="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.2" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.2.cmml">i</mi><mo id="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.1" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.1.cmml">−</mo><mfrac id="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.3" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.3.cmml"><mn id="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.3.2" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.3.2.cmml">1</mn><mn id="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.3.3" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.3.3.cmml">2</mn></mfrac></mrow></msub></mrow><mo id="S2.E3.m1.1.1.1.1.1.1.1.1.3" xref="S2.E3.m1.1.1.1.1.1.1.1.2.1.cmml">]</mo></mrow></mrow></mrow></mrow><mo id="S2.E3.m1.1.1.1.2" xref="S2.E3.m1.1.1.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E3.m1.1b"><apply id="S2.E3.m1.1.1.1.1.cmml" xref="S2.E3.m1.1.1.1"><eq id="S2.E3.m1.1.1.1.1.2.cmml" xref="S2.E3.m1.1.1.1.1.2"></eq><apply id="S2.E3.m1.1.1.1.1.3.cmml" xref="S2.E3.m1.1.1.1.1.3"><csymbol cd="ambiguous" id="S2.E3.m1.1.1.1.1.3.1.cmml" xref="S2.E3.m1.1.1.1.1.3">superscript</csymbol><apply id="S2.E3.m1.1.1.1.1.3.2.cmml" xref="S2.E3.m1.1.1.1.1.3"><csymbol cd="ambiguous" id="S2.E3.m1.1.1.1.1.3.2.1.cmml" xref="S2.E3.m1.1.1.1.1.3">subscript</csymbol><ci id="S2.E3.m1.1.1.1.1.3.2.2.cmml" xref="S2.E3.m1.1.1.1.1.3.2.2">𝐔</ci><ci id="S2.E3.m1.1.1.1.1.3.2.3.cmml" xref="S2.E3.m1.1.1.1.1.3.2.3">𝑖</ci></apply><apply id="S2.E3.m1.1.1.1.1.3.3.cmml" xref="S2.E3.m1.1.1.1.1.3.3"><plus id="S2.E3.m1.1.1.1.1.3.3.1.cmml" xref="S2.E3.m1.1.1.1.1.3.3.1"></plus><ci id="S2.E3.m1.1.1.1.1.3.3.2.cmml" xref="S2.E3.m1.1.1.1.1.3.3.2">𝑛</ci><cn id="S2.E3.m1.1.1.1.1.3.3.3.cmml" type="integer" xref="S2.E3.m1.1.1.1.1.3.3.3">1</cn></apply></apply><apply id="S2.E3.m1.1.1.1.1.1.cmml" xref="S2.E3.m1.1.1.1.1.1"><minus id="S2.E3.m1.1.1.1.1.1.2.cmml" xref="S2.E3.m1.1.1.1.1.1.2"></minus><apply id="S2.E3.m1.1.1.1.1.1.3.cmml" xref="S2.E3.m1.1.1.1.1.1.3"><csymbol cd="ambiguous" id="S2.E3.m1.1.1.1.1.1.3.1.cmml" xref="S2.E3.m1.1.1.1.1.1.3">superscript</csymbol><apply id="S2.E3.m1.1.1.1.1.1.3.2.cmml" xref="S2.E3.m1.1.1.1.1.1.3"><csymbol cd="ambiguous" id="S2.E3.m1.1.1.1.1.1.3.2.1.cmml" xref="S2.E3.m1.1.1.1.1.1.3">subscript</csymbol><ci id="S2.E3.m1.1.1.1.1.1.3.2.2.cmml" xref="S2.E3.m1.1.1.1.1.1.3.2.2">𝐔</ci><ci id="S2.E3.m1.1.1.1.1.1.3.2.3.cmml" xref="S2.E3.m1.1.1.1.1.1.3.2.3">𝑖</ci></apply><ci id="S2.E3.m1.1.1.1.1.1.3.3.cmml" xref="S2.E3.m1.1.1.1.1.1.3.3">𝑛</ci></apply><apply id="S2.E3.m1.1.1.1.1.1.1.cmml" xref="S2.E3.m1.1.1.1.1.1.1"><times id="S2.E3.m1.1.1.1.1.1.1.2.cmml" xref="S2.E3.m1.1.1.1.1.1.1.2"></times><apply id="S2.E3.m1.1.1.1.1.1.1.3.cmml" xref="S2.E3.m1.1.1.1.1.1.1.3"><divide id="S2.E3.m1.1.1.1.1.1.1.3.1.cmml" xref="S2.E3.m1.1.1.1.1.1.1.3"></divide><apply id="S2.E3.m1.1.1.1.1.1.1.3.2.cmml" xref="S2.E3.m1.1.1.1.1.1.1.3.2"><times id="S2.E3.m1.1.1.1.1.1.1.3.2.1.cmml" xref="S2.E3.m1.1.1.1.1.1.1.3.2.1"></times><ci id="S2.E3.m1.1.1.1.1.1.1.3.2.2.cmml" xref="S2.E3.m1.1.1.1.1.1.1.3.2.2">Δ</ci><ci id="S2.E3.m1.1.1.1.1.1.1.3.2.3.cmml" xref="S2.E3.m1.1.1.1.1.1.1.3.2.3">𝑡</ci></apply><apply id="S2.E3.m1.1.1.1.1.1.1.3.3.cmml" xref="S2.E3.m1.1.1.1.1.1.1.3.3"><times id="S2.E3.m1.1.1.1.1.1.1.3.3.1.cmml" xref="S2.E3.m1.1.1.1.1.1.1.3.3.1"></times><ci id="S2.E3.m1.1.1.1.1.1.1.3.3.2.cmml" xref="S2.E3.m1.1.1.1.1.1.1.3.3.2">Δ</ci><ci id="S2.E3.m1.1.1.1.1.1.1.3.3.3.cmml" xref="S2.E3.m1.1.1.1.1.1.1.3.3.3">𝑥</ci></apply></apply><apply id="S2.E3.m1.1.1.1.1.1.1.1.2.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1"><csymbol cd="latexml" id="S2.E3.m1.1.1.1.1.1.1.1.2.1.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.2">delimited-[]</csymbol><apply id="S2.E3.m1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1"><minus id="S2.E3.m1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.1"></minus><apply id="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.2"><csymbol cd="ambiguous" id="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.1.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.2">subscript</csymbol><ci id="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.2.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.2">𝐅</ci><apply id="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3"><plus id="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.1.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.1"></plus><ci id="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.2.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.2">𝑖</ci><apply id="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.3.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.3"><divide id="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.3.1.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.3"></divide><cn id="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.3.2.cmml" type="integer" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.3.2">1</cn><cn id="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.3.3.cmml" type="integer" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.2.3.3.3">2</cn></apply></apply></apply><apply id="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.3"><csymbol cd="ambiguous" id="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.1.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.3">subscript</csymbol><ci id="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.2.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.2">𝐅</ci><apply id="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3"><minus id="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.1.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.1"></minus><ci id="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.2.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.2">𝑖</ci><apply id="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.3.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.3"><divide id="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.3.1.cmml" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.3"></divide><cn id="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.3.2.cmml" type="integer" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.3.2">1</cn><cn id="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.3.3.cmml" type="integer" xref="S2.E3.m1.1.1.1.1.1.1.1.1.1.3.3.3.3">2</cn></apply></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E3.m1.1c">\mathbf{U}_{i}^{n+1}=\mathbf{U}_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\mathbf% {F}_{i+\frac{1}{2}}-\mathbf{F}_{i-\frac{1}{2}}\right],</annotation><annotation encoding="application/x-llamapun" id="S2.E3.m1.1d">bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT = bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT - divide start_ARG roman_Δ italic_t end_ARG start_ARG roman_Δ italic_x end_ARG [ bold_F start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT - bold_F start_POSTSUBSCRIPT italic_i - divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT ] ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS1.p4.6">where <math alttext="{\mathbf{F}_{i+\frac{1}{2}}}" class="ltx_Math" display="inline" id="S2.SS1.p4.1.m1.1"><semantics id="S2.SS1.p4.1.m1.1a"><msub id="S2.SS1.p4.1.m1.1.1" xref="S2.SS1.p4.1.m1.1.1.cmml"><mi id="S2.SS1.p4.1.m1.1.1.2" xref="S2.SS1.p4.1.m1.1.1.2.cmml">𝐅</mi><mrow id="S2.SS1.p4.1.m1.1.1.3" xref="S2.SS1.p4.1.m1.1.1.3.cmml"><mi id="S2.SS1.p4.1.m1.1.1.3.2" xref="S2.SS1.p4.1.m1.1.1.3.2.cmml">i</mi><mo id="S2.SS1.p4.1.m1.1.1.3.1" xref="S2.SS1.p4.1.m1.1.1.3.1.cmml">+</mo><mfrac id="S2.SS1.p4.1.m1.1.1.3.3" xref="S2.SS1.p4.1.m1.1.1.3.3.cmml"><mn id="S2.SS1.p4.1.m1.1.1.3.3.2" xref="S2.SS1.p4.1.m1.1.1.3.3.2.cmml">1</mn><mn id="S2.SS1.p4.1.m1.1.1.3.3.3" xref="S2.SS1.p4.1.m1.1.1.3.3.3.cmml">2</mn></mfrac></mrow></msub><annotation-xml encoding="MathML-Content" id="S2.SS1.p4.1.m1.1b"><apply id="S2.SS1.p4.1.m1.1.1.cmml" xref="S2.SS1.p4.1.m1.1.1"><csymbol cd="ambiguous" id="S2.SS1.p4.1.m1.1.1.1.cmml" xref="S2.SS1.p4.1.m1.1.1">subscript</csymbol><ci id="S2.SS1.p4.1.m1.1.1.2.cmml" xref="S2.SS1.p4.1.m1.1.1.2">𝐅</ci><apply id="S2.SS1.p4.1.m1.1.1.3.cmml" xref="S2.SS1.p4.1.m1.1.1.3"><plus id="S2.SS1.p4.1.m1.1.1.3.1.cmml" xref="S2.SS1.p4.1.m1.1.1.3.1"></plus><ci id="S2.SS1.p4.1.m1.1.1.3.2.cmml" xref="S2.SS1.p4.1.m1.1.1.3.2">𝑖</ci><apply id="S2.SS1.p4.1.m1.1.1.3.3.cmml" xref="S2.SS1.p4.1.m1.1.1.3.3"><divide id="S2.SS1.p4.1.m1.1.1.3.3.1.cmml" xref="S2.SS1.p4.1.m1.1.1.3.3"></divide><cn id="S2.SS1.p4.1.m1.1.1.3.3.2.cmml" type="integer" xref="S2.SS1.p4.1.m1.1.1.3.3.2">1</cn><cn id="S2.SS1.p4.1.m1.1.1.3.3.3.cmml" type="integer" xref="S2.SS1.p4.1.m1.1.1.3.3.3">2</cn></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p4.1.m1.1c">{\mathbf{F}_{i+\frac{1}{2}}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p4.1.m1.1d">bold_F start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT</annotation></semantics></math> and <math alttext="{\mathbf{F}_{i-\frac{1}{2}}}" class="ltx_Math" display="inline" id="S2.SS1.p4.2.m2.1"><semantics id="S2.SS1.p4.2.m2.1a"><msub id="S2.SS1.p4.2.m2.1.1" xref="S2.SS1.p4.2.m2.1.1.cmml"><mi id="S2.SS1.p4.2.m2.1.1.2" xref="S2.SS1.p4.2.m2.1.1.2.cmml">𝐅</mi><mrow id="S2.SS1.p4.2.m2.1.1.3" xref="S2.SS1.p4.2.m2.1.1.3.cmml"><mi id="S2.SS1.p4.2.m2.1.1.3.2" xref="S2.SS1.p4.2.m2.1.1.3.2.cmml">i</mi><mo id="S2.SS1.p4.2.m2.1.1.3.1" xref="S2.SS1.p4.2.m2.1.1.3.1.cmml">−</mo><mfrac id="S2.SS1.p4.2.m2.1.1.3.3" xref="S2.SS1.p4.2.m2.1.1.3.3.cmml"><mn id="S2.SS1.p4.2.m2.1.1.3.3.2" xref="S2.SS1.p4.2.m2.1.1.3.3.2.cmml">1</mn><mn id="S2.SS1.p4.2.m2.1.1.3.3.3" xref="S2.SS1.p4.2.m2.1.1.3.3.3.cmml">2</mn></mfrac></mrow></msub><annotation-xml encoding="MathML-Content" id="S2.SS1.p4.2.m2.1b"><apply id="S2.SS1.p4.2.m2.1.1.cmml" xref="S2.SS1.p4.2.m2.1.1"><csymbol cd="ambiguous" id="S2.SS1.p4.2.m2.1.1.1.cmml" xref="S2.SS1.p4.2.m2.1.1">subscript</csymbol><ci id="S2.SS1.p4.2.m2.1.1.2.cmml" xref="S2.SS1.p4.2.m2.1.1.2">𝐅</ci><apply id="S2.SS1.p4.2.m2.1.1.3.cmml" xref="S2.SS1.p4.2.m2.1.1.3"><minus id="S2.SS1.p4.2.m2.1.1.3.1.cmml" xref="S2.SS1.p4.2.m2.1.1.3.1"></minus><ci id="S2.SS1.p4.2.m2.1.1.3.2.cmml" xref="S2.SS1.p4.2.m2.1.1.3.2">𝑖</ci><apply id="S2.SS1.p4.2.m2.1.1.3.3.cmml" xref="S2.SS1.p4.2.m2.1.1.3.3"><divide id="S2.SS1.p4.2.m2.1.1.3.3.1.cmml" xref="S2.SS1.p4.2.m2.1.1.3.3"></divide><cn id="S2.SS1.p4.2.m2.1.1.3.3.2.cmml" type="integer" xref="S2.SS1.p4.2.m2.1.1.3.3.2">1</cn><cn id="S2.SS1.p4.2.m2.1.1.3.3.3.cmml" type="integer" xref="S2.SS1.p4.2.m2.1.1.3.3.3">2</cn></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p4.2.m2.1c">{\mathbf{F}_{i-\frac{1}{2}}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p4.2.m2.1d">bold_F start_POSTSUBSCRIPT italic_i - divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT</annotation></semantics></math> represent <span class="ltx_text ltx_font_italic" id="S2.SS1.p4.6.1">inter-cell fluxes</span>, i.e. the interpolated fluxes of the conserved variables between cells <math alttext="{x_{i}}" class="ltx_Math" display="inline" id="S2.SS1.p4.3.m3.1"><semantics id="S2.SS1.p4.3.m3.1a"><msub id="S2.SS1.p4.3.m3.1.1" xref="S2.SS1.p4.3.m3.1.1.cmml"><mi id="S2.SS1.p4.3.m3.1.1.2" xref="S2.SS1.p4.3.m3.1.1.2.cmml">x</mi><mi id="S2.SS1.p4.3.m3.1.1.3" xref="S2.SS1.p4.3.m3.1.1.3.cmml">i</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS1.p4.3.m3.1b"><apply id="S2.SS1.p4.3.m3.1.1.cmml" xref="S2.SS1.p4.3.m3.1.1"><csymbol cd="ambiguous" id="S2.SS1.p4.3.m3.1.1.1.cmml" xref="S2.SS1.p4.3.m3.1.1">subscript</csymbol><ci id="S2.SS1.p4.3.m3.1.1.2.cmml" xref="S2.SS1.p4.3.m3.1.1.2">𝑥</ci><ci id="S2.SS1.p4.3.m3.1.1.3.cmml" xref="S2.SS1.p4.3.m3.1.1.3">𝑖</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p4.3.m3.1c">{x_{i}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p4.3.m3.1d">italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT</annotation></semantics></math> and <math alttext="{x_{i+1}}" class="ltx_Math" display="inline" id="S2.SS1.p4.4.m4.1"><semantics id="S2.SS1.p4.4.m4.1a"><msub id="S2.SS1.p4.4.m4.1.1" xref="S2.SS1.p4.4.m4.1.1.cmml"><mi id="S2.SS1.p4.4.m4.1.1.2" xref="S2.SS1.p4.4.m4.1.1.2.cmml">x</mi><mrow id="S2.SS1.p4.4.m4.1.1.3" xref="S2.SS1.p4.4.m4.1.1.3.cmml"><mi id="S2.SS1.p4.4.m4.1.1.3.2" xref="S2.SS1.p4.4.m4.1.1.3.2.cmml">i</mi><mo id="S2.SS1.p4.4.m4.1.1.3.1" xref="S2.SS1.p4.4.m4.1.1.3.1.cmml">+</mo><mn id="S2.SS1.p4.4.m4.1.1.3.3" xref="S2.SS1.p4.4.m4.1.1.3.3.cmml">1</mn></mrow></msub><annotation-xml encoding="MathML-Content" id="S2.SS1.p4.4.m4.1b"><apply id="S2.SS1.p4.4.m4.1.1.cmml" xref="S2.SS1.p4.4.m4.1.1"><csymbol cd="ambiguous" id="S2.SS1.p4.4.m4.1.1.1.cmml" xref="S2.SS1.p4.4.m4.1.1">subscript</csymbol><ci id="S2.SS1.p4.4.m4.1.1.2.cmml" xref="S2.SS1.p4.4.m4.1.1.2">𝑥</ci><apply id="S2.SS1.p4.4.m4.1.1.3.cmml" xref="S2.SS1.p4.4.m4.1.1.3"><plus id="S2.SS1.p4.4.m4.1.1.3.1.cmml" xref="S2.SS1.p4.4.m4.1.1.3.1"></plus><ci id="S2.SS1.p4.4.m4.1.1.3.2.cmml" xref="S2.SS1.p4.4.m4.1.1.3.2">𝑖</ci><cn id="S2.SS1.p4.4.m4.1.1.3.3.cmml" type="integer" xref="S2.SS1.p4.4.m4.1.1.3.3">1</cn></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p4.4.m4.1c">{x_{i+1}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p4.4.m4.1d">italic_x start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT</annotation></semantics></math>, and between cells <math alttext="{x_{i-1}}" class="ltx_Math" display="inline" id="S2.SS1.p4.5.m5.1"><semantics id="S2.SS1.p4.5.m5.1a"><msub id="S2.SS1.p4.5.m5.1.1" xref="S2.SS1.p4.5.m5.1.1.cmml"><mi id="S2.SS1.p4.5.m5.1.1.2" xref="S2.SS1.p4.5.m5.1.1.2.cmml">x</mi><mrow id="S2.SS1.p4.5.m5.1.1.3" xref="S2.SS1.p4.5.m5.1.1.3.cmml"><mi id="S2.SS1.p4.5.m5.1.1.3.2" xref="S2.SS1.p4.5.m5.1.1.3.2.cmml">i</mi><mo id="S2.SS1.p4.5.m5.1.1.3.1" xref="S2.SS1.p4.5.m5.1.1.3.1.cmml">−</mo><mn id="S2.SS1.p4.5.m5.1.1.3.3" xref="S2.SS1.p4.5.m5.1.1.3.3.cmml">1</mn></mrow></msub><annotation-xml encoding="MathML-Content" id="S2.SS1.p4.5.m5.1b"><apply id="S2.SS1.p4.5.m5.1.1.cmml" xref="S2.SS1.p4.5.m5.1.1"><csymbol cd="ambiguous" id="S2.SS1.p4.5.m5.1.1.1.cmml" xref="S2.SS1.p4.5.m5.1.1">subscript</csymbol><ci id="S2.SS1.p4.5.m5.1.1.2.cmml" xref="S2.SS1.p4.5.m5.1.1.2">𝑥</ci><apply id="S2.SS1.p4.5.m5.1.1.3.cmml" xref="S2.SS1.p4.5.m5.1.1.3"><minus id="S2.SS1.p4.5.m5.1.1.3.1.cmml" xref="S2.SS1.p4.5.m5.1.1.3.1"></minus><ci id="S2.SS1.p4.5.m5.1.1.3.2.cmml" xref="S2.SS1.p4.5.m5.1.1.3.2">𝑖</ci><cn id="S2.SS1.p4.5.m5.1.1.3.3.cmml" type="integer" xref="S2.SS1.p4.5.m5.1.1.3.3">1</cn></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p4.5.m5.1c">{x_{i-1}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p4.5.m5.1d">italic_x start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT</annotation></semantics></math> and <math alttext="{x_{i}}" class="ltx_Math" display="inline" id="S2.SS1.p4.6.m6.1"><semantics id="S2.SS1.p4.6.m6.1a"><msub id="S2.SS1.p4.6.m6.1.1" xref="S2.SS1.p4.6.m6.1.1.cmml"><mi id="S2.SS1.p4.6.m6.1.1.2" xref="S2.SS1.p4.6.m6.1.1.2.cmml">x</mi><mi id="S2.SS1.p4.6.m6.1.1.3" xref="S2.SS1.p4.6.m6.1.1.3.cmml">i</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS1.p4.6.m6.1b"><apply id="S2.SS1.p4.6.m6.1.1.cmml" xref="S2.SS1.p4.6.m6.1.1"><csymbol cd="ambiguous" id="S2.SS1.p4.6.m6.1.1.1.cmml" xref="S2.SS1.p4.6.m6.1.1">subscript</csymbol><ci id="S2.SS1.p4.6.m6.1.1.2.cmml" xref="S2.SS1.p4.6.m6.1.1.2">𝑥</ci><ci id="S2.SS1.p4.6.m6.1.1.3.cmml" xref="S2.SS1.p4.6.m6.1.1.3">𝑖</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p4.6.m6.1c">{x_{i}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p4.6.m6.1d">italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT</annotation></semantics></math>, respectively. Different choices of inter-cell flux function give rise to different finite volume schemes, exhibiting different numerical properties<cite class="ltx_cite ltx_citemacro_citep">(LeVeque, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib23" title="">2011</a>)</cite>.</p> </div> <div class="ltx_para" id="S2.SS1.p5"> <p class="ltx_p" id="S2.SS1.p5.1">In what follows, we shall focus on four one-dimensional model equation systems in particular, covering all possible combinations of linear vs. non-linear and scalar vs. vector. The first two are purely 1D scalar equations of the form:</p> </div> <div class="ltx_para" id="S2.SS1.p6"> <table class="ltx_equation ltx_eqn_table" id="S2.E4"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(4)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\frac{\partial u}{\partial t}+\frac{\partial f\left(u\right)}{\partial x}=0," class="ltx_Math" display="block" id="S2.E4.m1.2"><semantics id="S2.E4.m1.2a"><mrow id="S2.E4.m1.2.2.1" xref="S2.E4.m1.2.2.1.1.cmml"><mrow id="S2.E4.m1.2.2.1.1" xref="S2.E4.m1.2.2.1.1.cmml"><mrow id="S2.E4.m1.2.2.1.1.2" xref="S2.E4.m1.2.2.1.1.2.cmml"><mfrac id="S2.E4.m1.2.2.1.1.2.2" xref="S2.E4.m1.2.2.1.1.2.2.cmml"><mrow id="S2.E4.m1.2.2.1.1.2.2.2" xref="S2.E4.m1.2.2.1.1.2.2.2.cmml"><mo id="S2.E4.m1.2.2.1.1.2.2.2.1" rspace="0em" xref="S2.E4.m1.2.2.1.1.2.2.2.1.cmml">∂</mo><mi id="S2.E4.m1.2.2.1.1.2.2.2.2" xref="S2.E4.m1.2.2.1.1.2.2.2.2.cmml">u</mi></mrow><mrow id="S2.E4.m1.2.2.1.1.2.2.3" xref="S2.E4.m1.2.2.1.1.2.2.3.cmml"><mo id="S2.E4.m1.2.2.1.1.2.2.3.1" rspace="0em" xref="S2.E4.m1.2.2.1.1.2.2.3.1.cmml">∂</mo><mi id="S2.E4.m1.2.2.1.1.2.2.3.2" xref="S2.E4.m1.2.2.1.1.2.2.3.2.cmml">t</mi></mrow></mfrac><mo id="S2.E4.m1.2.2.1.1.2.1" xref="S2.E4.m1.2.2.1.1.2.1.cmml">+</mo><mfrac id="S2.E4.m1.1.1" xref="S2.E4.m1.1.1.cmml"><mrow id="S2.E4.m1.1.1.1" xref="S2.E4.m1.1.1.1.cmml"><mo id="S2.E4.m1.1.1.1.2" rspace="0em" xref="S2.E4.m1.1.1.1.2.cmml">∂</mo><mrow id="S2.E4.m1.1.1.1.3" xref="S2.E4.m1.1.1.1.3.cmml"><mi id="S2.E4.m1.1.1.1.3.2" xref="S2.E4.m1.1.1.1.3.2.cmml">f</mi><mo id="S2.E4.m1.1.1.1.3.1" xref="S2.E4.m1.1.1.1.3.1.cmml"></mo><mrow id="S2.E4.m1.1.1.1.3.3.2" xref="S2.E4.m1.1.1.1.3.cmml"><mo id="S2.E4.m1.1.1.1.3.3.2.1" xref="S2.E4.m1.1.1.1.3.cmml">(</mo><mi id="S2.E4.m1.1.1.1.1" xref="S2.E4.m1.1.1.1.1.cmml">u</mi><mo id="S2.E4.m1.1.1.1.3.3.2.2" xref="S2.E4.m1.1.1.1.3.cmml">)</mo></mrow></mrow></mrow><mrow id="S2.E4.m1.1.1.3" xref="S2.E4.m1.1.1.3.cmml"><mo id="S2.E4.m1.1.1.3.1" rspace="0em" xref="S2.E4.m1.1.1.3.1.cmml">∂</mo><mi id="S2.E4.m1.1.1.3.2" xref="S2.E4.m1.1.1.3.2.cmml">x</mi></mrow></mfrac></mrow><mo id="S2.E4.m1.2.2.1.1.1" xref="S2.E4.m1.2.2.1.1.1.cmml">=</mo><mn id="S2.E4.m1.2.2.1.1.3" xref="S2.E4.m1.2.2.1.1.3.cmml">0</mn></mrow><mo id="S2.E4.m1.2.2.1.2" xref="S2.E4.m1.2.2.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E4.m1.2b"><apply id="S2.E4.m1.2.2.1.1.cmml" xref="S2.E4.m1.2.2.1"><eq id="S2.E4.m1.2.2.1.1.1.cmml" xref="S2.E4.m1.2.2.1.1.1"></eq><apply id="S2.E4.m1.2.2.1.1.2.cmml" xref="S2.E4.m1.2.2.1.1.2"><plus id="S2.E4.m1.2.2.1.1.2.1.cmml" xref="S2.E4.m1.2.2.1.1.2.1"></plus><apply id="S2.E4.m1.2.2.1.1.2.2.cmml" xref="S2.E4.m1.2.2.1.1.2.2"><divide id="S2.E4.m1.2.2.1.1.2.2.1.cmml" xref="S2.E4.m1.2.2.1.1.2.2"></divide><apply id="S2.E4.m1.2.2.1.1.2.2.2.cmml" xref="S2.E4.m1.2.2.1.1.2.2.2"><partialdiff id="S2.E4.m1.2.2.1.1.2.2.2.1.cmml" xref="S2.E4.m1.2.2.1.1.2.2.2.1"></partialdiff><ci id="S2.E4.m1.2.2.1.1.2.2.2.2.cmml" xref="S2.E4.m1.2.2.1.1.2.2.2.2">𝑢</ci></apply><apply id="S2.E4.m1.2.2.1.1.2.2.3.cmml" xref="S2.E4.m1.2.2.1.1.2.2.3"><partialdiff id="S2.E4.m1.2.2.1.1.2.2.3.1.cmml" xref="S2.E4.m1.2.2.1.1.2.2.3.1"></partialdiff><ci id="S2.E4.m1.2.2.1.1.2.2.3.2.cmml" xref="S2.E4.m1.2.2.1.1.2.2.3.2">𝑡</ci></apply></apply><apply id="S2.E4.m1.1.1.cmml" xref="S2.E4.m1.1.1"><divide id="S2.E4.m1.1.1.2.cmml" xref="S2.E4.m1.1.1"></divide><apply id="S2.E4.m1.1.1.1.cmml" xref="S2.E4.m1.1.1.1"><partialdiff id="S2.E4.m1.1.1.1.2.cmml" xref="S2.E4.m1.1.1.1.2"></partialdiff><apply id="S2.E4.m1.1.1.1.3.cmml" xref="S2.E4.m1.1.1.1.3"><times id="S2.E4.m1.1.1.1.3.1.cmml" xref="S2.E4.m1.1.1.1.3.1"></times><ci id="S2.E4.m1.1.1.1.3.2.cmml" xref="S2.E4.m1.1.1.1.3.2">𝑓</ci><ci id="S2.E4.m1.1.1.1.1.cmml" xref="S2.E4.m1.1.1.1.1">𝑢</ci></apply></apply><apply id="S2.E4.m1.1.1.3.cmml" xref="S2.E4.m1.1.1.3"><partialdiff id="S2.E4.m1.1.1.3.1.cmml" xref="S2.E4.m1.1.1.3.1"></partialdiff><ci id="S2.E4.m1.1.1.3.2.cmml" xref="S2.E4.m1.1.1.3.2">𝑥</ci></apply></apply></apply><cn id="S2.E4.m1.2.2.1.1.3.cmml" type="integer" xref="S2.E4.m1.2.2.1.1.3">0</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E4.m1.2c">\frac{\partial u}{\partial t}+\frac{\partial f\left(u\right)}{\partial x}=0,</annotation><annotation encoding="application/x-llamapun" id="S2.E4.m1.2d">divide start_ARG ∂ italic_u end_ARG start_ARG ∂ italic_t end_ARG + divide start_ARG ∂ italic_f ( italic_u ) end_ARG start_ARG ∂ italic_x end_ARG = 0 ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS1.p6.4">namely the linear <span class="ltx_text ltx_font_italic" id="S2.SS1.p6.4.1">advection equation</span> with flux <math alttext="{f\left(u\right)=au}" class="ltx_Math" display="inline" id="S2.SS1.p6.1.m1.1"><semantics id="S2.SS1.p6.1.m1.1a"><mrow id="S2.SS1.p6.1.m1.1.2" xref="S2.SS1.p6.1.m1.1.2.cmml"><mrow id="S2.SS1.p6.1.m1.1.2.2" xref="S2.SS1.p6.1.m1.1.2.2.cmml"><mi id="S2.SS1.p6.1.m1.1.2.2.2" xref="S2.SS1.p6.1.m1.1.2.2.2.cmml">f</mi><mo id="S2.SS1.p6.1.m1.1.2.2.1" xref="S2.SS1.p6.1.m1.1.2.2.1.cmml"></mo><mrow id="S2.SS1.p6.1.m1.1.2.2.3.2" xref="S2.SS1.p6.1.m1.1.2.2.cmml"><mo id="S2.SS1.p6.1.m1.1.2.2.3.2.1" xref="S2.SS1.p6.1.m1.1.2.2.cmml">(</mo><mi id="S2.SS1.p6.1.m1.1.1" xref="S2.SS1.p6.1.m1.1.1.cmml">u</mi><mo id="S2.SS1.p6.1.m1.1.2.2.3.2.2" xref="S2.SS1.p6.1.m1.1.2.2.cmml">)</mo></mrow></mrow><mo id="S2.SS1.p6.1.m1.1.2.1" xref="S2.SS1.p6.1.m1.1.2.1.cmml">=</mo><mrow id="S2.SS1.p6.1.m1.1.2.3" xref="S2.SS1.p6.1.m1.1.2.3.cmml"><mi id="S2.SS1.p6.1.m1.1.2.3.2" xref="S2.SS1.p6.1.m1.1.2.3.2.cmml">a</mi><mo id="S2.SS1.p6.1.m1.1.2.3.1" xref="S2.SS1.p6.1.m1.1.2.3.1.cmml"></mo><mi id="S2.SS1.p6.1.m1.1.2.3.3" xref="S2.SS1.p6.1.m1.1.2.3.3.cmml">u</mi></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.SS1.p6.1.m1.1b"><apply id="S2.SS1.p6.1.m1.1.2.cmml" xref="S2.SS1.p6.1.m1.1.2"><eq id="S2.SS1.p6.1.m1.1.2.1.cmml" xref="S2.SS1.p6.1.m1.1.2.1"></eq><apply id="S2.SS1.p6.1.m1.1.2.2.cmml" xref="S2.SS1.p6.1.m1.1.2.2"><times id="S2.SS1.p6.1.m1.1.2.2.1.cmml" xref="S2.SS1.p6.1.m1.1.2.2.1"></times><ci id="S2.SS1.p6.1.m1.1.2.2.2.cmml" xref="S2.SS1.p6.1.m1.1.2.2.2">𝑓</ci><ci id="S2.SS1.p6.1.m1.1.1.cmml" xref="S2.SS1.p6.1.m1.1.1">𝑢</ci></apply><apply id="S2.SS1.p6.1.m1.1.2.3.cmml" xref="S2.SS1.p6.1.m1.1.2.3"><times id="S2.SS1.p6.1.m1.1.2.3.1.cmml" xref="S2.SS1.p6.1.m1.1.2.3.1"></times><ci id="S2.SS1.p6.1.m1.1.2.3.2.cmml" xref="S2.SS1.p6.1.m1.1.2.3.2">𝑎</ci><ci id="S2.SS1.p6.1.m1.1.2.3.3.cmml" xref="S2.SS1.p6.1.m1.1.2.3.3">𝑢</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p6.1.m1.1c">{f\left(u\right)=au}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p6.1.m1.1d">italic_f ( italic_u ) = italic_a italic_u</annotation></semantics></math> (for an arbitrary constant advection velocity <math alttext="{a\in\mathbb{R}}" class="ltx_Math" display="inline" id="S2.SS1.p6.2.m2.1"><semantics id="S2.SS1.p6.2.m2.1a"><mrow id="S2.SS1.p6.2.m2.1.1" xref="S2.SS1.p6.2.m2.1.1.cmml"><mi id="S2.SS1.p6.2.m2.1.1.2" xref="S2.SS1.p6.2.m2.1.1.2.cmml">a</mi><mo id="S2.SS1.p6.2.m2.1.1.1" xref="S2.SS1.p6.2.m2.1.1.1.cmml">∈</mo><mi id="S2.SS1.p6.2.m2.1.1.3" xref="S2.SS1.p6.2.m2.1.1.3.cmml">ℝ</mi></mrow><annotation-xml encoding="MathML-Content" id="S2.SS1.p6.2.m2.1b"><apply id="S2.SS1.p6.2.m2.1.1.cmml" xref="S2.SS1.p6.2.m2.1.1"><in id="S2.SS1.p6.2.m2.1.1.1.cmml" xref="S2.SS1.p6.2.m2.1.1.1"></in><ci id="S2.SS1.p6.2.m2.1.1.2.cmml" xref="S2.SS1.p6.2.m2.1.1.2">𝑎</ci><ci id="S2.SS1.p6.2.m2.1.1.3.cmml" xref="S2.SS1.p6.2.m2.1.1.3">ℝ</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p6.2.m2.1c">{a\in\mathbb{R}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p6.2.m2.1d">italic_a ∈ blackboard_R</annotation></semantics></math>), and the non-linear <span class="ltx_text ltx_font_italic" id="S2.SS1.p6.4.2">inviscid Burgers’ equation</span> with flux <math alttext="{f\left(u\right)=\frac{1}{2}u^{2}}" class="ltx_Math" display="inline" id="S2.SS1.p6.3.m3.1"><semantics id="S2.SS1.p6.3.m3.1a"><mrow id="S2.SS1.p6.3.m3.1.2" xref="S2.SS1.p6.3.m3.1.2.cmml"><mrow id="S2.SS1.p6.3.m3.1.2.2" xref="S2.SS1.p6.3.m3.1.2.2.cmml"><mi id="S2.SS1.p6.3.m3.1.2.2.2" xref="S2.SS1.p6.3.m3.1.2.2.2.cmml">f</mi><mo id="S2.SS1.p6.3.m3.1.2.2.1" xref="S2.SS1.p6.3.m3.1.2.2.1.cmml"></mo><mrow id="S2.SS1.p6.3.m3.1.2.2.3.2" xref="S2.SS1.p6.3.m3.1.2.2.cmml"><mo id="S2.SS1.p6.3.m3.1.2.2.3.2.1" xref="S2.SS1.p6.3.m3.1.2.2.cmml">(</mo><mi id="S2.SS1.p6.3.m3.1.1" xref="S2.SS1.p6.3.m3.1.1.cmml">u</mi><mo id="S2.SS1.p6.3.m3.1.2.2.3.2.2" xref="S2.SS1.p6.3.m3.1.2.2.cmml">)</mo></mrow></mrow><mo id="S2.SS1.p6.3.m3.1.2.1" xref="S2.SS1.p6.3.m3.1.2.1.cmml">=</mo><mrow id="S2.SS1.p6.3.m3.1.2.3" xref="S2.SS1.p6.3.m3.1.2.3.cmml"><mfrac id="S2.SS1.p6.3.m3.1.2.3.2" xref="S2.SS1.p6.3.m3.1.2.3.2.cmml"><mn id="S2.SS1.p6.3.m3.1.2.3.2.2" xref="S2.SS1.p6.3.m3.1.2.3.2.2.cmml">1</mn><mn id="S2.SS1.p6.3.m3.1.2.3.2.3" xref="S2.SS1.p6.3.m3.1.2.3.2.3.cmml">2</mn></mfrac><mo id="S2.SS1.p6.3.m3.1.2.3.1" xref="S2.SS1.p6.3.m3.1.2.3.1.cmml"></mo><msup id="S2.SS1.p6.3.m3.1.2.3.3" xref="S2.SS1.p6.3.m3.1.2.3.3.cmml"><mi id="S2.SS1.p6.3.m3.1.2.3.3.2" xref="S2.SS1.p6.3.m3.1.2.3.3.2.cmml">u</mi><mn id="S2.SS1.p6.3.m3.1.2.3.3.3" xref="S2.SS1.p6.3.m3.1.2.3.3.3.cmml">2</mn></msup></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.SS1.p6.3.m3.1b"><apply id="S2.SS1.p6.3.m3.1.2.cmml" xref="S2.SS1.p6.3.m3.1.2"><eq id="S2.SS1.p6.3.m3.1.2.1.cmml" xref="S2.SS1.p6.3.m3.1.2.1"></eq><apply id="S2.SS1.p6.3.m3.1.2.2.cmml" xref="S2.SS1.p6.3.m3.1.2.2"><times id="S2.SS1.p6.3.m3.1.2.2.1.cmml" xref="S2.SS1.p6.3.m3.1.2.2.1"></times><ci id="S2.SS1.p6.3.m3.1.2.2.2.cmml" xref="S2.SS1.p6.3.m3.1.2.2.2">𝑓</ci><ci id="S2.SS1.p6.3.m3.1.1.cmml" xref="S2.SS1.p6.3.m3.1.1">𝑢</ci></apply><apply id="S2.SS1.p6.3.m3.1.2.3.cmml" xref="S2.SS1.p6.3.m3.1.2.3"><times id="S2.SS1.p6.3.m3.1.2.3.1.cmml" xref="S2.SS1.p6.3.m3.1.2.3.1"></times><apply id="S2.SS1.p6.3.m3.1.2.3.2.cmml" xref="S2.SS1.p6.3.m3.1.2.3.2"><divide id="S2.SS1.p6.3.m3.1.2.3.2.1.cmml" xref="S2.SS1.p6.3.m3.1.2.3.2"></divide><cn id="S2.SS1.p6.3.m3.1.2.3.2.2.cmml" type="integer" xref="S2.SS1.p6.3.m3.1.2.3.2.2">1</cn><cn id="S2.SS1.p6.3.m3.1.2.3.2.3.cmml" type="integer" xref="S2.SS1.p6.3.m3.1.2.3.2.3">2</cn></apply><apply id="S2.SS1.p6.3.m3.1.2.3.3.cmml" xref="S2.SS1.p6.3.m3.1.2.3.3"><csymbol cd="ambiguous" id="S2.SS1.p6.3.m3.1.2.3.3.1.cmml" xref="S2.SS1.p6.3.m3.1.2.3.3">superscript</csymbol><ci id="S2.SS1.p6.3.m3.1.2.3.3.2.cmml" xref="S2.SS1.p6.3.m3.1.2.3.3.2">𝑢</ci><cn id="S2.SS1.p6.3.m3.1.2.3.3.3.cmml" type="integer" xref="S2.SS1.p6.3.m3.1.2.3.3.3">2</cn></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p6.3.m3.1c">{f\left(u\right)=\frac{1}{2}u^{2}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p6.3.m3.1d">italic_f ( italic_u ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT</annotation></semantics></math>. In each case, the conserved variable <math alttext="u" class="ltx_Math" display="inline" id="S2.SS1.p6.4.m4.1"><semantics id="S2.SS1.p6.4.m4.1a"><mi id="S2.SS1.p6.4.m4.1.1" xref="S2.SS1.p6.4.m4.1.1.cmml">u</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p6.4.m4.1b"><ci id="S2.SS1.p6.4.m4.1.1.cmml" xref="S2.SS1.p6.4.m4.1.1">𝑢</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p6.4.m4.1c">u</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p6.4.m4.1d">italic_u</annotation></semantics></math> simply represents an arbitrary advected quantity. The second two are 1D vector equation systems of the form:</p> </div> <div class="ltx_para" id="S2.SS1.p7"> <table class="ltx_equation ltx_eqn_table" id="S2.E5"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(5)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\frac{\partial\mathbf{U}}{\partial t}+\frac{\partial\mathbf{F}\left(\mathbf{U}% \right)}{\partial x}=\mathbf{0}" class="ltx_Math" display="block" id="S2.E5.m1.1"><semantics id="S2.E5.m1.1a"><mrow id="S2.E5.m1.1.2" xref="S2.E5.m1.1.2.cmml"><mrow id="S2.E5.m1.1.2.2" xref="S2.E5.m1.1.2.2.cmml"><mfrac id="S2.E5.m1.1.2.2.2" xref="S2.E5.m1.1.2.2.2.cmml"><mrow id="S2.E5.m1.1.2.2.2.2" xref="S2.E5.m1.1.2.2.2.2.cmml"><mo id="S2.E5.m1.1.2.2.2.2.1" rspace="0em" xref="S2.E5.m1.1.2.2.2.2.1.cmml">∂</mo><mi id="S2.E5.m1.1.2.2.2.2.2" xref="S2.E5.m1.1.2.2.2.2.2.cmml">𝐔</mi></mrow><mrow id="S2.E5.m1.1.2.2.2.3" xref="S2.E5.m1.1.2.2.2.3.cmml"><mo id="S2.E5.m1.1.2.2.2.3.1" rspace="0em" xref="S2.E5.m1.1.2.2.2.3.1.cmml">∂</mo><mi id="S2.E5.m1.1.2.2.2.3.2" xref="S2.E5.m1.1.2.2.2.3.2.cmml">t</mi></mrow></mfrac><mo id="S2.E5.m1.1.2.2.1" xref="S2.E5.m1.1.2.2.1.cmml">+</mo><mfrac id="S2.E5.m1.1.1" xref="S2.E5.m1.1.1.cmml"><mrow id="S2.E5.m1.1.1.1" xref="S2.E5.m1.1.1.1.cmml"><mo id="S2.E5.m1.1.1.1.2" rspace="0em" xref="S2.E5.m1.1.1.1.2.cmml">∂</mo><mrow id="S2.E5.m1.1.1.1.3" xref="S2.E5.m1.1.1.1.3.cmml"><mi id="S2.E5.m1.1.1.1.3.2" xref="S2.E5.m1.1.1.1.3.2.cmml">𝐅</mi><mo id="S2.E5.m1.1.1.1.3.1" xref="S2.E5.m1.1.1.1.3.1.cmml"></mo><mrow id="S2.E5.m1.1.1.1.3.3.2" xref="S2.E5.m1.1.1.1.3.cmml"><mo id="S2.E5.m1.1.1.1.3.3.2.1" xref="S2.E5.m1.1.1.1.3.cmml">(</mo><mi id="S2.E5.m1.1.1.1.1" xref="S2.E5.m1.1.1.1.1.cmml">𝐔</mi><mo id="S2.E5.m1.1.1.1.3.3.2.2" xref="S2.E5.m1.1.1.1.3.cmml">)</mo></mrow></mrow></mrow><mrow id="S2.E5.m1.1.1.3" xref="S2.E5.m1.1.1.3.cmml"><mo id="S2.E5.m1.1.1.3.1" rspace="0em" xref="S2.E5.m1.1.1.3.1.cmml">∂</mo><mi id="S2.E5.m1.1.1.3.2" xref="S2.E5.m1.1.1.3.2.cmml">x</mi></mrow></mfrac></mrow><mo id="S2.E5.m1.1.2.1" xref="S2.E5.m1.1.2.1.cmml">=</mo><mn id="S2.E5.m1.1.2.3" xref="S2.E5.m1.1.2.3.cmml">𝟎</mn></mrow><annotation-xml encoding="MathML-Content" id="S2.E5.m1.1b"><apply id="S2.E5.m1.1.2.cmml" xref="S2.E5.m1.1.2"><eq id="S2.E5.m1.1.2.1.cmml" xref="S2.E5.m1.1.2.1"></eq><apply id="S2.E5.m1.1.2.2.cmml" xref="S2.E5.m1.1.2.2"><plus id="S2.E5.m1.1.2.2.1.cmml" xref="S2.E5.m1.1.2.2.1"></plus><apply id="S2.E5.m1.1.2.2.2.cmml" xref="S2.E5.m1.1.2.2.2"><divide id="S2.E5.m1.1.2.2.2.1.cmml" xref="S2.E5.m1.1.2.2.2"></divide><apply id="S2.E5.m1.1.2.2.2.2.cmml" xref="S2.E5.m1.1.2.2.2.2"><partialdiff id="S2.E5.m1.1.2.2.2.2.1.cmml" xref="S2.E5.m1.1.2.2.2.2.1"></partialdiff><ci id="S2.E5.m1.1.2.2.2.2.2.cmml" xref="S2.E5.m1.1.2.2.2.2.2">𝐔</ci></apply><apply id="S2.E5.m1.1.2.2.2.3.cmml" xref="S2.E5.m1.1.2.2.2.3"><partialdiff id="S2.E5.m1.1.2.2.2.3.1.cmml" xref="S2.E5.m1.1.2.2.2.3.1"></partialdiff><ci id="S2.E5.m1.1.2.2.2.3.2.cmml" xref="S2.E5.m1.1.2.2.2.3.2">𝑡</ci></apply></apply><apply id="S2.E5.m1.1.1.cmml" xref="S2.E5.m1.1.1"><divide id="S2.E5.m1.1.1.2.cmml" xref="S2.E5.m1.1.1"></divide><apply id="S2.E5.m1.1.1.1.cmml" xref="S2.E5.m1.1.1.1"><partialdiff id="S2.E5.m1.1.1.1.2.cmml" xref="S2.E5.m1.1.1.1.2"></partialdiff><apply id="S2.E5.m1.1.1.1.3.cmml" xref="S2.E5.m1.1.1.1.3"><times id="S2.E5.m1.1.1.1.3.1.cmml" xref="S2.E5.m1.1.1.1.3.1"></times><ci id="S2.E5.m1.1.1.1.3.2.cmml" xref="S2.E5.m1.1.1.1.3.2">𝐅</ci><ci id="S2.E5.m1.1.1.1.1.cmml" xref="S2.E5.m1.1.1.1.1">𝐔</ci></apply></apply><apply id="S2.E5.m1.1.1.3.cmml" xref="S2.E5.m1.1.1.3"><partialdiff id="S2.E5.m1.1.1.3.1.cmml" xref="S2.E5.m1.1.1.3.1"></partialdiff><ci id="S2.E5.m1.1.1.3.2.cmml" xref="S2.E5.m1.1.1.3.2">𝑥</ci></apply></apply></apply><cn id="S2.E5.m1.1.2.3.cmml" type="integer" xref="S2.E5.m1.1.2.3">0</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E5.m1.1c">\frac{\partial\mathbf{U}}{\partial t}+\frac{\partial\mathbf{F}\left(\mathbf{U}% \right)}{\partial x}=\mathbf{0}</annotation><annotation encoding="application/x-llamapun" id="S2.E5.m1.1d">divide start_ARG ∂ bold_U end_ARG start_ARG ∂ italic_t end_ARG + divide start_ARG ∂ bold_F ( bold_U ) end_ARG start_ARG ∂ italic_x end_ARG = bold_0</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS1.p7.1">namely the linear <span class="ltx_text ltx_font_italic" id="S2.SS1.p7.1.1">perfectly hyperbolic Maxwell’s equations<cite class="ltx_cite ltx_citemacro_citep"><span class="ltx_text ltx_font_upright" id="S2.SS1.p7.1.1.1.1">(</span>Munz et al<span class="ltx_text">.</span><span class="ltx_text ltx_font_upright" id="S2.SS1.p7.1.1.2.2.1.1">, </span><a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib24" title="">2000</a><span class="ltx_text ltx_font_upright" id="S2.SS1.p7.1.1.3.3">)</span></cite></span>, with conserved variable vector:</p> </div> <div class="ltx_para" id="S2.SS1.p8"> <table class="ltx_equation ltx_eqn_table" id="S2.E6"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(6)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{U}=\begin{bmatrix}E^{x}&E^{y}&E^{z}&B^{x}&B^{y}&B^{z}&\phi&\psi\end{% bmatrix}^{\intercal}," class="ltx_Math" display="block" id="S2.E6.m1.2"><semantics id="S2.E6.m1.2a"><mrow id="S2.E6.m1.2.2.1" xref="S2.E6.m1.2.2.1.1.cmml"><mrow id="S2.E6.m1.2.2.1.1" xref="S2.E6.m1.2.2.1.1.cmml"><mi id="S2.E6.m1.2.2.1.1.2" xref="S2.E6.m1.2.2.1.1.2.cmml">𝐔</mi><mo id="S2.E6.m1.2.2.1.1.1" xref="S2.E6.m1.2.2.1.1.1.cmml">=</mo><msup id="S2.E6.m1.2.2.1.1.3" xref="S2.E6.m1.2.2.1.1.3.cmml"><mrow id="S2.E6.m1.1.1.3" xref="S2.E6.m1.1.1.2.cmml"><mo id="S2.E6.m1.1.1.3.1" xref="S2.E6.m1.1.1.2.1.cmml">[</mo><mtable columnspacing="5pt" displaystyle="true" id="S2.E6.m1.1.1.1.1" xref="S2.E6.m1.1.1.1.1.cmml"><mtr id="S2.E6.m1.1.1.1.1a" xref="S2.E6.m1.1.1.1.1.cmml"><mtd id="S2.E6.m1.1.1.1.1b" xref="S2.E6.m1.1.1.1.1.cmml"><msup id="S2.E6.m1.1.1.1.1.1.1.1" xref="S2.E6.m1.1.1.1.1.1.1.1.cmml"><mi id="S2.E6.m1.1.1.1.1.1.1.1.2" xref="S2.E6.m1.1.1.1.1.1.1.1.2.cmml">E</mi><mi id="S2.E6.m1.1.1.1.1.1.1.1.3" xref="S2.E6.m1.1.1.1.1.1.1.1.3.cmml">x</mi></msup></mtd><mtd id="S2.E6.m1.1.1.1.1c" xref="S2.E6.m1.1.1.1.1.cmml"><msup id="S2.E6.m1.1.1.1.1.1.2.1" xref="S2.E6.m1.1.1.1.1.1.2.1.cmml"><mi id="S2.E6.m1.1.1.1.1.1.2.1.2" xref="S2.E6.m1.1.1.1.1.1.2.1.2.cmml">E</mi><mi id="S2.E6.m1.1.1.1.1.1.2.1.3" xref="S2.E6.m1.1.1.1.1.1.2.1.3.cmml">y</mi></msup></mtd><mtd id="S2.E6.m1.1.1.1.1d" xref="S2.E6.m1.1.1.1.1.cmml"><msup id="S2.E6.m1.1.1.1.1.1.3.1" xref="S2.E6.m1.1.1.1.1.1.3.1.cmml"><mi id="S2.E6.m1.1.1.1.1.1.3.1.2" xref="S2.E6.m1.1.1.1.1.1.3.1.2.cmml">E</mi><mi id="S2.E6.m1.1.1.1.1.1.3.1.3" xref="S2.E6.m1.1.1.1.1.1.3.1.3.cmml">z</mi></msup></mtd><mtd id="S2.E6.m1.1.1.1.1e" xref="S2.E6.m1.1.1.1.1.cmml"><msup id="S2.E6.m1.1.1.1.1.1.4.1" xref="S2.E6.m1.1.1.1.1.1.4.1.cmml"><mi id="S2.E6.m1.1.1.1.1.1.4.1.2" xref="S2.E6.m1.1.1.1.1.1.4.1.2.cmml">B</mi><mi id="S2.E6.m1.1.1.1.1.1.4.1.3" xref="S2.E6.m1.1.1.1.1.1.4.1.3.cmml">x</mi></msup></mtd><mtd id="S2.E6.m1.1.1.1.1f" xref="S2.E6.m1.1.1.1.1.cmml"><msup id="S2.E6.m1.1.1.1.1.1.5.1" xref="S2.E6.m1.1.1.1.1.1.5.1.cmml"><mi id="S2.E6.m1.1.1.1.1.1.5.1.2" xref="S2.E6.m1.1.1.1.1.1.5.1.2.cmml">B</mi><mi id="S2.E6.m1.1.1.1.1.1.5.1.3" xref="S2.E6.m1.1.1.1.1.1.5.1.3.cmml">y</mi></msup></mtd><mtd id="S2.E6.m1.1.1.1.1g" xref="S2.E6.m1.1.1.1.1.cmml"><msup id="S2.E6.m1.1.1.1.1.1.6.1" xref="S2.E6.m1.1.1.1.1.1.6.1.cmml"><mi id="S2.E6.m1.1.1.1.1.1.6.1.2" xref="S2.E6.m1.1.1.1.1.1.6.1.2.cmml">B</mi><mi id="S2.E6.m1.1.1.1.1.1.6.1.3" xref="S2.E6.m1.1.1.1.1.1.6.1.3.cmml">z</mi></msup></mtd><mtd id="S2.E6.m1.1.1.1.1h" xref="S2.E6.m1.1.1.1.1.cmml"><mi id="S2.E6.m1.1.1.1.1.1.7.1" xref="S2.E6.m1.1.1.1.1.1.7.1.cmml">ϕ</mi></mtd><mtd id="S2.E6.m1.1.1.1.1i" xref="S2.E6.m1.1.1.1.1.cmml"><mi id="S2.E6.m1.1.1.1.1.1.8.1" xref="S2.E6.m1.1.1.1.1.1.8.1.cmml">ψ</mi></mtd></mtr></mtable><mo id="S2.E6.m1.1.1.3.2" xref="S2.E6.m1.1.1.2.1.cmml">]</mo></mrow><mo id="S2.E6.m1.2.2.1.1.3.2" xref="S2.E6.m1.2.2.1.1.3.2.cmml">⊺</mo></msup></mrow><mo id="S2.E6.m1.2.2.1.2" xref="S2.E6.m1.2.2.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E6.m1.2b"><apply id="S2.E6.m1.2.2.1.1.cmml" xref="S2.E6.m1.2.2.1"><eq id="S2.E6.m1.2.2.1.1.1.cmml" xref="S2.E6.m1.2.2.1.1.1"></eq><ci id="S2.E6.m1.2.2.1.1.2.cmml" xref="S2.E6.m1.2.2.1.1.2">𝐔</ci><apply id="S2.E6.m1.2.2.1.1.3.cmml" xref="S2.E6.m1.2.2.1.1.3"><csymbol cd="ambiguous" id="S2.E6.m1.2.2.1.1.3.1.cmml" xref="S2.E6.m1.2.2.1.1.3">superscript</csymbol><apply id="S2.E6.m1.1.1.2.cmml" xref="S2.E6.m1.1.1.3"><csymbol cd="latexml" id="S2.E6.m1.1.1.2.1.cmml" xref="S2.E6.m1.1.1.3.1">matrix</csymbol><matrix id="S2.E6.m1.1.1.1.1.cmml" xref="S2.E6.m1.1.1.1.1"><matrixrow id="S2.E6.m1.1.1.1.1a.cmml" xref="S2.E6.m1.1.1.1.1"><apply id="S2.E6.m1.1.1.1.1.1.1.1.cmml" xref="S2.E6.m1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E6.m1.1.1.1.1.1.1.1.1.cmml" xref="S2.E6.m1.1.1.1.1.1.1.1">superscript</csymbol><ci id="S2.E6.m1.1.1.1.1.1.1.1.2.cmml" xref="S2.E6.m1.1.1.1.1.1.1.1.2">𝐸</ci><ci id="S2.E6.m1.1.1.1.1.1.1.1.3.cmml" xref="S2.E6.m1.1.1.1.1.1.1.1.3">𝑥</ci></apply><apply id="S2.E6.m1.1.1.1.1.1.2.1.cmml" xref="S2.E6.m1.1.1.1.1.1.2.1"><csymbol cd="ambiguous" id="S2.E6.m1.1.1.1.1.1.2.1.1.cmml" xref="S2.E6.m1.1.1.1.1.1.2.1">superscript</csymbol><ci id="S2.E6.m1.1.1.1.1.1.2.1.2.cmml" xref="S2.E6.m1.1.1.1.1.1.2.1.2">𝐸</ci><ci id="S2.E6.m1.1.1.1.1.1.2.1.3.cmml" xref="S2.E6.m1.1.1.1.1.1.2.1.3">𝑦</ci></apply><apply id="S2.E6.m1.1.1.1.1.1.3.1.cmml" xref="S2.E6.m1.1.1.1.1.1.3.1"><csymbol cd="ambiguous" id="S2.E6.m1.1.1.1.1.1.3.1.1.cmml" xref="S2.E6.m1.1.1.1.1.1.3.1">superscript</csymbol><ci id="S2.E6.m1.1.1.1.1.1.3.1.2.cmml" xref="S2.E6.m1.1.1.1.1.1.3.1.2">𝐸</ci><ci id="S2.E6.m1.1.1.1.1.1.3.1.3.cmml" xref="S2.E6.m1.1.1.1.1.1.3.1.3">𝑧</ci></apply><apply id="S2.E6.m1.1.1.1.1.1.4.1.cmml" xref="S2.E6.m1.1.1.1.1.1.4.1"><csymbol cd="ambiguous" id="S2.E6.m1.1.1.1.1.1.4.1.1.cmml" xref="S2.E6.m1.1.1.1.1.1.4.1">superscript</csymbol><ci id="S2.E6.m1.1.1.1.1.1.4.1.2.cmml" xref="S2.E6.m1.1.1.1.1.1.4.1.2">𝐵</ci><ci id="S2.E6.m1.1.1.1.1.1.4.1.3.cmml" xref="S2.E6.m1.1.1.1.1.1.4.1.3">𝑥</ci></apply><apply id="S2.E6.m1.1.1.1.1.1.5.1.cmml" xref="S2.E6.m1.1.1.1.1.1.5.1"><csymbol cd="ambiguous" id="S2.E6.m1.1.1.1.1.1.5.1.1.cmml" xref="S2.E6.m1.1.1.1.1.1.5.1">superscript</csymbol><ci id="S2.E6.m1.1.1.1.1.1.5.1.2.cmml" xref="S2.E6.m1.1.1.1.1.1.5.1.2">𝐵</ci><ci id="S2.E6.m1.1.1.1.1.1.5.1.3.cmml" xref="S2.E6.m1.1.1.1.1.1.5.1.3">𝑦</ci></apply><apply id="S2.E6.m1.1.1.1.1.1.6.1.cmml" xref="S2.E6.m1.1.1.1.1.1.6.1"><csymbol cd="ambiguous" id="S2.E6.m1.1.1.1.1.1.6.1.1.cmml" xref="S2.E6.m1.1.1.1.1.1.6.1">superscript</csymbol><ci id="S2.E6.m1.1.1.1.1.1.6.1.2.cmml" xref="S2.E6.m1.1.1.1.1.1.6.1.2">𝐵</ci><ci id="S2.E6.m1.1.1.1.1.1.6.1.3.cmml" xref="S2.E6.m1.1.1.1.1.1.6.1.3">𝑧</ci></apply><ci id="S2.E6.m1.1.1.1.1.1.7.1.cmml" xref="S2.E6.m1.1.1.1.1.1.7.1">italic-ϕ</ci><ci id="S2.E6.m1.1.1.1.1.1.8.1.cmml" xref="S2.E6.m1.1.1.1.1.1.8.1">𝜓</ci></matrixrow></matrix></apply><ci id="S2.E6.m1.2.2.1.1.3.2.cmml" xref="S2.E6.m1.2.2.1.1.3.2">⊺</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E6.m1.2c">\mathbf{U}=\begin{bmatrix}E^{x}&E^{y}&E^{z}&B^{x}&B^{y}&B^{z}&\phi&\psi\end{% bmatrix}^{\intercal},</annotation><annotation encoding="application/x-llamapun" id="S2.E6.m1.2d">bold_U = [ start_ARG start_ROW start_CELL italic_E start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT end_CELL start_CELL italic_E start_POSTSUPERSCRIPT italic_y end_POSTSUPERSCRIPT end_CELL start_CELL italic_E start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT end_CELL start_CELL italic_B start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT end_CELL start_CELL italic_B start_POSTSUPERSCRIPT italic_y end_POSTSUPERSCRIPT end_CELL start_CELL italic_B start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT end_CELL start_CELL italic_ϕ end_CELL start_CELL italic_ψ end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT ⊺ end_POSTSUPERSCRIPT ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS1.p8.1">and flux vector:</p> </div> <div class="ltx_para" id="S2.SS1.p9"> <table class="ltx_equation ltx_eqn_table" id="S2.E7"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(7)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{F}\left(\mathbf{U}\right)=\begin{bmatrix}\chi c^{2}\phi&c^{2}B^{z}&-c^% {2}B^{y}&\gamma\psi&-E^{z}&E^{z}&\chi E^{x}&\gamma c^{2}B^{x}\end{bmatrix}^{% \intercal}," class="ltx_Math" display="block" id="S2.E7.m1.3"><semantics id="S2.E7.m1.3a"><mrow id="S2.E7.m1.3.3.1" xref="S2.E7.m1.3.3.1.1.cmml"><mrow id="S2.E7.m1.3.3.1.1" xref="S2.E7.m1.3.3.1.1.cmml"><mrow id="S2.E7.m1.3.3.1.1.2" xref="S2.E7.m1.3.3.1.1.2.cmml"><mi id="S2.E7.m1.3.3.1.1.2.2" xref="S2.E7.m1.3.3.1.1.2.2.cmml">𝐅</mi><mo id="S2.E7.m1.3.3.1.1.2.1" xref="S2.E7.m1.3.3.1.1.2.1.cmml"></mo><mrow id="S2.E7.m1.3.3.1.1.2.3.2" xref="S2.E7.m1.3.3.1.1.2.cmml"><mo id="S2.E7.m1.3.3.1.1.2.3.2.1" xref="S2.E7.m1.3.3.1.1.2.cmml">(</mo><mi id="S2.E7.m1.2.2" xref="S2.E7.m1.2.2.cmml">𝐔</mi><mo id="S2.E7.m1.3.3.1.1.2.3.2.2" xref="S2.E7.m1.3.3.1.1.2.cmml">)</mo></mrow></mrow><mo id="S2.E7.m1.3.3.1.1.1" xref="S2.E7.m1.3.3.1.1.1.cmml">=</mo><msup id="S2.E7.m1.3.3.1.1.3" xref="S2.E7.m1.3.3.1.1.3.cmml"><mrow id="S2.E7.m1.1.1.3" xref="S2.E7.m1.1.1.2.cmml"><mo id="S2.E7.m1.1.1.3.1" xref="S2.E7.m1.1.1.2.1.cmml">[</mo><mtable columnspacing="5pt" displaystyle="true" id="S2.E7.m1.1.1.1.1" xref="S2.E7.m1.1.1.1.1.cmml"><mtr id="S2.E7.m1.1.1.1.1a" xref="S2.E7.m1.1.1.1.1.cmml"><mtd id="S2.E7.m1.1.1.1.1b" xref="S2.E7.m1.1.1.1.1.cmml"><mrow id="S2.E7.m1.1.1.1.1.1.1.1" xref="S2.E7.m1.1.1.1.1.1.1.1.cmml"><mi id="S2.E7.m1.1.1.1.1.1.1.1.2" xref="S2.E7.m1.1.1.1.1.1.1.1.2.cmml">χ</mi><mo id="S2.E7.m1.1.1.1.1.1.1.1.1" xref="S2.E7.m1.1.1.1.1.1.1.1.1.cmml"></mo><msup id="S2.E7.m1.1.1.1.1.1.1.1.3" xref="S2.E7.m1.1.1.1.1.1.1.1.3.cmml"><mi id="S2.E7.m1.1.1.1.1.1.1.1.3.2" xref="S2.E7.m1.1.1.1.1.1.1.1.3.2.cmml">c</mi><mn id="S2.E7.m1.1.1.1.1.1.1.1.3.3" xref="S2.E7.m1.1.1.1.1.1.1.1.3.3.cmml">2</mn></msup><mo id="S2.E7.m1.1.1.1.1.1.1.1.1a" xref="S2.E7.m1.1.1.1.1.1.1.1.1.cmml"></mo><mi id="S2.E7.m1.1.1.1.1.1.1.1.4" xref="S2.E7.m1.1.1.1.1.1.1.1.4.cmml">ϕ</mi></mrow></mtd><mtd id="S2.E7.m1.1.1.1.1c" xref="S2.E7.m1.1.1.1.1.cmml"><mrow id="S2.E7.m1.1.1.1.1.1.2.1" xref="S2.E7.m1.1.1.1.1.1.2.1.cmml"><msup id="S2.E7.m1.1.1.1.1.1.2.1.2" xref="S2.E7.m1.1.1.1.1.1.2.1.2.cmml"><mi id="S2.E7.m1.1.1.1.1.1.2.1.2.2" xref="S2.E7.m1.1.1.1.1.1.2.1.2.2.cmml">c</mi><mn id="S2.E7.m1.1.1.1.1.1.2.1.2.3" xref="S2.E7.m1.1.1.1.1.1.2.1.2.3.cmml">2</mn></msup><mo id="S2.E7.m1.1.1.1.1.1.2.1.1" xref="S2.E7.m1.1.1.1.1.1.2.1.1.cmml"></mo><msup id="S2.E7.m1.1.1.1.1.1.2.1.3" xref="S2.E7.m1.1.1.1.1.1.2.1.3.cmml"><mi id="S2.E7.m1.1.1.1.1.1.2.1.3.2" xref="S2.E7.m1.1.1.1.1.1.2.1.3.2.cmml">B</mi><mi id="S2.E7.m1.1.1.1.1.1.2.1.3.3" xref="S2.E7.m1.1.1.1.1.1.2.1.3.3.cmml">z</mi></msup></mrow></mtd><mtd id="S2.E7.m1.1.1.1.1d" xref="S2.E7.m1.1.1.1.1.cmml"><mrow id="S2.E7.m1.1.1.1.1.1.3.1" xref="S2.E7.m1.1.1.1.1.1.3.1.cmml"><mo id="S2.E7.m1.1.1.1.1.1.3.1a" xref="S2.E7.m1.1.1.1.1.1.3.1.cmml">−</mo><mrow id="S2.E7.m1.1.1.1.1.1.3.1.2" xref="S2.E7.m1.1.1.1.1.1.3.1.2.cmml"><msup id="S2.E7.m1.1.1.1.1.1.3.1.2.2" xref="S2.E7.m1.1.1.1.1.1.3.1.2.2.cmml"><mi id="S2.E7.m1.1.1.1.1.1.3.1.2.2.2" xref="S2.E7.m1.1.1.1.1.1.3.1.2.2.2.cmml">c</mi><mn id="S2.E7.m1.1.1.1.1.1.3.1.2.2.3" xref="S2.E7.m1.1.1.1.1.1.3.1.2.2.3.cmml">2</mn></msup><mo id="S2.E7.m1.1.1.1.1.1.3.1.2.1" xref="S2.E7.m1.1.1.1.1.1.3.1.2.1.cmml"></mo><msup id="S2.E7.m1.1.1.1.1.1.3.1.2.3" xref="S2.E7.m1.1.1.1.1.1.3.1.2.3.cmml"><mi id="S2.E7.m1.1.1.1.1.1.3.1.2.3.2" xref="S2.E7.m1.1.1.1.1.1.3.1.2.3.2.cmml">B</mi><mi id="S2.E7.m1.1.1.1.1.1.3.1.2.3.3" xref="S2.E7.m1.1.1.1.1.1.3.1.2.3.3.cmml">y</mi></msup></mrow></mrow></mtd><mtd id="S2.E7.m1.1.1.1.1e" xref="S2.E7.m1.1.1.1.1.cmml"><mrow id="S2.E7.m1.1.1.1.1.1.4.1" xref="S2.E7.m1.1.1.1.1.1.4.1.cmml"><mi id="S2.E7.m1.1.1.1.1.1.4.1.2" xref="S2.E7.m1.1.1.1.1.1.4.1.2.cmml">γ</mi><mo id="S2.E7.m1.1.1.1.1.1.4.1.1" xref="S2.E7.m1.1.1.1.1.1.4.1.1.cmml"></mo><mi id="S2.E7.m1.1.1.1.1.1.4.1.3" xref="S2.E7.m1.1.1.1.1.1.4.1.3.cmml">ψ</mi></mrow></mtd><mtd id="S2.E7.m1.1.1.1.1f" xref="S2.E7.m1.1.1.1.1.cmml"><mrow id="S2.E7.m1.1.1.1.1.1.5.1" xref="S2.E7.m1.1.1.1.1.1.5.1.cmml"><mo id="S2.E7.m1.1.1.1.1.1.5.1a" xref="S2.E7.m1.1.1.1.1.1.5.1.cmml">−</mo><msup id="S2.E7.m1.1.1.1.1.1.5.1.2" xref="S2.E7.m1.1.1.1.1.1.5.1.2.cmml"><mi id="S2.E7.m1.1.1.1.1.1.5.1.2.2" xref="S2.E7.m1.1.1.1.1.1.5.1.2.2.cmml">E</mi><mi id="S2.E7.m1.1.1.1.1.1.5.1.2.3" xref="S2.E7.m1.1.1.1.1.1.5.1.2.3.cmml">z</mi></msup></mrow></mtd><mtd id="S2.E7.m1.1.1.1.1g" xref="S2.E7.m1.1.1.1.1.cmml"><msup id="S2.E7.m1.1.1.1.1.1.6.1" xref="S2.E7.m1.1.1.1.1.1.6.1.cmml"><mi id="S2.E7.m1.1.1.1.1.1.6.1.2" xref="S2.E7.m1.1.1.1.1.1.6.1.2.cmml">E</mi><mi id="S2.E7.m1.1.1.1.1.1.6.1.3" xref="S2.E7.m1.1.1.1.1.1.6.1.3.cmml">z</mi></msup></mtd><mtd id="S2.E7.m1.1.1.1.1h" xref="S2.E7.m1.1.1.1.1.cmml"><mrow id="S2.E7.m1.1.1.1.1.1.7.1" xref="S2.E7.m1.1.1.1.1.1.7.1.cmml"><mi id="S2.E7.m1.1.1.1.1.1.7.1.2" xref="S2.E7.m1.1.1.1.1.1.7.1.2.cmml">χ</mi><mo id="S2.E7.m1.1.1.1.1.1.7.1.1" xref="S2.E7.m1.1.1.1.1.1.7.1.1.cmml"></mo><msup id="S2.E7.m1.1.1.1.1.1.7.1.3" xref="S2.E7.m1.1.1.1.1.1.7.1.3.cmml"><mi id="S2.E7.m1.1.1.1.1.1.7.1.3.2" xref="S2.E7.m1.1.1.1.1.1.7.1.3.2.cmml">E</mi><mi id="S2.E7.m1.1.1.1.1.1.7.1.3.3" xref="S2.E7.m1.1.1.1.1.1.7.1.3.3.cmml">x</mi></msup></mrow></mtd><mtd id="S2.E7.m1.1.1.1.1i" xref="S2.E7.m1.1.1.1.1.cmml"><mrow id="S2.E7.m1.1.1.1.1.1.8.1" xref="S2.E7.m1.1.1.1.1.1.8.1.cmml"><mi id="S2.E7.m1.1.1.1.1.1.8.1.2" xref="S2.E7.m1.1.1.1.1.1.8.1.2.cmml">γ</mi><mo id="S2.E7.m1.1.1.1.1.1.8.1.1" xref="S2.E7.m1.1.1.1.1.1.8.1.1.cmml"></mo><msup id="S2.E7.m1.1.1.1.1.1.8.1.3" xref="S2.E7.m1.1.1.1.1.1.8.1.3.cmml"><mi id="S2.E7.m1.1.1.1.1.1.8.1.3.2" xref="S2.E7.m1.1.1.1.1.1.8.1.3.2.cmml">c</mi><mn id="S2.E7.m1.1.1.1.1.1.8.1.3.3" xref="S2.E7.m1.1.1.1.1.1.8.1.3.3.cmml">2</mn></msup><mo id="S2.E7.m1.1.1.1.1.1.8.1.1a" xref="S2.E7.m1.1.1.1.1.1.8.1.1.cmml"></mo><msup id="S2.E7.m1.1.1.1.1.1.8.1.4" xref="S2.E7.m1.1.1.1.1.1.8.1.4.cmml"><mi id="S2.E7.m1.1.1.1.1.1.8.1.4.2" xref="S2.E7.m1.1.1.1.1.1.8.1.4.2.cmml">B</mi><mi id="S2.E7.m1.1.1.1.1.1.8.1.4.3" xref="S2.E7.m1.1.1.1.1.1.8.1.4.3.cmml">x</mi></msup></mrow></mtd></mtr></mtable><mo id="S2.E7.m1.1.1.3.2" xref="S2.E7.m1.1.1.2.1.cmml">]</mo></mrow><mo id="S2.E7.m1.3.3.1.1.3.2" xref="S2.E7.m1.3.3.1.1.3.2.cmml">⊺</mo></msup></mrow><mo id="S2.E7.m1.3.3.1.2" xref="S2.E7.m1.3.3.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E7.m1.3b"><apply id="S2.E7.m1.3.3.1.1.cmml" xref="S2.E7.m1.3.3.1"><eq id="S2.E7.m1.3.3.1.1.1.cmml" xref="S2.E7.m1.3.3.1.1.1"></eq><apply id="S2.E7.m1.3.3.1.1.2.cmml" xref="S2.E7.m1.3.3.1.1.2"><times id="S2.E7.m1.3.3.1.1.2.1.cmml" xref="S2.E7.m1.3.3.1.1.2.1"></times><ci id="S2.E7.m1.3.3.1.1.2.2.cmml" xref="S2.E7.m1.3.3.1.1.2.2">𝐅</ci><ci id="S2.E7.m1.2.2.cmml" xref="S2.E7.m1.2.2">𝐔</ci></apply><apply id="S2.E7.m1.3.3.1.1.3.cmml" xref="S2.E7.m1.3.3.1.1.3"><csymbol cd="ambiguous" id="S2.E7.m1.3.3.1.1.3.1.cmml" xref="S2.E7.m1.3.3.1.1.3">superscript</csymbol><apply id="S2.E7.m1.1.1.2.cmml" xref="S2.E7.m1.1.1.3"><csymbol cd="latexml" id="S2.E7.m1.1.1.2.1.cmml" xref="S2.E7.m1.1.1.3.1">matrix</csymbol><matrix id="S2.E7.m1.1.1.1.1.cmml" xref="S2.E7.m1.1.1.1.1"><matrixrow id="S2.E7.m1.1.1.1.1a.cmml" xref="S2.E7.m1.1.1.1.1"><apply id="S2.E7.m1.1.1.1.1.1.1.1.cmml" xref="S2.E7.m1.1.1.1.1.1.1.1"><times id="S2.E7.m1.1.1.1.1.1.1.1.1.cmml" xref="S2.E7.m1.1.1.1.1.1.1.1.1"></times><ci id="S2.E7.m1.1.1.1.1.1.1.1.2.cmml" xref="S2.E7.m1.1.1.1.1.1.1.1.2">𝜒</ci><apply id="S2.E7.m1.1.1.1.1.1.1.1.3.cmml" xref="S2.E7.m1.1.1.1.1.1.1.1.3"><csymbol cd="ambiguous" id="S2.E7.m1.1.1.1.1.1.1.1.3.1.cmml" xref="S2.E7.m1.1.1.1.1.1.1.1.3">superscript</csymbol><ci id="S2.E7.m1.1.1.1.1.1.1.1.3.2.cmml" xref="S2.E7.m1.1.1.1.1.1.1.1.3.2">𝑐</ci><cn id="S2.E7.m1.1.1.1.1.1.1.1.3.3.cmml" type="integer" xref="S2.E7.m1.1.1.1.1.1.1.1.3.3">2</cn></apply><ci id="S2.E7.m1.1.1.1.1.1.1.1.4.cmml" xref="S2.E7.m1.1.1.1.1.1.1.1.4">italic-ϕ</ci></apply><apply id="S2.E7.m1.1.1.1.1.1.2.1.cmml" xref="S2.E7.m1.1.1.1.1.1.2.1"><times id="S2.E7.m1.1.1.1.1.1.2.1.1.cmml" xref="S2.E7.m1.1.1.1.1.1.2.1.1"></times><apply id="S2.E7.m1.1.1.1.1.1.2.1.2.cmml" xref="S2.E7.m1.1.1.1.1.1.2.1.2"><csymbol cd="ambiguous" id="S2.E7.m1.1.1.1.1.1.2.1.2.1.cmml" xref="S2.E7.m1.1.1.1.1.1.2.1.2">superscript</csymbol><ci id="S2.E7.m1.1.1.1.1.1.2.1.2.2.cmml" xref="S2.E7.m1.1.1.1.1.1.2.1.2.2">𝑐</ci><cn id="S2.E7.m1.1.1.1.1.1.2.1.2.3.cmml" type="integer" xref="S2.E7.m1.1.1.1.1.1.2.1.2.3">2</cn></apply><apply id="S2.E7.m1.1.1.1.1.1.2.1.3.cmml" xref="S2.E7.m1.1.1.1.1.1.2.1.3"><csymbol cd="ambiguous" id="S2.E7.m1.1.1.1.1.1.2.1.3.1.cmml" xref="S2.E7.m1.1.1.1.1.1.2.1.3">superscript</csymbol><ci id="S2.E7.m1.1.1.1.1.1.2.1.3.2.cmml" xref="S2.E7.m1.1.1.1.1.1.2.1.3.2">𝐵</ci><ci id="S2.E7.m1.1.1.1.1.1.2.1.3.3.cmml" xref="S2.E7.m1.1.1.1.1.1.2.1.3.3">𝑧</ci></apply></apply><apply id="S2.E7.m1.1.1.1.1.1.3.1.cmml" xref="S2.E7.m1.1.1.1.1.1.3.1"><minus id="S2.E7.m1.1.1.1.1.1.3.1.1.cmml" xref="S2.E7.m1.1.1.1.1.1.3.1"></minus><apply id="S2.E7.m1.1.1.1.1.1.3.1.2.cmml" xref="S2.E7.m1.1.1.1.1.1.3.1.2"><times id="S2.E7.m1.1.1.1.1.1.3.1.2.1.cmml" xref="S2.E7.m1.1.1.1.1.1.3.1.2.1"></times><apply id="S2.E7.m1.1.1.1.1.1.3.1.2.2.cmml" xref="S2.E7.m1.1.1.1.1.1.3.1.2.2"><csymbol cd="ambiguous" id="S2.E7.m1.1.1.1.1.1.3.1.2.2.1.cmml" xref="S2.E7.m1.1.1.1.1.1.3.1.2.2">superscript</csymbol><ci id="S2.E7.m1.1.1.1.1.1.3.1.2.2.2.cmml" xref="S2.E7.m1.1.1.1.1.1.3.1.2.2.2">𝑐</ci><cn id="S2.E7.m1.1.1.1.1.1.3.1.2.2.3.cmml" type="integer" xref="S2.E7.m1.1.1.1.1.1.3.1.2.2.3">2</cn></apply><apply id="S2.E7.m1.1.1.1.1.1.3.1.2.3.cmml" xref="S2.E7.m1.1.1.1.1.1.3.1.2.3"><csymbol cd="ambiguous" id="S2.E7.m1.1.1.1.1.1.3.1.2.3.1.cmml" xref="S2.E7.m1.1.1.1.1.1.3.1.2.3">superscript</csymbol><ci id="S2.E7.m1.1.1.1.1.1.3.1.2.3.2.cmml" xref="S2.E7.m1.1.1.1.1.1.3.1.2.3.2">𝐵</ci><ci id="S2.E7.m1.1.1.1.1.1.3.1.2.3.3.cmml" xref="S2.E7.m1.1.1.1.1.1.3.1.2.3.3">𝑦</ci></apply></apply></apply><apply id="S2.E7.m1.1.1.1.1.1.4.1.cmml" xref="S2.E7.m1.1.1.1.1.1.4.1"><times id="S2.E7.m1.1.1.1.1.1.4.1.1.cmml" xref="S2.E7.m1.1.1.1.1.1.4.1.1"></times><ci id="S2.E7.m1.1.1.1.1.1.4.1.2.cmml" xref="S2.E7.m1.1.1.1.1.1.4.1.2">𝛾</ci><ci id="S2.E7.m1.1.1.1.1.1.4.1.3.cmml" xref="S2.E7.m1.1.1.1.1.1.4.1.3">𝜓</ci></apply><apply id="S2.E7.m1.1.1.1.1.1.5.1.cmml" xref="S2.E7.m1.1.1.1.1.1.5.1"><minus id="S2.E7.m1.1.1.1.1.1.5.1.1.cmml" xref="S2.E7.m1.1.1.1.1.1.5.1"></minus><apply id="S2.E7.m1.1.1.1.1.1.5.1.2.cmml" xref="S2.E7.m1.1.1.1.1.1.5.1.2"><csymbol cd="ambiguous" id="S2.E7.m1.1.1.1.1.1.5.1.2.1.cmml" xref="S2.E7.m1.1.1.1.1.1.5.1.2">superscript</csymbol><ci id="S2.E7.m1.1.1.1.1.1.5.1.2.2.cmml" xref="S2.E7.m1.1.1.1.1.1.5.1.2.2">𝐸</ci><ci id="S2.E7.m1.1.1.1.1.1.5.1.2.3.cmml" xref="S2.E7.m1.1.1.1.1.1.5.1.2.3">𝑧</ci></apply></apply><apply id="S2.E7.m1.1.1.1.1.1.6.1.cmml" xref="S2.E7.m1.1.1.1.1.1.6.1"><csymbol cd="ambiguous" id="S2.E7.m1.1.1.1.1.1.6.1.1.cmml" xref="S2.E7.m1.1.1.1.1.1.6.1">superscript</csymbol><ci id="S2.E7.m1.1.1.1.1.1.6.1.2.cmml" xref="S2.E7.m1.1.1.1.1.1.6.1.2">𝐸</ci><ci id="S2.E7.m1.1.1.1.1.1.6.1.3.cmml" xref="S2.E7.m1.1.1.1.1.1.6.1.3">𝑧</ci></apply><apply id="S2.E7.m1.1.1.1.1.1.7.1.cmml" xref="S2.E7.m1.1.1.1.1.1.7.1"><times id="S2.E7.m1.1.1.1.1.1.7.1.1.cmml" xref="S2.E7.m1.1.1.1.1.1.7.1.1"></times><ci id="S2.E7.m1.1.1.1.1.1.7.1.2.cmml" xref="S2.E7.m1.1.1.1.1.1.7.1.2">𝜒</ci><apply id="S2.E7.m1.1.1.1.1.1.7.1.3.cmml" xref="S2.E7.m1.1.1.1.1.1.7.1.3"><csymbol cd="ambiguous" id="S2.E7.m1.1.1.1.1.1.7.1.3.1.cmml" xref="S2.E7.m1.1.1.1.1.1.7.1.3">superscript</csymbol><ci id="S2.E7.m1.1.1.1.1.1.7.1.3.2.cmml" xref="S2.E7.m1.1.1.1.1.1.7.1.3.2">𝐸</ci><ci id="S2.E7.m1.1.1.1.1.1.7.1.3.3.cmml" xref="S2.E7.m1.1.1.1.1.1.7.1.3.3">𝑥</ci></apply></apply><apply id="S2.E7.m1.1.1.1.1.1.8.1.cmml" xref="S2.E7.m1.1.1.1.1.1.8.1"><times id="S2.E7.m1.1.1.1.1.1.8.1.1.cmml" xref="S2.E7.m1.1.1.1.1.1.8.1.1"></times><ci id="S2.E7.m1.1.1.1.1.1.8.1.2.cmml" xref="S2.E7.m1.1.1.1.1.1.8.1.2">𝛾</ci><apply id="S2.E7.m1.1.1.1.1.1.8.1.3.cmml" xref="S2.E7.m1.1.1.1.1.1.8.1.3"><csymbol cd="ambiguous" id="S2.E7.m1.1.1.1.1.1.8.1.3.1.cmml" xref="S2.E7.m1.1.1.1.1.1.8.1.3">superscript</csymbol><ci id="S2.E7.m1.1.1.1.1.1.8.1.3.2.cmml" xref="S2.E7.m1.1.1.1.1.1.8.1.3.2">𝑐</ci><cn id="S2.E7.m1.1.1.1.1.1.8.1.3.3.cmml" type="integer" xref="S2.E7.m1.1.1.1.1.1.8.1.3.3">2</cn></apply><apply id="S2.E7.m1.1.1.1.1.1.8.1.4.cmml" xref="S2.E7.m1.1.1.1.1.1.8.1.4"><csymbol cd="ambiguous" id="S2.E7.m1.1.1.1.1.1.8.1.4.1.cmml" xref="S2.E7.m1.1.1.1.1.1.8.1.4">superscript</csymbol><ci id="S2.E7.m1.1.1.1.1.1.8.1.4.2.cmml" xref="S2.E7.m1.1.1.1.1.1.8.1.4.2">𝐵</ci><ci id="S2.E7.m1.1.1.1.1.1.8.1.4.3.cmml" xref="S2.E7.m1.1.1.1.1.1.8.1.4.3">𝑥</ci></apply></apply></matrixrow></matrix></apply><ci id="S2.E7.m1.3.3.1.1.3.2.cmml" xref="S2.E7.m1.3.3.1.1.3.2">⊺</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E7.m1.3c">\mathbf{F}\left(\mathbf{U}\right)=\begin{bmatrix}\chi c^{2}\phi&c^{2}B^{z}&-c^% {2}B^{y}&\gamma\psi&-E^{z}&E^{z}&\chi E^{x}&\gamma c^{2}B^{x}\end{bmatrix}^{% \intercal},</annotation><annotation encoding="application/x-llamapun" id="S2.E7.m1.3d">bold_F ( bold_U ) = [ start_ARG start_ROW start_CELL italic_χ italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ end_CELL start_CELL italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_B start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT end_CELL start_CELL - italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_B start_POSTSUPERSCRIPT italic_y end_POSTSUPERSCRIPT end_CELL start_CELL italic_γ italic_ψ end_CELL start_CELL - italic_E start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT end_CELL start_CELL italic_E start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT end_CELL start_CELL italic_χ italic_E start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT end_CELL start_CELL italic_γ italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_B start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT ⊺ end_POSTSUPERSCRIPT ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS1.p9.1">and the non-linear <span class="ltx_text ltx_font_italic" id="S2.SS1.p9.1.1">isothermal Euler equations</span>, with conserved variable vector:</p> </div> <div class="ltx_para" id="S2.SS1.p10"> <table class="ltx_equation ltx_eqn_table" id="S2.E8"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(8)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{U}=\begin{bmatrix}\rho&\rho u&\rho v&\rho w\end{bmatrix}^{\intercal}," class="ltx_Math" display="block" id="S2.E8.m1.2"><semantics id="S2.E8.m1.2a"><mrow id="S2.E8.m1.2.2.1" xref="S2.E8.m1.2.2.1.1.cmml"><mrow id="S2.E8.m1.2.2.1.1" xref="S2.E8.m1.2.2.1.1.cmml"><mi id="S2.E8.m1.2.2.1.1.2" xref="S2.E8.m1.2.2.1.1.2.cmml">𝐔</mi><mo id="S2.E8.m1.2.2.1.1.1" xref="S2.E8.m1.2.2.1.1.1.cmml">=</mo><msup id="S2.E8.m1.2.2.1.1.3" xref="S2.E8.m1.2.2.1.1.3.cmml"><mrow id="S2.E8.m1.1.1.3" xref="S2.E8.m1.1.1.2.cmml"><mo id="S2.E8.m1.1.1.3.1" xref="S2.E8.m1.1.1.2.1.cmml">[</mo><mtable columnspacing="5pt" displaystyle="true" id="S2.E8.m1.1.1.1.1" xref="S2.E8.m1.1.1.1.1.cmml"><mtr id="S2.E8.m1.1.1.1.1a" xref="S2.E8.m1.1.1.1.1.cmml"><mtd id="S2.E8.m1.1.1.1.1b" xref="S2.E8.m1.1.1.1.1.cmml"><mi id="S2.E8.m1.1.1.1.1.1.1.1" xref="S2.E8.m1.1.1.1.1.1.1.1.cmml">ρ</mi></mtd><mtd id="S2.E8.m1.1.1.1.1c" xref="S2.E8.m1.1.1.1.1.cmml"><mrow id="S2.E8.m1.1.1.1.1.1.2.1" xref="S2.E8.m1.1.1.1.1.1.2.1.cmml"><mi id="S2.E8.m1.1.1.1.1.1.2.1.2" xref="S2.E8.m1.1.1.1.1.1.2.1.2.cmml">ρ</mi><mo id="S2.E8.m1.1.1.1.1.1.2.1.1" xref="S2.E8.m1.1.1.1.1.1.2.1.1.cmml"></mo><mi id="S2.E8.m1.1.1.1.1.1.2.1.3" xref="S2.E8.m1.1.1.1.1.1.2.1.3.cmml">u</mi></mrow></mtd><mtd id="S2.E8.m1.1.1.1.1d" xref="S2.E8.m1.1.1.1.1.cmml"><mrow id="S2.E8.m1.1.1.1.1.1.3.1" xref="S2.E8.m1.1.1.1.1.1.3.1.cmml"><mi id="S2.E8.m1.1.1.1.1.1.3.1.2" xref="S2.E8.m1.1.1.1.1.1.3.1.2.cmml">ρ</mi><mo id="S2.E8.m1.1.1.1.1.1.3.1.1" xref="S2.E8.m1.1.1.1.1.1.3.1.1.cmml"></mo><mi id="S2.E8.m1.1.1.1.1.1.3.1.3" xref="S2.E8.m1.1.1.1.1.1.3.1.3.cmml">v</mi></mrow></mtd><mtd id="S2.E8.m1.1.1.1.1e" xref="S2.E8.m1.1.1.1.1.cmml"><mrow id="S2.E8.m1.1.1.1.1.1.4.1" xref="S2.E8.m1.1.1.1.1.1.4.1.cmml"><mi id="S2.E8.m1.1.1.1.1.1.4.1.2" xref="S2.E8.m1.1.1.1.1.1.4.1.2.cmml">ρ</mi><mo id="S2.E8.m1.1.1.1.1.1.4.1.1" xref="S2.E8.m1.1.1.1.1.1.4.1.1.cmml"></mo><mi id="S2.E8.m1.1.1.1.1.1.4.1.3" xref="S2.E8.m1.1.1.1.1.1.4.1.3.cmml">w</mi></mrow></mtd></mtr></mtable><mo id="S2.E8.m1.1.1.3.2" xref="S2.E8.m1.1.1.2.1.cmml">]</mo></mrow><mo id="S2.E8.m1.2.2.1.1.3.2" xref="S2.E8.m1.2.2.1.1.3.2.cmml">⊺</mo></msup></mrow><mo id="S2.E8.m1.2.2.1.2" xref="S2.E8.m1.2.2.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E8.m1.2b"><apply id="S2.E8.m1.2.2.1.1.cmml" xref="S2.E8.m1.2.2.1"><eq id="S2.E8.m1.2.2.1.1.1.cmml" xref="S2.E8.m1.2.2.1.1.1"></eq><ci id="S2.E8.m1.2.2.1.1.2.cmml" xref="S2.E8.m1.2.2.1.1.2">𝐔</ci><apply id="S2.E8.m1.2.2.1.1.3.cmml" xref="S2.E8.m1.2.2.1.1.3"><csymbol cd="ambiguous" id="S2.E8.m1.2.2.1.1.3.1.cmml" xref="S2.E8.m1.2.2.1.1.3">superscript</csymbol><apply id="S2.E8.m1.1.1.2.cmml" xref="S2.E8.m1.1.1.3"><csymbol cd="latexml" id="S2.E8.m1.1.1.2.1.cmml" xref="S2.E8.m1.1.1.3.1">matrix</csymbol><matrix id="S2.E8.m1.1.1.1.1.cmml" xref="S2.E8.m1.1.1.1.1"><matrixrow id="S2.E8.m1.1.1.1.1a.cmml" xref="S2.E8.m1.1.1.1.1"><ci id="S2.E8.m1.1.1.1.1.1.1.1.cmml" xref="S2.E8.m1.1.1.1.1.1.1.1">𝜌</ci><apply id="S2.E8.m1.1.1.1.1.1.2.1.cmml" xref="S2.E8.m1.1.1.1.1.1.2.1"><times id="S2.E8.m1.1.1.1.1.1.2.1.1.cmml" xref="S2.E8.m1.1.1.1.1.1.2.1.1"></times><ci id="S2.E8.m1.1.1.1.1.1.2.1.2.cmml" xref="S2.E8.m1.1.1.1.1.1.2.1.2">𝜌</ci><ci id="S2.E8.m1.1.1.1.1.1.2.1.3.cmml" xref="S2.E8.m1.1.1.1.1.1.2.1.3">𝑢</ci></apply><apply id="S2.E8.m1.1.1.1.1.1.3.1.cmml" xref="S2.E8.m1.1.1.1.1.1.3.1"><times id="S2.E8.m1.1.1.1.1.1.3.1.1.cmml" xref="S2.E8.m1.1.1.1.1.1.3.1.1"></times><ci id="S2.E8.m1.1.1.1.1.1.3.1.2.cmml" xref="S2.E8.m1.1.1.1.1.1.3.1.2">𝜌</ci><ci id="S2.E8.m1.1.1.1.1.1.3.1.3.cmml" xref="S2.E8.m1.1.1.1.1.1.3.1.3">𝑣</ci></apply><apply id="S2.E8.m1.1.1.1.1.1.4.1.cmml" xref="S2.E8.m1.1.1.1.1.1.4.1"><times id="S2.E8.m1.1.1.1.1.1.4.1.1.cmml" xref="S2.E8.m1.1.1.1.1.1.4.1.1"></times><ci id="S2.E8.m1.1.1.1.1.1.4.1.2.cmml" xref="S2.E8.m1.1.1.1.1.1.4.1.2">𝜌</ci><ci id="S2.E8.m1.1.1.1.1.1.4.1.3.cmml" xref="S2.E8.m1.1.1.1.1.1.4.1.3">𝑤</ci></apply></matrixrow></matrix></apply><ci id="S2.E8.m1.2.2.1.1.3.2.cmml" xref="S2.E8.m1.2.2.1.1.3.2">⊺</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E8.m1.2c">\mathbf{U}=\begin{bmatrix}\rho&\rho u&\rho v&\rho w\end{bmatrix}^{\intercal},</annotation><annotation encoding="application/x-llamapun" id="S2.E8.m1.2d">bold_U = [ start_ARG start_ROW start_CELL italic_ρ end_CELL start_CELL italic_ρ italic_u end_CELL start_CELL italic_ρ italic_v end_CELL start_CELL italic_ρ italic_w end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT ⊺ end_POSTSUPERSCRIPT ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS1.p10.1">and flux vector:</p> </div> <div class="ltx_para" id="S2.SS1.p11"> <table class="ltx_equation ltx_eqn_table" id="S2.E9"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(9)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{F}\left(\mathbf{U}\right)=\begin{bmatrix}\rho u&\rho u^{2}+\rho v_{th}% ^{2}&\rho uv&\rho uw\end{bmatrix}^{\intercal}." class="ltx_Math" display="block" id="S2.E9.m1.3"><semantics id="S2.E9.m1.3a"><mrow id="S2.E9.m1.3.3.1" xref="S2.E9.m1.3.3.1.1.cmml"><mrow id="S2.E9.m1.3.3.1.1" xref="S2.E9.m1.3.3.1.1.cmml"><mrow id="S2.E9.m1.3.3.1.1.2" xref="S2.E9.m1.3.3.1.1.2.cmml"><mi id="S2.E9.m1.3.3.1.1.2.2" xref="S2.E9.m1.3.3.1.1.2.2.cmml">𝐅</mi><mo id="S2.E9.m1.3.3.1.1.2.1" xref="S2.E9.m1.3.3.1.1.2.1.cmml"></mo><mrow id="S2.E9.m1.3.3.1.1.2.3.2" xref="S2.E9.m1.3.3.1.1.2.cmml"><mo id="S2.E9.m1.3.3.1.1.2.3.2.1" xref="S2.E9.m1.3.3.1.1.2.cmml">(</mo><mi id="S2.E9.m1.2.2" xref="S2.E9.m1.2.2.cmml">𝐔</mi><mo id="S2.E9.m1.3.3.1.1.2.3.2.2" xref="S2.E9.m1.3.3.1.1.2.cmml">)</mo></mrow></mrow><mo id="S2.E9.m1.3.3.1.1.1" xref="S2.E9.m1.3.3.1.1.1.cmml">=</mo><msup id="S2.E9.m1.3.3.1.1.3" xref="S2.E9.m1.3.3.1.1.3.cmml"><mrow id="S2.E9.m1.1.1.3" xref="S2.E9.m1.1.1.2.cmml"><mo id="S2.E9.m1.1.1.3.1" xref="S2.E9.m1.1.1.2.1.cmml">[</mo><mtable columnspacing="5pt" displaystyle="true" id="S2.E9.m1.1.1.1.1" xref="S2.E9.m1.1.1.1.1.cmml"><mtr id="S2.E9.m1.1.1.1.1a" xref="S2.E9.m1.1.1.1.1.cmml"><mtd id="S2.E9.m1.1.1.1.1b" xref="S2.E9.m1.1.1.1.1.cmml"><mrow id="S2.E9.m1.1.1.1.1.1.1.1" xref="S2.E9.m1.1.1.1.1.1.1.1.cmml"><mi id="S2.E9.m1.1.1.1.1.1.1.1.2" xref="S2.E9.m1.1.1.1.1.1.1.1.2.cmml">ρ</mi><mo id="S2.E9.m1.1.1.1.1.1.1.1.1" xref="S2.E9.m1.1.1.1.1.1.1.1.1.cmml"></mo><mi id="S2.E9.m1.1.1.1.1.1.1.1.3" xref="S2.E9.m1.1.1.1.1.1.1.1.3.cmml">u</mi></mrow></mtd><mtd id="S2.E9.m1.1.1.1.1c" xref="S2.E9.m1.1.1.1.1.cmml"><mrow id="S2.E9.m1.1.1.1.1.1.2.1" xref="S2.E9.m1.1.1.1.1.1.2.1.cmml"><mrow id="S2.E9.m1.1.1.1.1.1.2.1.2" xref="S2.E9.m1.1.1.1.1.1.2.1.2.cmml"><mi id="S2.E9.m1.1.1.1.1.1.2.1.2.2" xref="S2.E9.m1.1.1.1.1.1.2.1.2.2.cmml">ρ</mi><mo id="S2.E9.m1.1.1.1.1.1.2.1.2.1" xref="S2.E9.m1.1.1.1.1.1.2.1.2.1.cmml"></mo><msup id="S2.E9.m1.1.1.1.1.1.2.1.2.3" xref="S2.E9.m1.1.1.1.1.1.2.1.2.3.cmml"><mi id="S2.E9.m1.1.1.1.1.1.2.1.2.3.2" xref="S2.E9.m1.1.1.1.1.1.2.1.2.3.2.cmml">u</mi><mn id="S2.E9.m1.1.1.1.1.1.2.1.2.3.3" xref="S2.E9.m1.1.1.1.1.1.2.1.2.3.3.cmml">2</mn></msup></mrow><mo id="S2.E9.m1.1.1.1.1.1.2.1.1" xref="S2.E9.m1.1.1.1.1.1.2.1.1.cmml">+</mo><mrow id="S2.E9.m1.1.1.1.1.1.2.1.3" xref="S2.E9.m1.1.1.1.1.1.2.1.3.cmml"><mi id="S2.E9.m1.1.1.1.1.1.2.1.3.2" xref="S2.E9.m1.1.1.1.1.1.2.1.3.2.cmml">ρ</mi><mo id="S2.E9.m1.1.1.1.1.1.2.1.3.1" xref="S2.E9.m1.1.1.1.1.1.2.1.3.1.cmml"></mo><msubsup id="S2.E9.m1.1.1.1.1.1.2.1.3.3" xref="S2.E9.m1.1.1.1.1.1.2.1.3.3.cmml"><mi id="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.2" xref="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.2.cmml">v</mi><mrow id="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.3" xref="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.3.cmml"><mi id="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.3.2" xref="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.3.2.cmml">t</mi><mo id="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.3.1" xref="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.3.1.cmml"></mo><mi id="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.3.3" xref="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.3.3.cmml">h</mi></mrow><mn id="S2.E9.m1.1.1.1.1.1.2.1.3.3.3" xref="S2.E9.m1.1.1.1.1.1.2.1.3.3.3.cmml">2</mn></msubsup></mrow></mrow></mtd><mtd id="S2.E9.m1.1.1.1.1d" xref="S2.E9.m1.1.1.1.1.cmml"><mrow id="S2.E9.m1.1.1.1.1.1.3.1" xref="S2.E9.m1.1.1.1.1.1.3.1.cmml"><mi id="S2.E9.m1.1.1.1.1.1.3.1.2" xref="S2.E9.m1.1.1.1.1.1.3.1.2.cmml">ρ</mi><mo id="S2.E9.m1.1.1.1.1.1.3.1.1" xref="S2.E9.m1.1.1.1.1.1.3.1.1.cmml"></mo><mi id="S2.E9.m1.1.1.1.1.1.3.1.3" xref="S2.E9.m1.1.1.1.1.1.3.1.3.cmml">u</mi><mo id="S2.E9.m1.1.1.1.1.1.3.1.1a" xref="S2.E9.m1.1.1.1.1.1.3.1.1.cmml"></mo><mi id="S2.E9.m1.1.1.1.1.1.3.1.4" xref="S2.E9.m1.1.1.1.1.1.3.1.4.cmml">v</mi></mrow></mtd><mtd id="S2.E9.m1.1.1.1.1e" xref="S2.E9.m1.1.1.1.1.cmml"><mrow id="S2.E9.m1.1.1.1.1.1.4.1" xref="S2.E9.m1.1.1.1.1.1.4.1.cmml"><mi id="S2.E9.m1.1.1.1.1.1.4.1.2" xref="S2.E9.m1.1.1.1.1.1.4.1.2.cmml">ρ</mi><mo id="S2.E9.m1.1.1.1.1.1.4.1.1" xref="S2.E9.m1.1.1.1.1.1.4.1.1.cmml"></mo><mi id="S2.E9.m1.1.1.1.1.1.4.1.3" xref="S2.E9.m1.1.1.1.1.1.4.1.3.cmml">u</mi><mo id="S2.E9.m1.1.1.1.1.1.4.1.1a" xref="S2.E9.m1.1.1.1.1.1.4.1.1.cmml"></mo><mi id="S2.E9.m1.1.1.1.1.1.4.1.4" xref="S2.E9.m1.1.1.1.1.1.4.1.4.cmml">w</mi></mrow></mtd></mtr></mtable><mo id="S2.E9.m1.1.1.3.2" xref="S2.E9.m1.1.1.2.1.cmml">]</mo></mrow><mo id="S2.E9.m1.3.3.1.1.3.2" xref="S2.E9.m1.3.3.1.1.3.2.cmml">⊺</mo></msup></mrow><mo id="S2.E9.m1.3.3.1.2" lspace="0em" xref="S2.E9.m1.3.3.1.1.cmml">.</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E9.m1.3b"><apply id="S2.E9.m1.3.3.1.1.cmml" xref="S2.E9.m1.3.3.1"><eq id="S2.E9.m1.3.3.1.1.1.cmml" xref="S2.E9.m1.3.3.1.1.1"></eq><apply id="S2.E9.m1.3.3.1.1.2.cmml" xref="S2.E9.m1.3.3.1.1.2"><times id="S2.E9.m1.3.3.1.1.2.1.cmml" xref="S2.E9.m1.3.3.1.1.2.1"></times><ci id="S2.E9.m1.3.3.1.1.2.2.cmml" xref="S2.E9.m1.3.3.1.1.2.2">𝐅</ci><ci id="S2.E9.m1.2.2.cmml" xref="S2.E9.m1.2.2">𝐔</ci></apply><apply id="S2.E9.m1.3.3.1.1.3.cmml" xref="S2.E9.m1.3.3.1.1.3"><csymbol cd="ambiguous" id="S2.E9.m1.3.3.1.1.3.1.cmml" xref="S2.E9.m1.3.3.1.1.3">superscript</csymbol><apply id="S2.E9.m1.1.1.2.cmml" xref="S2.E9.m1.1.1.3"><csymbol cd="latexml" id="S2.E9.m1.1.1.2.1.cmml" xref="S2.E9.m1.1.1.3.1">matrix</csymbol><matrix id="S2.E9.m1.1.1.1.1.cmml" xref="S2.E9.m1.1.1.1.1"><matrixrow id="S2.E9.m1.1.1.1.1a.cmml" xref="S2.E9.m1.1.1.1.1"><apply id="S2.E9.m1.1.1.1.1.1.1.1.cmml" xref="S2.E9.m1.1.1.1.1.1.1.1"><times id="S2.E9.m1.1.1.1.1.1.1.1.1.cmml" xref="S2.E9.m1.1.1.1.1.1.1.1.1"></times><ci id="S2.E9.m1.1.1.1.1.1.1.1.2.cmml" xref="S2.E9.m1.1.1.1.1.1.1.1.2">𝜌</ci><ci id="S2.E9.m1.1.1.1.1.1.1.1.3.cmml" xref="S2.E9.m1.1.1.1.1.1.1.1.3">𝑢</ci></apply><apply id="S2.E9.m1.1.1.1.1.1.2.1.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1"><plus id="S2.E9.m1.1.1.1.1.1.2.1.1.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.1"></plus><apply id="S2.E9.m1.1.1.1.1.1.2.1.2.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.2"><times id="S2.E9.m1.1.1.1.1.1.2.1.2.1.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.2.1"></times><ci id="S2.E9.m1.1.1.1.1.1.2.1.2.2.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.2.2">𝜌</ci><apply id="S2.E9.m1.1.1.1.1.1.2.1.2.3.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.2.3"><csymbol cd="ambiguous" id="S2.E9.m1.1.1.1.1.1.2.1.2.3.1.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.2.3">superscript</csymbol><ci id="S2.E9.m1.1.1.1.1.1.2.1.2.3.2.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.2.3.2">𝑢</ci><cn id="S2.E9.m1.1.1.1.1.1.2.1.2.3.3.cmml" type="integer" xref="S2.E9.m1.1.1.1.1.1.2.1.2.3.3">2</cn></apply></apply><apply id="S2.E9.m1.1.1.1.1.1.2.1.3.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.3"><times id="S2.E9.m1.1.1.1.1.1.2.1.3.1.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.3.1"></times><ci id="S2.E9.m1.1.1.1.1.1.2.1.3.2.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.3.2">𝜌</ci><apply id="S2.E9.m1.1.1.1.1.1.2.1.3.3.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.3.3"><csymbol cd="ambiguous" id="S2.E9.m1.1.1.1.1.1.2.1.3.3.1.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.3.3">superscript</csymbol><apply id="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.3.3"><csymbol cd="ambiguous" id="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.1.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.3.3">subscript</csymbol><ci id="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.2.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.2">𝑣</ci><apply id="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.3.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.3"><times id="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.3.1.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.3.1"></times><ci id="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.3.2.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.3.2">𝑡</ci><ci id="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.3.3.cmml" xref="S2.E9.m1.1.1.1.1.1.2.1.3.3.2.3.3">ℎ</ci></apply></apply><cn id="S2.E9.m1.1.1.1.1.1.2.1.3.3.3.cmml" type="integer" xref="S2.E9.m1.1.1.1.1.1.2.1.3.3.3">2</cn></apply></apply></apply><apply id="S2.E9.m1.1.1.1.1.1.3.1.cmml" xref="S2.E9.m1.1.1.1.1.1.3.1"><times id="S2.E9.m1.1.1.1.1.1.3.1.1.cmml" xref="S2.E9.m1.1.1.1.1.1.3.1.1"></times><ci id="S2.E9.m1.1.1.1.1.1.3.1.2.cmml" xref="S2.E9.m1.1.1.1.1.1.3.1.2">𝜌</ci><ci id="S2.E9.m1.1.1.1.1.1.3.1.3.cmml" xref="S2.E9.m1.1.1.1.1.1.3.1.3">𝑢</ci><ci id="S2.E9.m1.1.1.1.1.1.3.1.4.cmml" xref="S2.E9.m1.1.1.1.1.1.3.1.4">𝑣</ci></apply><apply id="S2.E9.m1.1.1.1.1.1.4.1.cmml" xref="S2.E9.m1.1.1.1.1.1.4.1"><times id="S2.E9.m1.1.1.1.1.1.4.1.1.cmml" xref="S2.E9.m1.1.1.1.1.1.4.1.1"></times><ci id="S2.E9.m1.1.1.1.1.1.4.1.2.cmml" xref="S2.E9.m1.1.1.1.1.1.4.1.2">𝜌</ci><ci id="S2.E9.m1.1.1.1.1.1.4.1.3.cmml" xref="S2.E9.m1.1.1.1.1.1.4.1.3">𝑢</ci><ci id="S2.E9.m1.1.1.1.1.1.4.1.4.cmml" xref="S2.E9.m1.1.1.1.1.1.4.1.4">𝑤</ci></apply></matrixrow></matrix></apply><ci id="S2.E9.m1.3.3.1.1.3.2.cmml" xref="S2.E9.m1.3.3.1.1.3.2">⊺</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E9.m1.3c">\mathbf{F}\left(\mathbf{U}\right)=\begin{bmatrix}\rho u&\rho u^{2}+\rho v_{th}% ^{2}&\rho uv&\rho uw\end{bmatrix}^{\intercal}.</annotation><annotation encoding="application/x-llamapun" id="S2.E9.m1.3d">bold_F ( bold_U ) = [ start_ARG start_ROW start_CELL italic_ρ italic_u end_CELL start_CELL italic_ρ italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_ρ italic_v start_POSTSUBSCRIPT italic_t italic_h end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL italic_ρ italic_u italic_v end_CELL start_CELL italic_ρ italic_u italic_w end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT ⊺ end_POSTSUPERSCRIPT .</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS1.p11.24">For the perfectly hyperbolic Maxwell’s equations, the conserved variables correspond to the <math alttext="x" class="ltx_Math" display="inline" id="S2.SS1.p11.1.m1.1"><semantics id="S2.SS1.p11.1.m1.1a"><mi id="S2.SS1.p11.1.m1.1.1" xref="S2.SS1.p11.1.m1.1.1.cmml">x</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.1.m1.1b"><ci id="S2.SS1.p11.1.m1.1.1.cmml" xref="S2.SS1.p11.1.m1.1.1">𝑥</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.1.m1.1c">x</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.1.m1.1d">italic_x</annotation></semantics></math>, <math alttext="y" class="ltx_Math" display="inline" id="S2.SS1.p11.2.m2.1"><semantics id="S2.SS1.p11.2.m2.1a"><mi id="S2.SS1.p11.2.m2.1.1" xref="S2.SS1.p11.2.m2.1.1.cmml">y</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.2.m2.1b"><ci id="S2.SS1.p11.2.m2.1.1.cmml" xref="S2.SS1.p11.2.m2.1.1">𝑦</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.2.m2.1c">y</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.2.m2.1d">italic_y</annotation></semantics></math> and <math alttext="z" class="ltx_Math" display="inline" id="S2.SS1.p11.3.m3.1"><semantics id="S2.SS1.p11.3.m3.1a"><mi id="S2.SS1.p11.3.m3.1.1" xref="S2.SS1.p11.3.m3.1.1.cmml">z</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.3.m3.1b"><ci id="S2.SS1.p11.3.m3.1.1.cmml" xref="S2.SS1.p11.3.m3.1.1">𝑧</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.3.m3.1c">z</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.3.m3.1d">italic_z</annotation></semantics></math> components of the electric and magnetic field vectors <math alttext="{\mathbf{E}}" class="ltx_Math" display="inline" id="S2.SS1.p11.4.m4.1"><semantics id="S2.SS1.p11.4.m4.1a"><mi id="S2.SS1.p11.4.m4.1.1" xref="S2.SS1.p11.4.m4.1.1.cmml">𝐄</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.4.m4.1b"><ci id="S2.SS1.p11.4.m4.1.1.cmml" xref="S2.SS1.p11.4.m4.1.1">𝐄</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.4.m4.1c">{\mathbf{E}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.4.m4.1d">bold_E</annotation></semantics></math> and <math alttext="{\mathbf{B}}" class="ltx_Math" display="inline" id="S2.SS1.p11.5.m5.1"><semantics id="S2.SS1.p11.5.m5.1a"><mi id="S2.SS1.p11.5.m5.1.1" xref="S2.SS1.p11.5.m5.1.1.cmml">𝐁</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.5.m5.1b"><ci id="S2.SS1.p11.5.m5.1.1.cmml" xref="S2.SS1.p11.5.m5.1.1">𝐁</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.5.m5.1c">{\mathbf{B}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.5.m5.1d">bold_B</annotation></semantics></math>, as well as the correction potentials <math alttext="{\phi}" class="ltx_Math" display="inline" id="S2.SS1.p11.6.m6.1"><semantics id="S2.SS1.p11.6.m6.1a"><mi id="S2.SS1.p11.6.m6.1.1" xref="S2.SS1.p11.6.m6.1.1.cmml">ϕ</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.6.m6.1b"><ci id="S2.SS1.p11.6.m6.1.1.cmml" xref="S2.SS1.p11.6.m6.1.1">italic-ϕ</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.6.m6.1c">{\phi}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.6.m6.1d">italic_ϕ</annotation></semantics></math> and <math alttext="{\psi}" class="ltx_Math" display="inline" id="S2.SS1.p11.7.m7.1"><semantics id="S2.SS1.p11.7.m7.1a"><mi id="S2.SS1.p11.7.m7.1.1" xref="S2.SS1.p11.7.m7.1.1.cmml">ψ</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.7.m7.1b"><ci id="S2.SS1.p11.7.m7.1.1.cmml" xref="S2.SS1.p11.7.m7.1.1">𝜓</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.7.m7.1c">{\psi}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.7.m7.1d">italic_ψ</annotation></semantics></math> for cleaning divergence errors in <math alttext="{\mathbf{E}}" class="ltx_Math" display="inline" id="S2.SS1.p11.8.m8.1"><semantics id="S2.SS1.p11.8.m8.1a"><mi id="S2.SS1.p11.8.m8.1.1" xref="S2.SS1.p11.8.m8.1.1.cmml">𝐄</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.8.m8.1b"><ci id="S2.SS1.p11.8.m8.1.1.cmml" xref="S2.SS1.p11.8.m8.1.1">𝐄</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.8.m8.1c">{\mathbf{E}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.8.m8.1d">bold_E</annotation></semantics></math> and <math alttext="{\mathbf{B}}" class="ltx_Math" display="inline" id="S2.SS1.p11.9.m9.1"><semantics id="S2.SS1.p11.9.m9.1a"><mi id="S2.SS1.p11.9.m9.1.1" xref="S2.SS1.p11.9.m9.1.1.cmml">𝐁</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.9.m9.1b"><ci id="S2.SS1.p11.9.m9.1.1.cmml" xref="S2.SS1.p11.9.m9.1.1">𝐁</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.9.m9.1c">{\mathbf{B}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.9.m9.1d">bold_B</annotation></semantics></math>, respectively. <math alttext="{c,\chi,\gamma\in\mathbb{R}}" class="ltx_Math" display="inline" id="S2.SS1.p11.10.m10.3"><semantics id="S2.SS1.p11.10.m10.3a"><mrow id="S2.SS1.p11.10.m10.3.4" xref="S2.SS1.p11.10.m10.3.4.cmml"><mrow id="S2.SS1.p11.10.m10.3.4.2.2" xref="S2.SS1.p11.10.m10.3.4.2.1.cmml"><mi id="S2.SS1.p11.10.m10.1.1" xref="S2.SS1.p11.10.m10.1.1.cmml">c</mi><mo id="S2.SS1.p11.10.m10.3.4.2.2.1" xref="S2.SS1.p11.10.m10.3.4.2.1.cmml">,</mo><mi id="S2.SS1.p11.10.m10.2.2" xref="S2.SS1.p11.10.m10.2.2.cmml">χ</mi><mo id="S2.SS1.p11.10.m10.3.4.2.2.2" xref="S2.SS1.p11.10.m10.3.4.2.1.cmml">,</mo><mi id="S2.SS1.p11.10.m10.3.3" xref="S2.SS1.p11.10.m10.3.3.cmml">γ</mi></mrow><mo id="S2.SS1.p11.10.m10.3.4.1" xref="S2.SS1.p11.10.m10.3.4.1.cmml">∈</mo><mi id="S2.SS1.p11.10.m10.3.4.3" xref="S2.SS1.p11.10.m10.3.4.3.cmml">ℝ</mi></mrow><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.10.m10.3b"><apply id="S2.SS1.p11.10.m10.3.4.cmml" xref="S2.SS1.p11.10.m10.3.4"><in id="S2.SS1.p11.10.m10.3.4.1.cmml" xref="S2.SS1.p11.10.m10.3.4.1"></in><list id="S2.SS1.p11.10.m10.3.4.2.1.cmml" xref="S2.SS1.p11.10.m10.3.4.2.2"><ci id="S2.SS1.p11.10.m10.1.1.cmml" xref="S2.SS1.p11.10.m10.1.1">𝑐</ci><ci id="S2.SS1.p11.10.m10.2.2.cmml" xref="S2.SS1.p11.10.m10.2.2">𝜒</ci><ci id="S2.SS1.p11.10.m10.3.3.cmml" xref="S2.SS1.p11.10.m10.3.3">𝛾</ci></list><ci id="S2.SS1.p11.10.m10.3.4.3.cmml" xref="S2.SS1.p11.10.m10.3.4.3">ℝ</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.10.m10.3c">{c,\chi,\gamma\in\mathbb{R}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.10.m10.3d">italic_c , italic_χ , italic_γ ∈ blackboard_R</annotation></semantics></math> are arbitrary constants representing the speed of light, and the propagation speeds of electric and magnetic divergence errors, respectively. For the isothermal Euler equations, the conserved variables correspond to the fluid density <math alttext="{\rho}" class="ltx_Math" display="inline" id="S2.SS1.p11.11.m11.1"><semantics id="S2.SS1.p11.11.m11.1a"><mi id="S2.SS1.p11.11.m11.1.1" xref="S2.SS1.p11.11.m11.1.1.cmml">ρ</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.11.m11.1b"><ci id="S2.SS1.p11.11.m11.1.1.cmml" xref="S2.SS1.p11.11.m11.1.1">𝜌</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.11.m11.1c">{\rho}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.11.m11.1d">italic_ρ</annotation></semantics></math>, and the <math alttext="x" class="ltx_Math" display="inline" id="S2.SS1.p11.12.m12.1"><semantics id="S2.SS1.p11.12.m12.1a"><mi id="S2.SS1.p11.12.m12.1.1" xref="S2.SS1.p11.12.m12.1.1.cmml">x</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.12.m12.1b"><ci id="S2.SS1.p11.12.m12.1.1.cmml" xref="S2.SS1.p11.12.m12.1.1">𝑥</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.12.m12.1c">x</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.12.m12.1d">italic_x</annotation></semantics></math>, <math alttext="y" class="ltx_Math" display="inline" id="S2.SS1.p11.13.m13.1"><semantics id="S2.SS1.p11.13.m13.1a"><mi id="S2.SS1.p11.13.m13.1.1" xref="S2.SS1.p11.13.m13.1.1.cmml">y</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.13.m13.1b"><ci id="S2.SS1.p11.13.m13.1.1.cmml" xref="S2.SS1.p11.13.m13.1.1">𝑦</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.13.m13.1c">y</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.13.m13.1d">italic_y</annotation></semantics></math> and <math alttext="z" class="ltx_Math" display="inline" id="S2.SS1.p11.14.m14.1"><semantics id="S2.SS1.p11.14.m14.1a"><mi id="S2.SS1.p11.14.m14.1.1" xref="S2.SS1.p11.14.m14.1.1.cmml">z</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.14.m14.1b"><ci id="S2.SS1.p11.14.m14.1.1.cmml" xref="S2.SS1.p11.14.m14.1.1">𝑧</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.14.m14.1c">z</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.14.m14.1d">italic_z</annotation></semantics></math> components of the fluid momentum <math alttext="{\rho u}" class="ltx_Math" display="inline" id="S2.SS1.p11.15.m15.1"><semantics id="S2.SS1.p11.15.m15.1a"><mrow id="S2.SS1.p11.15.m15.1.1" xref="S2.SS1.p11.15.m15.1.1.cmml"><mi id="S2.SS1.p11.15.m15.1.1.2" xref="S2.SS1.p11.15.m15.1.1.2.cmml">ρ</mi><mo id="S2.SS1.p11.15.m15.1.1.1" xref="S2.SS1.p11.15.m15.1.1.1.cmml"></mo><mi id="S2.SS1.p11.15.m15.1.1.3" xref="S2.SS1.p11.15.m15.1.1.3.cmml">u</mi></mrow><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.15.m15.1b"><apply id="S2.SS1.p11.15.m15.1.1.cmml" xref="S2.SS1.p11.15.m15.1.1"><times id="S2.SS1.p11.15.m15.1.1.1.cmml" xref="S2.SS1.p11.15.m15.1.1.1"></times><ci id="S2.SS1.p11.15.m15.1.1.2.cmml" xref="S2.SS1.p11.15.m15.1.1.2">𝜌</ci><ci id="S2.SS1.p11.15.m15.1.1.3.cmml" xref="S2.SS1.p11.15.m15.1.1.3">𝑢</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.15.m15.1c">{\rho u}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.15.m15.1d">italic_ρ italic_u</annotation></semantics></math>, <math alttext="{\rho v}" class="ltx_Math" display="inline" id="S2.SS1.p11.16.m16.1"><semantics id="S2.SS1.p11.16.m16.1a"><mrow id="S2.SS1.p11.16.m16.1.1" xref="S2.SS1.p11.16.m16.1.1.cmml"><mi id="S2.SS1.p11.16.m16.1.1.2" xref="S2.SS1.p11.16.m16.1.1.2.cmml">ρ</mi><mo id="S2.SS1.p11.16.m16.1.1.1" xref="S2.SS1.p11.16.m16.1.1.1.cmml"></mo><mi id="S2.SS1.p11.16.m16.1.1.3" xref="S2.SS1.p11.16.m16.1.1.3.cmml">v</mi></mrow><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.16.m16.1b"><apply id="S2.SS1.p11.16.m16.1.1.cmml" xref="S2.SS1.p11.16.m16.1.1"><times id="S2.SS1.p11.16.m16.1.1.1.cmml" xref="S2.SS1.p11.16.m16.1.1.1"></times><ci id="S2.SS1.p11.16.m16.1.1.2.cmml" xref="S2.SS1.p11.16.m16.1.1.2">𝜌</ci><ci id="S2.SS1.p11.16.m16.1.1.3.cmml" xref="S2.SS1.p11.16.m16.1.1.3">𝑣</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.16.m16.1c">{\rho v}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.16.m16.1d">italic_ρ italic_v</annotation></semantics></math> and <math alttext="{\rho w}" class="ltx_Math" display="inline" id="S2.SS1.p11.17.m17.1"><semantics id="S2.SS1.p11.17.m17.1a"><mrow id="S2.SS1.p11.17.m17.1.1" xref="S2.SS1.p11.17.m17.1.1.cmml"><mi id="S2.SS1.p11.17.m17.1.1.2" xref="S2.SS1.p11.17.m17.1.1.2.cmml">ρ</mi><mo id="S2.SS1.p11.17.m17.1.1.1" xref="S2.SS1.p11.17.m17.1.1.1.cmml"></mo><mi id="S2.SS1.p11.17.m17.1.1.3" xref="S2.SS1.p11.17.m17.1.1.3.cmml">w</mi></mrow><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.17.m17.1b"><apply id="S2.SS1.p11.17.m17.1.1.cmml" xref="S2.SS1.p11.17.m17.1.1"><times id="S2.SS1.p11.17.m17.1.1.1.cmml" xref="S2.SS1.p11.17.m17.1.1.1"></times><ci id="S2.SS1.p11.17.m17.1.1.2.cmml" xref="S2.SS1.p11.17.m17.1.1.2">𝜌</ci><ci id="S2.SS1.p11.17.m17.1.1.3.cmml" xref="S2.SS1.p11.17.m17.1.1.3">𝑤</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.17.m17.1c">{\rho w}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.17.m17.1d">italic_ρ italic_w</annotation></semantics></math> (with <math alttext="u" class="ltx_Math" display="inline" id="S2.SS1.p11.18.m18.1"><semantics id="S2.SS1.p11.18.m18.1a"><mi id="S2.SS1.p11.18.m18.1.1" xref="S2.SS1.p11.18.m18.1.1.cmml">u</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.18.m18.1b"><ci id="S2.SS1.p11.18.m18.1.1.cmml" xref="S2.SS1.p11.18.m18.1.1">𝑢</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.18.m18.1c">u</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.18.m18.1d">italic_u</annotation></semantics></math>, <math alttext="v" class="ltx_Math" display="inline" id="S2.SS1.p11.19.m19.1"><semantics id="S2.SS1.p11.19.m19.1a"><mi id="S2.SS1.p11.19.m19.1.1" xref="S2.SS1.p11.19.m19.1.1.cmml">v</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.19.m19.1b"><ci id="S2.SS1.p11.19.m19.1.1.cmml" xref="S2.SS1.p11.19.m19.1.1">𝑣</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.19.m19.1c">v</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.19.m19.1d">italic_v</annotation></semantics></math> and <math alttext="w" class="ltx_Math" display="inline" id="S2.SS1.p11.20.m20.1"><semantics id="S2.SS1.p11.20.m20.1a"><mi id="S2.SS1.p11.20.m20.1.1" xref="S2.SS1.p11.20.m20.1.1.cmml">w</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.20.m20.1b"><ci id="S2.SS1.p11.20.m20.1.1.cmml" xref="S2.SS1.p11.20.m20.1.1">𝑤</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.20.m20.1c">w</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.20.m20.1d">italic_w</annotation></semantics></math> representing the <math alttext="x" class="ltx_Math" display="inline" id="S2.SS1.p11.21.m21.1"><semantics id="S2.SS1.p11.21.m21.1a"><mi id="S2.SS1.p11.21.m21.1.1" xref="S2.SS1.p11.21.m21.1.1.cmml">x</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.21.m21.1b"><ci id="S2.SS1.p11.21.m21.1.1.cmml" xref="S2.SS1.p11.21.m21.1.1">𝑥</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.21.m21.1c">x</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.21.m21.1d">italic_x</annotation></semantics></math>, <math alttext="y" class="ltx_Math" display="inline" id="S2.SS1.p11.22.m22.1"><semantics id="S2.SS1.p11.22.m22.1a"><mi id="S2.SS1.p11.22.m22.1.1" xref="S2.SS1.p11.22.m22.1.1.cmml">y</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.22.m22.1b"><ci id="S2.SS1.p11.22.m22.1.1.cmml" xref="S2.SS1.p11.22.m22.1.1">𝑦</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.22.m22.1c">y</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.22.m22.1d">italic_y</annotation></semantics></math> and <math alttext="z" class="ltx_Math" display="inline" id="S2.SS1.p11.23.m23.1"><semantics id="S2.SS1.p11.23.m23.1a"><mi id="S2.SS1.p11.23.m23.1.1" xref="S2.SS1.p11.23.m23.1.1.cmml">z</mi><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.23.m23.1b"><ci id="S2.SS1.p11.23.m23.1.1.cmml" xref="S2.SS1.p11.23.m23.1.1">𝑧</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.23.m23.1c">z</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.23.m23.1d">italic_z</annotation></semantics></math> components of the fluid velocity, which are not conserved). <math alttext="{v_{th}\in\mathbb{R}}" class="ltx_Math" display="inline" id="S2.SS1.p11.24.m24.1"><semantics id="S2.SS1.p11.24.m24.1a"><mrow id="S2.SS1.p11.24.m24.1.1" xref="S2.SS1.p11.24.m24.1.1.cmml"><msub id="S2.SS1.p11.24.m24.1.1.2" xref="S2.SS1.p11.24.m24.1.1.2.cmml"><mi id="S2.SS1.p11.24.m24.1.1.2.2" xref="S2.SS1.p11.24.m24.1.1.2.2.cmml">v</mi><mrow id="S2.SS1.p11.24.m24.1.1.2.3" xref="S2.SS1.p11.24.m24.1.1.2.3.cmml"><mi id="S2.SS1.p11.24.m24.1.1.2.3.2" xref="S2.SS1.p11.24.m24.1.1.2.3.2.cmml">t</mi><mo id="S2.SS1.p11.24.m24.1.1.2.3.1" xref="S2.SS1.p11.24.m24.1.1.2.3.1.cmml"></mo><mi id="S2.SS1.p11.24.m24.1.1.2.3.3" xref="S2.SS1.p11.24.m24.1.1.2.3.3.cmml">h</mi></mrow></msub><mo id="S2.SS1.p11.24.m24.1.1.1" xref="S2.SS1.p11.24.m24.1.1.1.cmml">∈</mo><mi id="S2.SS1.p11.24.m24.1.1.3" xref="S2.SS1.p11.24.m24.1.1.3.cmml">ℝ</mi></mrow><annotation-xml encoding="MathML-Content" id="S2.SS1.p11.24.m24.1b"><apply id="S2.SS1.p11.24.m24.1.1.cmml" xref="S2.SS1.p11.24.m24.1.1"><in id="S2.SS1.p11.24.m24.1.1.1.cmml" xref="S2.SS1.p11.24.m24.1.1.1"></in><apply id="S2.SS1.p11.24.m24.1.1.2.cmml" xref="S2.SS1.p11.24.m24.1.1.2"><csymbol cd="ambiguous" id="S2.SS1.p11.24.m24.1.1.2.1.cmml" xref="S2.SS1.p11.24.m24.1.1.2">subscript</csymbol><ci id="S2.SS1.p11.24.m24.1.1.2.2.cmml" xref="S2.SS1.p11.24.m24.1.1.2.2">𝑣</ci><apply id="S2.SS1.p11.24.m24.1.1.2.3.cmml" xref="S2.SS1.p11.24.m24.1.1.2.3"><times id="S2.SS1.p11.24.m24.1.1.2.3.1.cmml" xref="S2.SS1.p11.24.m24.1.1.2.3.1"></times><ci id="S2.SS1.p11.24.m24.1.1.2.3.2.cmml" xref="S2.SS1.p11.24.m24.1.1.2.3.2">𝑡</ci><ci id="S2.SS1.p11.24.m24.1.1.2.3.3.cmml" xref="S2.SS1.p11.24.m24.1.1.2.3.3">ℎ</ci></apply></apply><ci id="S2.SS1.p11.24.m24.1.1.3.cmml" xref="S2.SS1.p11.24.m24.1.1.3">ℝ</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS1.p11.24.m24.1c">{v_{th}\in\mathbb{R}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS1.p11.24.m24.1d">italic_v start_POSTSUBSCRIPT italic_t italic_h end_POSTSUBSCRIPT ∈ blackboard_R</annotation></semantics></math> is an arbitrary constant representing the thermal velocity of the fluid.</p> </div> </section> <section class="ltx_subsection" id="S2.SS2"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">2.2. </span>The Lax-Friedrichs Flux</h3> <div class="ltx_para" id="S2.SS2.p1"> <p class="ltx_p" id="S2.SS2.p1.1">One of the simplest choices of inter-cell flux function is the Lax-Friedrichs (finite difference) flux<cite class="ltx_cite ltx_citemacro_citep">(Lax, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib21" title="">1954</a>)</cite><cite class="ltx_cite ltx_citemacro_citep">(LeVeque, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib22" title="">1992</a>)</cite>:</p> </div> <div class="ltx_para" id="S2.SS2.p2"> <table class="ltx_equation ltx_eqn_table" id="S2.E10"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(10)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{F}_{i+\frac{1}{2}}=\frac{1}{2}\left[\mathbf{F}\left(\mathbf{U}_{i}^{n}% \right)+\mathbf{F}\left(\mathbf{U}_{i+1}^{n}\right)\right]-\frac{\Delta x}{2% \Delta t}\left[\mathbf{U}_{i+1}^{n}-\mathbf{U}_{i}^{n}\right]." class="ltx_Math" display="block" id="S2.E10.m1.1"><semantics id="S2.E10.m1.1a"><mrow id="S2.E10.m1.1.1.1" xref="S2.E10.m1.1.1.1.1.cmml"><mrow id="S2.E10.m1.1.1.1.1" xref="S2.E10.m1.1.1.1.1.cmml"><msub id="S2.E10.m1.1.1.1.1.4" xref="S2.E10.m1.1.1.1.1.4.cmml"><mi id="S2.E10.m1.1.1.1.1.4.2" xref="S2.E10.m1.1.1.1.1.4.2.cmml">𝐅</mi><mrow id="S2.E10.m1.1.1.1.1.4.3" xref="S2.E10.m1.1.1.1.1.4.3.cmml"><mi id="S2.E10.m1.1.1.1.1.4.3.2" xref="S2.E10.m1.1.1.1.1.4.3.2.cmml">i</mi><mo id="S2.E10.m1.1.1.1.1.4.3.1" xref="S2.E10.m1.1.1.1.1.4.3.1.cmml">+</mo><mfrac id="S2.E10.m1.1.1.1.1.4.3.3" xref="S2.E10.m1.1.1.1.1.4.3.3.cmml"><mn id="S2.E10.m1.1.1.1.1.4.3.3.2" xref="S2.E10.m1.1.1.1.1.4.3.3.2.cmml">1</mn><mn id="S2.E10.m1.1.1.1.1.4.3.3.3" xref="S2.E10.m1.1.1.1.1.4.3.3.3.cmml">2</mn></mfrac></mrow></msub><mo id="S2.E10.m1.1.1.1.1.3" xref="S2.E10.m1.1.1.1.1.3.cmml">=</mo><mrow id="S2.E10.m1.1.1.1.1.2" xref="S2.E10.m1.1.1.1.1.2.cmml"><mrow id="S2.E10.m1.1.1.1.1.1.1" xref="S2.E10.m1.1.1.1.1.1.1.cmml"><mfrac id="S2.E10.m1.1.1.1.1.1.1.3" xref="S2.E10.m1.1.1.1.1.1.1.3.cmml"><mn id="S2.E10.m1.1.1.1.1.1.1.3.2" xref="S2.E10.m1.1.1.1.1.1.1.3.2.cmml">1</mn><mn id="S2.E10.m1.1.1.1.1.1.1.3.3" xref="S2.E10.m1.1.1.1.1.1.1.3.3.cmml">2</mn></mfrac><mo id="S2.E10.m1.1.1.1.1.1.1.2" xref="S2.E10.m1.1.1.1.1.1.1.2.cmml"></mo><mrow id="S2.E10.m1.1.1.1.1.1.1.1.1" xref="S2.E10.m1.1.1.1.1.1.1.1.2.cmml"><mo id="S2.E10.m1.1.1.1.1.1.1.1.1.2" xref="S2.E10.m1.1.1.1.1.1.1.1.2.1.cmml">[</mo><mrow id="S2.E10.m1.1.1.1.1.1.1.1.1.1" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.cmml"><mrow id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.cmml"><mi id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.3" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.3.cmml">𝐅</mi><mo id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.2" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.2.cmml"></mo><mrow id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml"><mo id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.2" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml">(</mo><msubsup id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml"><mi id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.cmml">𝐔</mi><mi id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.cmml">i</mi><mi id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.cmml">n</mi></msubsup><mo id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.3" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml">)</mo></mrow></mrow><mo id="S2.E10.m1.1.1.1.1.1.1.1.1.1.3" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.3.cmml">+</mo><mrow id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.cmml"><mi id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.3" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.3.cmml">𝐅</mi><mo id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.2" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.2.cmml"></mo><mrow id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml"><mo id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.2" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml">(</mo><msubsup id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml"><mi id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2.cmml">𝐔</mi><mrow id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.cmml"><mi id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.2" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.2.cmml">i</mi><mo id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.1" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.1.cmml">+</mo><mn id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.cmml">1</mn></mrow><mi id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.cmml">n</mi></msubsup><mo id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.3" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml">)</mo></mrow></mrow></mrow><mo id="S2.E10.m1.1.1.1.1.1.1.1.1.3" xref="S2.E10.m1.1.1.1.1.1.1.1.2.1.cmml">]</mo></mrow></mrow><mo id="S2.E10.m1.1.1.1.1.2.3" xref="S2.E10.m1.1.1.1.1.2.3.cmml">−</mo><mrow id="S2.E10.m1.1.1.1.1.2.2" xref="S2.E10.m1.1.1.1.1.2.2.cmml"><mfrac id="S2.E10.m1.1.1.1.1.2.2.3" xref="S2.E10.m1.1.1.1.1.2.2.3.cmml"><mrow id="S2.E10.m1.1.1.1.1.2.2.3.2" xref="S2.E10.m1.1.1.1.1.2.2.3.2.cmml"><mi id="S2.E10.m1.1.1.1.1.2.2.3.2.2" mathvariant="normal" xref="S2.E10.m1.1.1.1.1.2.2.3.2.2.cmml">Δ</mi><mo id="S2.E10.m1.1.1.1.1.2.2.3.2.1" xref="S2.E10.m1.1.1.1.1.2.2.3.2.1.cmml"></mo><mi id="S2.E10.m1.1.1.1.1.2.2.3.2.3" xref="S2.E10.m1.1.1.1.1.2.2.3.2.3.cmml">x</mi></mrow><mrow id="S2.E10.m1.1.1.1.1.2.2.3.3" xref="S2.E10.m1.1.1.1.1.2.2.3.3.cmml"><mn id="S2.E10.m1.1.1.1.1.2.2.3.3.2" xref="S2.E10.m1.1.1.1.1.2.2.3.3.2.cmml">2</mn><mo id="S2.E10.m1.1.1.1.1.2.2.3.3.1" xref="S2.E10.m1.1.1.1.1.2.2.3.3.1.cmml"></mo><mi id="S2.E10.m1.1.1.1.1.2.2.3.3.3" mathvariant="normal" xref="S2.E10.m1.1.1.1.1.2.2.3.3.3.cmml">Δ</mi><mo id="S2.E10.m1.1.1.1.1.2.2.3.3.1a" xref="S2.E10.m1.1.1.1.1.2.2.3.3.1.cmml"></mo><mi id="S2.E10.m1.1.1.1.1.2.2.3.3.4" xref="S2.E10.m1.1.1.1.1.2.2.3.3.4.cmml">t</mi></mrow></mfrac><mo id="S2.E10.m1.1.1.1.1.2.2.2" xref="S2.E10.m1.1.1.1.1.2.2.2.cmml"></mo><mrow id="S2.E10.m1.1.1.1.1.2.2.1.1" xref="S2.E10.m1.1.1.1.1.2.2.1.2.cmml"><mo id="S2.E10.m1.1.1.1.1.2.2.1.1.2" xref="S2.E10.m1.1.1.1.1.2.2.1.2.1.cmml">[</mo><mrow id="S2.E10.m1.1.1.1.1.2.2.1.1.1" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.cmml"><msubsup id="S2.E10.m1.1.1.1.1.2.2.1.1.1.2" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.cmml"><mi id="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.2" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.2.cmml">𝐔</mi><mrow id="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.3" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.3.cmml"><mi id="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.3.2" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.3.2.cmml">i</mi><mo id="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.3.1" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.3.1.cmml">+</mo><mn id="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.3.3" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.3.3.cmml">1</mn></mrow><mi id="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.3" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.3.cmml">n</mi></msubsup><mo id="S2.E10.m1.1.1.1.1.2.2.1.1.1.1" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.1.cmml">−</mo><msubsup id="S2.E10.m1.1.1.1.1.2.2.1.1.1.3" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.3.cmml"><mi id="S2.E10.m1.1.1.1.1.2.2.1.1.1.3.2.2" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.3.2.2.cmml">𝐔</mi><mi id="S2.E10.m1.1.1.1.1.2.2.1.1.1.3.2.3" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.3.2.3.cmml">i</mi><mi id="S2.E10.m1.1.1.1.1.2.2.1.1.1.3.3" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.3.3.cmml">n</mi></msubsup></mrow><mo id="S2.E10.m1.1.1.1.1.2.2.1.1.3" xref="S2.E10.m1.1.1.1.1.2.2.1.2.1.cmml">]</mo></mrow></mrow></mrow></mrow><mo id="S2.E10.m1.1.1.1.2" lspace="0em" xref="S2.E10.m1.1.1.1.1.cmml">.</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E10.m1.1b"><apply id="S2.E10.m1.1.1.1.1.cmml" xref="S2.E10.m1.1.1.1"><eq id="S2.E10.m1.1.1.1.1.3.cmml" xref="S2.E10.m1.1.1.1.1.3"></eq><apply id="S2.E10.m1.1.1.1.1.4.cmml" xref="S2.E10.m1.1.1.1.1.4"><csymbol cd="ambiguous" id="S2.E10.m1.1.1.1.1.4.1.cmml" xref="S2.E10.m1.1.1.1.1.4">subscript</csymbol><ci id="S2.E10.m1.1.1.1.1.4.2.cmml" xref="S2.E10.m1.1.1.1.1.4.2">𝐅</ci><apply id="S2.E10.m1.1.1.1.1.4.3.cmml" xref="S2.E10.m1.1.1.1.1.4.3"><plus id="S2.E10.m1.1.1.1.1.4.3.1.cmml" xref="S2.E10.m1.1.1.1.1.4.3.1"></plus><ci id="S2.E10.m1.1.1.1.1.4.3.2.cmml" xref="S2.E10.m1.1.1.1.1.4.3.2">𝑖</ci><apply id="S2.E10.m1.1.1.1.1.4.3.3.cmml" xref="S2.E10.m1.1.1.1.1.4.3.3"><divide id="S2.E10.m1.1.1.1.1.4.3.3.1.cmml" xref="S2.E10.m1.1.1.1.1.4.3.3"></divide><cn id="S2.E10.m1.1.1.1.1.4.3.3.2.cmml" type="integer" xref="S2.E10.m1.1.1.1.1.4.3.3.2">1</cn><cn id="S2.E10.m1.1.1.1.1.4.3.3.3.cmml" type="integer" xref="S2.E10.m1.1.1.1.1.4.3.3.3">2</cn></apply></apply></apply><apply id="S2.E10.m1.1.1.1.1.2.cmml" xref="S2.E10.m1.1.1.1.1.2"><minus id="S2.E10.m1.1.1.1.1.2.3.cmml" xref="S2.E10.m1.1.1.1.1.2.3"></minus><apply id="S2.E10.m1.1.1.1.1.1.1.cmml" xref="S2.E10.m1.1.1.1.1.1.1"><times id="S2.E10.m1.1.1.1.1.1.1.2.cmml" xref="S2.E10.m1.1.1.1.1.1.1.2"></times><apply id="S2.E10.m1.1.1.1.1.1.1.3.cmml" xref="S2.E10.m1.1.1.1.1.1.1.3"><divide id="S2.E10.m1.1.1.1.1.1.1.3.1.cmml" xref="S2.E10.m1.1.1.1.1.1.1.3"></divide><cn id="S2.E10.m1.1.1.1.1.1.1.3.2.cmml" type="integer" xref="S2.E10.m1.1.1.1.1.1.1.3.2">1</cn><cn id="S2.E10.m1.1.1.1.1.1.1.3.3.cmml" type="integer" xref="S2.E10.m1.1.1.1.1.1.1.3.3">2</cn></apply><apply id="S2.E10.m1.1.1.1.1.1.1.1.2.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1"><csymbol cd="latexml" id="S2.E10.m1.1.1.1.1.1.1.1.2.1.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.2">delimited-[]</csymbol><apply id="S2.E10.m1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1"><plus id="S2.E10.m1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.3"></plus><apply id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1"><times id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.2"></times><ci id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.3">𝐅</ci><apply id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1">superscript</csymbol><apply id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.1.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1">subscript</csymbol><ci id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2">𝐔</ci><ci id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3">𝑖</ci></apply><ci id="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3">𝑛</ci></apply></apply><apply id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2"><times id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.2.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.2"></times><ci id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.3.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.3">𝐅</ci><apply id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1"><csymbol cd="ambiguous" id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.1.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1">superscript</csymbol><apply id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1"><csymbol cd="ambiguous" id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.1.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1">subscript</csymbol><ci id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2">𝐔</ci><apply id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3"><plus id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.1.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.1"></plus><ci id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.2.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.2">𝑖</ci><cn id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.cmml" type="integer" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3">1</cn></apply></apply><ci id="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.cmml" xref="S2.E10.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3">𝑛</ci></apply></apply></apply></apply></apply><apply id="S2.E10.m1.1.1.1.1.2.2.cmml" xref="S2.E10.m1.1.1.1.1.2.2"><times id="S2.E10.m1.1.1.1.1.2.2.2.cmml" xref="S2.E10.m1.1.1.1.1.2.2.2"></times><apply id="S2.E10.m1.1.1.1.1.2.2.3.cmml" xref="S2.E10.m1.1.1.1.1.2.2.3"><divide id="S2.E10.m1.1.1.1.1.2.2.3.1.cmml" xref="S2.E10.m1.1.1.1.1.2.2.3"></divide><apply id="S2.E10.m1.1.1.1.1.2.2.3.2.cmml" xref="S2.E10.m1.1.1.1.1.2.2.3.2"><times id="S2.E10.m1.1.1.1.1.2.2.3.2.1.cmml" xref="S2.E10.m1.1.1.1.1.2.2.3.2.1"></times><ci id="S2.E10.m1.1.1.1.1.2.2.3.2.2.cmml" xref="S2.E10.m1.1.1.1.1.2.2.3.2.2">Δ</ci><ci id="S2.E10.m1.1.1.1.1.2.2.3.2.3.cmml" xref="S2.E10.m1.1.1.1.1.2.2.3.2.3">𝑥</ci></apply><apply id="S2.E10.m1.1.1.1.1.2.2.3.3.cmml" xref="S2.E10.m1.1.1.1.1.2.2.3.3"><times id="S2.E10.m1.1.1.1.1.2.2.3.3.1.cmml" xref="S2.E10.m1.1.1.1.1.2.2.3.3.1"></times><cn id="S2.E10.m1.1.1.1.1.2.2.3.3.2.cmml" type="integer" xref="S2.E10.m1.1.1.1.1.2.2.3.3.2">2</cn><ci id="S2.E10.m1.1.1.1.1.2.2.3.3.3.cmml" xref="S2.E10.m1.1.1.1.1.2.2.3.3.3">Δ</ci><ci id="S2.E10.m1.1.1.1.1.2.2.3.3.4.cmml" xref="S2.E10.m1.1.1.1.1.2.2.3.3.4">𝑡</ci></apply></apply><apply id="S2.E10.m1.1.1.1.1.2.2.1.2.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1"><csymbol cd="latexml" id="S2.E10.m1.1.1.1.1.2.2.1.2.1.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.2">delimited-[]</csymbol><apply id="S2.E10.m1.1.1.1.1.2.2.1.1.1.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1"><minus id="S2.E10.m1.1.1.1.1.2.2.1.1.1.1.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.1"></minus><apply id="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.2"><csymbol cd="ambiguous" id="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.1.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.2">superscript</csymbol><apply id="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.2"><csymbol cd="ambiguous" id="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.1.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.2">subscript</csymbol><ci id="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.2.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.2">𝐔</ci><apply id="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.3.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.3"><plus id="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.3.1.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.3.1"></plus><ci id="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.3.2.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.3.2">𝑖</ci><cn id="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.3.3.cmml" type="integer" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.2.3.3">1</cn></apply></apply><ci id="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.3.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.2.3">𝑛</ci></apply><apply id="S2.E10.m1.1.1.1.1.2.2.1.1.1.3.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.3"><csymbol cd="ambiguous" id="S2.E10.m1.1.1.1.1.2.2.1.1.1.3.1.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.3">superscript</csymbol><apply id="S2.E10.m1.1.1.1.1.2.2.1.1.1.3.2.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.3"><csymbol cd="ambiguous" id="S2.E10.m1.1.1.1.1.2.2.1.1.1.3.2.1.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.3">subscript</csymbol><ci id="S2.E10.m1.1.1.1.1.2.2.1.1.1.3.2.2.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.3.2.2">𝐔</ci><ci id="S2.E10.m1.1.1.1.1.2.2.1.1.1.3.2.3.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.3.2.3">𝑖</ci></apply><ci id="S2.E10.m1.1.1.1.1.2.2.1.1.1.3.3.cmml" xref="S2.E10.m1.1.1.1.1.2.2.1.1.1.3.3">𝑛</ci></apply></apply></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E10.m1.1c">\mathbf{F}_{i+\frac{1}{2}}=\frac{1}{2}\left[\mathbf{F}\left(\mathbf{U}_{i}^{n}% \right)+\mathbf{F}\left(\mathbf{U}_{i+1}^{n}\right)\right]-\frac{\Delta x}{2% \Delta t}\left[\mathbf{U}_{i+1}^{n}-\mathbf{U}_{i}^{n}\right].</annotation><annotation encoding="application/x-llamapun" id="S2.E10.m1.1d">bold_F start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ bold_F ( bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) + bold_F ( bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) ] - divide start_ARG roman_Δ italic_x end_ARG start_ARG 2 roman_Δ italic_t end_ARG [ bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT - bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ] .</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS2.p2.1">A finite volume solver based on a Lax-Friedrichs inter-cell flux will satisfy the following properties<cite class="ltx_cite ltx_citemacro_citep">(Breuß, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib5" title="">2004</a>)</cite>:</p> </div> <div class="ltx_theorem ltx_theorem_theorem" id="S2.Thmtheorem1"> <h6 class="ltx_title ltx_runin ltx_font_smallcaps ltx_title_theorem">Theorem 2.1.</h6> <div class="ltx_para" id="S2.Thmtheorem1.p1"> <p class="ltx_p" id="S2.Thmtheorem1.p1.1"><span class="ltx_text ltx_font_italic" id="S2.Thmtheorem1.p1.1.1">A Lax-Friedrichs solver preserves hyperbolicity<cite class="ltx_cite ltx_citemacro_citep">(Hartman, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib16" title="">1960</a>)</cite> (i.e. preserves well-posedness of the Cauchy problem along all non-characteristic hypersurfaces) for an arbitrary hyperbolic PDE system if the flux Jacobian with respect to the conserved variable vector <math alttext="{\mathbf{U}}" class="ltx_Math" display="inline" id="S2.Thmtheorem1.p1.1.1.m1.1"><semantics id="S2.Thmtheorem1.p1.1.1.m1.1a"><mi id="S2.Thmtheorem1.p1.1.1.m1.1.1" xref="S2.Thmtheorem1.p1.1.1.m1.1.1.cmml">𝐔</mi><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem1.p1.1.1.m1.1b"><ci id="S2.Thmtheorem1.p1.1.1.m1.1.1.cmml" xref="S2.Thmtheorem1.p1.1.1.m1.1.1">𝐔</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem1.p1.1.1.m1.1c">{\mathbf{U}}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem1.p1.1.1.m1.1d">bold_U</annotation></semantics></math>:</span></p> </div> <div class="ltx_para" id="S2.Thmtheorem1.p2"> <table class="ltx_equation ltx_eqn_table" id="S2.E11"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(11)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{J}_{\mathbf{F}}=\nabla_{\mathbf{U}}\mathbf{F}\left(\mathbf{U}\right)," class="ltx_Math" display="block" id="S2.E11.m1.2"><semantics id="S2.E11.m1.2a"><mrow id="S2.E11.m1.2.2.1" xref="S2.E11.m1.2.2.1.1.cmml"><mrow id="S2.E11.m1.2.2.1.1" xref="S2.E11.m1.2.2.1.1.cmml"><msub id="S2.E11.m1.2.2.1.1.2" xref="S2.E11.m1.2.2.1.1.2.cmml"><mi id="S2.E11.m1.2.2.1.1.2.2" xref="S2.E11.m1.2.2.1.1.2.2.cmml">𝐉</mi><mi id="S2.E11.m1.2.2.1.1.2.3" xref="S2.E11.m1.2.2.1.1.2.3.cmml">𝐅</mi></msub><mo id="S2.E11.m1.2.2.1.1.1" xref="S2.E11.m1.2.2.1.1.1.cmml">=</mo><mrow id="S2.E11.m1.2.2.1.1.3" xref="S2.E11.m1.2.2.1.1.3.cmml"><mrow id="S2.E11.m1.2.2.1.1.3.2" xref="S2.E11.m1.2.2.1.1.3.2.cmml"><msub id="S2.E11.m1.2.2.1.1.3.2.1" xref="S2.E11.m1.2.2.1.1.3.2.1.cmml"><mo id="S2.E11.m1.2.2.1.1.3.2.1.2" rspace="0.167em" xref="S2.E11.m1.2.2.1.1.3.2.1.2.cmml">∇</mo><mi id="S2.E11.m1.2.2.1.1.3.2.1.3" xref="S2.E11.m1.2.2.1.1.3.2.1.3.cmml">𝐔</mi></msub><mi id="S2.E11.m1.2.2.1.1.3.2.2" xref="S2.E11.m1.2.2.1.1.3.2.2.cmml">𝐅</mi></mrow><mo id="S2.E11.m1.2.2.1.1.3.1" xref="S2.E11.m1.2.2.1.1.3.1.cmml"></mo><mrow id="S2.E11.m1.2.2.1.1.3.3.2" xref="S2.E11.m1.2.2.1.1.3.cmml"><mo id="S2.E11.m1.2.2.1.1.3.3.2.1" xref="S2.E11.m1.2.2.1.1.3.cmml">(</mo><mi id="S2.E11.m1.1.1" xref="S2.E11.m1.1.1.cmml">𝐔</mi><mo id="S2.E11.m1.2.2.1.1.3.3.2.2" xref="S2.E11.m1.2.2.1.1.3.cmml">)</mo></mrow></mrow></mrow><mo id="S2.E11.m1.2.2.1.2" xref="S2.E11.m1.2.2.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E11.m1.2b"><apply id="S2.E11.m1.2.2.1.1.cmml" xref="S2.E11.m1.2.2.1"><eq id="S2.E11.m1.2.2.1.1.1.cmml" xref="S2.E11.m1.2.2.1.1.1"></eq><apply id="S2.E11.m1.2.2.1.1.2.cmml" xref="S2.E11.m1.2.2.1.1.2"><csymbol cd="ambiguous" id="S2.E11.m1.2.2.1.1.2.1.cmml" xref="S2.E11.m1.2.2.1.1.2">subscript</csymbol><ci id="S2.E11.m1.2.2.1.1.2.2.cmml" xref="S2.E11.m1.2.2.1.1.2.2">𝐉</ci><ci id="S2.E11.m1.2.2.1.1.2.3.cmml" xref="S2.E11.m1.2.2.1.1.2.3">𝐅</ci></apply><apply id="S2.E11.m1.2.2.1.1.3.cmml" xref="S2.E11.m1.2.2.1.1.3"><times id="S2.E11.m1.2.2.1.1.3.1.cmml" xref="S2.E11.m1.2.2.1.1.3.1"></times><apply id="S2.E11.m1.2.2.1.1.3.2.cmml" xref="S2.E11.m1.2.2.1.1.3.2"><apply id="S2.E11.m1.2.2.1.1.3.2.1.cmml" xref="S2.E11.m1.2.2.1.1.3.2.1"><csymbol cd="ambiguous" id="S2.E11.m1.2.2.1.1.3.2.1.1.cmml" xref="S2.E11.m1.2.2.1.1.3.2.1">subscript</csymbol><ci id="S2.E11.m1.2.2.1.1.3.2.1.2.cmml" xref="S2.E11.m1.2.2.1.1.3.2.1.2">∇</ci><ci id="S2.E11.m1.2.2.1.1.3.2.1.3.cmml" xref="S2.E11.m1.2.2.1.1.3.2.1.3">𝐔</ci></apply><ci id="S2.E11.m1.2.2.1.1.3.2.2.cmml" xref="S2.E11.m1.2.2.1.1.3.2.2">𝐅</ci></apply><ci id="S2.E11.m1.1.1.cmml" xref="S2.E11.m1.1.1">𝐔</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E11.m1.2c">\mathbf{J}_{\mathbf{F}}=\nabla_{\mathbf{U}}\mathbf{F}\left(\mathbf{U}\right),</annotation><annotation encoding="application/x-llamapun" id="S2.E11.m1.2d">bold_J start_POSTSUBSCRIPT bold_F end_POSTSUBSCRIPT = ∇ start_POSTSUBSCRIPT bold_U end_POSTSUBSCRIPT bold_F ( bold_U ) ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.Thmtheorem1.p2.1"><span class="ltx_text ltx_font_italic" id="S2.Thmtheorem1.p2.1.1">is diagonalizable, with purely real eigenvalues.</span></p> </div> </div> <div class="ltx_theorem ltx_theorem_theorem" id="S2.Thmtheorem2"> <h6 class="ltx_title ltx_runin ltx_font_smallcaps ltx_title_theorem">Theorem 2.2.</h6> <div class="ltx_para" id="S2.Thmtheorem2.p1"> <p class="ltx_p" id="S2.Thmtheorem2.p1.3"><span class="ltx_text ltx_font_italic" id="S2.Thmtheorem2.p1.3.3">A Lax-Friedrichs solver maintains <math alttext="{L^{1}}" class="ltx_Math" display="inline" id="S2.Thmtheorem2.p1.1.1.m1.1"><semantics id="S2.Thmtheorem2.p1.1.1.m1.1a"><msup id="S2.Thmtheorem2.p1.1.1.m1.1.1" xref="S2.Thmtheorem2.p1.1.1.m1.1.1.cmml"><mi id="S2.Thmtheorem2.p1.1.1.m1.1.1.2" xref="S2.Thmtheorem2.p1.1.1.m1.1.1.2.cmml">L</mi><mn id="S2.Thmtheorem2.p1.1.1.m1.1.1.3" xref="S2.Thmtheorem2.p1.1.1.m1.1.1.3.cmml">1</mn></msup><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem2.p1.1.1.m1.1b"><apply id="S2.Thmtheorem2.p1.1.1.m1.1.1.cmml" xref="S2.Thmtheorem2.p1.1.1.m1.1.1"><csymbol cd="ambiguous" id="S2.Thmtheorem2.p1.1.1.m1.1.1.1.cmml" xref="S2.Thmtheorem2.p1.1.1.m1.1.1">superscript</csymbol><ci id="S2.Thmtheorem2.p1.1.1.m1.1.1.2.cmml" xref="S2.Thmtheorem2.p1.1.1.m1.1.1.2">𝐿</ci><cn id="S2.Thmtheorem2.p1.1.1.m1.1.1.3.cmml" type="integer" xref="S2.Thmtheorem2.p1.1.1.m1.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem2.p1.1.1.m1.1c">{L^{1}}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem2.p1.1.1.m1.1d">italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT</annotation></semantics></math>, <math alttext="{L^{2}}" class="ltx_Math" display="inline" id="S2.Thmtheorem2.p1.2.2.m2.1"><semantics id="S2.Thmtheorem2.p1.2.2.m2.1a"><msup id="S2.Thmtheorem2.p1.2.2.m2.1.1" xref="S2.Thmtheorem2.p1.2.2.m2.1.1.cmml"><mi id="S2.Thmtheorem2.p1.2.2.m2.1.1.2" xref="S2.Thmtheorem2.p1.2.2.m2.1.1.2.cmml">L</mi><mn id="S2.Thmtheorem2.p1.2.2.m2.1.1.3" xref="S2.Thmtheorem2.p1.2.2.m2.1.1.3.cmml">2</mn></msup><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem2.p1.2.2.m2.1b"><apply id="S2.Thmtheorem2.p1.2.2.m2.1.1.cmml" xref="S2.Thmtheorem2.p1.2.2.m2.1.1"><csymbol cd="ambiguous" id="S2.Thmtheorem2.p1.2.2.m2.1.1.1.cmml" xref="S2.Thmtheorem2.p1.2.2.m2.1.1">superscript</csymbol><ci id="S2.Thmtheorem2.p1.2.2.m2.1.1.2.cmml" xref="S2.Thmtheorem2.p1.2.2.m2.1.1.2">𝐿</ci><cn id="S2.Thmtheorem2.p1.2.2.m2.1.1.3.cmml" type="integer" xref="S2.Thmtheorem2.p1.2.2.m2.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem2.p1.2.2.m2.1c">{L^{2}}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem2.p1.2.2.m2.1d">italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT</annotation></semantics></math> and <math alttext="{L^{\infty}}" class="ltx_Math" display="inline" id="S2.Thmtheorem2.p1.3.3.m3.1"><semantics id="S2.Thmtheorem2.p1.3.3.m3.1a"><msup id="S2.Thmtheorem2.p1.3.3.m3.1.1" xref="S2.Thmtheorem2.p1.3.3.m3.1.1.cmml"><mi id="S2.Thmtheorem2.p1.3.3.m3.1.1.2" xref="S2.Thmtheorem2.p1.3.3.m3.1.1.2.cmml">L</mi><mi id="S2.Thmtheorem2.p1.3.3.m3.1.1.3" mathvariant="normal" xref="S2.Thmtheorem2.p1.3.3.m3.1.1.3.cmml">∞</mi></msup><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem2.p1.3.3.m3.1b"><apply id="S2.Thmtheorem2.p1.3.3.m3.1.1.cmml" xref="S2.Thmtheorem2.p1.3.3.m3.1.1"><csymbol cd="ambiguous" id="S2.Thmtheorem2.p1.3.3.m3.1.1.1.cmml" xref="S2.Thmtheorem2.p1.3.3.m3.1.1">superscript</csymbol><ci id="S2.Thmtheorem2.p1.3.3.m3.1.1.2.cmml" xref="S2.Thmtheorem2.p1.3.3.m3.1.1.2">𝐿</ci><infinity id="S2.Thmtheorem2.p1.3.3.m3.1.1.3.cmml" xref="S2.Thmtheorem2.p1.3.3.m3.1.1.3"></infinity></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem2.p1.3.3.m3.1c">{L^{\infty}}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem2.p1.3.3.m3.1d">italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT</annotation></semantics></math> stability for an arbitrary hyperbolic PDE system if the CFL stability condition<cite class="ltx_cite ltx_citemacro_citep">(Courant et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib6" title="">1967</a>)</cite>:</span></p> </div> <div class="ltx_para" id="S2.Thmtheorem2.p2"> <table class="ltx_equation ltx_eqn_table" id="S2.E12"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(12)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="0\leq\frac{\left\lvert a\right\rvert\Delta t}{\Delta x}\leq 1," class="ltx_Math" display="block" id="S2.E12.m1.2"><semantics id="S2.E12.m1.2a"><mrow id="S2.E12.m1.2.2.1" xref="S2.E12.m1.2.2.1.1.cmml"><mrow id="S2.E12.m1.2.2.1.1" xref="S2.E12.m1.2.2.1.1.cmml"><mn id="S2.E12.m1.2.2.1.1.2" xref="S2.E12.m1.2.2.1.1.2.cmml">0</mn><mo id="S2.E12.m1.2.2.1.1.3" xref="S2.E12.m1.2.2.1.1.3.cmml">≤</mo><mfrac id="S2.E12.m1.1.1" xref="S2.E12.m1.1.1.cmml"><mrow id="S2.E12.m1.1.1.1" xref="S2.E12.m1.1.1.1.cmml"><mrow id="S2.E12.m1.1.1.1.3.2" xref="S2.E12.m1.1.1.1.3.1.cmml"><mo id="S2.E12.m1.1.1.1.3.2.1" xref="S2.E12.m1.1.1.1.3.1.1.cmml">|</mo><mi id="S2.E12.m1.1.1.1.1" xref="S2.E12.m1.1.1.1.1.cmml">a</mi><mo id="S2.E12.m1.1.1.1.3.2.2" xref="S2.E12.m1.1.1.1.3.1.1.cmml">|</mo></mrow><mo id="S2.E12.m1.1.1.1.2" xref="S2.E12.m1.1.1.1.2.cmml"></mo><mi id="S2.E12.m1.1.1.1.4" mathvariant="normal" xref="S2.E12.m1.1.1.1.4.cmml">Δ</mi><mo id="S2.E12.m1.1.1.1.2a" xref="S2.E12.m1.1.1.1.2.cmml"></mo><mi id="S2.E12.m1.1.1.1.5" xref="S2.E12.m1.1.1.1.5.cmml">t</mi></mrow><mrow id="S2.E12.m1.1.1.3" xref="S2.E12.m1.1.1.3.cmml"><mi id="S2.E12.m1.1.1.3.2" mathvariant="normal" xref="S2.E12.m1.1.1.3.2.cmml">Δ</mi><mo id="S2.E12.m1.1.1.3.1" xref="S2.E12.m1.1.1.3.1.cmml"></mo><mi id="S2.E12.m1.1.1.3.3" xref="S2.E12.m1.1.1.3.3.cmml">x</mi></mrow></mfrac><mo id="S2.E12.m1.2.2.1.1.4" xref="S2.E12.m1.2.2.1.1.4.cmml">≤</mo><mn id="S2.E12.m1.2.2.1.1.5" xref="S2.E12.m1.2.2.1.1.5.cmml">1</mn></mrow><mo id="S2.E12.m1.2.2.1.2" xref="S2.E12.m1.2.2.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E12.m1.2b"><apply id="S2.E12.m1.2.2.1.1.cmml" xref="S2.E12.m1.2.2.1"><and id="S2.E12.m1.2.2.1.1a.cmml" xref="S2.E12.m1.2.2.1"></and><apply id="S2.E12.m1.2.2.1.1b.cmml" xref="S2.E12.m1.2.2.1"><leq id="S2.E12.m1.2.2.1.1.3.cmml" xref="S2.E12.m1.2.2.1.1.3"></leq><cn id="S2.E12.m1.2.2.1.1.2.cmml" type="integer" xref="S2.E12.m1.2.2.1.1.2">0</cn><apply id="S2.E12.m1.1.1.cmml" xref="S2.E12.m1.1.1"><divide id="S2.E12.m1.1.1.2.cmml" xref="S2.E12.m1.1.1"></divide><apply id="S2.E12.m1.1.1.1.cmml" xref="S2.E12.m1.1.1.1"><times id="S2.E12.m1.1.1.1.2.cmml" xref="S2.E12.m1.1.1.1.2"></times><apply id="S2.E12.m1.1.1.1.3.1.cmml" xref="S2.E12.m1.1.1.1.3.2"><abs id="S2.E12.m1.1.1.1.3.1.1.cmml" xref="S2.E12.m1.1.1.1.3.2.1"></abs><ci id="S2.E12.m1.1.1.1.1.cmml" xref="S2.E12.m1.1.1.1.1">𝑎</ci></apply><ci id="S2.E12.m1.1.1.1.4.cmml" xref="S2.E12.m1.1.1.1.4">Δ</ci><ci id="S2.E12.m1.1.1.1.5.cmml" xref="S2.E12.m1.1.1.1.5">𝑡</ci></apply><apply id="S2.E12.m1.1.1.3.cmml" xref="S2.E12.m1.1.1.3"><times id="S2.E12.m1.1.1.3.1.cmml" xref="S2.E12.m1.1.1.3.1"></times><ci id="S2.E12.m1.1.1.3.2.cmml" xref="S2.E12.m1.1.1.3.2">Δ</ci><ci id="S2.E12.m1.1.1.3.3.cmml" xref="S2.E12.m1.1.1.3.3">𝑥</ci></apply></apply></apply><apply id="S2.E12.m1.2.2.1.1c.cmml" xref="S2.E12.m1.2.2.1"><leq id="S2.E12.m1.2.2.1.1.4.cmml" xref="S2.E12.m1.2.2.1.1.4"></leq><share href="https://arxiv.org/html/2503.13877v1#S2.E12.m1.1.1.cmml" id="S2.E12.m1.2.2.1.1d.cmml" xref="S2.E12.m1.2.2.1"></share><cn id="S2.E12.m1.2.2.1.1.5.cmml" type="integer" xref="S2.E12.m1.2.2.1.1.5">1</cn></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E12.m1.2c">0\leq\frac{\left\lvert a\right\rvert\Delta t}{\Delta x}\leq 1,</annotation><annotation encoding="application/x-llamapun" id="S2.E12.m1.2d">0 ≤ divide start_ARG | italic_a | roman_Δ italic_t end_ARG start_ARG roman_Δ italic_x end_ARG ≤ 1 ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.Thmtheorem2.p2.2"><span class="ltx_text ltx_font_italic" id="S2.Thmtheorem2.p2.2.2">is satisfied, where <math alttext="{\left\lvert a\right\rvert}" class="ltx_Math" display="inline" id="S2.Thmtheorem2.p2.1.1.m1.1"><semantics id="S2.Thmtheorem2.p2.1.1.m1.1a"><mrow id="S2.Thmtheorem2.p2.1.1.m1.1.2.2" xref="S2.Thmtheorem2.p2.1.1.m1.1.2.1.cmml"><mo id="S2.Thmtheorem2.p2.1.1.m1.1.2.2.1" xref="S2.Thmtheorem2.p2.1.1.m1.1.2.1.1.cmml">|</mo><mi id="S2.Thmtheorem2.p2.1.1.m1.1.1" xref="S2.Thmtheorem2.p2.1.1.m1.1.1.cmml">a</mi><mo id="S2.Thmtheorem2.p2.1.1.m1.1.2.2.2" xref="S2.Thmtheorem2.p2.1.1.m1.1.2.1.1.cmml">|</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem2.p2.1.1.m1.1b"><apply id="S2.Thmtheorem2.p2.1.1.m1.1.2.1.cmml" xref="S2.Thmtheorem2.p2.1.1.m1.1.2.2"><abs id="S2.Thmtheorem2.p2.1.1.m1.1.2.1.1.cmml" xref="S2.Thmtheorem2.p2.1.1.m1.1.2.2.1"></abs><ci id="S2.Thmtheorem2.p2.1.1.m1.1.1.cmml" xref="S2.Thmtheorem2.p2.1.1.m1.1.1">𝑎</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem2.p2.1.1.m1.1c">{\left\lvert a\right\rvert}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem2.p2.1.1.m1.1d">| italic_a |</annotation></semantics></math> denotes the largest absolute eigenvalue of the flux Jacobian <math alttext="{\mathbf{J}_{\mathbf{F}}}" class="ltx_Math" display="inline" id="S2.Thmtheorem2.p2.2.2.m2.1"><semantics id="S2.Thmtheorem2.p2.2.2.m2.1a"><msub id="S2.Thmtheorem2.p2.2.2.m2.1.1" xref="S2.Thmtheorem2.p2.2.2.m2.1.1.cmml"><mi id="S2.Thmtheorem2.p2.2.2.m2.1.1.2" xref="S2.Thmtheorem2.p2.2.2.m2.1.1.2.cmml">𝐉</mi><mi id="S2.Thmtheorem2.p2.2.2.m2.1.1.3" xref="S2.Thmtheorem2.p2.2.2.m2.1.1.3.cmml">𝐅</mi></msub><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem2.p2.2.2.m2.1b"><apply id="S2.Thmtheorem2.p2.2.2.m2.1.1.cmml" xref="S2.Thmtheorem2.p2.2.2.m2.1.1"><csymbol cd="ambiguous" id="S2.Thmtheorem2.p2.2.2.m2.1.1.1.cmml" xref="S2.Thmtheorem2.p2.2.2.m2.1.1">subscript</csymbol><ci id="S2.Thmtheorem2.p2.2.2.m2.1.1.2.cmml" xref="S2.Thmtheorem2.p2.2.2.m2.1.1.2">𝐉</ci><ci id="S2.Thmtheorem2.p2.2.2.m2.1.1.3.cmml" xref="S2.Thmtheorem2.p2.2.2.m2.1.1.3">𝐅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem2.p2.2.2.m2.1c">{\mathbf{J}_{\mathbf{F}}}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem2.p2.2.2.m2.1d">bold_J start_POSTSUBSCRIPT bold_F end_POSTSUBSCRIPT</annotation></semantics></math>.</span></p> </div> </div> <div class="ltx_theorem ltx_theorem_theorem" id="S2.Thmtheorem3"> <h6 class="ltx_title ltx_runin ltx_font_smallcaps ltx_title_theorem">Theorem 2.3.</h6> <div class="ltx_para" id="S2.Thmtheorem3.p1"> <p class="ltx_p" id="S2.Thmtheorem3.p1.8"><span class="ltx_text ltx_font_italic" id="S2.Thmtheorem3.p1.8.8">A Lax-Friedrichs solver preserves local Lipschitz continuity of the discrete flux function <math alttext="{\mathbf{F}\left(\mathbf{U}_{i}^{n}\right)}" class="ltx_Math" display="inline" id="S2.Thmtheorem3.p1.1.1.m1.1"><semantics id="S2.Thmtheorem3.p1.1.1.m1.1a"><mrow id="S2.Thmtheorem3.p1.1.1.m1.1.1" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.cmml"><mi id="S2.Thmtheorem3.p1.1.1.m1.1.1.3" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.3.cmml">𝐅</mi><mo id="S2.Thmtheorem3.p1.1.1.m1.1.1.2" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.2.cmml"></mo><mrow id="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.cmml"><mo id="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.2" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.cmml">(</mo><msubsup id="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.cmml"><mi id="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.2.2" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.2.2.cmml">𝐔</mi><mi id="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.2.3" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.2.3.cmml">i</mi><mi id="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.3" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.3.cmml">n</mi></msubsup><mo id="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.3" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem3.p1.1.1.m1.1b"><apply id="S2.Thmtheorem3.p1.1.1.m1.1.1.cmml" xref="S2.Thmtheorem3.p1.1.1.m1.1.1"><times id="S2.Thmtheorem3.p1.1.1.m1.1.1.2.cmml" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.2"></times><ci id="S2.Thmtheorem3.p1.1.1.m1.1.1.3.cmml" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.3">𝐅</ci><apply id="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.cmml" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1"><csymbol cd="ambiguous" id="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.1.cmml" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1">superscript</csymbol><apply id="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.2.cmml" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1"><csymbol cd="ambiguous" id="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.2.1.cmml" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1">subscript</csymbol><ci id="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.2.2.cmml" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.2.2">𝐔</ci><ci id="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.2.3.cmml" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.2.3">𝑖</ci></apply><ci id="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.3.cmml" xref="S2.Thmtheorem3.p1.1.1.m1.1.1.1.1.1.3">𝑛</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem3.p1.1.1.m1.1c">{\mathbf{F}\left(\mathbf{U}_{i}^{n}\right)}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem3.p1.1.1.m1.1d">bold_F ( bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT )</annotation></semantics></math> with respect to the discrete conserved variables <math alttext="{\mathbf{U}_{i}^{n}}" class="ltx_Math" display="inline" id="S2.Thmtheorem3.p1.2.2.m2.1"><semantics id="S2.Thmtheorem3.p1.2.2.m2.1a"><msubsup id="S2.Thmtheorem3.p1.2.2.m2.1.1" xref="S2.Thmtheorem3.p1.2.2.m2.1.1.cmml"><mi id="S2.Thmtheorem3.p1.2.2.m2.1.1.2.2" xref="S2.Thmtheorem3.p1.2.2.m2.1.1.2.2.cmml">𝐔</mi><mi id="S2.Thmtheorem3.p1.2.2.m2.1.1.2.3" xref="S2.Thmtheorem3.p1.2.2.m2.1.1.2.3.cmml">i</mi><mi id="S2.Thmtheorem3.p1.2.2.m2.1.1.3" xref="S2.Thmtheorem3.p1.2.2.m2.1.1.3.cmml">n</mi></msubsup><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem3.p1.2.2.m2.1b"><apply id="S2.Thmtheorem3.p1.2.2.m2.1.1.cmml" xref="S2.Thmtheorem3.p1.2.2.m2.1.1"><csymbol cd="ambiguous" id="S2.Thmtheorem3.p1.2.2.m2.1.1.1.cmml" xref="S2.Thmtheorem3.p1.2.2.m2.1.1">superscript</csymbol><apply id="S2.Thmtheorem3.p1.2.2.m2.1.1.2.cmml" xref="S2.Thmtheorem3.p1.2.2.m2.1.1"><csymbol cd="ambiguous" id="S2.Thmtheorem3.p1.2.2.m2.1.1.2.1.cmml" xref="S2.Thmtheorem3.p1.2.2.m2.1.1">subscript</csymbol><ci id="S2.Thmtheorem3.p1.2.2.m2.1.1.2.2.cmml" xref="S2.Thmtheorem3.p1.2.2.m2.1.1.2.2">𝐔</ci><ci id="S2.Thmtheorem3.p1.2.2.m2.1.1.2.3.cmml" xref="S2.Thmtheorem3.p1.2.2.m2.1.1.2.3">𝑖</ci></apply><ci id="S2.Thmtheorem3.p1.2.2.m2.1.1.3.cmml" xref="S2.Thmtheorem3.p1.2.2.m2.1.1.3">𝑛</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem3.p1.2.2.m2.1c">{\mathbf{U}_{i}^{n}}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem3.p1.2.2.m2.1d">bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT</annotation></semantics></math> (i.e. preserves the property that, in every neighborhood <math alttext="{\mathcal{N}}" class="ltx_Math" display="inline" id="S2.Thmtheorem3.p1.3.3.m3.1"><semantics id="S2.Thmtheorem3.p1.3.3.m3.1a"><mi class="ltx_font_mathcaligraphic" id="S2.Thmtheorem3.p1.3.3.m3.1.1" xref="S2.Thmtheorem3.p1.3.3.m3.1.1.cmml">𝒩</mi><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem3.p1.3.3.m3.1b"><ci id="S2.Thmtheorem3.p1.3.3.m3.1.1.cmml" xref="S2.Thmtheorem3.p1.3.3.m3.1.1">𝒩</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem3.p1.3.3.m3.1c">{\mathcal{N}}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem3.p1.3.3.m3.1d">caligraphic_N</annotation></semantics></math> of possible values of <math alttext="{\mathbf{U}_{i}^{n}}" class="ltx_Math" display="inline" id="S2.Thmtheorem3.p1.4.4.m4.1"><semantics id="S2.Thmtheorem3.p1.4.4.m4.1a"><msubsup id="S2.Thmtheorem3.p1.4.4.m4.1.1" xref="S2.Thmtheorem3.p1.4.4.m4.1.1.cmml"><mi id="S2.Thmtheorem3.p1.4.4.m4.1.1.2.2" xref="S2.Thmtheorem3.p1.4.4.m4.1.1.2.2.cmml">𝐔</mi><mi id="S2.Thmtheorem3.p1.4.4.m4.1.1.2.3" xref="S2.Thmtheorem3.p1.4.4.m4.1.1.2.3.cmml">i</mi><mi id="S2.Thmtheorem3.p1.4.4.m4.1.1.3" xref="S2.Thmtheorem3.p1.4.4.m4.1.1.3.cmml">n</mi></msubsup><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem3.p1.4.4.m4.1b"><apply id="S2.Thmtheorem3.p1.4.4.m4.1.1.cmml" xref="S2.Thmtheorem3.p1.4.4.m4.1.1"><csymbol cd="ambiguous" id="S2.Thmtheorem3.p1.4.4.m4.1.1.1.cmml" xref="S2.Thmtheorem3.p1.4.4.m4.1.1">superscript</csymbol><apply id="S2.Thmtheorem3.p1.4.4.m4.1.1.2.cmml" xref="S2.Thmtheorem3.p1.4.4.m4.1.1"><csymbol cd="ambiguous" id="S2.Thmtheorem3.p1.4.4.m4.1.1.2.1.cmml" xref="S2.Thmtheorem3.p1.4.4.m4.1.1">subscript</csymbol><ci id="S2.Thmtheorem3.p1.4.4.m4.1.1.2.2.cmml" xref="S2.Thmtheorem3.p1.4.4.m4.1.1.2.2">𝐔</ci><ci id="S2.Thmtheorem3.p1.4.4.m4.1.1.2.3.cmml" xref="S2.Thmtheorem3.p1.4.4.m4.1.1.2.3">𝑖</ci></apply><ci id="S2.Thmtheorem3.p1.4.4.m4.1.1.3.cmml" xref="S2.Thmtheorem3.p1.4.4.m4.1.1.3">𝑛</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem3.p1.4.4.m4.1c">{\mathbf{U}_{i}^{n}}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem3.p1.4.4.m4.1d">bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT</annotation></semantics></math>, there exists a restriction of the discrete flux function to <math alttext="{\mathcal{N}}" class="ltx_Math" display="inline" id="S2.Thmtheorem3.p1.5.5.m5.1"><semantics id="S2.Thmtheorem3.p1.5.5.m5.1a"><mi class="ltx_font_mathcaligraphic" id="S2.Thmtheorem3.p1.5.5.m5.1.1" xref="S2.Thmtheorem3.p1.5.5.m5.1.1.cmml">𝒩</mi><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem3.p1.5.5.m5.1b"><ci id="S2.Thmtheorem3.p1.5.5.m5.1.1.cmml" xref="S2.Thmtheorem3.p1.5.5.m5.1.1">𝒩</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem3.p1.5.5.m5.1c">{\mathcal{N}}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem3.p1.5.5.m5.1d">caligraphic_N</annotation></semantics></math> which has strictly bounded first derivatives in <math alttext="{\mathbf{U}_{i}^{n}}" class="ltx_Math" display="inline" id="S2.Thmtheorem3.p1.6.6.m6.1"><semantics id="S2.Thmtheorem3.p1.6.6.m6.1a"><msubsup id="S2.Thmtheorem3.p1.6.6.m6.1.1" xref="S2.Thmtheorem3.p1.6.6.m6.1.1.cmml"><mi id="S2.Thmtheorem3.p1.6.6.m6.1.1.2.2" xref="S2.Thmtheorem3.p1.6.6.m6.1.1.2.2.cmml">𝐔</mi><mi id="S2.Thmtheorem3.p1.6.6.m6.1.1.2.3" xref="S2.Thmtheorem3.p1.6.6.m6.1.1.2.3.cmml">i</mi><mi id="S2.Thmtheorem3.p1.6.6.m6.1.1.3" xref="S2.Thmtheorem3.p1.6.6.m6.1.1.3.cmml">n</mi></msubsup><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem3.p1.6.6.m6.1b"><apply id="S2.Thmtheorem3.p1.6.6.m6.1.1.cmml" xref="S2.Thmtheorem3.p1.6.6.m6.1.1"><csymbol cd="ambiguous" id="S2.Thmtheorem3.p1.6.6.m6.1.1.1.cmml" xref="S2.Thmtheorem3.p1.6.6.m6.1.1">superscript</csymbol><apply id="S2.Thmtheorem3.p1.6.6.m6.1.1.2.cmml" xref="S2.Thmtheorem3.p1.6.6.m6.1.1"><csymbol cd="ambiguous" id="S2.Thmtheorem3.p1.6.6.m6.1.1.2.1.cmml" xref="S2.Thmtheorem3.p1.6.6.m6.1.1">subscript</csymbol><ci id="S2.Thmtheorem3.p1.6.6.m6.1.1.2.2.cmml" xref="S2.Thmtheorem3.p1.6.6.m6.1.1.2.2">𝐔</ci><ci id="S2.Thmtheorem3.p1.6.6.m6.1.1.2.3.cmml" xref="S2.Thmtheorem3.p1.6.6.m6.1.1.2.3">𝑖</ci></apply><ci id="S2.Thmtheorem3.p1.6.6.m6.1.1.3.cmml" xref="S2.Thmtheorem3.p1.6.6.m6.1.1.3">𝑛</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem3.p1.6.6.m6.1c">{\mathbf{U}_{i}^{n}}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem3.p1.6.6.m6.1d">bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT</annotation></semantics></math>) for an arbitrary hyperbolic PDE system if the continuous flux function <math alttext="{\mathbf{F}\left(\mathbf{U}\right)}" class="ltx_Math" display="inline" id="S2.Thmtheorem3.p1.7.7.m7.1"><semantics id="S2.Thmtheorem3.p1.7.7.m7.1a"><mrow id="S2.Thmtheorem3.p1.7.7.m7.1.2" xref="S2.Thmtheorem3.p1.7.7.m7.1.2.cmml"><mi id="S2.Thmtheorem3.p1.7.7.m7.1.2.2" xref="S2.Thmtheorem3.p1.7.7.m7.1.2.2.cmml">𝐅</mi><mo id="S2.Thmtheorem3.p1.7.7.m7.1.2.1" xref="S2.Thmtheorem3.p1.7.7.m7.1.2.1.cmml"></mo><mrow id="S2.Thmtheorem3.p1.7.7.m7.1.2.3.2" xref="S2.Thmtheorem3.p1.7.7.m7.1.2.cmml"><mo id="S2.Thmtheorem3.p1.7.7.m7.1.2.3.2.1" xref="S2.Thmtheorem3.p1.7.7.m7.1.2.cmml">(</mo><mi id="S2.Thmtheorem3.p1.7.7.m7.1.1" xref="S2.Thmtheorem3.p1.7.7.m7.1.1.cmml">𝐔</mi><mo id="S2.Thmtheorem3.p1.7.7.m7.1.2.3.2.2" xref="S2.Thmtheorem3.p1.7.7.m7.1.2.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem3.p1.7.7.m7.1b"><apply id="S2.Thmtheorem3.p1.7.7.m7.1.2.cmml" xref="S2.Thmtheorem3.p1.7.7.m7.1.2"><times id="S2.Thmtheorem3.p1.7.7.m7.1.2.1.cmml" xref="S2.Thmtheorem3.p1.7.7.m7.1.2.1"></times><ci id="S2.Thmtheorem3.p1.7.7.m7.1.2.2.cmml" xref="S2.Thmtheorem3.p1.7.7.m7.1.2.2">𝐅</ci><ci id="S2.Thmtheorem3.p1.7.7.m7.1.1.cmml" xref="S2.Thmtheorem3.p1.7.7.m7.1.1">𝐔</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem3.p1.7.7.m7.1c">{\mathbf{F}\left(\mathbf{U}\right)}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem3.p1.7.7.m7.1d">bold_F ( bold_U )</annotation></semantics></math> is itself locally Lipschitz continuous with respect to the continuous conserved variables <math alttext="{\mathbf{U}}" class="ltx_Math" display="inline" id="S2.Thmtheorem3.p1.8.8.m8.1"><semantics id="S2.Thmtheorem3.p1.8.8.m8.1a"><mi id="S2.Thmtheorem3.p1.8.8.m8.1.1" xref="S2.Thmtheorem3.p1.8.8.m8.1.1.cmml">𝐔</mi><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem3.p1.8.8.m8.1b"><ci id="S2.Thmtheorem3.p1.8.8.m8.1.1.cmml" xref="S2.Thmtheorem3.p1.8.8.m8.1.1">𝐔</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem3.p1.8.8.m8.1c">{\mathbf{U}}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem3.p1.8.8.m8.1d">bold_U</annotation></semantics></math>.</span></p> </div> </div> <div class="ltx_theorem ltx_theorem_theorem" id="S2.Thmtheorem4"> <h6 class="ltx_title ltx_runin ltx_font_smallcaps ltx_title_theorem">Theorem 2.4.</h6> <div class="ltx_para" id="S2.Thmtheorem4.p1"> <p class="ltx_p" id="S2.Thmtheorem4.p1.3"><span class="ltx_text ltx_font_italic" id="S2.Thmtheorem4.p1.3.3">A sufficient condition for the continuous flux function <math alttext="{\mathbf{F}\left(\mathbf{U}\right)}" class="ltx_Math" display="inline" id="S2.Thmtheorem4.p1.1.1.m1.1"><semantics id="S2.Thmtheorem4.p1.1.1.m1.1a"><mrow id="S2.Thmtheorem4.p1.1.1.m1.1.2" xref="S2.Thmtheorem4.p1.1.1.m1.1.2.cmml"><mi id="S2.Thmtheorem4.p1.1.1.m1.1.2.2" xref="S2.Thmtheorem4.p1.1.1.m1.1.2.2.cmml">𝐅</mi><mo id="S2.Thmtheorem4.p1.1.1.m1.1.2.1" xref="S2.Thmtheorem4.p1.1.1.m1.1.2.1.cmml"></mo><mrow id="S2.Thmtheorem4.p1.1.1.m1.1.2.3.2" xref="S2.Thmtheorem4.p1.1.1.m1.1.2.cmml"><mo id="S2.Thmtheorem4.p1.1.1.m1.1.2.3.2.1" xref="S2.Thmtheorem4.p1.1.1.m1.1.2.cmml">(</mo><mi id="S2.Thmtheorem4.p1.1.1.m1.1.1" xref="S2.Thmtheorem4.p1.1.1.m1.1.1.cmml">𝐔</mi><mo id="S2.Thmtheorem4.p1.1.1.m1.1.2.3.2.2" xref="S2.Thmtheorem4.p1.1.1.m1.1.2.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem4.p1.1.1.m1.1b"><apply id="S2.Thmtheorem4.p1.1.1.m1.1.2.cmml" xref="S2.Thmtheorem4.p1.1.1.m1.1.2"><times id="S2.Thmtheorem4.p1.1.1.m1.1.2.1.cmml" xref="S2.Thmtheorem4.p1.1.1.m1.1.2.1"></times><ci id="S2.Thmtheorem4.p1.1.1.m1.1.2.2.cmml" xref="S2.Thmtheorem4.p1.1.1.m1.1.2.2">𝐅</ci><ci id="S2.Thmtheorem4.p1.1.1.m1.1.1.cmml" xref="S2.Thmtheorem4.p1.1.1.m1.1.1">𝐔</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem4.p1.1.1.m1.1c">{\mathbf{F}\left(\mathbf{U}\right)}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem4.p1.1.1.m1.1d">bold_F ( bold_U )</annotation></semantics></math> for an arbitrary hyperbolic PDE system to be locally Lipschitz continuous with respect to the continuous conserved variables <math alttext="{\mathbf{U}}" class="ltx_Math" display="inline" id="S2.Thmtheorem4.p1.2.2.m2.1"><semantics id="S2.Thmtheorem4.p1.2.2.m2.1a"><mi id="S2.Thmtheorem4.p1.2.2.m2.1.1" xref="S2.Thmtheorem4.p1.2.2.m2.1.1.cmml">𝐔</mi><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem4.p1.2.2.m2.1b"><ci id="S2.Thmtheorem4.p1.2.2.m2.1.1.cmml" xref="S2.Thmtheorem4.p1.2.2.m2.1.1">𝐔</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem4.p1.2.2.m2.1c">{\mathbf{U}}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem4.p1.2.2.m2.1d">bold_U</annotation></semantics></math> is for the componentwise Hessian with respect to <math alttext="{\mathbf{U}}" class="ltx_Math" display="inline" id="S2.Thmtheorem4.p1.3.3.m3.1"><semantics id="S2.Thmtheorem4.p1.3.3.m3.1a"><mi id="S2.Thmtheorem4.p1.3.3.m3.1.1" xref="S2.Thmtheorem4.p1.3.3.m3.1.1.cmml">𝐔</mi><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem4.p1.3.3.m3.1b"><ci id="S2.Thmtheorem4.p1.3.3.m3.1.1.cmml" xref="S2.Thmtheorem4.p1.3.3.m3.1.1">𝐔</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem4.p1.3.3.m3.1c">{\mathbf{U}}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem4.p1.3.3.m3.1d">bold_U</annotation></semantics></math>:</span></p> </div> <div class="ltx_para" id="S2.Thmtheorem4.p2"> <table class="ltx_equation ltx_eqn_table" id="S2.E13"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(13)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{H}_{f}=\left(\nabla_{\mathbf{U}}\nabla_{\mathbf{U}}f\left(\mathbf{U}% \right)\right)^{\intercal}" class="ltx_Math" display="block" id="S2.E13.m1.2"><semantics id="S2.E13.m1.2a"><mrow id="S2.E13.m1.2.2" xref="S2.E13.m1.2.2.cmml"><msub id="S2.E13.m1.2.2.3" xref="S2.E13.m1.2.2.3.cmml"><mi id="S2.E13.m1.2.2.3.2" xref="S2.E13.m1.2.2.3.2.cmml">𝐇</mi><mi id="S2.E13.m1.2.2.3.3" xref="S2.E13.m1.2.2.3.3.cmml">f</mi></msub><mo id="S2.E13.m1.2.2.2" xref="S2.E13.m1.2.2.2.cmml">=</mo><msup id="S2.E13.m1.2.2.1" xref="S2.E13.m1.2.2.1.cmml"><mrow id="S2.E13.m1.2.2.1.1.1" xref="S2.E13.m1.2.2.1.1.1.1.cmml"><mo id="S2.E13.m1.2.2.1.1.1.2" xref="S2.E13.m1.2.2.1.1.1.1.cmml">(</mo><mrow id="S2.E13.m1.2.2.1.1.1.1" xref="S2.E13.m1.2.2.1.1.1.1.cmml"><mrow id="S2.E13.m1.2.2.1.1.1.1.2" xref="S2.E13.m1.2.2.1.1.1.1.2.cmml"><mrow id="S2.E13.m1.2.2.1.1.1.1.2.1" xref="S2.E13.m1.2.2.1.1.1.1.2.1.cmml"><msub id="S2.E13.m1.2.2.1.1.1.1.2.1.1" xref="S2.E13.m1.2.2.1.1.1.1.2.1.1.cmml"><mo id="S2.E13.m1.2.2.1.1.1.1.2.1.1.2" rspace="0.167em" xref="S2.E13.m1.2.2.1.1.1.1.2.1.1.2.cmml">∇</mo><mi id="S2.E13.m1.2.2.1.1.1.1.2.1.1.3" xref="S2.E13.m1.2.2.1.1.1.1.2.1.1.3.cmml">𝐔</mi></msub><msub id="S2.E13.m1.2.2.1.1.1.1.2.1.2" xref="S2.E13.m1.2.2.1.1.1.1.2.1.2.cmml"><mo id="S2.E13.m1.2.2.1.1.1.1.2.1.2.2" xref="S2.E13.m1.2.2.1.1.1.1.2.1.2.2.cmml">∇</mo><mi id="S2.E13.m1.2.2.1.1.1.1.2.1.2.3" xref="S2.E13.m1.2.2.1.1.1.1.2.1.2.3.cmml">𝐔</mi></msub></mrow><mo id="S2.E13.m1.2.2.1.1.1.1.2a" lspace="0.167em" xref="S2.E13.m1.2.2.1.1.1.1.2.cmml"></mo><mi id="S2.E13.m1.2.2.1.1.1.1.2.2" xref="S2.E13.m1.2.2.1.1.1.1.2.2.cmml">f</mi></mrow><mo id="S2.E13.m1.2.2.1.1.1.1.1" xref="S2.E13.m1.2.2.1.1.1.1.1.cmml"></mo><mrow id="S2.E13.m1.2.2.1.1.1.1.3.2" xref="S2.E13.m1.2.2.1.1.1.1.cmml"><mo id="S2.E13.m1.2.2.1.1.1.1.3.2.1" xref="S2.E13.m1.2.2.1.1.1.1.cmml">(</mo><mi id="S2.E13.m1.1.1" xref="S2.E13.m1.1.1.cmml">𝐔</mi><mo id="S2.E13.m1.2.2.1.1.1.1.3.2.2" xref="S2.E13.m1.2.2.1.1.1.1.cmml">)</mo></mrow></mrow><mo id="S2.E13.m1.2.2.1.1.1.3" xref="S2.E13.m1.2.2.1.1.1.1.cmml">)</mo></mrow><mo id="S2.E13.m1.2.2.1.3" xref="S2.E13.m1.2.2.1.3.cmml">⊺</mo></msup></mrow><annotation-xml encoding="MathML-Content" id="S2.E13.m1.2b"><apply id="S2.E13.m1.2.2.cmml" xref="S2.E13.m1.2.2"><eq id="S2.E13.m1.2.2.2.cmml" xref="S2.E13.m1.2.2.2"></eq><apply id="S2.E13.m1.2.2.3.cmml" xref="S2.E13.m1.2.2.3"><csymbol cd="ambiguous" id="S2.E13.m1.2.2.3.1.cmml" xref="S2.E13.m1.2.2.3">subscript</csymbol><ci id="S2.E13.m1.2.2.3.2.cmml" xref="S2.E13.m1.2.2.3.2">𝐇</ci><ci id="S2.E13.m1.2.2.3.3.cmml" xref="S2.E13.m1.2.2.3.3">𝑓</ci></apply><apply id="S2.E13.m1.2.2.1.cmml" xref="S2.E13.m1.2.2.1"><csymbol cd="ambiguous" id="S2.E13.m1.2.2.1.2.cmml" xref="S2.E13.m1.2.2.1">superscript</csymbol><apply id="S2.E13.m1.2.2.1.1.1.1.cmml" xref="S2.E13.m1.2.2.1.1.1"><times id="S2.E13.m1.2.2.1.1.1.1.1.cmml" xref="S2.E13.m1.2.2.1.1.1.1.1"></times><apply id="S2.E13.m1.2.2.1.1.1.1.2.cmml" xref="S2.E13.m1.2.2.1.1.1.1.2"><apply id="S2.E13.m1.2.2.1.1.1.1.2.1.cmml" xref="S2.E13.m1.2.2.1.1.1.1.2.1"><apply id="S2.E13.m1.2.2.1.1.1.1.2.1.1.cmml" xref="S2.E13.m1.2.2.1.1.1.1.2.1.1"><csymbol cd="ambiguous" id="S2.E13.m1.2.2.1.1.1.1.2.1.1.1.cmml" xref="S2.E13.m1.2.2.1.1.1.1.2.1.1">subscript</csymbol><ci id="S2.E13.m1.2.2.1.1.1.1.2.1.1.2.cmml" xref="S2.E13.m1.2.2.1.1.1.1.2.1.1.2">∇</ci><ci id="S2.E13.m1.2.2.1.1.1.1.2.1.1.3.cmml" xref="S2.E13.m1.2.2.1.1.1.1.2.1.1.3">𝐔</ci></apply><apply id="S2.E13.m1.2.2.1.1.1.1.2.1.2.cmml" xref="S2.E13.m1.2.2.1.1.1.1.2.1.2"><csymbol cd="ambiguous" id="S2.E13.m1.2.2.1.1.1.1.2.1.2.1.cmml" xref="S2.E13.m1.2.2.1.1.1.1.2.1.2">subscript</csymbol><ci id="S2.E13.m1.2.2.1.1.1.1.2.1.2.2.cmml" xref="S2.E13.m1.2.2.1.1.1.1.2.1.2.2">∇</ci><ci id="S2.E13.m1.2.2.1.1.1.1.2.1.2.3.cmml" xref="S2.E13.m1.2.2.1.1.1.1.2.1.2.3">𝐔</ci></apply></apply><ci id="S2.E13.m1.2.2.1.1.1.1.2.2.cmml" xref="S2.E13.m1.2.2.1.1.1.1.2.2">𝑓</ci></apply><ci id="S2.E13.m1.1.1.cmml" xref="S2.E13.m1.1.1">𝐔</ci></apply><ci id="S2.E13.m1.2.2.1.3.cmml" xref="S2.E13.m1.2.2.1.3">⊺</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E13.m1.2c">\mathbf{H}_{f}=\left(\nabla_{\mathbf{U}}\nabla_{\mathbf{U}}f\left(\mathbf{U}% \right)\right)^{\intercal}</annotation><annotation encoding="application/x-llamapun" id="S2.E13.m1.2d">bold_H start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT = ( ∇ start_POSTSUBSCRIPT bold_U end_POSTSUBSCRIPT ∇ start_POSTSUBSCRIPT bold_U end_POSTSUBSCRIPT italic_f ( bold_U ) ) start_POSTSUPERSCRIPT ⊺ end_POSTSUPERSCRIPT</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.Thmtheorem4.p2.2"><span class="ltx_text ltx_font_italic" id="S2.Thmtheorem4.p2.2.2">to be positive semidefinite (i.e. symmetric/Hermitian with non-negative eigenvalues), for each scalar flux component <math alttext="{f\left(\mathbf{U}\right)}" class="ltx_Math" display="inline" id="S2.Thmtheorem4.p2.1.1.m1.1"><semantics id="S2.Thmtheorem4.p2.1.1.m1.1a"><mrow id="S2.Thmtheorem4.p2.1.1.m1.1.2" xref="S2.Thmtheorem4.p2.1.1.m1.1.2.cmml"><mi id="S2.Thmtheorem4.p2.1.1.m1.1.2.2" xref="S2.Thmtheorem4.p2.1.1.m1.1.2.2.cmml">f</mi><mo id="S2.Thmtheorem4.p2.1.1.m1.1.2.1" xref="S2.Thmtheorem4.p2.1.1.m1.1.2.1.cmml"></mo><mrow id="S2.Thmtheorem4.p2.1.1.m1.1.2.3.2" xref="S2.Thmtheorem4.p2.1.1.m1.1.2.cmml"><mo id="S2.Thmtheorem4.p2.1.1.m1.1.2.3.2.1" xref="S2.Thmtheorem4.p2.1.1.m1.1.2.cmml">(</mo><mi id="S2.Thmtheorem4.p2.1.1.m1.1.1" xref="S2.Thmtheorem4.p2.1.1.m1.1.1.cmml">𝐔</mi><mo id="S2.Thmtheorem4.p2.1.1.m1.1.2.3.2.2" xref="S2.Thmtheorem4.p2.1.1.m1.1.2.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem4.p2.1.1.m1.1b"><apply id="S2.Thmtheorem4.p2.1.1.m1.1.2.cmml" xref="S2.Thmtheorem4.p2.1.1.m1.1.2"><times id="S2.Thmtheorem4.p2.1.1.m1.1.2.1.cmml" xref="S2.Thmtheorem4.p2.1.1.m1.1.2.1"></times><ci id="S2.Thmtheorem4.p2.1.1.m1.1.2.2.cmml" xref="S2.Thmtheorem4.p2.1.1.m1.1.2.2">𝑓</ci><ci id="S2.Thmtheorem4.p2.1.1.m1.1.1.cmml" xref="S2.Thmtheorem4.p2.1.1.m1.1.1">𝐔</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem4.p2.1.1.m1.1c">{f\left(\mathbf{U}\right)}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem4.p2.1.1.m1.1d">italic_f ( bold_U )</annotation></semantics></math> of <math alttext="{\mathbf{F}\left(\mathbf{U}\right)}" class="ltx_Math" display="inline" id="S2.Thmtheorem4.p2.2.2.m2.1"><semantics id="S2.Thmtheorem4.p2.2.2.m2.1a"><mrow id="S2.Thmtheorem4.p2.2.2.m2.1.2" xref="S2.Thmtheorem4.p2.2.2.m2.1.2.cmml"><mi id="S2.Thmtheorem4.p2.2.2.m2.1.2.2" xref="S2.Thmtheorem4.p2.2.2.m2.1.2.2.cmml">𝐅</mi><mo id="S2.Thmtheorem4.p2.2.2.m2.1.2.1" xref="S2.Thmtheorem4.p2.2.2.m2.1.2.1.cmml"></mo><mrow id="S2.Thmtheorem4.p2.2.2.m2.1.2.3.2" xref="S2.Thmtheorem4.p2.2.2.m2.1.2.cmml"><mo id="S2.Thmtheorem4.p2.2.2.m2.1.2.3.2.1" xref="S2.Thmtheorem4.p2.2.2.m2.1.2.cmml">(</mo><mi id="S2.Thmtheorem4.p2.2.2.m2.1.1" xref="S2.Thmtheorem4.p2.2.2.m2.1.1.cmml">𝐔</mi><mo id="S2.Thmtheorem4.p2.2.2.m2.1.2.3.2.2" xref="S2.Thmtheorem4.p2.2.2.m2.1.2.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem4.p2.2.2.m2.1b"><apply id="S2.Thmtheorem4.p2.2.2.m2.1.2.cmml" xref="S2.Thmtheorem4.p2.2.2.m2.1.2"><times id="S2.Thmtheorem4.p2.2.2.m2.1.2.1.cmml" xref="S2.Thmtheorem4.p2.2.2.m2.1.2.1"></times><ci id="S2.Thmtheorem4.p2.2.2.m2.1.2.2.cmml" xref="S2.Thmtheorem4.p2.2.2.m2.1.2.2">𝐅</ci><ci id="S2.Thmtheorem4.p2.2.2.m2.1.1.cmml" xref="S2.Thmtheorem4.p2.2.2.m2.1.1">𝐔</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem4.p2.2.2.m2.1c">{\mathbf{F}\left(\mathbf{U}\right)}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem4.p2.2.2.m2.1d">bold_F ( bold_U )</annotation></semantics></math>.</span></p> </div> </div> <div class="ltx_para" id="S2.SS2.p3"> <p class="ltx_p" id="S2.SS2.p3.4">The significance of hyperbolicity-preservation is that it is a necessary condition for the solver to remain deterministic, i.e. to prevent discrete solutions from becoming multi-valued<cite class="ltx_cite ltx_citemacro_citep">(Hartman, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib16" title="">1960</a>)</cite>. Note that the flux Jacobian <math alttext="{\mathbf{J}_{\mathbf{F}}}" class="ltx_Math" display="inline" id="S2.SS2.p3.1.m1.1"><semantics id="S2.SS2.p3.1.m1.1a"><msub id="S2.SS2.p3.1.m1.1.1" xref="S2.SS2.p3.1.m1.1.1.cmml"><mi id="S2.SS2.p3.1.m1.1.1.2" xref="S2.SS2.p3.1.m1.1.1.2.cmml">𝐉</mi><mi id="S2.SS2.p3.1.m1.1.1.3" xref="S2.SS2.p3.1.m1.1.1.3.cmml">𝐅</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS2.p3.1.m1.1b"><apply id="S2.SS2.p3.1.m1.1.1.cmml" xref="S2.SS2.p3.1.m1.1.1"><csymbol cd="ambiguous" id="S2.SS2.p3.1.m1.1.1.1.cmml" xref="S2.SS2.p3.1.m1.1.1">subscript</csymbol><ci id="S2.SS2.p3.1.m1.1.1.2.cmml" xref="S2.SS2.p3.1.m1.1.1.2">𝐉</ci><ci id="S2.SS2.p3.1.m1.1.1.3.cmml" xref="S2.SS2.p3.1.m1.1.1.3">𝐅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS2.p3.1.m1.1c">{\mathbf{J}_{\mathbf{F}}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS2.p3.1.m1.1d">bold_J start_POSTSUBSCRIPT bold_F end_POSTSUBSCRIPT</annotation></semantics></math> being symmetric/Hermitian is a sufficient but not necessary condition for the solver to preserve hyperbolicity. The significance of the CFL stability condition is that, at least for a Lax-Friedrichs solver, CFL stability subsumes all other standard notions of numerical stability (e.g. <math alttext="{L^{1}}" class="ltx_Math" display="inline" id="S2.SS2.p3.2.m2.1"><semantics id="S2.SS2.p3.2.m2.1a"><msup id="S2.SS2.p3.2.m2.1.1" xref="S2.SS2.p3.2.m2.1.1.cmml"><mi id="S2.SS2.p3.2.m2.1.1.2" xref="S2.SS2.p3.2.m2.1.1.2.cmml">L</mi><mn id="S2.SS2.p3.2.m2.1.1.3" xref="S2.SS2.p3.2.m2.1.1.3.cmml">1</mn></msup><annotation-xml encoding="MathML-Content" id="S2.SS2.p3.2.m2.1b"><apply id="S2.SS2.p3.2.m2.1.1.cmml" xref="S2.SS2.p3.2.m2.1.1"><csymbol cd="ambiguous" id="S2.SS2.p3.2.m2.1.1.1.cmml" xref="S2.SS2.p3.2.m2.1.1">superscript</csymbol><ci id="S2.SS2.p3.2.m2.1.1.2.cmml" xref="S2.SS2.p3.2.m2.1.1.2">𝐿</ci><cn id="S2.SS2.p3.2.m2.1.1.3.cmml" type="integer" xref="S2.SS2.p3.2.m2.1.1.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS2.p3.2.m2.1c">{L^{1}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS2.p3.2.m2.1d">italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT</annotation></semantics></math>, <math alttext="{L^{2}}" class="ltx_Math" display="inline" id="S2.SS2.p3.3.m3.1"><semantics id="S2.SS2.p3.3.m3.1a"><msup id="S2.SS2.p3.3.m3.1.1" xref="S2.SS2.p3.3.m3.1.1.cmml"><mi id="S2.SS2.p3.3.m3.1.1.2" xref="S2.SS2.p3.3.m3.1.1.2.cmml">L</mi><mn id="S2.SS2.p3.3.m3.1.1.3" xref="S2.SS2.p3.3.m3.1.1.3.cmml">2</mn></msup><annotation-xml encoding="MathML-Content" id="S2.SS2.p3.3.m3.1b"><apply id="S2.SS2.p3.3.m3.1.1.cmml" xref="S2.SS2.p3.3.m3.1.1"><csymbol cd="ambiguous" id="S2.SS2.p3.3.m3.1.1.1.cmml" xref="S2.SS2.p3.3.m3.1.1">superscript</csymbol><ci id="S2.SS2.p3.3.m3.1.1.2.cmml" xref="S2.SS2.p3.3.m3.1.1.2">𝐿</ci><cn id="S2.SS2.p3.3.m3.1.1.3.cmml" type="integer" xref="S2.SS2.p3.3.m3.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS2.p3.3.m3.1c">{L^{2}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS2.p3.3.m3.1d">italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT</annotation></semantics></math> and <math alttext="{L^{\infty}}" class="ltx_Math" display="inline" id="S2.SS2.p3.4.m4.1"><semantics id="S2.SS2.p3.4.m4.1a"><msup id="S2.SS2.p3.4.m4.1.1" xref="S2.SS2.p3.4.m4.1.1.cmml"><mi id="S2.SS2.p3.4.m4.1.1.2" xref="S2.SS2.p3.4.m4.1.1.2.cmml">L</mi><mi id="S2.SS2.p3.4.m4.1.1.3" mathvariant="normal" xref="S2.SS2.p3.4.m4.1.1.3.cmml">∞</mi></msup><annotation-xml encoding="MathML-Content" id="S2.SS2.p3.4.m4.1b"><apply id="S2.SS2.p3.4.m4.1.1.cmml" xref="S2.SS2.p3.4.m4.1.1"><csymbol cd="ambiguous" id="S2.SS2.p3.4.m4.1.1.1.cmml" xref="S2.SS2.p3.4.m4.1.1">superscript</csymbol><ci id="S2.SS2.p3.4.m4.1.1.2.cmml" xref="S2.SS2.p3.4.m4.1.1.2">𝐿</ci><infinity id="S2.SS2.p3.4.m4.1.1.3.cmml" xref="S2.SS2.p3.4.m4.1.1.3"></infinity></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS2.p3.4.m4.1c">{L^{\infty}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS2.p3.4.m4.1d">italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT</annotation></semantics></math> stability) within a single condition<cite class="ltx_cite ltx_citemacro_citep">(Courant et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib6" title="">1967</a>)</cite>. Finally, the significance of the local Lipschitz continuity condition, as well as the slightly stronger convexity condition, is that these constraints are sufficient to guarantee that the solver will converge to the physically correct (i.e. thermodynamically consistent) solution in the presence of weak, nonlinear waves, such as shock waves in hydrodynamics<cite class="ltx_cite ltx_citemacro_citep">(Breuß, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib5" title="">2004</a>)</cite>.</p> </div> </section> <section class="ltx_subsection" id="S2.SS3"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">2.3. </span>The Roe Flux</h3> <div class="ltx_para" id="S2.SS3.p1"> <p class="ltx_p" id="S2.SS3.p1.1">A more sophisticated choice of inter-cell flux function is the Roe (linearized Riemann problem) flux<cite class="ltx_cite ltx_citemacro_citep">(Roe, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib28" title="">1981</a>)</cite>:</p> </div> <div class="ltx_para" id="S2.SS3.p2"> <table class="ltx_equation ltx_eqn_table" id="S2.E14"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(14)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{F}_{i+\frac{1}{2}}=\frac{1}{2}\left[\mathbf{F}\left(\mathbf{U}_{i}^{n}% \right)+\mathbf{F}\left(\mathbf{U}_{i+1}^{n}\right)\right]-\frac{1}{2}\sum_{p}% \left\lvert\lambda_{p}\right\rvert\alpha_{p}\mathbf{r}_{p}." class="ltx_Math" display="block" id="S2.E14.m1.1"><semantics id="S2.E14.m1.1a"><mrow id="S2.E14.m1.1.1.1" xref="S2.E14.m1.1.1.1.1.cmml"><mrow id="S2.E14.m1.1.1.1.1" xref="S2.E14.m1.1.1.1.1.cmml"><msub id="S2.E14.m1.1.1.1.1.4" xref="S2.E14.m1.1.1.1.1.4.cmml"><mi id="S2.E14.m1.1.1.1.1.4.2" xref="S2.E14.m1.1.1.1.1.4.2.cmml">𝐅</mi><mrow id="S2.E14.m1.1.1.1.1.4.3" xref="S2.E14.m1.1.1.1.1.4.3.cmml"><mi id="S2.E14.m1.1.1.1.1.4.3.2" xref="S2.E14.m1.1.1.1.1.4.3.2.cmml">i</mi><mo id="S2.E14.m1.1.1.1.1.4.3.1" xref="S2.E14.m1.1.1.1.1.4.3.1.cmml">+</mo><mfrac id="S2.E14.m1.1.1.1.1.4.3.3" xref="S2.E14.m1.1.1.1.1.4.3.3.cmml"><mn id="S2.E14.m1.1.1.1.1.4.3.3.2" xref="S2.E14.m1.1.1.1.1.4.3.3.2.cmml">1</mn><mn id="S2.E14.m1.1.1.1.1.4.3.3.3" xref="S2.E14.m1.1.1.1.1.4.3.3.3.cmml">2</mn></mfrac></mrow></msub><mo id="S2.E14.m1.1.1.1.1.3" xref="S2.E14.m1.1.1.1.1.3.cmml">=</mo><mrow id="S2.E14.m1.1.1.1.1.2" xref="S2.E14.m1.1.1.1.1.2.cmml"><mrow id="S2.E14.m1.1.1.1.1.1.1" xref="S2.E14.m1.1.1.1.1.1.1.cmml"><mfrac id="S2.E14.m1.1.1.1.1.1.1.3" xref="S2.E14.m1.1.1.1.1.1.1.3.cmml"><mn id="S2.E14.m1.1.1.1.1.1.1.3.2" xref="S2.E14.m1.1.1.1.1.1.1.3.2.cmml">1</mn><mn id="S2.E14.m1.1.1.1.1.1.1.3.3" xref="S2.E14.m1.1.1.1.1.1.1.3.3.cmml">2</mn></mfrac><mo id="S2.E14.m1.1.1.1.1.1.1.2" xref="S2.E14.m1.1.1.1.1.1.1.2.cmml"></mo><mrow id="S2.E14.m1.1.1.1.1.1.1.1.1" xref="S2.E14.m1.1.1.1.1.1.1.1.2.cmml"><mo id="S2.E14.m1.1.1.1.1.1.1.1.1.2" xref="S2.E14.m1.1.1.1.1.1.1.1.2.1.cmml">[</mo><mrow id="S2.E14.m1.1.1.1.1.1.1.1.1.1" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.cmml"><mrow id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.cmml"><mi id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.3" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.3.cmml">𝐅</mi><mo id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.2" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.2.cmml"></mo><mrow id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml"><mo id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.2" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml">(</mo><msubsup id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml"><mi id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.cmml">𝐔</mi><mi id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.cmml">i</mi><mi id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.cmml">n</mi></msubsup><mo id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.3" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml">)</mo></mrow></mrow><mo id="S2.E14.m1.1.1.1.1.1.1.1.1.1.3" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.3.cmml">+</mo><mrow id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.cmml"><mi id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.3" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.3.cmml">𝐅</mi><mo id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.2" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.2.cmml"></mo><mrow id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml"><mo id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.2" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml">(</mo><msubsup id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml"><mi id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2.cmml">𝐔</mi><mrow id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.cmml"><mi id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.2" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.2.cmml">i</mi><mo id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.1" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.1.cmml">+</mo><mn id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.cmml">1</mn></mrow><mi id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.cmml">n</mi></msubsup><mo id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.3" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml">)</mo></mrow></mrow></mrow><mo id="S2.E14.m1.1.1.1.1.1.1.1.1.3" xref="S2.E14.m1.1.1.1.1.1.1.1.2.1.cmml">]</mo></mrow></mrow><mo id="S2.E14.m1.1.1.1.1.2.3" xref="S2.E14.m1.1.1.1.1.2.3.cmml">−</mo><mrow id="S2.E14.m1.1.1.1.1.2.2" xref="S2.E14.m1.1.1.1.1.2.2.cmml"><mfrac id="S2.E14.m1.1.1.1.1.2.2.3" xref="S2.E14.m1.1.1.1.1.2.2.3.cmml"><mn id="S2.E14.m1.1.1.1.1.2.2.3.2" xref="S2.E14.m1.1.1.1.1.2.2.3.2.cmml">1</mn><mn id="S2.E14.m1.1.1.1.1.2.2.3.3" xref="S2.E14.m1.1.1.1.1.2.2.3.3.cmml">2</mn></mfrac><mo id="S2.E14.m1.1.1.1.1.2.2.2" xref="S2.E14.m1.1.1.1.1.2.2.2.cmml"></mo><mrow id="S2.E14.m1.1.1.1.1.2.2.1" xref="S2.E14.m1.1.1.1.1.2.2.1.cmml"><munder id="S2.E14.m1.1.1.1.1.2.2.1.2" xref="S2.E14.m1.1.1.1.1.2.2.1.2.cmml"><mo id="S2.E14.m1.1.1.1.1.2.2.1.2.2" movablelimits="false" rspace="0em" xref="S2.E14.m1.1.1.1.1.2.2.1.2.2.cmml">∑</mo><mi id="S2.E14.m1.1.1.1.1.2.2.1.2.3" xref="S2.E14.m1.1.1.1.1.2.2.1.2.3.cmml">p</mi></munder><mrow id="S2.E14.m1.1.1.1.1.2.2.1.1" xref="S2.E14.m1.1.1.1.1.2.2.1.1.cmml"><mrow id="S2.E14.m1.1.1.1.1.2.2.1.1.1.1" xref="S2.E14.m1.1.1.1.1.2.2.1.1.1.2.cmml"><mo id="S2.E14.m1.1.1.1.1.2.2.1.1.1.1.2" xref="S2.E14.m1.1.1.1.1.2.2.1.1.1.2.1.cmml">|</mo><msub id="S2.E14.m1.1.1.1.1.2.2.1.1.1.1.1" xref="S2.E14.m1.1.1.1.1.2.2.1.1.1.1.1.cmml"><mi id="S2.E14.m1.1.1.1.1.2.2.1.1.1.1.1.2" xref="S2.E14.m1.1.1.1.1.2.2.1.1.1.1.1.2.cmml">λ</mi><mi id="S2.E14.m1.1.1.1.1.2.2.1.1.1.1.1.3" xref="S2.E14.m1.1.1.1.1.2.2.1.1.1.1.1.3.cmml">p</mi></msub><mo id="S2.E14.m1.1.1.1.1.2.2.1.1.1.1.3" xref="S2.E14.m1.1.1.1.1.2.2.1.1.1.2.1.cmml">|</mo></mrow><mo id="S2.E14.m1.1.1.1.1.2.2.1.1.2" xref="S2.E14.m1.1.1.1.1.2.2.1.1.2.cmml"></mo><msub id="S2.E14.m1.1.1.1.1.2.2.1.1.3" xref="S2.E14.m1.1.1.1.1.2.2.1.1.3.cmml"><mi id="S2.E14.m1.1.1.1.1.2.2.1.1.3.2" xref="S2.E14.m1.1.1.1.1.2.2.1.1.3.2.cmml">α</mi><mi id="S2.E14.m1.1.1.1.1.2.2.1.1.3.3" xref="S2.E14.m1.1.1.1.1.2.2.1.1.3.3.cmml">p</mi></msub><mo id="S2.E14.m1.1.1.1.1.2.2.1.1.2a" xref="S2.E14.m1.1.1.1.1.2.2.1.1.2.cmml"></mo><msub id="S2.E14.m1.1.1.1.1.2.2.1.1.4" xref="S2.E14.m1.1.1.1.1.2.2.1.1.4.cmml"><mi id="S2.E14.m1.1.1.1.1.2.2.1.1.4.2" xref="S2.E14.m1.1.1.1.1.2.2.1.1.4.2.cmml">𝐫</mi><mi id="S2.E14.m1.1.1.1.1.2.2.1.1.4.3" xref="S2.E14.m1.1.1.1.1.2.2.1.1.4.3.cmml">p</mi></msub></mrow></mrow></mrow></mrow></mrow><mo id="S2.E14.m1.1.1.1.2" lspace="0em" xref="S2.E14.m1.1.1.1.1.cmml">.</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E14.m1.1b"><apply id="S2.E14.m1.1.1.1.1.cmml" xref="S2.E14.m1.1.1.1"><eq id="S2.E14.m1.1.1.1.1.3.cmml" xref="S2.E14.m1.1.1.1.1.3"></eq><apply id="S2.E14.m1.1.1.1.1.4.cmml" xref="S2.E14.m1.1.1.1.1.4"><csymbol cd="ambiguous" id="S2.E14.m1.1.1.1.1.4.1.cmml" xref="S2.E14.m1.1.1.1.1.4">subscript</csymbol><ci id="S2.E14.m1.1.1.1.1.4.2.cmml" xref="S2.E14.m1.1.1.1.1.4.2">𝐅</ci><apply id="S2.E14.m1.1.1.1.1.4.3.cmml" xref="S2.E14.m1.1.1.1.1.4.3"><plus id="S2.E14.m1.1.1.1.1.4.3.1.cmml" xref="S2.E14.m1.1.1.1.1.4.3.1"></plus><ci id="S2.E14.m1.1.1.1.1.4.3.2.cmml" xref="S2.E14.m1.1.1.1.1.4.3.2">𝑖</ci><apply id="S2.E14.m1.1.1.1.1.4.3.3.cmml" xref="S2.E14.m1.1.1.1.1.4.3.3"><divide id="S2.E14.m1.1.1.1.1.4.3.3.1.cmml" xref="S2.E14.m1.1.1.1.1.4.3.3"></divide><cn id="S2.E14.m1.1.1.1.1.4.3.3.2.cmml" type="integer" xref="S2.E14.m1.1.1.1.1.4.3.3.2">1</cn><cn id="S2.E14.m1.1.1.1.1.4.3.3.3.cmml" type="integer" xref="S2.E14.m1.1.1.1.1.4.3.3.3">2</cn></apply></apply></apply><apply id="S2.E14.m1.1.1.1.1.2.cmml" xref="S2.E14.m1.1.1.1.1.2"><minus id="S2.E14.m1.1.1.1.1.2.3.cmml" xref="S2.E14.m1.1.1.1.1.2.3"></minus><apply id="S2.E14.m1.1.1.1.1.1.1.cmml" xref="S2.E14.m1.1.1.1.1.1.1"><times id="S2.E14.m1.1.1.1.1.1.1.2.cmml" xref="S2.E14.m1.1.1.1.1.1.1.2"></times><apply id="S2.E14.m1.1.1.1.1.1.1.3.cmml" xref="S2.E14.m1.1.1.1.1.1.1.3"><divide id="S2.E14.m1.1.1.1.1.1.1.3.1.cmml" xref="S2.E14.m1.1.1.1.1.1.1.3"></divide><cn id="S2.E14.m1.1.1.1.1.1.1.3.2.cmml" type="integer" xref="S2.E14.m1.1.1.1.1.1.1.3.2">1</cn><cn id="S2.E14.m1.1.1.1.1.1.1.3.3.cmml" type="integer" xref="S2.E14.m1.1.1.1.1.1.1.3.3">2</cn></apply><apply id="S2.E14.m1.1.1.1.1.1.1.1.2.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1"><csymbol cd="latexml" id="S2.E14.m1.1.1.1.1.1.1.1.2.1.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.2">delimited-[]</csymbol><apply id="S2.E14.m1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1"><plus id="S2.E14.m1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.3"></plus><apply id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1"><times id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.2"></times><ci id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.3">𝐅</ci><apply id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1">superscript</csymbol><apply id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.1.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1">subscript</csymbol><ci id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2">𝐔</ci><ci id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3">𝑖</ci></apply><ci id="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3">𝑛</ci></apply></apply><apply id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2"><times id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.2.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.2"></times><ci id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.3.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.3">𝐅</ci><apply id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1"><csymbol cd="ambiguous" id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.1.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1">superscript</csymbol><apply id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1"><csymbol cd="ambiguous" id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.1.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1">subscript</csymbol><ci id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2">𝐔</ci><apply id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3"><plus id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.1.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.1"></plus><ci id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.2.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.2">𝑖</ci><cn id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.cmml" type="integer" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3">1</cn></apply></apply><ci id="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.cmml" xref="S2.E14.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3">𝑛</ci></apply></apply></apply></apply></apply><apply id="S2.E14.m1.1.1.1.1.2.2.cmml" xref="S2.E14.m1.1.1.1.1.2.2"><times id="S2.E14.m1.1.1.1.1.2.2.2.cmml" xref="S2.E14.m1.1.1.1.1.2.2.2"></times><apply id="S2.E14.m1.1.1.1.1.2.2.3.cmml" xref="S2.E14.m1.1.1.1.1.2.2.3"><divide id="S2.E14.m1.1.1.1.1.2.2.3.1.cmml" xref="S2.E14.m1.1.1.1.1.2.2.3"></divide><cn id="S2.E14.m1.1.1.1.1.2.2.3.2.cmml" type="integer" xref="S2.E14.m1.1.1.1.1.2.2.3.2">1</cn><cn id="S2.E14.m1.1.1.1.1.2.2.3.3.cmml" type="integer" xref="S2.E14.m1.1.1.1.1.2.2.3.3">2</cn></apply><apply id="S2.E14.m1.1.1.1.1.2.2.1.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1"><apply id="S2.E14.m1.1.1.1.1.2.2.1.2.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.2"><csymbol cd="ambiguous" id="S2.E14.m1.1.1.1.1.2.2.1.2.1.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.2">subscript</csymbol><sum id="S2.E14.m1.1.1.1.1.2.2.1.2.2.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.2.2"></sum><ci id="S2.E14.m1.1.1.1.1.2.2.1.2.3.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.2.3">𝑝</ci></apply><apply id="S2.E14.m1.1.1.1.1.2.2.1.1.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.1"><times id="S2.E14.m1.1.1.1.1.2.2.1.1.2.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.1.2"></times><apply id="S2.E14.m1.1.1.1.1.2.2.1.1.1.2.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.1.1.1"><abs id="S2.E14.m1.1.1.1.1.2.2.1.1.1.2.1.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.1.1.1.2"></abs><apply id="S2.E14.m1.1.1.1.1.2.2.1.1.1.1.1.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E14.m1.1.1.1.1.2.2.1.1.1.1.1.1.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.1.1.1.1">subscript</csymbol><ci id="S2.E14.m1.1.1.1.1.2.2.1.1.1.1.1.2.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.1.1.1.1.2">𝜆</ci><ci id="S2.E14.m1.1.1.1.1.2.2.1.1.1.1.1.3.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.1.1.1.1.3">𝑝</ci></apply></apply><apply id="S2.E14.m1.1.1.1.1.2.2.1.1.3.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.1.3"><csymbol cd="ambiguous" id="S2.E14.m1.1.1.1.1.2.2.1.1.3.1.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.1.3">subscript</csymbol><ci id="S2.E14.m1.1.1.1.1.2.2.1.1.3.2.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.1.3.2">𝛼</ci><ci id="S2.E14.m1.1.1.1.1.2.2.1.1.3.3.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.1.3.3">𝑝</ci></apply><apply id="S2.E14.m1.1.1.1.1.2.2.1.1.4.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.1.4"><csymbol cd="ambiguous" id="S2.E14.m1.1.1.1.1.2.2.1.1.4.1.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.1.4">subscript</csymbol><ci id="S2.E14.m1.1.1.1.1.2.2.1.1.4.2.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.1.4.2">𝐫</ci><ci id="S2.E14.m1.1.1.1.1.2.2.1.1.4.3.cmml" xref="S2.E14.m1.1.1.1.1.2.2.1.1.4.3">𝑝</ci></apply></apply></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E14.m1.1c">\mathbf{F}_{i+\frac{1}{2}}=\frac{1}{2}\left[\mathbf{F}\left(\mathbf{U}_{i}^{n}% \right)+\mathbf{F}\left(\mathbf{U}_{i+1}^{n}\right)\right]-\frac{1}{2}\sum_{p}% \left\lvert\lambda_{p}\right\rvert\alpha_{p}\mathbf{r}_{p}.</annotation><annotation encoding="application/x-llamapun" id="S2.E14.m1.1d">bold_F start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ bold_F ( bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) + bold_F ( bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) ] - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∑ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT | italic_λ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT | italic_α start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT bold_r start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT .</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS3.p2.4">In the above, we assume an inter-cell <span class="ltx_text ltx_font_italic" id="S2.SS3.p2.4.1">Roe matrix</span> <math alttext="{\mathbf{A}\left(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)}" class="ltx_Math" display="inline" id="S2.SS3.p2.1.m1.2"><semantics id="S2.SS3.p2.1.m1.2a"><mrow id="S2.SS3.p2.1.m1.2.2" xref="S2.SS3.p2.1.m1.2.2.cmml"><mi id="S2.SS3.p2.1.m1.2.2.4" xref="S2.SS3.p2.1.m1.2.2.4.cmml">𝐀</mi><mo id="S2.SS3.p2.1.m1.2.2.3" xref="S2.SS3.p2.1.m1.2.2.3.cmml"></mo><mrow id="S2.SS3.p2.1.m1.2.2.2.2" xref="S2.SS3.p2.1.m1.2.2.2.3.cmml"><mo id="S2.SS3.p2.1.m1.2.2.2.2.3" xref="S2.SS3.p2.1.m1.2.2.2.3.cmml">(</mo><msubsup id="S2.SS3.p2.1.m1.1.1.1.1.1" xref="S2.SS3.p2.1.m1.1.1.1.1.1.cmml"><mi id="S2.SS3.p2.1.m1.1.1.1.1.1.2.2" xref="S2.SS3.p2.1.m1.1.1.1.1.1.2.2.cmml">𝐔</mi><mi id="S2.SS3.p2.1.m1.1.1.1.1.1.2.3" xref="S2.SS3.p2.1.m1.1.1.1.1.1.2.3.cmml">i</mi><mi id="S2.SS3.p2.1.m1.1.1.1.1.1.3" xref="S2.SS3.p2.1.m1.1.1.1.1.1.3.cmml">n</mi></msubsup><mo id="S2.SS3.p2.1.m1.2.2.2.2.4" xref="S2.SS3.p2.1.m1.2.2.2.3.cmml">,</mo><msubsup id="S2.SS3.p2.1.m1.2.2.2.2.2" xref="S2.SS3.p2.1.m1.2.2.2.2.2.cmml"><mi id="S2.SS3.p2.1.m1.2.2.2.2.2.2.2" xref="S2.SS3.p2.1.m1.2.2.2.2.2.2.2.cmml">𝐔</mi><mrow id="S2.SS3.p2.1.m1.2.2.2.2.2.2.3" xref="S2.SS3.p2.1.m1.2.2.2.2.2.2.3.cmml"><mi id="S2.SS3.p2.1.m1.2.2.2.2.2.2.3.2" xref="S2.SS3.p2.1.m1.2.2.2.2.2.2.3.2.cmml">i</mi><mo id="S2.SS3.p2.1.m1.2.2.2.2.2.2.3.1" xref="S2.SS3.p2.1.m1.2.2.2.2.2.2.3.1.cmml">+</mo><mn id="S2.SS3.p2.1.m1.2.2.2.2.2.2.3.3" xref="S2.SS3.p2.1.m1.2.2.2.2.2.2.3.3.cmml">1</mn></mrow><mi id="S2.SS3.p2.1.m1.2.2.2.2.2.3" xref="S2.SS3.p2.1.m1.2.2.2.2.2.3.cmml">n</mi></msubsup><mo id="S2.SS3.p2.1.m1.2.2.2.2.5" xref="S2.SS3.p2.1.m1.2.2.2.3.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.SS3.p2.1.m1.2b"><apply id="S2.SS3.p2.1.m1.2.2.cmml" xref="S2.SS3.p2.1.m1.2.2"><times id="S2.SS3.p2.1.m1.2.2.3.cmml" xref="S2.SS3.p2.1.m1.2.2.3"></times><ci id="S2.SS3.p2.1.m1.2.2.4.cmml" xref="S2.SS3.p2.1.m1.2.2.4">𝐀</ci><interval closure="open" id="S2.SS3.p2.1.m1.2.2.2.3.cmml" xref="S2.SS3.p2.1.m1.2.2.2.2"><apply id="S2.SS3.p2.1.m1.1.1.1.1.1.cmml" xref="S2.SS3.p2.1.m1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.SS3.p2.1.m1.1.1.1.1.1.1.cmml" xref="S2.SS3.p2.1.m1.1.1.1.1.1">superscript</csymbol><apply id="S2.SS3.p2.1.m1.1.1.1.1.1.2.cmml" xref="S2.SS3.p2.1.m1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.SS3.p2.1.m1.1.1.1.1.1.2.1.cmml" xref="S2.SS3.p2.1.m1.1.1.1.1.1">subscript</csymbol><ci id="S2.SS3.p2.1.m1.1.1.1.1.1.2.2.cmml" xref="S2.SS3.p2.1.m1.1.1.1.1.1.2.2">𝐔</ci><ci id="S2.SS3.p2.1.m1.1.1.1.1.1.2.3.cmml" xref="S2.SS3.p2.1.m1.1.1.1.1.1.2.3">𝑖</ci></apply><ci id="S2.SS3.p2.1.m1.1.1.1.1.1.3.cmml" xref="S2.SS3.p2.1.m1.1.1.1.1.1.3">𝑛</ci></apply><apply id="S2.SS3.p2.1.m1.2.2.2.2.2.cmml" xref="S2.SS3.p2.1.m1.2.2.2.2.2"><csymbol cd="ambiguous" id="S2.SS3.p2.1.m1.2.2.2.2.2.1.cmml" xref="S2.SS3.p2.1.m1.2.2.2.2.2">superscript</csymbol><apply id="S2.SS3.p2.1.m1.2.2.2.2.2.2.cmml" xref="S2.SS3.p2.1.m1.2.2.2.2.2"><csymbol cd="ambiguous" id="S2.SS3.p2.1.m1.2.2.2.2.2.2.1.cmml" xref="S2.SS3.p2.1.m1.2.2.2.2.2">subscript</csymbol><ci id="S2.SS3.p2.1.m1.2.2.2.2.2.2.2.cmml" xref="S2.SS3.p2.1.m1.2.2.2.2.2.2.2">𝐔</ci><apply id="S2.SS3.p2.1.m1.2.2.2.2.2.2.3.cmml" xref="S2.SS3.p2.1.m1.2.2.2.2.2.2.3"><plus id="S2.SS3.p2.1.m1.2.2.2.2.2.2.3.1.cmml" xref="S2.SS3.p2.1.m1.2.2.2.2.2.2.3.1"></plus><ci id="S2.SS3.p2.1.m1.2.2.2.2.2.2.3.2.cmml" xref="S2.SS3.p2.1.m1.2.2.2.2.2.2.3.2">𝑖</ci><cn id="S2.SS3.p2.1.m1.2.2.2.2.2.2.3.3.cmml" type="integer" xref="S2.SS3.p2.1.m1.2.2.2.2.2.2.3.3">1</cn></apply></apply><ci id="S2.SS3.p2.1.m1.2.2.2.2.2.3.cmml" xref="S2.SS3.p2.1.m1.2.2.2.2.2.3">𝑛</ci></apply></interval></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS3.p2.1.m1.2c">{\mathbf{A}\left(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)}</annotation><annotation encoding="application/x-llamapun" id="S2.SS3.p2.1.m1.2d">bold_A ( bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT )</annotation></semantics></math>, which is a linearized approximation to the flux Jacobian <math alttext="{\mathbf{J}_{\mathbf{F}}}" class="ltx_Math" display="inline" id="S2.SS3.p2.2.m2.1"><semantics id="S2.SS3.p2.2.m2.1a"><msub id="S2.SS3.p2.2.m2.1.1" xref="S2.SS3.p2.2.m2.1.1.cmml"><mi id="S2.SS3.p2.2.m2.1.1.2" xref="S2.SS3.p2.2.m2.1.1.2.cmml">𝐉</mi><mi id="S2.SS3.p2.2.m2.1.1.3" xref="S2.SS3.p2.2.m2.1.1.3.cmml">𝐅</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS3.p2.2.m2.1b"><apply id="S2.SS3.p2.2.m2.1.1.cmml" xref="S2.SS3.p2.2.m2.1.1"><csymbol cd="ambiguous" id="S2.SS3.p2.2.m2.1.1.1.cmml" xref="S2.SS3.p2.2.m2.1.1">subscript</csymbol><ci id="S2.SS3.p2.2.m2.1.1.2.cmml" xref="S2.SS3.p2.2.m2.1.1.2">𝐉</ci><ci id="S2.SS3.p2.2.m2.1.1.3.cmml" xref="S2.SS3.p2.2.m2.1.1.3">𝐅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS3.p2.2.m2.1c">{\mathbf{J}_{\mathbf{F}}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS3.p2.2.m2.1d">bold_J start_POSTSUBSCRIPT bold_F end_POSTSUBSCRIPT</annotation></semantics></math> that is taken to be constant between cells <math alttext="{x_{i}}" class="ltx_Math" display="inline" id="S2.SS3.p2.3.m3.1"><semantics id="S2.SS3.p2.3.m3.1a"><msub id="S2.SS3.p2.3.m3.1.1" xref="S2.SS3.p2.3.m3.1.1.cmml"><mi id="S2.SS3.p2.3.m3.1.1.2" xref="S2.SS3.p2.3.m3.1.1.2.cmml">x</mi><mi id="S2.SS3.p2.3.m3.1.1.3" xref="S2.SS3.p2.3.m3.1.1.3.cmml">i</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS3.p2.3.m3.1b"><apply id="S2.SS3.p2.3.m3.1.1.cmml" xref="S2.SS3.p2.3.m3.1.1"><csymbol cd="ambiguous" id="S2.SS3.p2.3.m3.1.1.1.cmml" xref="S2.SS3.p2.3.m3.1.1">subscript</csymbol><ci id="S2.SS3.p2.3.m3.1.1.2.cmml" xref="S2.SS3.p2.3.m3.1.1.2">𝑥</ci><ci id="S2.SS3.p2.3.m3.1.1.3.cmml" xref="S2.SS3.p2.3.m3.1.1.3">𝑖</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS3.p2.3.m3.1c">{x_{i}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS3.p2.3.m3.1d">italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT</annotation></semantics></math> and <math alttext="{x_{i+1}}" class="ltx_Math" display="inline" id="S2.SS3.p2.4.m4.1"><semantics id="S2.SS3.p2.4.m4.1a"><msub id="S2.SS3.p2.4.m4.1.1" xref="S2.SS3.p2.4.m4.1.1.cmml"><mi id="S2.SS3.p2.4.m4.1.1.2" xref="S2.SS3.p2.4.m4.1.1.2.cmml">x</mi><mrow id="S2.SS3.p2.4.m4.1.1.3" xref="S2.SS3.p2.4.m4.1.1.3.cmml"><mi id="S2.SS3.p2.4.m4.1.1.3.2" xref="S2.SS3.p2.4.m4.1.1.3.2.cmml">i</mi><mo id="S2.SS3.p2.4.m4.1.1.3.1" xref="S2.SS3.p2.4.m4.1.1.3.1.cmml">+</mo><mn id="S2.SS3.p2.4.m4.1.1.3.3" xref="S2.SS3.p2.4.m4.1.1.3.3.cmml">1</mn></mrow></msub><annotation-xml encoding="MathML-Content" id="S2.SS3.p2.4.m4.1b"><apply id="S2.SS3.p2.4.m4.1.1.cmml" xref="S2.SS3.p2.4.m4.1.1"><csymbol cd="ambiguous" id="S2.SS3.p2.4.m4.1.1.1.cmml" xref="S2.SS3.p2.4.m4.1.1">subscript</csymbol><ci id="S2.SS3.p2.4.m4.1.1.2.cmml" xref="S2.SS3.p2.4.m4.1.1.2">𝑥</ci><apply id="S2.SS3.p2.4.m4.1.1.3.cmml" xref="S2.SS3.p2.4.m4.1.1.3"><plus id="S2.SS3.p2.4.m4.1.1.3.1.cmml" xref="S2.SS3.p2.4.m4.1.1.3.1"></plus><ci id="S2.SS3.p2.4.m4.1.1.3.2.cmml" xref="S2.SS3.p2.4.m4.1.1.3.2">𝑖</ci><cn id="S2.SS3.p2.4.m4.1.1.3.3.cmml" type="integer" xref="S2.SS3.p2.4.m4.1.1.3.3">1</cn></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS3.p2.4.m4.1c">{x_{i+1}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS3.p2.4.m4.1d">italic_x start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT</annotation></semantics></math>, satisfying consistency with the exact Jacobian in the appropriate limit:</p> </div> <div class="ltx_para" id="S2.SS3.p3"> <table class="ltx_equation ltx_eqn_table" id="S2.E15"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(15)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\lim_{\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\to\mathbf{U}}\left[\mathbf{A}% \left(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)\right]=\nabla_{\mathbf{U}% }\mathbf{F}\left(\mathbf{U}\right)," class="ltx_Math" display="block" id="S2.E15.m1.4"><semantics id="S2.E15.m1.4a"><mrow id="S2.E15.m1.4.4.1" xref="S2.E15.m1.4.4.1.1.cmml"><mrow id="S2.E15.m1.4.4.1.1" xref="S2.E15.m1.4.4.1.1.cmml"><mrow id="S2.E15.m1.4.4.1.1.1" xref="S2.E15.m1.4.4.1.1.1.cmml"><munder id="S2.E15.m1.4.4.1.1.1.2" xref="S2.E15.m1.4.4.1.1.1.2.cmml"><mo id="S2.E15.m1.4.4.1.1.1.2.2" movablelimits="false" xref="S2.E15.m1.4.4.1.1.1.2.2.cmml">lim</mo><mrow id="S2.E15.m1.2.2.2" xref="S2.E15.m1.2.2.2.cmml"><mrow id="S2.E15.m1.2.2.2.2.2" xref="S2.E15.m1.2.2.2.2.3.cmml"><msubsup id="S2.E15.m1.1.1.1.1.1.1" xref="S2.E15.m1.1.1.1.1.1.1.cmml"><mi id="S2.E15.m1.1.1.1.1.1.1.2.2" xref="S2.E15.m1.1.1.1.1.1.1.2.2.cmml">𝐔</mi><mi id="S2.E15.m1.1.1.1.1.1.1.2.3" xref="S2.E15.m1.1.1.1.1.1.1.2.3.cmml">i</mi><mi id="S2.E15.m1.1.1.1.1.1.1.3" xref="S2.E15.m1.1.1.1.1.1.1.3.cmml">n</mi></msubsup><mo id="S2.E15.m1.2.2.2.2.2.3" xref="S2.E15.m1.2.2.2.2.3.cmml">,</mo><msubsup id="S2.E15.m1.2.2.2.2.2.2" xref="S2.E15.m1.2.2.2.2.2.2.cmml"><mi id="S2.E15.m1.2.2.2.2.2.2.2.2" xref="S2.E15.m1.2.2.2.2.2.2.2.2.cmml">𝐔</mi><mrow id="S2.E15.m1.2.2.2.2.2.2.2.3" xref="S2.E15.m1.2.2.2.2.2.2.2.3.cmml"><mi id="S2.E15.m1.2.2.2.2.2.2.2.3.2" xref="S2.E15.m1.2.2.2.2.2.2.2.3.2.cmml">i</mi><mo id="S2.E15.m1.2.2.2.2.2.2.2.3.1" xref="S2.E15.m1.2.2.2.2.2.2.2.3.1.cmml">+</mo><mn id="S2.E15.m1.2.2.2.2.2.2.2.3.3" xref="S2.E15.m1.2.2.2.2.2.2.2.3.3.cmml">1</mn></mrow><mi id="S2.E15.m1.2.2.2.2.2.2.3" xref="S2.E15.m1.2.2.2.2.2.2.3.cmml">n</mi></msubsup></mrow><mo id="S2.E15.m1.2.2.2.3" stretchy="false" xref="S2.E15.m1.2.2.2.3.cmml">→</mo><mi id="S2.E15.m1.2.2.2.4" xref="S2.E15.m1.2.2.2.4.cmml">𝐔</mi></mrow></munder><mrow id="S2.E15.m1.4.4.1.1.1.1.1" xref="S2.E15.m1.4.4.1.1.1.1.2.cmml"><mo id="S2.E15.m1.4.4.1.1.1.1.1.2" lspace="0em" xref="S2.E15.m1.4.4.1.1.1.1.2.1.cmml">[</mo><mrow id="S2.E15.m1.4.4.1.1.1.1.1.1" xref="S2.E15.m1.4.4.1.1.1.1.1.1.cmml"><mi id="S2.E15.m1.4.4.1.1.1.1.1.1.4" xref="S2.E15.m1.4.4.1.1.1.1.1.1.4.cmml">𝐀</mi><mo id="S2.E15.m1.4.4.1.1.1.1.1.1.3" xref="S2.E15.m1.4.4.1.1.1.1.1.1.3.cmml"></mo><mrow id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.3.cmml"><mo id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.3" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.3.cmml">(</mo><msubsup id="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1" xref="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1.cmml"><mi id="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1.2.2" xref="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1.2.2.cmml">𝐔</mi><mi id="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1.2.3" xref="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1.2.3.cmml">i</mi><mi id="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1.3" xref="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1.3.cmml">n</mi></msubsup><mo id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.4" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.3.cmml">,</mo><msubsup id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.cmml"><mi id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.2" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.2.cmml">𝐔</mi><mrow id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.3" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.3.cmml"><mi id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.3.2" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.3.2.cmml">i</mi><mo id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.3.1" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.3.1.cmml">+</mo><mn id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.3.3" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.3.3.cmml">1</mn></mrow><mi id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.3" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.3.cmml">n</mi></msubsup><mo id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.5" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.3.cmml">)</mo></mrow></mrow><mo id="S2.E15.m1.4.4.1.1.1.1.1.3" xref="S2.E15.m1.4.4.1.1.1.1.2.1.cmml">]</mo></mrow></mrow><mo id="S2.E15.m1.4.4.1.1.2" xref="S2.E15.m1.4.4.1.1.2.cmml">=</mo><mrow id="S2.E15.m1.4.4.1.1.3" xref="S2.E15.m1.4.4.1.1.3.cmml"><mrow id="S2.E15.m1.4.4.1.1.3.2" xref="S2.E15.m1.4.4.1.1.3.2.cmml"><msub id="S2.E15.m1.4.4.1.1.3.2.1" xref="S2.E15.m1.4.4.1.1.3.2.1.cmml"><mo id="S2.E15.m1.4.4.1.1.3.2.1.2" rspace="0.167em" xref="S2.E15.m1.4.4.1.1.3.2.1.2.cmml">∇</mo><mi id="S2.E15.m1.4.4.1.1.3.2.1.3" xref="S2.E15.m1.4.4.1.1.3.2.1.3.cmml">𝐔</mi></msub><mi id="S2.E15.m1.4.4.1.1.3.2.2" xref="S2.E15.m1.4.4.1.1.3.2.2.cmml">𝐅</mi></mrow><mo id="S2.E15.m1.4.4.1.1.3.1" xref="S2.E15.m1.4.4.1.1.3.1.cmml"></mo><mrow id="S2.E15.m1.4.4.1.1.3.3.2" xref="S2.E15.m1.4.4.1.1.3.cmml"><mo id="S2.E15.m1.4.4.1.1.3.3.2.1" xref="S2.E15.m1.4.4.1.1.3.cmml">(</mo><mi id="S2.E15.m1.3.3" xref="S2.E15.m1.3.3.cmml">𝐔</mi><mo id="S2.E15.m1.4.4.1.1.3.3.2.2" xref="S2.E15.m1.4.4.1.1.3.cmml">)</mo></mrow></mrow></mrow><mo id="S2.E15.m1.4.4.1.2" xref="S2.E15.m1.4.4.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E15.m1.4b"><apply id="S2.E15.m1.4.4.1.1.cmml" xref="S2.E15.m1.4.4.1"><eq id="S2.E15.m1.4.4.1.1.2.cmml" xref="S2.E15.m1.4.4.1.1.2"></eq><apply id="S2.E15.m1.4.4.1.1.1.cmml" xref="S2.E15.m1.4.4.1.1.1"><apply id="S2.E15.m1.4.4.1.1.1.2.cmml" xref="S2.E15.m1.4.4.1.1.1.2"><csymbol cd="ambiguous" id="S2.E15.m1.4.4.1.1.1.2.1.cmml" xref="S2.E15.m1.4.4.1.1.1.2">subscript</csymbol><limit id="S2.E15.m1.4.4.1.1.1.2.2.cmml" xref="S2.E15.m1.4.4.1.1.1.2.2"></limit><apply id="S2.E15.m1.2.2.2.cmml" xref="S2.E15.m1.2.2.2"><ci id="S2.E15.m1.2.2.2.3.cmml" xref="S2.E15.m1.2.2.2.3">→</ci><list id="S2.E15.m1.2.2.2.2.3.cmml" xref="S2.E15.m1.2.2.2.2.2"><apply id="S2.E15.m1.1.1.1.1.1.1.cmml" xref="S2.E15.m1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E15.m1.1.1.1.1.1.1.1.cmml" xref="S2.E15.m1.1.1.1.1.1.1">superscript</csymbol><apply id="S2.E15.m1.1.1.1.1.1.1.2.cmml" xref="S2.E15.m1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E15.m1.1.1.1.1.1.1.2.1.cmml" xref="S2.E15.m1.1.1.1.1.1.1">subscript</csymbol><ci id="S2.E15.m1.1.1.1.1.1.1.2.2.cmml" xref="S2.E15.m1.1.1.1.1.1.1.2.2">𝐔</ci><ci id="S2.E15.m1.1.1.1.1.1.1.2.3.cmml" xref="S2.E15.m1.1.1.1.1.1.1.2.3">𝑖</ci></apply><ci id="S2.E15.m1.1.1.1.1.1.1.3.cmml" xref="S2.E15.m1.1.1.1.1.1.1.3">𝑛</ci></apply><apply id="S2.E15.m1.2.2.2.2.2.2.cmml" xref="S2.E15.m1.2.2.2.2.2.2"><csymbol cd="ambiguous" id="S2.E15.m1.2.2.2.2.2.2.1.cmml" xref="S2.E15.m1.2.2.2.2.2.2">superscript</csymbol><apply id="S2.E15.m1.2.2.2.2.2.2.2.cmml" xref="S2.E15.m1.2.2.2.2.2.2"><csymbol cd="ambiguous" id="S2.E15.m1.2.2.2.2.2.2.2.1.cmml" xref="S2.E15.m1.2.2.2.2.2.2">subscript</csymbol><ci id="S2.E15.m1.2.2.2.2.2.2.2.2.cmml" xref="S2.E15.m1.2.2.2.2.2.2.2.2">𝐔</ci><apply id="S2.E15.m1.2.2.2.2.2.2.2.3.cmml" xref="S2.E15.m1.2.2.2.2.2.2.2.3"><plus id="S2.E15.m1.2.2.2.2.2.2.2.3.1.cmml" xref="S2.E15.m1.2.2.2.2.2.2.2.3.1"></plus><ci id="S2.E15.m1.2.2.2.2.2.2.2.3.2.cmml" xref="S2.E15.m1.2.2.2.2.2.2.2.3.2">𝑖</ci><cn id="S2.E15.m1.2.2.2.2.2.2.2.3.3.cmml" type="integer" xref="S2.E15.m1.2.2.2.2.2.2.2.3.3">1</cn></apply></apply><ci id="S2.E15.m1.2.2.2.2.2.2.3.cmml" xref="S2.E15.m1.2.2.2.2.2.2.3">𝑛</ci></apply></list><ci id="S2.E15.m1.2.2.2.4.cmml" xref="S2.E15.m1.2.2.2.4">𝐔</ci></apply></apply><apply id="S2.E15.m1.4.4.1.1.1.1.2.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1"><csymbol cd="latexml" id="S2.E15.m1.4.4.1.1.1.1.2.1.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.2">delimited-[]</csymbol><apply id="S2.E15.m1.4.4.1.1.1.1.1.1.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1"><times id="S2.E15.m1.4.4.1.1.1.1.1.1.3.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.3"></times><ci id="S2.E15.m1.4.4.1.1.1.1.1.1.4.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.4">𝐀</ci><interval closure="open" id="S2.E15.m1.4.4.1.1.1.1.1.1.2.3.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.2"><apply id="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1">superscript</csymbol><apply id="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1.2.1.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1">subscript</csymbol><ci id="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1.2.2.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1.2.2">𝐔</ci><ci id="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1.2.3.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1.2.3">𝑖</ci></apply><ci id="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.1.1.1.3">𝑛</ci></apply><apply id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2"><csymbol cd="ambiguous" id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.1.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2">superscript</csymbol><apply id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2"><csymbol cd="ambiguous" id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.1.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2">subscript</csymbol><ci id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.2.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.2">𝐔</ci><apply id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.3.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.3"><plus id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.3.1.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.3.1"></plus><ci id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.3.2.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.3.2">𝑖</ci><cn id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.3.3.cmml" type="integer" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.2.3.3">1</cn></apply></apply><ci id="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.3.cmml" xref="S2.E15.m1.4.4.1.1.1.1.1.1.2.2.2.3">𝑛</ci></apply></interval></apply></apply></apply><apply id="S2.E15.m1.4.4.1.1.3.cmml" xref="S2.E15.m1.4.4.1.1.3"><times id="S2.E15.m1.4.4.1.1.3.1.cmml" xref="S2.E15.m1.4.4.1.1.3.1"></times><apply id="S2.E15.m1.4.4.1.1.3.2.cmml" xref="S2.E15.m1.4.4.1.1.3.2"><apply id="S2.E15.m1.4.4.1.1.3.2.1.cmml" xref="S2.E15.m1.4.4.1.1.3.2.1"><csymbol cd="ambiguous" id="S2.E15.m1.4.4.1.1.3.2.1.1.cmml" xref="S2.E15.m1.4.4.1.1.3.2.1">subscript</csymbol><ci id="S2.E15.m1.4.4.1.1.3.2.1.2.cmml" xref="S2.E15.m1.4.4.1.1.3.2.1.2">∇</ci><ci id="S2.E15.m1.4.4.1.1.3.2.1.3.cmml" xref="S2.E15.m1.4.4.1.1.3.2.1.3">𝐔</ci></apply><ci id="S2.E15.m1.4.4.1.1.3.2.2.cmml" xref="S2.E15.m1.4.4.1.1.3.2.2">𝐅</ci></apply><ci id="S2.E15.m1.3.3.cmml" xref="S2.E15.m1.3.3">𝐔</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E15.m1.4c">\lim_{\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\to\mathbf{U}}\left[\mathbf{A}% \left(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)\right]=\nabla_{\mathbf{U}% }\mathbf{F}\left(\mathbf{U}\right),</annotation><annotation encoding="application/x-llamapun" id="S2.E15.m1.4d">roman_lim start_POSTSUBSCRIPT bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → bold_U end_POSTSUBSCRIPT [ bold_A ( bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) ] = ∇ start_POSTSUBSCRIPT bold_U end_POSTSUBSCRIPT bold_F ( bold_U ) ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS3.p3.7">such that <math alttext="{\lambda_{p}}" class="ltx_Math" display="inline" id="S2.SS3.p3.1.m1.1"><semantics id="S2.SS3.p3.1.m1.1a"><msub id="S2.SS3.p3.1.m1.1.1" xref="S2.SS3.p3.1.m1.1.1.cmml"><mi id="S2.SS3.p3.1.m1.1.1.2" xref="S2.SS3.p3.1.m1.1.1.2.cmml">λ</mi><mi id="S2.SS3.p3.1.m1.1.1.3" xref="S2.SS3.p3.1.m1.1.1.3.cmml">p</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS3.p3.1.m1.1b"><apply id="S2.SS3.p3.1.m1.1.1.cmml" xref="S2.SS3.p3.1.m1.1.1"><csymbol cd="ambiguous" id="S2.SS3.p3.1.m1.1.1.1.cmml" xref="S2.SS3.p3.1.m1.1.1">subscript</csymbol><ci id="S2.SS3.p3.1.m1.1.1.2.cmml" xref="S2.SS3.p3.1.m1.1.1.2">𝜆</ci><ci id="S2.SS3.p3.1.m1.1.1.3.cmml" xref="S2.SS3.p3.1.m1.1.1.3">𝑝</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS3.p3.1.m1.1c">{\lambda_{p}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS3.p3.1.m1.1d">italic_λ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT</annotation></semantics></math> are the eigenvalues of <math alttext="{\mathbf{A}\left(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)}" class="ltx_Math" display="inline" id="S2.SS3.p3.2.m2.2"><semantics id="S2.SS3.p3.2.m2.2a"><mrow id="S2.SS3.p3.2.m2.2.2" xref="S2.SS3.p3.2.m2.2.2.cmml"><mi id="S2.SS3.p3.2.m2.2.2.4" xref="S2.SS3.p3.2.m2.2.2.4.cmml">𝐀</mi><mo id="S2.SS3.p3.2.m2.2.2.3" xref="S2.SS3.p3.2.m2.2.2.3.cmml"></mo><mrow id="S2.SS3.p3.2.m2.2.2.2.2" xref="S2.SS3.p3.2.m2.2.2.2.3.cmml"><mo id="S2.SS3.p3.2.m2.2.2.2.2.3" xref="S2.SS3.p3.2.m2.2.2.2.3.cmml">(</mo><msubsup id="S2.SS3.p3.2.m2.1.1.1.1.1" xref="S2.SS3.p3.2.m2.1.1.1.1.1.cmml"><mi id="S2.SS3.p3.2.m2.1.1.1.1.1.2.2" xref="S2.SS3.p3.2.m2.1.1.1.1.1.2.2.cmml">𝐔</mi><mi id="S2.SS3.p3.2.m2.1.1.1.1.1.2.3" xref="S2.SS3.p3.2.m2.1.1.1.1.1.2.3.cmml">i</mi><mi id="S2.SS3.p3.2.m2.1.1.1.1.1.3" xref="S2.SS3.p3.2.m2.1.1.1.1.1.3.cmml">n</mi></msubsup><mo id="S2.SS3.p3.2.m2.2.2.2.2.4" xref="S2.SS3.p3.2.m2.2.2.2.3.cmml">,</mo><msubsup id="S2.SS3.p3.2.m2.2.2.2.2.2" xref="S2.SS3.p3.2.m2.2.2.2.2.2.cmml"><mi id="S2.SS3.p3.2.m2.2.2.2.2.2.2.2" xref="S2.SS3.p3.2.m2.2.2.2.2.2.2.2.cmml">𝐔</mi><mrow id="S2.SS3.p3.2.m2.2.2.2.2.2.2.3" xref="S2.SS3.p3.2.m2.2.2.2.2.2.2.3.cmml"><mi id="S2.SS3.p3.2.m2.2.2.2.2.2.2.3.2" xref="S2.SS3.p3.2.m2.2.2.2.2.2.2.3.2.cmml">i</mi><mo id="S2.SS3.p3.2.m2.2.2.2.2.2.2.3.1" xref="S2.SS3.p3.2.m2.2.2.2.2.2.2.3.1.cmml">+</mo><mn id="S2.SS3.p3.2.m2.2.2.2.2.2.2.3.3" xref="S2.SS3.p3.2.m2.2.2.2.2.2.2.3.3.cmml">1</mn></mrow><mi id="S2.SS3.p3.2.m2.2.2.2.2.2.3" xref="S2.SS3.p3.2.m2.2.2.2.2.2.3.cmml">n</mi></msubsup><mo id="S2.SS3.p3.2.m2.2.2.2.2.5" xref="S2.SS3.p3.2.m2.2.2.2.3.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.SS3.p3.2.m2.2b"><apply id="S2.SS3.p3.2.m2.2.2.cmml" xref="S2.SS3.p3.2.m2.2.2"><times id="S2.SS3.p3.2.m2.2.2.3.cmml" xref="S2.SS3.p3.2.m2.2.2.3"></times><ci id="S2.SS3.p3.2.m2.2.2.4.cmml" xref="S2.SS3.p3.2.m2.2.2.4">𝐀</ci><interval closure="open" id="S2.SS3.p3.2.m2.2.2.2.3.cmml" xref="S2.SS3.p3.2.m2.2.2.2.2"><apply id="S2.SS3.p3.2.m2.1.1.1.1.1.cmml" xref="S2.SS3.p3.2.m2.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.SS3.p3.2.m2.1.1.1.1.1.1.cmml" xref="S2.SS3.p3.2.m2.1.1.1.1.1">superscript</csymbol><apply id="S2.SS3.p3.2.m2.1.1.1.1.1.2.cmml" xref="S2.SS3.p3.2.m2.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.SS3.p3.2.m2.1.1.1.1.1.2.1.cmml" xref="S2.SS3.p3.2.m2.1.1.1.1.1">subscript</csymbol><ci id="S2.SS3.p3.2.m2.1.1.1.1.1.2.2.cmml" xref="S2.SS3.p3.2.m2.1.1.1.1.1.2.2">𝐔</ci><ci id="S2.SS3.p3.2.m2.1.1.1.1.1.2.3.cmml" xref="S2.SS3.p3.2.m2.1.1.1.1.1.2.3">𝑖</ci></apply><ci id="S2.SS3.p3.2.m2.1.1.1.1.1.3.cmml" xref="S2.SS3.p3.2.m2.1.1.1.1.1.3">𝑛</ci></apply><apply id="S2.SS3.p3.2.m2.2.2.2.2.2.cmml" xref="S2.SS3.p3.2.m2.2.2.2.2.2"><csymbol cd="ambiguous" id="S2.SS3.p3.2.m2.2.2.2.2.2.1.cmml" xref="S2.SS3.p3.2.m2.2.2.2.2.2">superscript</csymbol><apply id="S2.SS3.p3.2.m2.2.2.2.2.2.2.cmml" xref="S2.SS3.p3.2.m2.2.2.2.2.2"><csymbol cd="ambiguous" id="S2.SS3.p3.2.m2.2.2.2.2.2.2.1.cmml" xref="S2.SS3.p3.2.m2.2.2.2.2.2">subscript</csymbol><ci id="S2.SS3.p3.2.m2.2.2.2.2.2.2.2.cmml" xref="S2.SS3.p3.2.m2.2.2.2.2.2.2.2">𝐔</ci><apply id="S2.SS3.p3.2.m2.2.2.2.2.2.2.3.cmml" xref="S2.SS3.p3.2.m2.2.2.2.2.2.2.3"><plus id="S2.SS3.p3.2.m2.2.2.2.2.2.2.3.1.cmml" xref="S2.SS3.p3.2.m2.2.2.2.2.2.2.3.1"></plus><ci id="S2.SS3.p3.2.m2.2.2.2.2.2.2.3.2.cmml" xref="S2.SS3.p3.2.m2.2.2.2.2.2.2.3.2">𝑖</ci><cn id="S2.SS3.p3.2.m2.2.2.2.2.2.2.3.3.cmml" type="integer" xref="S2.SS3.p3.2.m2.2.2.2.2.2.2.3.3">1</cn></apply></apply><ci id="S2.SS3.p3.2.m2.2.2.2.2.2.3.cmml" xref="S2.SS3.p3.2.m2.2.2.2.2.2.3">𝑛</ci></apply></interval></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS3.p3.2.m2.2c">{\mathbf{A}\left(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)}</annotation><annotation encoding="application/x-llamapun" id="S2.SS3.p3.2.m2.2d">bold_A ( bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT )</annotation></semantics></math>, <math alttext="{\mathbf{r}_{p}}" class="ltx_Math" display="inline" id="S2.SS3.p3.3.m3.1"><semantics id="S2.SS3.p3.3.m3.1a"><msub id="S2.SS3.p3.3.m3.1.1" xref="S2.SS3.p3.3.m3.1.1.cmml"><mi id="S2.SS3.p3.3.m3.1.1.2" xref="S2.SS3.p3.3.m3.1.1.2.cmml">𝐫</mi><mi id="S2.SS3.p3.3.m3.1.1.3" xref="S2.SS3.p3.3.m3.1.1.3.cmml">p</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS3.p3.3.m3.1b"><apply id="S2.SS3.p3.3.m3.1.1.cmml" xref="S2.SS3.p3.3.m3.1.1"><csymbol cd="ambiguous" id="S2.SS3.p3.3.m3.1.1.1.cmml" xref="S2.SS3.p3.3.m3.1.1">subscript</csymbol><ci id="S2.SS3.p3.3.m3.1.1.2.cmml" xref="S2.SS3.p3.3.m3.1.1.2">𝐫</ci><ci id="S2.SS3.p3.3.m3.1.1.3.cmml" xref="S2.SS3.p3.3.m3.1.1.3">𝑝</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS3.p3.3.m3.1c">{\mathbf{r}_{p}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS3.p3.3.m3.1d">bold_r start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT</annotation></semantics></math> are the (right) eigenvectors of <math alttext="{\mathbf{A}\left(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)}" class="ltx_Math" display="inline" id="S2.SS3.p3.4.m4.2"><semantics id="S2.SS3.p3.4.m4.2a"><mrow id="S2.SS3.p3.4.m4.2.2" xref="S2.SS3.p3.4.m4.2.2.cmml"><mi id="S2.SS3.p3.4.m4.2.2.4" xref="S2.SS3.p3.4.m4.2.2.4.cmml">𝐀</mi><mo id="S2.SS3.p3.4.m4.2.2.3" xref="S2.SS3.p3.4.m4.2.2.3.cmml"></mo><mrow id="S2.SS3.p3.4.m4.2.2.2.2" xref="S2.SS3.p3.4.m4.2.2.2.3.cmml"><mo id="S2.SS3.p3.4.m4.2.2.2.2.3" xref="S2.SS3.p3.4.m4.2.2.2.3.cmml">(</mo><msubsup id="S2.SS3.p3.4.m4.1.1.1.1.1" xref="S2.SS3.p3.4.m4.1.1.1.1.1.cmml"><mi id="S2.SS3.p3.4.m4.1.1.1.1.1.2.2" xref="S2.SS3.p3.4.m4.1.1.1.1.1.2.2.cmml">𝐔</mi><mi id="S2.SS3.p3.4.m4.1.1.1.1.1.2.3" xref="S2.SS3.p3.4.m4.1.1.1.1.1.2.3.cmml">i</mi><mi id="S2.SS3.p3.4.m4.1.1.1.1.1.3" xref="S2.SS3.p3.4.m4.1.1.1.1.1.3.cmml">n</mi></msubsup><mo id="S2.SS3.p3.4.m4.2.2.2.2.4" xref="S2.SS3.p3.4.m4.2.2.2.3.cmml">,</mo><msubsup id="S2.SS3.p3.4.m4.2.2.2.2.2" xref="S2.SS3.p3.4.m4.2.2.2.2.2.cmml"><mi id="S2.SS3.p3.4.m4.2.2.2.2.2.2.2" xref="S2.SS3.p3.4.m4.2.2.2.2.2.2.2.cmml">𝐔</mi><mrow id="S2.SS3.p3.4.m4.2.2.2.2.2.2.3" xref="S2.SS3.p3.4.m4.2.2.2.2.2.2.3.cmml"><mi id="S2.SS3.p3.4.m4.2.2.2.2.2.2.3.2" xref="S2.SS3.p3.4.m4.2.2.2.2.2.2.3.2.cmml">i</mi><mo id="S2.SS3.p3.4.m4.2.2.2.2.2.2.3.1" xref="S2.SS3.p3.4.m4.2.2.2.2.2.2.3.1.cmml">+</mo><mn id="S2.SS3.p3.4.m4.2.2.2.2.2.2.3.3" xref="S2.SS3.p3.4.m4.2.2.2.2.2.2.3.3.cmml">1</mn></mrow><mi id="S2.SS3.p3.4.m4.2.2.2.2.2.3" xref="S2.SS3.p3.4.m4.2.2.2.2.2.3.cmml">n</mi></msubsup><mo id="S2.SS3.p3.4.m4.2.2.2.2.5" xref="S2.SS3.p3.4.m4.2.2.2.3.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.SS3.p3.4.m4.2b"><apply id="S2.SS3.p3.4.m4.2.2.cmml" xref="S2.SS3.p3.4.m4.2.2"><times id="S2.SS3.p3.4.m4.2.2.3.cmml" xref="S2.SS3.p3.4.m4.2.2.3"></times><ci id="S2.SS3.p3.4.m4.2.2.4.cmml" xref="S2.SS3.p3.4.m4.2.2.4">𝐀</ci><interval closure="open" id="S2.SS3.p3.4.m4.2.2.2.3.cmml" xref="S2.SS3.p3.4.m4.2.2.2.2"><apply id="S2.SS3.p3.4.m4.1.1.1.1.1.cmml" xref="S2.SS3.p3.4.m4.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.SS3.p3.4.m4.1.1.1.1.1.1.cmml" xref="S2.SS3.p3.4.m4.1.1.1.1.1">superscript</csymbol><apply id="S2.SS3.p3.4.m4.1.1.1.1.1.2.cmml" xref="S2.SS3.p3.4.m4.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.SS3.p3.4.m4.1.1.1.1.1.2.1.cmml" xref="S2.SS3.p3.4.m4.1.1.1.1.1">subscript</csymbol><ci id="S2.SS3.p3.4.m4.1.1.1.1.1.2.2.cmml" xref="S2.SS3.p3.4.m4.1.1.1.1.1.2.2">𝐔</ci><ci id="S2.SS3.p3.4.m4.1.1.1.1.1.2.3.cmml" xref="S2.SS3.p3.4.m4.1.1.1.1.1.2.3">𝑖</ci></apply><ci id="S2.SS3.p3.4.m4.1.1.1.1.1.3.cmml" xref="S2.SS3.p3.4.m4.1.1.1.1.1.3">𝑛</ci></apply><apply id="S2.SS3.p3.4.m4.2.2.2.2.2.cmml" xref="S2.SS3.p3.4.m4.2.2.2.2.2"><csymbol cd="ambiguous" id="S2.SS3.p3.4.m4.2.2.2.2.2.1.cmml" xref="S2.SS3.p3.4.m4.2.2.2.2.2">superscript</csymbol><apply id="S2.SS3.p3.4.m4.2.2.2.2.2.2.cmml" xref="S2.SS3.p3.4.m4.2.2.2.2.2"><csymbol cd="ambiguous" id="S2.SS3.p3.4.m4.2.2.2.2.2.2.1.cmml" xref="S2.SS3.p3.4.m4.2.2.2.2.2">subscript</csymbol><ci id="S2.SS3.p3.4.m4.2.2.2.2.2.2.2.cmml" xref="S2.SS3.p3.4.m4.2.2.2.2.2.2.2">𝐔</ci><apply id="S2.SS3.p3.4.m4.2.2.2.2.2.2.3.cmml" xref="S2.SS3.p3.4.m4.2.2.2.2.2.2.3"><plus id="S2.SS3.p3.4.m4.2.2.2.2.2.2.3.1.cmml" xref="S2.SS3.p3.4.m4.2.2.2.2.2.2.3.1"></plus><ci id="S2.SS3.p3.4.m4.2.2.2.2.2.2.3.2.cmml" xref="S2.SS3.p3.4.m4.2.2.2.2.2.2.3.2">𝑖</ci><cn id="S2.SS3.p3.4.m4.2.2.2.2.2.2.3.3.cmml" type="integer" xref="S2.SS3.p3.4.m4.2.2.2.2.2.2.3.3">1</cn></apply></apply><ci id="S2.SS3.p3.4.m4.2.2.2.2.2.3.cmml" xref="S2.SS3.p3.4.m4.2.2.2.2.2.3">𝑛</ci></apply></interval></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS3.p3.4.m4.2c">{\mathbf{A}\left(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)}</annotation><annotation encoding="application/x-llamapun" id="S2.SS3.p3.4.m4.2d">bold_A ( bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT )</annotation></semantics></math>, and <math alttext="{\alpha_{p}}" class="ltx_Math" display="inline" id="S2.SS3.p3.5.m5.1"><semantics id="S2.SS3.p3.5.m5.1a"><msub id="S2.SS3.p3.5.m5.1.1" xref="S2.SS3.p3.5.m5.1.1.cmml"><mi id="S2.SS3.p3.5.m5.1.1.2" xref="S2.SS3.p3.5.m5.1.1.2.cmml">α</mi><mi id="S2.SS3.p3.5.m5.1.1.3" xref="S2.SS3.p3.5.m5.1.1.3.cmml">p</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS3.p3.5.m5.1b"><apply id="S2.SS3.p3.5.m5.1.1.cmml" xref="S2.SS3.p3.5.m5.1.1"><csymbol cd="ambiguous" id="S2.SS3.p3.5.m5.1.1.1.cmml" xref="S2.SS3.p3.5.m5.1.1">subscript</csymbol><ci id="S2.SS3.p3.5.m5.1.1.2.cmml" xref="S2.SS3.p3.5.m5.1.1.2">𝛼</ci><ci id="S2.SS3.p3.5.m5.1.1.3.cmml" xref="S2.SS3.p3.5.m5.1.1.3">𝑝</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS3.p3.5.m5.1c">{\alpha_{p}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS3.p3.5.m5.1d">italic_α start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT</annotation></semantics></math> are the components of the inter-cell jump in the conserved variables <math alttext="{\mathbf{U}_{i+1}^{n}-\mathbf{U}_{i}^{n}}" class="ltx_Math" display="inline" id="S2.SS3.p3.6.m6.1"><semantics id="S2.SS3.p3.6.m6.1a"><mrow id="S2.SS3.p3.6.m6.1.1" xref="S2.SS3.p3.6.m6.1.1.cmml"><msubsup id="S2.SS3.p3.6.m6.1.1.2" xref="S2.SS3.p3.6.m6.1.1.2.cmml"><mi id="S2.SS3.p3.6.m6.1.1.2.2.2" xref="S2.SS3.p3.6.m6.1.1.2.2.2.cmml">𝐔</mi><mrow id="S2.SS3.p3.6.m6.1.1.2.2.3" xref="S2.SS3.p3.6.m6.1.1.2.2.3.cmml"><mi id="S2.SS3.p3.6.m6.1.1.2.2.3.2" xref="S2.SS3.p3.6.m6.1.1.2.2.3.2.cmml">i</mi><mo id="S2.SS3.p3.6.m6.1.1.2.2.3.1" xref="S2.SS3.p3.6.m6.1.1.2.2.3.1.cmml">+</mo><mn id="S2.SS3.p3.6.m6.1.1.2.2.3.3" xref="S2.SS3.p3.6.m6.1.1.2.2.3.3.cmml">1</mn></mrow><mi id="S2.SS3.p3.6.m6.1.1.2.3" xref="S2.SS3.p3.6.m6.1.1.2.3.cmml">n</mi></msubsup><mo id="S2.SS3.p3.6.m6.1.1.1" xref="S2.SS3.p3.6.m6.1.1.1.cmml">−</mo><msubsup id="S2.SS3.p3.6.m6.1.1.3" xref="S2.SS3.p3.6.m6.1.1.3.cmml"><mi id="S2.SS3.p3.6.m6.1.1.3.2.2" xref="S2.SS3.p3.6.m6.1.1.3.2.2.cmml">𝐔</mi><mi id="S2.SS3.p3.6.m6.1.1.3.2.3" xref="S2.SS3.p3.6.m6.1.1.3.2.3.cmml">i</mi><mi id="S2.SS3.p3.6.m6.1.1.3.3" xref="S2.SS3.p3.6.m6.1.1.3.3.cmml">n</mi></msubsup></mrow><annotation-xml encoding="MathML-Content" id="S2.SS3.p3.6.m6.1b"><apply id="S2.SS3.p3.6.m6.1.1.cmml" xref="S2.SS3.p3.6.m6.1.1"><minus id="S2.SS3.p3.6.m6.1.1.1.cmml" xref="S2.SS3.p3.6.m6.1.1.1"></minus><apply id="S2.SS3.p3.6.m6.1.1.2.cmml" xref="S2.SS3.p3.6.m6.1.1.2"><csymbol cd="ambiguous" id="S2.SS3.p3.6.m6.1.1.2.1.cmml" xref="S2.SS3.p3.6.m6.1.1.2">superscript</csymbol><apply id="S2.SS3.p3.6.m6.1.1.2.2.cmml" xref="S2.SS3.p3.6.m6.1.1.2"><csymbol cd="ambiguous" id="S2.SS3.p3.6.m6.1.1.2.2.1.cmml" xref="S2.SS3.p3.6.m6.1.1.2">subscript</csymbol><ci id="S2.SS3.p3.6.m6.1.1.2.2.2.cmml" xref="S2.SS3.p3.6.m6.1.1.2.2.2">𝐔</ci><apply id="S2.SS3.p3.6.m6.1.1.2.2.3.cmml" xref="S2.SS3.p3.6.m6.1.1.2.2.3"><plus id="S2.SS3.p3.6.m6.1.1.2.2.3.1.cmml" xref="S2.SS3.p3.6.m6.1.1.2.2.3.1"></plus><ci id="S2.SS3.p3.6.m6.1.1.2.2.3.2.cmml" xref="S2.SS3.p3.6.m6.1.1.2.2.3.2">𝑖</ci><cn id="S2.SS3.p3.6.m6.1.1.2.2.3.3.cmml" type="integer" xref="S2.SS3.p3.6.m6.1.1.2.2.3.3">1</cn></apply></apply><ci id="S2.SS3.p3.6.m6.1.1.2.3.cmml" xref="S2.SS3.p3.6.m6.1.1.2.3">𝑛</ci></apply><apply id="S2.SS3.p3.6.m6.1.1.3.cmml" xref="S2.SS3.p3.6.m6.1.1.3"><csymbol cd="ambiguous" id="S2.SS3.p3.6.m6.1.1.3.1.cmml" xref="S2.SS3.p3.6.m6.1.1.3">superscript</csymbol><apply id="S2.SS3.p3.6.m6.1.1.3.2.cmml" xref="S2.SS3.p3.6.m6.1.1.3"><csymbol cd="ambiguous" id="S2.SS3.p3.6.m6.1.1.3.2.1.cmml" xref="S2.SS3.p3.6.m6.1.1.3">subscript</csymbol><ci id="S2.SS3.p3.6.m6.1.1.3.2.2.cmml" xref="S2.SS3.p3.6.m6.1.1.3.2.2">𝐔</ci><ci id="S2.SS3.p3.6.m6.1.1.3.2.3.cmml" xref="S2.SS3.p3.6.m6.1.1.3.2.3">𝑖</ci></apply><ci id="S2.SS3.p3.6.m6.1.1.3.3.cmml" xref="S2.SS3.p3.6.m6.1.1.3.3">𝑛</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS3.p3.6.m6.1c">{\mathbf{U}_{i+1}^{n}-\mathbf{U}_{i}^{n}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS3.p3.6.m6.1d">bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT - bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT</annotation></semantics></math>, as represented in the <math alttext="{\mathbf{r}_{p}}" class="ltx_Math" display="inline" id="S2.SS3.p3.7.m7.1"><semantics id="S2.SS3.p3.7.m7.1a"><msub id="S2.SS3.p3.7.m7.1.1" xref="S2.SS3.p3.7.m7.1.1.cmml"><mi id="S2.SS3.p3.7.m7.1.1.2" xref="S2.SS3.p3.7.m7.1.1.2.cmml">𝐫</mi><mi id="S2.SS3.p3.7.m7.1.1.3" xref="S2.SS3.p3.7.m7.1.1.3.cmml">p</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS3.p3.7.m7.1b"><apply id="S2.SS3.p3.7.m7.1.1.cmml" xref="S2.SS3.p3.7.m7.1.1"><csymbol cd="ambiguous" id="S2.SS3.p3.7.m7.1.1.1.cmml" xref="S2.SS3.p3.7.m7.1.1">subscript</csymbol><ci id="S2.SS3.p3.7.m7.1.1.2.cmml" xref="S2.SS3.p3.7.m7.1.1.2">𝐫</ci><ci id="S2.SS3.p3.7.m7.1.1.3.cmml" xref="S2.SS3.p3.7.m7.1.1.3">𝑝</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS3.p3.7.m7.1c">{\mathbf{r}_{p}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS3.p3.7.m7.1d">bold_r start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT</annotation></semantics></math> eigenbasis:</p> </div> <div class="ltx_para" id="S2.SS3.p4"> <table class="ltx_equation ltx_eqn_table" id="S2.E16"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(16)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{U}_{i+1}^{n}-\mathbf{U}_{i}^{n}=\sum_{p}\alpha_{p}\mathbf{r}_{p}." class="ltx_Math" display="block" id="S2.E16.m1.1"><semantics id="S2.E16.m1.1a"><mrow id="S2.E16.m1.1.1.1" xref="S2.E16.m1.1.1.1.1.cmml"><mrow id="S2.E16.m1.1.1.1.1" xref="S2.E16.m1.1.1.1.1.cmml"><mrow id="S2.E16.m1.1.1.1.1.2" xref="S2.E16.m1.1.1.1.1.2.cmml"><msubsup id="S2.E16.m1.1.1.1.1.2.2" xref="S2.E16.m1.1.1.1.1.2.2.cmml"><mi id="S2.E16.m1.1.1.1.1.2.2.2.2" xref="S2.E16.m1.1.1.1.1.2.2.2.2.cmml">𝐔</mi><mrow id="S2.E16.m1.1.1.1.1.2.2.2.3" xref="S2.E16.m1.1.1.1.1.2.2.2.3.cmml"><mi id="S2.E16.m1.1.1.1.1.2.2.2.3.2" xref="S2.E16.m1.1.1.1.1.2.2.2.3.2.cmml">i</mi><mo id="S2.E16.m1.1.1.1.1.2.2.2.3.1" xref="S2.E16.m1.1.1.1.1.2.2.2.3.1.cmml">+</mo><mn id="S2.E16.m1.1.1.1.1.2.2.2.3.3" xref="S2.E16.m1.1.1.1.1.2.2.2.3.3.cmml">1</mn></mrow><mi id="S2.E16.m1.1.1.1.1.2.2.3" xref="S2.E16.m1.1.1.1.1.2.2.3.cmml">n</mi></msubsup><mo id="S2.E16.m1.1.1.1.1.2.1" xref="S2.E16.m1.1.1.1.1.2.1.cmml">−</mo><msubsup id="S2.E16.m1.1.1.1.1.2.3" xref="S2.E16.m1.1.1.1.1.2.3.cmml"><mi id="S2.E16.m1.1.1.1.1.2.3.2.2" xref="S2.E16.m1.1.1.1.1.2.3.2.2.cmml">𝐔</mi><mi id="S2.E16.m1.1.1.1.1.2.3.2.3" xref="S2.E16.m1.1.1.1.1.2.3.2.3.cmml">i</mi><mi id="S2.E16.m1.1.1.1.1.2.3.3" xref="S2.E16.m1.1.1.1.1.2.3.3.cmml">n</mi></msubsup></mrow><mo id="S2.E16.m1.1.1.1.1.1" rspace="0.111em" xref="S2.E16.m1.1.1.1.1.1.cmml">=</mo><mrow id="S2.E16.m1.1.1.1.1.3" xref="S2.E16.m1.1.1.1.1.3.cmml"><munder id="S2.E16.m1.1.1.1.1.3.1" xref="S2.E16.m1.1.1.1.1.3.1.cmml"><mo id="S2.E16.m1.1.1.1.1.3.1.2" movablelimits="false" xref="S2.E16.m1.1.1.1.1.3.1.2.cmml">∑</mo><mi id="S2.E16.m1.1.1.1.1.3.1.3" xref="S2.E16.m1.1.1.1.1.3.1.3.cmml">p</mi></munder><mrow id="S2.E16.m1.1.1.1.1.3.2" xref="S2.E16.m1.1.1.1.1.3.2.cmml"><msub id="S2.E16.m1.1.1.1.1.3.2.2" xref="S2.E16.m1.1.1.1.1.3.2.2.cmml"><mi id="S2.E16.m1.1.1.1.1.3.2.2.2" xref="S2.E16.m1.1.1.1.1.3.2.2.2.cmml">α</mi><mi id="S2.E16.m1.1.1.1.1.3.2.2.3" xref="S2.E16.m1.1.1.1.1.3.2.2.3.cmml">p</mi></msub><mo id="S2.E16.m1.1.1.1.1.3.2.1" xref="S2.E16.m1.1.1.1.1.3.2.1.cmml"></mo><msub id="S2.E16.m1.1.1.1.1.3.2.3" xref="S2.E16.m1.1.1.1.1.3.2.3.cmml"><mi id="S2.E16.m1.1.1.1.1.3.2.3.2" xref="S2.E16.m1.1.1.1.1.3.2.3.2.cmml">𝐫</mi><mi id="S2.E16.m1.1.1.1.1.3.2.3.3" xref="S2.E16.m1.1.1.1.1.3.2.3.3.cmml">p</mi></msub></mrow></mrow></mrow><mo id="S2.E16.m1.1.1.1.2" lspace="0em" xref="S2.E16.m1.1.1.1.1.cmml">.</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E16.m1.1b"><apply id="S2.E16.m1.1.1.1.1.cmml" xref="S2.E16.m1.1.1.1"><eq id="S2.E16.m1.1.1.1.1.1.cmml" xref="S2.E16.m1.1.1.1.1.1"></eq><apply id="S2.E16.m1.1.1.1.1.2.cmml" xref="S2.E16.m1.1.1.1.1.2"><minus id="S2.E16.m1.1.1.1.1.2.1.cmml" xref="S2.E16.m1.1.1.1.1.2.1"></minus><apply id="S2.E16.m1.1.1.1.1.2.2.cmml" xref="S2.E16.m1.1.1.1.1.2.2"><csymbol cd="ambiguous" id="S2.E16.m1.1.1.1.1.2.2.1.cmml" xref="S2.E16.m1.1.1.1.1.2.2">superscript</csymbol><apply id="S2.E16.m1.1.1.1.1.2.2.2.cmml" xref="S2.E16.m1.1.1.1.1.2.2"><csymbol cd="ambiguous" id="S2.E16.m1.1.1.1.1.2.2.2.1.cmml" xref="S2.E16.m1.1.1.1.1.2.2">subscript</csymbol><ci id="S2.E16.m1.1.1.1.1.2.2.2.2.cmml" xref="S2.E16.m1.1.1.1.1.2.2.2.2">𝐔</ci><apply id="S2.E16.m1.1.1.1.1.2.2.2.3.cmml" xref="S2.E16.m1.1.1.1.1.2.2.2.3"><plus id="S2.E16.m1.1.1.1.1.2.2.2.3.1.cmml" xref="S2.E16.m1.1.1.1.1.2.2.2.3.1"></plus><ci id="S2.E16.m1.1.1.1.1.2.2.2.3.2.cmml" xref="S2.E16.m1.1.1.1.1.2.2.2.3.2">𝑖</ci><cn id="S2.E16.m1.1.1.1.1.2.2.2.3.3.cmml" type="integer" xref="S2.E16.m1.1.1.1.1.2.2.2.3.3">1</cn></apply></apply><ci id="S2.E16.m1.1.1.1.1.2.2.3.cmml" xref="S2.E16.m1.1.1.1.1.2.2.3">𝑛</ci></apply><apply id="S2.E16.m1.1.1.1.1.2.3.cmml" xref="S2.E16.m1.1.1.1.1.2.3"><csymbol cd="ambiguous" id="S2.E16.m1.1.1.1.1.2.3.1.cmml" xref="S2.E16.m1.1.1.1.1.2.3">superscript</csymbol><apply id="S2.E16.m1.1.1.1.1.2.3.2.cmml" xref="S2.E16.m1.1.1.1.1.2.3"><csymbol cd="ambiguous" id="S2.E16.m1.1.1.1.1.2.3.2.1.cmml" xref="S2.E16.m1.1.1.1.1.2.3">subscript</csymbol><ci id="S2.E16.m1.1.1.1.1.2.3.2.2.cmml" xref="S2.E16.m1.1.1.1.1.2.3.2.2">𝐔</ci><ci id="S2.E16.m1.1.1.1.1.2.3.2.3.cmml" xref="S2.E16.m1.1.1.1.1.2.3.2.3">𝑖</ci></apply><ci id="S2.E16.m1.1.1.1.1.2.3.3.cmml" xref="S2.E16.m1.1.1.1.1.2.3.3">𝑛</ci></apply></apply><apply id="S2.E16.m1.1.1.1.1.3.cmml" xref="S2.E16.m1.1.1.1.1.3"><apply id="S2.E16.m1.1.1.1.1.3.1.cmml" xref="S2.E16.m1.1.1.1.1.3.1"><csymbol cd="ambiguous" id="S2.E16.m1.1.1.1.1.3.1.1.cmml" xref="S2.E16.m1.1.1.1.1.3.1">subscript</csymbol><sum id="S2.E16.m1.1.1.1.1.3.1.2.cmml" xref="S2.E16.m1.1.1.1.1.3.1.2"></sum><ci id="S2.E16.m1.1.1.1.1.3.1.3.cmml" xref="S2.E16.m1.1.1.1.1.3.1.3">𝑝</ci></apply><apply id="S2.E16.m1.1.1.1.1.3.2.cmml" xref="S2.E16.m1.1.1.1.1.3.2"><times id="S2.E16.m1.1.1.1.1.3.2.1.cmml" xref="S2.E16.m1.1.1.1.1.3.2.1"></times><apply id="S2.E16.m1.1.1.1.1.3.2.2.cmml" xref="S2.E16.m1.1.1.1.1.3.2.2"><csymbol cd="ambiguous" id="S2.E16.m1.1.1.1.1.3.2.2.1.cmml" xref="S2.E16.m1.1.1.1.1.3.2.2">subscript</csymbol><ci id="S2.E16.m1.1.1.1.1.3.2.2.2.cmml" xref="S2.E16.m1.1.1.1.1.3.2.2.2">𝛼</ci><ci id="S2.E16.m1.1.1.1.1.3.2.2.3.cmml" xref="S2.E16.m1.1.1.1.1.3.2.2.3">𝑝</ci></apply><apply id="S2.E16.m1.1.1.1.1.3.2.3.cmml" xref="S2.E16.m1.1.1.1.1.3.2.3"><csymbol cd="ambiguous" id="S2.E16.m1.1.1.1.1.3.2.3.1.cmml" xref="S2.E16.m1.1.1.1.1.3.2.3">subscript</csymbol><ci id="S2.E16.m1.1.1.1.1.3.2.3.2.cmml" xref="S2.E16.m1.1.1.1.1.3.2.3.2">𝐫</ci><ci id="S2.E16.m1.1.1.1.1.3.2.3.3.cmml" xref="S2.E16.m1.1.1.1.1.3.2.3.3">𝑝</ci></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E16.m1.1c">\mathbf{U}_{i+1}^{n}-\mathbf{U}_{i}^{n}=\sum_{p}\alpha_{p}\mathbf{r}_{p}.</annotation><annotation encoding="application/x-llamapun" id="S2.E16.m1.1d">bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT - bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = ∑ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_α start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT bold_r start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT .</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS3.p4.1">A finite volume solver based on a Roe inter-cell flux will satisfy the following properties<cite class="ltx_cite ltx_citemacro_citep">(Wesseling, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib38" title="">2001</a>)</cite>:</p> </div> <div class="ltx_theorem ltx_theorem_theorem" id="S2.Thmtheorem5"> <h6 class="ltx_title ltx_runin ltx_font_smallcaps ltx_title_theorem">Theorem 2.5.</h6> <div class="ltx_para" id="S2.Thmtheorem5.p1"> <p class="ltx_p" id="S2.Thmtheorem5.p1.1"><span class="ltx_text ltx_font_italic" id="S2.Thmtheorem5.p1.1.1">A Roe solver preserves hyperbolicity for an arbitrary hyperbolic PDE system if the Roe matrix <math alttext="{\mathbf{A}\left(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)}" class="ltx_Math" display="inline" id="S2.Thmtheorem5.p1.1.1.m1.2"><semantics id="S2.Thmtheorem5.p1.1.1.m1.2a"><mrow id="S2.Thmtheorem5.p1.1.1.m1.2.2" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.cmml"><mi id="S2.Thmtheorem5.p1.1.1.m1.2.2.4" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.4.cmml">𝐀</mi><mo id="S2.Thmtheorem5.p1.1.1.m1.2.2.3" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.3.cmml"></mo><mrow id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.3.cmml"><mo id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.3" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.3.cmml">(</mo><msubsup id="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1" xref="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1.cmml"><mi id="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1.2.2" xref="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1.2.2.cmml">𝐔</mi><mi id="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1.2.3" xref="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1.2.3.cmml">i</mi><mi id="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1.3" xref="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1.3.cmml">n</mi></msubsup><mo id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.4" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.3.cmml">,</mo><msubsup id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.cmml"><mi id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.2" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.2.cmml">𝐔</mi><mrow id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.3" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.3.cmml"><mi id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.3.2" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.3.2.cmml">i</mi><mo id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.3.1" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.3.1.cmml">+</mo><mn id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.3.3" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.3.3.cmml">1</mn></mrow><mi id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.3" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.3.cmml">n</mi></msubsup><mo id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.5" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.3.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem5.p1.1.1.m1.2b"><apply id="S2.Thmtheorem5.p1.1.1.m1.2.2.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.2.2"><times id="S2.Thmtheorem5.p1.1.1.m1.2.2.3.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.3"></times><ci id="S2.Thmtheorem5.p1.1.1.m1.2.2.4.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.4">𝐀</ci><interval closure="open" id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.3.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2"><apply id="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1.1.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1">superscript</csymbol><apply id="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1.2.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1.2.1.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1">subscript</csymbol><ci id="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1.2.2.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1.2.2">𝐔</ci><ci id="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1.2.3.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1.2.3">𝑖</ci></apply><ci id="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1.3.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.1.1.1.1.1.3">𝑛</ci></apply><apply id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2"><csymbol cd="ambiguous" id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.1.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2">superscript</csymbol><apply id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2"><csymbol cd="ambiguous" id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.1.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2">subscript</csymbol><ci id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.2.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.2">𝐔</ci><apply id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.3.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.3"><plus id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.3.1.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.3.1"></plus><ci id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.3.2.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.3.2">𝑖</ci><cn id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.3.3.cmml" type="integer" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.2.3.3">1</cn></apply></apply><ci id="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.3.cmml" xref="S2.Thmtheorem5.p1.1.1.m1.2.2.2.2.2.3">𝑛</ci></apply></interval></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem5.p1.1.1.m1.2c">{\mathbf{A}\left(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem5.p1.1.1.m1.2d">bold_A ( bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT )</annotation></semantics></math> is diagonalizable, with purely real eigenvalues.</span></p> </div> </div> <div class="ltx_theorem ltx_theorem_theorem" id="S2.Thmtheorem6"> <h6 class="ltx_title ltx_runin ltx_font_smallcaps ltx_title_theorem">Theorem 2.6.</h6> <div class="ltx_para" id="S2.Thmtheorem6.p1"> <p class="ltx_p" id="S2.Thmtheorem6.p1.1"><span class="ltx_text ltx_font_italic" id="S2.Thmtheorem6.p1.1.1">A Roe solver is flux-conservative (i.e. exactly conserves the components of the conserved variable vector <math alttext="{\mathbf{U}}" class="ltx_Math" display="inline" id="S2.Thmtheorem6.p1.1.1.m1.1"><semantics id="S2.Thmtheorem6.p1.1.1.m1.1a"><mi id="S2.Thmtheorem6.p1.1.1.m1.1.1" xref="S2.Thmtheorem6.p1.1.1.m1.1.1.cmml">𝐔</mi><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem6.p1.1.1.m1.1b"><ci id="S2.Thmtheorem6.p1.1.1.m1.1.1.cmml" xref="S2.Thmtheorem6.p1.1.1.m1.1.1">𝐔</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem6.p1.1.1.m1.1c">{\mathbf{U}}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem6.p1.1.1.m1.1d">bold_U</annotation></semantics></math>) if it satisfies the flux jump condition:</span></p> </div> <div class="ltx_para" id="S2.Thmtheorem6.p2"> <table class="ltx_equation ltx_eqn_table" id="S2.E17"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(17)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{F}\left(\mathbf{U}_{i+1}^{n}-\mathbf{U}_{i}^{n}\right)=\mathbf{A}\left% (\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)\left[\mathbf{U}_{i+1}^{n}-% \mathbf{U}_{i}^{n}\right]." class="ltx_Math" display="block" id="S2.E17.m1.1"><semantics id="S2.E17.m1.1a"><mrow id="S2.E17.m1.1.1.1" xref="S2.E17.m1.1.1.1.1.cmml"><mrow id="S2.E17.m1.1.1.1.1" xref="S2.E17.m1.1.1.1.1.cmml"><mrow id="S2.E17.m1.1.1.1.1.1" xref="S2.E17.m1.1.1.1.1.1.cmml"><mi id="S2.E17.m1.1.1.1.1.1.3" xref="S2.E17.m1.1.1.1.1.1.3.cmml">𝐅</mi><mo id="S2.E17.m1.1.1.1.1.1.2" xref="S2.E17.m1.1.1.1.1.1.2.cmml"></mo><mrow id="S2.E17.m1.1.1.1.1.1.1.1" xref="S2.E17.m1.1.1.1.1.1.1.1.1.cmml"><mo id="S2.E17.m1.1.1.1.1.1.1.1.2" xref="S2.E17.m1.1.1.1.1.1.1.1.1.cmml">(</mo><mrow id="S2.E17.m1.1.1.1.1.1.1.1.1" xref="S2.E17.m1.1.1.1.1.1.1.1.1.cmml"><msubsup id="S2.E17.m1.1.1.1.1.1.1.1.1.2" xref="S2.E17.m1.1.1.1.1.1.1.1.1.2.cmml"><mi id="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.2" xref="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.2.cmml">𝐔</mi><mrow id="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.3" xref="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.3.cmml"><mi id="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.3.2" xref="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.3.2.cmml">i</mi><mo id="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.3.1" xref="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.3.1.cmml">+</mo><mn id="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.3.3" xref="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.3.3.cmml">1</mn></mrow><mi id="S2.E17.m1.1.1.1.1.1.1.1.1.2.3" xref="S2.E17.m1.1.1.1.1.1.1.1.1.2.3.cmml">n</mi></msubsup><mo id="S2.E17.m1.1.1.1.1.1.1.1.1.1" xref="S2.E17.m1.1.1.1.1.1.1.1.1.1.cmml">−</mo><msubsup id="S2.E17.m1.1.1.1.1.1.1.1.1.3" xref="S2.E17.m1.1.1.1.1.1.1.1.1.3.cmml"><mi id="S2.E17.m1.1.1.1.1.1.1.1.1.3.2.2" xref="S2.E17.m1.1.1.1.1.1.1.1.1.3.2.2.cmml">𝐔</mi><mi id="S2.E17.m1.1.1.1.1.1.1.1.1.3.2.3" xref="S2.E17.m1.1.1.1.1.1.1.1.1.3.2.3.cmml">i</mi><mi id="S2.E17.m1.1.1.1.1.1.1.1.1.3.3" xref="S2.E17.m1.1.1.1.1.1.1.1.1.3.3.cmml">n</mi></msubsup></mrow><mo id="S2.E17.m1.1.1.1.1.1.1.1.3" xref="S2.E17.m1.1.1.1.1.1.1.1.1.cmml">)</mo></mrow></mrow><mo id="S2.E17.m1.1.1.1.1.5" xref="S2.E17.m1.1.1.1.1.5.cmml">=</mo><mrow id="S2.E17.m1.1.1.1.1.4" xref="S2.E17.m1.1.1.1.1.4.cmml"><mi id="S2.E17.m1.1.1.1.1.4.5" xref="S2.E17.m1.1.1.1.1.4.5.cmml">𝐀</mi><mo id="S2.E17.m1.1.1.1.1.4.4" xref="S2.E17.m1.1.1.1.1.4.4.cmml"></mo><mrow id="S2.E17.m1.1.1.1.1.3.2.2" xref="S2.E17.m1.1.1.1.1.3.2.3.cmml"><mo id="S2.E17.m1.1.1.1.1.3.2.2.3" xref="S2.E17.m1.1.1.1.1.3.2.3.cmml">(</mo><msubsup id="S2.E17.m1.1.1.1.1.2.1.1.1" xref="S2.E17.m1.1.1.1.1.2.1.1.1.cmml"><mi id="S2.E17.m1.1.1.1.1.2.1.1.1.2.2" xref="S2.E17.m1.1.1.1.1.2.1.1.1.2.2.cmml">𝐔</mi><mi id="S2.E17.m1.1.1.1.1.2.1.1.1.2.3" xref="S2.E17.m1.1.1.1.1.2.1.1.1.2.3.cmml">i</mi><mi id="S2.E17.m1.1.1.1.1.2.1.1.1.3" xref="S2.E17.m1.1.1.1.1.2.1.1.1.3.cmml">n</mi></msubsup><mo id="S2.E17.m1.1.1.1.1.3.2.2.4" xref="S2.E17.m1.1.1.1.1.3.2.3.cmml">,</mo><msubsup id="S2.E17.m1.1.1.1.1.3.2.2.2" xref="S2.E17.m1.1.1.1.1.3.2.2.2.cmml"><mi id="S2.E17.m1.1.1.1.1.3.2.2.2.2.2" xref="S2.E17.m1.1.1.1.1.3.2.2.2.2.2.cmml">𝐔</mi><mrow id="S2.E17.m1.1.1.1.1.3.2.2.2.2.3" xref="S2.E17.m1.1.1.1.1.3.2.2.2.2.3.cmml"><mi id="S2.E17.m1.1.1.1.1.3.2.2.2.2.3.2" xref="S2.E17.m1.1.1.1.1.3.2.2.2.2.3.2.cmml">i</mi><mo id="S2.E17.m1.1.1.1.1.3.2.2.2.2.3.1" xref="S2.E17.m1.1.1.1.1.3.2.2.2.2.3.1.cmml">+</mo><mn id="S2.E17.m1.1.1.1.1.3.2.2.2.2.3.3" xref="S2.E17.m1.1.1.1.1.3.2.2.2.2.3.3.cmml">1</mn></mrow><mi id="S2.E17.m1.1.1.1.1.3.2.2.2.3" xref="S2.E17.m1.1.1.1.1.3.2.2.2.3.cmml">n</mi></msubsup><mo id="S2.E17.m1.1.1.1.1.3.2.2.5" xref="S2.E17.m1.1.1.1.1.3.2.3.cmml">)</mo></mrow><mo id="S2.E17.m1.1.1.1.1.4.4a" xref="S2.E17.m1.1.1.1.1.4.4.cmml"></mo><mrow id="S2.E17.m1.1.1.1.1.4.3.1" xref="S2.E17.m1.1.1.1.1.4.3.2.cmml"><mo id="S2.E17.m1.1.1.1.1.4.3.1.2" xref="S2.E17.m1.1.1.1.1.4.3.2.1.cmml">[</mo><mrow id="S2.E17.m1.1.1.1.1.4.3.1.1" xref="S2.E17.m1.1.1.1.1.4.3.1.1.cmml"><msubsup id="S2.E17.m1.1.1.1.1.4.3.1.1.2" xref="S2.E17.m1.1.1.1.1.4.3.1.1.2.cmml"><mi id="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.2" xref="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.2.cmml">𝐔</mi><mrow id="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.3" xref="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.3.cmml"><mi id="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.3.2" xref="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.3.2.cmml">i</mi><mo id="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.3.1" xref="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.3.1.cmml">+</mo><mn id="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.3.3" xref="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.3.3.cmml">1</mn></mrow><mi id="S2.E17.m1.1.1.1.1.4.3.1.1.2.3" xref="S2.E17.m1.1.1.1.1.4.3.1.1.2.3.cmml">n</mi></msubsup><mo id="S2.E17.m1.1.1.1.1.4.3.1.1.1" xref="S2.E17.m1.1.1.1.1.4.3.1.1.1.cmml">−</mo><msubsup id="S2.E17.m1.1.1.1.1.4.3.1.1.3" xref="S2.E17.m1.1.1.1.1.4.3.1.1.3.cmml"><mi id="S2.E17.m1.1.1.1.1.4.3.1.1.3.2.2" xref="S2.E17.m1.1.1.1.1.4.3.1.1.3.2.2.cmml">𝐔</mi><mi id="S2.E17.m1.1.1.1.1.4.3.1.1.3.2.3" xref="S2.E17.m1.1.1.1.1.4.3.1.1.3.2.3.cmml">i</mi><mi id="S2.E17.m1.1.1.1.1.4.3.1.1.3.3" xref="S2.E17.m1.1.1.1.1.4.3.1.1.3.3.cmml">n</mi></msubsup></mrow><mo id="S2.E17.m1.1.1.1.1.4.3.1.3" xref="S2.E17.m1.1.1.1.1.4.3.2.1.cmml">]</mo></mrow></mrow></mrow><mo id="S2.E17.m1.1.1.1.2" lspace="0em" xref="S2.E17.m1.1.1.1.1.cmml">.</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E17.m1.1b"><apply id="S2.E17.m1.1.1.1.1.cmml" xref="S2.E17.m1.1.1.1"><eq id="S2.E17.m1.1.1.1.1.5.cmml" xref="S2.E17.m1.1.1.1.1.5"></eq><apply id="S2.E17.m1.1.1.1.1.1.cmml" xref="S2.E17.m1.1.1.1.1.1"><times id="S2.E17.m1.1.1.1.1.1.2.cmml" xref="S2.E17.m1.1.1.1.1.1.2"></times><ci id="S2.E17.m1.1.1.1.1.1.3.cmml" xref="S2.E17.m1.1.1.1.1.1.3">𝐅</ci><apply id="S2.E17.m1.1.1.1.1.1.1.1.1.cmml" xref="S2.E17.m1.1.1.1.1.1.1.1"><minus id="S2.E17.m1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E17.m1.1.1.1.1.1.1.1.1.1"></minus><apply id="S2.E17.m1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E17.m1.1.1.1.1.1.1.1.1.2"><csymbol cd="ambiguous" id="S2.E17.m1.1.1.1.1.1.1.1.1.2.1.cmml" xref="S2.E17.m1.1.1.1.1.1.1.1.1.2">superscript</csymbol><apply id="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.cmml" xref="S2.E17.m1.1.1.1.1.1.1.1.1.2"><csymbol cd="ambiguous" id="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.1.cmml" xref="S2.E17.m1.1.1.1.1.1.1.1.1.2">subscript</csymbol><ci id="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.2.cmml" xref="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.2">𝐔</ci><apply id="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.3.cmml" xref="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.3"><plus id="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.3.1.cmml" xref="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.3.1"></plus><ci id="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.3.2.cmml" xref="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.3.2">𝑖</ci><cn id="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.3.3.cmml" type="integer" xref="S2.E17.m1.1.1.1.1.1.1.1.1.2.2.3.3">1</cn></apply></apply><ci id="S2.E17.m1.1.1.1.1.1.1.1.1.2.3.cmml" xref="S2.E17.m1.1.1.1.1.1.1.1.1.2.3">𝑛</ci></apply><apply id="S2.E17.m1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E17.m1.1.1.1.1.1.1.1.1.3"><csymbol cd="ambiguous" id="S2.E17.m1.1.1.1.1.1.1.1.1.3.1.cmml" xref="S2.E17.m1.1.1.1.1.1.1.1.1.3">superscript</csymbol><apply id="S2.E17.m1.1.1.1.1.1.1.1.1.3.2.cmml" xref="S2.E17.m1.1.1.1.1.1.1.1.1.3"><csymbol cd="ambiguous" id="S2.E17.m1.1.1.1.1.1.1.1.1.3.2.1.cmml" xref="S2.E17.m1.1.1.1.1.1.1.1.1.3">subscript</csymbol><ci id="S2.E17.m1.1.1.1.1.1.1.1.1.3.2.2.cmml" xref="S2.E17.m1.1.1.1.1.1.1.1.1.3.2.2">𝐔</ci><ci id="S2.E17.m1.1.1.1.1.1.1.1.1.3.2.3.cmml" xref="S2.E17.m1.1.1.1.1.1.1.1.1.3.2.3">𝑖</ci></apply><ci id="S2.E17.m1.1.1.1.1.1.1.1.1.3.3.cmml" xref="S2.E17.m1.1.1.1.1.1.1.1.1.3.3">𝑛</ci></apply></apply></apply><apply id="S2.E17.m1.1.1.1.1.4.cmml" xref="S2.E17.m1.1.1.1.1.4"><times id="S2.E17.m1.1.1.1.1.4.4.cmml" xref="S2.E17.m1.1.1.1.1.4.4"></times><ci id="S2.E17.m1.1.1.1.1.4.5.cmml" xref="S2.E17.m1.1.1.1.1.4.5">𝐀</ci><interval closure="open" id="S2.E17.m1.1.1.1.1.3.2.3.cmml" xref="S2.E17.m1.1.1.1.1.3.2.2"><apply id="S2.E17.m1.1.1.1.1.2.1.1.1.cmml" xref="S2.E17.m1.1.1.1.1.2.1.1.1"><csymbol cd="ambiguous" id="S2.E17.m1.1.1.1.1.2.1.1.1.1.cmml" xref="S2.E17.m1.1.1.1.1.2.1.1.1">superscript</csymbol><apply id="S2.E17.m1.1.1.1.1.2.1.1.1.2.cmml" xref="S2.E17.m1.1.1.1.1.2.1.1.1"><csymbol cd="ambiguous" id="S2.E17.m1.1.1.1.1.2.1.1.1.2.1.cmml" xref="S2.E17.m1.1.1.1.1.2.1.1.1">subscript</csymbol><ci id="S2.E17.m1.1.1.1.1.2.1.1.1.2.2.cmml" xref="S2.E17.m1.1.1.1.1.2.1.1.1.2.2">𝐔</ci><ci id="S2.E17.m1.1.1.1.1.2.1.1.1.2.3.cmml" xref="S2.E17.m1.1.1.1.1.2.1.1.1.2.3">𝑖</ci></apply><ci id="S2.E17.m1.1.1.1.1.2.1.1.1.3.cmml" xref="S2.E17.m1.1.1.1.1.2.1.1.1.3">𝑛</ci></apply><apply id="S2.E17.m1.1.1.1.1.3.2.2.2.cmml" xref="S2.E17.m1.1.1.1.1.3.2.2.2"><csymbol cd="ambiguous" id="S2.E17.m1.1.1.1.1.3.2.2.2.1.cmml" xref="S2.E17.m1.1.1.1.1.3.2.2.2">superscript</csymbol><apply id="S2.E17.m1.1.1.1.1.3.2.2.2.2.cmml" xref="S2.E17.m1.1.1.1.1.3.2.2.2"><csymbol cd="ambiguous" id="S2.E17.m1.1.1.1.1.3.2.2.2.2.1.cmml" xref="S2.E17.m1.1.1.1.1.3.2.2.2">subscript</csymbol><ci id="S2.E17.m1.1.1.1.1.3.2.2.2.2.2.cmml" xref="S2.E17.m1.1.1.1.1.3.2.2.2.2.2">𝐔</ci><apply id="S2.E17.m1.1.1.1.1.3.2.2.2.2.3.cmml" xref="S2.E17.m1.1.1.1.1.3.2.2.2.2.3"><plus id="S2.E17.m1.1.1.1.1.3.2.2.2.2.3.1.cmml" xref="S2.E17.m1.1.1.1.1.3.2.2.2.2.3.1"></plus><ci id="S2.E17.m1.1.1.1.1.3.2.2.2.2.3.2.cmml" xref="S2.E17.m1.1.1.1.1.3.2.2.2.2.3.2">𝑖</ci><cn id="S2.E17.m1.1.1.1.1.3.2.2.2.2.3.3.cmml" type="integer" xref="S2.E17.m1.1.1.1.1.3.2.2.2.2.3.3">1</cn></apply></apply><ci id="S2.E17.m1.1.1.1.1.3.2.2.2.3.cmml" xref="S2.E17.m1.1.1.1.1.3.2.2.2.3">𝑛</ci></apply></interval><apply id="S2.E17.m1.1.1.1.1.4.3.2.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1"><csymbol cd="latexml" id="S2.E17.m1.1.1.1.1.4.3.2.1.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.2">delimited-[]</csymbol><apply id="S2.E17.m1.1.1.1.1.4.3.1.1.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.1"><minus id="S2.E17.m1.1.1.1.1.4.3.1.1.1.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.1.1"></minus><apply id="S2.E17.m1.1.1.1.1.4.3.1.1.2.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.1.2"><csymbol cd="ambiguous" id="S2.E17.m1.1.1.1.1.4.3.1.1.2.1.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.1.2">superscript</csymbol><apply id="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.1.2"><csymbol cd="ambiguous" id="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.1.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.1.2">subscript</csymbol><ci id="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.2.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.2">𝐔</ci><apply id="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.3.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.3"><plus id="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.3.1.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.3.1"></plus><ci id="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.3.2.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.3.2">𝑖</ci><cn id="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.3.3.cmml" type="integer" xref="S2.E17.m1.1.1.1.1.4.3.1.1.2.2.3.3">1</cn></apply></apply><ci id="S2.E17.m1.1.1.1.1.4.3.1.1.2.3.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.1.2.3">𝑛</ci></apply><apply id="S2.E17.m1.1.1.1.1.4.3.1.1.3.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.1.3"><csymbol cd="ambiguous" id="S2.E17.m1.1.1.1.1.4.3.1.1.3.1.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.1.3">superscript</csymbol><apply id="S2.E17.m1.1.1.1.1.4.3.1.1.3.2.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.1.3"><csymbol cd="ambiguous" id="S2.E17.m1.1.1.1.1.4.3.1.1.3.2.1.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.1.3">subscript</csymbol><ci id="S2.E17.m1.1.1.1.1.4.3.1.1.3.2.2.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.1.3.2.2">𝐔</ci><ci id="S2.E17.m1.1.1.1.1.4.3.1.1.3.2.3.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.1.3.2.3">𝑖</ci></apply><ci id="S2.E17.m1.1.1.1.1.4.3.1.1.3.3.cmml" xref="S2.E17.m1.1.1.1.1.4.3.1.1.3.3">𝑛</ci></apply></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E17.m1.1c">\mathbf{F}\left(\mathbf{U}_{i+1}^{n}-\mathbf{U}_{i}^{n}\right)=\mathbf{A}\left% (\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)\left[\mathbf{U}_{i+1}^{n}-% \mathbf{U}_{i}^{n}\right].</annotation><annotation encoding="application/x-llamapun" id="S2.E17.m1.1d">bold_F ( bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT - bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) = bold_A ( bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) [ bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT - bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ] .</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> </div> </div> <div class="ltx_para" id="S2.SS3.p5"> <p class="ltx_p" id="S2.SS3.p5.3">Note that Theorem <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.Thmtheorem5" title="Theorem 2.5. ‣ 2.3. The Roe Flux ‣ 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2.5</span></a> regarding Roe solvers is essentially identical in content to Theorem <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.Thmtheorem1" title="Theorem 2.1. ‣ 2.2. The Lax-Friedrichs Flux ‣ 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2.1</span></a> regarding Lax-Friedrichs solvers, but with the exact flux Jacobian <math alttext="{\mathbf{J}_{\mathbf{F}}}" class="ltx_Math" display="inline" id="S2.SS3.p5.1.m1.1"><semantics id="S2.SS3.p5.1.m1.1a"><msub id="S2.SS3.p5.1.m1.1.1" xref="S2.SS3.p5.1.m1.1.1.cmml"><mi id="S2.SS3.p5.1.m1.1.1.2" xref="S2.SS3.p5.1.m1.1.1.2.cmml">𝐉</mi><mi id="S2.SS3.p5.1.m1.1.1.3" xref="S2.SS3.p5.1.m1.1.1.3.cmml">𝐅</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS3.p5.1.m1.1b"><apply id="S2.SS3.p5.1.m1.1.1.cmml" xref="S2.SS3.p5.1.m1.1.1"><csymbol cd="ambiguous" id="S2.SS3.p5.1.m1.1.1.1.cmml" xref="S2.SS3.p5.1.m1.1.1">subscript</csymbol><ci id="S2.SS3.p5.1.m1.1.1.2.cmml" xref="S2.SS3.p5.1.m1.1.1.2">𝐉</ci><ci id="S2.SS3.p5.1.m1.1.1.3.cmml" xref="S2.SS3.p5.1.m1.1.1.3">𝐅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS3.p5.1.m1.1c">{\mathbf{J}_{\mathbf{F}}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS3.p5.1.m1.1d">bold_J start_POSTSUBSCRIPT bold_F end_POSTSUBSCRIPT</annotation></semantics></math> replaced by the linearized inter-cell approximation <math alttext="{\mathbf{A}\left(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)}" class="ltx_Math" display="inline" id="S2.SS3.p5.2.m2.2"><semantics id="S2.SS3.p5.2.m2.2a"><mrow id="S2.SS3.p5.2.m2.2.2" xref="S2.SS3.p5.2.m2.2.2.cmml"><mi id="S2.SS3.p5.2.m2.2.2.4" xref="S2.SS3.p5.2.m2.2.2.4.cmml">𝐀</mi><mo id="S2.SS3.p5.2.m2.2.2.3" xref="S2.SS3.p5.2.m2.2.2.3.cmml"></mo><mrow id="S2.SS3.p5.2.m2.2.2.2.2" xref="S2.SS3.p5.2.m2.2.2.2.3.cmml"><mo id="S2.SS3.p5.2.m2.2.2.2.2.3" xref="S2.SS3.p5.2.m2.2.2.2.3.cmml">(</mo><msubsup id="S2.SS3.p5.2.m2.1.1.1.1.1" xref="S2.SS3.p5.2.m2.1.1.1.1.1.cmml"><mi id="S2.SS3.p5.2.m2.1.1.1.1.1.2.2" xref="S2.SS3.p5.2.m2.1.1.1.1.1.2.2.cmml">𝐔</mi><mi id="S2.SS3.p5.2.m2.1.1.1.1.1.2.3" xref="S2.SS3.p5.2.m2.1.1.1.1.1.2.3.cmml">i</mi><mi id="S2.SS3.p5.2.m2.1.1.1.1.1.3" xref="S2.SS3.p5.2.m2.1.1.1.1.1.3.cmml">n</mi></msubsup><mo id="S2.SS3.p5.2.m2.2.2.2.2.4" xref="S2.SS3.p5.2.m2.2.2.2.3.cmml">,</mo><msubsup id="S2.SS3.p5.2.m2.2.2.2.2.2" xref="S2.SS3.p5.2.m2.2.2.2.2.2.cmml"><mi id="S2.SS3.p5.2.m2.2.2.2.2.2.2.2" xref="S2.SS3.p5.2.m2.2.2.2.2.2.2.2.cmml">𝐔</mi><mrow id="S2.SS3.p5.2.m2.2.2.2.2.2.2.3" xref="S2.SS3.p5.2.m2.2.2.2.2.2.2.3.cmml"><mi id="S2.SS3.p5.2.m2.2.2.2.2.2.2.3.2" xref="S2.SS3.p5.2.m2.2.2.2.2.2.2.3.2.cmml">i</mi><mo id="S2.SS3.p5.2.m2.2.2.2.2.2.2.3.1" xref="S2.SS3.p5.2.m2.2.2.2.2.2.2.3.1.cmml">+</mo><mn id="S2.SS3.p5.2.m2.2.2.2.2.2.2.3.3" xref="S2.SS3.p5.2.m2.2.2.2.2.2.2.3.3.cmml">1</mn></mrow><mi id="S2.SS3.p5.2.m2.2.2.2.2.2.3" xref="S2.SS3.p5.2.m2.2.2.2.2.2.3.cmml">n</mi></msubsup><mo id="S2.SS3.p5.2.m2.2.2.2.2.5" xref="S2.SS3.p5.2.m2.2.2.2.3.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.SS3.p5.2.m2.2b"><apply id="S2.SS3.p5.2.m2.2.2.cmml" xref="S2.SS3.p5.2.m2.2.2"><times id="S2.SS3.p5.2.m2.2.2.3.cmml" xref="S2.SS3.p5.2.m2.2.2.3"></times><ci id="S2.SS3.p5.2.m2.2.2.4.cmml" xref="S2.SS3.p5.2.m2.2.2.4">𝐀</ci><interval closure="open" id="S2.SS3.p5.2.m2.2.2.2.3.cmml" xref="S2.SS3.p5.2.m2.2.2.2.2"><apply id="S2.SS3.p5.2.m2.1.1.1.1.1.cmml" xref="S2.SS3.p5.2.m2.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.SS3.p5.2.m2.1.1.1.1.1.1.cmml" xref="S2.SS3.p5.2.m2.1.1.1.1.1">superscript</csymbol><apply id="S2.SS3.p5.2.m2.1.1.1.1.1.2.cmml" xref="S2.SS3.p5.2.m2.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.SS3.p5.2.m2.1.1.1.1.1.2.1.cmml" xref="S2.SS3.p5.2.m2.1.1.1.1.1">subscript</csymbol><ci id="S2.SS3.p5.2.m2.1.1.1.1.1.2.2.cmml" xref="S2.SS3.p5.2.m2.1.1.1.1.1.2.2">𝐔</ci><ci id="S2.SS3.p5.2.m2.1.1.1.1.1.2.3.cmml" xref="S2.SS3.p5.2.m2.1.1.1.1.1.2.3">𝑖</ci></apply><ci id="S2.SS3.p5.2.m2.1.1.1.1.1.3.cmml" xref="S2.SS3.p5.2.m2.1.1.1.1.1.3">𝑛</ci></apply><apply id="S2.SS3.p5.2.m2.2.2.2.2.2.cmml" xref="S2.SS3.p5.2.m2.2.2.2.2.2"><csymbol cd="ambiguous" id="S2.SS3.p5.2.m2.2.2.2.2.2.1.cmml" xref="S2.SS3.p5.2.m2.2.2.2.2.2">superscript</csymbol><apply id="S2.SS3.p5.2.m2.2.2.2.2.2.2.cmml" xref="S2.SS3.p5.2.m2.2.2.2.2.2"><csymbol cd="ambiguous" id="S2.SS3.p5.2.m2.2.2.2.2.2.2.1.cmml" xref="S2.SS3.p5.2.m2.2.2.2.2.2">subscript</csymbol><ci id="S2.SS3.p5.2.m2.2.2.2.2.2.2.2.cmml" xref="S2.SS3.p5.2.m2.2.2.2.2.2.2.2">𝐔</ci><apply id="S2.SS3.p5.2.m2.2.2.2.2.2.2.3.cmml" xref="S2.SS3.p5.2.m2.2.2.2.2.2.2.3"><plus id="S2.SS3.p5.2.m2.2.2.2.2.2.2.3.1.cmml" xref="S2.SS3.p5.2.m2.2.2.2.2.2.2.3.1"></plus><ci id="S2.SS3.p5.2.m2.2.2.2.2.2.2.3.2.cmml" xref="S2.SS3.p5.2.m2.2.2.2.2.2.2.3.2">𝑖</ci><cn id="S2.SS3.p5.2.m2.2.2.2.2.2.2.3.3.cmml" type="integer" xref="S2.SS3.p5.2.m2.2.2.2.2.2.2.3.3">1</cn></apply></apply><ci id="S2.SS3.p5.2.m2.2.2.2.2.2.3.cmml" xref="S2.SS3.p5.2.m2.2.2.2.2.2.3">𝑛</ci></apply></interval></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS3.p5.2.m2.2c">{\mathbf{A}\left(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)}</annotation><annotation encoding="application/x-llamapun" id="S2.SS3.p5.2.m2.2d">bold_A ( bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT )</annotation></semantics></math>. Note, moreover, that a Lax-Friedrichs solver is guaranteed to conserve the components of <math alttext="{\mathbf{U}}" class="ltx_Math" display="inline" id="S2.SS3.p5.3.m3.1"><semantics id="S2.SS3.p5.3.m3.1a"><mi id="S2.SS3.p5.3.m3.1.1" xref="S2.SS3.p5.3.m3.1.1.cmml">𝐔</mi><annotation-xml encoding="MathML-Content" id="S2.SS3.p5.3.m3.1b"><ci id="S2.SS3.p5.3.m3.1.1.cmml" xref="S2.SS3.p5.3.m3.1.1">𝐔</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS3.p5.3.m3.1c">{\mathbf{U}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS3.p5.3.m3.1d">bold_U</annotation></semantics></math> automatically, and does not require any additional conditions (such as those in Theorem <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.Thmtheorem6" title="Theorem 2.6. ‣ 2.3. The Roe Flux ‣ 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2.6</span></a>) to hold. Finally, note that the CFL stability and local Lipschitz continuity criteria for Lax-Friedrichs solvers apply to Roe solvers too, i.e. a Roe solver for a given PDE system will not be CFL stable unless the corresponding Lax-Friedrichs solver is also CFL stable, etc.</p> </div> </section> <section class="ltx_subsection" id="S2.SS4"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">2.4. </span>Flux Extrapolation and Limiters</h3> <div class="ltx_para" id="S2.SS4.p1"> <p class="ltx_p" id="S2.SS4.p1.4">The Lax-Friedrichs and Roe solvers described above are, naively, only first-order accurate in space. In order to achieve second-order spatial accuracy, it is necessary to replace the piecewise constant approximations of the conserved variable vector <math alttext="{\mathbf{U}}" class="ltx_Math" display="inline" id="S2.SS4.p1.1.m1.1"><semantics id="S2.SS4.p1.1.m1.1a"><mi id="S2.SS4.p1.1.m1.1.1" xref="S2.SS4.p1.1.m1.1.1.cmml">𝐔</mi><annotation-xml encoding="MathML-Content" id="S2.SS4.p1.1.m1.1b"><ci id="S2.SS4.p1.1.m1.1.1.cmml" xref="S2.SS4.p1.1.m1.1.1">𝐔</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p1.1.m1.1c">{\mathbf{U}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p1.1.m1.1d">bold_U</annotation></semantics></math> with piecewise linear approximations instead<cite class="ltx_cite ltx_citemacro_citep">(Van Leer, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib35" title="">1979</a>)</cite>. At the boundary between cells <math alttext="{x_{i}}" class="ltx_Math" display="inline" id="S2.SS4.p1.2.m2.1"><semantics id="S2.SS4.p1.2.m2.1a"><msub id="S2.SS4.p1.2.m2.1.1" xref="S2.SS4.p1.2.m2.1.1.cmml"><mi id="S2.SS4.p1.2.m2.1.1.2" xref="S2.SS4.p1.2.m2.1.1.2.cmml">x</mi><mi id="S2.SS4.p1.2.m2.1.1.3" xref="S2.SS4.p1.2.m2.1.1.3.cmml">i</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS4.p1.2.m2.1b"><apply id="S2.SS4.p1.2.m2.1.1.cmml" xref="S2.SS4.p1.2.m2.1.1"><csymbol cd="ambiguous" id="S2.SS4.p1.2.m2.1.1.1.cmml" xref="S2.SS4.p1.2.m2.1.1">subscript</csymbol><ci id="S2.SS4.p1.2.m2.1.1.2.cmml" xref="S2.SS4.p1.2.m2.1.1.2">𝑥</ci><ci id="S2.SS4.p1.2.m2.1.1.3.cmml" xref="S2.SS4.p1.2.m2.1.1.3">𝑖</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p1.2.m2.1c">{x_{i}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p1.2.m2.1d">italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT</annotation></semantics></math> and <math alttext="{x_{i+1}}" class="ltx_Math" display="inline" id="S2.SS4.p1.3.m3.1"><semantics id="S2.SS4.p1.3.m3.1a"><msub id="S2.SS4.p1.3.m3.1.1" xref="S2.SS4.p1.3.m3.1.1.cmml"><mi id="S2.SS4.p1.3.m3.1.1.2" xref="S2.SS4.p1.3.m3.1.1.2.cmml">x</mi><mrow id="S2.SS4.p1.3.m3.1.1.3" xref="S2.SS4.p1.3.m3.1.1.3.cmml"><mi id="S2.SS4.p1.3.m3.1.1.3.2" xref="S2.SS4.p1.3.m3.1.1.3.2.cmml">i</mi><mo id="S2.SS4.p1.3.m3.1.1.3.1" xref="S2.SS4.p1.3.m3.1.1.3.1.cmml">+</mo><mn id="S2.SS4.p1.3.m3.1.1.3.3" xref="S2.SS4.p1.3.m3.1.1.3.3.cmml">1</mn></mrow></msub><annotation-xml encoding="MathML-Content" id="S2.SS4.p1.3.m3.1b"><apply id="S2.SS4.p1.3.m3.1.1.cmml" xref="S2.SS4.p1.3.m3.1.1"><csymbol cd="ambiguous" id="S2.SS4.p1.3.m3.1.1.1.cmml" xref="S2.SS4.p1.3.m3.1.1">subscript</csymbol><ci id="S2.SS4.p1.3.m3.1.1.2.cmml" xref="S2.SS4.p1.3.m3.1.1.2">𝑥</ci><apply id="S2.SS4.p1.3.m3.1.1.3.cmml" xref="S2.SS4.p1.3.m3.1.1.3"><plus id="S2.SS4.p1.3.m3.1.1.3.1.cmml" xref="S2.SS4.p1.3.m3.1.1.3.1"></plus><ci id="S2.SS4.p1.3.m3.1.1.3.2.cmml" xref="S2.SS4.p1.3.m3.1.1.3.2">𝑖</ci><cn id="S2.SS4.p1.3.m3.1.1.3.3.cmml" type="integer" xref="S2.SS4.p1.3.m3.1.1.3.3">1</cn></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p1.3.m3.1c">{x_{i+1}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p1.3.m3.1d">italic_x start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT</annotation></semantics></math>, the left- and right-sided extrapolated values of <math alttext="{\mathbf{U}}" class="ltx_Math" display="inline" id="S2.SS4.p1.4.m4.1"><semantics id="S2.SS4.p1.4.m4.1a"><mi id="S2.SS4.p1.4.m4.1.1" xref="S2.SS4.p1.4.m4.1.1.cmml">𝐔</mi><annotation-xml encoding="MathML-Content" id="S2.SS4.p1.4.m4.1b"><ci id="S2.SS4.p1.4.m4.1.1.cmml" xref="S2.SS4.p1.4.m4.1.1">𝐔</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p1.4.m4.1c">{\mathbf{U}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p1.4.m4.1d">bold_U</annotation></semantics></math> are given by:</p> </div> <div class="ltx_para" id="S2.SS4.p2"> <table class="ltx_equation ltx_eqn_table" id="S2.E18"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(18)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{U}_{i+\frac{1}{2}}^{L}=\mathbf{U}_{i}+\frac{1}{2}\boldsymbol{\phi}% \left(\mathbf{r}_{i}\right)\left(\mathbf{U}_{i+1}-\mathbf{U}_{i}\right)," class="ltx_Math" display="block" id="S2.E18.m1.1"><semantics id="S2.E18.m1.1a"><mrow id="S2.E18.m1.1.1.1" xref="S2.E18.m1.1.1.1.1.cmml"><mrow id="S2.E18.m1.1.1.1.1" xref="S2.E18.m1.1.1.1.1.cmml"><msubsup id="S2.E18.m1.1.1.1.1.4" xref="S2.E18.m1.1.1.1.1.4.cmml"><mi id="S2.E18.m1.1.1.1.1.4.2.2" xref="S2.E18.m1.1.1.1.1.4.2.2.cmml">𝐔</mi><mrow id="S2.E18.m1.1.1.1.1.4.2.3" xref="S2.E18.m1.1.1.1.1.4.2.3.cmml"><mi id="S2.E18.m1.1.1.1.1.4.2.3.2" xref="S2.E18.m1.1.1.1.1.4.2.3.2.cmml">i</mi><mo id="S2.E18.m1.1.1.1.1.4.2.3.1" xref="S2.E18.m1.1.1.1.1.4.2.3.1.cmml">+</mo><mfrac id="S2.E18.m1.1.1.1.1.4.2.3.3" xref="S2.E18.m1.1.1.1.1.4.2.3.3.cmml"><mn id="S2.E18.m1.1.1.1.1.4.2.3.3.2" xref="S2.E18.m1.1.1.1.1.4.2.3.3.2.cmml">1</mn><mn id="S2.E18.m1.1.1.1.1.4.2.3.3.3" xref="S2.E18.m1.1.1.1.1.4.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.E18.m1.1.1.1.1.4.3" xref="S2.E18.m1.1.1.1.1.4.3.cmml">L</mi></msubsup><mo id="S2.E18.m1.1.1.1.1.3" xref="S2.E18.m1.1.1.1.1.3.cmml">=</mo><mrow id="S2.E18.m1.1.1.1.1.2" xref="S2.E18.m1.1.1.1.1.2.cmml"><msub id="S2.E18.m1.1.1.1.1.2.4" xref="S2.E18.m1.1.1.1.1.2.4.cmml"><mi id="S2.E18.m1.1.1.1.1.2.4.2" xref="S2.E18.m1.1.1.1.1.2.4.2.cmml">𝐔</mi><mi id="S2.E18.m1.1.1.1.1.2.4.3" xref="S2.E18.m1.1.1.1.1.2.4.3.cmml">i</mi></msub><mo id="S2.E18.m1.1.1.1.1.2.3" xref="S2.E18.m1.1.1.1.1.2.3.cmml">+</mo><mrow id="S2.E18.m1.1.1.1.1.2.2" xref="S2.E18.m1.1.1.1.1.2.2.cmml"><mfrac id="S2.E18.m1.1.1.1.1.2.2.4" xref="S2.E18.m1.1.1.1.1.2.2.4.cmml"><mn id="S2.E18.m1.1.1.1.1.2.2.4.2" xref="S2.E18.m1.1.1.1.1.2.2.4.2.cmml">1</mn><mn id="S2.E18.m1.1.1.1.1.2.2.4.3" xref="S2.E18.m1.1.1.1.1.2.2.4.3.cmml">2</mn></mfrac><mo id="S2.E18.m1.1.1.1.1.2.2.3" xref="S2.E18.m1.1.1.1.1.2.2.3.cmml"></mo><mi class="ltx_mathvariant_bold-italic" id="S2.E18.m1.1.1.1.1.2.2.5" mathvariant="bold-italic" xref="S2.E18.m1.1.1.1.1.2.2.5.cmml">ϕ</mi><mo id="S2.E18.m1.1.1.1.1.2.2.3a" xref="S2.E18.m1.1.1.1.1.2.2.3.cmml"></mo><mrow id="S2.E18.m1.1.1.1.1.1.1.1.1" xref="S2.E18.m1.1.1.1.1.1.1.1.1.1.cmml"><mo id="S2.E18.m1.1.1.1.1.1.1.1.1.2" xref="S2.E18.m1.1.1.1.1.1.1.1.1.1.cmml">(</mo><msub id="S2.E18.m1.1.1.1.1.1.1.1.1.1" xref="S2.E18.m1.1.1.1.1.1.1.1.1.1.cmml"><mi id="S2.E18.m1.1.1.1.1.1.1.1.1.1.2" xref="S2.E18.m1.1.1.1.1.1.1.1.1.1.2.cmml">𝐫</mi><mi id="S2.E18.m1.1.1.1.1.1.1.1.1.1.3" xref="S2.E18.m1.1.1.1.1.1.1.1.1.1.3.cmml">i</mi></msub><mo id="S2.E18.m1.1.1.1.1.1.1.1.1.3" xref="S2.E18.m1.1.1.1.1.1.1.1.1.1.cmml">)</mo></mrow><mo id="S2.E18.m1.1.1.1.1.2.2.3b" xref="S2.E18.m1.1.1.1.1.2.2.3.cmml"></mo><mrow id="S2.E18.m1.1.1.1.1.2.2.2.1" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.cmml"><mo id="S2.E18.m1.1.1.1.1.2.2.2.1.2" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.cmml">(</mo><mrow id="S2.E18.m1.1.1.1.1.2.2.2.1.1" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.cmml"><msub id="S2.E18.m1.1.1.1.1.2.2.2.1.1.2" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.cmml"><mi id="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.2" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.2.cmml">𝐔</mi><mrow id="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.3" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.3.cmml"><mi id="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.3.2" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.3.2.cmml">i</mi><mo id="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.3.1" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.3.1.cmml">+</mo><mn id="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.3.3" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.3.3.cmml">1</mn></mrow></msub><mo id="S2.E18.m1.1.1.1.1.2.2.2.1.1.1" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.1.cmml">−</mo><msub id="S2.E18.m1.1.1.1.1.2.2.2.1.1.3" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.3.cmml"><mi id="S2.E18.m1.1.1.1.1.2.2.2.1.1.3.2" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.3.2.cmml">𝐔</mi><mi id="S2.E18.m1.1.1.1.1.2.2.2.1.1.3.3" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.3.3.cmml">i</mi></msub></mrow><mo id="S2.E18.m1.1.1.1.1.2.2.2.1.3" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.cmml">)</mo></mrow></mrow></mrow></mrow><mo id="S2.E18.m1.1.1.1.2" xref="S2.E18.m1.1.1.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E18.m1.1b"><apply id="S2.E18.m1.1.1.1.1.cmml" xref="S2.E18.m1.1.1.1"><eq id="S2.E18.m1.1.1.1.1.3.cmml" xref="S2.E18.m1.1.1.1.1.3"></eq><apply id="S2.E18.m1.1.1.1.1.4.cmml" xref="S2.E18.m1.1.1.1.1.4"><csymbol cd="ambiguous" id="S2.E18.m1.1.1.1.1.4.1.cmml" xref="S2.E18.m1.1.1.1.1.4">superscript</csymbol><apply id="S2.E18.m1.1.1.1.1.4.2.cmml" xref="S2.E18.m1.1.1.1.1.4"><csymbol cd="ambiguous" id="S2.E18.m1.1.1.1.1.4.2.1.cmml" xref="S2.E18.m1.1.1.1.1.4">subscript</csymbol><ci id="S2.E18.m1.1.1.1.1.4.2.2.cmml" xref="S2.E18.m1.1.1.1.1.4.2.2">𝐔</ci><apply id="S2.E18.m1.1.1.1.1.4.2.3.cmml" xref="S2.E18.m1.1.1.1.1.4.2.3"><plus id="S2.E18.m1.1.1.1.1.4.2.3.1.cmml" xref="S2.E18.m1.1.1.1.1.4.2.3.1"></plus><ci id="S2.E18.m1.1.1.1.1.4.2.3.2.cmml" xref="S2.E18.m1.1.1.1.1.4.2.3.2">𝑖</ci><apply id="S2.E18.m1.1.1.1.1.4.2.3.3.cmml" xref="S2.E18.m1.1.1.1.1.4.2.3.3"><divide id="S2.E18.m1.1.1.1.1.4.2.3.3.1.cmml" xref="S2.E18.m1.1.1.1.1.4.2.3.3"></divide><cn id="S2.E18.m1.1.1.1.1.4.2.3.3.2.cmml" type="integer" xref="S2.E18.m1.1.1.1.1.4.2.3.3.2">1</cn><cn id="S2.E18.m1.1.1.1.1.4.2.3.3.3.cmml" type="integer" xref="S2.E18.m1.1.1.1.1.4.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.E18.m1.1.1.1.1.4.3.cmml" xref="S2.E18.m1.1.1.1.1.4.3">𝐿</ci></apply><apply id="S2.E18.m1.1.1.1.1.2.cmml" xref="S2.E18.m1.1.1.1.1.2"><plus id="S2.E18.m1.1.1.1.1.2.3.cmml" xref="S2.E18.m1.1.1.1.1.2.3"></plus><apply id="S2.E18.m1.1.1.1.1.2.4.cmml" xref="S2.E18.m1.1.1.1.1.2.4"><csymbol cd="ambiguous" id="S2.E18.m1.1.1.1.1.2.4.1.cmml" xref="S2.E18.m1.1.1.1.1.2.4">subscript</csymbol><ci id="S2.E18.m1.1.1.1.1.2.4.2.cmml" xref="S2.E18.m1.1.1.1.1.2.4.2">𝐔</ci><ci id="S2.E18.m1.1.1.1.1.2.4.3.cmml" xref="S2.E18.m1.1.1.1.1.2.4.3">𝑖</ci></apply><apply id="S2.E18.m1.1.1.1.1.2.2.cmml" xref="S2.E18.m1.1.1.1.1.2.2"><times id="S2.E18.m1.1.1.1.1.2.2.3.cmml" xref="S2.E18.m1.1.1.1.1.2.2.3"></times><apply id="S2.E18.m1.1.1.1.1.2.2.4.cmml" xref="S2.E18.m1.1.1.1.1.2.2.4"><divide id="S2.E18.m1.1.1.1.1.2.2.4.1.cmml" xref="S2.E18.m1.1.1.1.1.2.2.4"></divide><cn id="S2.E18.m1.1.1.1.1.2.2.4.2.cmml" type="integer" xref="S2.E18.m1.1.1.1.1.2.2.4.2">1</cn><cn id="S2.E18.m1.1.1.1.1.2.2.4.3.cmml" type="integer" xref="S2.E18.m1.1.1.1.1.2.2.4.3">2</cn></apply><ci id="S2.E18.m1.1.1.1.1.2.2.5.cmml" xref="S2.E18.m1.1.1.1.1.2.2.5">bold-italic-ϕ</ci><apply id="S2.E18.m1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E18.m1.1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E18.m1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E18.m1.1.1.1.1.1.1.1.1">subscript</csymbol><ci id="S2.E18.m1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E18.m1.1.1.1.1.1.1.1.1.1.2">𝐫</ci><ci id="S2.E18.m1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E18.m1.1.1.1.1.1.1.1.1.1.3">𝑖</ci></apply><apply id="S2.E18.m1.1.1.1.1.2.2.2.1.1.cmml" xref="S2.E18.m1.1.1.1.1.2.2.2.1"><minus id="S2.E18.m1.1.1.1.1.2.2.2.1.1.1.cmml" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.1"></minus><apply id="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.cmml" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.2"><csymbol cd="ambiguous" id="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.1.cmml" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.2">subscript</csymbol><ci id="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.2.cmml" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.2">𝐔</ci><apply id="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.3.cmml" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.3"><plus id="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.3.1.cmml" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.3.1"></plus><ci id="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.3.2.cmml" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.3.2">𝑖</ci><cn id="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.3.3.cmml" type="integer" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.2.3.3">1</cn></apply></apply><apply id="S2.E18.m1.1.1.1.1.2.2.2.1.1.3.cmml" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.3"><csymbol cd="ambiguous" id="S2.E18.m1.1.1.1.1.2.2.2.1.1.3.1.cmml" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.3">subscript</csymbol><ci id="S2.E18.m1.1.1.1.1.2.2.2.1.1.3.2.cmml" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.3.2">𝐔</ci><ci id="S2.E18.m1.1.1.1.1.2.2.2.1.1.3.3.cmml" xref="S2.E18.m1.1.1.1.1.2.2.2.1.1.3.3">𝑖</ci></apply></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E18.m1.1c">\mathbf{U}_{i+\frac{1}{2}}^{L}=\mathbf{U}_{i}+\frac{1}{2}\boldsymbol{\phi}% \left(\mathbf{r}_{i}\right)\left(\mathbf{U}_{i+1}-\mathbf{U}_{i}\right),</annotation><annotation encoding="application/x-llamapun" id="S2.E18.m1.1d">bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT = bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG bold_italic_ϕ ( bold_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ( bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT - bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS4.p2.1">and:</p> </div> <div class="ltx_para" id="S2.SS4.p3"> <table class="ltx_equation ltx_eqn_table" id="S2.E19"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(19)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{U}_{i+\frac{1}{2}}^{R}=\mathbf{U}_{i+1}-\frac{1}{2}\boldsymbol{\phi}% \left(\mathbf{r}_{i+1}\right)\left(\mathbf{U}_{i+2}-\mathbf{U}_{i+1}\right)," class="ltx_Math" display="block" id="S2.E19.m1.1"><semantics id="S2.E19.m1.1a"><mrow id="S2.E19.m1.1.1.1" xref="S2.E19.m1.1.1.1.1.cmml"><mrow id="S2.E19.m1.1.1.1.1" xref="S2.E19.m1.1.1.1.1.cmml"><msubsup id="S2.E19.m1.1.1.1.1.4" xref="S2.E19.m1.1.1.1.1.4.cmml"><mi id="S2.E19.m1.1.1.1.1.4.2.2" xref="S2.E19.m1.1.1.1.1.4.2.2.cmml">𝐔</mi><mrow id="S2.E19.m1.1.1.1.1.4.2.3" xref="S2.E19.m1.1.1.1.1.4.2.3.cmml"><mi id="S2.E19.m1.1.1.1.1.4.2.3.2" xref="S2.E19.m1.1.1.1.1.4.2.3.2.cmml">i</mi><mo id="S2.E19.m1.1.1.1.1.4.2.3.1" xref="S2.E19.m1.1.1.1.1.4.2.3.1.cmml">+</mo><mfrac id="S2.E19.m1.1.1.1.1.4.2.3.3" xref="S2.E19.m1.1.1.1.1.4.2.3.3.cmml"><mn id="S2.E19.m1.1.1.1.1.4.2.3.3.2" xref="S2.E19.m1.1.1.1.1.4.2.3.3.2.cmml">1</mn><mn id="S2.E19.m1.1.1.1.1.4.2.3.3.3" xref="S2.E19.m1.1.1.1.1.4.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.E19.m1.1.1.1.1.4.3" xref="S2.E19.m1.1.1.1.1.4.3.cmml">R</mi></msubsup><mo id="S2.E19.m1.1.1.1.1.3" xref="S2.E19.m1.1.1.1.1.3.cmml">=</mo><mrow id="S2.E19.m1.1.1.1.1.2" xref="S2.E19.m1.1.1.1.1.2.cmml"><msub id="S2.E19.m1.1.1.1.1.2.4" xref="S2.E19.m1.1.1.1.1.2.4.cmml"><mi id="S2.E19.m1.1.1.1.1.2.4.2" xref="S2.E19.m1.1.1.1.1.2.4.2.cmml">𝐔</mi><mrow id="S2.E19.m1.1.1.1.1.2.4.3" xref="S2.E19.m1.1.1.1.1.2.4.3.cmml"><mi id="S2.E19.m1.1.1.1.1.2.4.3.2" xref="S2.E19.m1.1.1.1.1.2.4.3.2.cmml">i</mi><mo id="S2.E19.m1.1.1.1.1.2.4.3.1" xref="S2.E19.m1.1.1.1.1.2.4.3.1.cmml">+</mo><mn id="S2.E19.m1.1.1.1.1.2.4.3.3" xref="S2.E19.m1.1.1.1.1.2.4.3.3.cmml">1</mn></mrow></msub><mo id="S2.E19.m1.1.1.1.1.2.3" xref="S2.E19.m1.1.1.1.1.2.3.cmml">−</mo><mrow id="S2.E19.m1.1.1.1.1.2.2" xref="S2.E19.m1.1.1.1.1.2.2.cmml"><mfrac id="S2.E19.m1.1.1.1.1.2.2.4" xref="S2.E19.m1.1.1.1.1.2.2.4.cmml"><mn id="S2.E19.m1.1.1.1.1.2.2.4.2" xref="S2.E19.m1.1.1.1.1.2.2.4.2.cmml">1</mn><mn id="S2.E19.m1.1.1.1.1.2.2.4.3" xref="S2.E19.m1.1.1.1.1.2.2.4.3.cmml">2</mn></mfrac><mo id="S2.E19.m1.1.1.1.1.2.2.3" xref="S2.E19.m1.1.1.1.1.2.2.3.cmml"></mo><mi class="ltx_mathvariant_bold-italic" id="S2.E19.m1.1.1.1.1.2.2.5" mathvariant="bold-italic" xref="S2.E19.m1.1.1.1.1.2.2.5.cmml">ϕ</mi><mo id="S2.E19.m1.1.1.1.1.2.2.3a" xref="S2.E19.m1.1.1.1.1.2.2.3.cmml"></mo><mrow id="S2.E19.m1.1.1.1.1.1.1.1.1" xref="S2.E19.m1.1.1.1.1.1.1.1.1.1.cmml"><mo id="S2.E19.m1.1.1.1.1.1.1.1.1.2" xref="S2.E19.m1.1.1.1.1.1.1.1.1.1.cmml">(</mo><msub id="S2.E19.m1.1.1.1.1.1.1.1.1.1" xref="S2.E19.m1.1.1.1.1.1.1.1.1.1.cmml"><mi id="S2.E19.m1.1.1.1.1.1.1.1.1.1.2" xref="S2.E19.m1.1.1.1.1.1.1.1.1.1.2.cmml">𝐫</mi><mrow id="S2.E19.m1.1.1.1.1.1.1.1.1.1.3" xref="S2.E19.m1.1.1.1.1.1.1.1.1.1.3.cmml"><mi id="S2.E19.m1.1.1.1.1.1.1.1.1.1.3.2" xref="S2.E19.m1.1.1.1.1.1.1.1.1.1.3.2.cmml">i</mi><mo id="S2.E19.m1.1.1.1.1.1.1.1.1.1.3.1" xref="S2.E19.m1.1.1.1.1.1.1.1.1.1.3.1.cmml">+</mo><mn id="S2.E19.m1.1.1.1.1.1.1.1.1.1.3.3" xref="S2.E19.m1.1.1.1.1.1.1.1.1.1.3.3.cmml">1</mn></mrow></msub><mo id="S2.E19.m1.1.1.1.1.1.1.1.1.3" xref="S2.E19.m1.1.1.1.1.1.1.1.1.1.cmml">)</mo></mrow><mo id="S2.E19.m1.1.1.1.1.2.2.3b" xref="S2.E19.m1.1.1.1.1.2.2.3.cmml"></mo><mrow id="S2.E19.m1.1.1.1.1.2.2.2.1" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.cmml"><mo id="S2.E19.m1.1.1.1.1.2.2.2.1.2" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.cmml">(</mo><mrow id="S2.E19.m1.1.1.1.1.2.2.2.1.1" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.cmml"><msub id="S2.E19.m1.1.1.1.1.2.2.2.1.1.2" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.cmml"><mi id="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.2" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.2.cmml">𝐔</mi><mrow id="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.3" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.3.cmml"><mi id="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.3.2" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.3.2.cmml">i</mi><mo id="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.3.1" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.3.1.cmml">+</mo><mn id="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.3.3" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.3.3.cmml">2</mn></mrow></msub><mo id="S2.E19.m1.1.1.1.1.2.2.2.1.1.1" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.1.cmml">−</mo><msub id="S2.E19.m1.1.1.1.1.2.2.2.1.1.3" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.cmml"><mi id="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.2" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.2.cmml">𝐔</mi><mrow id="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.3" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.3.cmml"><mi id="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.3.2" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.3.2.cmml">i</mi><mo id="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.3.1" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.3.1.cmml">+</mo><mn id="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.3.3" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.3.3.cmml">1</mn></mrow></msub></mrow><mo id="S2.E19.m1.1.1.1.1.2.2.2.1.3" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.cmml">)</mo></mrow></mrow></mrow></mrow><mo id="S2.E19.m1.1.1.1.2" xref="S2.E19.m1.1.1.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E19.m1.1b"><apply id="S2.E19.m1.1.1.1.1.cmml" xref="S2.E19.m1.1.1.1"><eq id="S2.E19.m1.1.1.1.1.3.cmml" xref="S2.E19.m1.1.1.1.1.3"></eq><apply id="S2.E19.m1.1.1.1.1.4.cmml" xref="S2.E19.m1.1.1.1.1.4"><csymbol cd="ambiguous" id="S2.E19.m1.1.1.1.1.4.1.cmml" xref="S2.E19.m1.1.1.1.1.4">superscript</csymbol><apply id="S2.E19.m1.1.1.1.1.4.2.cmml" xref="S2.E19.m1.1.1.1.1.4"><csymbol cd="ambiguous" id="S2.E19.m1.1.1.1.1.4.2.1.cmml" xref="S2.E19.m1.1.1.1.1.4">subscript</csymbol><ci id="S2.E19.m1.1.1.1.1.4.2.2.cmml" xref="S2.E19.m1.1.1.1.1.4.2.2">𝐔</ci><apply id="S2.E19.m1.1.1.1.1.4.2.3.cmml" xref="S2.E19.m1.1.1.1.1.4.2.3"><plus id="S2.E19.m1.1.1.1.1.4.2.3.1.cmml" xref="S2.E19.m1.1.1.1.1.4.2.3.1"></plus><ci id="S2.E19.m1.1.1.1.1.4.2.3.2.cmml" xref="S2.E19.m1.1.1.1.1.4.2.3.2">𝑖</ci><apply id="S2.E19.m1.1.1.1.1.4.2.3.3.cmml" xref="S2.E19.m1.1.1.1.1.4.2.3.3"><divide id="S2.E19.m1.1.1.1.1.4.2.3.3.1.cmml" xref="S2.E19.m1.1.1.1.1.4.2.3.3"></divide><cn id="S2.E19.m1.1.1.1.1.4.2.3.3.2.cmml" type="integer" xref="S2.E19.m1.1.1.1.1.4.2.3.3.2">1</cn><cn id="S2.E19.m1.1.1.1.1.4.2.3.3.3.cmml" type="integer" xref="S2.E19.m1.1.1.1.1.4.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.E19.m1.1.1.1.1.4.3.cmml" xref="S2.E19.m1.1.1.1.1.4.3">𝑅</ci></apply><apply id="S2.E19.m1.1.1.1.1.2.cmml" xref="S2.E19.m1.1.1.1.1.2"><minus id="S2.E19.m1.1.1.1.1.2.3.cmml" xref="S2.E19.m1.1.1.1.1.2.3"></minus><apply id="S2.E19.m1.1.1.1.1.2.4.cmml" xref="S2.E19.m1.1.1.1.1.2.4"><csymbol cd="ambiguous" id="S2.E19.m1.1.1.1.1.2.4.1.cmml" xref="S2.E19.m1.1.1.1.1.2.4">subscript</csymbol><ci id="S2.E19.m1.1.1.1.1.2.4.2.cmml" xref="S2.E19.m1.1.1.1.1.2.4.2">𝐔</ci><apply id="S2.E19.m1.1.1.1.1.2.4.3.cmml" xref="S2.E19.m1.1.1.1.1.2.4.3"><plus id="S2.E19.m1.1.1.1.1.2.4.3.1.cmml" xref="S2.E19.m1.1.1.1.1.2.4.3.1"></plus><ci id="S2.E19.m1.1.1.1.1.2.4.3.2.cmml" xref="S2.E19.m1.1.1.1.1.2.4.3.2">𝑖</ci><cn id="S2.E19.m1.1.1.1.1.2.4.3.3.cmml" type="integer" xref="S2.E19.m1.1.1.1.1.2.4.3.3">1</cn></apply></apply><apply id="S2.E19.m1.1.1.1.1.2.2.cmml" xref="S2.E19.m1.1.1.1.1.2.2"><times id="S2.E19.m1.1.1.1.1.2.2.3.cmml" xref="S2.E19.m1.1.1.1.1.2.2.3"></times><apply id="S2.E19.m1.1.1.1.1.2.2.4.cmml" xref="S2.E19.m1.1.1.1.1.2.2.4"><divide id="S2.E19.m1.1.1.1.1.2.2.4.1.cmml" xref="S2.E19.m1.1.1.1.1.2.2.4"></divide><cn id="S2.E19.m1.1.1.1.1.2.2.4.2.cmml" type="integer" xref="S2.E19.m1.1.1.1.1.2.2.4.2">1</cn><cn id="S2.E19.m1.1.1.1.1.2.2.4.3.cmml" type="integer" xref="S2.E19.m1.1.1.1.1.2.2.4.3">2</cn></apply><ci id="S2.E19.m1.1.1.1.1.2.2.5.cmml" xref="S2.E19.m1.1.1.1.1.2.2.5">bold-italic-ϕ</ci><apply id="S2.E19.m1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E19.m1.1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E19.m1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E19.m1.1.1.1.1.1.1.1.1">subscript</csymbol><ci id="S2.E19.m1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E19.m1.1.1.1.1.1.1.1.1.1.2">𝐫</ci><apply id="S2.E19.m1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E19.m1.1.1.1.1.1.1.1.1.1.3"><plus id="S2.E19.m1.1.1.1.1.1.1.1.1.1.3.1.cmml" xref="S2.E19.m1.1.1.1.1.1.1.1.1.1.3.1"></plus><ci id="S2.E19.m1.1.1.1.1.1.1.1.1.1.3.2.cmml" xref="S2.E19.m1.1.1.1.1.1.1.1.1.1.3.2">𝑖</ci><cn id="S2.E19.m1.1.1.1.1.1.1.1.1.1.3.3.cmml" type="integer" xref="S2.E19.m1.1.1.1.1.1.1.1.1.1.3.3">1</cn></apply></apply><apply id="S2.E19.m1.1.1.1.1.2.2.2.1.1.cmml" xref="S2.E19.m1.1.1.1.1.2.2.2.1"><minus id="S2.E19.m1.1.1.1.1.2.2.2.1.1.1.cmml" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.1"></minus><apply id="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.cmml" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.2"><csymbol cd="ambiguous" id="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.1.cmml" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.2">subscript</csymbol><ci id="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.2.cmml" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.2">𝐔</ci><apply id="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.3.cmml" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.3"><plus id="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.3.1.cmml" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.3.1"></plus><ci id="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.3.2.cmml" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.3.2">𝑖</ci><cn id="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.3.3.cmml" type="integer" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.2.3.3">2</cn></apply></apply><apply id="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.cmml" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.3"><csymbol cd="ambiguous" id="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.1.cmml" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.3">subscript</csymbol><ci id="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.2.cmml" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.2">𝐔</ci><apply id="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.3.cmml" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.3"><plus id="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.3.1.cmml" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.3.1"></plus><ci id="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.3.2.cmml" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.3.2">𝑖</ci><cn id="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.3.3.cmml" type="integer" xref="S2.E19.m1.1.1.1.1.2.2.2.1.1.3.3.3">1</cn></apply></apply></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E19.m1.1c">\mathbf{U}_{i+\frac{1}{2}}^{R}=\mathbf{U}_{i+1}-\frac{1}{2}\boldsymbol{\phi}% \left(\mathbf{r}_{i+1}\right)\left(\mathbf{U}_{i+2}-\mathbf{U}_{i+1}\right),</annotation><annotation encoding="application/x-llamapun" id="S2.E19.m1.1d">bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT = bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG bold_italic_ϕ ( bold_r start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT ) ( bold_U start_POSTSUBSCRIPT italic_i + 2 end_POSTSUBSCRIPT - bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT ) ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS4.p3.3">respectively, while at the boundary between cells <math alttext="{x_{i-1}}" class="ltx_Math" display="inline" id="S2.SS4.p3.1.m1.1"><semantics id="S2.SS4.p3.1.m1.1a"><msub id="S2.SS4.p3.1.m1.1.1" xref="S2.SS4.p3.1.m1.1.1.cmml"><mi id="S2.SS4.p3.1.m1.1.1.2" xref="S2.SS4.p3.1.m1.1.1.2.cmml">x</mi><mrow id="S2.SS4.p3.1.m1.1.1.3" xref="S2.SS4.p3.1.m1.1.1.3.cmml"><mi id="S2.SS4.p3.1.m1.1.1.3.2" xref="S2.SS4.p3.1.m1.1.1.3.2.cmml">i</mi><mo id="S2.SS4.p3.1.m1.1.1.3.1" xref="S2.SS4.p3.1.m1.1.1.3.1.cmml">−</mo><mn id="S2.SS4.p3.1.m1.1.1.3.3" xref="S2.SS4.p3.1.m1.1.1.3.3.cmml">1</mn></mrow></msub><annotation-xml encoding="MathML-Content" id="S2.SS4.p3.1.m1.1b"><apply id="S2.SS4.p3.1.m1.1.1.cmml" xref="S2.SS4.p3.1.m1.1.1"><csymbol cd="ambiguous" id="S2.SS4.p3.1.m1.1.1.1.cmml" xref="S2.SS4.p3.1.m1.1.1">subscript</csymbol><ci id="S2.SS4.p3.1.m1.1.1.2.cmml" xref="S2.SS4.p3.1.m1.1.1.2">𝑥</ci><apply id="S2.SS4.p3.1.m1.1.1.3.cmml" xref="S2.SS4.p3.1.m1.1.1.3"><minus id="S2.SS4.p3.1.m1.1.1.3.1.cmml" xref="S2.SS4.p3.1.m1.1.1.3.1"></minus><ci id="S2.SS4.p3.1.m1.1.1.3.2.cmml" xref="S2.SS4.p3.1.m1.1.1.3.2">𝑖</ci><cn id="S2.SS4.p3.1.m1.1.1.3.3.cmml" type="integer" xref="S2.SS4.p3.1.m1.1.1.3.3">1</cn></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p3.1.m1.1c">{x_{i-1}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p3.1.m1.1d">italic_x start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT</annotation></semantics></math> and <math alttext="{x_{i}}" class="ltx_Math" display="inline" id="S2.SS4.p3.2.m2.1"><semantics id="S2.SS4.p3.2.m2.1a"><msub id="S2.SS4.p3.2.m2.1.1" xref="S2.SS4.p3.2.m2.1.1.cmml"><mi id="S2.SS4.p3.2.m2.1.1.2" xref="S2.SS4.p3.2.m2.1.1.2.cmml">x</mi><mi id="S2.SS4.p3.2.m2.1.1.3" xref="S2.SS4.p3.2.m2.1.1.3.cmml">i</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS4.p3.2.m2.1b"><apply id="S2.SS4.p3.2.m2.1.1.cmml" xref="S2.SS4.p3.2.m2.1.1"><csymbol cd="ambiguous" id="S2.SS4.p3.2.m2.1.1.1.cmml" xref="S2.SS4.p3.2.m2.1.1">subscript</csymbol><ci id="S2.SS4.p3.2.m2.1.1.2.cmml" xref="S2.SS4.p3.2.m2.1.1.2">𝑥</ci><ci id="S2.SS4.p3.2.m2.1.1.3.cmml" xref="S2.SS4.p3.2.m2.1.1.3">𝑖</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p3.2.m2.1c">{x_{i}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p3.2.m2.1d">italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT</annotation></semantics></math>, the left- and right-sided extrapolated values of <math alttext="{\mathbf{U}}" class="ltx_Math" display="inline" id="S2.SS4.p3.3.m3.1"><semantics id="S2.SS4.p3.3.m3.1a"><mi id="S2.SS4.p3.3.m3.1.1" xref="S2.SS4.p3.3.m3.1.1.cmml">𝐔</mi><annotation-xml encoding="MathML-Content" id="S2.SS4.p3.3.m3.1b"><ci id="S2.SS4.p3.3.m3.1.1.cmml" xref="S2.SS4.p3.3.m3.1.1">𝐔</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p3.3.m3.1c">{\mathbf{U}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p3.3.m3.1d">bold_U</annotation></semantics></math> are given by:</p> </div> <div class="ltx_para" id="S2.SS4.p4"> <table class="ltx_equation ltx_eqn_table" id="S2.E20"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(20)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{U}_{i-\frac{1}{2}}^{L}=\mathbf{U}_{i-1}+\frac{1}{2}\boldsymbol{\phi}% \left(\mathbf{r}_{i-1}\right)\left(\mathbf{U}_{i}-\mathbf{U}_{i-1}\right)," class="ltx_Math" display="block" id="S2.E20.m1.1"><semantics id="S2.E20.m1.1a"><mrow id="S2.E20.m1.1.1.1" xref="S2.E20.m1.1.1.1.1.cmml"><mrow id="S2.E20.m1.1.1.1.1" xref="S2.E20.m1.1.1.1.1.cmml"><msubsup id="S2.E20.m1.1.1.1.1.4" xref="S2.E20.m1.1.1.1.1.4.cmml"><mi id="S2.E20.m1.1.1.1.1.4.2.2" xref="S2.E20.m1.1.1.1.1.4.2.2.cmml">𝐔</mi><mrow id="S2.E20.m1.1.1.1.1.4.2.3" xref="S2.E20.m1.1.1.1.1.4.2.3.cmml"><mi id="S2.E20.m1.1.1.1.1.4.2.3.2" xref="S2.E20.m1.1.1.1.1.4.2.3.2.cmml">i</mi><mo id="S2.E20.m1.1.1.1.1.4.2.3.1" xref="S2.E20.m1.1.1.1.1.4.2.3.1.cmml">−</mo><mfrac id="S2.E20.m1.1.1.1.1.4.2.3.3" xref="S2.E20.m1.1.1.1.1.4.2.3.3.cmml"><mn id="S2.E20.m1.1.1.1.1.4.2.3.3.2" xref="S2.E20.m1.1.1.1.1.4.2.3.3.2.cmml">1</mn><mn id="S2.E20.m1.1.1.1.1.4.2.3.3.3" xref="S2.E20.m1.1.1.1.1.4.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.E20.m1.1.1.1.1.4.3" xref="S2.E20.m1.1.1.1.1.4.3.cmml">L</mi></msubsup><mo id="S2.E20.m1.1.1.1.1.3" xref="S2.E20.m1.1.1.1.1.3.cmml">=</mo><mrow id="S2.E20.m1.1.1.1.1.2" xref="S2.E20.m1.1.1.1.1.2.cmml"><msub id="S2.E20.m1.1.1.1.1.2.4" xref="S2.E20.m1.1.1.1.1.2.4.cmml"><mi id="S2.E20.m1.1.1.1.1.2.4.2" xref="S2.E20.m1.1.1.1.1.2.4.2.cmml">𝐔</mi><mrow id="S2.E20.m1.1.1.1.1.2.4.3" xref="S2.E20.m1.1.1.1.1.2.4.3.cmml"><mi id="S2.E20.m1.1.1.1.1.2.4.3.2" xref="S2.E20.m1.1.1.1.1.2.4.3.2.cmml">i</mi><mo id="S2.E20.m1.1.1.1.1.2.4.3.1" xref="S2.E20.m1.1.1.1.1.2.4.3.1.cmml">−</mo><mn id="S2.E20.m1.1.1.1.1.2.4.3.3" xref="S2.E20.m1.1.1.1.1.2.4.3.3.cmml">1</mn></mrow></msub><mo id="S2.E20.m1.1.1.1.1.2.3" xref="S2.E20.m1.1.1.1.1.2.3.cmml">+</mo><mrow id="S2.E20.m1.1.1.1.1.2.2" xref="S2.E20.m1.1.1.1.1.2.2.cmml"><mfrac id="S2.E20.m1.1.1.1.1.2.2.4" xref="S2.E20.m1.1.1.1.1.2.2.4.cmml"><mn id="S2.E20.m1.1.1.1.1.2.2.4.2" xref="S2.E20.m1.1.1.1.1.2.2.4.2.cmml">1</mn><mn id="S2.E20.m1.1.1.1.1.2.2.4.3" xref="S2.E20.m1.1.1.1.1.2.2.4.3.cmml">2</mn></mfrac><mo id="S2.E20.m1.1.1.1.1.2.2.3" xref="S2.E20.m1.1.1.1.1.2.2.3.cmml"></mo><mi class="ltx_mathvariant_bold-italic" id="S2.E20.m1.1.1.1.1.2.2.5" mathvariant="bold-italic" xref="S2.E20.m1.1.1.1.1.2.2.5.cmml">ϕ</mi><mo id="S2.E20.m1.1.1.1.1.2.2.3a" xref="S2.E20.m1.1.1.1.1.2.2.3.cmml"></mo><mrow id="S2.E20.m1.1.1.1.1.1.1.1.1" xref="S2.E20.m1.1.1.1.1.1.1.1.1.1.cmml"><mo id="S2.E20.m1.1.1.1.1.1.1.1.1.2" xref="S2.E20.m1.1.1.1.1.1.1.1.1.1.cmml">(</mo><msub id="S2.E20.m1.1.1.1.1.1.1.1.1.1" xref="S2.E20.m1.1.1.1.1.1.1.1.1.1.cmml"><mi id="S2.E20.m1.1.1.1.1.1.1.1.1.1.2" xref="S2.E20.m1.1.1.1.1.1.1.1.1.1.2.cmml">𝐫</mi><mrow id="S2.E20.m1.1.1.1.1.1.1.1.1.1.3" xref="S2.E20.m1.1.1.1.1.1.1.1.1.1.3.cmml"><mi id="S2.E20.m1.1.1.1.1.1.1.1.1.1.3.2" xref="S2.E20.m1.1.1.1.1.1.1.1.1.1.3.2.cmml">i</mi><mo id="S2.E20.m1.1.1.1.1.1.1.1.1.1.3.1" xref="S2.E20.m1.1.1.1.1.1.1.1.1.1.3.1.cmml">−</mo><mn id="S2.E20.m1.1.1.1.1.1.1.1.1.1.3.3" xref="S2.E20.m1.1.1.1.1.1.1.1.1.1.3.3.cmml">1</mn></mrow></msub><mo id="S2.E20.m1.1.1.1.1.1.1.1.1.3" xref="S2.E20.m1.1.1.1.1.1.1.1.1.1.cmml">)</mo></mrow><mo id="S2.E20.m1.1.1.1.1.2.2.3b" xref="S2.E20.m1.1.1.1.1.2.2.3.cmml"></mo><mrow id="S2.E20.m1.1.1.1.1.2.2.2.1" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.cmml"><mo id="S2.E20.m1.1.1.1.1.2.2.2.1.2" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.cmml">(</mo><mrow id="S2.E20.m1.1.1.1.1.2.2.2.1.1" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.cmml"><msub id="S2.E20.m1.1.1.1.1.2.2.2.1.1.2" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.2.cmml"><mi id="S2.E20.m1.1.1.1.1.2.2.2.1.1.2.2" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.2.2.cmml">𝐔</mi><mi id="S2.E20.m1.1.1.1.1.2.2.2.1.1.2.3" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.2.3.cmml">i</mi></msub><mo id="S2.E20.m1.1.1.1.1.2.2.2.1.1.1" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.1.cmml">−</mo><msub id="S2.E20.m1.1.1.1.1.2.2.2.1.1.3" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.cmml"><mi id="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.2" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.2.cmml">𝐔</mi><mrow id="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.3" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.3.cmml"><mi id="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.3.2" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.3.2.cmml">i</mi><mo id="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.3.1" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.3.1.cmml">−</mo><mn id="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.3.3" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.3.3.cmml">1</mn></mrow></msub></mrow><mo id="S2.E20.m1.1.1.1.1.2.2.2.1.3" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.cmml">)</mo></mrow></mrow></mrow></mrow><mo id="S2.E20.m1.1.1.1.2" xref="S2.E20.m1.1.1.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E20.m1.1b"><apply id="S2.E20.m1.1.1.1.1.cmml" xref="S2.E20.m1.1.1.1"><eq id="S2.E20.m1.1.1.1.1.3.cmml" xref="S2.E20.m1.1.1.1.1.3"></eq><apply id="S2.E20.m1.1.1.1.1.4.cmml" xref="S2.E20.m1.1.1.1.1.4"><csymbol cd="ambiguous" id="S2.E20.m1.1.1.1.1.4.1.cmml" xref="S2.E20.m1.1.1.1.1.4">superscript</csymbol><apply id="S2.E20.m1.1.1.1.1.4.2.cmml" xref="S2.E20.m1.1.1.1.1.4"><csymbol cd="ambiguous" id="S2.E20.m1.1.1.1.1.4.2.1.cmml" xref="S2.E20.m1.1.1.1.1.4">subscript</csymbol><ci id="S2.E20.m1.1.1.1.1.4.2.2.cmml" xref="S2.E20.m1.1.1.1.1.4.2.2">𝐔</ci><apply id="S2.E20.m1.1.1.1.1.4.2.3.cmml" xref="S2.E20.m1.1.1.1.1.4.2.3"><minus id="S2.E20.m1.1.1.1.1.4.2.3.1.cmml" xref="S2.E20.m1.1.1.1.1.4.2.3.1"></minus><ci id="S2.E20.m1.1.1.1.1.4.2.3.2.cmml" xref="S2.E20.m1.1.1.1.1.4.2.3.2">𝑖</ci><apply id="S2.E20.m1.1.1.1.1.4.2.3.3.cmml" xref="S2.E20.m1.1.1.1.1.4.2.3.3"><divide id="S2.E20.m1.1.1.1.1.4.2.3.3.1.cmml" xref="S2.E20.m1.1.1.1.1.4.2.3.3"></divide><cn id="S2.E20.m1.1.1.1.1.4.2.3.3.2.cmml" type="integer" xref="S2.E20.m1.1.1.1.1.4.2.3.3.2">1</cn><cn id="S2.E20.m1.1.1.1.1.4.2.3.3.3.cmml" type="integer" xref="S2.E20.m1.1.1.1.1.4.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.E20.m1.1.1.1.1.4.3.cmml" xref="S2.E20.m1.1.1.1.1.4.3">𝐿</ci></apply><apply id="S2.E20.m1.1.1.1.1.2.cmml" xref="S2.E20.m1.1.1.1.1.2"><plus id="S2.E20.m1.1.1.1.1.2.3.cmml" xref="S2.E20.m1.1.1.1.1.2.3"></plus><apply id="S2.E20.m1.1.1.1.1.2.4.cmml" xref="S2.E20.m1.1.1.1.1.2.4"><csymbol cd="ambiguous" id="S2.E20.m1.1.1.1.1.2.4.1.cmml" xref="S2.E20.m1.1.1.1.1.2.4">subscript</csymbol><ci id="S2.E20.m1.1.1.1.1.2.4.2.cmml" xref="S2.E20.m1.1.1.1.1.2.4.2">𝐔</ci><apply id="S2.E20.m1.1.1.1.1.2.4.3.cmml" xref="S2.E20.m1.1.1.1.1.2.4.3"><minus id="S2.E20.m1.1.1.1.1.2.4.3.1.cmml" xref="S2.E20.m1.1.1.1.1.2.4.3.1"></minus><ci id="S2.E20.m1.1.1.1.1.2.4.3.2.cmml" xref="S2.E20.m1.1.1.1.1.2.4.3.2">𝑖</ci><cn id="S2.E20.m1.1.1.1.1.2.4.3.3.cmml" type="integer" xref="S2.E20.m1.1.1.1.1.2.4.3.3">1</cn></apply></apply><apply id="S2.E20.m1.1.1.1.1.2.2.cmml" xref="S2.E20.m1.1.1.1.1.2.2"><times id="S2.E20.m1.1.1.1.1.2.2.3.cmml" xref="S2.E20.m1.1.1.1.1.2.2.3"></times><apply id="S2.E20.m1.1.1.1.1.2.2.4.cmml" xref="S2.E20.m1.1.1.1.1.2.2.4"><divide id="S2.E20.m1.1.1.1.1.2.2.4.1.cmml" xref="S2.E20.m1.1.1.1.1.2.2.4"></divide><cn id="S2.E20.m1.1.1.1.1.2.2.4.2.cmml" type="integer" xref="S2.E20.m1.1.1.1.1.2.2.4.2">1</cn><cn id="S2.E20.m1.1.1.1.1.2.2.4.3.cmml" type="integer" xref="S2.E20.m1.1.1.1.1.2.2.4.3">2</cn></apply><ci id="S2.E20.m1.1.1.1.1.2.2.5.cmml" xref="S2.E20.m1.1.1.1.1.2.2.5">bold-italic-ϕ</ci><apply id="S2.E20.m1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E20.m1.1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E20.m1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E20.m1.1.1.1.1.1.1.1.1">subscript</csymbol><ci id="S2.E20.m1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E20.m1.1.1.1.1.1.1.1.1.1.2">𝐫</ci><apply id="S2.E20.m1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E20.m1.1.1.1.1.1.1.1.1.1.3"><minus id="S2.E20.m1.1.1.1.1.1.1.1.1.1.3.1.cmml" xref="S2.E20.m1.1.1.1.1.1.1.1.1.1.3.1"></minus><ci id="S2.E20.m1.1.1.1.1.1.1.1.1.1.3.2.cmml" xref="S2.E20.m1.1.1.1.1.1.1.1.1.1.3.2">𝑖</ci><cn id="S2.E20.m1.1.1.1.1.1.1.1.1.1.3.3.cmml" type="integer" xref="S2.E20.m1.1.1.1.1.1.1.1.1.1.3.3">1</cn></apply></apply><apply id="S2.E20.m1.1.1.1.1.2.2.2.1.1.cmml" xref="S2.E20.m1.1.1.1.1.2.2.2.1"><minus id="S2.E20.m1.1.1.1.1.2.2.2.1.1.1.cmml" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.1"></minus><apply id="S2.E20.m1.1.1.1.1.2.2.2.1.1.2.cmml" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.2"><csymbol cd="ambiguous" id="S2.E20.m1.1.1.1.1.2.2.2.1.1.2.1.cmml" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.2">subscript</csymbol><ci id="S2.E20.m1.1.1.1.1.2.2.2.1.1.2.2.cmml" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.2.2">𝐔</ci><ci id="S2.E20.m1.1.1.1.1.2.2.2.1.1.2.3.cmml" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.2.3">𝑖</ci></apply><apply id="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.cmml" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.3"><csymbol cd="ambiguous" id="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.1.cmml" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.3">subscript</csymbol><ci id="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.2.cmml" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.2">𝐔</ci><apply id="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.3.cmml" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.3"><minus id="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.3.1.cmml" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.3.1"></minus><ci id="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.3.2.cmml" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.3.2">𝑖</ci><cn id="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.3.3.cmml" type="integer" xref="S2.E20.m1.1.1.1.1.2.2.2.1.1.3.3.3">1</cn></apply></apply></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E20.m1.1c">\mathbf{U}_{i-\frac{1}{2}}^{L}=\mathbf{U}_{i-1}+\frac{1}{2}\boldsymbol{\phi}% \left(\mathbf{r}_{i-1}\right)\left(\mathbf{U}_{i}-\mathbf{U}_{i-1}\right),</annotation><annotation encoding="application/x-llamapun" id="S2.E20.m1.1d">bold_U start_POSTSUBSCRIPT italic_i - divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT = bold_U start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG bold_italic_ϕ ( bold_r start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT ) ( bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - bold_U start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT ) ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS4.p4.1">and:</p> </div> <div class="ltx_para" id="S2.SS4.p5"> <table class="ltx_equation ltx_eqn_table" id="S2.E21"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(21)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{U}_{i-\frac{1}{2}}^{R}=\mathbf{U}_{i}-\frac{1}{2}\boldsymbol{\phi}% \left(\mathbf{r}_{i}\right)\left(\mathbf{U}_{i+1}-\mathbf{U}_{i}\right)," class="ltx_Math" display="block" id="S2.E21.m1.1"><semantics id="S2.E21.m1.1a"><mrow id="S2.E21.m1.1.1.1" xref="S2.E21.m1.1.1.1.1.cmml"><mrow id="S2.E21.m1.1.1.1.1" xref="S2.E21.m1.1.1.1.1.cmml"><msubsup id="S2.E21.m1.1.1.1.1.4" xref="S2.E21.m1.1.1.1.1.4.cmml"><mi id="S2.E21.m1.1.1.1.1.4.2.2" xref="S2.E21.m1.1.1.1.1.4.2.2.cmml">𝐔</mi><mrow id="S2.E21.m1.1.1.1.1.4.2.3" xref="S2.E21.m1.1.1.1.1.4.2.3.cmml"><mi id="S2.E21.m1.1.1.1.1.4.2.3.2" xref="S2.E21.m1.1.1.1.1.4.2.3.2.cmml">i</mi><mo id="S2.E21.m1.1.1.1.1.4.2.3.1" xref="S2.E21.m1.1.1.1.1.4.2.3.1.cmml">−</mo><mfrac id="S2.E21.m1.1.1.1.1.4.2.3.3" xref="S2.E21.m1.1.1.1.1.4.2.3.3.cmml"><mn id="S2.E21.m1.1.1.1.1.4.2.3.3.2" xref="S2.E21.m1.1.1.1.1.4.2.3.3.2.cmml">1</mn><mn id="S2.E21.m1.1.1.1.1.4.2.3.3.3" xref="S2.E21.m1.1.1.1.1.4.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.E21.m1.1.1.1.1.4.3" xref="S2.E21.m1.1.1.1.1.4.3.cmml">R</mi></msubsup><mo id="S2.E21.m1.1.1.1.1.3" xref="S2.E21.m1.1.1.1.1.3.cmml">=</mo><mrow id="S2.E21.m1.1.1.1.1.2" xref="S2.E21.m1.1.1.1.1.2.cmml"><msub id="S2.E21.m1.1.1.1.1.2.4" xref="S2.E21.m1.1.1.1.1.2.4.cmml"><mi id="S2.E21.m1.1.1.1.1.2.4.2" xref="S2.E21.m1.1.1.1.1.2.4.2.cmml">𝐔</mi><mi id="S2.E21.m1.1.1.1.1.2.4.3" xref="S2.E21.m1.1.1.1.1.2.4.3.cmml">i</mi></msub><mo id="S2.E21.m1.1.1.1.1.2.3" xref="S2.E21.m1.1.1.1.1.2.3.cmml">−</mo><mrow id="S2.E21.m1.1.1.1.1.2.2" xref="S2.E21.m1.1.1.1.1.2.2.cmml"><mfrac id="S2.E21.m1.1.1.1.1.2.2.4" xref="S2.E21.m1.1.1.1.1.2.2.4.cmml"><mn id="S2.E21.m1.1.1.1.1.2.2.4.2" xref="S2.E21.m1.1.1.1.1.2.2.4.2.cmml">1</mn><mn id="S2.E21.m1.1.1.1.1.2.2.4.3" xref="S2.E21.m1.1.1.1.1.2.2.4.3.cmml">2</mn></mfrac><mo id="S2.E21.m1.1.1.1.1.2.2.3" xref="S2.E21.m1.1.1.1.1.2.2.3.cmml"></mo><mi class="ltx_mathvariant_bold-italic" id="S2.E21.m1.1.1.1.1.2.2.5" mathvariant="bold-italic" xref="S2.E21.m1.1.1.1.1.2.2.5.cmml">ϕ</mi><mo id="S2.E21.m1.1.1.1.1.2.2.3a" xref="S2.E21.m1.1.1.1.1.2.2.3.cmml"></mo><mrow id="S2.E21.m1.1.1.1.1.1.1.1.1" xref="S2.E21.m1.1.1.1.1.1.1.1.1.1.cmml"><mo id="S2.E21.m1.1.1.1.1.1.1.1.1.2" xref="S2.E21.m1.1.1.1.1.1.1.1.1.1.cmml">(</mo><msub id="S2.E21.m1.1.1.1.1.1.1.1.1.1" xref="S2.E21.m1.1.1.1.1.1.1.1.1.1.cmml"><mi id="S2.E21.m1.1.1.1.1.1.1.1.1.1.2" xref="S2.E21.m1.1.1.1.1.1.1.1.1.1.2.cmml">𝐫</mi><mi id="S2.E21.m1.1.1.1.1.1.1.1.1.1.3" xref="S2.E21.m1.1.1.1.1.1.1.1.1.1.3.cmml">i</mi></msub><mo id="S2.E21.m1.1.1.1.1.1.1.1.1.3" xref="S2.E21.m1.1.1.1.1.1.1.1.1.1.cmml">)</mo></mrow><mo id="S2.E21.m1.1.1.1.1.2.2.3b" xref="S2.E21.m1.1.1.1.1.2.2.3.cmml"></mo><mrow id="S2.E21.m1.1.1.1.1.2.2.2.1" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.cmml"><mo id="S2.E21.m1.1.1.1.1.2.2.2.1.2" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.cmml">(</mo><mrow id="S2.E21.m1.1.1.1.1.2.2.2.1.1" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.cmml"><msub id="S2.E21.m1.1.1.1.1.2.2.2.1.1.2" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.cmml"><mi id="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.2" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.2.cmml">𝐔</mi><mrow id="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.3" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.3.cmml"><mi id="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.3.2" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.3.2.cmml">i</mi><mo id="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.3.1" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.3.1.cmml">+</mo><mn id="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.3.3" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.3.3.cmml">1</mn></mrow></msub><mo id="S2.E21.m1.1.1.1.1.2.2.2.1.1.1" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.1.cmml">−</mo><msub id="S2.E21.m1.1.1.1.1.2.2.2.1.1.3" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.3.cmml"><mi id="S2.E21.m1.1.1.1.1.2.2.2.1.1.3.2" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.3.2.cmml">𝐔</mi><mi id="S2.E21.m1.1.1.1.1.2.2.2.1.1.3.3" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.3.3.cmml">i</mi></msub></mrow><mo id="S2.E21.m1.1.1.1.1.2.2.2.1.3" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.cmml">)</mo></mrow></mrow></mrow></mrow><mo id="S2.E21.m1.1.1.1.2" xref="S2.E21.m1.1.1.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E21.m1.1b"><apply id="S2.E21.m1.1.1.1.1.cmml" xref="S2.E21.m1.1.1.1"><eq id="S2.E21.m1.1.1.1.1.3.cmml" xref="S2.E21.m1.1.1.1.1.3"></eq><apply id="S2.E21.m1.1.1.1.1.4.cmml" xref="S2.E21.m1.1.1.1.1.4"><csymbol cd="ambiguous" id="S2.E21.m1.1.1.1.1.4.1.cmml" xref="S2.E21.m1.1.1.1.1.4">superscript</csymbol><apply id="S2.E21.m1.1.1.1.1.4.2.cmml" xref="S2.E21.m1.1.1.1.1.4"><csymbol cd="ambiguous" id="S2.E21.m1.1.1.1.1.4.2.1.cmml" xref="S2.E21.m1.1.1.1.1.4">subscript</csymbol><ci id="S2.E21.m1.1.1.1.1.4.2.2.cmml" xref="S2.E21.m1.1.1.1.1.4.2.2">𝐔</ci><apply id="S2.E21.m1.1.1.1.1.4.2.3.cmml" xref="S2.E21.m1.1.1.1.1.4.2.3"><minus id="S2.E21.m1.1.1.1.1.4.2.3.1.cmml" xref="S2.E21.m1.1.1.1.1.4.2.3.1"></minus><ci id="S2.E21.m1.1.1.1.1.4.2.3.2.cmml" xref="S2.E21.m1.1.1.1.1.4.2.3.2">𝑖</ci><apply id="S2.E21.m1.1.1.1.1.4.2.3.3.cmml" xref="S2.E21.m1.1.1.1.1.4.2.3.3"><divide id="S2.E21.m1.1.1.1.1.4.2.3.3.1.cmml" xref="S2.E21.m1.1.1.1.1.4.2.3.3"></divide><cn id="S2.E21.m1.1.1.1.1.4.2.3.3.2.cmml" type="integer" xref="S2.E21.m1.1.1.1.1.4.2.3.3.2">1</cn><cn id="S2.E21.m1.1.1.1.1.4.2.3.3.3.cmml" type="integer" xref="S2.E21.m1.1.1.1.1.4.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.E21.m1.1.1.1.1.4.3.cmml" xref="S2.E21.m1.1.1.1.1.4.3">𝑅</ci></apply><apply id="S2.E21.m1.1.1.1.1.2.cmml" xref="S2.E21.m1.1.1.1.1.2"><minus id="S2.E21.m1.1.1.1.1.2.3.cmml" xref="S2.E21.m1.1.1.1.1.2.3"></minus><apply id="S2.E21.m1.1.1.1.1.2.4.cmml" xref="S2.E21.m1.1.1.1.1.2.4"><csymbol cd="ambiguous" id="S2.E21.m1.1.1.1.1.2.4.1.cmml" xref="S2.E21.m1.1.1.1.1.2.4">subscript</csymbol><ci id="S2.E21.m1.1.1.1.1.2.4.2.cmml" xref="S2.E21.m1.1.1.1.1.2.4.2">𝐔</ci><ci id="S2.E21.m1.1.1.1.1.2.4.3.cmml" xref="S2.E21.m1.1.1.1.1.2.4.3">𝑖</ci></apply><apply id="S2.E21.m1.1.1.1.1.2.2.cmml" xref="S2.E21.m1.1.1.1.1.2.2"><times id="S2.E21.m1.1.1.1.1.2.2.3.cmml" xref="S2.E21.m1.1.1.1.1.2.2.3"></times><apply id="S2.E21.m1.1.1.1.1.2.2.4.cmml" xref="S2.E21.m1.1.1.1.1.2.2.4"><divide id="S2.E21.m1.1.1.1.1.2.2.4.1.cmml" xref="S2.E21.m1.1.1.1.1.2.2.4"></divide><cn id="S2.E21.m1.1.1.1.1.2.2.4.2.cmml" type="integer" xref="S2.E21.m1.1.1.1.1.2.2.4.2">1</cn><cn id="S2.E21.m1.1.1.1.1.2.2.4.3.cmml" type="integer" xref="S2.E21.m1.1.1.1.1.2.2.4.3">2</cn></apply><ci id="S2.E21.m1.1.1.1.1.2.2.5.cmml" xref="S2.E21.m1.1.1.1.1.2.2.5">bold-italic-ϕ</ci><apply id="S2.E21.m1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E21.m1.1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E21.m1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E21.m1.1.1.1.1.1.1.1.1">subscript</csymbol><ci id="S2.E21.m1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E21.m1.1.1.1.1.1.1.1.1.1.2">𝐫</ci><ci id="S2.E21.m1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E21.m1.1.1.1.1.1.1.1.1.1.3">𝑖</ci></apply><apply id="S2.E21.m1.1.1.1.1.2.2.2.1.1.cmml" xref="S2.E21.m1.1.1.1.1.2.2.2.1"><minus id="S2.E21.m1.1.1.1.1.2.2.2.1.1.1.cmml" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.1"></minus><apply id="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.cmml" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.2"><csymbol cd="ambiguous" id="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.1.cmml" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.2">subscript</csymbol><ci id="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.2.cmml" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.2">𝐔</ci><apply id="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.3.cmml" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.3"><plus id="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.3.1.cmml" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.3.1"></plus><ci id="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.3.2.cmml" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.3.2">𝑖</ci><cn id="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.3.3.cmml" type="integer" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.2.3.3">1</cn></apply></apply><apply id="S2.E21.m1.1.1.1.1.2.2.2.1.1.3.cmml" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.3"><csymbol cd="ambiguous" id="S2.E21.m1.1.1.1.1.2.2.2.1.1.3.1.cmml" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.3">subscript</csymbol><ci id="S2.E21.m1.1.1.1.1.2.2.2.1.1.3.2.cmml" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.3.2">𝐔</ci><ci id="S2.E21.m1.1.1.1.1.2.2.2.1.1.3.3.cmml" xref="S2.E21.m1.1.1.1.1.2.2.2.1.1.3.3">𝑖</ci></apply></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E21.m1.1c">\mathbf{U}_{i-\frac{1}{2}}^{R}=\mathbf{U}_{i}-\frac{1}{2}\boldsymbol{\phi}% \left(\mathbf{r}_{i}\right)\left(\mathbf{U}_{i+1}-\mathbf{U}_{i}\right),</annotation><annotation encoding="application/x-llamapun" id="S2.E21.m1.1d">bold_U start_POSTSUBSCRIPT italic_i - divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT = bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG bold_italic_ϕ ( bold_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ( bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT - bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS4.p5.2">respectively, where <math alttext="{\mathbf{r}_{i}}" class="ltx_Math" display="inline" id="S2.SS4.p5.1.m1.1"><semantics id="S2.SS4.p5.1.m1.1a"><msub id="S2.SS4.p5.1.m1.1.1" xref="S2.SS4.p5.1.m1.1.1.cmml"><mi id="S2.SS4.p5.1.m1.1.1.2" xref="S2.SS4.p5.1.m1.1.1.2.cmml">𝐫</mi><mi id="S2.SS4.p5.1.m1.1.1.3" xref="S2.SS4.p5.1.m1.1.1.3.cmml">i</mi></msub><annotation-xml encoding="MathML-Content" id="S2.SS4.p5.1.m1.1b"><apply id="S2.SS4.p5.1.m1.1.1.cmml" xref="S2.SS4.p5.1.m1.1.1"><csymbol cd="ambiguous" id="S2.SS4.p5.1.m1.1.1.1.cmml" xref="S2.SS4.p5.1.m1.1.1">subscript</csymbol><ci id="S2.SS4.p5.1.m1.1.1.2.cmml" xref="S2.SS4.p5.1.m1.1.1.2">𝐫</ci><ci id="S2.SS4.p5.1.m1.1.1.3.cmml" xref="S2.SS4.p5.1.m1.1.1.3">𝑖</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p5.1.m1.1c">{\mathbf{r}_{i}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p5.1.m1.1d">bold_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT</annotation></semantics></math> is a ratio of successive gradients of <math alttext="{\mathbf{U}}" class="ltx_Math" display="inline" id="S2.SS4.p5.2.m2.1"><semantics id="S2.SS4.p5.2.m2.1a"><mi id="S2.SS4.p5.2.m2.1.1" xref="S2.SS4.p5.2.m2.1.1.cmml">𝐔</mi><annotation-xml encoding="MathML-Content" id="S2.SS4.p5.2.m2.1b"><ci id="S2.SS4.p5.2.m2.1.1.cmml" xref="S2.SS4.p5.2.m2.1.1">𝐔</ci></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p5.2.m2.1c">{\mathbf{U}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p5.2.m2.1d">bold_U</annotation></semantics></math> (computed componentwise):</p> </div> <div class="ltx_para" id="S2.SS4.p6"> <table class="ltx_equation ltx_eqn_table" id="S2.E22"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(22)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{r}_{i}=\frac{\mathbf{U}_{i}-\mathbf{U}_{i-1}}{\mathbf{U}_{i+1}-\mathbf% {U}_{i}}." class="ltx_Math" display="block" id="S2.E22.m1.1"><semantics id="S2.E22.m1.1a"><mrow id="S2.E22.m1.1.1.1" xref="S2.E22.m1.1.1.1.1.cmml"><mrow id="S2.E22.m1.1.1.1.1" xref="S2.E22.m1.1.1.1.1.cmml"><msub id="S2.E22.m1.1.1.1.1.2" xref="S2.E22.m1.1.1.1.1.2.cmml"><mi id="S2.E22.m1.1.1.1.1.2.2" xref="S2.E22.m1.1.1.1.1.2.2.cmml">𝐫</mi><mi id="S2.E22.m1.1.1.1.1.2.3" xref="S2.E22.m1.1.1.1.1.2.3.cmml">i</mi></msub><mo id="S2.E22.m1.1.1.1.1.1" xref="S2.E22.m1.1.1.1.1.1.cmml">=</mo><mfrac id="S2.E22.m1.1.1.1.1.3" xref="S2.E22.m1.1.1.1.1.3.cmml"><mrow id="S2.E22.m1.1.1.1.1.3.2" xref="S2.E22.m1.1.1.1.1.3.2.cmml"><msub id="S2.E22.m1.1.1.1.1.3.2.2" xref="S2.E22.m1.1.1.1.1.3.2.2.cmml"><mi id="S2.E22.m1.1.1.1.1.3.2.2.2" xref="S2.E22.m1.1.1.1.1.3.2.2.2.cmml">𝐔</mi><mi id="S2.E22.m1.1.1.1.1.3.2.2.3" xref="S2.E22.m1.1.1.1.1.3.2.2.3.cmml">i</mi></msub><mo id="S2.E22.m1.1.1.1.1.3.2.1" xref="S2.E22.m1.1.1.1.1.3.2.1.cmml">−</mo><msub id="S2.E22.m1.1.1.1.1.3.2.3" xref="S2.E22.m1.1.1.1.1.3.2.3.cmml"><mi id="S2.E22.m1.1.1.1.1.3.2.3.2" xref="S2.E22.m1.1.1.1.1.3.2.3.2.cmml">𝐔</mi><mrow id="S2.E22.m1.1.1.1.1.3.2.3.3" xref="S2.E22.m1.1.1.1.1.3.2.3.3.cmml"><mi id="S2.E22.m1.1.1.1.1.3.2.3.3.2" xref="S2.E22.m1.1.1.1.1.3.2.3.3.2.cmml">i</mi><mo id="S2.E22.m1.1.1.1.1.3.2.3.3.1" xref="S2.E22.m1.1.1.1.1.3.2.3.3.1.cmml">−</mo><mn id="S2.E22.m1.1.1.1.1.3.2.3.3.3" xref="S2.E22.m1.1.1.1.1.3.2.3.3.3.cmml">1</mn></mrow></msub></mrow><mrow id="S2.E22.m1.1.1.1.1.3.3" xref="S2.E22.m1.1.1.1.1.3.3.cmml"><msub id="S2.E22.m1.1.1.1.1.3.3.2" xref="S2.E22.m1.1.1.1.1.3.3.2.cmml"><mi id="S2.E22.m1.1.1.1.1.3.3.2.2" xref="S2.E22.m1.1.1.1.1.3.3.2.2.cmml">𝐔</mi><mrow id="S2.E22.m1.1.1.1.1.3.3.2.3" xref="S2.E22.m1.1.1.1.1.3.3.2.3.cmml"><mi id="S2.E22.m1.1.1.1.1.3.3.2.3.2" xref="S2.E22.m1.1.1.1.1.3.3.2.3.2.cmml">i</mi><mo id="S2.E22.m1.1.1.1.1.3.3.2.3.1" xref="S2.E22.m1.1.1.1.1.3.3.2.3.1.cmml">+</mo><mn id="S2.E22.m1.1.1.1.1.3.3.2.3.3" xref="S2.E22.m1.1.1.1.1.3.3.2.3.3.cmml">1</mn></mrow></msub><mo id="S2.E22.m1.1.1.1.1.3.3.1" xref="S2.E22.m1.1.1.1.1.3.3.1.cmml">−</mo><msub id="S2.E22.m1.1.1.1.1.3.3.3" xref="S2.E22.m1.1.1.1.1.3.3.3.cmml"><mi id="S2.E22.m1.1.1.1.1.3.3.3.2" xref="S2.E22.m1.1.1.1.1.3.3.3.2.cmml">𝐔</mi><mi id="S2.E22.m1.1.1.1.1.3.3.3.3" xref="S2.E22.m1.1.1.1.1.3.3.3.3.cmml">i</mi></msub></mrow></mfrac></mrow><mo id="S2.E22.m1.1.1.1.2" lspace="0em" xref="S2.E22.m1.1.1.1.1.cmml">.</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E22.m1.1b"><apply id="S2.E22.m1.1.1.1.1.cmml" xref="S2.E22.m1.1.1.1"><eq id="S2.E22.m1.1.1.1.1.1.cmml" xref="S2.E22.m1.1.1.1.1.1"></eq><apply id="S2.E22.m1.1.1.1.1.2.cmml" xref="S2.E22.m1.1.1.1.1.2"><csymbol cd="ambiguous" id="S2.E22.m1.1.1.1.1.2.1.cmml" xref="S2.E22.m1.1.1.1.1.2">subscript</csymbol><ci id="S2.E22.m1.1.1.1.1.2.2.cmml" xref="S2.E22.m1.1.1.1.1.2.2">𝐫</ci><ci id="S2.E22.m1.1.1.1.1.2.3.cmml" xref="S2.E22.m1.1.1.1.1.2.3">𝑖</ci></apply><apply id="S2.E22.m1.1.1.1.1.3.cmml" xref="S2.E22.m1.1.1.1.1.3"><divide id="S2.E22.m1.1.1.1.1.3.1.cmml" xref="S2.E22.m1.1.1.1.1.3"></divide><apply id="S2.E22.m1.1.1.1.1.3.2.cmml" xref="S2.E22.m1.1.1.1.1.3.2"><minus id="S2.E22.m1.1.1.1.1.3.2.1.cmml" xref="S2.E22.m1.1.1.1.1.3.2.1"></minus><apply id="S2.E22.m1.1.1.1.1.3.2.2.cmml" xref="S2.E22.m1.1.1.1.1.3.2.2"><csymbol cd="ambiguous" id="S2.E22.m1.1.1.1.1.3.2.2.1.cmml" xref="S2.E22.m1.1.1.1.1.3.2.2">subscript</csymbol><ci id="S2.E22.m1.1.1.1.1.3.2.2.2.cmml" xref="S2.E22.m1.1.1.1.1.3.2.2.2">𝐔</ci><ci id="S2.E22.m1.1.1.1.1.3.2.2.3.cmml" xref="S2.E22.m1.1.1.1.1.3.2.2.3">𝑖</ci></apply><apply id="S2.E22.m1.1.1.1.1.3.2.3.cmml" xref="S2.E22.m1.1.1.1.1.3.2.3"><csymbol cd="ambiguous" id="S2.E22.m1.1.1.1.1.3.2.3.1.cmml" xref="S2.E22.m1.1.1.1.1.3.2.3">subscript</csymbol><ci id="S2.E22.m1.1.1.1.1.3.2.3.2.cmml" xref="S2.E22.m1.1.1.1.1.3.2.3.2">𝐔</ci><apply id="S2.E22.m1.1.1.1.1.3.2.3.3.cmml" xref="S2.E22.m1.1.1.1.1.3.2.3.3"><minus id="S2.E22.m1.1.1.1.1.3.2.3.3.1.cmml" xref="S2.E22.m1.1.1.1.1.3.2.3.3.1"></minus><ci id="S2.E22.m1.1.1.1.1.3.2.3.3.2.cmml" xref="S2.E22.m1.1.1.1.1.3.2.3.3.2">𝑖</ci><cn id="S2.E22.m1.1.1.1.1.3.2.3.3.3.cmml" type="integer" xref="S2.E22.m1.1.1.1.1.3.2.3.3.3">1</cn></apply></apply></apply><apply id="S2.E22.m1.1.1.1.1.3.3.cmml" xref="S2.E22.m1.1.1.1.1.3.3"><minus id="S2.E22.m1.1.1.1.1.3.3.1.cmml" xref="S2.E22.m1.1.1.1.1.3.3.1"></minus><apply id="S2.E22.m1.1.1.1.1.3.3.2.cmml" xref="S2.E22.m1.1.1.1.1.3.3.2"><csymbol cd="ambiguous" id="S2.E22.m1.1.1.1.1.3.3.2.1.cmml" xref="S2.E22.m1.1.1.1.1.3.3.2">subscript</csymbol><ci id="S2.E22.m1.1.1.1.1.3.3.2.2.cmml" xref="S2.E22.m1.1.1.1.1.3.3.2.2">𝐔</ci><apply id="S2.E22.m1.1.1.1.1.3.3.2.3.cmml" xref="S2.E22.m1.1.1.1.1.3.3.2.3"><plus id="S2.E22.m1.1.1.1.1.3.3.2.3.1.cmml" xref="S2.E22.m1.1.1.1.1.3.3.2.3.1"></plus><ci id="S2.E22.m1.1.1.1.1.3.3.2.3.2.cmml" xref="S2.E22.m1.1.1.1.1.3.3.2.3.2">𝑖</ci><cn id="S2.E22.m1.1.1.1.1.3.3.2.3.3.cmml" type="integer" xref="S2.E22.m1.1.1.1.1.3.3.2.3.3">1</cn></apply></apply><apply id="S2.E22.m1.1.1.1.1.3.3.3.cmml" xref="S2.E22.m1.1.1.1.1.3.3.3"><csymbol cd="ambiguous" id="S2.E22.m1.1.1.1.1.3.3.3.1.cmml" xref="S2.E22.m1.1.1.1.1.3.3.3">subscript</csymbol><ci id="S2.E22.m1.1.1.1.1.3.3.3.2.cmml" xref="S2.E22.m1.1.1.1.1.3.3.3.2">𝐔</ci><ci id="S2.E22.m1.1.1.1.1.3.3.3.3.cmml" xref="S2.E22.m1.1.1.1.1.3.3.3.3">𝑖</ci></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E22.m1.1c">\mathbf{r}_{i}=\frac{\mathbf{U}_{i}-\mathbf{U}_{i-1}}{\mathbf{U}_{i+1}-\mathbf% {U}_{i}}.</annotation><annotation encoding="application/x-llamapun" id="S2.E22.m1.1d">bold_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = divide start_ARG bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - bold_U start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT end_ARG start_ARG bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT - bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG .</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS4.p6.2">The function <math alttext="{\boldsymbol{\phi}\left(\mathbf{r}_{i}\right)}" class="ltx_Math" display="inline" id="S2.SS4.p6.1.m1.1"><semantics id="S2.SS4.p6.1.m1.1a"><mrow id="S2.SS4.p6.1.m1.1.1" xref="S2.SS4.p6.1.m1.1.1.cmml"><mi class="ltx_mathvariant_bold-italic" id="S2.SS4.p6.1.m1.1.1.3" mathvariant="bold-italic" xref="S2.SS4.p6.1.m1.1.1.3.cmml">ϕ</mi><mo id="S2.SS4.p6.1.m1.1.1.2" xref="S2.SS4.p6.1.m1.1.1.2.cmml"></mo><mrow id="S2.SS4.p6.1.m1.1.1.1.1" xref="S2.SS4.p6.1.m1.1.1.1.1.1.cmml"><mo id="S2.SS4.p6.1.m1.1.1.1.1.2" xref="S2.SS4.p6.1.m1.1.1.1.1.1.cmml">(</mo><msub id="S2.SS4.p6.1.m1.1.1.1.1.1" xref="S2.SS4.p6.1.m1.1.1.1.1.1.cmml"><mi id="S2.SS4.p6.1.m1.1.1.1.1.1.2" xref="S2.SS4.p6.1.m1.1.1.1.1.1.2.cmml">𝐫</mi><mi id="S2.SS4.p6.1.m1.1.1.1.1.1.3" xref="S2.SS4.p6.1.m1.1.1.1.1.1.3.cmml">i</mi></msub><mo id="S2.SS4.p6.1.m1.1.1.1.1.3" xref="S2.SS4.p6.1.m1.1.1.1.1.1.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.SS4.p6.1.m1.1b"><apply id="S2.SS4.p6.1.m1.1.1.cmml" xref="S2.SS4.p6.1.m1.1.1"><times id="S2.SS4.p6.1.m1.1.1.2.cmml" xref="S2.SS4.p6.1.m1.1.1.2"></times><ci id="S2.SS4.p6.1.m1.1.1.3.cmml" xref="S2.SS4.p6.1.m1.1.1.3">bold-italic-ϕ</ci><apply id="S2.SS4.p6.1.m1.1.1.1.1.1.cmml" xref="S2.SS4.p6.1.m1.1.1.1.1"><csymbol cd="ambiguous" id="S2.SS4.p6.1.m1.1.1.1.1.1.1.cmml" xref="S2.SS4.p6.1.m1.1.1.1.1">subscript</csymbol><ci id="S2.SS4.p6.1.m1.1.1.1.1.1.2.cmml" xref="S2.SS4.p6.1.m1.1.1.1.1.1.2">𝐫</ci><ci id="S2.SS4.p6.1.m1.1.1.1.1.1.3.cmml" xref="S2.SS4.p6.1.m1.1.1.1.1.1.3">𝑖</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p6.1.m1.1c">{\boldsymbol{\phi}\left(\mathbf{r}_{i}\right)}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p6.1.m1.1d">bold_italic_ϕ ( bold_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT )</annotation></semantics></math> in the above is a <span class="ltx_text ltx_font_italic" id="S2.SS4.p6.2.1">flux limiter<cite class="ltx_cite ltx_citemacro_citep"><span class="ltx_text ltx_font_upright" id="S2.SS4.p6.2.1.1.1">(</span>LeVeque<span class="ltx_text ltx_font_upright" id="S2.SS4.p6.2.1.2.2.1.1">, </span><a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib23" title="">2011</a><span class="ltx_text ltx_font_upright" id="S2.SS4.p6.2.1.3.3">)</span></cite></span>, intended to limit the spatial derivatives arising within the reconstruction so as to damp any spurious oscillations that might otherwise appear in the vicinity of steep gradients or true discontinuities. Since all quantities are computed componentwise, it is sufficient to think of the flux limiter as being a scalar function of a scalar ratio of gradients <math alttext="{\phi\left(r\right)}" class="ltx_Math" display="inline" id="S2.SS4.p6.2.m2.1"><semantics id="S2.SS4.p6.2.m2.1a"><mrow id="S2.SS4.p6.2.m2.1.2" xref="S2.SS4.p6.2.m2.1.2.cmml"><mi id="S2.SS4.p6.2.m2.1.2.2" xref="S2.SS4.p6.2.m2.1.2.2.cmml">ϕ</mi><mo id="S2.SS4.p6.2.m2.1.2.1" xref="S2.SS4.p6.2.m2.1.2.1.cmml"></mo><mrow id="S2.SS4.p6.2.m2.1.2.3.2" xref="S2.SS4.p6.2.m2.1.2.cmml"><mo id="S2.SS4.p6.2.m2.1.2.3.2.1" xref="S2.SS4.p6.2.m2.1.2.cmml">(</mo><mi id="S2.SS4.p6.2.m2.1.1" xref="S2.SS4.p6.2.m2.1.1.cmml">r</mi><mo id="S2.SS4.p6.2.m2.1.2.3.2.2" xref="S2.SS4.p6.2.m2.1.2.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.SS4.p6.2.m2.1b"><apply id="S2.SS4.p6.2.m2.1.2.cmml" xref="S2.SS4.p6.2.m2.1.2"><times id="S2.SS4.p6.2.m2.1.2.1.cmml" xref="S2.SS4.p6.2.m2.1.2.1"></times><ci id="S2.SS4.p6.2.m2.1.2.2.cmml" xref="S2.SS4.p6.2.m2.1.2.2">italic-ϕ</ci><ci id="S2.SS4.p6.2.m2.1.1.cmml" xref="S2.SS4.p6.2.m2.1.1">𝑟</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p6.2.m2.1c">{\phi\left(r\right)}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p6.2.m2.1d">italic_ϕ ( italic_r )</annotation></semantics></math>.</p> </div> <div class="ltx_para" id="S2.SS4.p7"> <p class="ltx_p" id="S2.SS4.p7.5">A second-order spatially accurate scheme can now be constructed by taking the left- and right-extrapolated values <math alttext="{\mathbf{U}_{i+\frac{1}{2}}^{L}}" class="ltx_Math" display="inline" id="S2.SS4.p7.1.m1.1"><semantics id="S2.SS4.p7.1.m1.1a"><msubsup id="S2.SS4.p7.1.m1.1.1" xref="S2.SS4.p7.1.m1.1.1.cmml"><mi id="S2.SS4.p7.1.m1.1.1.2.2" xref="S2.SS4.p7.1.m1.1.1.2.2.cmml">𝐔</mi><mrow id="S2.SS4.p7.1.m1.1.1.2.3" xref="S2.SS4.p7.1.m1.1.1.2.3.cmml"><mi id="S2.SS4.p7.1.m1.1.1.2.3.2" xref="S2.SS4.p7.1.m1.1.1.2.3.2.cmml">i</mi><mo id="S2.SS4.p7.1.m1.1.1.2.3.1" xref="S2.SS4.p7.1.m1.1.1.2.3.1.cmml">+</mo><mfrac id="S2.SS4.p7.1.m1.1.1.2.3.3" xref="S2.SS4.p7.1.m1.1.1.2.3.3.cmml"><mn id="S2.SS4.p7.1.m1.1.1.2.3.3.2" xref="S2.SS4.p7.1.m1.1.1.2.3.3.2.cmml">1</mn><mn id="S2.SS4.p7.1.m1.1.1.2.3.3.3" xref="S2.SS4.p7.1.m1.1.1.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.SS4.p7.1.m1.1.1.3" xref="S2.SS4.p7.1.m1.1.1.3.cmml">L</mi></msubsup><annotation-xml encoding="MathML-Content" id="S2.SS4.p7.1.m1.1b"><apply id="S2.SS4.p7.1.m1.1.1.cmml" xref="S2.SS4.p7.1.m1.1.1"><csymbol cd="ambiguous" id="S2.SS4.p7.1.m1.1.1.1.cmml" xref="S2.SS4.p7.1.m1.1.1">superscript</csymbol><apply id="S2.SS4.p7.1.m1.1.1.2.cmml" xref="S2.SS4.p7.1.m1.1.1"><csymbol cd="ambiguous" id="S2.SS4.p7.1.m1.1.1.2.1.cmml" xref="S2.SS4.p7.1.m1.1.1">subscript</csymbol><ci id="S2.SS4.p7.1.m1.1.1.2.2.cmml" xref="S2.SS4.p7.1.m1.1.1.2.2">𝐔</ci><apply id="S2.SS4.p7.1.m1.1.1.2.3.cmml" xref="S2.SS4.p7.1.m1.1.1.2.3"><plus id="S2.SS4.p7.1.m1.1.1.2.3.1.cmml" xref="S2.SS4.p7.1.m1.1.1.2.3.1"></plus><ci id="S2.SS4.p7.1.m1.1.1.2.3.2.cmml" xref="S2.SS4.p7.1.m1.1.1.2.3.2">𝑖</ci><apply id="S2.SS4.p7.1.m1.1.1.2.3.3.cmml" xref="S2.SS4.p7.1.m1.1.1.2.3.3"><divide id="S2.SS4.p7.1.m1.1.1.2.3.3.1.cmml" xref="S2.SS4.p7.1.m1.1.1.2.3.3"></divide><cn id="S2.SS4.p7.1.m1.1.1.2.3.3.2.cmml" type="integer" xref="S2.SS4.p7.1.m1.1.1.2.3.3.2">1</cn><cn id="S2.SS4.p7.1.m1.1.1.2.3.3.3.cmml" type="integer" xref="S2.SS4.p7.1.m1.1.1.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.SS4.p7.1.m1.1.1.3.cmml" xref="S2.SS4.p7.1.m1.1.1.3">𝐿</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p7.1.m1.1c">{\mathbf{U}_{i+\frac{1}{2}}^{L}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p7.1.m1.1d">bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT</annotation></semantics></math> and <math alttext="{\mathbf{U}_{i+\frac{1}{2}}^{R}}" class="ltx_Math" display="inline" id="S2.SS4.p7.2.m2.1"><semantics id="S2.SS4.p7.2.m2.1a"><msubsup id="S2.SS4.p7.2.m2.1.1" xref="S2.SS4.p7.2.m2.1.1.cmml"><mi id="S2.SS4.p7.2.m2.1.1.2.2" xref="S2.SS4.p7.2.m2.1.1.2.2.cmml">𝐔</mi><mrow id="S2.SS4.p7.2.m2.1.1.2.3" xref="S2.SS4.p7.2.m2.1.1.2.3.cmml"><mi id="S2.SS4.p7.2.m2.1.1.2.3.2" xref="S2.SS4.p7.2.m2.1.1.2.3.2.cmml">i</mi><mo id="S2.SS4.p7.2.m2.1.1.2.3.1" xref="S2.SS4.p7.2.m2.1.1.2.3.1.cmml">+</mo><mfrac id="S2.SS4.p7.2.m2.1.1.2.3.3" xref="S2.SS4.p7.2.m2.1.1.2.3.3.cmml"><mn id="S2.SS4.p7.2.m2.1.1.2.3.3.2" xref="S2.SS4.p7.2.m2.1.1.2.3.3.2.cmml">1</mn><mn id="S2.SS4.p7.2.m2.1.1.2.3.3.3" xref="S2.SS4.p7.2.m2.1.1.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.SS4.p7.2.m2.1.1.3" xref="S2.SS4.p7.2.m2.1.1.3.cmml">R</mi></msubsup><annotation-xml encoding="MathML-Content" id="S2.SS4.p7.2.m2.1b"><apply id="S2.SS4.p7.2.m2.1.1.cmml" xref="S2.SS4.p7.2.m2.1.1"><csymbol cd="ambiguous" id="S2.SS4.p7.2.m2.1.1.1.cmml" xref="S2.SS4.p7.2.m2.1.1">superscript</csymbol><apply id="S2.SS4.p7.2.m2.1.1.2.cmml" xref="S2.SS4.p7.2.m2.1.1"><csymbol cd="ambiguous" id="S2.SS4.p7.2.m2.1.1.2.1.cmml" xref="S2.SS4.p7.2.m2.1.1">subscript</csymbol><ci id="S2.SS4.p7.2.m2.1.1.2.2.cmml" xref="S2.SS4.p7.2.m2.1.1.2.2">𝐔</ci><apply id="S2.SS4.p7.2.m2.1.1.2.3.cmml" xref="S2.SS4.p7.2.m2.1.1.2.3"><plus id="S2.SS4.p7.2.m2.1.1.2.3.1.cmml" xref="S2.SS4.p7.2.m2.1.1.2.3.1"></plus><ci id="S2.SS4.p7.2.m2.1.1.2.3.2.cmml" xref="S2.SS4.p7.2.m2.1.1.2.3.2">𝑖</ci><apply id="S2.SS4.p7.2.m2.1.1.2.3.3.cmml" xref="S2.SS4.p7.2.m2.1.1.2.3.3"><divide id="S2.SS4.p7.2.m2.1.1.2.3.3.1.cmml" xref="S2.SS4.p7.2.m2.1.1.2.3.3"></divide><cn id="S2.SS4.p7.2.m2.1.1.2.3.3.2.cmml" type="integer" xref="S2.SS4.p7.2.m2.1.1.2.3.3.2">1</cn><cn id="S2.SS4.p7.2.m2.1.1.2.3.3.3.cmml" type="integer" xref="S2.SS4.p7.2.m2.1.1.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.SS4.p7.2.m2.1.1.3.cmml" xref="S2.SS4.p7.2.m2.1.1.3">𝑅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p7.2.m2.1c">{\mathbf{U}_{i+\frac{1}{2}}^{R}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p7.2.m2.1d">bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT</annotation></semantics></math> and evolving them forward by a half time-step <math alttext="{\frac{\Delta t}{2}}" class="ltx_Math" display="inline" id="S2.SS4.p7.3.m3.1"><semantics id="S2.SS4.p7.3.m3.1a"><mfrac id="S2.SS4.p7.3.m3.1.1" xref="S2.SS4.p7.3.m3.1.1.cmml"><mrow id="S2.SS4.p7.3.m3.1.1.2" xref="S2.SS4.p7.3.m3.1.1.2.cmml"><mi id="S2.SS4.p7.3.m3.1.1.2.2" mathvariant="normal" xref="S2.SS4.p7.3.m3.1.1.2.2.cmml">Δ</mi><mo id="S2.SS4.p7.3.m3.1.1.2.1" xref="S2.SS4.p7.3.m3.1.1.2.1.cmml"></mo><mi id="S2.SS4.p7.3.m3.1.1.2.3" xref="S2.SS4.p7.3.m3.1.1.2.3.cmml">t</mi></mrow><mn id="S2.SS4.p7.3.m3.1.1.3" xref="S2.SS4.p7.3.m3.1.1.3.cmml">2</mn></mfrac><annotation-xml encoding="MathML-Content" id="S2.SS4.p7.3.m3.1b"><apply id="S2.SS4.p7.3.m3.1.1.cmml" xref="S2.SS4.p7.3.m3.1.1"><divide id="S2.SS4.p7.3.m3.1.1.1.cmml" xref="S2.SS4.p7.3.m3.1.1"></divide><apply id="S2.SS4.p7.3.m3.1.1.2.cmml" xref="S2.SS4.p7.3.m3.1.1.2"><times id="S2.SS4.p7.3.m3.1.1.2.1.cmml" xref="S2.SS4.p7.3.m3.1.1.2.1"></times><ci id="S2.SS4.p7.3.m3.1.1.2.2.cmml" xref="S2.SS4.p7.3.m3.1.1.2.2">Δ</ci><ci id="S2.SS4.p7.3.m3.1.1.2.3.cmml" xref="S2.SS4.p7.3.m3.1.1.2.3">𝑡</ci></apply><cn id="S2.SS4.p7.3.m3.1.1.3.cmml" type="integer" xref="S2.SS4.p7.3.m3.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p7.3.m3.1c">{\frac{\Delta t}{2}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p7.3.m3.1d">divide start_ARG roman_Δ italic_t end_ARG start_ARG 2 end_ARG</annotation></semantics></math>, to obtain the evolved states <math alttext="{\overline{\mathbf{U}_{i+\frac{1}{2}}^{L}}}" class="ltx_Math" display="inline" id="S2.SS4.p7.4.m4.1"><semantics id="S2.SS4.p7.4.m4.1a"><mover accent="true" id="S2.SS4.p7.4.m4.1.1" xref="S2.SS4.p7.4.m4.1.1.cmml"><msubsup id="S2.SS4.p7.4.m4.1.1.2" xref="S2.SS4.p7.4.m4.1.1.2.cmml"><mi id="S2.SS4.p7.4.m4.1.1.2.2.2" xref="S2.SS4.p7.4.m4.1.1.2.2.2.cmml">𝐔</mi><mrow id="S2.SS4.p7.4.m4.1.1.2.2.3" xref="S2.SS4.p7.4.m4.1.1.2.2.3.cmml"><mi id="S2.SS4.p7.4.m4.1.1.2.2.3.2" xref="S2.SS4.p7.4.m4.1.1.2.2.3.2.cmml">i</mi><mo id="S2.SS4.p7.4.m4.1.1.2.2.3.1" xref="S2.SS4.p7.4.m4.1.1.2.2.3.1.cmml">+</mo><mfrac id="S2.SS4.p7.4.m4.1.1.2.2.3.3" xref="S2.SS4.p7.4.m4.1.1.2.2.3.3.cmml"><mn id="S2.SS4.p7.4.m4.1.1.2.2.3.3.2" xref="S2.SS4.p7.4.m4.1.1.2.2.3.3.2.cmml">1</mn><mn id="S2.SS4.p7.4.m4.1.1.2.2.3.3.3" xref="S2.SS4.p7.4.m4.1.1.2.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.SS4.p7.4.m4.1.1.2.3" xref="S2.SS4.p7.4.m4.1.1.2.3.cmml">L</mi></msubsup><mo id="S2.SS4.p7.4.m4.1.1.1" xref="S2.SS4.p7.4.m4.1.1.1.cmml">¯</mo></mover><annotation-xml encoding="MathML-Content" id="S2.SS4.p7.4.m4.1b"><apply id="S2.SS4.p7.4.m4.1.1.cmml" xref="S2.SS4.p7.4.m4.1.1"><ci id="S2.SS4.p7.4.m4.1.1.1.cmml" xref="S2.SS4.p7.4.m4.1.1.1">¯</ci><apply id="S2.SS4.p7.4.m4.1.1.2.cmml" xref="S2.SS4.p7.4.m4.1.1.2"><csymbol cd="ambiguous" id="S2.SS4.p7.4.m4.1.1.2.1.cmml" xref="S2.SS4.p7.4.m4.1.1.2">superscript</csymbol><apply id="S2.SS4.p7.4.m4.1.1.2.2.cmml" xref="S2.SS4.p7.4.m4.1.1.2"><csymbol cd="ambiguous" id="S2.SS4.p7.4.m4.1.1.2.2.1.cmml" xref="S2.SS4.p7.4.m4.1.1.2">subscript</csymbol><ci id="S2.SS4.p7.4.m4.1.1.2.2.2.cmml" xref="S2.SS4.p7.4.m4.1.1.2.2.2">𝐔</ci><apply id="S2.SS4.p7.4.m4.1.1.2.2.3.cmml" xref="S2.SS4.p7.4.m4.1.1.2.2.3"><plus id="S2.SS4.p7.4.m4.1.1.2.2.3.1.cmml" xref="S2.SS4.p7.4.m4.1.1.2.2.3.1"></plus><ci id="S2.SS4.p7.4.m4.1.1.2.2.3.2.cmml" xref="S2.SS4.p7.4.m4.1.1.2.2.3.2">𝑖</ci><apply id="S2.SS4.p7.4.m4.1.1.2.2.3.3.cmml" xref="S2.SS4.p7.4.m4.1.1.2.2.3.3"><divide id="S2.SS4.p7.4.m4.1.1.2.2.3.3.1.cmml" xref="S2.SS4.p7.4.m4.1.1.2.2.3.3"></divide><cn id="S2.SS4.p7.4.m4.1.1.2.2.3.3.2.cmml" type="integer" xref="S2.SS4.p7.4.m4.1.1.2.2.3.3.2">1</cn><cn id="S2.SS4.p7.4.m4.1.1.2.2.3.3.3.cmml" type="integer" xref="S2.SS4.p7.4.m4.1.1.2.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.SS4.p7.4.m4.1.1.2.3.cmml" xref="S2.SS4.p7.4.m4.1.1.2.3">𝐿</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p7.4.m4.1c">{\overline{\mathbf{U}_{i+\frac{1}{2}}^{L}}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p7.4.m4.1d">over¯ start_ARG bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT end_ARG</annotation></semantics></math> and <math alttext="{\overline{\mathbf{U}_{i+\frac{1}{2}}^{R}}}" class="ltx_Math" display="inline" id="S2.SS4.p7.5.m5.1"><semantics id="S2.SS4.p7.5.m5.1a"><mover accent="true" id="S2.SS4.p7.5.m5.1.1" xref="S2.SS4.p7.5.m5.1.1.cmml"><msubsup id="S2.SS4.p7.5.m5.1.1.2" xref="S2.SS4.p7.5.m5.1.1.2.cmml"><mi id="S2.SS4.p7.5.m5.1.1.2.2.2" xref="S2.SS4.p7.5.m5.1.1.2.2.2.cmml">𝐔</mi><mrow id="S2.SS4.p7.5.m5.1.1.2.2.3" xref="S2.SS4.p7.5.m5.1.1.2.2.3.cmml"><mi id="S2.SS4.p7.5.m5.1.1.2.2.3.2" xref="S2.SS4.p7.5.m5.1.1.2.2.3.2.cmml">i</mi><mo id="S2.SS4.p7.5.m5.1.1.2.2.3.1" xref="S2.SS4.p7.5.m5.1.1.2.2.3.1.cmml">+</mo><mfrac id="S2.SS4.p7.5.m5.1.1.2.2.3.3" xref="S2.SS4.p7.5.m5.1.1.2.2.3.3.cmml"><mn id="S2.SS4.p7.5.m5.1.1.2.2.3.3.2" xref="S2.SS4.p7.5.m5.1.1.2.2.3.3.2.cmml">1</mn><mn id="S2.SS4.p7.5.m5.1.1.2.2.3.3.3" xref="S2.SS4.p7.5.m5.1.1.2.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.SS4.p7.5.m5.1.1.2.3" xref="S2.SS4.p7.5.m5.1.1.2.3.cmml">R</mi></msubsup><mo id="S2.SS4.p7.5.m5.1.1.1" xref="S2.SS4.p7.5.m5.1.1.1.cmml">¯</mo></mover><annotation-xml encoding="MathML-Content" id="S2.SS4.p7.5.m5.1b"><apply id="S2.SS4.p7.5.m5.1.1.cmml" xref="S2.SS4.p7.5.m5.1.1"><ci id="S2.SS4.p7.5.m5.1.1.1.cmml" xref="S2.SS4.p7.5.m5.1.1.1">¯</ci><apply id="S2.SS4.p7.5.m5.1.1.2.cmml" xref="S2.SS4.p7.5.m5.1.1.2"><csymbol cd="ambiguous" id="S2.SS4.p7.5.m5.1.1.2.1.cmml" xref="S2.SS4.p7.5.m5.1.1.2">superscript</csymbol><apply id="S2.SS4.p7.5.m5.1.1.2.2.cmml" xref="S2.SS4.p7.5.m5.1.1.2"><csymbol cd="ambiguous" id="S2.SS4.p7.5.m5.1.1.2.2.1.cmml" xref="S2.SS4.p7.5.m5.1.1.2">subscript</csymbol><ci id="S2.SS4.p7.5.m5.1.1.2.2.2.cmml" xref="S2.SS4.p7.5.m5.1.1.2.2.2">𝐔</ci><apply id="S2.SS4.p7.5.m5.1.1.2.2.3.cmml" xref="S2.SS4.p7.5.m5.1.1.2.2.3"><plus id="S2.SS4.p7.5.m5.1.1.2.2.3.1.cmml" xref="S2.SS4.p7.5.m5.1.1.2.2.3.1"></plus><ci id="S2.SS4.p7.5.m5.1.1.2.2.3.2.cmml" xref="S2.SS4.p7.5.m5.1.1.2.2.3.2">𝑖</ci><apply id="S2.SS4.p7.5.m5.1.1.2.2.3.3.cmml" xref="S2.SS4.p7.5.m5.1.1.2.2.3.3"><divide id="S2.SS4.p7.5.m5.1.1.2.2.3.3.1.cmml" xref="S2.SS4.p7.5.m5.1.1.2.2.3.3"></divide><cn id="S2.SS4.p7.5.m5.1.1.2.2.3.3.2.cmml" type="integer" xref="S2.SS4.p7.5.m5.1.1.2.2.3.3.2">1</cn><cn id="S2.SS4.p7.5.m5.1.1.2.2.3.3.3.cmml" type="integer" xref="S2.SS4.p7.5.m5.1.1.2.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.SS4.p7.5.m5.1.1.2.3.cmml" xref="S2.SS4.p7.5.m5.1.1.2.3">𝑅</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p7.5.m5.1c">{\overline{\mathbf{U}_{i+\frac{1}{2}}^{R}}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p7.5.m5.1d">over¯ start_ARG bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_ARG</annotation></semantics></math>:</p> </div> <div class="ltx_para" id="S2.SS4.p8"> <table class="ltx_equation ltx_eqn_table" id="S2.E23"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(23)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\overline{\mathbf{U}_{i+\frac{1}{2}}^{L}}=\mathbf{U}_{i+\frac{1}{2}}^{L}+\frac% {\Delta t}{2\Delta x}\left[\mathbf{F}\left(\mathbf{U}_{i-\frac{1}{2}}^{R}% \right)-\mathbf{F}\left(\mathbf{U}_{i+\frac{1}{2}}^{L}\right)\right]," class="ltx_Math" display="block" id="S2.E23.m1.1"><semantics id="S2.E23.m1.1a"><mrow id="S2.E23.m1.1.1.1" xref="S2.E23.m1.1.1.1.1.cmml"><mrow id="S2.E23.m1.1.1.1.1" xref="S2.E23.m1.1.1.1.1.cmml"><mover accent="true" id="S2.E23.m1.1.1.1.1.3" xref="S2.E23.m1.1.1.1.1.3.cmml"><msubsup id="S2.E23.m1.1.1.1.1.3.2" xref="S2.E23.m1.1.1.1.1.3.2.cmml"><mi id="S2.E23.m1.1.1.1.1.3.2.2.2" xref="S2.E23.m1.1.1.1.1.3.2.2.2.cmml">𝐔</mi><mrow id="S2.E23.m1.1.1.1.1.3.2.2.3" xref="S2.E23.m1.1.1.1.1.3.2.2.3.cmml"><mi id="S2.E23.m1.1.1.1.1.3.2.2.3.2" xref="S2.E23.m1.1.1.1.1.3.2.2.3.2.cmml">i</mi><mo id="S2.E23.m1.1.1.1.1.3.2.2.3.1" xref="S2.E23.m1.1.1.1.1.3.2.2.3.1.cmml">+</mo><mfrac id="S2.E23.m1.1.1.1.1.3.2.2.3.3" xref="S2.E23.m1.1.1.1.1.3.2.2.3.3.cmml"><mn id="S2.E23.m1.1.1.1.1.3.2.2.3.3.2" xref="S2.E23.m1.1.1.1.1.3.2.2.3.3.2.cmml">1</mn><mn id="S2.E23.m1.1.1.1.1.3.2.2.3.3.3" xref="S2.E23.m1.1.1.1.1.3.2.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.E23.m1.1.1.1.1.3.2.3" xref="S2.E23.m1.1.1.1.1.3.2.3.cmml">L</mi></msubsup><mo id="S2.E23.m1.1.1.1.1.3.1" xref="S2.E23.m1.1.1.1.1.3.1.cmml">¯</mo></mover><mo id="S2.E23.m1.1.1.1.1.2" xref="S2.E23.m1.1.1.1.1.2.cmml">=</mo><mrow id="S2.E23.m1.1.1.1.1.1" xref="S2.E23.m1.1.1.1.1.1.cmml"><msubsup id="S2.E23.m1.1.1.1.1.1.3" xref="S2.E23.m1.1.1.1.1.1.3.cmml"><mi id="S2.E23.m1.1.1.1.1.1.3.2.2" xref="S2.E23.m1.1.1.1.1.1.3.2.2.cmml">𝐔</mi><mrow id="S2.E23.m1.1.1.1.1.1.3.2.3" xref="S2.E23.m1.1.1.1.1.1.3.2.3.cmml"><mi id="S2.E23.m1.1.1.1.1.1.3.2.3.2" xref="S2.E23.m1.1.1.1.1.1.3.2.3.2.cmml">i</mi><mo id="S2.E23.m1.1.1.1.1.1.3.2.3.1" xref="S2.E23.m1.1.1.1.1.1.3.2.3.1.cmml">+</mo><mfrac id="S2.E23.m1.1.1.1.1.1.3.2.3.3" xref="S2.E23.m1.1.1.1.1.1.3.2.3.3.cmml"><mn id="S2.E23.m1.1.1.1.1.1.3.2.3.3.2" xref="S2.E23.m1.1.1.1.1.1.3.2.3.3.2.cmml">1</mn><mn id="S2.E23.m1.1.1.1.1.1.3.2.3.3.3" xref="S2.E23.m1.1.1.1.1.1.3.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.E23.m1.1.1.1.1.1.3.3" xref="S2.E23.m1.1.1.1.1.1.3.3.cmml">L</mi></msubsup><mo id="S2.E23.m1.1.1.1.1.1.2" xref="S2.E23.m1.1.1.1.1.1.2.cmml">+</mo><mrow id="S2.E23.m1.1.1.1.1.1.1" xref="S2.E23.m1.1.1.1.1.1.1.cmml"><mfrac id="S2.E23.m1.1.1.1.1.1.1.3" xref="S2.E23.m1.1.1.1.1.1.1.3.cmml"><mrow id="S2.E23.m1.1.1.1.1.1.1.3.2" xref="S2.E23.m1.1.1.1.1.1.1.3.2.cmml"><mi id="S2.E23.m1.1.1.1.1.1.1.3.2.2" mathvariant="normal" xref="S2.E23.m1.1.1.1.1.1.1.3.2.2.cmml">Δ</mi><mo id="S2.E23.m1.1.1.1.1.1.1.3.2.1" xref="S2.E23.m1.1.1.1.1.1.1.3.2.1.cmml"></mo><mi id="S2.E23.m1.1.1.1.1.1.1.3.2.3" xref="S2.E23.m1.1.1.1.1.1.1.3.2.3.cmml">t</mi></mrow><mrow id="S2.E23.m1.1.1.1.1.1.1.3.3" xref="S2.E23.m1.1.1.1.1.1.1.3.3.cmml"><mn id="S2.E23.m1.1.1.1.1.1.1.3.3.2" xref="S2.E23.m1.1.1.1.1.1.1.3.3.2.cmml">2</mn><mo id="S2.E23.m1.1.1.1.1.1.1.3.3.1" xref="S2.E23.m1.1.1.1.1.1.1.3.3.1.cmml"></mo><mi id="S2.E23.m1.1.1.1.1.1.1.3.3.3" mathvariant="normal" xref="S2.E23.m1.1.1.1.1.1.1.3.3.3.cmml">Δ</mi><mo id="S2.E23.m1.1.1.1.1.1.1.3.3.1a" xref="S2.E23.m1.1.1.1.1.1.1.3.3.1.cmml"></mo><mi id="S2.E23.m1.1.1.1.1.1.1.3.3.4" xref="S2.E23.m1.1.1.1.1.1.1.3.3.4.cmml">x</mi></mrow></mfrac><mo id="S2.E23.m1.1.1.1.1.1.1.2" xref="S2.E23.m1.1.1.1.1.1.1.2.cmml"></mo><mrow id="S2.E23.m1.1.1.1.1.1.1.1.1" xref="S2.E23.m1.1.1.1.1.1.1.1.2.cmml"><mo id="S2.E23.m1.1.1.1.1.1.1.1.1.2" xref="S2.E23.m1.1.1.1.1.1.1.1.2.1.cmml">[</mo><mrow id="S2.E23.m1.1.1.1.1.1.1.1.1.1" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.cmml"><mrow id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.cmml"><mi id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.3" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.3.cmml">𝐅</mi><mo id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.2" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.2.cmml"></mo><mrow id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml"><mo id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.2" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml">(</mo><msubsup id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml"><mi id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.cmml">𝐔</mi><mrow id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.cmml"><mi id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.2" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.2.cmml">i</mi><mo id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.1" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.1.cmml">−</mo><mfrac id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.cmml"><mn id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.2" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.2.cmml">1</mn><mn id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.3" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.cmml">R</mi></msubsup><mo id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.3" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml">)</mo></mrow></mrow><mo id="S2.E23.m1.1.1.1.1.1.1.1.1.1.3" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.3.cmml">−</mo><mrow id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.cmml"><mi id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.3" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.3.cmml">𝐅</mi><mo id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.2" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.2.cmml"></mo><mrow id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml"><mo id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.2" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml">(</mo><msubsup id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml"><mi id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2.cmml">𝐔</mi><mrow id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.cmml"><mi id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.2" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.2.cmml">i</mi><mo id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.1" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.1.cmml">+</mo><mfrac id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.cmml"><mn id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.2" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.2.cmml">1</mn><mn id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.3" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.cmml">L</mi></msubsup><mo id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.3" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml">)</mo></mrow></mrow></mrow><mo id="S2.E23.m1.1.1.1.1.1.1.1.1.3" xref="S2.E23.m1.1.1.1.1.1.1.1.2.1.cmml">]</mo></mrow></mrow></mrow></mrow><mo id="S2.E23.m1.1.1.1.2" xref="S2.E23.m1.1.1.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E23.m1.1b"><apply id="S2.E23.m1.1.1.1.1.cmml" xref="S2.E23.m1.1.1.1"><eq id="S2.E23.m1.1.1.1.1.2.cmml" xref="S2.E23.m1.1.1.1.1.2"></eq><apply id="S2.E23.m1.1.1.1.1.3.cmml" xref="S2.E23.m1.1.1.1.1.3"><ci id="S2.E23.m1.1.1.1.1.3.1.cmml" xref="S2.E23.m1.1.1.1.1.3.1">¯</ci><apply id="S2.E23.m1.1.1.1.1.3.2.cmml" xref="S2.E23.m1.1.1.1.1.3.2"><csymbol cd="ambiguous" id="S2.E23.m1.1.1.1.1.3.2.1.cmml" xref="S2.E23.m1.1.1.1.1.3.2">superscript</csymbol><apply id="S2.E23.m1.1.1.1.1.3.2.2.cmml" xref="S2.E23.m1.1.1.1.1.3.2"><csymbol cd="ambiguous" id="S2.E23.m1.1.1.1.1.3.2.2.1.cmml" xref="S2.E23.m1.1.1.1.1.3.2">subscript</csymbol><ci id="S2.E23.m1.1.1.1.1.3.2.2.2.cmml" xref="S2.E23.m1.1.1.1.1.3.2.2.2">𝐔</ci><apply id="S2.E23.m1.1.1.1.1.3.2.2.3.cmml" xref="S2.E23.m1.1.1.1.1.3.2.2.3"><plus id="S2.E23.m1.1.1.1.1.3.2.2.3.1.cmml" xref="S2.E23.m1.1.1.1.1.3.2.2.3.1"></plus><ci id="S2.E23.m1.1.1.1.1.3.2.2.3.2.cmml" xref="S2.E23.m1.1.1.1.1.3.2.2.3.2">𝑖</ci><apply id="S2.E23.m1.1.1.1.1.3.2.2.3.3.cmml" xref="S2.E23.m1.1.1.1.1.3.2.2.3.3"><divide id="S2.E23.m1.1.1.1.1.3.2.2.3.3.1.cmml" xref="S2.E23.m1.1.1.1.1.3.2.2.3.3"></divide><cn id="S2.E23.m1.1.1.1.1.3.2.2.3.3.2.cmml" type="integer" xref="S2.E23.m1.1.1.1.1.3.2.2.3.3.2">1</cn><cn id="S2.E23.m1.1.1.1.1.3.2.2.3.3.3.cmml" type="integer" xref="S2.E23.m1.1.1.1.1.3.2.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.E23.m1.1.1.1.1.3.2.3.cmml" xref="S2.E23.m1.1.1.1.1.3.2.3">𝐿</ci></apply></apply><apply id="S2.E23.m1.1.1.1.1.1.cmml" xref="S2.E23.m1.1.1.1.1.1"><plus id="S2.E23.m1.1.1.1.1.1.2.cmml" xref="S2.E23.m1.1.1.1.1.1.2"></plus><apply id="S2.E23.m1.1.1.1.1.1.3.cmml" xref="S2.E23.m1.1.1.1.1.1.3"><csymbol cd="ambiguous" id="S2.E23.m1.1.1.1.1.1.3.1.cmml" xref="S2.E23.m1.1.1.1.1.1.3">superscript</csymbol><apply id="S2.E23.m1.1.1.1.1.1.3.2.cmml" xref="S2.E23.m1.1.1.1.1.1.3"><csymbol cd="ambiguous" id="S2.E23.m1.1.1.1.1.1.3.2.1.cmml" xref="S2.E23.m1.1.1.1.1.1.3">subscript</csymbol><ci id="S2.E23.m1.1.1.1.1.1.3.2.2.cmml" xref="S2.E23.m1.1.1.1.1.1.3.2.2">𝐔</ci><apply id="S2.E23.m1.1.1.1.1.1.3.2.3.cmml" xref="S2.E23.m1.1.1.1.1.1.3.2.3"><plus id="S2.E23.m1.1.1.1.1.1.3.2.3.1.cmml" xref="S2.E23.m1.1.1.1.1.1.3.2.3.1"></plus><ci id="S2.E23.m1.1.1.1.1.1.3.2.3.2.cmml" xref="S2.E23.m1.1.1.1.1.1.3.2.3.2">𝑖</ci><apply id="S2.E23.m1.1.1.1.1.1.3.2.3.3.cmml" xref="S2.E23.m1.1.1.1.1.1.3.2.3.3"><divide id="S2.E23.m1.1.1.1.1.1.3.2.3.3.1.cmml" xref="S2.E23.m1.1.1.1.1.1.3.2.3.3"></divide><cn id="S2.E23.m1.1.1.1.1.1.3.2.3.3.2.cmml" type="integer" xref="S2.E23.m1.1.1.1.1.1.3.2.3.3.2">1</cn><cn id="S2.E23.m1.1.1.1.1.1.3.2.3.3.3.cmml" type="integer" xref="S2.E23.m1.1.1.1.1.1.3.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.E23.m1.1.1.1.1.1.3.3.cmml" xref="S2.E23.m1.1.1.1.1.1.3.3">𝐿</ci></apply><apply id="S2.E23.m1.1.1.1.1.1.1.cmml" xref="S2.E23.m1.1.1.1.1.1.1"><times id="S2.E23.m1.1.1.1.1.1.1.2.cmml" xref="S2.E23.m1.1.1.1.1.1.1.2"></times><apply id="S2.E23.m1.1.1.1.1.1.1.3.cmml" xref="S2.E23.m1.1.1.1.1.1.1.3"><divide id="S2.E23.m1.1.1.1.1.1.1.3.1.cmml" xref="S2.E23.m1.1.1.1.1.1.1.3"></divide><apply id="S2.E23.m1.1.1.1.1.1.1.3.2.cmml" xref="S2.E23.m1.1.1.1.1.1.1.3.2"><times id="S2.E23.m1.1.1.1.1.1.1.3.2.1.cmml" xref="S2.E23.m1.1.1.1.1.1.1.3.2.1"></times><ci id="S2.E23.m1.1.1.1.1.1.1.3.2.2.cmml" xref="S2.E23.m1.1.1.1.1.1.1.3.2.2">Δ</ci><ci id="S2.E23.m1.1.1.1.1.1.1.3.2.3.cmml" xref="S2.E23.m1.1.1.1.1.1.1.3.2.3">𝑡</ci></apply><apply id="S2.E23.m1.1.1.1.1.1.1.3.3.cmml" xref="S2.E23.m1.1.1.1.1.1.1.3.3"><times id="S2.E23.m1.1.1.1.1.1.1.3.3.1.cmml" xref="S2.E23.m1.1.1.1.1.1.1.3.3.1"></times><cn id="S2.E23.m1.1.1.1.1.1.1.3.3.2.cmml" type="integer" xref="S2.E23.m1.1.1.1.1.1.1.3.3.2">2</cn><ci id="S2.E23.m1.1.1.1.1.1.1.3.3.3.cmml" xref="S2.E23.m1.1.1.1.1.1.1.3.3.3">Δ</ci><ci id="S2.E23.m1.1.1.1.1.1.1.3.3.4.cmml" xref="S2.E23.m1.1.1.1.1.1.1.3.3.4">𝑥</ci></apply></apply><apply id="S2.E23.m1.1.1.1.1.1.1.1.2.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1"><csymbol cd="latexml" id="S2.E23.m1.1.1.1.1.1.1.1.2.1.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.2">delimited-[]</csymbol><apply id="S2.E23.m1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1"><minus id="S2.E23.m1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.3"></minus><apply id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1"><times id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.2"></times><ci id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.3">𝐅</ci><apply id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1">superscript</csymbol><apply id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.1.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1">subscript</csymbol><ci id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2">𝐔</ci><apply id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3"><minus id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.1.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.1"></minus><ci id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.2.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.2">𝑖</ci><apply id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3"><divide id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.1.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3"></divide><cn id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.2.cmml" type="integer" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.2">1</cn><cn id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.3.cmml" type="integer" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3">𝑅</ci></apply></apply><apply id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2"><times id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.2.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.2"></times><ci id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.3.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.3">𝐅</ci><apply id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1"><csymbol cd="ambiguous" id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.1.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1">superscript</csymbol><apply id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1"><csymbol cd="ambiguous" id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.1.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1">subscript</csymbol><ci id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2">𝐔</ci><apply id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3"><plus id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.1.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.1"></plus><ci id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.2.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.2">𝑖</ci><apply id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3"><divide id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.1.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3"></divide><cn id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.2.cmml" type="integer" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.2">1</cn><cn id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.3.cmml" type="integer" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.cmml" xref="S2.E23.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3">𝐿</ci></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E23.m1.1c">\overline{\mathbf{U}_{i+\frac{1}{2}}^{L}}=\mathbf{U}_{i+\frac{1}{2}}^{L}+\frac% {\Delta t}{2\Delta x}\left[\mathbf{F}\left(\mathbf{U}_{i-\frac{1}{2}}^{R}% \right)-\mathbf{F}\left(\mathbf{U}_{i+\frac{1}{2}}^{L}\right)\right],</annotation><annotation encoding="application/x-llamapun" id="S2.E23.m1.1d">over¯ start_ARG bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT end_ARG = bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT + divide start_ARG roman_Δ italic_t end_ARG start_ARG 2 roman_Δ italic_x end_ARG [ bold_F ( bold_U start_POSTSUBSCRIPT italic_i - divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) - bold_F ( bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT ) ] ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS4.p8.1">and:</p> </div> <div class="ltx_para" id="S2.SS4.p9"> <table class="ltx_equation ltx_eqn_table" id="S2.E24"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(24)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\overline{\mathbf{U}_{i+\frac{1}{2}}^{R}}=\mathbf{U}_{i+\frac{1}{2}}^{R}+\frac% {\Delta t}{2\Delta x}\left[\mathbf{F}\left(\mathbf{U}_{i+\frac{1}{2}}^{R}% \right)-\mathbf{F}\left(\mathbf{U}_{i+\frac{3}{2}}^{L}\right)\right]," class="ltx_Math" display="block" id="S2.E24.m1.1"><semantics id="S2.E24.m1.1a"><mrow id="S2.E24.m1.1.1.1" xref="S2.E24.m1.1.1.1.1.cmml"><mrow id="S2.E24.m1.1.1.1.1" xref="S2.E24.m1.1.1.1.1.cmml"><mover accent="true" id="S2.E24.m1.1.1.1.1.3" xref="S2.E24.m1.1.1.1.1.3.cmml"><msubsup id="S2.E24.m1.1.1.1.1.3.2" xref="S2.E24.m1.1.1.1.1.3.2.cmml"><mi id="S2.E24.m1.1.1.1.1.3.2.2.2" xref="S2.E24.m1.1.1.1.1.3.2.2.2.cmml">𝐔</mi><mrow id="S2.E24.m1.1.1.1.1.3.2.2.3" xref="S2.E24.m1.1.1.1.1.3.2.2.3.cmml"><mi id="S2.E24.m1.1.1.1.1.3.2.2.3.2" xref="S2.E24.m1.1.1.1.1.3.2.2.3.2.cmml">i</mi><mo id="S2.E24.m1.1.1.1.1.3.2.2.3.1" xref="S2.E24.m1.1.1.1.1.3.2.2.3.1.cmml">+</mo><mfrac id="S2.E24.m1.1.1.1.1.3.2.2.3.3" xref="S2.E24.m1.1.1.1.1.3.2.2.3.3.cmml"><mn id="S2.E24.m1.1.1.1.1.3.2.2.3.3.2" xref="S2.E24.m1.1.1.1.1.3.2.2.3.3.2.cmml">1</mn><mn id="S2.E24.m1.1.1.1.1.3.2.2.3.3.3" xref="S2.E24.m1.1.1.1.1.3.2.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.E24.m1.1.1.1.1.3.2.3" xref="S2.E24.m1.1.1.1.1.3.2.3.cmml">R</mi></msubsup><mo id="S2.E24.m1.1.1.1.1.3.1" xref="S2.E24.m1.1.1.1.1.3.1.cmml">¯</mo></mover><mo id="S2.E24.m1.1.1.1.1.2" xref="S2.E24.m1.1.1.1.1.2.cmml">=</mo><mrow id="S2.E24.m1.1.1.1.1.1" xref="S2.E24.m1.1.1.1.1.1.cmml"><msubsup id="S2.E24.m1.1.1.1.1.1.3" xref="S2.E24.m1.1.1.1.1.1.3.cmml"><mi id="S2.E24.m1.1.1.1.1.1.3.2.2" xref="S2.E24.m1.1.1.1.1.1.3.2.2.cmml">𝐔</mi><mrow id="S2.E24.m1.1.1.1.1.1.3.2.3" xref="S2.E24.m1.1.1.1.1.1.3.2.3.cmml"><mi id="S2.E24.m1.1.1.1.1.1.3.2.3.2" xref="S2.E24.m1.1.1.1.1.1.3.2.3.2.cmml">i</mi><mo id="S2.E24.m1.1.1.1.1.1.3.2.3.1" xref="S2.E24.m1.1.1.1.1.1.3.2.3.1.cmml">+</mo><mfrac id="S2.E24.m1.1.1.1.1.1.3.2.3.3" xref="S2.E24.m1.1.1.1.1.1.3.2.3.3.cmml"><mn id="S2.E24.m1.1.1.1.1.1.3.2.3.3.2" xref="S2.E24.m1.1.1.1.1.1.3.2.3.3.2.cmml">1</mn><mn id="S2.E24.m1.1.1.1.1.1.3.2.3.3.3" xref="S2.E24.m1.1.1.1.1.1.3.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.E24.m1.1.1.1.1.1.3.3" xref="S2.E24.m1.1.1.1.1.1.3.3.cmml">R</mi></msubsup><mo id="S2.E24.m1.1.1.1.1.1.2" xref="S2.E24.m1.1.1.1.1.1.2.cmml">+</mo><mrow id="S2.E24.m1.1.1.1.1.1.1" xref="S2.E24.m1.1.1.1.1.1.1.cmml"><mfrac id="S2.E24.m1.1.1.1.1.1.1.3" xref="S2.E24.m1.1.1.1.1.1.1.3.cmml"><mrow id="S2.E24.m1.1.1.1.1.1.1.3.2" xref="S2.E24.m1.1.1.1.1.1.1.3.2.cmml"><mi id="S2.E24.m1.1.1.1.1.1.1.3.2.2" mathvariant="normal" xref="S2.E24.m1.1.1.1.1.1.1.3.2.2.cmml">Δ</mi><mo id="S2.E24.m1.1.1.1.1.1.1.3.2.1" xref="S2.E24.m1.1.1.1.1.1.1.3.2.1.cmml"></mo><mi id="S2.E24.m1.1.1.1.1.1.1.3.2.3" xref="S2.E24.m1.1.1.1.1.1.1.3.2.3.cmml">t</mi></mrow><mrow id="S2.E24.m1.1.1.1.1.1.1.3.3" xref="S2.E24.m1.1.1.1.1.1.1.3.3.cmml"><mn id="S2.E24.m1.1.1.1.1.1.1.3.3.2" xref="S2.E24.m1.1.1.1.1.1.1.3.3.2.cmml">2</mn><mo id="S2.E24.m1.1.1.1.1.1.1.3.3.1" xref="S2.E24.m1.1.1.1.1.1.1.3.3.1.cmml"></mo><mi id="S2.E24.m1.1.1.1.1.1.1.3.3.3" mathvariant="normal" xref="S2.E24.m1.1.1.1.1.1.1.3.3.3.cmml">Δ</mi><mo id="S2.E24.m1.1.1.1.1.1.1.3.3.1a" xref="S2.E24.m1.1.1.1.1.1.1.3.3.1.cmml"></mo><mi id="S2.E24.m1.1.1.1.1.1.1.3.3.4" xref="S2.E24.m1.1.1.1.1.1.1.3.3.4.cmml">x</mi></mrow></mfrac><mo id="S2.E24.m1.1.1.1.1.1.1.2" xref="S2.E24.m1.1.1.1.1.1.1.2.cmml"></mo><mrow id="S2.E24.m1.1.1.1.1.1.1.1.1" xref="S2.E24.m1.1.1.1.1.1.1.1.2.cmml"><mo id="S2.E24.m1.1.1.1.1.1.1.1.1.2" xref="S2.E24.m1.1.1.1.1.1.1.1.2.1.cmml">[</mo><mrow id="S2.E24.m1.1.1.1.1.1.1.1.1.1" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.cmml"><mrow id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.cmml"><mi id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.3" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.3.cmml">𝐅</mi><mo id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.2" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.2.cmml"></mo><mrow id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml"><mo id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.2" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml">(</mo><msubsup id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml"><mi id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.cmml">𝐔</mi><mrow id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.cmml"><mi id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.2" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.2.cmml">i</mi><mo id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.1" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.1.cmml">+</mo><mfrac id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.cmml"><mn id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.2" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.2.cmml">1</mn><mn id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.3" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.cmml">R</mi></msubsup><mo id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.3" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml">)</mo></mrow></mrow><mo id="S2.E24.m1.1.1.1.1.1.1.1.1.1.3" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.3.cmml">−</mo><mrow id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.cmml"><mi id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.3" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.3.cmml">𝐅</mi><mo id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.2" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.2.cmml"></mo><mrow id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml"><mo id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.2" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml">(</mo><msubsup id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml"><mi id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2.cmml">𝐔</mi><mrow id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.cmml"><mi id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.2" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.2.cmml">i</mi><mo id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.1" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.1.cmml">+</mo><mfrac id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.cmml"><mn id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.2" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.2.cmml">3</mn><mn id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.3" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.cmml">L</mi></msubsup><mo id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.3" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml">)</mo></mrow></mrow></mrow><mo id="S2.E24.m1.1.1.1.1.1.1.1.1.3" xref="S2.E24.m1.1.1.1.1.1.1.1.2.1.cmml">]</mo></mrow></mrow></mrow></mrow><mo id="S2.E24.m1.1.1.1.2" xref="S2.E24.m1.1.1.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E24.m1.1b"><apply id="S2.E24.m1.1.1.1.1.cmml" xref="S2.E24.m1.1.1.1"><eq id="S2.E24.m1.1.1.1.1.2.cmml" xref="S2.E24.m1.1.1.1.1.2"></eq><apply id="S2.E24.m1.1.1.1.1.3.cmml" xref="S2.E24.m1.1.1.1.1.3"><ci id="S2.E24.m1.1.1.1.1.3.1.cmml" xref="S2.E24.m1.1.1.1.1.3.1">¯</ci><apply id="S2.E24.m1.1.1.1.1.3.2.cmml" xref="S2.E24.m1.1.1.1.1.3.2"><csymbol cd="ambiguous" id="S2.E24.m1.1.1.1.1.3.2.1.cmml" xref="S2.E24.m1.1.1.1.1.3.2">superscript</csymbol><apply id="S2.E24.m1.1.1.1.1.3.2.2.cmml" xref="S2.E24.m1.1.1.1.1.3.2"><csymbol cd="ambiguous" id="S2.E24.m1.1.1.1.1.3.2.2.1.cmml" xref="S2.E24.m1.1.1.1.1.3.2">subscript</csymbol><ci id="S2.E24.m1.1.1.1.1.3.2.2.2.cmml" xref="S2.E24.m1.1.1.1.1.3.2.2.2">𝐔</ci><apply id="S2.E24.m1.1.1.1.1.3.2.2.3.cmml" xref="S2.E24.m1.1.1.1.1.3.2.2.3"><plus id="S2.E24.m1.1.1.1.1.3.2.2.3.1.cmml" xref="S2.E24.m1.1.1.1.1.3.2.2.3.1"></plus><ci id="S2.E24.m1.1.1.1.1.3.2.2.3.2.cmml" xref="S2.E24.m1.1.1.1.1.3.2.2.3.2">𝑖</ci><apply id="S2.E24.m1.1.1.1.1.3.2.2.3.3.cmml" xref="S2.E24.m1.1.1.1.1.3.2.2.3.3"><divide id="S2.E24.m1.1.1.1.1.3.2.2.3.3.1.cmml" xref="S2.E24.m1.1.1.1.1.3.2.2.3.3"></divide><cn id="S2.E24.m1.1.1.1.1.3.2.2.3.3.2.cmml" type="integer" xref="S2.E24.m1.1.1.1.1.3.2.2.3.3.2">1</cn><cn id="S2.E24.m1.1.1.1.1.3.2.2.3.3.3.cmml" type="integer" xref="S2.E24.m1.1.1.1.1.3.2.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.E24.m1.1.1.1.1.3.2.3.cmml" xref="S2.E24.m1.1.1.1.1.3.2.3">𝑅</ci></apply></apply><apply id="S2.E24.m1.1.1.1.1.1.cmml" xref="S2.E24.m1.1.1.1.1.1"><plus id="S2.E24.m1.1.1.1.1.1.2.cmml" xref="S2.E24.m1.1.1.1.1.1.2"></plus><apply id="S2.E24.m1.1.1.1.1.1.3.cmml" xref="S2.E24.m1.1.1.1.1.1.3"><csymbol cd="ambiguous" id="S2.E24.m1.1.1.1.1.1.3.1.cmml" xref="S2.E24.m1.1.1.1.1.1.3">superscript</csymbol><apply id="S2.E24.m1.1.1.1.1.1.3.2.cmml" xref="S2.E24.m1.1.1.1.1.1.3"><csymbol cd="ambiguous" id="S2.E24.m1.1.1.1.1.1.3.2.1.cmml" xref="S2.E24.m1.1.1.1.1.1.3">subscript</csymbol><ci id="S2.E24.m1.1.1.1.1.1.3.2.2.cmml" xref="S2.E24.m1.1.1.1.1.1.3.2.2">𝐔</ci><apply id="S2.E24.m1.1.1.1.1.1.3.2.3.cmml" xref="S2.E24.m1.1.1.1.1.1.3.2.3"><plus id="S2.E24.m1.1.1.1.1.1.3.2.3.1.cmml" xref="S2.E24.m1.1.1.1.1.1.3.2.3.1"></plus><ci id="S2.E24.m1.1.1.1.1.1.3.2.3.2.cmml" xref="S2.E24.m1.1.1.1.1.1.3.2.3.2">𝑖</ci><apply id="S2.E24.m1.1.1.1.1.1.3.2.3.3.cmml" xref="S2.E24.m1.1.1.1.1.1.3.2.3.3"><divide id="S2.E24.m1.1.1.1.1.1.3.2.3.3.1.cmml" xref="S2.E24.m1.1.1.1.1.1.3.2.3.3"></divide><cn id="S2.E24.m1.1.1.1.1.1.3.2.3.3.2.cmml" type="integer" xref="S2.E24.m1.1.1.1.1.1.3.2.3.3.2">1</cn><cn id="S2.E24.m1.1.1.1.1.1.3.2.3.3.3.cmml" type="integer" xref="S2.E24.m1.1.1.1.1.1.3.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.E24.m1.1.1.1.1.1.3.3.cmml" xref="S2.E24.m1.1.1.1.1.1.3.3">𝑅</ci></apply><apply id="S2.E24.m1.1.1.1.1.1.1.cmml" xref="S2.E24.m1.1.1.1.1.1.1"><times id="S2.E24.m1.1.1.1.1.1.1.2.cmml" xref="S2.E24.m1.1.1.1.1.1.1.2"></times><apply id="S2.E24.m1.1.1.1.1.1.1.3.cmml" xref="S2.E24.m1.1.1.1.1.1.1.3"><divide id="S2.E24.m1.1.1.1.1.1.1.3.1.cmml" xref="S2.E24.m1.1.1.1.1.1.1.3"></divide><apply id="S2.E24.m1.1.1.1.1.1.1.3.2.cmml" xref="S2.E24.m1.1.1.1.1.1.1.3.2"><times id="S2.E24.m1.1.1.1.1.1.1.3.2.1.cmml" xref="S2.E24.m1.1.1.1.1.1.1.3.2.1"></times><ci id="S2.E24.m1.1.1.1.1.1.1.3.2.2.cmml" xref="S2.E24.m1.1.1.1.1.1.1.3.2.2">Δ</ci><ci id="S2.E24.m1.1.1.1.1.1.1.3.2.3.cmml" xref="S2.E24.m1.1.1.1.1.1.1.3.2.3">𝑡</ci></apply><apply id="S2.E24.m1.1.1.1.1.1.1.3.3.cmml" xref="S2.E24.m1.1.1.1.1.1.1.3.3"><times id="S2.E24.m1.1.1.1.1.1.1.3.3.1.cmml" xref="S2.E24.m1.1.1.1.1.1.1.3.3.1"></times><cn id="S2.E24.m1.1.1.1.1.1.1.3.3.2.cmml" type="integer" xref="S2.E24.m1.1.1.1.1.1.1.3.3.2">2</cn><ci id="S2.E24.m1.1.1.1.1.1.1.3.3.3.cmml" xref="S2.E24.m1.1.1.1.1.1.1.3.3.3">Δ</ci><ci id="S2.E24.m1.1.1.1.1.1.1.3.3.4.cmml" xref="S2.E24.m1.1.1.1.1.1.1.3.3.4">𝑥</ci></apply></apply><apply id="S2.E24.m1.1.1.1.1.1.1.1.2.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1"><csymbol cd="latexml" id="S2.E24.m1.1.1.1.1.1.1.1.2.1.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.2">delimited-[]</csymbol><apply id="S2.E24.m1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1"><minus id="S2.E24.m1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.3"></minus><apply id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1"><times id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.2"></times><ci id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.3">𝐅</ci><apply id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1">superscript</csymbol><apply id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.1.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1">subscript</csymbol><ci id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2">𝐔</ci><apply id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3"><plus id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.1.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.1"></plus><ci id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.2.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.2">𝑖</ci><apply id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3"><divide id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.1.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3"></divide><cn id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.2.cmml" type="integer" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.2">1</cn><cn id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.3.cmml" type="integer" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3">𝑅</ci></apply></apply><apply id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2"><times id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.2.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.2"></times><ci id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.3.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.3">𝐅</ci><apply id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1"><csymbol cd="ambiguous" id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.1.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1">superscript</csymbol><apply id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1"><csymbol cd="ambiguous" id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.1.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1">subscript</csymbol><ci id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2">𝐔</ci><apply id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3"><plus id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.1.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.1"></plus><ci id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.2.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.2">𝑖</ci><apply id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3"><divide id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.1.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3"></divide><cn id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.2.cmml" type="integer" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.2">3</cn><cn id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.3.cmml" type="integer" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.cmml" xref="S2.E24.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3">𝐿</ci></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E24.m1.1c">\overline{\mathbf{U}_{i+\frac{1}{2}}^{R}}=\mathbf{U}_{i+\frac{1}{2}}^{R}+\frac% {\Delta t}{2\Delta x}\left[\mathbf{F}\left(\mathbf{U}_{i+\frac{1}{2}}^{R}% \right)-\mathbf{F}\left(\mathbf{U}_{i+\frac{3}{2}}^{L}\right)\right],</annotation><annotation encoding="application/x-llamapun" id="S2.E24.m1.1d">over¯ start_ARG bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_ARG = bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT + divide start_ARG roman_Δ italic_t end_ARG start_ARG 2 roman_Δ italic_x end_ARG [ bold_F ( bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) - bold_F ( bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT ) ] ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS4.p9.5">respectively. The inter-cell flux <math alttext="{\mathbf{F}_{i+\frac{1}{2}}}" class="ltx_Math" display="inline" id="S2.SS4.p9.1.m1.1"><semantics id="S2.SS4.p9.1.m1.1a"><msub id="S2.SS4.p9.1.m1.1.1" xref="S2.SS4.p9.1.m1.1.1.cmml"><mi id="S2.SS4.p9.1.m1.1.1.2" xref="S2.SS4.p9.1.m1.1.1.2.cmml">𝐅</mi><mrow id="S2.SS4.p9.1.m1.1.1.3" xref="S2.SS4.p9.1.m1.1.1.3.cmml"><mi id="S2.SS4.p9.1.m1.1.1.3.2" xref="S2.SS4.p9.1.m1.1.1.3.2.cmml">i</mi><mo id="S2.SS4.p9.1.m1.1.1.3.1" xref="S2.SS4.p9.1.m1.1.1.3.1.cmml">+</mo><mfrac id="S2.SS4.p9.1.m1.1.1.3.3" xref="S2.SS4.p9.1.m1.1.1.3.3.cmml"><mn id="S2.SS4.p9.1.m1.1.1.3.3.2" xref="S2.SS4.p9.1.m1.1.1.3.3.2.cmml">1</mn><mn id="S2.SS4.p9.1.m1.1.1.3.3.3" xref="S2.SS4.p9.1.m1.1.1.3.3.3.cmml">2</mn></mfrac></mrow></msub><annotation-xml encoding="MathML-Content" id="S2.SS4.p9.1.m1.1b"><apply id="S2.SS4.p9.1.m1.1.1.cmml" xref="S2.SS4.p9.1.m1.1.1"><csymbol cd="ambiguous" id="S2.SS4.p9.1.m1.1.1.1.cmml" xref="S2.SS4.p9.1.m1.1.1">subscript</csymbol><ci id="S2.SS4.p9.1.m1.1.1.2.cmml" xref="S2.SS4.p9.1.m1.1.1.2">𝐅</ci><apply id="S2.SS4.p9.1.m1.1.1.3.cmml" xref="S2.SS4.p9.1.m1.1.1.3"><plus id="S2.SS4.p9.1.m1.1.1.3.1.cmml" xref="S2.SS4.p9.1.m1.1.1.3.1"></plus><ci id="S2.SS4.p9.1.m1.1.1.3.2.cmml" xref="S2.SS4.p9.1.m1.1.1.3.2">𝑖</ci><apply id="S2.SS4.p9.1.m1.1.1.3.3.cmml" xref="S2.SS4.p9.1.m1.1.1.3.3"><divide id="S2.SS4.p9.1.m1.1.1.3.3.1.cmml" xref="S2.SS4.p9.1.m1.1.1.3.3"></divide><cn id="S2.SS4.p9.1.m1.1.1.3.3.2.cmml" type="integer" xref="S2.SS4.p9.1.m1.1.1.3.3.2">1</cn><cn id="S2.SS4.p9.1.m1.1.1.3.3.3.cmml" type="integer" xref="S2.SS4.p9.1.m1.1.1.3.3.3">2</cn></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p9.1.m1.1c">{\mathbf{F}_{i+\frac{1}{2}}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p9.1.m1.1d">bold_F start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT</annotation></semantics></math> for the second-order scheme is now evaluated in the usual way, but with the left and right cell states <math alttext="{\mathbf{U}_{i}^{n}}" class="ltx_Math" display="inline" id="S2.SS4.p9.2.m2.1"><semantics id="S2.SS4.p9.2.m2.1a"><msubsup id="S2.SS4.p9.2.m2.1.1" xref="S2.SS4.p9.2.m2.1.1.cmml"><mi id="S2.SS4.p9.2.m2.1.1.2.2" xref="S2.SS4.p9.2.m2.1.1.2.2.cmml">𝐔</mi><mi id="S2.SS4.p9.2.m2.1.1.2.3" xref="S2.SS4.p9.2.m2.1.1.2.3.cmml">i</mi><mi id="S2.SS4.p9.2.m2.1.1.3" xref="S2.SS4.p9.2.m2.1.1.3.cmml">n</mi></msubsup><annotation-xml encoding="MathML-Content" id="S2.SS4.p9.2.m2.1b"><apply id="S2.SS4.p9.2.m2.1.1.cmml" xref="S2.SS4.p9.2.m2.1.1"><csymbol cd="ambiguous" id="S2.SS4.p9.2.m2.1.1.1.cmml" xref="S2.SS4.p9.2.m2.1.1">superscript</csymbol><apply id="S2.SS4.p9.2.m2.1.1.2.cmml" xref="S2.SS4.p9.2.m2.1.1"><csymbol cd="ambiguous" id="S2.SS4.p9.2.m2.1.1.2.1.cmml" xref="S2.SS4.p9.2.m2.1.1">subscript</csymbol><ci id="S2.SS4.p9.2.m2.1.1.2.2.cmml" xref="S2.SS4.p9.2.m2.1.1.2.2">𝐔</ci><ci id="S2.SS4.p9.2.m2.1.1.2.3.cmml" xref="S2.SS4.p9.2.m2.1.1.2.3">𝑖</ci></apply><ci id="S2.SS4.p9.2.m2.1.1.3.cmml" xref="S2.SS4.p9.2.m2.1.1.3">𝑛</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p9.2.m2.1c">{\mathbf{U}_{i}^{n}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p9.2.m2.1d">bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT</annotation></semantics></math> and <math alttext="{\mathbf{U}_{i+1}^{n}}" class="ltx_Math" display="inline" id="S2.SS4.p9.3.m3.1"><semantics id="S2.SS4.p9.3.m3.1a"><msubsup id="S2.SS4.p9.3.m3.1.1" xref="S2.SS4.p9.3.m3.1.1.cmml"><mi id="S2.SS4.p9.3.m3.1.1.2.2" xref="S2.SS4.p9.3.m3.1.1.2.2.cmml">𝐔</mi><mrow id="S2.SS4.p9.3.m3.1.1.2.3" xref="S2.SS4.p9.3.m3.1.1.2.3.cmml"><mi id="S2.SS4.p9.3.m3.1.1.2.3.2" xref="S2.SS4.p9.3.m3.1.1.2.3.2.cmml">i</mi><mo id="S2.SS4.p9.3.m3.1.1.2.3.1" xref="S2.SS4.p9.3.m3.1.1.2.3.1.cmml">+</mo><mn id="S2.SS4.p9.3.m3.1.1.2.3.3" xref="S2.SS4.p9.3.m3.1.1.2.3.3.cmml">1</mn></mrow><mi id="S2.SS4.p9.3.m3.1.1.3" xref="S2.SS4.p9.3.m3.1.1.3.cmml">n</mi></msubsup><annotation-xml encoding="MathML-Content" id="S2.SS4.p9.3.m3.1b"><apply id="S2.SS4.p9.3.m3.1.1.cmml" xref="S2.SS4.p9.3.m3.1.1"><csymbol cd="ambiguous" id="S2.SS4.p9.3.m3.1.1.1.cmml" xref="S2.SS4.p9.3.m3.1.1">superscript</csymbol><apply id="S2.SS4.p9.3.m3.1.1.2.cmml" xref="S2.SS4.p9.3.m3.1.1"><csymbol cd="ambiguous" id="S2.SS4.p9.3.m3.1.1.2.1.cmml" xref="S2.SS4.p9.3.m3.1.1">subscript</csymbol><ci id="S2.SS4.p9.3.m3.1.1.2.2.cmml" xref="S2.SS4.p9.3.m3.1.1.2.2">𝐔</ci><apply id="S2.SS4.p9.3.m3.1.1.2.3.cmml" xref="S2.SS4.p9.3.m3.1.1.2.3"><plus id="S2.SS4.p9.3.m3.1.1.2.3.1.cmml" xref="S2.SS4.p9.3.m3.1.1.2.3.1"></plus><ci id="S2.SS4.p9.3.m3.1.1.2.3.2.cmml" xref="S2.SS4.p9.3.m3.1.1.2.3.2">𝑖</ci><cn id="S2.SS4.p9.3.m3.1.1.2.3.3.cmml" type="integer" xref="S2.SS4.p9.3.m3.1.1.2.3.3">1</cn></apply></apply><ci id="S2.SS4.p9.3.m3.1.1.3.cmml" xref="S2.SS4.p9.3.m3.1.1.3">𝑛</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p9.3.m3.1c">{\mathbf{U}_{i+1}^{n}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p9.3.m3.1d">bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT</annotation></semantics></math> replaced by the evolved boundary-extrapolated states <math alttext="{\overline{\mathbf{U}_{i+\frac{1}{2}}^{L}}}" class="ltx_Math" display="inline" id="S2.SS4.p9.4.m4.1"><semantics id="S2.SS4.p9.4.m4.1a"><mover accent="true" id="S2.SS4.p9.4.m4.1.1" xref="S2.SS4.p9.4.m4.1.1.cmml"><msubsup id="S2.SS4.p9.4.m4.1.1.2" xref="S2.SS4.p9.4.m4.1.1.2.cmml"><mi id="S2.SS4.p9.4.m4.1.1.2.2.2" xref="S2.SS4.p9.4.m4.1.1.2.2.2.cmml">𝐔</mi><mrow id="S2.SS4.p9.4.m4.1.1.2.2.3" xref="S2.SS4.p9.4.m4.1.1.2.2.3.cmml"><mi id="S2.SS4.p9.4.m4.1.1.2.2.3.2" xref="S2.SS4.p9.4.m4.1.1.2.2.3.2.cmml">i</mi><mo id="S2.SS4.p9.4.m4.1.1.2.2.3.1" xref="S2.SS4.p9.4.m4.1.1.2.2.3.1.cmml">+</mo><mfrac id="S2.SS4.p9.4.m4.1.1.2.2.3.3" xref="S2.SS4.p9.4.m4.1.1.2.2.3.3.cmml"><mn id="S2.SS4.p9.4.m4.1.1.2.2.3.3.2" xref="S2.SS4.p9.4.m4.1.1.2.2.3.3.2.cmml">1</mn><mn id="S2.SS4.p9.4.m4.1.1.2.2.3.3.3" xref="S2.SS4.p9.4.m4.1.1.2.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.SS4.p9.4.m4.1.1.2.3" xref="S2.SS4.p9.4.m4.1.1.2.3.cmml">L</mi></msubsup><mo id="S2.SS4.p9.4.m4.1.1.1" xref="S2.SS4.p9.4.m4.1.1.1.cmml">¯</mo></mover><annotation-xml encoding="MathML-Content" id="S2.SS4.p9.4.m4.1b"><apply id="S2.SS4.p9.4.m4.1.1.cmml" xref="S2.SS4.p9.4.m4.1.1"><ci id="S2.SS4.p9.4.m4.1.1.1.cmml" xref="S2.SS4.p9.4.m4.1.1.1">¯</ci><apply id="S2.SS4.p9.4.m4.1.1.2.cmml" xref="S2.SS4.p9.4.m4.1.1.2"><csymbol cd="ambiguous" id="S2.SS4.p9.4.m4.1.1.2.1.cmml" xref="S2.SS4.p9.4.m4.1.1.2">superscript</csymbol><apply id="S2.SS4.p9.4.m4.1.1.2.2.cmml" xref="S2.SS4.p9.4.m4.1.1.2"><csymbol cd="ambiguous" id="S2.SS4.p9.4.m4.1.1.2.2.1.cmml" xref="S2.SS4.p9.4.m4.1.1.2">subscript</csymbol><ci id="S2.SS4.p9.4.m4.1.1.2.2.2.cmml" xref="S2.SS4.p9.4.m4.1.1.2.2.2">𝐔</ci><apply id="S2.SS4.p9.4.m4.1.1.2.2.3.cmml" xref="S2.SS4.p9.4.m4.1.1.2.2.3"><plus id="S2.SS4.p9.4.m4.1.1.2.2.3.1.cmml" xref="S2.SS4.p9.4.m4.1.1.2.2.3.1"></plus><ci id="S2.SS4.p9.4.m4.1.1.2.2.3.2.cmml" xref="S2.SS4.p9.4.m4.1.1.2.2.3.2">𝑖</ci><apply id="S2.SS4.p9.4.m4.1.1.2.2.3.3.cmml" xref="S2.SS4.p9.4.m4.1.1.2.2.3.3"><divide id="S2.SS4.p9.4.m4.1.1.2.2.3.3.1.cmml" xref="S2.SS4.p9.4.m4.1.1.2.2.3.3"></divide><cn id="S2.SS4.p9.4.m4.1.1.2.2.3.3.2.cmml" type="integer" xref="S2.SS4.p9.4.m4.1.1.2.2.3.3.2">1</cn><cn id="S2.SS4.p9.4.m4.1.1.2.2.3.3.3.cmml" type="integer" xref="S2.SS4.p9.4.m4.1.1.2.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.SS4.p9.4.m4.1.1.2.3.cmml" xref="S2.SS4.p9.4.m4.1.1.2.3">𝐿</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p9.4.m4.1c">{\overline{\mathbf{U}_{i+\frac{1}{2}}^{L}}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p9.4.m4.1d">over¯ start_ARG bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT end_ARG</annotation></semantics></math> and <math alttext="{\overline{\mathbf{U}_{i+\frac{1}{2}}^{R}}}" class="ltx_Math" display="inline" id="S2.SS4.p9.5.m5.1"><semantics id="S2.SS4.p9.5.m5.1a"><mover accent="true" id="S2.SS4.p9.5.m5.1.1" xref="S2.SS4.p9.5.m5.1.1.cmml"><msubsup id="S2.SS4.p9.5.m5.1.1.2" xref="S2.SS4.p9.5.m5.1.1.2.cmml"><mi id="S2.SS4.p9.5.m5.1.1.2.2.2" xref="S2.SS4.p9.5.m5.1.1.2.2.2.cmml">𝐔</mi><mrow id="S2.SS4.p9.5.m5.1.1.2.2.3" xref="S2.SS4.p9.5.m5.1.1.2.2.3.cmml"><mi id="S2.SS4.p9.5.m5.1.1.2.2.3.2" xref="S2.SS4.p9.5.m5.1.1.2.2.3.2.cmml">i</mi><mo id="S2.SS4.p9.5.m5.1.1.2.2.3.1" xref="S2.SS4.p9.5.m5.1.1.2.2.3.1.cmml">+</mo><mfrac id="S2.SS4.p9.5.m5.1.1.2.2.3.3" xref="S2.SS4.p9.5.m5.1.1.2.2.3.3.cmml"><mn id="S2.SS4.p9.5.m5.1.1.2.2.3.3.2" xref="S2.SS4.p9.5.m5.1.1.2.2.3.3.2.cmml">1</mn><mn id="S2.SS4.p9.5.m5.1.1.2.2.3.3.3" xref="S2.SS4.p9.5.m5.1.1.2.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.SS4.p9.5.m5.1.1.2.3" xref="S2.SS4.p9.5.m5.1.1.2.3.cmml">R</mi></msubsup><mo id="S2.SS4.p9.5.m5.1.1.1" xref="S2.SS4.p9.5.m5.1.1.1.cmml">¯</mo></mover><annotation-xml encoding="MathML-Content" id="S2.SS4.p9.5.m5.1b"><apply id="S2.SS4.p9.5.m5.1.1.cmml" xref="S2.SS4.p9.5.m5.1.1"><ci id="S2.SS4.p9.5.m5.1.1.1.cmml" xref="S2.SS4.p9.5.m5.1.1.1">¯</ci><apply id="S2.SS4.p9.5.m5.1.1.2.cmml" xref="S2.SS4.p9.5.m5.1.1.2"><csymbol cd="ambiguous" id="S2.SS4.p9.5.m5.1.1.2.1.cmml" xref="S2.SS4.p9.5.m5.1.1.2">superscript</csymbol><apply id="S2.SS4.p9.5.m5.1.1.2.2.cmml" xref="S2.SS4.p9.5.m5.1.1.2"><csymbol cd="ambiguous" id="S2.SS4.p9.5.m5.1.1.2.2.1.cmml" xref="S2.SS4.p9.5.m5.1.1.2">subscript</csymbol><ci id="S2.SS4.p9.5.m5.1.1.2.2.2.cmml" xref="S2.SS4.p9.5.m5.1.1.2.2.2">𝐔</ci><apply id="S2.SS4.p9.5.m5.1.1.2.2.3.cmml" xref="S2.SS4.p9.5.m5.1.1.2.2.3"><plus id="S2.SS4.p9.5.m5.1.1.2.2.3.1.cmml" xref="S2.SS4.p9.5.m5.1.1.2.2.3.1"></plus><ci id="S2.SS4.p9.5.m5.1.1.2.2.3.2.cmml" xref="S2.SS4.p9.5.m5.1.1.2.2.3.2">𝑖</ci><apply id="S2.SS4.p9.5.m5.1.1.2.2.3.3.cmml" xref="S2.SS4.p9.5.m5.1.1.2.2.3.3"><divide id="S2.SS4.p9.5.m5.1.1.2.2.3.3.1.cmml" xref="S2.SS4.p9.5.m5.1.1.2.2.3.3"></divide><cn id="S2.SS4.p9.5.m5.1.1.2.2.3.3.2.cmml" type="integer" xref="S2.SS4.p9.5.m5.1.1.2.2.3.3.2">1</cn><cn id="S2.SS4.p9.5.m5.1.1.2.2.3.3.3.cmml" type="integer" xref="S2.SS4.p9.5.m5.1.1.2.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.SS4.p9.5.m5.1.1.2.3.cmml" xref="S2.SS4.p9.5.m5.1.1.2.3">𝑅</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p9.5.m5.1c">{\overline{\mathbf{U}_{i+\frac{1}{2}}^{R}}}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p9.5.m5.1d">over¯ start_ARG bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_ARG</annotation></semantics></math>, respectively, i.e. for the case of Lax-Friedrichs fluxes, one has:</p> </div> <div class="ltx_para" id="S2.SS4.p10"> <table class="ltx_equation ltx_eqn_table" id="S2.E25"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(25)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{F}_{i+\frac{1}{2}}=\frac{1}{2}\left[\mathbf{F}\left(\overline{\mathbf{% U}_{i+\frac{1}{2}}^{L}}\right)+\mathbf{F}\left(\overline{\mathbf{U}_{i+\frac{1% }{2}}^{R}}\right)\right]-\frac{\Delta x}{2\Delta t}\left[\overline{\mathbf{U}_% {i+\frac{1}{2}}^{R}}-\overline{\mathbf{U}_{i+\frac{1}{2}}^{L}}\right]," class="ltx_Math" display="block" id="S2.E25.m1.3"><semantics id="S2.E25.m1.3a"><mrow id="S2.E25.m1.3.3.1" xref="S2.E25.m1.3.3.1.1.cmml"><mrow id="S2.E25.m1.3.3.1.1" xref="S2.E25.m1.3.3.1.1.cmml"><msub id="S2.E25.m1.3.3.1.1.4" xref="S2.E25.m1.3.3.1.1.4.cmml"><mi id="S2.E25.m1.3.3.1.1.4.2" xref="S2.E25.m1.3.3.1.1.4.2.cmml">𝐅</mi><mrow id="S2.E25.m1.3.3.1.1.4.3" xref="S2.E25.m1.3.3.1.1.4.3.cmml"><mi id="S2.E25.m1.3.3.1.1.4.3.2" xref="S2.E25.m1.3.3.1.1.4.3.2.cmml">i</mi><mo id="S2.E25.m1.3.3.1.1.4.3.1" xref="S2.E25.m1.3.3.1.1.4.3.1.cmml">+</mo><mfrac id="S2.E25.m1.3.3.1.1.4.3.3" xref="S2.E25.m1.3.3.1.1.4.3.3.cmml"><mn id="S2.E25.m1.3.3.1.1.4.3.3.2" xref="S2.E25.m1.3.3.1.1.4.3.3.2.cmml">1</mn><mn id="S2.E25.m1.3.3.1.1.4.3.3.3" xref="S2.E25.m1.3.3.1.1.4.3.3.3.cmml">2</mn></mfrac></mrow></msub><mo id="S2.E25.m1.3.3.1.1.3" xref="S2.E25.m1.3.3.1.1.3.cmml">=</mo><mrow id="S2.E25.m1.3.3.1.1.2" xref="S2.E25.m1.3.3.1.1.2.cmml"><mrow id="S2.E25.m1.3.3.1.1.1.1" xref="S2.E25.m1.3.3.1.1.1.1.cmml"><mfrac id="S2.E25.m1.3.3.1.1.1.1.3" xref="S2.E25.m1.3.3.1.1.1.1.3.cmml"><mn id="S2.E25.m1.3.3.1.1.1.1.3.2" xref="S2.E25.m1.3.3.1.1.1.1.3.2.cmml">1</mn><mn id="S2.E25.m1.3.3.1.1.1.1.3.3" xref="S2.E25.m1.3.3.1.1.1.1.3.3.cmml">2</mn></mfrac><mo id="S2.E25.m1.3.3.1.1.1.1.2" xref="S2.E25.m1.3.3.1.1.1.1.2.cmml"></mo><mrow id="S2.E25.m1.3.3.1.1.1.1.1.1" xref="S2.E25.m1.3.3.1.1.1.1.1.2.cmml"><mo id="S2.E25.m1.3.3.1.1.1.1.1.1.2" xref="S2.E25.m1.3.3.1.1.1.1.1.2.1.cmml">[</mo><mrow id="S2.E25.m1.3.3.1.1.1.1.1.1.1" xref="S2.E25.m1.3.3.1.1.1.1.1.1.1.cmml"><mrow id="S2.E25.m1.3.3.1.1.1.1.1.1.1.2" xref="S2.E25.m1.3.3.1.1.1.1.1.1.1.2.cmml"><mi id="S2.E25.m1.3.3.1.1.1.1.1.1.1.2.2" xref="S2.E25.m1.3.3.1.1.1.1.1.1.1.2.2.cmml">𝐅</mi><mo id="S2.E25.m1.3.3.1.1.1.1.1.1.1.2.1" xref="S2.E25.m1.3.3.1.1.1.1.1.1.1.2.1.cmml"></mo><mrow id="S2.E25.m1.3.3.1.1.1.1.1.1.1.2.3.2" xref="S2.E25.m1.1.1.cmml"><mo id="S2.E25.m1.3.3.1.1.1.1.1.1.1.2.3.2.1" xref="S2.E25.m1.1.1.cmml">(</mo><mover accent="true" id="S2.E25.m1.1.1" xref="S2.E25.m1.1.1.cmml"><msubsup id="S2.E25.m1.1.1.2" xref="S2.E25.m1.1.1.2.cmml"><mi id="S2.E25.m1.1.1.2.2.2" xref="S2.E25.m1.1.1.2.2.2.cmml">𝐔</mi><mrow id="S2.E25.m1.1.1.2.2.3" xref="S2.E25.m1.1.1.2.2.3.cmml"><mi id="S2.E25.m1.1.1.2.2.3.2" xref="S2.E25.m1.1.1.2.2.3.2.cmml">i</mi><mo id="S2.E25.m1.1.1.2.2.3.1" xref="S2.E25.m1.1.1.2.2.3.1.cmml">+</mo><mfrac id="S2.E25.m1.1.1.2.2.3.3" xref="S2.E25.m1.1.1.2.2.3.3.cmml"><mn id="S2.E25.m1.1.1.2.2.3.3.2" xref="S2.E25.m1.1.1.2.2.3.3.2.cmml">1</mn><mn id="S2.E25.m1.1.1.2.2.3.3.3" xref="S2.E25.m1.1.1.2.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.E25.m1.1.1.2.3" xref="S2.E25.m1.1.1.2.3.cmml">L</mi></msubsup><mo id="S2.E25.m1.1.1.1" xref="S2.E25.m1.1.1.1.cmml">¯</mo></mover><mo id="S2.E25.m1.3.3.1.1.1.1.1.1.1.2.3.2.2" xref="S2.E25.m1.1.1.cmml">)</mo></mrow></mrow><mo id="S2.E25.m1.3.3.1.1.1.1.1.1.1.1" xref="S2.E25.m1.3.3.1.1.1.1.1.1.1.1.cmml">+</mo><mrow id="S2.E25.m1.3.3.1.1.1.1.1.1.1.3" xref="S2.E25.m1.3.3.1.1.1.1.1.1.1.3.cmml"><mi id="S2.E25.m1.3.3.1.1.1.1.1.1.1.3.2" xref="S2.E25.m1.3.3.1.1.1.1.1.1.1.3.2.cmml">𝐅</mi><mo id="S2.E25.m1.3.3.1.1.1.1.1.1.1.3.1" xref="S2.E25.m1.3.3.1.1.1.1.1.1.1.3.1.cmml"></mo><mrow id="S2.E25.m1.3.3.1.1.1.1.1.1.1.3.3.2" xref="S2.E25.m1.2.2.cmml"><mo id="S2.E25.m1.3.3.1.1.1.1.1.1.1.3.3.2.1" xref="S2.E25.m1.2.2.cmml">(</mo><mover accent="true" id="S2.E25.m1.2.2" xref="S2.E25.m1.2.2.cmml"><msubsup id="S2.E25.m1.2.2.2" xref="S2.E25.m1.2.2.2.cmml"><mi id="S2.E25.m1.2.2.2.2.2" xref="S2.E25.m1.2.2.2.2.2.cmml">𝐔</mi><mrow id="S2.E25.m1.2.2.2.2.3" xref="S2.E25.m1.2.2.2.2.3.cmml"><mi id="S2.E25.m1.2.2.2.2.3.2" xref="S2.E25.m1.2.2.2.2.3.2.cmml">i</mi><mo id="S2.E25.m1.2.2.2.2.3.1" xref="S2.E25.m1.2.2.2.2.3.1.cmml">+</mo><mfrac id="S2.E25.m1.2.2.2.2.3.3" xref="S2.E25.m1.2.2.2.2.3.3.cmml"><mn id="S2.E25.m1.2.2.2.2.3.3.2" xref="S2.E25.m1.2.2.2.2.3.3.2.cmml">1</mn><mn id="S2.E25.m1.2.2.2.2.3.3.3" xref="S2.E25.m1.2.2.2.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.E25.m1.2.2.2.3" xref="S2.E25.m1.2.2.2.3.cmml">R</mi></msubsup><mo id="S2.E25.m1.2.2.1" xref="S2.E25.m1.2.2.1.cmml">¯</mo></mover><mo id="S2.E25.m1.3.3.1.1.1.1.1.1.1.3.3.2.2" xref="S2.E25.m1.2.2.cmml">)</mo></mrow></mrow></mrow><mo id="S2.E25.m1.3.3.1.1.1.1.1.1.3" xref="S2.E25.m1.3.3.1.1.1.1.1.2.1.cmml">]</mo></mrow></mrow><mo id="S2.E25.m1.3.3.1.1.2.3" xref="S2.E25.m1.3.3.1.1.2.3.cmml">−</mo><mrow id="S2.E25.m1.3.3.1.1.2.2" xref="S2.E25.m1.3.3.1.1.2.2.cmml"><mfrac id="S2.E25.m1.3.3.1.1.2.2.3" xref="S2.E25.m1.3.3.1.1.2.2.3.cmml"><mrow id="S2.E25.m1.3.3.1.1.2.2.3.2" xref="S2.E25.m1.3.3.1.1.2.2.3.2.cmml"><mi id="S2.E25.m1.3.3.1.1.2.2.3.2.2" mathvariant="normal" xref="S2.E25.m1.3.3.1.1.2.2.3.2.2.cmml">Δ</mi><mo id="S2.E25.m1.3.3.1.1.2.2.3.2.1" xref="S2.E25.m1.3.3.1.1.2.2.3.2.1.cmml"></mo><mi id="S2.E25.m1.3.3.1.1.2.2.3.2.3" xref="S2.E25.m1.3.3.1.1.2.2.3.2.3.cmml">x</mi></mrow><mrow id="S2.E25.m1.3.3.1.1.2.2.3.3" xref="S2.E25.m1.3.3.1.1.2.2.3.3.cmml"><mn id="S2.E25.m1.3.3.1.1.2.2.3.3.2" xref="S2.E25.m1.3.3.1.1.2.2.3.3.2.cmml">2</mn><mo id="S2.E25.m1.3.3.1.1.2.2.3.3.1" xref="S2.E25.m1.3.3.1.1.2.2.3.3.1.cmml"></mo><mi id="S2.E25.m1.3.3.1.1.2.2.3.3.3" mathvariant="normal" xref="S2.E25.m1.3.3.1.1.2.2.3.3.3.cmml">Δ</mi><mo id="S2.E25.m1.3.3.1.1.2.2.3.3.1a" xref="S2.E25.m1.3.3.1.1.2.2.3.3.1.cmml"></mo><mi id="S2.E25.m1.3.3.1.1.2.2.3.3.4" xref="S2.E25.m1.3.3.1.1.2.2.3.3.4.cmml">t</mi></mrow></mfrac><mo id="S2.E25.m1.3.3.1.1.2.2.2" xref="S2.E25.m1.3.3.1.1.2.2.2.cmml"></mo><mrow id="S2.E25.m1.3.3.1.1.2.2.1.1" xref="S2.E25.m1.3.3.1.1.2.2.1.2.cmml"><mo id="S2.E25.m1.3.3.1.1.2.2.1.1.2" xref="S2.E25.m1.3.3.1.1.2.2.1.2.1.cmml">[</mo><mrow id="S2.E25.m1.3.3.1.1.2.2.1.1.1" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.cmml"><mover accent="true" id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.cmml"><msubsup id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.cmml"><mi id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.2" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.2.cmml">𝐔</mi><mrow id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.cmml"><mi id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.2" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.2.cmml">i</mi><mo id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.1" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.1.cmml">+</mo><mfrac id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.3" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.3.cmml"><mn id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.3.2" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.3.2.cmml">1</mn><mn id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.3.3" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.3" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.3.cmml">R</mi></msubsup><mo id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.1" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.1.cmml">¯</mo></mover><mo id="S2.E25.m1.3.3.1.1.2.2.1.1.1.1" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.1.cmml">−</mo><mover accent="true" id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.cmml"><msubsup id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.cmml"><mi id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.2" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.2.cmml">𝐔</mi><mrow id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.cmml"><mi id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.2" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.2.cmml">i</mi><mo id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.1" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.1.cmml">+</mo><mfrac id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.3" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.3.cmml"><mn id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.3.2" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.3.2.cmml">1</mn><mn id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.3.3" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.3" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.3.cmml">L</mi></msubsup><mo id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.1" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.1.cmml">¯</mo></mover></mrow><mo id="S2.E25.m1.3.3.1.1.2.2.1.1.3" xref="S2.E25.m1.3.3.1.1.2.2.1.2.1.cmml">]</mo></mrow></mrow></mrow></mrow><mo id="S2.E25.m1.3.3.1.2" xref="S2.E25.m1.3.3.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E25.m1.3b"><apply id="S2.E25.m1.3.3.1.1.cmml" xref="S2.E25.m1.3.3.1"><eq id="S2.E25.m1.3.3.1.1.3.cmml" xref="S2.E25.m1.3.3.1.1.3"></eq><apply id="S2.E25.m1.3.3.1.1.4.cmml" xref="S2.E25.m1.3.3.1.1.4"><csymbol cd="ambiguous" id="S2.E25.m1.3.3.1.1.4.1.cmml" xref="S2.E25.m1.3.3.1.1.4">subscript</csymbol><ci id="S2.E25.m1.3.3.1.1.4.2.cmml" xref="S2.E25.m1.3.3.1.1.4.2">𝐅</ci><apply id="S2.E25.m1.3.3.1.1.4.3.cmml" xref="S2.E25.m1.3.3.1.1.4.3"><plus id="S2.E25.m1.3.3.1.1.4.3.1.cmml" xref="S2.E25.m1.3.3.1.1.4.3.1"></plus><ci id="S2.E25.m1.3.3.1.1.4.3.2.cmml" xref="S2.E25.m1.3.3.1.1.4.3.2">𝑖</ci><apply id="S2.E25.m1.3.3.1.1.4.3.3.cmml" xref="S2.E25.m1.3.3.1.1.4.3.3"><divide id="S2.E25.m1.3.3.1.1.4.3.3.1.cmml" xref="S2.E25.m1.3.3.1.1.4.3.3"></divide><cn id="S2.E25.m1.3.3.1.1.4.3.3.2.cmml" type="integer" xref="S2.E25.m1.3.3.1.1.4.3.3.2">1</cn><cn id="S2.E25.m1.3.3.1.1.4.3.3.3.cmml" type="integer" xref="S2.E25.m1.3.3.1.1.4.3.3.3">2</cn></apply></apply></apply><apply id="S2.E25.m1.3.3.1.1.2.cmml" xref="S2.E25.m1.3.3.1.1.2"><minus id="S2.E25.m1.3.3.1.1.2.3.cmml" xref="S2.E25.m1.3.3.1.1.2.3"></minus><apply id="S2.E25.m1.3.3.1.1.1.1.cmml" xref="S2.E25.m1.3.3.1.1.1.1"><times id="S2.E25.m1.3.3.1.1.1.1.2.cmml" xref="S2.E25.m1.3.3.1.1.1.1.2"></times><apply id="S2.E25.m1.3.3.1.1.1.1.3.cmml" xref="S2.E25.m1.3.3.1.1.1.1.3"><divide id="S2.E25.m1.3.3.1.1.1.1.3.1.cmml" xref="S2.E25.m1.3.3.1.1.1.1.3"></divide><cn id="S2.E25.m1.3.3.1.1.1.1.3.2.cmml" type="integer" xref="S2.E25.m1.3.3.1.1.1.1.3.2">1</cn><cn id="S2.E25.m1.3.3.1.1.1.1.3.3.cmml" type="integer" xref="S2.E25.m1.3.3.1.1.1.1.3.3">2</cn></apply><apply id="S2.E25.m1.3.3.1.1.1.1.1.2.cmml" xref="S2.E25.m1.3.3.1.1.1.1.1.1"><csymbol cd="latexml" id="S2.E25.m1.3.3.1.1.1.1.1.2.1.cmml" xref="S2.E25.m1.3.3.1.1.1.1.1.1.2">delimited-[]</csymbol><apply id="S2.E25.m1.3.3.1.1.1.1.1.1.1.cmml" xref="S2.E25.m1.3.3.1.1.1.1.1.1.1"><plus id="S2.E25.m1.3.3.1.1.1.1.1.1.1.1.cmml" xref="S2.E25.m1.3.3.1.1.1.1.1.1.1.1"></plus><apply id="S2.E25.m1.3.3.1.1.1.1.1.1.1.2.cmml" xref="S2.E25.m1.3.3.1.1.1.1.1.1.1.2"><times id="S2.E25.m1.3.3.1.1.1.1.1.1.1.2.1.cmml" xref="S2.E25.m1.3.3.1.1.1.1.1.1.1.2.1"></times><ci id="S2.E25.m1.3.3.1.1.1.1.1.1.1.2.2.cmml" xref="S2.E25.m1.3.3.1.1.1.1.1.1.1.2.2">𝐅</ci><apply id="S2.E25.m1.1.1.cmml" xref="S2.E25.m1.3.3.1.1.1.1.1.1.1.2.3.2"><ci id="S2.E25.m1.1.1.1.cmml" xref="S2.E25.m1.1.1.1">¯</ci><apply id="S2.E25.m1.1.1.2.cmml" xref="S2.E25.m1.1.1.2"><csymbol cd="ambiguous" id="S2.E25.m1.1.1.2.1.cmml" xref="S2.E25.m1.1.1.2">superscript</csymbol><apply id="S2.E25.m1.1.1.2.2.cmml" xref="S2.E25.m1.1.1.2"><csymbol cd="ambiguous" id="S2.E25.m1.1.1.2.2.1.cmml" xref="S2.E25.m1.1.1.2">subscript</csymbol><ci id="S2.E25.m1.1.1.2.2.2.cmml" xref="S2.E25.m1.1.1.2.2.2">𝐔</ci><apply id="S2.E25.m1.1.1.2.2.3.cmml" xref="S2.E25.m1.1.1.2.2.3"><plus id="S2.E25.m1.1.1.2.2.3.1.cmml" xref="S2.E25.m1.1.1.2.2.3.1"></plus><ci id="S2.E25.m1.1.1.2.2.3.2.cmml" xref="S2.E25.m1.1.1.2.2.3.2">𝑖</ci><apply id="S2.E25.m1.1.1.2.2.3.3.cmml" xref="S2.E25.m1.1.1.2.2.3.3"><divide id="S2.E25.m1.1.1.2.2.3.3.1.cmml" xref="S2.E25.m1.1.1.2.2.3.3"></divide><cn id="S2.E25.m1.1.1.2.2.3.3.2.cmml" type="integer" xref="S2.E25.m1.1.1.2.2.3.3.2">1</cn><cn id="S2.E25.m1.1.1.2.2.3.3.3.cmml" type="integer" xref="S2.E25.m1.1.1.2.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.E25.m1.1.1.2.3.cmml" xref="S2.E25.m1.1.1.2.3">𝐿</ci></apply></apply></apply><apply id="S2.E25.m1.3.3.1.1.1.1.1.1.1.3.cmml" xref="S2.E25.m1.3.3.1.1.1.1.1.1.1.3"><times id="S2.E25.m1.3.3.1.1.1.1.1.1.1.3.1.cmml" xref="S2.E25.m1.3.3.1.1.1.1.1.1.1.3.1"></times><ci id="S2.E25.m1.3.3.1.1.1.1.1.1.1.3.2.cmml" xref="S2.E25.m1.3.3.1.1.1.1.1.1.1.3.2">𝐅</ci><apply id="S2.E25.m1.2.2.cmml" xref="S2.E25.m1.3.3.1.1.1.1.1.1.1.3.3.2"><ci id="S2.E25.m1.2.2.1.cmml" xref="S2.E25.m1.2.2.1">¯</ci><apply id="S2.E25.m1.2.2.2.cmml" xref="S2.E25.m1.2.2.2"><csymbol cd="ambiguous" id="S2.E25.m1.2.2.2.1.cmml" xref="S2.E25.m1.2.2.2">superscript</csymbol><apply id="S2.E25.m1.2.2.2.2.cmml" xref="S2.E25.m1.2.2.2"><csymbol cd="ambiguous" id="S2.E25.m1.2.2.2.2.1.cmml" xref="S2.E25.m1.2.2.2">subscript</csymbol><ci id="S2.E25.m1.2.2.2.2.2.cmml" xref="S2.E25.m1.2.2.2.2.2">𝐔</ci><apply id="S2.E25.m1.2.2.2.2.3.cmml" xref="S2.E25.m1.2.2.2.2.3"><plus id="S2.E25.m1.2.2.2.2.3.1.cmml" xref="S2.E25.m1.2.2.2.2.3.1"></plus><ci id="S2.E25.m1.2.2.2.2.3.2.cmml" xref="S2.E25.m1.2.2.2.2.3.2">𝑖</ci><apply id="S2.E25.m1.2.2.2.2.3.3.cmml" xref="S2.E25.m1.2.2.2.2.3.3"><divide id="S2.E25.m1.2.2.2.2.3.3.1.cmml" xref="S2.E25.m1.2.2.2.2.3.3"></divide><cn id="S2.E25.m1.2.2.2.2.3.3.2.cmml" type="integer" xref="S2.E25.m1.2.2.2.2.3.3.2">1</cn><cn id="S2.E25.m1.2.2.2.2.3.3.3.cmml" type="integer" xref="S2.E25.m1.2.2.2.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.E25.m1.2.2.2.3.cmml" xref="S2.E25.m1.2.2.2.3">𝑅</ci></apply></apply></apply></apply></apply></apply><apply id="S2.E25.m1.3.3.1.1.2.2.cmml" xref="S2.E25.m1.3.3.1.1.2.2"><times id="S2.E25.m1.3.3.1.1.2.2.2.cmml" xref="S2.E25.m1.3.3.1.1.2.2.2"></times><apply id="S2.E25.m1.3.3.1.1.2.2.3.cmml" xref="S2.E25.m1.3.3.1.1.2.2.3"><divide id="S2.E25.m1.3.3.1.1.2.2.3.1.cmml" xref="S2.E25.m1.3.3.1.1.2.2.3"></divide><apply id="S2.E25.m1.3.3.1.1.2.2.3.2.cmml" xref="S2.E25.m1.3.3.1.1.2.2.3.2"><times id="S2.E25.m1.3.3.1.1.2.2.3.2.1.cmml" xref="S2.E25.m1.3.3.1.1.2.2.3.2.1"></times><ci id="S2.E25.m1.3.3.1.1.2.2.3.2.2.cmml" xref="S2.E25.m1.3.3.1.1.2.2.3.2.2">Δ</ci><ci id="S2.E25.m1.3.3.1.1.2.2.3.2.3.cmml" xref="S2.E25.m1.3.3.1.1.2.2.3.2.3">𝑥</ci></apply><apply id="S2.E25.m1.3.3.1.1.2.2.3.3.cmml" xref="S2.E25.m1.3.3.1.1.2.2.3.3"><times id="S2.E25.m1.3.3.1.1.2.2.3.3.1.cmml" xref="S2.E25.m1.3.3.1.1.2.2.3.3.1"></times><cn id="S2.E25.m1.3.3.1.1.2.2.3.3.2.cmml" type="integer" xref="S2.E25.m1.3.3.1.1.2.2.3.3.2">2</cn><ci id="S2.E25.m1.3.3.1.1.2.2.3.3.3.cmml" xref="S2.E25.m1.3.3.1.1.2.2.3.3.3">Δ</ci><ci id="S2.E25.m1.3.3.1.1.2.2.3.3.4.cmml" xref="S2.E25.m1.3.3.1.1.2.2.3.3.4">𝑡</ci></apply></apply><apply id="S2.E25.m1.3.3.1.1.2.2.1.2.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1"><csymbol cd="latexml" id="S2.E25.m1.3.3.1.1.2.2.1.2.1.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.2">delimited-[]</csymbol><apply id="S2.E25.m1.3.3.1.1.2.2.1.1.1.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1"><minus id="S2.E25.m1.3.3.1.1.2.2.1.1.1.1.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.1"></minus><apply id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2"><ci id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.1.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.1">¯</ci><apply id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2"><csymbol cd="ambiguous" id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.1.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2">superscript</csymbol><apply id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2"><csymbol cd="ambiguous" id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.1.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2">subscript</csymbol><ci id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.2.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.2">𝐔</ci><apply id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3"><plus id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.1.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.1"></plus><ci id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.2.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.2">𝑖</ci><apply id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.3.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.3"><divide id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.3.1.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.3"></divide><cn id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.3.2.cmml" type="integer" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.3.2">1</cn><cn id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.3.3.cmml" type="integer" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.3.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.2.2.3">𝑅</ci></apply></apply><apply id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3"><ci id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.1.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.1">¯</ci><apply id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2"><csymbol cd="ambiguous" id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.1.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2">superscript</csymbol><apply id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2"><csymbol cd="ambiguous" id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.1.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2">subscript</csymbol><ci id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.2.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.2">𝐔</ci><apply id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3"><plus id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.1.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.1"></plus><ci id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.2.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.2">𝑖</ci><apply id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.3.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.3"><divide id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.3.1.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.3"></divide><cn id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.3.2.cmml" type="integer" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.3.2">1</cn><cn id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.3.3.cmml" type="integer" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.3.cmml" xref="S2.E25.m1.3.3.1.1.2.2.1.1.1.3.2.3">𝐿</ci></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E25.m1.3c">\mathbf{F}_{i+\frac{1}{2}}=\frac{1}{2}\left[\mathbf{F}\left(\overline{\mathbf{% U}_{i+\frac{1}{2}}^{L}}\right)+\mathbf{F}\left(\overline{\mathbf{U}_{i+\frac{1% }{2}}^{R}}\right)\right]-\frac{\Delta x}{2\Delta t}\left[\overline{\mathbf{U}_% {i+\frac{1}{2}}^{R}}-\overline{\mathbf{U}_{i+\frac{1}{2}}^{L}}\right],</annotation><annotation encoding="application/x-llamapun" id="S2.E25.m1.3d">bold_F start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ bold_F ( over¯ start_ARG bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT end_ARG ) + bold_F ( over¯ start_ARG bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_ARG ) ] - divide start_ARG roman_Δ italic_x end_ARG start_ARG 2 roman_Δ italic_t end_ARG [ over¯ start_ARG bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_ARG - over¯ start_ARG bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT end_ARG ] ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS4.p10.1">and for the case of Roe fluxes, one has:</p> </div> <div class="ltx_para" id="S2.SS4.p11"> <table class="ltx_equation ltx_eqn_table" id="S2.E26"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(26)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{F}_{i+\frac{1}{2}}=\frac{1}{2}\left[\mathbf{F}\left(\overline{\mathbf{% U}_{i+\frac{1}{2}}^{L}}\right)+\mathbf{F}\left(\overline{\mathbf{U}_{i+\frac{1% }{2}}^{R}}\right)\right]-\frac{1}{2}\sum_{p}\left\lvert\lambda_{p}\right\rvert% \alpha_{p}\mathbf{r}_{p}," class="ltx_Math" display="block" id="S2.E26.m1.3"><semantics id="S2.E26.m1.3a"><mrow id="S2.E26.m1.3.3.1" xref="S2.E26.m1.3.3.1.1.cmml"><mrow id="S2.E26.m1.3.3.1.1" xref="S2.E26.m1.3.3.1.1.cmml"><msub id="S2.E26.m1.3.3.1.1.4" xref="S2.E26.m1.3.3.1.1.4.cmml"><mi id="S2.E26.m1.3.3.1.1.4.2" xref="S2.E26.m1.3.3.1.1.4.2.cmml">𝐅</mi><mrow id="S2.E26.m1.3.3.1.1.4.3" xref="S2.E26.m1.3.3.1.1.4.3.cmml"><mi id="S2.E26.m1.3.3.1.1.4.3.2" xref="S2.E26.m1.3.3.1.1.4.3.2.cmml">i</mi><mo id="S2.E26.m1.3.3.1.1.4.3.1" xref="S2.E26.m1.3.3.1.1.4.3.1.cmml">+</mo><mfrac id="S2.E26.m1.3.3.1.1.4.3.3" xref="S2.E26.m1.3.3.1.1.4.3.3.cmml"><mn id="S2.E26.m1.3.3.1.1.4.3.3.2" xref="S2.E26.m1.3.3.1.1.4.3.3.2.cmml">1</mn><mn id="S2.E26.m1.3.3.1.1.4.3.3.3" xref="S2.E26.m1.3.3.1.1.4.3.3.3.cmml">2</mn></mfrac></mrow></msub><mo id="S2.E26.m1.3.3.1.1.3" xref="S2.E26.m1.3.3.1.1.3.cmml">=</mo><mrow id="S2.E26.m1.3.3.1.1.2" xref="S2.E26.m1.3.3.1.1.2.cmml"><mrow id="S2.E26.m1.3.3.1.1.1.1" xref="S2.E26.m1.3.3.1.1.1.1.cmml"><mfrac id="S2.E26.m1.3.3.1.1.1.1.3" xref="S2.E26.m1.3.3.1.1.1.1.3.cmml"><mn id="S2.E26.m1.3.3.1.1.1.1.3.2" xref="S2.E26.m1.3.3.1.1.1.1.3.2.cmml">1</mn><mn id="S2.E26.m1.3.3.1.1.1.1.3.3" xref="S2.E26.m1.3.3.1.1.1.1.3.3.cmml">2</mn></mfrac><mo id="S2.E26.m1.3.3.1.1.1.1.2" xref="S2.E26.m1.3.3.1.1.1.1.2.cmml"></mo><mrow id="S2.E26.m1.3.3.1.1.1.1.1.1" xref="S2.E26.m1.3.3.1.1.1.1.1.2.cmml"><mo id="S2.E26.m1.3.3.1.1.1.1.1.1.2" xref="S2.E26.m1.3.3.1.1.1.1.1.2.1.cmml">[</mo><mrow id="S2.E26.m1.3.3.1.1.1.1.1.1.1" xref="S2.E26.m1.3.3.1.1.1.1.1.1.1.cmml"><mrow id="S2.E26.m1.3.3.1.1.1.1.1.1.1.2" xref="S2.E26.m1.3.3.1.1.1.1.1.1.1.2.cmml"><mi id="S2.E26.m1.3.3.1.1.1.1.1.1.1.2.2" xref="S2.E26.m1.3.3.1.1.1.1.1.1.1.2.2.cmml">𝐅</mi><mo id="S2.E26.m1.3.3.1.1.1.1.1.1.1.2.1" xref="S2.E26.m1.3.3.1.1.1.1.1.1.1.2.1.cmml"></mo><mrow id="S2.E26.m1.3.3.1.1.1.1.1.1.1.2.3.2" xref="S2.E26.m1.1.1.cmml"><mo id="S2.E26.m1.3.3.1.1.1.1.1.1.1.2.3.2.1" xref="S2.E26.m1.1.1.cmml">(</mo><mover accent="true" id="S2.E26.m1.1.1" xref="S2.E26.m1.1.1.cmml"><msubsup id="S2.E26.m1.1.1.2" xref="S2.E26.m1.1.1.2.cmml"><mi id="S2.E26.m1.1.1.2.2.2" xref="S2.E26.m1.1.1.2.2.2.cmml">𝐔</mi><mrow id="S2.E26.m1.1.1.2.2.3" xref="S2.E26.m1.1.1.2.2.3.cmml"><mi id="S2.E26.m1.1.1.2.2.3.2" xref="S2.E26.m1.1.1.2.2.3.2.cmml">i</mi><mo id="S2.E26.m1.1.1.2.2.3.1" xref="S2.E26.m1.1.1.2.2.3.1.cmml">+</mo><mfrac id="S2.E26.m1.1.1.2.2.3.3" xref="S2.E26.m1.1.1.2.2.3.3.cmml"><mn id="S2.E26.m1.1.1.2.2.3.3.2" xref="S2.E26.m1.1.1.2.2.3.3.2.cmml">1</mn><mn id="S2.E26.m1.1.1.2.2.3.3.3" xref="S2.E26.m1.1.1.2.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.E26.m1.1.1.2.3" xref="S2.E26.m1.1.1.2.3.cmml">L</mi></msubsup><mo id="S2.E26.m1.1.1.1" xref="S2.E26.m1.1.1.1.cmml">¯</mo></mover><mo id="S2.E26.m1.3.3.1.1.1.1.1.1.1.2.3.2.2" xref="S2.E26.m1.1.1.cmml">)</mo></mrow></mrow><mo id="S2.E26.m1.3.3.1.1.1.1.1.1.1.1" xref="S2.E26.m1.3.3.1.1.1.1.1.1.1.1.cmml">+</mo><mrow id="S2.E26.m1.3.3.1.1.1.1.1.1.1.3" xref="S2.E26.m1.3.3.1.1.1.1.1.1.1.3.cmml"><mi id="S2.E26.m1.3.3.1.1.1.1.1.1.1.3.2" xref="S2.E26.m1.3.3.1.1.1.1.1.1.1.3.2.cmml">𝐅</mi><mo id="S2.E26.m1.3.3.1.1.1.1.1.1.1.3.1" xref="S2.E26.m1.3.3.1.1.1.1.1.1.1.3.1.cmml"></mo><mrow id="S2.E26.m1.3.3.1.1.1.1.1.1.1.3.3.2" xref="S2.E26.m1.2.2.cmml"><mo id="S2.E26.m1.3.3.1.1.1.1.1.1.1.3.3.2.1" xref="S2.E26.m1.2.2.cmml">(</mo><mover accent="true" id="S2.E26.m1.2.2" xref="S2.E26.m1.2.2.cmml"><msubsup id="S2.E26.m1.2.2.2" xref="S2.E26.m1.2.2.2.cmml"><mi id="S2.E26.m1.2.2.2.2.2" xref="S2.E26.m1.2.2.2.2.2.cmml">𝐔</mi><mrow id="S2.E26.m1.2.2.2.2.3" xref="S2.E26.m1.2.2.2.2.3.cmml"><mi id="S2.E26.m1.2.2.2.2.3.2" xref="S2.E26.m1.2.2.2.2.3.2.cmml">i</mi><mo id="S2.E26.m1.2.2.2.2.3.1" xref="S2.E26.m1.2.2.2.2.3.1.cmml">+</mo><mfrac id="S2.E26.m1.2.2.2.2.3.3" xref="S2.E26.m1.2.2.2.2.3.3.cmml"><mn id="S2.E26.m1.2.2.2.2.3.3.2" xref="S2.E26.m1.2.2.2.2.3.3.2.cmml">1</mn><mn id="S2.E26.m1.2.2.2.2.3.3.3" xref="S2.E26.m1.2.2.2.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.E26.m1.2.2.2.3" xref="S2.E26.m1.2.2.2.3.cmml">R</mi></msubsup><mo id="S2.E26.m1.2.2.1" xref="S2.E26.m1.2.2.1.cmml">¯</mo></mover><mo id="S2.E26.m1.3.3.1.1.1.1.1.1.1.3.3.2.2" xref="S2.E26.m1.2.2.cmml">)</mo></mrow></mrow></mrow><mo id="S2.E26.m1.3.3.1.1.1.1.1.1.3" xref="S2.E26.m1.3.3.1.1.1.1.1.2.1.cmml">]</mo></mrow></mrow><mo id="S2.E26.m1.3.3.1.1.2.3" xref="S2.E26.m1.3.3.1.1.2.3.cmml">−</mo><mrow id="S2.E26.m1.3.3.1.1.2.2" xref="S2.E26.m1.3.3.1.1.2.2.cmml"><mfrac id="S2.E26.m1.3.3.1.1.2.2.3" xref="S2.E26.m1.3.3.1.1.2.2.3.cmml"><mn id="S2.E26.m1.3.3.1.1.2.2.3.2" xref="S2.E26.m1.3.3.1.1.2.2.3.2.cmml">1</mn><mn id="S2.E26.m1.3.3.1.1.2.2.3.3" xref="S2.E26.m1.3.3.1.1.2.2.3.3.cmml">2</mn></mfrac><mo id="S2.E26.m1.3.3.1.1.2.2.2" xref="S2.E26.m1.3.3.1.1.2.2.2.cmml"></mo><mrow id="S2.E26.m1.3.3.1.1.2.2.1" xref="S2.E26.m1.3.3.1.1.2.2.1.cmml"><munder id="S2.E26.m1.3.3.1.1.2.2.1.2" xref="S2.E26.m1.3.3.1.1.2.2.1.2.cmml"><mo id="S2.E26.m1.3.3.1.1.2.2.1.2.2" movablelimits="false" rspace="0em" xref="S2.E26.m1.3.3.1.1.2.2.1.2.2.cmml">∑</mo><mi id="S2.E26.m1.3.3.1.1.2.2.1.2.3" xref="S2.E26.m1.3.3.1.1.2.2.1.2.3.cmml">p</mi></munder><mrow id="S2.E26.m1.3.3.1.1.2.2.1.1" xref="S2.E26.m1.3.3.1.1.2.2.1.1.cmml"><mrow id="S2.E26.m1.3.3.1.1.2.2.1.1.1.1" xref="S2.E26.m1.3.3.1.1.2.2.1.1.1.2.cmml"><mo id="S2.E26.m1.3.3.1.1.2.2.1.1.1.1.2" xref="S2.E26.m1.3.3.1.1.2.2.1.1.1.2.1.cmml">|</mo><msub id="S2.E26.m1.3.3.1.1.2.2.1.1.1.1.1" xref="S2.E26.m1.3.3.1.1.2.2.1.1.1.1.1.cmml"><mi id="S2.E26.m1.3.3.1.1.2.2.1.1.1.1.1.2" xref="S2.E26.m1.3.3.1.1.2.2.1.1.1.1.1.2.cmml">λ</mi><mi id="S2.E26.m1.3.3.1.1.2.2.1.1.1.1.1.3" xref="S2.E26.m1.3.3.1.1.2.2.1.1.1.1.1.3.cmml">p</mi></msub><mo id="S2.E26.m1.3.3.1.1.2.2.1.1.1.1.3" xref="S2.E26.m1.3.3.1.1.2.2.1.1.1.2.1.cmml">|</mo></mrow><mo id="S2.E26.m1.3.3.1.1.2.2.1.1.2" xref="S2.E26.m1.3.3.1.1.2.2.1.1.2.cmml"></mo><msub id="S2.E26.m1.3.3.1.1.2.2.1.1.3" xref="S2.E26.m1.3.3.1.1.2.2.1.1.3.cmml"><mi id="S2.E26.m1.3.3.1.1.2.2.1.1.3.2" xref="S2.E26.m1.3.3.1.1.2.2.1.1.3.2.cmml">α</mi><mi id="S2.E26.m1.3.3.1.1.2.2.1.1.3.3" xref="S2.E26.m1.3.3.1.1.2.2.1.1.3.3.cmml">p</mi></msub><mo id="S2.E26.m1.3.3.1.1.2.2.1.1.2a" xref="S2.E26.m1.3.3.1.1.2.2.1.1.2.cmml"></mo><msub id="S2.E26.m1.3.3.1.1.2.2.1.1.4" xref="S2.E26.m1.3.3.1.1.2.2.1.1.4.cmml"><mi id="S2.E26.m1.3.3.1.1.2.2.1.1.4.2" xref="S2.E26.m1.3.3.1.1.2.2.1.1.4.2.cmml">𝐫</mi><mi id="S2.E26.m1.3.3.1.1.2.2.1.1.4.3" xref="S2.E26.m1.3.3.1.1.2.2.1.1.4.3.cmml">p</mi></msub></mrow></mrow></mrow></mrow></mrow><mo id="S2.E26.m1.3.3.1.2" xref="S2.E26.m1.3.3.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E26.m1.3b"><apply id="S2.E26.m1.3.3.1.1.cmml" xref="S2.E26.m1.3.3.1"><eq id="S2.E26.m1.3.3.1.1.3.cmml" xref="S2.E26.m1.3.3.1.1.3"></eq><apply id="S2.E26.m1.3.3.1.1.4.cmml" xref="S2.E26.m1.3.3.1.1.4"><csymbol cd="ambiguous" id="S2.E26.m1.3.3.1.1.4.1.cmml" xref="S2.E26.m1.3.3.1.1.4">subscript</csymbol><ci id="S2.E26.m1.3.3.1.1.4.2.cmml" xref="S2.E26.m1.3.3.1.1.4.2">𝐅</ci><apply id="S2.E26.m1.3.3.1.1.4.3.cmml" xref="S2.E26.m1.3.3.1.1.4.3"><plus id="S2.E26.m1.3.3.1.1.4.3.1.cmml" xref="S2.E26.m1.3.3.1.1.4.3.1"></plus><ci id="S2.E26.m1.3.3.1.1.4.3.2.cmml" xref="S2.E26.m1.3.3.1.1.4.3.2">𝑖</ci><apply id="S2.E26.m1.3.3.1.1.4.3.3.cmml" xref="S2.E26.m1.3.3.1.1.4.3.3"><divide id="S2.E26.m1.3.3.1.1.4.3.3.1.cmml" xref="S2.E26.m1.3.3.1.1.4.3.3"></divide><cn id="S2.E26.m1.3.3.1.1.4.3.3.2.cmml" type="integer" xref="S2.E26.m1.3.3.1.1.4.3.3.2">1</cn><cn id="S2.E26.m1.3.3.1.1.4.3.3.3.cmml" type="integer" xref="S2.E26.m1.3.3.1.1.4.3.3.3">2</cn></apply></apply></apply><apply id="S2.E26.m1.3.3.1.1.2.cmml" xref="S2.E26.m1.3.3.1.1.2"><minus id="S2.E26.m1.3.3.1.1.2.3.cmml" xref="S2.E26.m1.3.3.1.1.2.3"></minus><apply id="S2.E26.m1.3.3.1.1.1.1.cmml" xref="S2.E26.m1.3.3.1.1.1.1"><times id="S2.E26.m1.3.3.1.1.1.1.2.cmml" xref="S2.E26.m1.3.3.1.1.1.1.2"></times><apply id="S2.E26.m1.3.3.1.1.1.1.3.cmml" xref="S2.E26.m1.3.3.1.1.1.1.3"><divide id="S2.E26.m1.3.3.1.1.1.1.3.1.cmml" xref="S2.E26.m1.3.3.1.1.1.1.3"></divide><cn id="S2.E26.m1.3.3.1.1.1.1.3.2.cmml" type="integer" xref="S2.E26.m1.3.3.1.1.1.1.3.2">1</cn><cn id="S2.E26.m1.3.3.1.1.1.1.3.3.cmml" type="integer" xref="S2.E26.m1.3.3.1.1.1.1.3.3">2</cn></apply><apply id="S2.E26.m1.3.3.1.1.1.1.1.2.cmml" xref="S2.E26.m1.3.3.1.1.1.1.1.1"><csymbol cd="latexml" id="S2.E26.m1.3.3.1.1.1.1.1.2.1.cmml" xref="S2.E26.m1.3.3.1.1.1.1.1.1.2">delimited-[]</csymbol><apply id="S2.E26.m1.3.3.1.1.1.1.1.1.1.cmml" xref="S2.E26.m1.3.3.1.1.1.1.1.1.1"><plus id="S2.E26.m1.3.3.1.1.1.1.1.1.1.1.cmml" xref="S2.E26.m1.3.3.1.1.1.1.1.1.1.1"></plus><apply id="S2.E26.m1.3.3.1.1.1.1.1.1.1.2.cmml" xref="S2.E26.m1.3.3.1.1.1.1.1.1.1.2"><times id="S2.E26.m1.3.3.1.1.1.1.1.1.1.2.1.cmml" xref="S2.E26.m1.3.3.1.1.1.1.1.1.1.2.1"></times><ci id="S2.E26.m1.3.3.1.1.1.1.1.1.1.2.2.cmml" xref="S2.E26.m1.3.3.1.1.1.1.1.1.1.2.2">𝐅</ci><apply id="S2.E26.m1.1.1.cmml" xref="S2.E26.m1.3.3.1.1.1.1.1.1.1.2.3.2"><ci id="S2.E26.m1.1.1.1.cmml" xref="S2.E26.m1.1.1.1">¯</ci><apply id="S2.E26.m1.1.1.2.cmml" xref="S2.E26.m1.1.1.2"><csymbol cd="ambiguous" id="S2.E26.m1.1.1.2.1.cmml" xref="S2.E26.m1.1.1.2">superscript</csymbol><apply id="S2.E26.m1.1.1.2.2.cmml" xref="S2.E26.m1.1.1.2"><csymbol cd="ambiguous" id="S2.E26.m1.1.1.2.2.1.cmml" xref="S2.E26.m1.1.1.2">subscript</csymbol><ci id="S2.E26.m1.1.1.2.2.2.cmml" xref="S2.E26.m1.1.1.2.2.2">𝐔</ci><apply id="S2.E26.m1.1.1.2.2.3.cmml" xref="S2.E26.m1.1.1.2.2.3"><plus id="S2.E26.m1.1.1.2.2.3.1.cmml" xref="S2.E26.m1.1.1.2.2.3.1"></plus><ci id="S2.E26.m1.1.1.2.2.3.2.cmml" xref="S2.E26.m1.1.1.2.2.3.2">𝑖</ci><apply id="S2.E26.m1.1.1.2.2.3.3.cmml" xref="S2.E26.m1.1.1.2.2.3.3"><divide id="S2.E26.m1.1.1.2.2.3.3.1.cmml" xref="S2.E26.m1.1.1.2.2.3.3"></divide><cn id="S2.E26.m1.1.1.2.2.3.3.2.cmml" type="integer" xref="S2.E26.m1.1.1.2.2.3.3.2">1</cn><cn id="S2.E26.m1.1.1.2.2.3.3.3.cmml" type="integer" xref="S2.E26.m1.1.1.2.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.E26.m1.1.1.2.3.cmml" xref="S2.E26.m1.1.1.2.3">𝐿</ci></apply></apply></apply><apply id="S2.E26.m1.3.3.1.1.1.1.1.1.1.3.cmml" xref="S2.E26.m1.3.3.1.1.1.1.1.1.1.3"><times id="S2.E26.m1.3.3.1.1.1.1.1.1.1.3.1.cmml" xref="S2.E26.m1.3.3.1.1.1.1.1.1.1.3.1"></times><ci id="S2.E26.m1.3.3.1.1.1.1.1.1.1.3.2.cmml" xref="S2.E26.m1.3.3.1.1.1.1.1.1.1.3.2">𝐅</ci><apply id="S2.E26.m1.2.2.cmml" xref="S2.E26.m1.3.3.1.1.1.1.1.1.1.3.3.2"><ci id="S2.E26.m1.2.2.1.cmml" xref="S2.E26.m1.2.2.1">¯</ci><apply id="S2.E26.m1.2.2.2.cmml" xref="S2.E26.m1.2.2.2"><csymbol cd="ambiguous" id="S2.E26.m1.2.2.2.1.cmml" xref="S2.E26.m1.2.2.2">superscript</csymbol><apply id="S2.E26.m1.2.2.2.2.cmml" xref="S2.E26.m1.2.2.2"><csymbol cd="ambiguous" id="S2.E26.m1.2.2.2.2.1.cmml" xref="S2.E26.m1.2.2.2">subscript</csymbol><ci id="S2.E26.m1.2.2.2.2.2.cmml" xref="S2.E26.m1.2.2.2.2.2">𝐔</ci><apply id="S2.E26.m1.2.2.2.2.3.cmml" xref="S2.E26.m1.2.2.2.2.3"><plus id="S2.E26.m1.2.2.2.2.3.1.cmml" xref="S2.E26.m1.2.2.2.2.3.1"></plus><ci id="S2.E26.m1.2.2.2.2.3.2.cmml" xref="S2.E26.m1.2.2.2.2.3.2">𝑖</ci><apply id="S2.E26.m1.2.2.2.2.3.3.cmml" xref="S2.E26.m1.2.2.2.2.3.3"><divide id="S2.E26.m1.2.2.2.2.3.3.1.cmml" xref="S2.E26.m1.2.2.2.2.3.3"></divide><cn id="S2.E26.m1.2.2.2.2.3.3.2.cmml" type="integer" xref="S2.E26.m1.2.2.2.2.3.3.2">1</cn><cn id="S2.E26.m1.2.2.2.2.3.3.3.cmml" type="integer" xref="S2.E26.m1.2.2.2.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.E26.m1.2.2.2.3.cmml" xref="S2.E26.m1.2.2.2.3">𝑅</ci></apply></apply></apply></apply></apply></apply><apply id="S2.E26.m1.3.3.1.1.2.2.cmml" xref="S2.E26.m1.3.3.1.1.2.2"><times id="S2.E26.m1.3.3.1.1.2.2.2.cmml" xref="S2.E26.m1.3.3.1.1.2.2.2"></times><apply id="S2.E26.m1.3.3.1.1.2.2.3.cmml" xref="S2.E26.m1.3.3.1.1.2.2.3"><divide id="S2.E26.m1.3.3.1.1.2.2.3.1.cmml" xref="S2.E26.m1.3.3.1.1.2.2.3"></divide><cn id="S2.E26.m1.3.3.1.1.2.2.3.2.cmml" type="integer" xref="S2.E26.m1.3.3.1.1.2.2.3.2">1</cn><cn id="S2.E26.m1.3.3.1.1.2.2.3.3.cmml" type="integer" xref="S2.E26.m1.3.3.1.1.2.2.3.3">2</cn></apply><apply id="S2.E26.m1.3.3.1.1.2.2.1.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1"><apply id="S2.E26.m1.3.3.1.1.2.2.1.2.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.2"><csymbol cd="ambiguous" id="S2.E26.m1.3.3.1.1.2.2.1.2.1.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.2">subscript</csymbol><sum id="S2.E26.m1.3.3.1.1.2.2.1.2.2.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.2.2"></sum><ci id="S2.E26.m1.3.3.1.1.2.2.1.2.3.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.2.3">𝑝</ci></apply><apply id="S2.E26.m1.3.3.1.1.2.2.1.1.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.1"><times id="S2.E26.m1.3.3.1.1.2.2.1.1.2.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.1.2"></times><apply id="S2.E26.m1.3.3.1.1.2.2.1.1.1.2.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.1.1.1"><abs id="S2.E26.m1.3.3.1.1.2.2.1.1.1.2.1.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.1.1.1.2"></abs><apply id="S2.E26.m1.3.3.1.1.2.2.1.1.1.1.1.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E26.m1.3.3.1.1.2.2.1.1.1.1.1.1.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.1.1.1.1">subscript</csymbol><ci id="S2.E26.m1.3.3.1.1.2.2.1.1.1.1.1.2.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.1.1.1.1.2">𝜆</ci><ci id="S2.E26.m1.3.3.1.1.2.2.1.1.1.1.1.3.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.1.1.1.1.3">𝑝</ci></apply></apply><apply id="S2.E26.m1.3.3.1.1.2.2.1.1.3.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.1.3"><csymbol cd="ambiguous" id="S2.E26.m1.3.3.1.1.2.2.1.1.3.1.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.1.3">subscript</csymbol><ci id="S2.E26.m1.3.3.1.1.2.2.1.1.3.2.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.1.3.2">𝛼</ci><ci id="S2.E26.m1.3.3.1.1.2.2.1.1.3.3.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.1.3.3">𝑝</ci></apply><apply id="S2.E26.m1.3.3.1.1.2.2.1.1.4.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.1.4"><csymbol cd="ambiguous" id="S2.E26.m1.3.3.1.1.2.2.1.1.4.1.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.1.4">subscript</csymbol><ci id="S2.E26.m1.3.3.1.1.2.2.1.1.4.2.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.1.4.2">𝐫</ci><ci id="S2.E26.m1.3.3.1.1.2.2.1.1.4.3.cmml" xref="S2.E26.m1.3.3.1.1.2.2.1.1.4.3">𝑝</ci></apply></apply></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E26.m1.3c">\mathbf{F}_{i+\frac{1}{2}}=\frac{1}{2}\left[\mathbf{F}\left(\overline{\mathbf{% U}_{i+\frac{1}{2}}^{L}}\right)+\mathbf{F}\left(\overline{\mathbf{U}_{i+\frac{1% }{2}}^{R}}\right)\right]-\frac{1}{2}\sum_{p}\left\lvert\lambda_{p}\right\rvert% \alpha_{p}\mathbf{r}_{p},</annotation><annotation encoding="application/x-llamapun" id="S2.E26.m1.3d">bold_F start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ bold_F ( over¯ start_ARG bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT end_ARG ) + bold_F ( over¯ start_ARG bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_ARG ) ] - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∑ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT | italic_λ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT | italic_α start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT bold_r start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS4.p11.1">for Roe matrix <math alttext="{\mathbf{A}\left(\overline{\mathbf{U}_{i+\frac{1}{2}}^{L}},\overline{\mathbf{U% }_{i+\frac{1}{2}}^{R}}\right)}" class="ltx_Math" display="inline" id="S2.SS4.p11.1.m1.2"><semantics id="S2.SS4.p11.1.m1.2a"><mrow id="S2.SS4.p11.1.m1.2.3" xref="S2.SS4.p11.1.m1.2.3.cmml"><mi id="S2.SS4.p11.1.m1.2.3.2" xref="S2.SS4.p11.1.m1.2.3.2.cmml">𝐀</mi><mo id="S2.SS4.p11.1.m1.2.3.1" xref="S2.SS4.p11.1.m1.2.3.1.cmml"></mo><mrow id="S2.SS4.p11.1.m1.2.3.3.2" xref="S2.SS4.p11.1.m1.2.3.3.1.cmml"><mo id="S2.SS4.p11.1.m1.2.3.3.2.1" xref="S2.SS4.p11.1.m1.2.3.3.1.cmml">(</mo><mover accent="true" id="S2.SS4.p11.1.m1.1.1" xref="S2.SS4.p11.1.m1.1.1.cmml"><msubsup id="S2.SS4.p11.1.m1.1.1.2" xref="S2.SS4.p11.1.m1.1.1.2.cmml"><mi id="S2.SS4.p11.1.m1.1.1.2.2.2" xref="S2.SS4.p11.1.m1.1.1.2.2.2.cmml">𝐔</mi><mrow id="S2.SS4.p11.1.m1.1.1.2.2.3" xref="S2.SS4.p11.1.m1.1.1.2.2.3.cmml"><mi id="S2.SS4.p11.1.m1.1.1.2.2.3.2" xref="S2.SS4.p11.1.m1.1.1.2.2.3.2.cmml">i</mi><mo id="S2.SS4.p11.1.m1.1.1.2.2.3.1" xref="S2.SS4.p11.1.m1.1.1.2.2.3.1.cmml">+</mo><mfrac id="S2.SS4.p11.1.m1.1.1.2.2.3.3" xref="S2.SS4.p11.1.m1.1.1.2.2.3.3.cmml"><mn id="S2.SS4.p11.1.m1.1.1.2.2.3.3.2" xref="S2.SS4.p11.1.m1.1.1.2.2.3.3.2.cmml">1</mn><mn id="S2.SS4.p11.1.m1.1.1.2.2.3.3.3" xref="S2.SS4.p11.1.m1.1.1.2.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.SS4.p11.1.m1.1.1.2.3" xref="S2.SS4.p11.1.m1.1.1.2.3.cmml">L</mi></msubsup><mo id="S2.SS4.p11.1.m1.1.1.1" xref="S2.SS4.p11.1.m1.1.1.1.cmml">¯</mo></mover><mo id="S2.SS4.p11.1.m1.2.3.3.2.2" xref="S2.SS4.p11.1.m1.2.3.3.1.cmml">,</mo><mover accent="true" id="S2.SS4.p11.1.m1.2.2" xref="S2.SS4.p11.1.m1.2.2.cmml"><msubsup id="S2.SS4.p11.1.m1.2.2.2" xref="S2.SS4.p11.1.m1.2.2.2.cmml"><mi id="S2.SS4.p11.1.m1.2.2.2.2.2" xref="S2.SS4.p11.1.m1.2.2.2.2.2.cmml">𝐔</mi><mrow id="S2.SS4.p11.1.m1.2.2.2.2.3" xref="S2.SS4.p11.1.m1.2.2.2.2.3.cmml"><mi id="S2.SS4.p11.1.m1.2.2.2.2.3.2" xref="S2.SS4.p11.1.m1.2.2.2.2.3.2.cmml">i</mi><mo id="S2.SS4.p11.1.m1.2.2.2.2.3.1" xref="S2.SS4.p11.1.m1.2.2.2.2.3.1.cmml">+</mo><mfrac id="S2.SS4.p11.1.m1.2.2.2.2.3.3" xref="S2.SS4.p11.1.m1.2.2.2.2.3.3.cmml"><mn id="S2.SS4.p11.1.m1.2.2.2.2.3.3.2" xref="S2.SS4.p11.1.m1.2.2.2.2.3.3.2.cmml">1</mn><mn id="S2.SS4.p11.1.m1.2.2.2.2.3.3.3" xref="S2.SS4.p11.1.m1.2.2.2.2.3.3.3.cmml">2</mn></mfrac></mrow><mi id="S2.SS4.p11.1.m1.2.2.2.3" xref="S2.SS4.p11.1.m1.2.2.2.3.cmml">R</mi></msubsup><mo id="S2.SS4.p11.1.m1.2.2.1" xref="S2.SS4.p11.1.m1.2.2.1.cmml">¯</mo></mover><mo id="S2.SS4.p11.1.m1.2.3.3.2.3" xref="S2.SS4.p11.1.m1.2.3.3.1.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.SS4.p11.1.m1.2b"><apply id="S2.SS4.p11.1.m1.2.3.cmml" xref="S2.SS4.p11.1.m1.2.3"><times id="S2.SS4.p11.1.m1.2.3.1.cmml" xref="S2.SS4.p11.1.m1.2.3.1"></times><ci id="S2.SS4.p11.1.m1.2.3.2.cmml" xref="S2.SS4.p11.1.m1.2.3.2">𝐀</ci><interval closure="open" id="S2.SS4.p11.1.m1.2.3.3.1.cmml" xref="S2.SS4.p11.1.m1.2.3.3.2"><apply id="S2.SS4.p11.1.m1.1.1.cmml" xref="S2.SS4.p11.1.m1.1.1"><ci id="S2.SS4.p11.1.m1.1.1.1.cmml" xref="S2.SS4.p11.1.m1.1.1.1">¯</ci><apply id="S2.SS4.p11.1.m1.1.1.2.cmml" xref="S2.SS4.p11.1.m1.1.1.2"><csymbol cd="ambiguous" id="S2.SS4.p11.1.m1.1.1.2.1.cmml" xref="S2.SS4.p11.1.m1.1.1.2">superscript</csymbol><apply id="S2.SS4.p11.1.m1.1.1.2.2.cmml" xref="S2.SS4.p11.1.m1.1.1.2"><csymbol cd="ambiguous" id="S2.SS4.p11.1.m1.1.1.2.2.1.cmml" xref="S2.SS4.p11.1.m1.1.1.2">subscript</csymbol><ci id="S2.SS4.p11.1.m1.1.1.2.2.2.cmml" xref="S2.SS4.p11.1.m1.1.1.2.2.2">𝐔</ci><apply id="S2.SS4.p11.1.m1.1.1.2.2.3.cmml" xref="S2.SS4.p11.1.m1.1.1.2.2.3"><plus id="S2.SS4.p11.1.m1.1.1.2.2.3.1.cmml" xref="S2.SS4.p11.1.m1.1.1.2.2.3.1"></plus><ci id="S2.SS4.p11.1.m1.1.1.2.2.3.2.cmml" xref="S2.SS4.p11.1.m1.1.1.2.2.3.2">𝑖</ci><apply id="S2.SS4.p11.1.m1.1.1.2.2.3.3.cmml" xref="S2.SS4.p11.1.m1.1.1.2.2.3.3"><divide id="S2.SS4.p11.1.m1.1.1.2.2.3.3.1.cmml" xref="S2.SS4.p11.1.m1.1.1.2.2.3.3"></divide><cn id="S2.SS4.p11.1.m1.1.1.2.2.3.3.2.cmml" type="integer" xref="S2.SS4.p11.1.m1.1.1.2.2.3.3.2">1</cn><cn id="S2.SS4.p11.1.m1.1.1.2.2.3.3.3.cmml" type="integer" xref="S2.SS4.p11.1.m1.1.1.2.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.SS4.p11.1.m1.1.1.2.3.cmml" xref="S2.SS4.p11.1.m1.1.1.2.3">𝐿</ci></apply></apply><apply id="S2.SS4.p11.1.m1.2.2.cmml" xref="S2.SS4.p11.1.m1.2.2"><ci id="S2.SS4.p11.1.m1.2.2.1.cmml" xref="S2.SS4.p11.1.m1.2.2.1">¯</ci><apply id="S2.SS4.p11.1.m1.2.2.2.cmml" xref="S2.SS4.p11.1.m1.2.2.2"><csymbol cd="ambiguous" id="S2.SS4.p11.1.m1.2.2.2.1.cmml" xref="S2.SS4.p11.1.m1.2.2.2">superscript</csymbol><apply id="S2.SS4.p11.1.m1.2.2.2.2.cmml" xref="S2.SS4.p11.1.m1.2.2.2"><csymbol cd="ambiguous" id="S2.SS4.p11.1.m1.2.2.2.2.1.cmml" xref="S2.SS4.p11.1.m1.2.2.2">subscript</csymbol><ci id="S2.SS4.p11.1.m1.2.2.2.2.2.cmml" xref="S2.SS4.p11.1.m1.2.2.2.2.2">𝐔</ci><apply id="S2.SS4.p11.1.m1.2.2.2.2.3.cmml" xref="S2.SS4.p11.1.m1.2.2.2.2.3"><plus id="S2.SS4.p11.1.m1.2.2.2.2.3.1.cmml" xref="S2.SS4.p11.1.m1.2.2.2.2.3.1"></plus><ci id="S2.SS4.p11.1.m1.2.2.2.2.3.2.cmml" xref="S2.SS4.p11.1.m1.2.2.2.2.3.2">𝑖</ci><apply id="S2.SS4.p11.1.m1.2.2.2.2.3.3.cmml" xref="S2.SS4.p11.1.m1.2.2.2.2.3.3"><divide id="S2.SS4.p11.1.m1.2.2.2.2.3.3.1.cmml" xref="S2.SS4.p11.1.m1.2.2.2.2.3.3"></divide><cn id="S2.SS4.p11.1.m1.2.2.2.2.3.3.2.cmml" type="integer" xref="S2.SS4.p11.1.m1.2.2.2.2.3.3.2">1</cn><cn id="S2.SS4.p11.1.m1.2.2.2.2.3.3.3.cmml" type="integer" xref="S2.SS4.p11.1.m1.2.2.2.2.3.3.3">2</cn></apply></apply></apply><ci id="S2.SS4.p11.1.m1.2.2.2.3.cmml" xref="S2.SS4.p11.1.m1.2.2.2.3">𝑅</ci></apply></apply></interval></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.SS4.p11.1.m1.2c">{\mathbf{A}\left(\overline{\mathbf{U}_{i+\frac{1}{2}}^{L}},\overline{\mathbf{U% }_{i+\frac{1}{2}}^{R}}\right)}</annotation><annotation encoding="application/x-llamapun" id="S2.SS4.p11.1.m1.2d">bold_A ( over¯ start_ARG bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT end_ARG , over¯ start_ARG bold_U start_POSTSUBSCRIPT italic_i + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_ARG )</annotation></semantics></math>.</p> </div> <div class="ltx_para" id="S2.SS4.p12"> <p class="ltx_p" id="S2.SS4.p12.1">Flux limiters, and the resulting second-order extrapolations that they enable, satisfy the following properties:</p> </div> <div class="ltx_theorem ltx_theorem_theorem" id="S2.Thmtheorem7"> <h6 class="ltx_title ltx_runin ltx_font_smallcaps ltx_title_theorem">Theorem 2.7.</h6> <div class="ltx_para" id="S2.Thmtheorem7.p1"> <p class="ltx_p" id="S2.Thmtheorem7.p1.1"><span class="ltx_text ltx_font_italic" id="S2.Thmtheorem7.p1.1.1">A flux limiter <math alttext="{\phi\left(r\right)}" class="ltx_Math" display="inline" id="S2.Thmtheorem7.p1.1.1.m1.1"><semantics id="S2.Thmtheorem7.p1.1.1.m1.1a"><mrow id="S2.Thmtheorem7.p1.1.1.m1.1.2" xref="S2.Thmtheorem7.p1.1.1.m1.1.2.cmml"><mi id="S2.Thmtheorem7.p1.1.1.m1.1.2.2" xref="S2.Thmtheorem7.p1.1.1.m1.1.2.2.cmml">ϕ</mi><mo id="S2.Thmtheorem7.p1.1.1.m1.1.2.1" xref="S2.Thmtheorem7.p1.1.1.m1.1.2.1.cmml"></mo><mrow id="S2.Thmtheorem7.p1.1.1.m1.1.2.3.2" xref="S2.Thmtheorem7.p1.1.1.m1.1.2.cmml"><mo id="S2.Thmtheorem7.p1.1.1.m1.1.2.3.2.1" xref="S2.Thmtheorem7.p1.1.1.m1.1.2.cmml">(</mo><mi id="S2.Thmtheorem7.p1.1.1.m1.1.1" xref="S2.Thmtheorem7.p1.1.1.m1.1.1.cmml">r</mi><mo id="S2.Thmtheorem7.p1.1.1.m1.1.2.3.2.2" xref="S2.Thmtheorem7.p1.1.1.m1.1.2.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem7.p1.1.1.m1.1b"><apply id="S2.Thmtheorem7.p1.1.1.m1.1.2.cmml" xref="S2.Thmtheorem7.p1.1.1.m1.1.2"><times id="S2.Thmtheorem7.p1.1.1.m1.1.2.1.cmml" xref="S2.Thmtheorem7.p1.1.1.m1.1.2.1"></times><ci id="S2.Thmtheorem7.p1.1.1.m1.1.2.2.cmml" xref="S2.Thmtheorem7.p1.1.1.m1.1.2.2">italic-ϕ</ci><ci id="S2.Thmtheorem7.p1.1.1.m1.1.1.cmml" xref="S2.Thmtheorem7.p1.1.1.m1.1.1">𝑟</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem7.p1.1.1.m1.1c">{\phi\left(r\right)}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem7.p1.1.1.m1.1d">italic_ϕ ( italic_r )</annotation></semantics></math> will act symmetrically (i.e. will act equivalently on forward and backward gradients) if it satisfies the symmetry condition:</span></p> </div> <div class="ltx_para" id="S2.Thmtheorem7.p2"> <table class="ltx_equation ltx_eqn_table" id="S2.E27"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(27)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\frac{\phi\left(r\right)}{r}=\phi\left(\frac{1}{r}\right)." class="ltx_Math" display="block" id="S2.E27.m1.3"><semantics id="S2.E27.m1.3a"><mrow id="S2.E27.m1.3.3.1" xref="S2.E27.m1.3.3.1.1.cmml"><mrow id="S2.E27.m1.3.3.1.1" xref="S2.E27.m1.3.3.1.1.cmml"><mfrac id="S2.E27.m1.1.1" xref="S2.E27.m1.1.1.cmml"><mrow id="S2.E27.m1.1.1.1" xref="S2.E27.m1.1.1.1.cmml"><mi id="S2.E27.m1.1.1.1.3" xref="S2.E27.m1.1.1.1.3.cmml">ϕ</mi><mo id="S2.E27.m1.1.1.1.2" xref="S2.E27.m1.1.1.1.2.cmml"></mo><mrow id="S2.E27.m1.1.1.1.4.2" xref="S2.E27.m1.1.1.1.cmml"><mo id="S2.E27.m1.1.1.1.4.2.1" xref="S2.E27.m1.1.1.1.cmml">(</mo><mi id="S2.E27.m1.1.1.1.1" xref="S2.E27.m1.1.1.1.1.cmml">r</mi><mo id="S2.E27.m1.1.1.1.4.2.2" xref="S2.E27.m1.1.1.1.cmml">)</mo></mrow></mrow><mi id="S2.E27.m1.1.1.3" xref="S2.E27.m1.1.1.3.cmml">r</mi></mfrac><mo id="S2.E27.m1.3.3.1.1.1" xref="S2.E27.m1.3.3.1.1.1.cmml">=</mo><mrow id="S2.E27.m1.3.3.1.1.2" xref="S2.E27.m1.3.3.1.1.2.cmml"><mi id="S2.E27.m1.3.3.1.1.2.2" xref="S2.E27.m1.3.3.1.1.2.2.cmml">ϕ</mi><mo id="S2.E27.m1.3.3.1.1.2.1" xref="S2.E27.m1.3.3.1.1.2.1.cmml"></mo><mrow id="S2.E27.m1.3.3.1.1.2.3.2" xref="S2.E27.m1.2.2.cmml"><mo id="S2.E27.m1.3.3.1.1.2.3.2.1" xref="S2.E27.m1.2.2.cmml">(</mo><mfrac id="S2.E27.m1.2.2" xref="S2.E27.m1.2.2.cmml"><mn id="S2.E27.m1.2.2.2" xref="S2.E27.m1.2.2.2.cmml">1</mn><mi id="S2.E27.m1.2.2.3" xref="S2.E27.m1.2.2.3.cmml">r</mi></mfrac><mo id="S2.E27.m1.3.3.1.1.2.3.2.2" xref="S2.E27.m1.2.2.cmml">)</mo></mrow></mrow></mrow><mo id="S2.E27.m1.3.3.1.2" lspace="0em" xref="S2.E27.m1.3.3.1.1.cmml">.</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E27.m1.3b"><apply id="S2.E27.m1.3.3.1.1.cmml" xref="S2.E27.m1.3.3.1"><eq id="S2.E27.m1.3.3.1.1.1.cmml" xref="S2.E27.m1.3.3.1.1.1"></eq><apply id="S2.E27.m1.1.1.cmml" xref="S2.E27.m1.1.1"><divide id="S2.E27.m1.1.1.2.cmml" xref="S2.E27.m1.1.1"></divide><apply id="S2.E27.m1.1.1.1.cmml" xref="S2.E27.m1.1.1.1"><times id="S2.E27.m1.1.1.1.2.cmml" xref="S2.E27.m1.1.1.1.2"></times><ci id="S2.E27.m1.1.1.1.3.cmml" xref="S2.E27.m1.1.1.1.3">italic-ϕ</ci><ci id="S2.E27.m1.1.1.1.1.cmml" xref="S2.E27.m1.1.1.1.1">𝑟</ci></apply><ci id="S2.E27.m1.1.1.3.cmml" xref="S2.E27.m1.1.1.3">𝑟</ci></apply><apply id="S2.E27.m1.3.3.1.1.2.cmml" xref="S2.E27.m1.3.3.1.1.2"><times id="S2.E27.m1.3.3.1.1.2.1.cmml" xref="S2.E27.m1.3.3.1.1.2.1"></times><ci id="S2.E27.m1.3.3.1.1.2.2.cmml" xref="S2.E27.m1.3.3.1.1.2.2">italic-ϕ</ci><apply id="S2.E27.m1.2.2.cmml" xref="S2.E27.m1.3.3.1.1.2.3.2"><divide id="S2.E27.m1.2.2.1.cmml" xref="S2.E27.m1.3.3.1.1.2.3.2"></divide><cn id="S2.E27.m1.2.2.2.cmml" type="integer" xref="S2.E27.m1.2.2.2">1</cn><ci id="S2.E27.m1.2.2.3.cmml" xref="S2.E27.m1.2.2.3">𝑟</ci></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E27.m1.3c">\frac{\phi\left(r\right)}{r}=\phi\left(\frac{1}{r}\right).</annotation><annotation encoding="application/x-llamapun" id="S2.E27.m1.3d">divide start_ARG italic_ϕ ( italic_r ) end_ARG start_ARG italic_r end_ARG = italic_ϕ ( divide start_ARG 1 end_ARG start_ARG italic_r end_ARG ) .</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> </div> </div> <div class="ltx_theorem ltx_theorem_theorem" id="S2.Thmtheorem8"> <h6 class="ltx_title ltx_runin ltx_font_smallcaps ltx_title_theorem">Theorem 2.8.</h6> <div class="ltx_para" id="S2.Thmtheorem8.p1"> <p class="ltx_p" id="S2.Thmtheorem8.p1.1"><span class="ltx_text ltx_font_italic" id="S2.Thmtheorem8.p1.1.1">A second-order scheme extrapolated from an underlying first-order Lax-Friedrichs or Roe solver will be second-order TVD (total variation diminishing), i.e. one will have:</span></p> </div> <div class="ltx_para" id="S2.Thmtheorem8.p2"> <table class="ltx_equation ltx_eqn_table" id="S2.E28"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(28)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="TV\left(\mathbf{U}^{n+1}\right)\leq TV\left(\mathbf{U}^{n}\right)," class="ltx_Math" display="block" id="S2.E28.m1.1"><semantics id="S2.E28.m1.1a"><mrow id="S2.E28.m1.1.1.1" xref="S2.E28.m1.1.1.1.1.cmml"><mrow id="S2.E28.m1.1.1.1.1" xref="S2.E28.m1.1.1.1.1.cmml"><mrow id="S2.E28.m1.1.1.1.1.1" xref="S2.E28.m1.1.1.1.1.1.cmml"><mi id="S2.E28.m1.1.1.1.1.1.3" xref="S2.E28.m1.1.1.1.1.1.3.cmml">T</mi><mo id="S2.E28.m1.1.1.1.1.1.2" xref="S2.E28.m1.1.1.1.1.1.2.cmml"></mo><mi id="S2.E28.m1.1.1.1.1.1.4" xref="S2.E28.m1.1.1.1.1.1.4.cmml">V</mi><mo id="S2.E28.m1.1.1.1.1.1.2a" xref="S2.E28.m1.1.1.1.1.1.2.cmml"></mo><mrow id="S2.E28.m1.1.1.1.1.1.1.1" xref="S2.E28.m1.1.1.1.1.1.1.1.1.cmml"><mo id="S2.E28.m1.1.1.1.1.1.1.1.2" xref="S2.E28.m1.1.1.1.1.1.1.1.1.cmml">(</mo><msup id="S2.E28.m1.1.1.1.1.1.1.1.1" xref="S2.E28.m1.1.1.1.1.1.1.1.1.cmml"><mi id="S2.E28.m1.1.1.1.1.1.1.1.1.2" xref="S2.E28.m1.1.1.1.1.1.1.1.1.2.cmml">𝐔</mi><mrow id="S2.E28.m1.1.1.1.1.1.1.1.1.3" xref="S2.E28.m1.1.1.1.1.1.1.1.1.3.cmml"><mi id="S2.E28.m1.1.1.1.1.1.1.1.1.3.2" xref="S2.E28.m1.1.1.1.1.1.1.1.1.3.2.cmml">n</mi><mo id="S2.E28.m1.1.1.1.1.1.1.1.1.3.1" xref="S2.E28.m1.1.1.1.1.1.1.1.1.3.1.cmml">+</mo><mn id="S2.E28.m1.1.1.1.1.1.1.1.1.3.3" xref="S2.E28.m1.1.1.1.1.1.1.1.1.3.3.cmml">1</mn></mrow></msup><mo id="S2.E28.m1.1.1.1.1.1.1.1.3" xref="S2.E28.m1.1.1.1.1.1.1.1.1.cmml">)</mo></mrow></mrow><mo id="S2.E28.m1.1.1.1.1.3" xref="S2.E28.m1.1.1.1.1.3.cmml">≤</mo><mrow id="S2.E28.m1.1.1.1.1.2" xref="S2.E28.m1.1.1.1.1.2.cmml"><mi id="S2.E28.m1.1.1.1.1.2.3" xref="S2.E28.m1.1.1.1.1.2.3.cmml">T</mi><mo id="S2.E28.m1.1.1.1.1.2.2" xref="S2.E28.m1.1.1.1.1.2.2.cmml"></mo><mi id="S2.E28.m1.1.1.1.1.2.4" xref="S2.E28.m1.1.1.1.1.2.4.cmml">V</mi><mo id="S2.E28.m1.1.1.1.1.2.2a" xref="S2.E28.m1.1.1.1.1.2.2.cmml"></mo><mrow id="S2.E28.m1.1.1.1.1.2.1.1" xref="S2.E28.m1.1.1.1.1.2.1.1.1.cmml"><mo id="S2.E28.m1.1.1.1.1.2.1.1.2" xref="S2.E28.m1.1.1.1.1.2.1.1.1.cmml">(</mo><msup id="S2.E28.m1.1.1.1.1.2.1.1.1" xref="S2.E28.m1.1.1.1.1.2.1.1.1.cmml"><mi id="S2.E28.m1.1.1.1.1.2.1.1.1.2" xref="S2.E28.m1.1.1.1.1.2.1.1.1.2.cmml">𝐔</mi><mi id="S2.E28.m1.1.1.1.1.2.1.1.1.3" xref="S2.E28.m1.1.1.1.1.2.1.1.1.3.cmml">n</mi></msup><mo id="S2.E28.m1.1.1.1.1.2.1.1.3" xref="S2.E28.m1.1.1.1.1.2.1.1.1.cmml">)</mo></mrow></mrow></mrow><mo id="S2.E28.m1.1.1.1.2" xref="S2.E28.m1.1.1.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E28.m1.1b"><apply id="S2.E28.m1.1.1.1.1.cmml" xref="S2.E28.m1.1.1.1"><leq id="S2.E28.m1.1.1.1.1.3.cmml" xref="S2.E28.m1.1.1.1.1.3"></leq><apply id="S2.E28.m1.1.1.1.1.1.cmml" xref="S2.E28.m1.1.1.1.1.1"><times id="S2.E28.m1.1.1.1.1.1.2.cmml" xref="S2.E28.m1.1.1.1.1.1.2"></times><ci id="S2.E28.m1.1.1.1.1.1.3.cmml" xref="S2.E28.m1.1.1.1.1.1.3">𝑇</ci><ci id="S2.E28.m1.1.1.1.1.1.4.cmml" xref="S2.E28.m1.1.1.1.1.1.4">𝑉</ci><apply id="S2.E28.m1.1.1.1.1.1.1.1.1.cmml" xref="S2.E28.m1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E28.m1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E28.m1.1.1.1.1.1.1.1">superscript</csymbol><ci id="S2.E28.m1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E28.m1.1.1.1.1.1.1.1.1.2">𝐔</ci><apply id="S2.E28.m1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E28.m1.1.1.1.1.1.1.1.1.3"><plus id="S2.E28.m1.1.1.1.1.1.1.1.1.3.1.cmml" xref="S2.E28.m1.1.1.1.1.1.1.1.1.3.1"></plus><ci id="S2.E28.m1.1.1.1.1.1.1.1.1.3.2.cmml" xref="S2.E28.m1.1.1.1.1.1.1.1.1.3.2">𝑛</ci><cn id="S2.E28.m1.1.1.1.1.1.1.1.1.3.3.cmml" type="integer" xref="S2.E28.m1.1.1.1.1.1.1.1.1.3.3">1</cn></apply></apply></apply><apply id="S2.E28.m1.1.1.1.1.2.cmml" xref="S2.E28.m1.1.1.1.1.2"><times id="S2.E28.m1.1.1.1.1.2.2.cmml" xref="S2.E28.m1.1.1.1.1.2.2"></times><ci id="S2.E28.m1.1.1.1.1.2.3.cmml" xref="S2.E28.m1.1.1.1.1.2.3">𝑇</ci><ci id="S2.E28.m1.1.1.1.1.2.4.cmml" xref="S2.E28.m1.1.1.1.1.2.4">𝑉</ci><apply id="S2.E28.m1.1.1.1.1.2.1.1.1.cmml" xref="S2.E28.m1.1.1.1.1.2.1.1"><csymbol cd="ambiguous" id="S2.E28.m1.1.1.1.1.2.1.1.1.1.cmml" xref="S2.E28.m1.1.1.1.1.2.1.1">superscript</csymbol><ci id="S2.E28.m1.1.1.1.1.2.1.1.1.2.cmml" xref="S2.E28.m1.1.1.1.1.2.1.1.1.2">𝐔</ci><ci id="S2.E28.m1.1.1.1.1.2.1.1.1.3.cmml" xref="S2.E28.m1.1.1.1.1.2.1.1.1.3">𝑛</ci></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E28.m1.1c">TV\left(\mathbf{U}^{n+1}\right)\leq TV\left(\mathbf{U}^{n}\right),</annotation><annotation encoding="application/x-llamapun" id="S2.E28.m1.1d">italic_T italic_V ( bold_U start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT ) ≤ italic_T italic_V ( bold_U start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.Thmtheorem8.p2.2"><span class="ltx_text ltx_font_italic" id="S2.Thmtheorem8.p2.2.2">where <math alttext="{TV\left(\mathbf{U}^{n}\right)}" class="ltx_Math" display="inline" id="S2.Thmtheorem8.p2.1.1.m1.1"><semantics id="S2.Thmtheorem8.p2.1.1.m1.1a"><mrow id="S2.Thmtheorem8.p2.1.1.m1.1.1" xref="S2.Thmtheorem8.p2.1.1.m1.1.1.cmml"><mi id="S2.Thmtheorem8.p2.1.1.m1.1.1.3" xref="S2.Thmtheorem8.p2.1.1.m1.1.1.3.cmml">T</mi><mo id="S2.Thmtheorem8.p2.1.1.m1.1.1.2" xref="S2.Thmtheorem8.p2.1.1.m1.1.1.2.cmml"></mo><mi id="S2.Thmtheorem8.p2.1.1.m1.1.1.4" xref="S2.Thmtheorem8.p2.1.1.m1.1.1.4.cmml">V</mi><mo id="S2.Thmtheorem8.p2.1.1.m1.1.1.2a" xref="S2.Thmtheorem8.p2.1.1.m1.1.1.2.cmml"></mo><mrow id="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1" xref="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1.1.cmml"><mo id="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1.2" xref="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1.1.cmml">(</mo><msup id="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1.1" xref="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1.1.cmml"><mi id="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1.1.2" xref="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1.1.2.cmml">𝐔</mi><mi id="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1.1.3" xref="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1.1.3.cmml">n</mi></msup><mo id="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1.3" xref="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1.1.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem8.p2.1.1.m1.1b"><apply id="S2.Thmtheorem8.p2.1.1.m1.1.1.cmml" xref="S2.Thmtheorem8.p2.1.1.m1.1.1"><times id="S2.Thmtheorem8.p2.1.1.m1.1.1.2.cmml" xref="S2.Thmtheorem8.p2.1.1.m1.1.1.2"></times><ci id="S2.Thmtheorem8.p2.1.1.m1.1.1.3.cmml" xref="S2.Thmtheorem8.p2.1.1.m1.1.1.3">𝑇</ci><ci id="S2.Thmtheorem8.p2.1.1.m1.1.1.4.cmml" xref="S2.Thmtheorem8.p2.1.1.m1.1.1.4">𝑉</ci><apply id="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1.1.cmml" xref="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1"><csymbol cd="ambiguous" id="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1.1.1.cmml" xref="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1">superscript</csymbol><ci id="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1.1.2.cmml" xref="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1.1.2">𝐔</ci><ci id="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1.1.3.cmml" xref="S2.Thmtheorem8.p2.1.1.m1.1.1.1.1.1.3">𝑛</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem8.p2.1.1.m1.1c">{TV\left(\mathbf{U}^{n}\right)}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem8.p2.1.1.m1.1d">italic_T italic_V ( bold_U start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT )</annotation></semantics></math> denotes the total variation of the solution at time <math alttext="{t^{n}}" class="ltx_Math" display="inline" id="S2.Thmtheorem8.p2.2.2.m2.1"><semantics id="S2.Thmtheorem8.p2.2.2.m2.1a"><msup id="S2.Thmtheorem8.p2.2.2.m2.1.1" xref="S2.Thmtheorem8.p2.2.2.m2.1.1.cmml"><mi id="S2.Thmtheorem8.p2.2.2.m2.1.1.2" xref="S2.Thmtheorem8.p2.2.2.m2.1.1.2.cmml">t</mi><mi id="S2.Thmtheorem8.p2.2.2.m2.1.1.3" xref="S2.Thmtheorem8.p2.2.2.m2.1.1.3.cmml">n</mi></msup><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem8.p2.2.2.m2.1b"><apply id="S2.Thmtheorem8.p2.2.2.m2.1.1.cmml" xref="S2.Thmtheorem8.p2.2.2.m2.1.1"><csymbol cd="ambiguous" id="S2.Thmtheorem8.p2.2.2.m2.1.1.1.cmml" xref="S2.Thmtheorem8.p2.2.2.m2.1.1">superscript</csymbol><ci id="S2.Thmtheorem8.p2.2.2.m2.1.1.2.cmml" xref="S2.Thmtheorem8.p2.2.2.m2.1.1.2">𝑡</ci><ci id="S2.Thmtheorem8.p2.2.2.m2.1.1.3.cmml" xref="S2.Thmtheorem8.p2.2.2.m2.1.1.3">𝑛</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem8.p2.2.2.m2.1c">{t^{n}}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem8.p2.2.2.m2.1d">italic_t start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT</annotation></semantics></math>:</span></p> </div> <div class="ltx_para" id="S2.Thmtheorem8.p3"> <table class="ltx_equation ltx_eqn_table" id="S2.E29"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(29)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="TV\left(\mathbf{U}^{n}\right)=\sum_{i}\left\lVert\mathbf{U}_{i+1}^{n}-\mathbf{% U}_{i}^{n}\right\rVert," class="ltx_Math" display="block" id="S2.E29.m1.1"><semantics id="S2.E29.m1.1a"><mrow id="S2.E29.m1.1.1.1" xref="S2.E29.m1.1.1.1.1.cmml"><mrow id="S2.E29.m1.1.1.1.1" xref="S2.E29.m1.1.1.1.1.cmml"><mrow id="S2.E29.m1.1.1.1.1.1" xref="S2.E29.m1.1.1.1.1.1.cmml"><mi id="S2.E29.m1.1.1.1.1.1.3" xref="S2.E29.m1.1.1.1.1.1.3.cmml">T</mi><mo id="S2.E29.m1.1.1.1.1.1.2" xref="S2.E29.m1.1.1.1.1.1.2.cmml"></mo><mi id="S2.E29.m1.1.1.1.1.1.4" xref="S2.E29.m1.1.1.1.1.1.4.cmml">V</mi><mo id="S2.E29.m1.1.1.1.1.1.2a" xref="S2.E29.m1.1.1.1.1.1.2.cmml"></mo><mrow id="S2.E29.m1.1.1.1.1.1.1.1" xref="S2.E29.m1.1.1.1.1.1.1.1.1.cmml"><mo id="S2.E29.m1.1.1.1.1.1.1.1.2" xref="S2.E29.m1.1.1.1.1.1.1.1.1.cmml">(</mo><msup id="S2.E29.m1.1.1.1.1.1.1.1.1" xref="S2.E29.m1.1.1.1.1.1.1.1.1.cmml"><mi id="S2.E29.m1.1.1.1.1.1.1.1.1.2" xref="S2.E29.m1.1.1.1.1.1.1.1.1.2.cmml">𝐔</mi><mi id="S2.E29.m1.1.1.1.1.1.1.1.1.3" xref="S2.E29.m1.1.1.1.1.1.1.1.1.3.cmml">n</mi></msup><mo id="S2.E29.m1.1.1.1.1.1.1.1.3" xref="S2.E29.m1.1.1.1.1.1.1.1.1.cmml">)</mo></mrow></mrow><mo id="S2.E29.m1.1.1.1.1.3" rspace="0.111em" xref="S2.E29.m1.1.1.1.1.3.cmml">=</mo><mrow id="S2.E29.m1.1.1.1.1.2" xref="S2.E29.m1.1.1.1.1.2.cmml"><munder id="S2.E29.m1.1.1.1.1.2.2" xref="S2.E29.m1.1.1.1.1.2.2.cmml"><mo id="S2.E29.m1.1.1.1.1.2.2.2" movablelimits="false" rspace="0em" xref="S2.E29.m1.1.1.1.1.2.2.2.cmml">∑</mo><mi id="S2.E29.m1.1.1.1.1.2.2.3" xref="S2.E29.m1.1.1.1.1.2.2.3.cmml">i</mi></munder><mrow id="S2.E29.m1.1.1.1.1.2.1.1" xref="S2.E29.m1.1.1.1.1.2.1.2.cmml"><mo fence="true" id="S2.E29.m1.1.1.1.1.2.1.1.2" lspace="0em" rspace="0em" stretchy="true" xref="S2.E29.m1.1.1.1.1.2.1.2.1.cmml">∥</mo><mrow id="S2.E29.m1.1.1.1.1.2.1.1.1" xref="S2.E29.m1.1.1.1.1.2.1.1.1.cmml"><msubsup id="S2.E29.m1.1.1.1.1.2.1.1.1.2" xref="S2.E29.m1.1.1.1.1.2.1.1.1.2.cmml"><mi id="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.2" xref="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.2.cmml">𝐔</mi><mrow id="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.3" xref="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.3.cmml"><mi id="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.3.2" xref="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.3.2.cmml">i</mi><mo id="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.3.1" xref="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.3.1.cmml">+</mo><mn id="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.3.3" xref="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.3.3.cmml">1</mn></mrow><mi id="S2.E29.m1.1.1.1.1.2.1.1.1.2.3" xref="S2.E29.m1.1.1.1.1.2.1.1.1.2.3.cmml">n</mi></msubsup><mo id="S2.E29.m1.1.1.1.1.2.1.1.1.1" xref="S2.E29.m1.1.1.1.1.2.1.1.1.1.cmml">−</mo><msubsup id="S2.E29.m1.1.1.1.1.2.1.1.1.3" xref="S2.E29.m1.1.1.1.1.2.1.1.1.3.cmml"><mi id="S2.E29.m1.1.1.1.1.2.1.1.1.3.2.2" xref="S2.E29.m1.1.1.1.1.2.1.1.1.3.2.2.cmml">𝐔</mi><mi id="S2.E29.m1.1.1.1.1.2.1.1.1.3.2.3" xref="S2.E29.m1.1.1.1.1.2.1.1.1.3.2.3.cmml">i</mi><mi id="S2.E29.m1.1.1.1.1.2.1.1.1.3.3" xref="S2.E29.m1.1.1.1.1.2.1.1.1.3.3.cmml">n</mi></msubsup></mrow><mo fence="true" id="S2.E29.m1.1.1.1.1.2.1.1.3" lspace="0em" rspace="0em" stretchy="true" xref="S2.E29.m1.1.1.1.1.2.1.2.1.cmml">∥</mo></mrow></mrow></mrow><mo id="S2.E29.m1.1.1.1.2" xref="S2.E29.m1.1.1.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E29.m1.1b"><apply id="S2.E29.m1.1.1.1.1.cmml" xref="S2.E29.m1.1.1.1"><eq id="S2.E29.m1.1.1.1.1.3.cmml" xref="S2.E29.m1.1.1.1.1.3"></eq><apply id="S2.E29.m1.1.1.1.1.1.cmml" xref="S2.E29.m1.1.1.1.1.1"><times id="S2.E29.m1.1.1.1.1.1.2.cmml" xref="S2.E29.m1.1.1.1.1.1.2"></times><ci id="S2.E29.m1.1.1.1.1.1.3.cmml" xref="S2.E29.m1.1.1.1.1.1.3">𝑇</ci><ci id="S2.E29.m1.1.1.1.1.1.4.cmml" xref="S2.E29.m1.1.1.1.1.1.4">𝑉</ci><apply id="S2.E29.m1.1.1.1.1.1.1.1.1.cmml" xref="S2.E29.m1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S2.E29.m1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E29.m1.1.1.1.1.1.1.1">superscript</csymbol><ci id="S2.E29.m1.1.1.1.1.1.1.1.1.2.cmml" xref="S2.E29.m1.1.1.1.1.1.1.1.1.2">𝐔</ci><ci id="S2.E29.m1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E29.m1.1.1.1.1.1.1.1.1.3">𝑛</ci></apply></apply><apply id="S2.E29.m1.1.1.1.1.2.cmml" xref="S2.E29.m1.1.1.1.1.2"><apply id="S2.E29.m1.1.1.1.1.2.2.cmml" xref="S2.E29.m1.1.1.1.1.2.2"><csymbol cd="ambiguous" id="S2.E29.m1.1.1.1.1.2.2.1.cmml" xref="S2.E29.m1.1.1.1.1.2.2">subscript</csymbol><sum id="S2.E29.m1.1.1.1.1.2.2.2.cmml" xref="S2.E29.m1.1.1.1.1.2.2.2"></sum><ci id="S2.E29.m1.1.1.1.1.2.2.3.cmml" xref="S2.E29.m1.1.1.1.1.2.2.3">𝑖</ci></apply><apply id="S2.E29.m1.1.1.1.1.2.1.2.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1"><csymbol cd="latexml" id="S2.E29.m1.1.1.1.1.2.1.2.1.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.2">delimited-∥∥</csymbol><apply id="S2.E29.m1.1.1.1.1.2.1.1.1.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.1"><minus id="S2.E29.m1.1.1.1.1.2.1.1.1.1.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.1.1"></minus><apply id="S2.E29.m1.1.1.1.1.2.1.1.1.2.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.1.2"><csymbol cd="ambiguous" id="S2.E29.m1.1.1.1.1.2.1.1.1.2.1.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.1.2">superscript</csymbol><apply id="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.1.2"><csymbol cd="ambiguous" id="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.1.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.1.2">subscript</csymbol><ci id="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.2.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.2">𝐔</ci><apply id="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.3.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.3"><plus id="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.3.1.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.3.1"></plus><ci id="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.3.2.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.3.2">𝑖</ci><cn id="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.3.3.cmml" type="integer" xref="S2.E29.m1.1.1.1.1.2.1.1.1.2.2.3.3">1</cn></apply></apply><ci id="S2.E29.m1.1.1.1.1.2.1.1.1.2.3.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.1.2.3">𝑛</ci></apply><apply id="S2.E29.m1.1.1.1.1.2.1.1.1.3.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.1.3"><csymbol cd="ambiguous" id="S2.E29.m1.1.1.1.1.2.1.1.1.3.1.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.1.3">superscript</csymbol><apply id="S2.E29.m1.1.1.1.1.2.1.1.1.3.2.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.1.3"><csymbol cd="ambiguous" id="S2.E29.m1.1.1.1.1.2.1.1.1.3.2.1.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.1.3">subscript</csymbol><ci id="S2.E29.m1.1.1.1.1.2.1.1.1.3.2.2.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.1.3.2.2">𝐔</ci><ci id="S2.E29.m1.1.1.1.1.2.1.1.1.3.2.3.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.1.3.2.3">𝑖</ci></apply><ci id="S2.E29.m1.1.1.1.1.2.1.1.1.3.3.cmml" xref="S2.E29.m1.1.1.1.1.2.1.1.1.3.3">𝑛</ci></apply></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E29.m1.1c">TV\left(\mathbf{U}^{n}\right)=\sum_{i}\left\lVert\mathbf{U}_{i+1}^{n}-\mathbf{% U}_{i}^{n}\right\rVert,</annotation><annotation encoding="application/x-llamapun" id="S2.E29.m1.1d">italic_T italic_V ( bold_U start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) = ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∥ bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT - bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∥ ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.Thmtheorem8.p3.1"><span class="ltx_text ltx_font_italic" id="S2.Thmtheorem8.p3.1.1">if the flux limiter <math alttext="{\phi\left(r\right)}" class="ltx_Math" display="inline" id="S2.Thmtheorem8.p3.1.1.m1.1"><semantics id="S2.Thmtheorem8.p3.1.1.m1.1a"><mrow id="S2.Thmtheorem8.p3.1.1.m1.1.2" xref="S2.Thmtheorem8.p3.1.1.m1.1.2.cmml"><mi id="S2.Thmtheorem8.p3.1.1.m1.1.2.2" xref="S2.Thmtheorem8.p3.1.1.m1.1.2.2.cmml">ϕ</mi><mo id="S2.Thmtheorem8.p3.1.1.m1.1.2.1" xref="S2.Thmtheorem8.p3.1.1.m1.1.2.1.cmml"></mo><mrow id="S2.Thmtheorem8.p3.1.1.m1.1.2.3.2" xref="S2.Thmtheorem8.p3.1.1.m1.1.2.cmml"><mo id="S2.Thmtheorem8.p3.1.1.m1.1.2.3.2.1" xref="S2.Thmtheorem8.p3.1.1.m1.1.2.cmml">(</mo><mi id="S2.Thmtheorem8.p3.1.1.m1.1.1" xref="S2.Thmtheorem8.p3.1.1.m1.1.1.cmml">r</mi><mo id="S2.Thmtheorem8.p3.1.1.m1.1.2.3.2.2" xref="S2.Thmtheorem8.p3.1.1.m1.1.2.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem8.p3.1.1.m1.1b"><apply id="S2.Thmtheorem8.p3.1.1.m1.1.2.cmml" xref="S2.Thmtheorem8.p3.1.1.m1.1.2"><times id="S2.Thmtheorem8.p3.1.1.m1.1.2.1.cmml" xref="S2.Thmtheorem8.p3.1.1.m1.1.2.1"></times><ci id="S2.Thmtheorem8.p3.1.1.m1.1.2.2.cmml" xref="S2.Thmtheorem8.p3.1.1.m1.1.2.2">italic-ϕ</ci><ci id="S2.Thmtheorem8.p3.1.1.m1.1.1.cmml" xref="S2.Thmtheorem8.p3.1.1.m1.1.1">𝑟</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem8.p3.1.1.m1.1c">{\phi\left(r\right)}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem8.p3.1.1.m1.1d">italic_ϕ ( italic_r )</annotation></semantics></math> satisfies the Sweby criteria<cite class="ltx_cite ltx_citemacro_citep">(Sweby, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib30" title="">1984</a>)</cite>:</span></p> </div> <div class="ltx_para" id="S2.Thmtheorem8.p4"> <table class="ltx_equationgroup ltx_eqn_align ltx_eqn_table" id="S4.EGx1"> <tbody id="S2.E30"><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(30)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_td ltx_align_right ltx_eqn_cell"><math alttext="\displaystyle\forall r<0,\qquad" class="ltx_Math" display="inline" id="S2.E30.m1.1"><semantics id="S2.E30.m1.1a"><mrow id="S2.E30.m1.1.1.1" xref="S2.E30.m1.1.1.1.1.cmml"><mrow id="S2.E30.m1.1.1.1.1" xref="S2.E30.m1.1.1.1.1.cmml"><mrow id="S2.E30.m1.1.1.1.1.2" xref="S2.E30.m1.1.1.1.1.2.cmml"><mo id="S2.E30.m1.1.1.1.1.2.1" rspace="0.167em" xref="S2.E30.m1.1.1.1.1.2.1.cmml">∀</mo><mi id="S2.E30.m1.1.1.1.1.2.2" xref="S2.E30.m1.1.1.1.1.2.2.cmml">r</mi></mrow><mo id="S2.E30.m1.1.1.1.1.1" xref="S2.E30.m1.1.1.1.1.1.cmml"><</mo><mn id="S2.E30.m1.1.1.1.1.3" xref="S2.E30.m1.1.1.1.1.3.cmml">0</mn></mrow><mo id="S2.E30.m1.1.1.1.2" xref="S2.E30.m1.1.1.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E30.m1.1b"><apply id="S2.E30.m1.1.1.1.1.cmml" xref="S2.E30.m1.1.1.1"><lt id="S2.E30.m1.1.1.1.1.1.cmml" xref="S2.E30.m1.1.1.1.1.1"></lt><apply id="S2.E30.m1.1.1.1.1.2.cmml" xref="S2.E30.m1.1.1.1.1.2"><csymbol cd="latexml" id="S2.E30.m1.1.1.1.1.2.1.cmml" xref="S2.E30.m1.1.1.1.1.2.1">for-all</csymbol><ci id="S2.E30.m1.1.1.1.1.2.2.cmml" xref="S2.E30.m1.1.1.1.1.2.2">𝑟</ci></apply><cn id="S2.E30.m1.1.1.1.1.3.cmml" type="integer" xref="S2.E30.m1.1.1.1.1.3">0</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E30.m1.1c">\displaystyle\forall r<0,\qquad</annotation><annotation encoding="application/x-llamapun" id="S2.E30.m1.1d">∀ italic_r < 0 ,</annotation></semantics></math></td> <td class="ltx_td ltx_align_left ltx_eqn_cell"><math alttext="\displaystyle\phi\left(r\right)=0" class="ltx_Math" display="inline" id="S2.E30.m2.1"><semantics id="S2.E30.m2.1a"><mrow id="S2.E30.m2.1.2" xref="S2.E30.m2.1.2.cmml"><mrow id="S2.E30.m2.1.2.2" xref="S2.E30.m2.1.2.2.cmml"><mi id="S2.E30.m2.1.2.2.2" xref="S2.E30.m2.1.2.2.2.cmml">ϕ</mi><mo id="S2.E30.m2.1.2.2.1" xref="S2.E30.m2.1.2.2.1.cmml"></mo><mrow id="S2.E30.m2.1.2.2.3.2" xref="S2.E30.m2.1.2.2.cmml"><mo id="S2.E30.m2.1.2.2.3.2.1" xref="S2.E30.m2.1.2.2.cmml">(</mo><mi id="S2.E30.m2.1.1" xref="S2.E30.m2.1.1.cmml">r</mi><mo id="S2.E30.m2.1.2.2.3.2.2" xref="S2.E30.m2.1.2.2.cmml">)</mo></mrow></mrow><mo id="S2.E30.m2.1.2.1" xref="S2.E30.m2.1.2.1.cmml">=</mo><mn id="S2.E30.m2.1.2.3" xref="S2.E30.m2.1.2.3.cmml">0</mn></mrow><annotation-xml encoding="MathML-Content" id="S2.E30.m2.1b"><apply id="S2.E30.m2.1.2.cmml" xref="S2.E30.m2.1.2"><eq id="S2.E30.m2.1.2.1.cmml" xref="S2.E30.m2.1.2.1"></eq><apply id="S2.E30.m2.1.2.2.cmml" xref="S2.E30.m2.1.2.2"><times id="S2.E30.m2.1.2.2.1.cmml" xref="S2.E30.m2.1.2.2.1"></times><ci id="S2.E30.m2.1.2.2.2.cmml" xref="S2.E30.m2.1.2.2.2">italic-ϕ</ci><ci id="S2.E30.m2.1.1.cmml" xref="S2.E30.m2.1.1">𝑟</ci></apply><cn id="S2.E30.m2.1.2.3.cmml" type="integer" xref="S2.E30.m2.1.2.3">0</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E30.m2.1c">\displaystyle\phi\left(r\right)=0</annotation><annotation encoding="application/x-llamapun" id="S2.E30.m2.1d">italic_ϕ ( italic_r ) = 0</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> <tbody id="S2.E31"><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(31)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_td ltx_align_right ltx_eqn_cell"><math alttext="\displaystyle\forall 0\leq r\leq\frac{1}{2},\qquad" class="ltx_Math" display="inline" id="S2.E31.m1.1"><semantics id="S2.E31.m1.1a"><mrow id="S2.E31.m1.1.1.1" xref="S2.E31.m1.1.1.1.1.cmml"><mrow id="S2.E31.m1.1.1.1.1" xref="S2.E31.m1.1.1.1.1.cmml"><mrow id="S2.E31.m1.1.1.1.1.2" xref="S2.E31.m1.1.1.1.1.2.cmml"><mo id="S2.E31.m1.1.1.1.1.2.1" rspace="0.167em" xref="S2.E31.m1.1.1.1.1.2.1.cmml">∀</mo><mn id="S2.E31.m1.1.1.1.1.2.2" xref="S2.E31.m1.1.1.1.1.2.2.cmml">0</mn></mrow><mo id="S2.E31.m1.1.1.1.1.3" xref="S2.E31.m1.1.1.1.1.3.cmml">≤</mo><mi id="S2.E31.m1.1.1.1.1.4" xref="S2.E31.m1.1.1.1.1.4.cmml">r</mi><mo id="S2.E31.m1.1.1.1.1.5" xref="S2.E31.m1.1.1.1.1.5.cmml">≤</mo><mstyle displaystyle="true" id="S2.E31.m1.1.1.1.1.6" xref="S2.E31.m1.1.1.1.1.6.cmml"><mfrac id="S2.E31.m1.1.1.1.1.6a" xref="S2.E31.m1.1.1.1.1.6.cmml"><mn id="S2.E31.m1.1.1.1.1.6.2" xref="S2.E31.m1.1.1.1.1.6.2.cmml">1</mn><mn id="S2.E31.m1.1.1.1.1.6.3" xref="S2.E31.m1.1.1.1.1.6.3.cmml">2</mn></mfrac></mstyle></mrow><mo id="S2.E31.m1.1.1.1.2" xref="S2.E31.m1.1.1.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E31.m1.1b"><apply id="S2.E31.m1.1.1.1.1.cmml" xref="S2.E31.m1.1.1.1"><and id="S2.E31.m1.1.1.1.1a.cmml" xref="S2.E31.m1.1.1.1"></and><apply id="S2.E31.m1.1.1.1.1b.cmml" xref="S2.E31.m1.1.1.1"><leq id="S2.E31.m1.1.1.1.1.3.cmml" xref="S2.E31.m1.1.1.1.1.3"></leq><apply id="S2.E31.m1.1.1.1.1.2.cmml" xref="S2.E31.m1.1.1.1.1.2"><csymbol cd="latexml" id="S2.E31.m1.1.1.1.1.2.1.cmml" xref="S2.E31.m1.1.1.1.1.2.1">for-all</csymbol><cn id="S2.E31.m1.1.1.1.1.2.2.cmml" type="integer" xref="S2.E31.m1.1.1.1.1.2.2">0</cn></apply><ci id="S2.E31.m1.1.1.1.1.4.cmml" xref="S2.E31.m1.1.1.1.1.4">𝑟</ci></apply><apply id="S2.E31.m1.1.1.1.1c.cmml" xref="S2.E31.m1.1.1.1"><leq id="S2.E31.m1.1.1.1.1.5.cmml" xref="S2.E31.m1.1.1.1.1.5"></leq><share href="https://arxiv.org/html/2503.13877v1#S2.E31.m1.1.1.1.1.4.cmml" id="S2.E31.m1.1.1.1.1d.cmml" xref="S2.E31.m1.1.1.1"></share><apply id="S2.E31.m1.1.1.1.1.6.cmml" xref="S2.E31.m1.1.1.1.1.6"><divide id="S2.E31.m1.1.1.1.1.6.1.cmml" xref="S2.E31.m1.1.1.1.1.6"></divide><cn id="S2.E31.m1.1.1.1.1.6.2.cmml" type="integer" xref="S2.E31.m1.1.1.1.1.6.2">1</cn><cn id="S2.E31.m1.1.1.1.1.6.3.cmml" type="integer" xref="S2.E31.m1.1.1.1.1.6.3">2</cn></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E31.m1.1c">\displaystyle\forall 0\leq r\leq\frac{1}{2},\qquad</annotation><annotation encoding="application/x-llamapun" id="S2.E31.m1.1d">∀ 0 ≤ italic_r ≤ divide start_ARG 1 end_ARG start_ARG 2 end_ARG ,</annotation></semantics></math></td> <td class="ltx_td ltx_align_left ltx_eqn_cell"><math alttext="\displaystyle r\leq\phi\left(r\right)\leq 2r," class="ltx_Math" display="inline" id="S2.E31.m2.2"><semantics id="S2.E31.m2.2a"><mrow id="S2.E31.m2.2.2.1" xref="S2.E31.m2.2.2.1.1.cmml"><mrow id="S2.E31.m2.2.2.1.1" xref="S2.E31.m2.2.2.1.1.cmml"><mi id="S2.E31.m2.2.2.1.1.2" xref="S2.E31.m2.2.2.1.1.2.cmml">r</mi><mo id="S2.E31.m2.2.2.1.1.3" xref="S2.E31.m2.2.2.1.1.3.cmml">≤</mo><mrow id="S2.E31.m2.2.2.1.1.4" xref="S2.E31.m2.2.2.1.1.4.cmml"><mi id="S2.E31.m2.2.2.1.1.4.2" xref="S2.E31.m2.2.2.1.1.4.2.cmml">ϕ</mi><mo id="S2.E31.m2.2.2.1.1.4.1" xref="S2.E31.m2.2.2.1.1.4.1.cmml"></mo><mrow id="S2.E31.m2.2.2.1.1.4.3.2" xref="S2.E31.m2.2.2.1.1.4.cmml"><mo id="S2.E31.m2.2.2.1.1.4.3.2.1" xref="S2.E31.m2.2.2.1.1.4.cmml">(</mo><mi id="S2.E31.m2.1.1" xref="S2.E31.m2.1.1.cmml">r</mi><mo id="S2.E31.m2.2.2.1.1.4.3.2.2" xref="S2.E31.m2.2.2.1.1.4.cmml">)</mo></mrow></mrow><mo id="S2.E31.m2.2.2.1.1.5" xref="S2.E31.m2.2.2.1.1.5.cmml">≤</mo><mrow id="S2.E31.m2.2.2.1.1.6" xref="S2.E31.m2.2.2.1.1.6.cmml"><mn id="S2.E31.m2.2.2.1.1.6.2" xref="S2.E31.m2.2.2.1.1.6.2.cmml">2</mn><mo id="S2.E31.m2.2.2.1.1.6.1" xref="S2.E31.m2.2.2.1.1.6.1.cmml"></mo><mi id="S2.E31.m2.2.2.1.1.6.3" xref="S2.E31.m2.2.2.1.1.6.3.cmml">r</mi></mrow></mrow><mo id="S2.E31.m2.2.2.1.2" xref="S2.E31.m2.2.2.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E31.m2.2b"><apply id="S2.E31.m2.2.2.1.1.cmml" xref="S2.E31.m2.2.2.1"><and id="S2.E31.m2.2.2.1.1a.cmml" xref="S2.E31.m2.2.2.1"></and><apply id="S2.E31.m2.2.2.1.1b.cmml" xref="S2.E31.m2.2.2.1"><leq id="S2.E31.m2.2.2.1.1.3.cmml" xref="S2.E31.m2.2.2.1.1.3"></leq><ci id="S2.E31.m2.2.2.1.1.2.cmml" xref="S2.E31.m2.2.2.1.1.2">𝑟</ci><apply id="S2.E31.m2.2.2.1.1.4.cmml" xref="S2.E31.m2.2.2.1.1.4"><times id="S2.E31.m2.2.2.1.1.4.1.cmml" xref="S2.E31.m2.2.2.1.1.4.1"></times><ci id="S2.E31.m2.2.2.1.1.4.2.cmml" xref="S2.E31.m2.2.2.1.1.4.2">italic-ϕ</ci><ci id="S2.E31.m2.1.1.cmml" xref="S2.E31.m2.1.1">𝑟</ci></apply></apply><apply id="S2.E31.m2.2.2.1.1c.cmml" xref="S2.E31.m2.2.2.1"><leq id="S2.E31.m2.2.2.1.1.5.cmml" xref="S2.E31.m2.2.2.1.1.5"></leq><share href="https://arxiv.org/html/2503.13877v1#S2.E31.m2.2.2.1.1.4.cmml" id="S2.E31.m2.2.2.1.1d.cmml" xref="S2.E31.m2.2.2.1"></share><apply id="S2.E31.m2.2.2.1.1.6.cmml" xref="S2.E31.m2.2.2.1.1.6"><times id="S2.E31.m2.2.2.1.1.6.1.cmml" xref="S2.E31.m2.2.2.1.1.6.1"></times><cn id="S2.E31.m2.2.2.1.1.6.2.cmml" type="integer" xref="S2.E31.m2.2.2.1.1.6.2">2</cn><ci id="S2.E31.m2.2.2.1.1.6.3.cmml" xref="S2.E31.m2.2.2.1.1.6.3">𝑟</ci></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E31.m2.2c">\displaystyle r\leq\phi\left(r\right)\leq 2r,</annotation><annotation encoding="application/x-llamapun" id="S2.E31.m2.2d">italic_r ≤ italic_ϕ ( italic_r ) ≤ 2 italic_r ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> <tbody id="S2.E32"><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(32)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_td ltx_align_right ltx_eqn_cell"><math alttext="\displaystyle\forall\frac{1}{2}\leq r\leq 1,\qquad" class="ltx_Math" display="inline" id="S2.E32.m1.1"><semantics id="S2.E32.m1.1a"><mrow id="S2.E32.m1.1.1.1" xref="S2.E32.m1.1.1.1.1.cmml"><mrow id="S2.E32.m1.1.1.1.1" xref="S2.E32.m1.1.1.1.1.cmml"><mrow id="S2.E32.m1.1.1.1.1.2" xref="S2.E32.m1.1.1.1.1.2.cmml"><mo id="S2.E32.m1.1.1.1.1.2.1" rspace="0.167em" xref="S2.E32.m1.1.1.1.1.2.1.cmml">∀</mo><mstyle displaystyle="true" id="S2.E32.m1.1.1.1.1.2.2" xref="S2.E32.m1.1.1.1.1.2.2.cmml"><mfrac id="S2.E32.m1.1.1.1.1.2.2a" xref="S2.E32.m1.1.1.1.1.2.2.cmml"><mn id="S2.E32.m1.1.1.1.1.2.2.2" xref="S2.E32.m1.1.1.1.1.2.2.2.cmml">1</mn><mn id="S2.E32.m1.1.1.1.1.2.2.3" xref="S2.E32.m1.1.1.1.1.2.2.3.cmml">2</mn></mfrac></mstyle></mrow><mo id="S2.E32.m1.1.1.1.1.3" xref="S2.E32.m1.1.1.1.1.3.cmml">≤</mo><mi id="S2.E32.m1.1.1.1.1.4" xref="S2.E32.m1.1.1.1.1.4.cmml">r</mi><mo id="S2.E32.m1.1.1.1.1.5" xref="S2.E32.m1.1.1.1.1.5.cmml">≤</mo><mn id="S2.E32.m1.1.1.1.1.6" xref="S2.E32.m1.1.1.1.1.6.cmml">1</mn></mrow><mo id="S2.E32.m1.1.1.1.2" xref="S2.E32.m1.1.1.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E32.m1.1b"><apply id="S2.E32.m1.1.1.1.1.cmml" xref="S2.E32.m1.1.1.1"><and id="S2.E32.m1.1.1.1.1a.cmml" xref="S2.E32.m1.1.1.1"></and><apply id="S2.E32.m1.1.1.1.1b.cmml" xref="S2.E32.m1.1.1.1"><leq id="S2.E32.m1.1.1.1.1.3.cmml" xref="S2.E32.m1.1.1.1.1.3"></leq><apply id="S2.E32.m1.1.1.1.1.2.cmml" xref="S2.E32.m1.1.1.1.1.2"><csymbol cd="latexml" id="S2.E32.m1.1.1.1.1.2.1.cmml" xref="S2.E32.m1.1.1.1.1.2.1">for-all</csymbol><apply id="S2.E32.m1.1.1.1.1.2.2.cmml" xref="S2.E32.m1.1.1.1.1.2.2"><divide id="S2.E32.m1.1.1.1.1.2.2.1.cmml" xref="S2.E32.m1.1.1.1.1.2.2"></divide><cn id="S2.E32.m1.1.1.1.1.2.2.2.cmml" type="integer" xref="S2.E32.m1.1.1.1.1.2.2.2">1</cn><cn id="S2.E32.m1.1.1.1.1.2.2.3.cmml" type="integer" xref="S2.E32.m1.1.1.1.1.2.2.3">2</cn></apply></apply><ci id="S2.E32.m1.1.1.1.1.4.cmml" xref="S2.E32.m1.1.1.1.1.4">𝑟</ci></apply><apply id="S2.E32.m1.1.1.1.1c.cmml" xref="S2.E32.m1.1.1.1"><leq id="S2.E32.m1.1.1.1.1.5.cmml" xref="S2.E32.m1.1.1.1.1.5"></leq><share href="https://arxiv.org/html/2503.13877v1#S2.E32.m1.1.1.1.1.4.cmml" id="S2.E32.m1.1.1.1.1d.cmml" xref="S2.E32.m1.1.1.1"></share><cn id="S2.E32.m1.1.1.1.1.6.cmml" type="integer" xref="S2.E32.m1.1.1.1.1.6">1</cn></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E32.m1.1c">\displaystyle\forall\frac{1}{2}\leq r\leq 1,\qquad</annotation><annotation encoding="application/x-llamapun" id="S2.E32.m1.1d">∀ divide start_ARG 1 end_ARG start_ARG 2 end_ARG ≤ italic_r ≤ 1 ,</annotation></semantics></math></td> <td class="ltx_td ltx_align_left ltx_eqn_cell"><math alttext="\displaystyle r\leq\phi\left(r\right)\leq 1," class="ltx_Math" display="inline" id="S2.E32.m2.2"><semantics id="S2.E32.m2.2a"><mrow id="S2.E32.m2.2.2.1" xref="S2.E32.m2.2.2.1.1.cmml"><mrow id="S2.E32.m2.2.2.1.1" xref="S2.E32.m2.2.2.1.1.cmml"><mi id="S2.E32.m2.2.2.1.1.2" xref="S2.E32.m2.2.2.1.1.2.cmml">r</mi><mo id="S2.E32.m2.2.2.1.1.3" xref="S2.E32.m2.2.2.1.1.3.cmml">≤</mo><mrow id="S2.E32.m2.2.2.1.1.4" xref="S2.E32.m2.2.2.1.1.4.cmml"><mi id="S2.E32.m2.2.2.1.1.4.2" xref="S2.E32.m2.2.2.1.1.4.2.cmml">ϕ</mi><mo id="S2.E32.m2.2.2.1.1.4.1" xref="S2.E32.m2.2.2.1.1.4.1.cmml"></mo><mrow id="S2.E32.m2.2.2.1.1.4.3.2" xref="S2.E32.m2.2.2.1.1.4.cmml"><mo id="S2.E32.m2.2.2.1.1.4.3.2.1" xref="S2.E32.m2.2.2.1.1.4.cmml">(</mo><mi id="S2.E32.m2.1.1" xref="S2.E32.m2.1.1.cmml">r</mi><mo id="S2.E32.m2.2.2.1.1.4.3.2.2" xref="S2.E32.m2.2.2.1.1.4.cmml">)</mo></mrow></mrow><mo id="S2.E32.m2.2.2.1.1.5" xref="S2.E32.m2.2.2.1.1.5.cmml">≤</mo><mn id="S2.E32.m2.2.2.1.1.6" xref="S2.E32.m2.2.2.1.1.6.cmml">1</mn></mrow><mo id="S2.E32.m2.2.2.1.2" xref="S2.E32.m2.2.2.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E32.m2.2b"><apply id="S2.E32.m2.2.2.1.1.cmml" xref="S2.E32.m2.2.2.1"><and id="S2.E32.m2.2.2.1.1a.cmml" xref="S2.E32.m2.2.2.1"></and><apply id="S2.E32.m2.2.2.1.1b.cmml" xref="S2.E32.m2.2.2.1"><leq id="S2.E32.m2.2.2.1.1.3.cmml" xref="S2.E32.m2.2.2.1.1.3"></leq><ci id="S2.E32.m2.2.2.1.1.2.cmml" xref="S2.E32.m2.2.2.1.1.2">𝑟</ci><apply id="S2.E32.m2.2.2.1.1.4.cmml" xref="S2.E32.m2.2.2.1.1.4"><times id="S2.E32.m2.2.2.1.1.4.1.cmml" xref="S2.E32.m2.2.2.1.1.4.1"></times><ci id="S2.E32.m2.2.2.1.1.4.2.cmml" xref="S2.E32.m2.2.2.1.1.4.2">italic-ϕ</ci><ci id="S2.E32.m2.1.1.cmml" xref="S2.E32.m2.1.1">𝑟</ci></apply></apply><apply id="S2.E32.m2.2.2.1.1c.cmml" xref="S2.E32.m2.2.2.1"><leq id="S2.E32.m2.2.2.1.1.5.cmml" xref="S2.E32.m2.2.2.1.1.5"></leq><share href="https://arxiv.org/html/2503.13877v1#S2.E32.m2.2.2.1.1.4.cmml" id="S2.E32.m2.2.2.1.1d.cmml" xref="S2.E32.m2.2.2.1"></share><cn id="S2.E32.m2.2.2.1.1.6.cmml" type="integer" xref="S2.E32.m2.2.2.1.1.6">1</cn></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E32.m2.2c">\displaystyle r\leq\phi\left(r\right)\leq 1,</annotation><annotation encoding="application/x-llamapun" id="S2.E32.m2.2d">italic_r ≤ italic_ϕ ( italic_r ) ≤ 1 ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> <tbody id="S2.E33"><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(33)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_td ltx_align_right ltx_eqn_cell"><math alttext="\displaystyle\forall 1\leq r\leq 2,\qquad" class="ltx_Math" display="inline" id="S2.E33.m1.1"><semantics id="S2.E33.m1.1a"><mrow id="S2.E33.m1.1.1.1" xref="S2.E33.m1.1.1.1.1.cmml"><mrow id="S2.E33.m1.1.1.1.1" xref="S2.E33.m1.1.1.1.1.cmml"><mrow id="S2.E33.m1.1.1.1.1.2" xref="S2.E33.m1.1.1.1.1.2.cmml"><mo id="S2.E33.m1.1.1.1.1.2.1" rspace="0.167em" xref="S2.E33.m1.1.1.1.1.2.1.cmml">∀</mo><mn id="S2.E33.m1.1.1.1.1.2.2" xref="S2.E33.m1.1.1.1.1.2.2.cmml">1</mn></mrow><mo id="S2.E33.m1.1.1.1.1.3" xref="S2.E33.m1.1.1.1.1.3.cmml">≤</mo><mi id="S2.E33.m1.1.1.1.1.4" xref="S2.E33.m1.1.1.1.1.4.cmml">r</mi><mo id="S2.E33.m1.1.1.1.1.5" xref="S2.E33.m1.1.1.1.1.5.cmml">≤</mo><mn id="S2.E33.m1.1.1.1.1.6" xref="S2.E33.m1.1.1.1.1.6.cmml">2</mn></mrow><mo id="S2.E33.m1.1.1.1.2" xref="S2.E33.m1.1.1.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E33.m1.1b"><apply id="S2.E33.m1.1.1.1.1.cmml" xref="S2.E33.m1.1.1.1"><and id="S2.E33.m1.1.1.1.1a.cmml" xref="S2.E33.m1.1.1.1"></and><apply id="S2.E33.m1.1.1.1.1b.cmml" xref="S2.E33.m1.1.1.1"><leq id="S2.E33.m1.1.1.1.1.3.cmml" xref="S2.E33.m1.1.1.1.1.3"></leq><apply id="S2.E33.m1.1.1.1.1.2.cmml" xref="S2.E33.m1.1.1.1.1.2"><csymbol cd="latexml" id="S2.E33.m1.1.1.1.1.2.1.cmml" xref="S2.E33.m1.1.1.1.1.2.1">for-all</csymbol><cn id="S2.E33.m1.1.1.1.1.2.2.cmml" type="integer" xref="S2.E33.m1.1.1.1.1.2.2">1</cn></apply><ci id="S2.E33.m1.1.1.1.1.4.cmml" xref="S2.E33.m1.1.1.1.1.4">𝑟</ci></apply><apply id="S2.E33.m1.1.1.1.1c.cmml" xref="S2.E33.m1.1.1.1"><leq id="S2.E33.m1.1.1.1.1.5.cmml" xref="S2.E33.m1.1.1.1.1.5"></leq><share href="https://arxiv.org/html/2503.13877v1#S2.E33.m1.1.1.1.1.4.cmml" id="S2.E33.m1.1.1.1.1d.cmml" xref="S2.E33.m1.1.1.1"></share><cn id="S2.E33.m1.1.1.1.1.6.cmml" type="integer" xref="S2.E33.m1.1.1.1.1.6">2</cn></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E33.m1.1c">\displaystyle\forall 1\leq r\leq 2,\qquad</annotation><annotation encoding="application/x-llamapun" id="S2.E33.m1.1d">∀ 1 ≤ italic_r ≤ 2 ,</annotation></semantics></math></td> <td class="ltx_td ltx_align_left ltx_eqn_cell"><math alttext="\displaystyle 1\leq\phi\left(r\right)\leq r," class="ltx_Math" display="inline" id="S2.E33.m2.2"><semantics id="S2.E33.m2.2a"><mrow id="S2.E33.m2.2.2.1" xref="S2.E33.m2.2.2.1.1.cmml"><mrow id="S2.E33.m2.2.2.1.1" xref="S2.E33.m2.2.2.1.1.cmml"><mn id="S2.E33.m2.2.2.1.1.2" xref="S2.E33.m2.2.2.1.1.2.cmml">1</mn><mo id="S2.E33.m2.2.2.1.1.3" xref="S2.E33.m2.2.2.1.1.3.cmml">≤</mo><mrow id="S2.E33.m2.2.2.1.1.4" xref="S2.E33.m2.2.2.1.1.4.cmml"><mi id="S2.E33.m2.2.2.1.1.4.2" xref="S2.E33.m2.2.2.1.1.4.2.cmml">ϕ</mi><mo id="S2.E33.m2.2.2.1.1.4.1" xref="S2.E33.m2.2.2.1.1.4.1.cmml"></mo><mrow id="S2.E33.m2.2.2.1.1.4.3.2" xref="S2.E33.m2.2.2.1.1.4.cmml"><mo id="S2.E33.m2.2.2.1.1.4.3.2.1" xref="S2.E33.m2.2.2.1.1.4.cmml">(</mo><mi id="S2.E33.m2.1.1" xref="S2.E33.m2.1.1.cmml">r</mi><mo id="S2.E33.m2.2.2.1.1.4.3.2.2" xref="S2.E33.m2.2.2.1.1.4.cmml">)</mo></mrow></mrow><mo id="S2.E33.m2.2.2.1.1.5" xref="S2.E33.m2.2.2.1.1.5.cmml">≤</mo><mi id="S2.E33.m2.2.2.1.1.6" xref="S2.E33.m2.2.2.1.1.6.cmml">r</mi></mrow><mo id="S2.E33.m2.2.2.1.2" xref="S2.E33.m2.2.2.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E33.m2.2b"><apply id="S2.E33.m2.2.2.1.1.cmml" xref="S2.E33.m2.2.2.1"><and id="S2.E33.m2.2.2.1.1a.cmml" xref="S2.E33.m2.2.2.1"></and><apply id="S2.E33.m2.2.2.1.1b.cmml" xref="S2.E33.m2.2.2.1"><leq id="S2.E33.m2.2.2.1.1.3.cmml" xref="S2.E33.m2.2.2.1.1.3"></leq><cn id="S2.E33.m2.2.2.1.1.2.cmml" type="integer" xref="S2.E33.m2.2.2.1.1.2">1</cn><apply id="S2.E33.m2.2.2.1.1.4.cmml" xref="S2.E33.m2.2.2.1.1.4"><times id="S2.E33.m2.2.2.1.1.4.1.cmml" xref="S2.E33.m2.2.2.1.1.4.1"></times><ci id="S2.E33.m2.2.2.1.1.4.2.cmml" xref="S2.E33.m2.2.2.1.1.4.2">italic-ϕ</ci><ci id="S2.E33.m2.1.1.cmml" xref="S2.E33.m2.1.1">𝑟</ci></apply></apply><apply id="S2.E33.m2.2.2.1.1c.cmml" xref="S2.E33.m2.2.2.1"><leq id="S2.E33.m2.2.2.1.1.5.cmml" xref="S2.E33.m2.2.2.1.1.5"></leq><share href="https://arxiv.org/html/2503.13877v1#S2.E33.m2.2.2.1.1.4.cmml" id="S2.E33.m2.2.2.1.1d.cmml" xref="S2.E33.m2.2.2.1"></share><ci id="S2.E33.m2.2.2.1.1.6.cmml" xref="S2.E33.m2.2.2.1.1.6">𝑟</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E33.m2.2c">\displaystyle 1\leq\phi\left(r\right)\leq r,</annotation><annotation encoding="application/x-llamapun" id="S2.E33.m2.2d">1 ≤ italic_ϕ ( italic_r ) ≤ italic_r ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> <tbody id="S2.E34"><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(34)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_td ltx_align_right ltx_eqn_cell"><math alttext="\displaystyle\forall r>2,\qquad" class="ltx_Math" display="inline" id="S2.E34.m1.1"><semantics id="S2.E34.m1.1a"><mrow id="S2.E34.m1.1.1.1" xref="S2.E34.m1.1.1.1.1.cmml"><mrow id="S2.E34.m1.1.1.1.1" xref="S2.E34.m1.1.1.1.1.cmml"><mrow id="S2.E34.m1.1.1.1.1.2" xref="S2.E34.m1.1.1.1.1.2.cmml"><mo id="S2.E34.m1.1.1.1.1.2.1" rspace="0.167em" xref="S2.E34.m1.1.1.1.1.2.1.cmml">∀</mo><mi id="S2.E34.m1.1.1.1.1.2.2" xref="S2.E34.m1.1.1.1.1.2.2.cmml">r</mi></mrow><mo id="S2.E34.m1.1.1.1.1.1" xref="S2.E34.m1.1.1.1.1.1.cmml">></mo><mn id="S2.E34.m1.1.1.1.1.3" xref="S2.E34.m1.1.1.1.1.3.cmml">2</mn></mrow><mo id="S2.E34.m1.1.1.1.2" xref="S2.E34.m1.1.1.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E34.m1.1b"><apply id="S2.E34.m1.1.1.1.1.cmml" xref="S2.E34.m1.1.1.1"><gt id="S2.E34.m1.1.1.1.1.1.cmml" xref="S2.E34.m1.1.1.1.1.1"></gt><apply id="S2.E34.m1.1.1.1.1.2.cmml" xref="S2.E34.m1.1.1.1.1.2"><csymbol cd="latexml" id="S2.E34.m1.1.1.1.1.2.1.cmml" xref="S2.E34.m1.1.1.1.1.2.1">for-all</csymbol><ci id="S2.E34.m1.1.1.1.1.2.2.cmml" xref="S2.E34.m1.1.1.1.1.2.2">𝑟</ci></apply><cn id="S2.E34.m1.1.1.1.1.3.cmml" type="integer" xref="S2.E34.m1.1.1.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E34.m1.1c">\displaystyle\forall r>2,\qquad</annotation><annotation encoding="application/x-llamapun" id="S2.E34.m1.1d">∀ italic_r > 2 ,</annotation></semantics></math></td> <td class="ltx_td ltx_align_left ltx_eqn_cell"><math alttext="\displaystyle 1\leq\phi\left(r\right)\leq 2," class="ltx_Math" display="inline" id="S2.E34.m2.2"><semantics id="S2.E34.m2.2a"><mrow id="S2.E34.m2.2.2.1" xref="S2.E34.m2.2.2.1.1.cmml"><mrow id="S2.E34.m2.2.2.1.1" xref="S2.E34.m2.2.2.1.1.cmml"><mn id="S2.E34.m2.2.2.1.1.2" xref="S2.E34.m2.2.2.1.1.2.cmml">1</mn><mo id="S2.E34.m2.2.2.1.1.3" xref="S2.E34.m2.2.2.1.1.3.cmml">≤</mo><mrow id="S2.E34.m2.2.2.1.1.4" xref="S2.E34.m2.2.2.1.1.4.cmml"><mi id="S2.E34.m2.2.2.1.1.4.2" xref="S2.E34.m2.2.2.1.1.4.2.cmml">ϕ</mi><mo id="S2.E34.m2.2.2.1.1.4.1" xref="S2.E34.m2.2.2.1.1.4.1.cmml"></mo><mrow id="S2.E34.m2.2.2.1.1.4.3.2" xref="S2.E34.m2.2.2.1.1.4.cmml"><mo id="S2.E34.m2.2.2.1.1.4.3.2.1" xref="S2.E34.m2.2.2.1.1.4.cmml">(</mo><mi id="S2.E34.m2.1.1" xref="S2.E34.m2.1.1.cmml">r</mi><mo id="S2.E34.m2.2.2.1.1.4.3.2.2" xref="S2.E34.m2.2.2.1.1.4.cmml">)</mo></mrow></mrow><mo id="S2.E34.m2.2.2.1.1.5" xref="S2.E34.m2.2.2.1.1.5.cmml">≤</mo><mn id="S2.E34.m2.2.2.1.1.6" xref="S2.E34.m2.2.2.1.1.6.cmml">2</mn></mrow><mo id="S2.E34.m2.2.2.1.2" xref="S2.E34.m2.2.2.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E34.m2.2b"><apply id="S2.E34.m2.2.2.1.1.cmml" xref="S2.E34.m2.2.2.1"><and id="S2.E34.m2.2.2.1.1a.cmml" xref="S2.E34.m2.2.2.1"></and><apply id="S2.E34.m2.2.2.1.1b.cmml" xref="S2.E34.m2.2.2.1"><leq id="S2.E34.m2.2.2.1.1.3.cmml" xref="S2.E34.m2.2.2.1.1.3"></leq><cn id="S2.E34.m2.2.2.1.1.2.cmml" type="integer" xref="S2.E34.m2.2.2.1.1.2">1</cn><apply id="S2.E34.m2.2.2.1.1.4.cmml" xref="S2.E34.m2.2.2.1.1.4"><times id="S2.E34.m2.2.2.1.1.4.1.cmml" xref="S2.E34.m2.2.2.1.1.4.1"></times><ci id="S2.E34.m2.2.2.1.1.4.2.cmml" xref="S2.E34.m2.2.2.1.1.4.2">italic-ϕ</ci><ci id="S2.E34.m2.1.1.cmml" xref="S2.E34.m2.1.1">𝑟</ci></apply></apply><apply id="S2.E34.m2.2.2.1.1c.cmml" xref="S2.E34.m2.2.2.1"><leq id="S2.E34.m2.2.2.1.1.5.cmml" xref="S2.E34.m2.2.2.1.1.5"></leq><share href="https://arxiv.org/html/2503.13877v1#S2.E34.m2.2.2.1.1.4.cmml" id="S2.E34.m2.2.2.1.1d.cmml" xref="S2.E34.m2.2.2.1"></share><cn id="S2.E34.m2.2.2.1.1.6.cmml" type="integer" xref="S2.E34.m2.2.2.1.1.6">2</cn></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E34.m2.2c">\displaystyle 1\leq\phi\left(r\right)\leq 2,</annotation><annotation encoding="application/x-llamapun" id="S2.E34.m2.2d">1 ≤ italic_ϕ ( italic_r ) ≤ 2 ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.Thmtheorem8.p4.1"><span class="ltx_text ltx_font_italic" id="S2.Thmtheorem8.p4.1.1">with <math alttext="{\phi\left(1\right)=1}" class="ltx_Math" display="inline" id="S2.Thmtheorem8.p4.1.1.m1.1"><semantics id="S2.Thmtheorem8.p4.1.1.m1.1a"><mrow id="S2.Thmtheorem8.p4.1.1.m1.1.2" xref="S2.Thmtheorem8.p4.1.1.m1.1.2.cmml"><mrow id="S2.Thmtheorem8.p4.1.1.m1.1.2.2" xref="S2.Thmtheorem8.p4.1.1.m1.1.2.2.cmml"><mi id="S2.Thmtheorem8.p4.1.1.m1.1.2.2.2" xref="S2.Thmtheorem8.p4.1.1.m1.1.2.2.2.cmml">ϕ</mi><mo id="S2.Thmtheorem8.p4.1.1.m1.1.2.2.1" xref="S2.Thmtheorem8.p4.1.1.m1.1.2.2.1.cmml"></mo><mrow id="S2.Thmtheorem8.p4.1.1.m1.1.2.2.3.2" xref="S2.Thmtheorem8.p4.1.1.m1.1.2.2.cmml"><mo id="S2.Thmtheorem8.p4.1.1.m1.1.2.2.3.2.1" xref="S2.Thmtheorem8.p4.1.1.m1.1.2.2.cmml">(</mo><mn id="S2.Thmtheorem8.p4.1.1.m1.1.1" xref="S2.Thmtheorem8.p4.1.1.m1.1.1.cmml">1</mn><mo id="S2.Thmtheorem8.p4.1.1.m1.1.2.2.3.2.2" xref="S2.Thmtheorem8.p4.1.1.m1.1.2.2.cmml">)</mo></mrow></mrow><mo id="S2.Thmtheorem8.p4.1.1.m1.1.2.1" xref="S2.Thmtheorem8.p4.1.1.m1.1.2.1.cmml">=</mo><mn id="S2.Thmtheorem8.p4.1.1.m1.1.2.3" xref="S2.Thmtheorem8.p4.1.1.m1.1.2.3.cmml">1</mn></mrow><annotation-xml encoding="MathML-Content" id="S2.Thmtheorem8.p4.1.1.m1.1b"><apply id="S2.Thmtheorem8.p4.1.1.m1.1.2.cmml" xref="S2.Thmtheorem8.p4.1.1.m1.1.2"><eq id="S2.Thmtheorem8.p4.1.1.m1.1.2.1.cmml" xref="S2.Thmtheorem8.p4.1.1.m1.1.2.1"></eq><apply id="S2.Thmtheorem8.p4.1.1.m1.1.2.2.cmml" xref="S2.Thmtheorem8.p4.1.1.m1.1.2.2"><times id="S2.Thmtheorem8.p4.1.1.m1.1.2.2.1.cmml" xref="S2.Thmtheorem8.p4.1.1.m1.1.2.2.1"></times><ci id="S2.Thmtheorem8.p4.1.1.m1.1.2.2.2.cmml" xref="S2.Thmtheorem8.p4.1.1.m1.1.2.2.2">italic-ϕ</ci><cn id="S2.Thmtheorem8.p4.1.1.m1.1.1.cmml" type="integer" xref="S2.Thmtheorem8.p4.1.1.m1.1.1">1</cn></apply><cn id="S2.Thmtheorem8.p4.1.1.m1.1.2.3.cmml" type="integer" xref="S2.Thmtheorem8.p4.1.1.m1.1.2.3">1</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.Thmtheorem8.p4.1.1.m1.1c">{\phi\left(1\right)=1}</annotation><annotation encoding="application/x-llamapun" id="S2.Thmtheorem8.p4.1.1.m1.1d">italic_ϕ ( 1 ) = 1</annotation></semantics></math>.</span></p> </div> </div> <div class="ltx_para" id="S2.SS4.p13"> <p class="ltx_p" id="S2.SS4.p13.1">In what follows, we shall focus upon four standard flux limiters in particular, all of which had previously been implemented as part of the <span class="ltx_text ltx_font_smallcaps" id="S2.SS4.p13.1.1">Gkeyll</span> code, namely the <span class="ltx_text ltx_font_italic" id="S2.SS4.p13.1.2">minmod</span> limiter<cite class="ltx_cite ltx_citemacro_citep">(Roe, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib29" title="">1986</a>)</cite>:</p> </div> <div class="ltx_para" id="S2.SS4.p14"> <table class="ltx_equation ltx_eqn_table" id="S2.E35"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(35)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\phi_{mm}\left(r\right)=\max\left(0,\min\left(1,r\right)\right)," class="ltx_Math" display="block" id="S2.E35.m1.7"><semantics id="S2.E35.m1.7a"><mrow id="S2.E35.m1.7.7.1" xref="S2.E35.m1.7.7.1.1.cmml"><mrow id="S2.E35.m1.7.7.1.1" xref="S2.E35.m1.7.7.1.1.cmml"><mrow id="S2.E35.m1.7.7.1.1.3" xref="S2.E35.m1.7.7.1.1.3.cmml"><msub id="S2.E35.m1.7.7.1.1.3.2" xref="S2.E35.m1.7.7.1.1.3.2.cmml"><mi id="S2.E35.m1.7.7.1.1.3.2.2" xref="S2.E35.m1.7.7.1.1.3.2.2.cmml">ϕ</mi><mrow id="S2.E35.m1.7.7.1.1.3.2.3" xref="S2.E35.m1.7.7.1.1.3.2.3.cmml"><mi id="S2.E35.m1.7.7.1.1.3.2.3.2" xref="S2.E35.m1.7.7.1.1.3.2.3.2.cmml">m</mi><mo id="S2.E35.m1.7.7.1.1.3.2.3.1" xref="S2.E35.m1.7.7.1.1.3.2.3.1.cmml"></mo><mi id="S2.E35.m1.7.7.1.1.3.2.3.3" xref="S2.E35.m1.7.7.1.1.3.2.3.3.cmml">m</mi></mrow></msub><mo id="S2.E35.m1.7.7.1.1.3.1" xref="S2.E35.m1.7.7.1.1.3.1.cmml"></mo><mrow id="S2.E35.m1.7.7.1.1.3.3.2" xref="S2.E35.m1.7.7.1.1.3.cmml"><mo id="S2.E35.m1.7.7.1.1.3.3.2.1" xref="S2.E35.m1.7.7.1.1.3.cmml">(</mo><mi id="S2.E35.m1.1.1" xref="S2.E35.m1.1.1.cmml">r</mi><mo id="S2.E35.m1.7.7.1.1.3.3.2.2" xref="S2.E35.m1.7.7.1.1.3.cmml">)</mo></mrow></mrow><mo id="S2.E35.m1.7.7.1.1.2" xref="S2.E35.m1.7.7.1.1.2.cmml">=</mo><mrow id="S2.E35.m1.7.7.1.1.1.1" xref="S2.E35.m1.7.7.1.1.1.2.cmml"><mi id="S2.E35.m1.5.5" xref="S2.E35.m1.5.5.cmml">max</mi><mo id="S2.E35.m1.7.7.1.1.1.1a" xref="S2.E35.m1.7.7.1.1.1.2.cmml"></mo><mrow id="S2.E35.m1.7.7.1.1.1.1.1" xref="S2.E35.m1.7.7.1.1.1.2.cmml"><mo id="S2.E35.m1.7.7.1.1.1.1.1.2" xref="S2.E35.m1.7.7.1.1.1.2.cmml">(</mo><mn id="S2.E35.m1.6.6" xref="S2.E35.m1.6.6.cmml">0</mn><mo id="S2.E35.m1.7.7.1.1.1.1.1.3" xref="S2.E35.m1.7.7.1.1.1.2.cmml">,</mo><mrow id="S2.E35.m1.7.7.1.1.1.1.1.1.2" xref="S2.E35.m1.7.7.1.1.1.1.1.1.1.cmml"><mi id="S2.E35.m1.2.2" xref="S2.E35.m1.2.2.cmml">min</mi><mo id="S2.E35.m1.7.7.1.1.1.1.1.1.2a" xref="S2.E35.m1.7.7.1.1.1.1.1.1.1.cmml"></mo><mrow id="S2.E35.m1.7.7.1.1.1.1.1.1.2.1" xref="S2.E35.m1.7.7.1.1.1.1.1.1.1.cmml"><mo id="S2.E35.m1.7.7.1.1.1.1.1.1.2.1.1" xref="S2.E35.m1.7.7.1.1.1.1.1.1.1.cmml">(</mo><mn id="S2.E35.m1.3.3" xref="S2.E35.m1.3.3.cmml">1</mn><mo id="S2.E35.m1.7.7.1.1.1.1.1.1.2.1.2" xref="S2.E35.m1.7.7.1.1.1.1.1.1.1.cmml">,</mo><mi id="S2.E35.m1.4.4" xref="S2.E35.m1.4.4.cmml">r</mi><mo id="S2.E35.m1.7.7.1.1.1.1.1.1.2.1.3" xref="S2.E35.m1.7.7.1.1.1.1.1.1.1.cmml">)</mo></mrow></mrow><mo id="S2.E35.m1.7.7.1.1.1.1.1.4" xref="S2.E35.m1.7.7.1.1.1.2.cmml">)</mo></mrow></mrow></mrow><mo id="S2.E35.m1.7.7.1.2" xref="S2.E35.m1.7.7.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E35.m1.7b"><apply id="S2.E35.m1.7.7.1.1.cmml" xref="S2.E35.m1.7.7.1"><eq id="S2.E35.m1.7.7.1.1.2.cmml" xref="S2.E35.m1.7.7.1.1.2"></eq><apply id="S2.E35.m1.7.7.1.1.3.cmml" xref="S2.E35.m1.7.7.1.1.3"><times id="S2.E35.m1.7.7.1.1.3.1.cmml" xref="S2.E35.m1.7.7.1.1.3.1"></times><apply id="S2.E35.m1.7.7.1.1.3.2.cmml" xref="S2.E35.m1.7.7.1.1.3.2"><csymbol cd="ambiguous" id="S2.E35.m1.7.7.1.1.3.2.1.cmml" xref="S2.E35.m1.7.7.1.1.3.2">subscript</csymbol><ci id="S2.E35.m1.7.7.1.1.3.2.2.cmml" xref="S2.E35.m1.7.7.1.1.3.2.2">italic-ϕ</ci><apply id="S2.E35.m1.7.7.1.1.3.2.3.cmml" xref="S2.E35.m1.7.7.1.1.3.2.3"><times id="S2.E35.m1.7.7.1.1.3.2.3.1.cmml" xref="S2.E35.m1.7.7.1.1.3.2.3.1"></times><ci id="S2.E35.m1.7.7.1.1.3.2.3.2.cmml" xref="S2.E35.m1.7.7.1.1.3.2.3.2">𝑚</ci><ci id="S2.E35.m1.7.7.1.1.3.2.3.3.cmml" xref="S2.E35.m1.7.7.1.1.3.2.3.3">𝑚</ci></apply></apply><ci id="S2.E35.m1.1.1.cmml" xref="S2.E35.m1.1.1">𝑟</ci></apply><apply id="S2.E35.m1.7.7.1.1.1.2.cmml" xref="S2.E35.m1.7.7.1.1.1.1"><max id="S2.E35.m1.5.5.cmml" xref="S2.E35.m1.5.5"></max><cn id="S2.E35.m1.6.6.cmml" type="integer" xref="S2.E35.m1.6.6">0</cn><apply id="S2.E35.m1.7.7.1.1.1.1.1.1.1.cmml" xref="S2.E35.m1.7.7.1.1.1.1.1.1.2"><min id="S2.E35.m1.2.2.cmml" xref="S2.E35.m1.2.2"></min><cn id="S2.E35.m1.3.3.cmml" type="integer" xref="S2.E35.m1.3.3">1</cn><ci id="S2.E35.m1.4.4.cmml" xref="S2.E35.m1.4.4">𝑟</ci></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E35.m1.7c">\phi_{mm}\left(r\right)=\max\left(0,\min\left(1,r\right)\right),</annotation><annotation encoding="application/x-llamapun" id="S2.E35.m1.7d">italic_ϕ start_POSTSUBSCRIPT italic_m italic_m end_POSTSUBSCRIPT ( italic_r ) = roman_max ( 0 , roman_min ( 1 , italic_r ) ) ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS4.p14.1">the <span class="ltx_text ltx_font_italic" id="S2.SS4.p14.1.1">monotonized-centered</span> limiter<cite class="ltx_cite ltx_citemacro_citep">(Van Leer, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib34" title="">1977</a>)</cite>:</p> </div> <div class="ltx_para" id="S2.SS4.p15"> <table class="ltx_equation ltx_eqn_table" id="S2.E36"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(36)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\phi_{mc}\left(r\right)=\max\left(0,\min\left(2r,\frac{1}{2}\left(1+r\right),2% \right)\right)," class="ltx_Math" display="block" id="S2.E36.m1.6"><semantics id="S2.E36.m1.6a"><mrow id="S2.E36.m1.6.6.1" xref="S2.E36.m1.6.6.1.1.cmml"><mrow id="S2.E36.m1.6.6.1.1" xref="S2.E36.m1.6.6.1.1.cmml"><mrow id="S2.E36.m1.6.6.1.1.3" xref="S2.E36.m1.6.6.1.1.3.cmml"><msub id="S2.E36.m1.6.6.1.1.3.2" xref="S2.E36.m1.6.6.1.1.3.2.cmml"><mi id="S2.E36.m1.6.6.1.1.3.2.2" xref="S2.E36.m1.6.6.1.1.3.2.2.cmml">ϕ</mi><mrow id="S2.E36.m1.6.6.1.1.3.2.3" xref="S2.E36.m1.6.6.1.1.3.2.3.cmml"><mi id="S2.E36.m1.6.6.1.1.3.2.3.2" xref="S2.E36.m1.6.6.1.1.3.2.3.2.cmml">m</mi><mo id="S2.E36.m1.6.6.1.1.3.2.3.1" xref="S2.E36.m1.6.6.1.1.3.2.3.1.cmml"></mo><mi id="S2.E36.m1.6.6.1.1.3.2.3.3" xref="S2.E36.m1.6.6.1.1.3.2.3.3.cmml">c</mi></mrow></msub><mo id="S2.E36.m1.6.6.1.1.3.1" xref="S2.E36.m1.6.6.1.1.3.1.cmml"></mo><mrow id="S2.E36.m1.6.6.1.1.3.3.2" xref="S2.E36.m1.6.6.1.1.3.cmml"><mo id="S2.E36.m1.6.6.1.1.3.3.2.1" xref="S2.E36.m1.6.6.1.1.3.cmml">(</mo><mi id="S2.E36.m1.1.1" xref="S2.E36.m1.1.1.cmml">r</mi><mo id="S2.E36.m1.6.6.1.1.3.3.2.2" xref="S2.E36.m1.6.6.1.1.3.cmml">)</mo></mrow></mrow><mo id="S2.E36.m1.6.6.1.1.2" xref="S2.E36.m1.6.6.1.1.2.cmml">=</mo><mrow id="S2.E36.m1.6.6.1.1.1.1" xref="S2.E36.m1.6.6.1.1.1.2.cmml"><mi id="S2.E36.m1.4.4" xref="S2.E36.m1.4.4.cmml">max</mi><mo id="S2.E36.m1.6.6.1.1.1.1a" xref="S2.E36.m1.6.6.1.1.1.2.cmml"></mo><mrow id="S2.E36.m1.6.6.1.1.1.1.1" xref="S2.E36.m1.6.6.1.1.1.2.cmml"><mo id="S2.E36.m1.6.6.1.1.1.1.1.2" xref="S2.E36.m1.6.6.1.1.1.2.cmml">(</mo><mn id="S2.E36.m1.5.5" xref="S2.E36.m1.5.5.cmml">0</mn><mo id="S2.E36.m1.6.6.1.1.1.1.1.3" xref="S2.E36.m1.6.6.1.1.1.2.cmml">,</mo><mrow id="S2.E36.m1.6.6.1.1.1.1.1.1.2" xref="S2.E36.m1.6.6.1.1.1.1.1.1.3.cmml"><mi id="S2.E36.m1.2.2" xref="S2.E36.m1.2.2.cmml">min</mi><mo id="S2.E36.m1.6.6.1.1.1.1.1.1.2a" xref="S2.E36.m1.6.6.1.1.1.1.1.1.3.cmml"></mo><mrow id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2" xref="S2.E36.m1.6.6.1.1.1.1.1.1.3.cmml"><mo id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.3" xref="S2.E36.m1.6.6.1.1.1.1.1.1.3.cmml">(</mo><mrow id="S2.E36.m1.6.6.1.1.1.1.1.1.1.1.1" xref="S2.E36.m1.6.6.1.1.1.1.1.1.1.1.1.cmml"><mn id="S2.E36.m1.6.6.1.1.1.1.1.1.1.1.1.2" xref="S2.E36.m1.6.6.1.1.1.1.1.1.1.1.1.2.cmml">2</mn><mo id="S2.E36.m1.6.6.1.1.1.1.1.1.1.1.1.1" xref="S2.E36.m1.6.6.1.1.1.1.1.1.1.1.1.1.cmml"></mo><mi id="S2.E36.m1.6.6.1.1.1.1.1.1.1.1.1.3" xref="S2.E36.m1.6.6.1.1.1.1.1.1.1.1.1.3.cmml">r</mi></mrow><mo id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.4" xref="S2.E36.m1.6.6.1.1.1.1.1.1.3.cmml">,</mo><mrow id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.cmml"><mfrac id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.3" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.3.cmml"><mn id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.3.2" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.3.2.cmml">1</mn><mn id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.3.3" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.3.3.cmml">2</mn></mfrac><mo id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.2" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.2.cmml"></mo><mrow id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.1.cmml"><mo id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.2" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.1.cmml">(</mo><mrow id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.1" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.1.cmml"><mn id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.1.2" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.1.2.cmml">1</mn><mo id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.1.1" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.1.1.cmml">+</mo><mi id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.1.3" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.1.3.cmml">r</mi></mrow><mo id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.3" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.1.cmml">)</mo></mrow></mrow><mo id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.5" xref="S2.E36.m1.6.6.1.1.1.1.1.1.3.cmml">,</mo><mn id="S2.E36.m1.3.3" xref="S2.E36.m1.3.3.cmml">2</mn><mo id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.6" xref="S2.E36.m1.6.6.1.1.1.1.1.1.3.cmml">)</mo></mrow></mrow><mo id="S2.E36.m1.6.6.1.1.1.1.1.4" xref="S2.E36.m1.6.6.1.1.1.2.cmml">)</mo></mrow></mrow></mrow><mo id="S2.E36.m1.6.6.1.2" xref="S2.E36.m1.6.6.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E36.m1.6b"><apply id="S2.E36.m1.6.6.1.1.cmml" xref="S2.E36.m1.6.6.1"><eq id="S2.E36.m1.6.6.1.1.2.cmml" xref="S2.E36.m1.6.6.1.1.2"></eq><apply id="S2.E36.m1.6.6.1.1.3.cmml" xref="S2.E36.m1.6.6.1.1.3"><times id="S2.E36.m1.6.6.1.1.3.1.cmml" xref="S2.E36.m1.6.6.1.1.3.1"></times><apply id="S2.E36.m1.6.6.1.1.3.2.cmml" xref="S2.E36.m1.6.6.1.1.3.2"><csymbol cd="ambiguous" id="S2.E36.m1.6.6.1.1.3.2.1.cmml" xref="S2.E36.m1.6.6.1.1.3.2">subscript</csymbol><ci id="S2.E36.m1.6.6.1.1.3.2.2.cmml" xref="S2.E36.m1.6.6.1.1.3.2.2">italic-ϕ</ci><apply id="S2.E36.m1.6.6.1.1.3.2.3.cmml" xref="S2.E36.m1.6.6.1.1.3.2.3"><times id="S2.E36.m1.6.6.1.1.3.2.3.1.cmml" xref="S2.E36.m1.6.6.1.1.3.2.3.1"></times><ci id="S2.E36.m1.6.6.1.1.3.2.3.2.cmml" xref="S2.E36.m1.6.6.1.1.3.2.3.2">𝑚</ci><ci id="S2.E36.m1.6.6.1.1.3.2.3.3.cmml" xref="S2.E36.m1.6.6.1.1.3.2.3.3">𝑐</ci></apply></apply><ci id="S2.E36.m1.1.1.cmml" xref="S2.E36.m1.1.1">𝑟</ci></apply><apply id="S2.E36.m1.6.6.1.1.1.2.cmml" xref="S2.E36.m1.6.6.1.1.1.1"><max id="S2.E36.m1.4.4.cmml" xref="S2.E36.m1.4.4"></max><cn id="S2.E36.m1.5.5.cmml" type="integer" xref="S2.E36.m1.5.5">0</cn><apply id="S2.E36.m1.6.6.1.1.1.1.1.1.3.cmml" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2"><min id="S2.E36.m1.2.2.cmml" xref="S2.E36.m1.2.2"></min><apply id="S2.E36.m1.6.6.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E36.m1.6.6.1.1.1.1.1.1.1.1.1"><times id="S2.E36.m1.6.6.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E36.m1.6.6.1.1.1.1.1.1.1.1.1.1"></times><cn id="S2.E36.m1.6.6.1.1.1.1.1.1.1.1.1.2.cmml" type="integer" xref="S2.E36.m1.6.6.1.1.1.1.1.1.1.1.1.2">2</cn><ci id="S2.E36.m1.6.6.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E36.m1.6.6.1.1.1.1.1.1.1.1.1.3">𝑟</ci></apply><apply id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.cmml" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2"><times id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.2.cmml" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.2"></times><apply id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.3.cmml" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.3"><divide id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.3.1.cmml" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.3"></divide><cn id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.3.2.cmml" type="integer" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.3.2">1</cn><cn id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.3.3.cmml" type="integer" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.3.3">2</cn></apply><apply id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.1.cmml" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1"><plus id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.1.1.cmml" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.1.1"></plus><cn id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.1.2.cmml" type="integer" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.1.2">1</cn><ci id="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.1.3.cmml" xref="S2.E36.m1.6.6.1.1.1.1.1.1.2.2.2.1.1.1.3">𝑟</ci></apply></apply><cn id="S2.E36.m1.3.3.cmml" type="integer" xref="S2.E36.m1.3.3">2</cn></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E36.m1.6c">\phi_{mc}\left(r\right)=\max\left(0,\min\left(2r,\frac{1}{2}\left(1+r\right),2% \right)\right),</annotation><annotation encoding="application/x-llamapun" id="S2.E36.m1.6d">italic_ϕ start_POSTSUBSCRIPT italic_m italic_c end_POSTSUBSCRIPT ( italic_r ) = roman_max ( 0 , roman_min ( 2 italic_r , divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( 1 + italic_r ) , 2 ) ) ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS4.p15.1">the <span class="ltx_text ltx_font_italic" id="S2.SS4.p15.1.1">superbee</span> limiter<cite class="ltx_cite ltx_citemacro_citep">(Roe, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib29" title="">1986</a>)</cite>:</p> </div> <div class="ltx_para" id="S2.SS4.p16"> <table class="ltx_equation ltx_eqn_table" id="S2.E37"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(37)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\phi_{sb}\left(r\right)=\max\left(0,\min\left(2r,1\right),\min\left(r,2\right)% \right)," class="ltx_Math" display="block" id="S2.E37.m1.9"><semantics id="S2.E37.m1.9a"><mrow id="S2.E37.m1.9.9.1" xref="S2.E37.m1.9.9.1.1.cmml"><mrow id="S2.E37.m1.9.9.1.1" xref="S2.E37.m1.9.9.1.1.cmml"><mrow id="S2.E37.m1.9.9.1.1.4" xref="S2.E37.m1.9.9.1.1.4.cmml"><msub id="S2.E37.m1.9.9.1.1.4.2" xref="S2.E37.m1.9.9.1.1.4.2.cmml"><mi id="S2.E37.m1.9.9.1.1.4.2.2" xref="S2.E37.m1.9.9.1.1.4.2.2.cmml">ϕ</mi><mrow id="S2.E37.m1.9.9.1.1.4.2.3" xref="S2.E37.m1.9.9.1.1.4.2.3.cmml"><mi id="S2.E37.m1.9.9.1.1.4.2.3.2" xref="S2.E37.m1.9.9.1.1.4.2.3.2.cmml">s</mi><mo id="S2.E37.m1.9.9.1.1.4.2.3.1" xref="S2.E37.m1.9.9.1.1.4.2.3.1.cmml"></mo><mi id="S2.E37.m1.9.9.1.1.4.2.3.3" xref="S2.E37.m1.9.9.1.1.4.2.3.3.cmml">b</mi></mrow></msub><mo id="S2.E37.m1.9.9.1.1.4.1" xref="S2.E37.m1.9.9.1.1.4.1.cmml"></mo><mrow id="S2.E37.m1.9.9.1.1.4.3.2" xref="S2.E37.m1.9.9.1.1.4.cmml"><mo id="S2.E37.m1.9.9.1.1.4.3.2.1" xref="S2.E37.m1.9.9.1.1.4.cmml">(</mo><mi id="S2.E37.m1.1.1" xref="S2.E37.m1.1.1.cmml">r</mi><mo id="S2.E37.m1.9.9.1.1.4.3.2.2" xref="S2.E37.m1.9.9.1.1.4.cmml">)</mo></mrow></mrow><mo id="S2.E37.m1.9.9.1.1.3" xref="S2.E37.m1.9.9.1.1.3.cmml">=</mo><mrow id="S2.E37.m1.9.9.1.1.2.2" xref="S2.E37.m1.9.9.1.1.2.3.cmml"><mi id="S2.E37.m1.7.7" xref="S2.E37.m1.7.7.cmml">max</mi><mo id="S2.E37.m1.9.9.1.1.2.2a" xref="S2.E37.m1.9.9.1.1.2.3.cmml"></mo><mrow id="S2.E37.m1.9.9.1.1.2.2.2" xref="S2.E37.m1.9.9.1.1.2.3.cmml"><mo id="S2.E37.m1.9.9.1.1.2.2.2.3" xref="S2.E37.m1.9.9.1.1.2.3.cmml">(</mo><mn id="S2.E37.m1.8.8" xref="S2.E37.m1.8.8.cmml">0</mn><mo id="S2.E37.m1.9.9.1.1.2.2.2.4" xref="S2.E37.m1.9.9.1.1.2.3.cmml">,</mo><mrow id="S2.E37.m1.9.9.1.1.1.1.1.1.1" xref="S2.E37.m1.9.9.1.1.1.1.1.1.2.cmml"><mi id="S2.E37.m1.2.2" xref="S2.E37.m1.2.2.cmml">min</mi><mo id="S2.E37.m1.9.9.1.1.1.1.1.1.1a" xref="S2.E37.m1.9.9.1.1.1.1.1.1.2.cmml"></mo><mrow id="S2.E37.m1.9.9.1.1.1.1.1.1.1.1" xref="S2.E37.m1.9.9.1.1.1.1.1.1.2.cmml"><mo id="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.2" xref="S2.E37.m1.9.9.1.1.1.1.1.1.2.cmml">(</mo><mrow id="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.1" xref="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.1.cmml"><mn id="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.1.2" xref="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.1.2.cmml">2</mn><mo id="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.1.1" xref="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.1.1.cmml"></mo><mi id="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.1.3" xref="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.1.3.cmml">r</mi></mrow><mo id="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.3" xref="S2.E37.m1.9.9.1.1.1.1.1.1.2.cmml">,</mo><mn id="S2.E37.m1.3.3" xref="S2.E37.m1.3.3.cmml">1</mn><mo id="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.4" xref="S2.E37.m1.9.9.1.1.1.1.1.1.2.cmml">)</mo></mrow></mrow><mo id="S2.E37.m1.9.9.1.1.2.2.2.5" xref="S2.E37.m1.9.9.1.1.2.3.cmml">,</mo><mrow id="S2.E37.m1.9.9.1.1.2.2.2.2.2" xref="S2.E37.m1.9.9.1.1.2.2.2.2.1.cmml"><mi id="S2.E37.m1.4.4" xref="S2.E37.m1.4.4.cmml">min</mi><mo id="S2.E37.m1.9.9.1.1.2.2.2.2.2a" xref="S2.E37.m1.9.9.1.1.2.2.2.2.1.cmml"></mo><mrow id="S2.E37.m1.9.9.1.1.2.2.2.2.2.1" xref="S2.E37.m1.9.9.1.1.2.2.2.2.1.cmml"><mo id="S2.E37.m1.9.9.1.1.2.2.2.2.2.1.1" xref="S2.E37.m1.9.9.1.1.2.2.2.2.1.cmml">(</mo><mi id="S2.E37.m1.5.5" xref="S2.E37.m1.5.5.cmml">r</mi><mo id="S2.E37.m1.9.9.1.1.2.2.2.2.2.1.2" xref="S2.E37.m1.9.9.1.1.2.2.2.2.1.cmml">,</mo><mn id="S2.E37.m1.6.6" xref="S2.E37.m1.6.6.cmml">2</mn><mo id="S2.E37.m1.9.9.1.1.2.2.2.2.2.1.3" xref="S2.E37.m1.9.9.1.1.2.2.2.2.1.cmml">)</mo></mrow></mrow><mo id="S2.E37.m1.9.9.1.1.2.2.2.6" xref="S2.E37.m1.9.9.1.1.2.3.cmml">)</mo></mrow></mrow></mrow><mo id="S2.E37.m1.9.9.1.2" xref="S2.E37.m1.9.9.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E37.m1.9b"><apply id="S2.E37.m1.9.9.1.1.cmml" xref="S2.E37.m1.9.9.1"><eq id="S2.E37.m1.9.9.1.1.3.cmml" xref="S2.E37.m1.9.9.1.1.3"></eq><apply id="S2.E37.m1.9.9.1.1.4.cmml" xref="S2.E37.m1.9.9.1.1.4"><times id="S2.E37.m1.9.9.1.1.4.1.cmml" xref="S2.E37.m1.9.9.1.1.4.1"></times><apply id="S2.E37.m1.9.9.1.1.4.2.cmml" xref="S2.E37.m1.9.9.1.1.4.2"><csymbol cd="ambiguous" id="S2.E37.m1.9.9.1.1.4.2.1.cmml" xref="S2.E37.m1.9.9.1.1.4.2">subscript</csymbol><ci id="S2.E37.m1.9.9.1.1.4.2.2.cmml" xref="S2.E37.m1.9.9.1.1.4.2.2">italic-ϕ</ci><apply id="S2.E37.m1.9.9.1.1.4.2.3.cmml" xref="S2.E37.m1.9.9.1.1.4.2.3"><times id="S2.E37.m1.9.9.1.1.4.2.3.1.cmml" xref="S2.E37.m1.9.9.1.1.4.2.3.1"></times><ci id="S2.E37.m1.9.9.1.1.4.2.3.2.cmml" xref="S2.E37.m1.9.9.1.1.4.2.3.2">𝑠</ci><ci id="S2.E37.m1.9.9.1.1.4.2.3.3.cmml" xref="S2.E37.m1.9.9.1.1.4.2.3.3">𝑏</ci></apply></apply><ci id="S2.E37.m1.1.1.cmml" xref="S2.E37.m1.1.1">𝑟</ci></apply><apply id="S2.E37.m1.9.9.1.1.2.3.cmml" xref="S2.E37.m1.9.9.1.1.2.2"><max id="S2.E37.m1.7.7.cmml" xref="S2.E37.m1.7.7"></max><cn id="S2.E37.m1.8.8.cmml" type="integer" xref="S2.E37.m1.8.8">0</cn><apply id="S2.E37.m1.9.9.1.1.1.1.1.1.2.cmml" xref="S2.E37.m1.9.9.1.1.1.1.1.1.1"><min id="S2.E37.m1.2.2.cmml" xref="S2.E37.m1.2.2"></min><apply id="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.1"><times id="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.1.1.cmml" xref="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.1.1"></times><cn id="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.1.2.cmml" type="integer" xref="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.1.2">2</cn><ci id="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.1.3.cmml" xref="S2.E37.m1.9.9.1.1.1.1.1.1.1.1.1.3">𝑟</ci></apply><cn id="S2.E37.m1.3.3.cmml" type="integer" xref="S2.E37.m1.3.3">1</cn></apply><apply id="S2.E37.m1.9.9.1.1.2.2.2.2.1.cmml" xref="S2.E37.m1.9.9.1.1.2.2.2.2.2"><min id="S2.E37.m1.4.4.cmml" xref="S2.E37.m1.4.4"></min><ci id="S2.E37.m1.5.5.cmml" xref="S2.E37.m1.5.5">𝑟</ci><cn id="S2.E37.m1.6.6.cmml" type="integer" xref="S2.E37.m1.6.6">2</cn></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E37.m1.9c">\phi_{sb}\left(r\right)=\max\left(0,\min\left(2r,1\right),\min\left(r,2\right)% \right),</annotation><annotation encoding="application/x-llamapun" id="S2.E37.m1.9d">italic_ϕ start_POSTSUBSCRIPT italic_s italic_b end_POSTSUBSCRIPT ( italic_r ) = roman_max ( 0 , roman_min ( 2 italic_r , 1 ) , roman_min ( italic_r , 2 ) ) ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S2.SS4.p16.1">and the <span class="ltx_text ltx_font_italic" id="S2.SS4.p16.1.1">van Leer</span> limiter<cite class="ltx_cite ltx_citemacro_citep">(Van Leer, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib33" title="">1974</a>)</cite>:</p> </div> <div class="ltx_para" id="S2.SS4.p17"> <table class="ltx_equation ltx_eqn_table" id="S2.E38"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(38)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\phi_{vl}\left(r\right)=\frac{r+\left\lvert r\right\rvert}{1+\left\lvert r% \right\rvert}." class="ltx_Math" display="block" id="S2.E38.m1.4"><semantics id="S2.E38.m1.4a"><mrow id="S2.E38.m1.4.4.1" xref="S2.E38.m1.4.4.1.1.cmml"><mrow id="S2.E38.m1.4.4.1.1" xref="S2.E38.m1.4.4.1.1.cmml"><mrow id="S2.E38.m1.4.4.1.1.2" xref="S2.E38.m1.4.4.1.1.2.cmml"><msub id="S2.E38.m1.4.4.1.1.2.2" xref="S2.E38.m1.4.4.1.1.2.2.cmml"><mi id="S2.E38.m1.4.4.1.1.2.2.2" xref="S2.E38.m1.4.4.1.1.2.2.2.cmml">ϕ</mi><mrow id="S2.E38.m1.4.4.1.1.2.2.3" xref="S2.E38.m1.4.4.1.1.2.2.3.cmml"><mi id="S2.E38.m1.4.4.1.1.2.2.3.2" xref="S2.E38.m1.4.4.1.1.2.2.3.2.cmml">v</mi><mo id="S2.E38.m1.4.4.1.1.2.2.3.1" xref="S2.E38.m1.4.4.1.1.2.2.3.1.cmml"></mo><mi id="S2.E38.m1.4.4.1.1.2.2.3.3" xref="S2.E38.m1.4.4.1.1.2.2.3.3.cmml">l</mi></mrow></msub><mo id="S2.E38.m1.4.4.1.1.2.1" xref="S2.E38.m1.4.4.1.1.2.1.cmml"></mo><mrow id="S2.E38.m1.4.4.1.1.2.3.2" xref="S2.E38.m1.4.4.1.1.2.cmml"><mo id="S2.E38.m1.4.4.1.1.2.3.2.1" xref="S2.E38.m1.4.4.1.1.2.cmml">(</mo><mi id="S2.E38.m1.3.3" xref="S2.E38.m1.3.3.cmml">r</mi><mo id="S2.E38.m1.4.4.1.1.2.3.2.2" xref="S2.E38.m1.4.4.1.1.2.cmml">)</mo></mrow></mrow><mo id="S2.E38.m1.4.4.1.1.1" xref="S2.E38.m1.4.4.1.1.1.cmml">=</mo><mfrac id="S2.E38.m1.2.2" xref="S2.E38.m1.2.2.cmml"><mrow id="S2.E38.m1.1.1.1" xref="S2.E38.m1.1.1.1.cmml"><mi id="S2.E38.m1.1.1.1.3" xref="S2.E38.m1.1.1.1.3.cmml">r</mi><mo id="S2.E38.m1.1.1.1.2" xref="S2.E38.m1.1.1.1.2.cmml">+</mo><mrow id="S2.E38.m1.1.1.1.4.2" xref="S2.E38.m1.1.1.1.4.1.cmml"><mo id="S2.E38.m1.1.1.1.4.2.1" xref="S2.E38.m1.1.1.1.4.1.1.cmml">|</mo><mi id="S2.E38.m1.1.1.1.1" xref="S2.E38.m1.1.1.1.1.cmml">r</mi><mo id="S2.E38.m1.1.1.1.4.2.2" xref="S2.E38.m1.1.1.1.4.1.1.cmml">|</mo></mrow></mrow><mrow id="S2.E38.m1.2.2.2" xref="S2.E38.m1.2.2.2.cmml"><mn id="S2.E38.m1.2.2.2.3" xref="S2.E38.m1.2.2.2.3.cmml">1</mn><mo id="S2.E38.m1.2.2.2.2" xref="S2.E38.m1.2.2.2.2.cmml">+</mo><mrow id="S2.E38.m1.2.2.2.4.2" xref="S2.E38.m1.2.2.2.4.1.cmml"><mo id="S2.E38.m1.2.2.2.4.2.1" xref="S2.E38.m1.2.2.2.4.1.1.cmml">|</mo><mi id="S2.E38.m1.2.2.2.1" xref="S2.E38.m1.2.2.2.1.cmml">r</mi><mo id="S2.E38.m1.2.2.2.4.2.2" xref="S2.E38.m1.2.2.2.4.1.1.cmml">|</mo></mrow></mrow></mfrac></mrow><mo id="S2.E38.m1.4.4.1.2" lspace="0em" xref="S2.E38.m1.4.4.1.1.cmml">.</mo></mrow><annotation-xml encoding="MathML-Content" id="S2.E38.m1.4b"><apply id="S2.E38.m1.4.4.1.1.cmml" xref="S2.E38.m1.4.4.1"><eq id="S2.E38.m1.4.4.1.1.1.cmml" xref="S2.E38.m1.4.4.1.1.1"></eq><apply id="S2.E38.m1.4.4.1.1.2.cmml" xref="S2.E38.m1.4.4.1.1.2"><times id="S2.E38.m1.4.4.1.1.2.1.cmml" xref="S2.E38.m1.4.4.1.1.2.1"></times><apply id="S2.E38.m1.4.4.1.1.2.2.cmml" xref="S2.E38.m1.4.4.1.1.2.2"><csymbol cd="ambiguous" id="S2.E38.m1.4.4.1.1.2.2.1.cmml" xref="S2.E38.m1.4.4.1.1.2.2">subscript</csymbol><ci id="S2.E38.m1.4.4.1.1.2.2.2.cmml" xref="S2.E38.m1.4.4.1.1.2.2.2">italic-ϕ</ci><apply id="S2.E38.m1.4.4.1.1.2.2.3.cmml" xref="S2.E38.m1.4.4.1.1.2.2.3"><times id="S2.E38.m1.4.4.1.1.2.2.3.1.cmml" xref="S2.E38.m1.4.4.1.1.2.2.3.1"></times><ci id="S2.E38.m1.4.4.1.1.2.2.3.2.cmml" xref="S2.E38.m1.4.4.1.1.2.2.3.2">𝑣</ci><ci id="S2.E38.m1.4.4.1.1.2.2.3.3.cmml" xref="S2.E38.m1.4.4.1.1.2.2.3.3">𝑙</ci></apply></apply><ci id="S2.E38.m1.3.3.cmml" xref="S2.E38.m1.3.3">𝑟</ci></apply><apply id="S2.E38.m1.2.2.cmml" xref="S2.E38.m1.2.2"><divide id="S2.E38.m1.2.2.3.cmml" xref="S2.E38.m1.2.2"></divide><apply id="S2.E38.m1.1.1.1.cmml" xref="S2.E38.m1.1.1.1"><plus id="S2.E38.m1.1.1.1.2.cmml" xref="S2.E38.m1.1.1.1.2"></plus><ci id="S2.E38.m1.1.1.1.3.cmml" xref="S2.E38.m1.1.1.1.3">𝑟</ci><apply id="S2.E38.m1.1.1.1.4.1.cmml" xref="S2.E38.m1.1.1.1.4.2"><abs id="S2.E38.m1.1.1.1.4.1.1.cmml" xref="S2.E38.m1.1.1.1.4.2.1"></abs><ci id="S2.E38.m1.1.1.1.1.cmml" xref="S2.E38.m1.1.1.1.1">𝑟</ci></apply></apply><apply id="S2.E38.m1.2.2.2.cmml" xref="S2.E38.m1.2.2.2"><plus id="S2.E38.m1.2.2.2.2.cmml" xref="S2.E38.m1.2.2.2.2"></plus><cn id="S2.E38.m1.2.2.2.3.cmml" type="integer" xref="S2.E38.m1.2.2.2.3">1</cn><apply id="S2.E38.m1.2.2.2.4.1.cmml" xref="S2.E38.m1.2.2.2.4.2"><abs id="S2.E38.m1.2.2.2.4.1.1.cmml" xref="S2.E38.m1.2.2.2.4.2.1"></abs><ci id="S2.E38.m1.2.2.2.1.cmml" xref="S2.E38.m1.2.2.2.1">𝑟</ci></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S2.E38.m1.4c">\phi_{vl}\left(r\right)=\frac{r+\left\lvert r\right\rvert}{1+\left\lvert r% \right\rvert}.</annotation><annotation encoding="application/x-llamapun" id="S2.E38.m1.4d">italic_ϕ start_POSTSUBSCRIPT italic_v italic_l end_POSTSUBSCRIPT ( italic_r ) = divide start_ARG italic_r + | italic_r | end_ARG start_ARG 1 + | italic_r | end_ARG .</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> </div> </section> </section> <section class="ltx_section" id="S3"> <h2 class="ltx_title ltx_title_section"> <span class="ltx_tag ltx_tag_section">3. </span>Methodology and Results</h2> <section class="ltx_subsection" id="S3.SS1"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">3.1. </span>Automatic Code Generation</h3> <div class="ltx_para" id="S3.SS1.p1"> <p class="ltx_p" id="S3.SS1.p1.4">Before we proceed with formally verifying various properties of finite volume schemes in Racket, it is first necessary for us to be able to generate reliable C implementations which certifiably match the symbolic Racket expressions being reasoned about. To this end, we introduce a general data structure for representing hyperbolic PDE systems in Racket, consisting of four lists of symbolic Racket expressions: <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS1.p1.4.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS1.p1.4.1.1" style="font-size:90%;">cons</span><span class="ltx_text ltx_font_typewriter" id="S3.SS1.p1.4.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS1.p1.4.1.2.1">exprs</span></span></span> representing the conserved variable vector, <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS1.p1.4.2"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS1.p1.4.2.1" style="font-size:90%;">flux</span><span class="ltx_text ltx_font_typewriter" id="S3.SS1.p1.4.2.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS1.p1.4.2.2.1">exprs</span></span></span> representing the flux vector, <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS1.p1.4.3"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS1.p1.4.3.1" style="font-size:90%;">max</span><span class="ltx_text ltx_font_typewriter" id="S3.SS1.p1.4.3.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS1.p1.4.3.2.1">speed</span>-<span class="ltx_text ltx_lst_identifier" id="S3.SS1.p1.4.3.2.2">exprs</span></span></span> representing the maximum wave-speed estimates (used for enforcing the CFL stability condition), and <span class="ltx_text ltx_lst_identifier ltx_lst_language_Scheme ltx_lstlisting ltx_font_typewriter" id="S3.SS1.p1.4.4" style="font-size:90%;">parameters</span> representing any additional simulation parameters (such as equation of state variables). For example, the equations representing the density <math alttext="{\rho}" class="ltx_Math" display="inline" id="S3.SS1.p1.1.m1.1"><semantics id="S3.SS1.p1.1.m1.1a"><mi id="S3.SS1.p1.1.m1.1.1" xref="S3.SS1.p1.1.m1.1.1.cmml">ρ</mi><annotation-xml encoding="MathML-Content" id="S3.SS1.p1.1.m1.1b"><ci id="S3.SS1.p1.1.m1.1.1.cmml" xref="S3.SS1.p1.1.m1.1.1">𝜌</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS1.p1.1.m1.1c">{\rho}</annotation><annotation encoding="application/x-llamapun" id="S3.SS1.p1.1.m1.1d">italic_ρ</annotation></semantics></math> and <math alttext="x" class="ltx_Math" display="inline" id="S3.SS1.p1.2.m2.1"><semantics id="S3.SS1.p1.2.m2.1a"><mi id="S3.SS1.p1.2.m2.1.1" xref="S3.SS1.p1.2.m2.1.1.cmml">x</mi><annotation-xml encoding="MathML-Content" id="S3.SS1.p1.2.m2.1b"><ci id="S3.SS1.p1.2.m2.1.1.cmml" xref="S3.SS1.p1.2.m2.1.1">𝑥</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS1.p1.2.m2.1c">x</annotation><annotation encoding="application/x-llamapun" id="S3.SS1.p1.2.m2.1d">italic_x</annotation></semantics></math>-momentum <math alttext="{\rho u}" class="ltx_Math" display="inline" id="S3.SS1.p1.3.m3.1"><semantics id="S3.SS1.p1.3.m3.1a"><mrow id="S3.SS1.p1.3.m3.1.1" xref="S3.SS1.p1.3.m3.1.1.cmml"><mi id="S3.SS1.p1.3.m3.1.1.2" xref="S3.SS1.p1.3.m3.1.1.2.cmml">ρ</mi><mo id="S3.SS1.p1.3.m3.1.1.1" xref="S3.SS1.p1.3.m3.1.1.1.cmml"></mo><mi id="S3.SS1.p1.3.m3.1.1.3" xref="S3.SS1.p1.3.m3.1.1.3.cmml">u</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS1.p1.3.m3.1b"><apply id="S3.SS1.p1.3.m3.1.1.cmml" xref="S3.SS1.p1.3.m3.1.1"><times id="S3.SS1.p1.3.m3.1.1.1.cmml" xref="S3.SS1.p1.3.m3.1.1.1"></times><ci id="S3.SS1.p1.3.m3.1.1.2.cmml" xref="S3.SS1.p1.3.m3.1.1.2">𝜌</ci><ci id="S3.SS1.p1.3.m3.1.1.3.cmml" xref="S3.SS1.p1.3.m3.1.1.3">𝑢</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS1.p1.3.m3.1c">{\rho u}</annotation><annotation encoding="application/x-llamapun" id="S3.SS1.p1.3.m3.1d">italic_ρ italic_u</annotation></semantics></math> components of the isothermal Euler equation system are represented in our Racket implementation as follows, assuming a thermal velocity <math alttext="{v_{th}=1.0}" class="ltx_Math" display="inline" id="S3.SS1.p1.4.m4.1"><semantics id="S3.SS1.p1.4.m4.1a"><mrow id="S3.SS1.p1.4.m4.1.1" xref="S3.SS1.p1.4.m4.1.1.cmml"><msub id="S3.SS1.p1.4.m4.1.1.2" xref="S3.SS1.p1.4.m4.1.1.2.cmml"><mi id="S3.SS1.p1.4.m4.1.1.2.2" xref="S3.SS1.p1.4.m4.1.1.2.2.cmml">v</mi><mrow id="S3.SS1.p1.4.m4.1.1.2.3" xref="S3.SS1.p1.4.m4.1.1.2.3.cmml"><mi id="S3.SS1.p1.4.m4.1.1.2.3.2" xref="S3.SS1.p1.4.m4.1.1.2.3.2.cmml">t</mi><mo id="S3.SS1.p1.4.m4.1.1.2.3.1" xref="S3.SS1.p1.4.m4.1.1.2.3.1.cmml"></mo><mi id="S3.SS1.p1.4.m4.1.1.2.3.3" xref="S3.SS1.p1.4.m4.1.1.2.3.3.cmml">h</mi></mrow></msub><mo id="S3.SS1.p1.4.m4.1.1.1" xref="S3.SS1.p1.4.m4.1.1.1.cmml">=</mo><mn id="S3.SS1.p1.4.m4.1.1.3" xref="S3.SS1.p1.4.m4.1.1.3.cmml">1.0</mn></mrow><annotation-xml encoding="MathML-Content" id="S3.SS1.p1.4.m4.1b"><apply id="S3.SS1.p1.4.m4.1.1.cmml" xref="S3.SS1.p1.4.m4.1.1"><eq id="S3.SS1.p1.4.m4.1.1.1.cmml" xref="S3.SS1.p1.4.m4.1.1.1"></eq><apply id="S3.SS1.p1.4.m4.1.1.2.cmml" xref="S3.SS1.p1.4.m4.1.1.2"><csymbol cd="ambiguous" id="S3.SS1.p1.4.m4.1.1.2.1.cmml" xref="S3.SS1.p1.4.m4.1.1.2">subscript</csymbol><ci id="S3.SS1.p1.4.m4.1.1.2.2.cmml" xref="S3.SS1.p1.4.m4.1.1.2.2">𝑣</ci><apply id="S3.SS1.p1.4.m4.1.1.2.3.cmml" xref="S3.SS1.p1.4.m4.1.1.2.3"><times id="S3.SS1.p1.4.m4.1.1.2.3.1.cmml" xref="S3.SS1.p1.4.m4.1.1.2.3.1"></times><ci id="S3.SS1.p1.4.m4.1.1.2.3.2.cmml" xref="S3.SS1.p1.4.m4.1.1.2.3.2">𝑡</ci><ci id="S3.SS1.p1.4.m4.1.1.2.3.3.cmml" xref="S3.SS1.p1.4.m4.1.1.2.3.3">ℎ</ci></apply></apply><cn id="S3.SS1.p1.4.m4.1.1.3.cmml" type="float" xref="S3.SS1.p1.4.m4.1.1.3">1.0</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS1.p1.4.m4.1c">{v_{th}=1.0}</annotation><annotation encoding="application/x-llamapun" id="S3.SS1.p1.4.m4.1d">italic_v start_POSTSUBSCRIPT italic_t italic_h end_POSTSUBSCRIPT = 1.0</annotation></semantics></math>:</p> </div> <div class="ltx_para" id="S3.SS1.p2"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS1.p2.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KGRlZmluZSBwZGUtc3lzdGVtLWlzb3RoZXJtYWwtZXVsZXIKICAoaGFzaAogICAgJ25hbWUgImlzb3RoZXJtYWwtZXVsZXIiCiAgICAnY29ucy1leHBycyAobGlzdCBgcmhvLCBgbW9tX3gpCiAgICAnZmx1eC1leHBycyAobGlzdAogICAgICBgbW9tX3gKICAgICAgYCgrICgvICgqIG1vbV94IG1vbV94KSByaG8pCiAgICAgICAgKCogcmhvIHZ0IHZ0KSkpCiAgICBgbWF4LXNwZWVkLWV4cHJzIChsaXN0CiAgICAgIGAoYWJzICgtICgvIG1vbV94IHJobykgdnQpKQogICAgICBgKGFicyAoKyAoLyBtb21feCByaG8pIHZ0KSkpCiAgICBgcGFyYW1ldGVycyAobGlzdCBgKGRlZmluZSB2dCAxLjApKSkp">⬇</a></div> <div class="ltx_listingline" id="lstnumberx1"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx1.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx1.2" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx1.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx1.4" style="font-size:90%;">pde</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx1.5" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx1.6" style="font-size:90%;">system</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx1.7" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx1.8" style="font-size:90%;">isothermal</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx1.9" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx1.10" style="font-size:90%;">euler</span> </div> <div class="ltx_listingline" id="lstnumberx2"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx2.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx2.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx2.3" style="font-size:90%;">hash</span> </div> <div class="ltx_listingline" id="lstnumberx3"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx3.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx3.2" style="font-size:90%;">’</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx3.3" style="font-size:90%;">name</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx3.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_string ltx_font_typewriter" id="lstnumberx3.5" style="font-size:90%;"><span class="ltx_text" id="lstnumberx3.5.1" style="color:#FF0000;">"isothermal-euler"</span></span> </div> <div class="ltx_listingline" id="lstnumberx4"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx4.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx4.2" style="font-size:90%;">’</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx4.3" style="font-size:90%;">cons</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx4.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx4.5" style="font-size:90%;">exprs</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx4.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx4.7" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx4.8" style="font-size:90%;">list</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx4.9" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx4.10" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx4.11" style="font-size:90%;">rho</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx4.12" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx4.13" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx4.14" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx4.15" style="font-size:90%;">mom_x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx4.16" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx5"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx5.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx5.2" style="font-size:90%;">’</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx5.3" style="font-size:90%;">flux</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx5.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx5.5" style="font-size:90%;">exprs</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx5.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx5.7" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx5.8" style="font-size:90%;">list</span> </div> <div class="ltx_listingline" id="lstnumberx6"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx6.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx6.2" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx6.3" style="font-size:90%;">mom_x</span> </div> <div class="ltx_listingline" id="lstnumberx7"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx7.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx7.2" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx7.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx7.4" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx7.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx7.6" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx7.7" style="font-size:90%;">/</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx7.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx7.9" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx7.10" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx7.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx7.12" style="font-size:90%;">mom_x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx7.13" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx7.14" style="font-size:90%;">mom_x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx7.15" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx7.16" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx7.17" style="font-size:90%;">rho</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx7.18" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx8"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx8.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx8.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx8.3" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx8.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx8.5" style="font-size:90%;">rho</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx8.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx8.7" style="font-size:90%;">vt</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx8.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx8.9" style="font-size:90%;">vt</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx8.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx8.11" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx8.12" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx9"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx9.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx9.2" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx9.3" style="font-size:90%;">max</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx9.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx9.5" style="font-size:90%;">speed</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx9.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx9.7" style="font-size:90%;">exprs</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx9.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx9.9" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx9.10" style="font-size:90%;">list</span> </div> <div class="ltx_listingline" id="lstnumberx10"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx10.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx10.2" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx10.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx10.4" style="font-size:90%;">abs</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx10.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx10.6" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx10.7" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx10.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx10.9" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx10.10" style="font-size:90%;">/</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx10.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx10.12" style="font-size:90%;">mom_x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx10.13" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx10.14" style="font-size:90%;">rho</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx10.15" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx10.16" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx10.17" style="font-size:90%;">vt</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx10.18" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx10.19" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx11"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx11.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx11.2" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx11.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx11.4" style="font-size:90%;">abs</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx11.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx11.6" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx11.7" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx11.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx11.9" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx11.10" style="font-size:90%;">/</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx11.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx11.12" style="font-size:90%;">mom_x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx11.13" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx11.14" style="font-size:90%;">rho</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx11.15" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx11.16" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx11.17" style="font-size:90%;">vt</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx11.18" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx11.19" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx11.20" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx12"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx12.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx12.2" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx12.3" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx12.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx12.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx12.6" style="font-size:90%;">list</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx12.7" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx12.8" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx12.9" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx12.10" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx12.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx12.12" style="font-size:90%;">vt</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx12.13" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx12.14" style="font-size:90%;">1.0</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx12.15" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx12.16" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx12.17" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx12.18" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS1.p2.2">Each of the Racket expressions in these lists may then be converted recursively into a string representing a functionally equivalent C expression, using the function <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS1.p2.2.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS1.p2.2.1.1" style="font-size:90%;">convert</span><span class="ltx_text ltx_font_typewriter" id="S3.SS1.p2.2.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS1.p2.2.1.2.1">expr</span></span></span>:</p> </div> <div class="ltx_para" id="S3.SS1.p3"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS1.p3.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KGRlZmluZSAoY29udmVydC1leHByIGV4cHIpCiAgKG1hdGNoIGV4cHIKICAgIFsoPyBzeW1ib2w/IHN5bWIpIChzeW1ib2wtPnN0cmluZyBzeW1iKV0KICAgIFsoPyBudW1iZXI/IG51bSkgKG51bWJlci0+c3RyaW5nIG51bSldCiAgICAuLi4KICAgIFtgKGFicyAsYXJnKQogICAgICAoZm9ybWF0ICJmYWJzKH5hKSIgKGNvbnZlcnQtZXhwciBhcmcpKV0KICAgIC4uLgogICAgW2AoKyAuICx0ZXJtcykKICAgICAgKGxldCAoW2MtdGVybXMKICAgICAgICAgIChtYXAgY29udmVydC1leHByIHRlcm1zKV0pCiAgICAgICAgKHN0cmluZy1hcHBlbmQgIigiCiAgICAgICAgICAoc3RyaW5nLWpvaW4gYy10ZXJtcyAiICsgIikgIikiKSldCiAgICAuLi4pKQ==">⬇</a></div> <div class="ltx_listingline" id="lstnumberx13"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx13.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx13.2" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx13.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx13.4" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx13.5" style="font-size:90%;">convert</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx13.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx13.7" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx13.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx13.9" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx13.10" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx14"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx14.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx14.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx14.3" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx14.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx14.5" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx15"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx15.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx15.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx15.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx15.4" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx15.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx15.6" style="font-size:90%;">symbol</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx15.7" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx15.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx15.9" style="font-size:90%;">symb</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx15.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx15.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx15.12" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx15.13" style="font-size:90%;">symbol</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx15.14" style="font-size:90%;">-></span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx15.15" style="font-size:90%;">string</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx15.16" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx15.17" style="font-size:90%;">symb</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx15.18" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx15.19" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx16"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx16.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx16.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx16.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx16.4" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx16.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx16.6" style="font-size:90%;">number</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx16.7" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx16.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx16.9" style="font-size:90%;">num</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx16.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx16.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx16.12" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx16.13" style="font-size:90%;">number</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx16.14" style="font-size:90%;">-></span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx16.15" style="font-size:90%;">string</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx16.16" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx16.17" style="font-size:90%;">num</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx16.18" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx16.19" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx17"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx17.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx17.2" style="font-size:90%;">...</span> </div> <div class="ltx_listingline" id="lstnumberx18"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx18.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx18.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx18.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx18.4" style="font-size:90%;">abs</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx18.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx18.6" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx18.7" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx18.8" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx19"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx19.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx19.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx19.3" style="font-size:90%;">format</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx19.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_string ltx_font_typewriter" id="lstnumberx19.5" style="font-size:90%;"><span class="ltx_text" id="lstnumberx19.5.1" style="color:#FF0000;">"fabs(~a)"</span></span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx19.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx19.7" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx19.8" style="font-size:90%;">convert</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx19.9" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx19.10" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx19.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx19.12" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx19.13" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx19.14" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx19.15" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx20"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx20.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx20.2" style="font-size:90%;">...</span> </div> <div class="ltx_listingline" id="lstnumberx21"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx21.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx21.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx21.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx21.4" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx21.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx21.6" style="font-size:90%;">.</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx21.7" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx21.8" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx21.9" style="font-size:90%;">terms</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx21.10" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx22"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx22.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx22.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx22.3" style="font-size:90%;color:#0000FF;">let</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx22.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx22.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx22.6" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx22.7" style="font-size:90%;">c</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx22.8" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx22.9" style="font-size:90%;">terms</span> </div> <div class="ltx_listingline" id="lstnumberx23"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx23.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx23.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx23.3" style="font-size:90%;color:#0000FF;">map</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx23.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx23.5" style="font-size:90%;">convert</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx23.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx23.7" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx23.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx23.9" style="font-size:90%;">terms</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx23.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx23.11" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx23.12" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx24"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx24.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx24.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx24.3" style="font-size:90%;">string</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx24.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx24.5" style="font-size:90%;">append</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx24.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_string ltx_font_typewriter" id="lstnumberx24.7" style="font-size:90%;"><span class="ltx_text" id="lstnumberx24.7.1" style="color:#FF0000;">"("</span></span> </div> <div class="ltx_listingline" id="lstnumberx25"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx25.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx25.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx25.3" style="font-size:90%;">string</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx25.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx25.5" style="font-size:90%;">join</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx25.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx25.7" style="font-size:90%;">c</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx25.8" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx25.9" style="font-size:90%;">terms</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx25.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_string ltx_font_typewriter" id="lstnumberx25.11" style="font-size:90%;"><span class="ltx_text" id="lstnumberx25.11.1" style="color:#FF0000;">"<span class="ltx_text ltx_lst_space" id="lstnumberx25.11.1.1">␣</span>+<span class="ltx_text ltx_lst_space" id="lstnumberx25.11.1.2">␣</span>"</span></span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx25.12" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx25.13" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_string ltx_font_typewriter" id="lstnumberx25.14" style="font-size:90%;"><span class="ltx_text" id="lstnumberx25.14.1" style="color:#FF0000;">")"</span></span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx25.15" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx25.16" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx25.17" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx26"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx26.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx26.2" style="font-size:90%;">...</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx26.3" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx26.4" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS1.p3.2">The base case of <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS1.p3.2.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS1.p3.2.1.1" style="font-size:90%;">convert</span><span class="ltx_text ltx_font_typewriter" id="S3.SS1.p3.2.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS1.p3.2.1.2.1">expr</span></span></span> converts any symbol or number directly into its corresponding string. Any single- or multi-argument function, e.g. <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS1.p3.2.2"><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS1.p3.2.2.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS1.p3.2.2.2" style="font-size:90%;">abs</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="S3.SS1.p3.2.2.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS1.p3.2.2.4" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS1.p3.2.2.5" style="font-size:90%;color:#999999;">)</span></span> or <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS1.p3.2.3"><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS1.p3.2.3.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS1.p3.2.3.2" style="font-size:90%;">max</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="S3.SS1.p3.2.3.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS1.p3.2.3.4" style="font-size:90%;">arg1</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="S3.SS1.p3.2.3.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS1.p3.2.3.6" style="font-size:90%;">arg2</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS1.p3.2.3.7" style="font-size:90%;color:#999999;">)</span></span>, is converted into its C equivalent, e.g. <span class="ltx_text ltx_lst_language_C ltx_lstlisting" id="S3.SS1.p3.2.4"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS1.p3.2.4.1" style="font-size:90%;">fabs</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS1.p3.2.4.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS1.p3.2.4.3" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS1.p3.2.4.4" style="font-size:90%;color:#999999;">)</span></span> or <span class="ltx_text ltx_lst_language_C ltx_lstlisting" id="S3.SS1.p3.2.5"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS1.p3.2.5.1" style="font-size:90%;">fmax</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS1.p3.2.5.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS1.p3.2.5.3" style="font-size:90%;">arg1</span><span class="ltx_text ltx_font_typewriter" id="S3.SS1.p3.2.5.4" style="font-size:90%;">,<span class="ltx_text ltx_lst_space" id="S3.SS1.p3.2.5.4.1"> </span><span class="ltx_text ltx_lst_identifier" id="S3.SS1.p3.2.5.4.2">arg2</span><span class="ltx_text ltx_lst_literate" id="S3.SS1.p3.2.5.4.3" style="color:#999999;">)</span></span></span>, with <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS1.p3.2.6"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS1.p3.2.6.1" style="font-size:90%;">convert</span><span class="ltx_text ltx_font_typewriter" id="S3.SS1.p3.2.6.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS1.p3.2.6.2.1">expr</span></span></span> being called on all interior expressions. Finally, any elementary arithmetic operation, e.g. <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS1.p3.2.7"><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS1.p3.2.7.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="S3.SS1.p3.2.7.2" style="font-size:90%;">+<span class="ltx_text ltx_lst_space" id="S3.SS1.p3.2.7.2.1"> </span><span class="ltx_text ltx_lst_identifier" id="S3.SS1.p3.2.7.2.2">arg1</span><span class="ltx_text ltx_lst_space" id="S3.SS1.p3.2.7.2.3"> </span><span class="ltx_text ltx_lst_identifier" id="S3.SS1.p3.2.7.2.4">arg2</span><span class="ltx_text ltx_lst_space" id="S3.SS1.p3.2.7.2.5"> </span>...<span class="ltx_text ltx_lst_literate" id="S3.SS1.p3.2.7.2.6" style="color:#999999;">)</span></span></span>, has <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS1.p3.2.8"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS1.p3.2.8.1" style="font-size:90%;">convert</span><span class="ltx_text ltx_font_typewriter" id="S3.SS1.p3.2.8.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS1.p3.2.8.2.1">expr</span></span></span> mapped over each argument, and the results are interspersed with the corresponding arithmetic symbol, e.g. <span class="ltx_text ltx_lst_language_C ltx_lstlisting ltx_font_typewriter" id="S3.SS1.p3.2.9" style="font-size:90%;">+</span>, in C. We have generally erred on the side of over-generating parentheses in the resulting C code, in order to guarantee that the order of operations remains identical between the C and Racket versions of mathematical expressions. Conditional expressions in Racket are either converted into the corresponding ternary operators in C:</p> </div> <div class="ltx_para" id="S3.SS1.p4"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS1.p4.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KG1hdGNoIGV4cHIKICBbYChjb25kCiAgICAgIFssY29uZDEgLGV4cHIxXQogICAgICBbZWxzZSAsZXhwcjJdKQogICAgKGZvcm1hdCAiKH5hKSA/IH5hIDogfmEiCiAgICAgIChjb252ZXJ0LWV4cHIgY29uZDEpCiAgICAgIChjb252ZXJ0LWV4cHIgZXhwcjEpCiAgICAgIChjb252ZXJ0LWV4cHIgZXhwcjIpKV0p">⬇</a></div> <div class="ltx_listingline" id="lstnumberx27"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx27.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx27.2" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx27.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx27.4" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx28"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx28.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx28.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx28.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx28.4" style="font-size:90%;color:#0000FF;">cond</span> </div> <div class="ltx_listingline" id="lstnumberx29"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx29.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx29.2" style="font-size:90%;">[,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx29.3" style="font-size:90%;">cond1</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx29.4" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx29.5" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx29.6" style="font-size:90%;">expr1</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx29.7" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx30"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx30.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx30.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx30.3" style="font-size:90%;color:#0000FF;">else</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx30.4" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx30.5" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx30.6" style="font-size:90%;">expr2</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx30.7" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx30.8" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx31"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx31.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx31.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx31.3" style="font-size:90%;">format</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx31.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_string ltx_font_typewriter" id="lstnumberx31.5" style="font-size:90%;"><span class="ltx_text" id="lstnumberx31.5.1" style="color:#FF0000;">"(~a)<span class="ltx_text ltx_lst_space" id="lstnumberx31.5.1.1">␣</span>?<span class="ltx_text ltx_lst_space" id="lstnumberx31.5.1.2">␣</span>~a<span class="ltx_text ltx_lst_space" id="lstnumberx31.5.1.3">␣</span>:<span class="ltx_text ltx_lst_space" id="lstnumberx31.5.1.4">␣</span>~a"</span></span> </div> <div class="ltx_listingline" id="lstnumberx32"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx32.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx32.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx32.3" style="font-size:90%;">convert</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx32.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx32.5" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx32.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx32.7" style="font-size:90%;">cond1</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx32.8" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx33"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx33.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx33.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx33.3" style="font-size:90%;">convert</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx33.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx33.5" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx33.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx33.7" style="font-size:90%;">expr1</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx33.8" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx34"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx34.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx34.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx34.3" style="font-size:90%;">convert</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx34.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx34.5" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx34.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx34.7" style="font-size:90%;">expr2</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx34.8" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx34.9" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx34.10" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx34.11" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS1.p4.2">or are converted directly into <span class="ltx_text ltx_lst_keyword ltx_lst_language_C ltx_lstlisting ltx_font_typewriter" id="S3.SS1.p4.2.1" style="font-size:90%;color:#0000FF;">if</span> statements. Finally, the strings generated by <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS1.p4.2.2"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS1.p4.2.2.1" style="font-size:90%;">convert</span><span class="ltx_text ltx_font_typewriter" id="S3.SS1.p4.2.2.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS1.p4.2.2.2.1">expr</span></span></span> are spliced into a template for a generic finite volume solver using <span class="ltx_text ltx_lst_identifier ltx_lst_language_Scheme ltx_lstlisting ltx_font_typewriter" id="S3.SS1.p4.2.3" style="font-size:90%;">format</span>. Appropriate templates exist for both entirely standalone solvers, and for bespoke solver modules that can be integrated into the larger <span class="ltx_text ltx_font_smallcaps" id="S3.SS1.p4.2.4">Gkeyll</span> code.</p> </div> </section> <section class="ltx_subsection" id="S3.SS2"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">3.2. </span>Symbolic Theorem-Proving</h3> <div class="ltx_para" id="S3.SS2.p1"> <p class="ltx_p" id="S3.SS2.p1.1">At its core, our automated theorem-proving framework is based upon a <span class="ltx_text ltx_font_italic" id="S3.SS2.p1.1.1">symbolic simplification algorithm</span>, which aims to reduce every symbolic Racket expression to some canonical algebraic form. Although such simplification algorithms are standard in computer algebra, our particular application makes this task non-trivial in two respects. First, we wish for our simplification algorithm to be based on a <span class="ltx_text ltx_font_italic" id="S3.SS2.p1.1.2">globally confluent<cite class="ltx_cite ltx_citemacro_citep"><span class="ltx_text ltx_font_upright" id="S3.SS2.p1.1.2.1.1">(</span>Robinson and Voronkov<span class="ltx_text ltx_font_upright" id="S3.SS2.p1.1.2.2.2.1.1">, </span><a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib27" title="">2001</a><span class="ltx_text ltx_font_upright" id="S3.SS2.p1.1.2.3.3">)</span></cite></span> and <span class="ltx_text ltx_font_italic" id="S3.SS2.p1.1.3">strongly normalizing<cite class="ltx_cite ltx_citemacro_citep"><span class="ltx_text ltx_font_upright" id="S3.SS2.p1.1.3.1.1">(</span>Baader and Nipkow<span class="ltx_text ltx_font_upright" id="S3.SS2.p1.1.3.2.2.1.1">, </span><a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib3" title="">1999</a><span class="ltx_text ltx_font_upright" id="S3.SS2.p1.1.3.3.3">)</span></cite></span> underlying rewriting system, since such rewriting systems exhibit highly desirable correctness and termination properties for the type of algebraic/equational theorem-proving with which we are concerned. This places certain restrictions on the kinds of rewriting rules that we are able to include, since many algebraically correct transformations, such as those corresponding to commutativity of addition or multiplication:</p> </div> <div class="ltx_para" id="S3.SS2.p2"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS2.p2.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KG1hdGNoIGV4cHIKICBbYCgrICx4ICx5KSAoKyAseSAseCldCiAgW2AoKiAseCAseSkgKCogLHkgLHgpXSk=">⬇</a></div> <div class="ltx_listingline" id="lstnumberx35"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx35.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx35.2" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx35.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx35.4" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx36"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx36.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx36.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx36.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx36.4" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx36.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx36.6" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx36.7" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx36.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx36.9" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx36.10" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx36.11" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx36.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx36.13" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx36.14" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx36.15" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx36.16" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx36.17" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx36.18" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx36.19" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx36.20" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx36.21" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx36.22" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx37"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx37.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx37.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx37.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx37.4" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx37.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx37.6" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx37.7" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx37.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx37.9" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx37.10" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx37.11" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx37.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx37.13" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx37.14" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx37.15" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx37.16" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx37.17" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx37.18" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx37.19" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx37.20" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx37.21" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx37.22" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx37.23" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS2.p2.2">cannot be safely included without risking breaking the strong normalization property of the rewriting system (and hence termination of the theorem-prover). Second, since the variables over which we are reasoning typically represent floating-point numbers, and specifically <span class="ltx_text ltx_lst_keyword ltx_lst_language_C ltx_lstlisting ltx_font_typewriter" id="S3.SS2.p2.2.1" style="font-size:90%;color:#0000FF;">double</span>s in C, many standard algebraic rules, such as associativity of addition or multiplication:</p> </div> <div class="ltx_para" id="S3.SS2.p3"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS2.p3.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KG1hdGNoIGV4cHIKICBbYCgrICx4ICgrICx5LCB6KSkgYCgrICgrICx4ICx5KSAseildCiAgW2AoKiAseCAoKiAseSAseikpIGAoKiAoKiAseCAseSkgLHopXSk=">⬇</a></div> <div class="ltx_listingline" id="lstnumberx38"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx38.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx38.2" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx38.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx38.4" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx39"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx39.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx39.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx39.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx39.4" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx39.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx39.6" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx39.7" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx39.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx39.9" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx39.10" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx39.11" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx39.12" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx39.13" style="font-size:90%;">y</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx39.14" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx39.15" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx39.16" style="font-size:90%;">z</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx39.17" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx39.18" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx39.19" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx39.20" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx39.21" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx39.22" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx39.23" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx39.24" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx39.25" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx39.26" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx39.27" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx39.28" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx39.29" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx39.30" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx39.31" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx39.32" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx39.33" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx39.34" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx39.35" style="font-size:90%;">z</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx39.36" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx39.37" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx40"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx40.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx40.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx40.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx40.4" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx40.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx40.6" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx40.7" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx40.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx40.9" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx40.10" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx40.11" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx40.12" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx40.13" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx40.14" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx40.15" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx40.16" style="font-size:90%;">z</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx40.17" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx40.18" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx40.19" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx40.20" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx40.21" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx40.22" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx40.23" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx40.24" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx40.25" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx40.26" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx40.27" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx40.28" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx40.29" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx40.30" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx40.31" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx40.32" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx40.33" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx40.34" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx40.35" style="font-size:90%;">z</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx40.36" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx40.37" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx40.38" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS2.p3.2">cannot safely be assumed to hold (except in certain restricted cases) due to the accumulation of truncation errors. For instance, in floating-point arithmetic<cite class="ltx_cite ltx_citemacro_citep">(Goldberg, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib9" title="">1991</a>)</cite>:</p> </div> <div class="ltx_para" id="S3.SS2.p4"> <table class="ltx_equation ltx_eqn_table" id="S3.E39"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(39)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\left(10^{30}+-10^{30}\right)+1=1,\qquad\text{ yet }\qquad 10^{30}+\left(-10^{% 30}+1\right)=0." class="ltx_math_unparsed" display="block" id="S3.E39.m1.1"><semantics id="S3.E39.m1.1a"><mrow id="S3.E39.m1.1b"><mrow id="S3.E39.m1.1.1"><mo id="S3.E39.m1.1.1.1">(</mo><msup id="S3.E39.m1.1.1.2"><mn id="S3.E39.m1.1.1.2.2">10</mn><mn id="S3.E39.m1.1.1.2.3">30</mn></msup><mo id="S3.E39.m1.1.1.3" rspace="0em">+</mo><mo id="S3.E39.m1.1.1.4" lspace="0em">−</mo><msup id="S3.E39.m1.1.1.5"><mn id="S3.E39.m1.1.1.5.2">10</mn><mn id="S3.E39.m1.1.1.5.3">30</mn></msup><mo id="S3.E39.m1.1.1.6">)</mo></mrow><mo id="S3.E39.m1.1.2">+</mo><mn id="S3.E39.m1.1.3">1</mn><mo id="S3.E39.m1.1.4">=</mo><mn id="S3.E39.m1.1.5">1</mn><mo id="S3.E39.m1.1.6" rspace="2.167em">,</mo><mtext id="S3.E39.m1.1.7"> yet </mtext><mspace id="S3.E39.m1.1.8" width="2em"></mspace><msup id="S3.E39.m1.1.9"><mn id="S3.E39.m1.1.9.2">10</mn><mn id="S3.E39.m1.1.9.3">30</mn></msup><mo id="S3.E39.m1.1.10">+</mo><mrow id="S3.E39.m1.1.11"><mo id="S3.E39.m1.1.11.1">(</mo><mo id="S3.E39.m1.1.11.2" lspace="0em">−</mo><msup id="S3.E39.m1.1.11.3"><mn id="S3.E39.m1.1.11.3.2">10</mn><mn id="S3.E39.m1.1.11.3.3">30</mn></msup><mo id="S3.E39.m1.1.11.4">+</mo><mn id="S3.E39.m1.1.11.5">1</mn><mo id="S3.E39.m1.1.11.6">)</mo></mrow><mo id="S3.E39.m1.1.12">=</mo><mn id="S3.E39.m1.1.13">0</mn><mo id="S3.E39.m1.1.14" lspace="0em">.</mo></mrow><annotation encoding="application/x-tex" id="S3.E39.m1.1c">\left(10^{30}+-10^{30}\right)+1=1,\qquad\text{ yet }\qquad 10^{30}+\left(-10^{% 30}+1\right)=0.</annotation><annotation encoding="application/x-llamapun" id="S3.E39.m1.1d">( 10 start_POSTSUPERSCRIPT 30 end_POSTSUPERSCRIPT + - 10 start_POSTSUPERSCRIPT 30 end_POSTSUPERSCRIPT ) + 1 = 1 , yet 10 start_POSTSUPERSCRIPT 30 end_POSTSUPERSCRIPT + ( - 10 start_POSTSUPERSCRIPT 30 end_POSTSUPERSCRIPT + 1 ) = 0 .</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S3.SS2.p4.1">To this end, we have tried wherever possible to admit only to those algebraic transformations that are permitted under the IEEE 754 standard for floating-point arithmetic<cite class="ltx_cite ltx_citemacro_citep">(IEEE Computer Society et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib17" title="">2008</a>)</cite>.</p> </div> <div class="ltx_para" id="S3.SS2.p5"> <p class="ltx_p" id="S3.SS2.p5.1">The particular collection of algebraic rewriting rules used within our theorem-prover is somewhat complex and ad hoc, so we shall only summarize the salient elements here. The basic structure consists of a recursively-defined <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS2.p5.1.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS2.p5.1.1.1" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="S3.SS2.p5.1.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS2.p5.1.1.2.1">simp</span>-<span class="ltx_text ltx_lst_identifier" id="S3.SS2.p5.1.1.2.2">rule</span></span></span> function of the form:</p> </div> <div class="ltx_para" id="S3.SS2.p6"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS2.p6.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KGRlZmluZSAoc3ltYm9saWMtc2ltcC1ydWxlIGV4cHIpCiAgKG1hdGNoIGV4cHIKICAgIFtgKCsgMCAseCkgYCx4XQogICAgW2AoKiAxICx4KSBgLHhdCiAgICBbYCgqIDAgLHgpIDBdCiAgICAuLi4KICAgIFtgKCsgLiAsdGVybXMpCiAgICAgIGAoKyAsQChtYXAgKGxhbWJkYSAodGVybSkKICAgICAgICAoc3ltYm9saWMtc2ltcC1ydWxlIHRlcm0pKSB0ZXJtcykpXQogICAgLi4uCiAgICBbZWxzZSBleHByXSkp">⬇</a></div> <div class="ltx_listingline" id="lstnumberx41"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx41.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx41.2" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx41.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx41.4" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx41.5" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx41.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx41.7" style="font-size:90%;">simp</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx41.8" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx41.9" style="font-size:90%;">rule</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx41.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx41.11" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx41.12" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx42"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx42.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx42.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx42.3" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx42.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx42.5" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx43"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx43.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx43.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx43.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx43.4" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx43.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx43.6" style="font-size:90%;">0</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx43.7" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx43.8" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx43.9" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx43.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx43.11" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx43.12" style="font-size:90%;">‘,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx43.13" style="font-size:90%;">x</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx43.14" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx44"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx44.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx44.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx44.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx44.4" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx44.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx44.6" style="font-size:90%;">1</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx44.7" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx44.8" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx44.9" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx44.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx44.11" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx44.12" style="font-size:90%;">‘,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx44.13" style="font-size:90%;">x</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx44.14" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx45"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx45.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx45.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx45.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx45.4" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx45.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx45.6" style="font-size:90%;">0</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx45.7" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx45.8" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx45.9" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx45.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx45.11" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx45.12" style="font-size:90%;">0]</span> </div> <div class="ltx_listingline" id="lstnumberx46"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx46.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx46.2" style="font-size:90%;">...</span> </div> <div class="ltx_listingline" id="lstnumberx47"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx47.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx47.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx47.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx47.4" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx47.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx47.6" style="font-size:90%;">.</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx47.7" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx47.8" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx47.9" style="font-size:90%;">terms</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx47.10" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx48"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx48.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx48.2" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx48.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx48.4" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx48.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx48.6" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx48.7" style="font-size:90%;">@</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx48.8" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx48.9" style="font-size:90%;color:#0000FF;">map</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx48.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx48.11" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keyword ltx_font_typewriter" id="lstnumberx48.12" style="font-size:90%;color:#0000FF;">lambda</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx48.13" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx48.14" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx48.15" style="font-size:90%;">term</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx48.16" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx49"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx49.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx49.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx49.3" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx49.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx49.5" style="font-size:90%;">simp</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx49.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx49.7" style="font-size:90%;">rule</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx49.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx49.9" style="font-size:90%;">term</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx49.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx49.11" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx49.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx49.13" style="font-size:90%;">terms</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx49.14" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx49.15" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx49.16" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx50"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx50.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx50.2" style="font-size:90%;">...</span> </div> <div class="ltx_listingline" id="lstnumberx51"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx51.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx51.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx51.3" style="font-size:90%;color:#0000FF;">else</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx51.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx51.5" style="font-size:90%;">expr</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx51.6" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx51.7" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx51.8" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS2.p6.2">The first few rules shown above are examples of elementary algebraic properties<cite class="ltx_cite ltx_citemacro_citep">(Bläsius and Bürckert, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib4" title="">1992</a>)</cite>, such as the existence of 0 as a (left) additive identity, the existence of 1 as a (left) multiplicative identity, the existence of 0 as a (left) annihilator for multiplication, etc. The next rule is an example of how <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS2.p6.2.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS2.p6.2.1.1" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="S3.SS2.p6.2.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS2.p6.2.1.2.1">simp</span>-<span class="ltx_text ltx_lst_identifier" id="S3.SS2.p6.2.1.2.2">rule</span></span></span> is mapped over each term within an elementary arithmetic operation such as <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS2.p6.2.2"><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS2.p6.2.2.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="S3.SS2.p6.2.2.2" style="font-size:90%;">+<span class="ltx_text ltx_lst_space" id="S3.SS2.p6.2.2.2.1"> </span><span class="ltx_text ltx_lst_identifier" id="S3.SS2.p6.2.2.2.2">arg1</span><span class="ltx_text ltx_lst_space" id="S3.SS2.p6.2.2.2.3"> </span><span class="ltx_text ltx_lst_identifier" id="S3.SS2.p6.2.2.2.4">arg2</span><span class="ltx_text ltx_lst_space" id="S3.SS2.p6.2.2.2.5"> </span>...<span class="ltx_text ltx_lst_literate" id="S3.SS2.p6.2.2.2.6" style="color:#999999;">)</span></span></span> (similar mappings are performed for operations such as <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS2.p6.2.3"><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS2.p6.2.3.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS2.p6.2.3.2" style="font-size:90%;">abs</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="S3.SS2.p6.2.3.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS2.p6.2.3.4" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS2.p6.2.3.5" style="font-size:90%;color:#999999;">)</span></span> or <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS2.p6.2.4"><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS2.p6.2.4.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS2.p6.2.4.2" style="font-size:90%;">max</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="S3.SS2.p6.2.4.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS2.p6.2.4.4" style="font-size:90%;">arg1</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="S3.SS2.p6.2.4.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS2.p6.2.4.6" style="font-size:90%;">arg2</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS2.p6.2.4.7" style="font-size:90%;color:#999999;">)</span></span>, with each subexpression being recursively simplified). Finally, if none of the rewriting rules match the expression, then the expression has reached a normal form and is returned verbatim. The symbolic simplifier itself then consists of a single function <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS2.p6.2.5"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS2.p6.2.5.1" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="S3.SS2.p6.2.5.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS2.p6.2.5.2.1">simp</span></span></span> which recursively calls <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS2.p6.2.6"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS2.p6.2.6.1" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="S3.SS2.p6.2.6.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS2.p6.2.6.2.1">simp</span>-<span class="ltx_text ltx_lst_identifier" id="S3.SS2.p6.2.6.2.2">rule</span></span></span> until a fixed point is achieved (i.e. until the expression stops changing):</p> </div> <div class="ltx_para" id="S3.SS2.p7"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS2.p7.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KGRlZmluZSAoc3ltYm9saWMtc2ltcCBleHByKQogIChkZWZpbmUgc2ltcC1leHByIChzeW1ib2xpYy1zaW1wLXJ1bGUgZXhwcikpCiAgKGNvbmQKICAgIFsoZXF1YWw/IHNpbXAtZXhwciBleHByKSBleHByXQogICAgW2Vsc2UgKHN5bWJvbGljLXNpbXAgc2ltcC1leHByKV0pKQ==">⬇</a></div> <div class="ltx_listingline" id="lstnumberx52"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx52.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx52.2" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx52.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx52.4" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx52.5" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx52.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx52.7" style="font-size:90%;">simp</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx52.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx52.9" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx52.10" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx53"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx53.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx53.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx53.3" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx53.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx53.5" style="font-size:90%;">simp</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx53.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx53.7" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx53.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx53.9" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx53.10" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx53.11" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx53.12" style="font-size:90%;">simp</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx53.13" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx53.14" style="font-size:90%;">rule</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx53.15" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx53.16" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx53.17" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx53.18" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx54"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx54.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx54.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx54.3" style="font-size:90%;color:#0000FF;">cond</span> </div> <div class="ltx_listingline" id="lstnumberx55"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx55.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx55.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx55.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx55.4" style="font-size:90%;">equal</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx55.5" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx55.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx55.7" style="font-size:90%;">simp</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx55.8" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx55.9" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx55.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx55.11" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx55.12" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx55.13" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx55.14" style="font-size:90%;">expr</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx55.15" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx56"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx56.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx56.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx56.3" style="font-size:90%;color:#0000FF;">else</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx56.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx56.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx56.6" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx56.7" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx56.8" style="font-size:90%;">simp</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx56.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx56.10" style="font-size:90%;">simp</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx56.11" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx56.12" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx56.13" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx56.14" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx56.15" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx56.16" style="font-size:90%;color:#999999;">)</span> </div> </div> </div> <div class="ltx_para" id="S3.SS2.p8"> <p class="ltx_p" id="S3.SS2.p8.1">In order to facilitate the reduction of all symbolic expressions to a canonical form, rewriting rules exist to move all numerical constants or coefficients to the left of non-numerical expressions within sums or products:</p> </div> <div class="ltx_para" id="S3.SS2.p9"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS2.p9.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KG1hdGNoIGV4cHIKICBbYCgrICwoYW5kIHggKG5vdCAoPyBudW1iZXI/KSkpCiAgICAgICwoYW5kIHkgKD8gbnVtYmVyPykpKQogICAgYCgrICx5ICx4KV0KICBbYCgqICwoYW5kIHggKG5vdCAoPyBudW1iZXI/KSkpCiAgICAgICwoYW5kIHkgKD8gbnVtYmVyPykpKQogICAgYCgqICx5ICx4KV0p">⬇</a></div> <div class="ltx_listingline" id="lstnumberx57"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx57.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx57.2" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx57.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx57.4" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx58"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx58.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx58.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx58.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx58.4" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx58.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx58.6" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx58.7" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx58.8" style="font-size:90%;color:#0000FF;">and</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx58.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx58.10" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx58.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx58.12" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx58.13" style="font-size:90%;">not</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx58.14" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx58.15" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx58.16" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx58.17" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx58.18" style="font-size:90%;">number</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx58.19" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx58.20" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx58.21" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx58.22" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx59"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx59.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx59.2" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx59.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx59.4" style="font-size:90%;color:#0000FF;">and</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx59.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx59.6" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx59.7" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx59.8" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx59.9" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx59.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx59.11" style="font-size:90%;">number</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx59.12" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx59.13" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx59.14" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx59.15" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx60"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx60.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx60.2" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx60.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx60.4" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx60.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx60.6" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx60.7" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx60.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx60.9" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx60.10" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx60.11" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx60.12" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx61"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx61.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx61.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx61.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx61.4" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx61.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx61.6" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx61.7" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx61.8" style="font-size:90%;color:#0000FF;">and</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx61.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx61.10" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx61.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx61.12" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx61.13" style="font-size:90%;">not</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx61.14" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx61.15" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx61.16" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx61.17" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx61.18" style="font-size:90%;">number</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx61.19" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx61.20" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx61.21" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx61.22" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx62"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx62.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx62.2" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx62.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx62.4" style="font-size:90%;color:#0000FF;">and</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx62.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx62.6" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx62.7" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx62.8" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx62.9" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx62.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx62.11" style="font-size:90%;">number</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx62.12" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx62.13" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx62.14" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx62.15" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx63"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx63.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx63.2" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx63.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx63.4" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx63.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx63.6" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx63.7" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx63.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx63.9" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx63.10" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx63.11" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx63.12" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx63.13" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS2.p9.2">to collect “like” terms together within sums and differences (via the distributive property):</p> </div> <div class="ltx_para" id="S3.SS2.p10"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS2.p10.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KG1hdGNoIGV4cHIKICBbYCgrICgqICxhICx4KSAoKiAsYiAseCkpIGAoKiAoKyAsYSAsYikgLHgpXQogIFtgKC0gKCogLGEgLHgpICgqICxiICx4KSkgYCgqICgtICxhICxiKSAseCldKQ==">⬇</a></div> <div class="ltx_listingline" id="lstnumberx64"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx64.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx64.2" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx64.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx64.4" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx65"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx65.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx65.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx65.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx65.4" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx65.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx65.6" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx65.7" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx65.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx65.9" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx65.10" style="font-size:90%;">a</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx65.11" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx65.12" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx65.13" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx65.14" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx65.15" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx65.16" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx65.17" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx65.18" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx65.19" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx65.20" style="font-size:90%;">b</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx65.21" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx65.22" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx65.23" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx65.24" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx65.25" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx65.26" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx65.27" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx65.28" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx65.29" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx65.30" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx65.31" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx65.32" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx65.33" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx65.34" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx65.35" style="font-size:90%;">a</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx65.36" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx65.37" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx65.38" style="font-size:90%;">b</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx65.39" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx65.40" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx65.41" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx65.42" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx65.43" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx65.44" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx66"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx66.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx66.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx66.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx66.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx66.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx66.6" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx66.7" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx66.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx66.9" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx66.10" style="font-size:90%;">a</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx66.11" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx66.12" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx66.13" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx66.14" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx66.15" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx66.16" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx66.17" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx66.18" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx66.19" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx66.20" style="font-size:90%;">b</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx66.21" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx66.22" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx66.23" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx66.24" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx66.25" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx66.26" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx66.27" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx66.28" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx66.29" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx66.30" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx66.31" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx66.32" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx66.33" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx66.34" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx66.35" style="font-size:90%;">a</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx66.36" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx66.37" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx66.38" style="font-size:90%;">b</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx66.39" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx66.40" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx66.41" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx66.42" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx66.43" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx66.44" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx66.45" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS2.p10.2">and to evaluate any arithmetic expressions or operations involving purely numerical values directly:</p> </div> <div class="ltx_para" id="S3.SS2.p11"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS2.p11.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KG1hdGNoIGV4cHIKICBbYCgrICwoYW5kIHggKD8gbnVtYmVyPykpCiAgICAsKGFuZCB5ICg/IG51bWJlcj8pKSkgKCsgeCB5KV0KICAuLi4KICBbYChzcXJ0ICwoYW5kIHggKD8gbnVtYmVyPykpKSAoc3FydCB4KV0KICAuLi4p">⬇</a></div> <div class="ltx_listingline" id="lstnumberx67"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx67.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx67.2" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx67.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx67.4" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx68"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx68.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx68.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx68.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx68.4" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx68.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx68.6" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx68.7" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx68.8" style="font-size:90%;color:#0000FF;">and</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx68.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx68.10" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx68.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx68.12" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx68.13" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx68.14" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx68.15" style="font-size:90%;">number</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx68.16" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx68.17" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx68.18" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx69"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx69.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx69.2" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx69.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx69.4" style="font-size:90%;color:#0000FF;">and</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx69.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx69.6" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx69.7" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx69.8" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx69.9" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx69.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx69.11" style="font-size:90%;">number</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx69.12" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx69.13" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx69.14" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx69.15" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx69.16" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx69.17" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx69.18" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx69.19" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx69.20" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx69.21" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx69.22" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx69.23" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx69.24" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx70"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx70.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx70.2" style="font-size:90%;">...</span> </div> <div class="ltx_listingline" id="lstnumberx71"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx71.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx71.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx71.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx71.4" style="font-size:90%;">sqrt</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx71.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx71.6" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx71.7" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx71.8" style="font-size:90%;color:#0000FF;">and</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx71.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx71.10" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx71.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx71.12" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx71.13" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx71.14" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx71.15" style="font-size:90%;">number</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx71.16" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx71.17" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx71.18" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx71.19" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx71.20" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx71.21" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx71.22" style="font-size:90%;">sqrt</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx71.23" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx71.24" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx71.25" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx71.26" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx72"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx72.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx72.2" style="font-size:90%;">...</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx72.3" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS2.p11.2">etc. A more complicated set of rules and heuristics exist regarding whether and when to expand brackets, factorize subexpressions, and so on. Algebraic rules are also defined for standard mathematical functions such as <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS2.p11.2.1"><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS2.p11.2.1.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS2.p11.2.1.2" style="font-size:90%;">sqrt</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="S3.SS2.p11.2.1.3" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="S3.SS2.p11.2.1.4" style="font-size:90%;">...<span class="ltx_text ltx_lst_literate" id="S3.SS2.p11.2.1.4.1" style="color:#999999;">)</span></span></span> or <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS2.p11.2.2"><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS2.p11.2.2.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS2.p11.2.2.2" style="font-size:90%;">abs</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="S3.SS2.p11.2.2.3" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="S3.SS2.p11.2.2.4" style="font-size:90%;">...<span class="ltx_text ltx_lst_literate" id="S3.SS2.p11.2.2.4.1" style="color:#999999;">)</span></span></span>, stating for instance that the square root of the square of a quantity, or the square of the square root of a quantity, is equal to the quantity itself:</p> </div> <div class="ltx_para" id="S3.SS2.p12"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS2.p12.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KG1hdGNoIGV4cHIKICBbYChzcXJ0ICgqICx4ICx4KSkgYCx4XQogIFtgKCogKHNxcnQgLHgpIChzcXJ0ICx4KSkgYCx4XSk=">⬇</a></div> <div class="ltx_listingline" id="lstnumberx73"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx73.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx73.2" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx73.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx73.4" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx74"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx74.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx74.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx74.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx74.4" style="font-size:90%;">sqrt</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx74.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx74.6" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx74.7" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx74.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx74.9" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx74.10" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx74.11" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx74.12" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx74.13" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx74.14" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx74.15" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx74.16" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx74.17" style="font-size:90%;">‘,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx74.18" style="font-size:90%;">x</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx74.19" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx75"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx75.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx75.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx75.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx75.4" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx75.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx75.6" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx75.7" style="font-size:90%;">sqrt</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx75.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx75.9" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx75.10" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx75.11" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx75.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx75.13" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx75.14" style="font-size:90%;">sqrt</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx75.15" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx75.16" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx75.17" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx75.18" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx75.19" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx75.20" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx75.21" style="font-size:90%;">‘,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx75.22" style="font-size:90%;">x</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx75.23" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx75.24" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS2.p12.2">or that the absolute value of the negation of a quantity is equal to the quantity itself:</p> </div> <div class="ltx_para" id="S3.SS2.p13"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS2.p13.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KG1hdGNoIGV4cHIKICBbYChhYnMgKCogLTEgLHgpKSBgKGFicyAseCldKQ==">⬇</a></div> <div class="ltx_listingline" id="lstnumberx76"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx76.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx76.2" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx76.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx76.4" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx77"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx77.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx77.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx77.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx77.4" style="font-size:90%;">abs</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx77.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx77.6" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx77.7" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx77.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx77.9" style="font-size:90%;">-1</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx77.10" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx77.11" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx77.12" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx77.13" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx77.14" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx77.15" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx77.16" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx77.17" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx77.18" style="font-size:90%;">abs</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx77.19" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx77.20" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx77.21" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx77.22" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx77.23" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx77.24" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS2.p13.2">or that the <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS2.p13.2.1"><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS2.p13.2.1.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS2.p13.2.1.2" style="font-size:90%;">max</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="S3.SS2.p13.2.1.3" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="S3.SS2.p13.2.1.4" style="font-size:90%;">...<span class="ltx_text ltx_lst_literate" id="S3.SS2.p13.2.1.4.1" style="color:#999999;">)</span></span></span> and <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS2.p13.2.2"><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS2.p13.2.2.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS2.p13.2.2.2" style="font-size:90%;">min</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="S3.SS2.p13.2.2.3" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="S3.SS2.p13.2.2.4" style="font-size:90%;">...<span class="ltx_text ltx_lst_literate" id="S3.SS2.p13.2.2.4.1" style="color:#999999;">)</span></span></span> functions satisfy (at least in the binary case):</p> </div> <div class="ltx_para" id="S3.SS2.p14"> <table class="ltx_equation ltx_eqn_table" id="S3.E40"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(40)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\max\left(x,y\right)=\frac{1}{2}\left(x+y\right)+\frac{1}{2}\left\lvert x-y% \right\rvert," class="ltx_Math" display="block" id="S3.E40.m1.4"><semantics id="S3.E40.m1.4a"><mrow id="S3.E40.m1.4.4.1" xref="S3.E40.m1.4.4.1.1.cmml"><mrow id="S3.E40.m1.4.4.1.1" xref="S3.E40.m1.4.4.1.1.cmml"><mrow id="S3.E40.m1.4.4.1.1.4.2" xref="S3.E40.m1.4.4.1.1.4.1.cmml"><mi id="S3.E40.m1.1.1" xref="S3.E40.m1.1.1.cmml">max</mi><mo id="S3.E40.m1.4.4.1.1.4.2a" xref="S3.E40.m1.4.4.1.1.4.1.cmml"></mo><mrow id="S3.E40.m1.4.4.1.1.4.2.1" xref="S3.E40.m1.4.4.1.1.4.1.cmml"><mo id="S3.E40.m1.4.4.1.1.4.2.1.1" xref="S3.E40.m1.4.4.1.1.4.1.cmml">(</mo><mi id="S3.E40.m1.2.2" xref="S3.E40.m1.2.2.cmml">x</mi><mo id="S3.E40.m1.4.4.1.1.4.2.1.2" xref="S3.E40.m1.4.4.1.1.4.1.cmml">,</mo><mi id="S3.E40.m1.3.3" xref="S3.E40.m1.3.3.cmml">y</mi><mo id="S3.E40.m1.4.4.1.1.4.2.1.3" xref="S3.E40.m1.4.4.1.1.4.1.cmml">)</mo></mrow></mrow><mo id="S3.E40.m1.4.4.1.1.3" xref="S3.E40.m1.4.4.1.1.3.cmml">=</mo><mrow id="S3.E40.m1.4.4.1.1.2" xref="S3.E40.m1.4.4.1.1.2.cmml"><mrow id="S3.E40.m1.4.4.1.1.1.1" xref="S3.E40.m1.4.4.1.1.1.1.cmml"><mfrac id="S3.E40.m1.4.4.1.1.1.1.3" xref="S3.E40.m1.4.4.1.1.1.1.3.cmml"><mn id="S3.E40.m1.4.4.1.1.1.1.3.2" xref="S3.E40.m1.4.4.1.1.1.1.3.2.cmml">1</mn><mn id="S3.E40.m1.4.4.1.1.1.1.3.3" xref="S3.E40.m1.4.4.1.1.1.1.3.3.cmml">2</mn></mfrac><mo id="S3.E40.m1.4.4.1.1.1.1.2" xref="S3.E40.m1.4.4.1.1.1.1.2.cmml"></mo><mrow id="S3.E40.m1.4.4.1.1.1.1.1.1" xref="S3.E40.m1.4.4.1.1.1.1.1.1.1.cmml"><mo id="S3.E40.m1.4.4.1.1.1.1.1.1.2" xref="S3.E40.m1.4.4.1.1.1.1.1.1.1.cmml">(</mo><mrow id="S3.E40.m1.4.4.1.1.1.1.1.1.1" xref="S3.E40.m1.4.4.1.1.1.1.1.1.1.cmml"><mi id="S3.E40.m1.4.4.1.1.1.1.1.1.1.2" xref="S3.E40.m1.4.4.1.1.1.1.1.1.1.2.cmml">x</mi><mo id="S3.E40.m1.4.4.1.1.1.1.1.1.1.1" xref="S3.E40.m1.4.4.1.1.1.1.1.1.1.1.cmml">+</mo><mi id="S3.E40.m1.4.4.1.1.1.1.1.1.1.3" xref="S3.E40.m1.4.4.1.1.1.1.1.1.1.3.cmml">y</mi></mrow><mo id="S3.E40.m1.4.4.1.1.1.1.1.1.3" xref="S3.E40.m1.4.4.1.1.1.1.1.1.1.cmml">)</mo></mrow></mrow><mo id="S3.E40.m1.4.4.1.1.2.3" xref="S3.E40.m1.4.4.1.1.2.3.cmml">+</mo><mrow id="S3.E40.m1.4.4.1.1.2.2" xref="S3.E40.m1.4.4.1.1.2.2.cmml"><mfrac id="S3.E40.m1.4.4.1.1.2.2.3" xref="S3.E40.m1.4.4.1.1.2.2.3.cmml"><mn id="S3.E40.m1.4.4.1.1.2.2.3.2" xref="S3.E40.m1.4.4.1.1.2.2.3.2.cmml">1</mn><mn id="S3.E40.m1.4.4.1.1.2.2.3.3" xref="S3.E40.m1.4.4.1.1.2.2.3.3.cmml">2</mn></mfrac><mo id="S3.E40.m1.4.4.1.1.2.2.2" xref="S3.E40.m1.4.4.1.1.2.2.2.cmml"></mo><mrow id="S3.E40.m1.4.4.1.1.2.2.1.1" xref="S3.E40.m1.4.4.1.1.2.2.1.2.cmml"><mo id="S3.E40.m1.4.4.1.1.2.2.1.1.2" xref="S3.E40.m1.4.4.1.1.2.2.1.2.1.cmml">|</mo><mrow id="S3.E40.m1.4.4.1.1.2.2.1.1.1" xref="S3.E40.m1.4.4.1.1.2.2.1.1.1.cmml"><mi id="S3.E40.m1.4.4.1.1.2.2.1.1.1.2" xref="S3.E40.m1.4.4.1.1.2.2.1.1.1.2.cmml">x</mi><mo id="S3.E40.m1.4.4.1.1.2.2.1.1.1.1" xref="S3.E40.m1.4.4.1.1.2.2.1.1.1.1.cmml">−</mo><mi id="S3.E40.m1.4.4.1.1.2.2.1.1.1.3" xref="S3.E40.m1.4.4.1.1.2.2.1.1.1.3.cmml">y</mi></mrow><mo id="S3.E40.m1.4.4.1.1.2.2.1.1.3" xref="S3.E40.m1.4.4.1.1.2.2.1.2.1.cmml">|</mo></mrow></mrow></mrow></mrow><mo id="S3.E40.m1.4.4.1.2" xref="S3.E40.m1.4.4.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S3.E40.m1.4b"><apply id="S3.E40.m1.4.4.1.1.cmml" xref="S3.E40.m1.4.4.1"><eq id="S3.E40.m1.4.4.1.1.3.cmml" xref="S3.E40.m1.4.4.1.1.3"></eq><apply id="S3.E40.m1.4.4.1.1.4.1.cmml" xref="S3.E40.m1.4.4.1.1.4.2"><max id="S3.E40.m1.1.1.cmml" xref="S3.E40.m1.1.1"></max><ci id="S3.E40.m1.2.2.cmml" xref="S3.E40.m1.2.2">𝑥</ci><ci id="S3.E40.m1.3.3.cmml" xref="S3.E40.m1.3.3">𝑦</ci></apply><apply id="S3.E40.m1.4.4.1.1.2.cmml" xref="S3.E40.m1.4.4.1.1.2"><plus id="S3.E40.m1.4.4.1.1.2.3.cmml" xref="S3.E40.m1.4.4.1.1.2.3"></plus><apply id="S3.E40.m1.4.4.1.1.1.1.cmml" xref="S3.E40.m1.4.4.1.1.1.1"><times id="S3.E40.m1.4.4.1.1.1.1.2.cmml" xref="S3.E40.m1.4.4.1.1.1.1.2"></times><apply id="S3.E40.m1.4.4.1.1.1.1.3.cmml" xref="S3.E40.m1.4.4.1.1.1.1.3"><divide id="S3.E40.m1.4.4.1.1.1.1.3.1.cmml" xref="S3.E40.m1.4.4.1.1.1.1.3"></divide><cn id="S3.E40.m1.4.4.1.1.1.1.3.2.cmml" type="integer" xref="S3.E40.m1.4.4.1.1.1.1.3.2">1</cn><cn id="S3.E40.m1.4.4.1.1.1.1.3.3.cmml" type="integer" xref="S3.E40.m1.4.4.1.1.1.1.3.3">2</cn></apply><apply id="S3.E40.m1.4.4.1.1.1.1.1.1.1.cmml" xref="S3.E40.m1.4.4.1.1.1.1.1.1"><plus id="S3.E40.m1.4.4.1.1.1.1.1.1.1.1.cmml" xref="S3.E40.m1.4.4.1.1.1.1.1.1.1.1"></plus><ci id="S3.E40.m1.4.4.1.1.1.1.1.1.1.2.cmml" xref="S3.E40.m1.4.4.1.1.1.1.1.1.1.2">𝑥</ci><ci id="S3.E40.m1.4.4.1.1.1.1.1.1.1.3.cmml" xref="S3.E40.m1.4.4.1.1.1.1.1.1.1.3">𝑦</ci></apply></apply><apply id="S3.E40.m1.4.4.1.1.2.2.cmml" xref="S3.E40.m1.4.4.1.1.2.2"><times id="S3.E40.m1.4.4.1.1.2.2.2.cmml" xref="S3.E40.m1.4.4.1.1.2.2.2"></times><apply id="S3.E40.m1.4.4.1.1.2.2.3.cmml" xref="S3.E40.m1.4.4.1.1.2.2.3"><divide id="S3.E40.m1.4.4.1.1.2.2.3.1.cmml" xref="S3.E40.m1.4.4.1.1.2.2.3"></divide><cn id="S3.E40.m1.4.4.1.1.2.2.3.2.cmml" type="integer" xref="S3.E40.m1.4.4.1.1.2.2.3.2">1</cn><cn id="S3.E40.m1.4.4.1.1.2.2.3.3.cmml" type="integer" xref="S3.E40.m1.4.4.1.1.2.2.3.3">2</cn></apply><apply id="S3.E40.m1.4.4.1.1.2.2.1.2.cmml" xref="S3.E40.m1.4.4.1.1.2.2.1.1"><abs id="S3.E40.m1.4.4.1.1.2.2.1.2.1.cmml" xref="S3.E40.m1.4.4.1.1.2.2.1.1.2"></abs><apply id="S3.E40.m1.4.4.1.1.2.2.1.1.1.cmml" xref="S3.E40.m1.4.4.1.1.2.2.1.1.1"><minus id="S3.E40.m1.4.4.1.1.2.2.1.1.1.1.cmml" xref="S3.E40.m1.4.4.1.1.2.2.1.1.1.1"></minus><ci id="S3.E40.m1.4.4.1.1.2.2.1.1.1.2.cmml" xref="S3.E40.m1.4.4.1.1.2.2.1.1.1.2">𝑥</ci><ci id="S3.E40.m1.4.4.1.1.2.2.1.1.1.3.cmml" xref="S3.E40.m1.4.4.1.1.2.2.1.1.1.3">𝑦</ci></apply></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.E40.m1.4c">\max\left(x,y\right)=\frac{1}{2}\left(x+y\right)+\frac{1}{2}\left\lvert x-y% \right\rvert,</annotation><annotation encoding="application/x-llamapun" id="S3.E40.m1.4d">roman_max ( italic_x , italic_y ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_x + italic_y ) + divide start_ARG 1 end_ARG start_ARG 2 end_ARG | italic_x - italic_y | ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S3.SS2.p14.1">and:</p> </div> <div class="ltx_para" id="S3.SS2.p15"> <table class="ltx_equation ltx_eqn_table" id="S3.E41"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(41)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\min\left(x,y\right)=\frac{1}{2}\left(x+y\right)-\frac{1}{2}\left\lvert x-y% \right\rvert," class="ltx_Math" display="block" id="S3.E41.m1.4"><semantics id="S3.E41.m1.4a"><mrow id="S3.E41.m1.4.4.1" xref="S3.E41.m1.4.4.1.1.cmml"><mrow id="S3.E41.m1.4.4.1.1" xref="S3.E41.m1.4.4.1.1.cmml"><mrow id="S3.E41.m1.4.4.1.1.4.2" xref="S3.E41.m1.4.4.1.1.4.1.cmml"><mi id="S3.E41.m1.1.1" xref="S3.E41.m1.1.1.cmml">min</mi><mo id="S3.E41.m1.4.4.1.1.4.2a" xref="S3.E41.m1.4.4.1.1.4.1.cmml"></mo><mrow id="S3.E41.m1.4.4.1.1.4.2.1" xref="S3.E41.m1.4.4.1.1.4.1.cmml"><mo id="S3.E41.m1.4.4.1.1.4.2.1.1" xref="S3.E41.m1.4.4.1.1.4.1.cmml">(</mo><mi id="S3.E41.m1.2.2" xref="S3.E41.m1.2.2.cmml">x</mi><mo id="S3.E41.m1.4.4.1.1.4.2.1.2" xref="S3.E41.m1.4.4.1.1.4.1.cmml">,</mo><mi id="S3.E41.m1.3.3" xref="S3.E41.m1.3.3.cmml">y</mi><mo id="S3.E41.m1.4.4.1.1.4.2.1.3" xref="S3.E41.m1.4.4.1.1.4.1.cmml">)</mo></mrow></mrow><mo id="S3.E41.m1.4.4.1.1.3" xref="S3.E41.m1.4.4.1.1.3.cmml">=</mo><mrow id="S3.E41.m1.4.4.1.1.2" xref="S3.E41.m1.4.4.1.1.2.cmml"><mrow id="S3.E41.m1.4.4.1.1.1.1" xref="S3.E41.m1.4.4.1.1.1.1.cmml"><mfrac id="S3.E41.m1.4.4.1.1.1.1.3" xref="S3.E41.m1.4.4.1.1.1.1.3.cmml"><mn id="S3.E41.m1.4.4.1.1.1.1.3.2" xref="S3.E41.m1.4.4.1.1.1.1.3.2.cmml">1</mn><mn id="S3.E41.m1.4.4.1.1.1.1.3.3" xref="S3.E41.m1.4.4.1.1.1.1.3.3.cmml">2</mn></mfrac><mo id="S3.E41.m1.4.4.1.1.1.1.2" xref="S3.E41.m1.4.4.1.1.1.1.2.cmml"></mo><mrow id="S3.E41.m1.4.4.1.1.1.1.1.1" xref="S3.E41.m1.4.4.1.1.1.1.1.1.1.cmml"><mo id="S3.E41.m1.4.4.1.1.1.1.1.1.2" xref="S3.E41.m1.4.4.1.1.1.1.1.1.1.cmml">(</mo><mrow id="S3.E41.m1.4.4.1.1.1.1.1.1.1" xref="S3.E41.m1.4.4.1.1.1.1.1.1.1.cmml"><mi id="S3.E41.m1.4.4.1.1.1.1.1.1.1.2" xref="S3.E41.m1.4.4.1.1.1.1.1.1.1.2.cmml">x</mi><mo id="S3.E41.m1.4.4.1.1.1.1.1.1.1.1" xref="S3.E41.m1.4.4.1.1.1.1.1.1.1.1.cmml">+</mo><mi id="S3.E41.m1.4.4.1.1.1.1.1.1.1.3" xref="S3.E41.m1.4.4.1.1.1.1.1.1.1.3.cmml">y</mi></mrow><mo id="S3.E41.m1.4.4.1.1.1.1.1.1.3" xref="S3.E41.m1.4.4.1.1.1.1.1.1.1.cmml">)</mo></mrow></mrow><mo id="S3.E41.m1.4.4.1.1.2.3" xref="S3.E41.m1.4.4.1.1.2.3.cmml">−</mo><mrow id="S3.E41.m1.4.4.1.1.2.2" xref="S3.E41.m1.4.4.1.1.2.2.cmml"><mfrac id="S3.E41.m1.4.4.1.1.2.2.3" xref="S3.E41.m1.4.4.1.1.2.2.3.cmml"><mn id="S3.E41.m1.4.4.1.1.2.2.3.2" xref="S3.E41.m1.4.4.1.1.2.2.3.2.cmml">1</mn><mn id="S3.E41.m1.4.4.1.1.2.2.3.3" xref="S3.E41.m1.4.4.1.1.2.2.3.3.cmml">2</mn></mfrac><mo id="S3.E41.m1.4.4.1.1.2.2.2" xref="S3.E41.m1.4.4.1.1.2.2.2.cmml"></mo><mrow id="S3.E41.m1.4.4.1.1.2.2.1.1" xref="S3.E41.m1.4.4.1.1.2.2.1.2.cmml"><mo id="S3.E41.m1.4.4.1.1.2.2.1.1.2" xref="S3.E41.m1.4.4.1.1.2.2.1.2.1.cmml">|</mo><mrow id="S3.E41.m1.4.4.1.1.2.2.1.1.1" xref="S3.E41.m1.4.4.1.1.2.2.1.1.1.cmml"><mi id="S3.E41.m1.4.4.1.1.2.2.1.1.1.2" xref="S3.E41.m1.4.4.1.1.2.2.1.1.1.2.cmml">x</mi><mo id="S3.E41.m1.4.4.1.1.2.2.1.1.1.1" xref="S3.E41.m1.4.4.1.1.2.2.1.1.1.1.cmml">−</mo><mi id="S3.E41.m1.4.4.1.1.2.2.1.1.1.3" xref="S3.E41.m1.4.4.1.1.2.2.1.1.1.3.cmml">y</mi></mrow><mo id="S3.E41.m1.4.4.1.1.2.2.1.1.3" xref="S3.E41.m1.4.4.1.1.2.2.1.2.1.cmml">|</mo></mrow></mrow></mrow></mrow><mo id="S3.E41.m1.4.4.1.2" xref="S3.E41.m1.4.4.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S3.E41.m1.4b"><apply id="S3.E41.m1.4.4.1.1.cmml" xref="S3.E41.m1.4.4.1"><eq id="S3.E41.m1.4.4.1.1.3.cmml" xref="S3.E41.m1.4.4.1.1.3"></eq><apply id="S3.E41.m1.4.4.1.1.4.1.cmml" xref="S3.E41.m1.4.4.1.1.4.2"><min id="S3.E41.m1.1.1.cmml" xref="S3.E41.m1.1.1"></min><ci id="S3.E41.m1.2.2.cmml" xref="S3.E41.m1.2.2">𝑥</ci><ci id="S3.E41.m1.3.3.cmml" xref="S3.E41.m1.3.3">𝑦</ci></apply><apply id="S3.E41.m1.4.4.1.1.2.cmml" xref="S3.E41.m1.4.4.1.1.2"><minus id="S3.E41.m1.4.4.1.1.2.3.cmml" xref="S3.E41.m1.4.4.1.1.2.3"></minus><apply id="S3.E41.m1.4.4.1.1.1.1.cmml" xref="S3.E41.m1.4.4.1.1.1.1"><times id="S3.E41.m1.4.4.1.1.1.1.2.cmml" xref="S3.E41.m1.4.4.1.1.1.1.2"></times><apply id="S3.E41.m1.4.4.1.1.1.1.3.cmml" xref="S3.E41.m1.4.4.1.1.1.1.3"><divide id="S3.E41.m1.4.4.1.1.1.1.3.1.cmml" xref="S3.E41.m1.4.4.1.1.1.1.3"></divide><cn id="S3.E41.m1.4.4.1.1.1.1.3.2.cmml" type="integer" xref="S3.E41.m1.4.4.1.1.1.1.3.2">1</cn><cn id="S3.E41.m1.4.4.1.1.1.1.3.3.cmml" type="integer" xref="S3.E41.m1.4.4.1.1.1.1.3.3">2</cn></apply><apply id="S3.E41.m1.4.4.1.1.1.1.1.1.1.cmml" xref="S3.E41.m1.4.4.1.1.1.1.1.1"><plus id="S3.E41.m1.4.4.1.1.1.1.1.1.1.1.cmml" xref="S3.E41.m1.4.4.1.1.1.1.1.1.1.1"></plus><ci id="S3.E41.m1.4.4.1.1.1.1.1.1.1.2.cmml" xref="S3.E41.m1.4.4.1.1.1.1.1.1.1.2">𝑥</ci><ci id="S3.E41.m1.4.4.1.1.1.1.1.1.1.3.cmml" xref="S3.E41.m1.4.4.1.1.1.1.1.1.1.3">𝑦</ci></apply></apply><apply id="S3.E41.m1.4.4.1.1.2.2.cmml" xref="S3.E41.m1.4.4.1.1.2.2"><times id="S3.E41.m1.4.4.1.1.2.2.2.cmml" xref="S3.E41.m1.4.4.1.1.2.2.2"></times><apply id="S3.E41.m1.4.4.1.1.2.2.3.cmml" xref="S3.E41.m1.4.4.1.1.2.2.3"><divide id="S3.E41.m1.4.4.1.1.2.2.3.1.cmml" xref="S3.E41.m1.4.4.1.1.2.2.3"></divide><cn id="S3.E41.m1.4.4.1.1.2.2.3.2.cmml" type="integer" xref="S3.E41.m1.4.4.1.1.2.2.3.2">1</cn><cn id="S3.E41.m1.4.4.1.1.2.2.3.3.cmml" type="integer" xref="S3.E41.m1.4.4.1.1.2.2.3.3">2</cn></apply><apply id="S3.E41.m1.4.4.1.1.2.2.1.2.cmml" xref="S3.E41.m1.4.4.1.1.2.2.1.1"><abs id="S3.E41.m1.4.4.1.1.2.2.1.2.1.cmml" xref="S3.E41.m1.4.4.1.1.2.2.1.1.2"></abs><apply id="S3.E41.m1.4.4.1.1.2.2.1.1.1.cmml" xref="S3.E41.m1.4.4.1.1.2.2.1.1.1"><minus id="S3.E41.m1.4.4.1.1.2.2.1.1.1.1.cmml" xref="S3.E41.m1.4.4.1.1.2.2.1.1.1.1"></minus><ci id="S3.E41.m1.4.4.1.1.2.2.1.1.1.2.cmml" xref="S3.E41.m1.4.4.1.1.2.2.1.1.1.2">𝑥</ci><ci id="S3.E41.m1.4.4.1.1.2.2.1.1.1.3.cmml" xref="S3.E41.m1.4.4.1.1.2.2.1.1.1.3">𝑦</ci></apply></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.E41.m1.4c">\min\left(x,y\right)=\frac{1}{2}\left(x+y\right)-\frac{1}{2}\left\lvert x-y% \right\rvert,</annotation><annotation encoding="application/x-llamapun" id="S3.E41.m1.4d">roman_min ( italic_x , italic_y ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_x + italic_y ) - divide start_ARG 1 end_ARG start_ARG 2 end_ARG | italic_x - italic_y | ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S3.SS2.p15.1">respectively, i.e:</p> </div> <div class="ltx_para" id="S3.SS2.p16"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS2.p16.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KG1hdGNoIGV4cHIKICBbYChtYXggLHggLHkpCiAgICBgKCsgKCogMC41ICgrICx4ICx5KSkKICAgICAgKCogMC41IChhYnMgKC0gLHggLHkpKSkpXQogIFtgKG1pbiAseCAseSkKICAgIGAoLSAoKiAwLjUgKCsgLHggLHkpKQogICAgICAoKiAwLjUgKGFicyAoLSAseCAseSkpKSldKQ==">⬇</a></div> <div class="ltx_listingline" id="lstnumberx78"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx78.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx78.2" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx78.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx78.4" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx79"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx79.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx79.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx79.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx79.4" style="font-size:90%;">max</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx79.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx79.6" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx79.7" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx79.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx79.9" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx79.10" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx79.11" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx80"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx80.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx80.2" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx80.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx80.4" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx80.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx80.6" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx80.7" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx80.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx80.9" style="font-size:90%;">0.5</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx80.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx80.11" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx80.12" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx80.13" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx80.14" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx80.15" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx80.16" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx80.17" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx80.18" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx80.19" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx80.20" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx81"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx81.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx81.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx81.3" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx81.4" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx81.5" style="font-size:90%;">0.5</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx81.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx81.7" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx81.8" style="font-size:90%;">abs</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx81.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx81.10" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx81.11" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx81.12" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx81.13" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx81.14" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx81.15" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx81.16" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx81.17" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx81.18" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx81.19" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx81.20" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx81.21" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx81.22" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx82"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx82.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx82.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx82.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx82.4" style="font-size:90%;">min</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx82.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx82.6" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx82.7" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx82.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx82.9" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx82.10" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx82.11" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx83"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx83.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx83.2" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx83.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx83.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx83.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx83.6" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx83.7" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx83.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx83.9" style="font-size:90%;">0.5</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx83.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx83.11" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx83.12" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx83.13" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx83.14" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx83.15" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx83.16" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx83.17" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx83.18" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx83.19" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx83.20" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx84"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx84.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx84.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx84.3" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx84.4" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx84.5" style="font-size:90%;">0.5</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx84.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx84.7" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx84.8" style="font-size:90%;">abs</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx84.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx84.10" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx84.11" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx84.12" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx84.13" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx84.14" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx84.15" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx84.16" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx84.17" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx84.18" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx84.19" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx84.20" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx84.21" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx84.22" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx84.23" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS2.p16.2">etc.</p> </div> </section> <section class="ltx_subsection" id="S3.SS3"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">3.3. </span>Automatic Differentiation</h3> <div class="ltx_para" id="S3.SS3.p1"> <p class="ltx_p" id="S3.SS3.p1.1">In order to compute symbolic derivatives of arbitrary Racket expressions, we implement a minimalistic <span class="ltx_text ltx_font_italic" id="S3.SS3.p1.1.1">automatic differentiation</span> algorithm, again restricting ourselves to assume only those algebraic properties which hold for arbitrary floating-point numbers. Any Racket expression <span class="ltx_text ltx_lst_identifier ltx_lst_language_Scheme ltx_lstlisting ltx_font_typewriter" id="S3.SS3.p1.1.2" style="font-size:90%;">expr</span> may then be differentiated symbolically with respect to the variable <span class="ltx_text ltx_lst_identifier ltx_lst_language_Scheme ltx_lstlisting ltx_font_typewriter" id="S3.SS3.p1.1.3" style="font-size:90%;">var</span>, by means of the function <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS3.p1.1.4"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS3.p1.1.4.1" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="S3.SS3.p1.1.4.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS3.p1.1.4.2.1">diff</span></span></span>:</p> </div> <div class="ltx_para" id="S3.SS3.p2"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS3.p2.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KGRlZmluZSAoc3ltYm9saWMtZGlmZiBleHByIHZhcikKICAobWF0Y2ggZXhwcgogICAgWyg/IHN5bWJvbD8gc3ltYikgKGNvbmQKICAgICAgWyhlcT8gc3ltYiB2YXIpIDEuMF0KICAgICAgW2Vsc2UgMC4wXSldCiAgICBbKD8gbnVtYmVyPykgMC4wXQogICAgLi4uCiAgICBbYCgrIC4gLHRlcm1zKQogICAgICAoKyAsQChtYXAgKGxhbWJkYSAodGVybSkKICAgICAgICAoc3ltYm9saWMtZGlmZiB0ZXJtIHZhcikpIHRlcm1zKSldCiAgICAuLi4pKQ==">⬇</a></div> <div class="ltx_listingline" id="lstnumberx85"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx85.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx85.2" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx85.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx85.4" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx85.5" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx85.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx85.7" style="font-size:90%;">diff</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx85.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx85.9" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx85.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx85.11" style="font-size:90%;">var</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx85.12" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx86"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx86.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx86.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx86.3" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx86.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx86.5" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx87"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx87.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx87.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx87.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx87.4" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx87.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx87.6" style="font-size:90%;">symbol</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx87.7" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx87.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx87.9" style="font-size:90%;">symb</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx87.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx87.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx87.12" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx87.13" style="font-size:90%;color:#0000FF;">cond</span> </div> <div class="ltx_listingline" id="lstnumberx88"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx88.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx88.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx88.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx88.4" style="font-size:90%;">eq</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx88.5" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx88.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx88.7" style="font-size:90%;">symb</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx88.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx88.9" style="font-size:90%;">var</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx88.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx88.11" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx88.12" style="font-size:90%;">1.0]</span> </div> <div class="ltx_listingline" id="lstnumberx89"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx89.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx89.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx89.3" style="font-size:90%;color:#0000FF;">else</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx89.4" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx89.5" style="font-size:90%;">0.0]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx89.6" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx89.7" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx90"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx90.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx90.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx90.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx90.4" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx90.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx90.6" style="font-size:90%;">number</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx90.7" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx90.8" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx90.9" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx90.10" style="font-size:90%;">0.0]</span> </div> <div class="ltx_listingline" id="lstnumberx91"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx91.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx91.2" style="font-size:90%;">...</span> </div> <div class="ltx_listingline" id="lstnumberx92"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx92.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx92.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx92.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx92.4" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx92.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx92.6" style="font-size:90%;">.</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx92.7" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx92.8" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx92.9" style="font-size:90%;">terms</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx92.10" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx93"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx93.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx93.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx93.3" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx93.4" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx93.5" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx93.6" style="font-size:90%;">@</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx93.7" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx93.8" style="font-size:90%;color:#0000FF;">map</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx93.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx93.10" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keyword ltx_font_typewriter" id="lstnumberx93.11" style="font-size:90%;color:#0000FF;">lambda</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx93.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx93.13" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx93.14" style="font-size:90%;">term</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx93.15" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx94"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx94.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx94.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx94.3" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx94.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx94.5" style="font-size:90%;">diff</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx94.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx94.7" style="font-size:90%;">term</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx94.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx94.9" style="font-size:90%;">var</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx94.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx94.11" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx94.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx94.13" style="font-size:90%;">terms</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx94.14" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx94.15" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx94.16" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx95"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx95.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx95.2" style="font-size:90%;">...</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx95.3" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx95.4" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS3.p2.2">The base case of <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS3.p2.2.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS3.p2.2.1.1" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="S3.SS3.p2.2.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS3.p2.2.1.2.1">diff</span></span></span> evaluates the derivative of any symbol or numerical constant to 0, unless that symbol matches the variable with respect to which one is differentiating, in which case it evaluates to 1. For any sum of the form <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS3.p2.2.2"><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS3.p2.2.2.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="S3.SS3.p2.2.2.2" style="font-size:90%;">+<span class="ltx_text ltx_lst_space" id="S3.SS3.p2.2.2.2.1"> </span><span class="ltx_text ltx_lst_identifier" id="S3.SS3.p2.2.2.2.2">arg1</span><span class="ltx_text ltx_lst_space" id="S3.SS3.p2.2.2.2.3"> </span><span class="ltx_text ltx_lst_identifier" id="S3.SS3.p2.2.2.2.4">arg2</span><span class="ltx_text ltx_lst_space" id="S3.SS3.p2.2.2.2.5"> </span>...<span class="ltx_text ltx_lst_literate" id="S3.SS3.p2.2.2.2.6" style="color:#999999;">)</span></span></span>, <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS3.p2.2.3"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS3.p2.2.3.1" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="S3.SS3.p2.2.3.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS3.p2.2.3.2.1">diff</span></span></span> is mapped over each term, reflecting the linearity of differentiation (and likewise for differences). For any product of the form <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS3.p2.2.4"><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS3.p2.2.4.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="S3.SS3.p2.2.4.2" style="font-size:90%;">*<span class="ltx_text ltx_lst_space" id="S3.SS3.p2.2.4.2.1"> </span><span class="ltx_text ltx_lst_identifier" id="S3.SS3.p2.2.4.2.2">arg1</span><span class="ltx_text ltx_lst_space" id="S3.SS3.p2.2.4.2.3"> </span><span class="ltx_text ltx_lst_identifier" id="S3.SS3.p2.2.4.2.4">arg2</span><span class="ltx_text ltx_lst_space" id="S3.SS3.p2.2.4.2.5"> </span>...<span class="ltx_text ltx_lst_literate" id="S3.SS3.p2.2.4.2.6" style="color:#999999;">)</span></span></span>, <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS3.p2.2.5"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS3.p2.2.5.1" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="S3.SS3.p2.2.5.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS3.p2.2.5.2.1">diff</span></span></span> is applied to each term in the product separately (with all other terms being kept fixed), with the results then being summed together:</p> </div> <div class="ltx_para" id="S3.SS3.p3"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS3.p3.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KG1hdGNoIGV4cHIKICBbYCgqIC4gLHRlcm1zKQogICAgKChsYW1iZGEgKHN1bXMpIChjb25kCiAgICAgICAgWyhudWxsPyAoY2RyIHN1bXMpKSAoY2FyIHN1bXMpXQogICAgICAgIFtlbHNlIChjb25zICcrIHN1bXMpXSkpCiAgICAgIChsZXQgbG9vcCAoW2kgXSkKICAgICAgICAoY29uZAogICAgICAgICAgWyg9IGkgKGxlbmd0aCB0ZXJtcykpIGAoKV0KICAgICAgICAgIFtlbHNlIChsZXQgKFtkaSAoc3ltYm9saWMtZGlmZgogICAgICAgICAgICAobGlzdC1yZWYgdGVybXMgaSkgdmFyKV0pCiAgICAgICAgICAgICAgKGNvbnMgKGNvbnMgJyogKGZvci9saXN0CiAgICAgICAgICAgICAgICBbKGogKGluLXJhbmdlIChsZW5ndGggdGVybXMpKV0pCiAgICAgICAgICAgICAgICAgIChjb25kCiAgICAgICAgICAgICAgICAgICAgWyg9IGogaSkgZGldCiAgICAgICAgICAgICAgICAgICAgW2Vsc2UgKGxpc3QtcmVmIHRlcm1zIGopXSkpKQogICAgICAgICAgICAgIChsb29wIChhZGQxIGkpKSkpXSkpKV0p">⬇</a></div> <div class="ltx_listingline" id="lstnumberx96"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx96.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx96.2" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx96.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx96.4" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx97"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx97.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx97.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx97.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx97.4" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx97.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx97.6" style="font-size:90%;">.</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx97.7" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx97.8" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx97.9" style="font-size:90%;">terms</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx97.10" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx98"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx98.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx98.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx98.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keyword ltx_font_typewriter" id="lstnumberx98.4" style="font-size:90%;color:#0000FF;">lambda</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx98.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx98.6" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx98.7" style="font-size:90%;">sums</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx98.8" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx98.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx98.10" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx98.11" style="font-size:90%;color:#0000FF;">cond</span> </div> <div class="ltx_listingline" id="lstnumberx99"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx99.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx99.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx99.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx99.4" style="font-size:90%;">null</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx99.5" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx99.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx99.7" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx99.8" style="font-size:90%;">cdr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx99.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx99.10" style="font-size:90%;">sums</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx99.11" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx99.12" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx99.13" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx99.14" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx99.15" style="font-size:90%;">car</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx99.16" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx99.17" style="font-size:90%;">sums</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx99.18" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx99.19" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx100"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx100.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx100.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx100.3" style="font-size:90%;color:#0000FF;">else</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx100.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx100.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx100.6" style="font-size:90%;">cons</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx100.7" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx100.8" style="font-size:90%;">’+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx100.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx100.10" style="font-size:90%;">sums</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx100.11" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx100.12" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx100.13" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx100.14" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx101"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx101.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx101.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx101.3" style="font-size:90%;color:#0000FF;">let</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx101.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx101.5" style="font-size:90%;">loop</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx101.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx101.7" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx101.8" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx101.9" style="font-size:90%;">i</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx101.10" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx101.11" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx101.12" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx102"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx102.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx102.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx102.3" style="font-size:90%;color:#0000FF;">cond</span> </div> <div class="ltx_listingline" id="lstnumberx103"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx103.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx103.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx103.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx103.4" style="font-size:90%;">=</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx103.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx103.6" style="font-size:90%;">i</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx103.7" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx103.8" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx103.9" style="font-size:90%;">length</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx103.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx103.11" style="font-size:90%;">terms</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx103.12" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx103.13" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx103.14" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx103.15" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx103.16" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx103.17" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx103.18" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx104"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx104.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx104.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx104.3" style="font-size:90%;color:#0000FF;">else</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx104.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx104.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx104.6" style="font-size:90%;color:#0000FF;">let</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx104.7" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx104.8" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx104.9" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx104.10" style="font-size:90%;">di</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx104.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx104.12" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx104.13" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx104.14" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx104.15" style="font-size:90%;">diff</span> </div> <div class="ltx_listingline" id="lstnumberx105"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx105.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx105.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx105.3" style="font-size:90%;">list</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx105.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx105.5" style="font-size:90%;">ref</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx105.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx105.7" style="font-size:90%;">terms</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx105.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx105.9" style="font-size:90%;">i</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx105.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx105.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx105.12" style="font-size:90%;">var</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx105.13" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx105.14" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx105.15" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx106"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx106.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx106.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx106.3" style="font-size:90%;">cons</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx106.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx106.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx106.6" style="font-size:90%;">cons</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx106.7" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx106.8" style="font-size:90%;">’*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx106.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx106.10" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx106.11" style="font-size:90%;">for</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx106.12" style="font-size:90%;">/</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx106.13" style="font-size:90%;">list</span> </div> <div class="ltx_listingline" id="lstnumberx107"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx107.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx107.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx107.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx107.4" style="font-size:90%;">j</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx107.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx107.6" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx107.7" style="font-size:90%;">in</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx107.8" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx107.9" style="font-size:90%;">range</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx107.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx107.11" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx107.12" style="font-size:90%;">length</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx107.13" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx107.14" style="font-size:90%;">terms</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx107.15" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx107.16" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx107.17" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx107.18" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx108"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx108.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx108.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx108.3" style="font-size:90%;color:#0000FF;">cond</span> </div> <div class="ltx_listingline" id="lstnumberx109"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx109.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx109.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx109.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx109.4" style="font-size:90%;">=</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx109.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx109.6" style="font-size:90%;">j</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx109.7" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx109.8" style="font-size:90%;">i</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx109.9" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx109.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx109.11" style="font-size:90%;">di</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx109.12" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx110"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx110.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx110.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx110.3" style="font-size:90%;color:#0000FF;">else</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx110.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx110.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx110.6" style="font-size:90%;">list</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx110.7" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx110.8" style="font-size:90%;">ref</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx110.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx110.10" style="font-size:90%;">terms</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx110.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx110.12" style="font-size:90%;">j</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx110.13" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx110.14" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx110.15" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx110.16" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx110.17" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx111"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx111.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx111.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx111.3" style="font-size:90%;">loop</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx111.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx111.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx111.6" style="font-size:90%;">add1</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx111.7" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx111.8" style="font-size:90%;">i</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx111.9" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx111.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx111.11" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx111.12" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx111.13" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx111.14" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx111.15" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx111.16" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx111.17" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx111.18" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS3.p3.2">reflecting the product rule of differentiation, etc. Certain standard mathematical functions, such as <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS3.p3.2.1"><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS3.p3.2.1.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS3.p3.2.1.2" style="font-size:90%;">sqrt</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="S3.SS3.p3.2.1.3" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="S3.SS3.p3.2.1.4" style="font-size:90%;">...<span class="ltx_text ltx_lst_literate" id="S3.SS3.p3.2.1.4.1" style="color:#999999;">)</span></span></span>, also have their derivatives specifically encoded wherever they are well-defined:</p> </div> <div class="ltx_para" id="S3.SS3.p4"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS3.p4.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KG1hdGNoIGV4cHIKICBbYChzcXJ0ICx4KSBgKCogMC41ICgvIDEuMCAoc3FydCAseCkpKV0p">⬇</a></div> <div class="ltx_listingline" id="lstnumberx112"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx112.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx112.2" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx112.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx112.4" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx113"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx113.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx113.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx113.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx113.4" style="font-size:90%;">sqrt</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx113.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx113.6" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx113.7" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx113.8" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx113.9" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx113.10" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx113.11" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx113.12" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx113.13" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx113.14" style="font-size:90%;">0.5</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx113.15" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx113.16" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx113.17" style="font-size:90%;">/</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx113.18" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx113.19" style="font-size:90%;">1.0</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx113.20" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx113.21" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx113.22" style="font-size:90%;">sqrt</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx113.23" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx113.24" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx113.25" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx113.26" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx113.27" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx113.28" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx113.29" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx113.30" style="font-size:90%;color:#999999;">)</span> </div> </div> </div> <div class="ltx_para" id="S3.SS3.p5"> <p class="ltx_p" id="S3.SS3.p5.1">With the ability to differentiate arbitrary scalar functions thus in place, the symbolic Jacobian of a list of symbolic Racket expressions <span class="ltx_text ltx_lst_identifier ltx_lst_language_Scheme ltx_lstlisting ltx_font_typewriter" id="S3.SS3.p5.1.1" style="font-size:90%;">exprs</span>, evaluated with respect to a list of symbolic Racket variables <span class="ltx_text ltx_lst_identifier ltx_lst_language_Scheme ltx_lstlisting ltx_font_typewriter" id="S3.SS3.p5.1.2" style="font-size:90%;">vars</span>, may now be computed via a straightforward <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS3.p5.1.3"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS3.p5.1.3.1" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="S3.SS3.p5.1.3.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS3.p5.1.3.2.1">jacobian</span></span></span> function:</p> </div> <div class="ltx_para" id="S3.SS3.p6"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS3.p6.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KGRlZmluZSAoc3ltYm9saWMtamFjb2JpYW4gZXhwcnMgdmFycykKICAobWFwIChsYW1iZGEgKGV4cHIpCiAgICAobWFwIChsYW1iZGEgKHZhcikKICAgICAgKHN5bWJvbGljLXNpbXAgKHN5bWJvbGljLWRpZmYgZXhwciB2YXIpKSkKICAgIHZhcnMKICBleHBycykp">⬇</a></div> <div class="ltx_listingline" id="lstnumberx114"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx114.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx114.2" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx114.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx114.4" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx114.5" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx114.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx114.7" style="font-size:90%;">jacobian</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx114.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx114.9" style="font-size:90%;">exprs</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx114.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx114.11" style="font-size:90%;">vars</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx114.12" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx115"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx115.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx115.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx115.3" style="font-size:90%;color:#0000FF;">map</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx115.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx115.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keyword ltx_font_typewriter" id="lstnumberx115.6" style="font-size:90%;color:#0000FF;">lambda</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx115.7" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx115.8" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx115.9" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx115.10" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx116"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx116.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx116.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx116.3" style="font-size:90%;color:#0000FF;">map</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx116.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx116.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keyword ltx_font_typewriter" id="lstnumberx116.6" style="font-size:90%;color:#0000FF;">lambda</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx116.7" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx116.8" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx116.9" style="font-size:90%;">var</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx116.10" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx117"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx117.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx117.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx117.3" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx117.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx117.5" style="font-size:90%;">simp</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx117.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx117.7" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx117.8" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx117.9" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx117.10" style="font-size:90%;">diff</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx117.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx117.12" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx117.13" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx117.14" style="font-size:90%;">var</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx117.15" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx117.16" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx117.17" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx118"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx118.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx118.2" style="font-size:90%;">vars</span> </div> <div class="ltx_listingline" id="lstnumberx119"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx119.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx119.2" style="font-size:90%;">exprs</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx119.3" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx119.4" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS3.p6.2">Likewise for the symbolic gradient of a single symbolic Racket expression <span class="ltx_text ltx_lst_identifier ltx_lst_language_Scheme ltx_lstlisting ltx_font_typewriter" id="S3.SS3.p6.2.1" style="font-size:90%;">expr</span>, with respect to a list of symbolic Racket variables <span class="ltx_text ltx_lst_identifier ltx_lst_language_Scheme ltx_lstlisting ltx_font_typewriter" id="S3.SS3.p6.2.2" style="font-size:90%;">vars</span>, via the <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS3.p6.2.3"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS3.p6.2.3.1" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="S3.SS3.p6.2.3.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS3.p6.2.3.2.1">gradient</span></span></span> function:</p> </div> <div class="ltx_para" id="S3.SS3.p7"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS3.p7.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KGRlZmluZSAoc3ltYm9saWMtZ3JhZGllbnQgZXhwciB2YXJzKQogIChtYXAgKGxhbWJkYSAodmFyKQogICAgKHN5bWJvbGljLXNpbXAgKHN5bWJvbGljLWRpZmYgZXhwciB2YXIpKSkKICB2YXJzKSk=">⬇</a></div> <div class="ltx_listingline" id="lstnumberx120"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx120.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx120.2" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx120.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx120.4" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx120.5" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx120.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx120.7" style="font-size:90%;">gradient</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx120.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx120.9" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx120.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx120.11" style="font-size:90%;">vars</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx120.12" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx121"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx121.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx121.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx121.3" style="font-size:90%;color:#0000FF;">map</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx121.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx121.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keyword ltx_font_typewriter" id="lstnumberx121.6" style="font-size:90%;color:#0000FF;">lambda</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx121.7" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx121.8" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx121.9" style="font-size:90%;">var</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx121.10" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx122"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx122.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx122.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx122.3" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx122.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx122.5" style="font-size:90%;">simp</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx122.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx122.7" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx122.8" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx122.9" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx122.10" style="font-size:90%;">diff</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx122.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx122.12" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx122.13" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx122.14" style="font-size:90%;">var</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx122.15" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx122.16" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx122.17" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx123"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx123.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx123.2" style="font-size:90%;">vars</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx123.3" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx123.4" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS3.p7.2">The symbolic Hessian (<span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS3.p7.2.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS3.p7.2.1.1" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="S3.SS3.p7.2.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS3.p7.2.1.2.1">hessian</span></span></span>) of a symbolic Racket expression may therefore be computed as a composition of the two:</p> </div> <div class="ltx_para" id="S3.SS3.p8"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS3.p8.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KGRlZmluZSAoc3ltYm9saWMtaGVzc2lhbiBleHByIHZhcnMpCiAgKHN5bWJvbGljLWphY29iaWFuIChzeW1ib2xpYy1ncmFkaWVudCBleHByCiAgICB2YXJzKSB2YXJzKSk=">⬇</a></div> <div class="ltx_listingline" id="lstnumberx124"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx124.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx124.2" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx124.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx124.4" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx124.5" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx124.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx124.7" style="font-size:90%;">hessian</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx124.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx124.9" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx124.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx124.11" style="font-size:90%;">vars</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx124.12" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx125"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx125.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx125.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx125.3" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx125.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx125.5" style="font-size:90%;">jacobian</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx125.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx125.7" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx125.8" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx125.9" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx125.10" style="font-size:90%;">gradient</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx125.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx125.12" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx126"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx126.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx126.2" style="font-size:90%;">vars</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx126.3" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx126.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx126.5" style="font-size:90%;">vars</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx126.6" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx126.7" style="font-size:90%;color:#999999;">)</span> </div> </div> </div> </section> <section class="ltx_subsection" id="S3.SS4"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">3.4. </span>Stability, Hyperbolicity and Convexity</h3> <div class="ltx_para" id="S3.SS4.p1"> <p class="ltx_p" id="S3.SS4.p1.1">In order to prove that a given Lax-Friedrichs solver meets the CFL stability criterion listed in Theorem <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.Thmtheorem2" title="Theorem 2.2. ‣ 2.2. The Lax-Friedrichs Flux ‣ 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2.2</span></a>, it is sufficient to compute the flux Jacobian <math alttext="{\mathbf{J}_{\mathbf{F}}}" class="ltx_Math" display="inline" id="S3.SS4.p1.1.m1.1"><semantics id="S3.SS4.p1.1.m1.1a"><msub id="S3.SS4.p1.1.m1.1.1" xref="S3.SS4.p1.1.m1.1.1.cmml"><mi id="S3.SS4.p1.1.m1.1.1.2" xref="S3.SS4.p1.1.m1.1.1.2.cmml">𝐉</mi><mi id="S3.SS4.p1.1.m1.1.1.3" xref="S3.SS4.p1.1.m1.1.1.3.cmml">𝐅</mi></msub><annotation-xml encoding="MathML-Content" id="S3.SS4.p1.1.m1.1b"><apply id="S3.SS4.p1.1.m1.1.1.cmml" xref="S3.SS4.p1.1.m1.1.1"><csymbol cd="ambiguous" id="S3.SS4.p1.1.m1.1.1.1.cmml" xref="S3.SS4.p1.1.m1.1.1">subscript</csymbol><ci id="S3.SS4.p1.1.m1.1.1.2.cmml" xref="S3.SS4.p1.1.m1.1.1.2">𝐉</ci><ci id="S3.SS4.p1.1.m1.1.1.3.cmml" xref="S3.SS4.p1.1.m1.1.1.3">𝐅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS4.p1.1.m1.1c">{\mathbf{J}_{\mathbf{F}}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS4.p1.1.m1.1d">bold_J start_POSTSUBSCRIPT bold_F end_POSTSUBSCRIPT</annotation></semantics></math> by evaluating:</p> </div> <div class="ltx_para" id="S3.SS4.p2"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS4.p2.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KHN5bWJvbGljLWphY29iaWFuIGZsdXgtZXhwcnMgY29ucy12YXJzKQ==">⬇</a></div> <div class="ltx_listingline" id="lstnumberx127"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx127.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx127.2" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx127.3" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx127.4" style="font-size:90%;">jacobian</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx127.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx127.6" style="font-size:90%;">flux</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx127.7" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx127.8" style="font-size:90%;">exprs</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx127.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx127.10" style="font-size:90%;">cons</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx127.11" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx127.12" style="font-size:90%;">vars</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx127.13" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS4.p2.2">and then to compute its symbolic eigenvalues, which for instance can be done in the case of a 2x2 matrix using:</p> </div> <div class="ltx_para" id="S3.SS4.p3"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS4.p3.2"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KGRlZmluZSAoc3ltYm9saWMtZWlndmFsczIgbWF0cml4KQogIChsZXQgKFthIChsaXN0LXJlZiAobGlzdC1yZWYgbWF0cml4IDApIDApXQogICAgW2IgKGxpc3QtcmVmIChsaXN0LXJlZiBtYXRyaXggMCkgMSldCiAgICBbYyAobGlzdC1yZWYgKGxpc3QtcmVmIG1hdHJpeCAxKSAwKV0KICAgIFtkIChsaXN0LXJlZiAobGlzdC1yZWYgbWF0cml4IDEpIDEpXSkKICAgIChsaXN0CiAgICAgIGAoKiAwLjUgKCsgKC0gLGEgKHNxcnQgKCsgKCogNC4wICxiICxjKQogICAgICAgICgqICgtICxhICxkKSAoLSAsYSAsZCkpKSkpICxkKSkKICAgICAgYCgqIDAuNSAoKyAoKyAsYSAoc3FydCAoKyAoKiA0LjAgLGIgLGMpCiAgICAgICAgKCogKC0gLGEgLGQpICgtICxhICxkKSkpKSkgLGQpKSldKSkp">⬇</a></div> <div class="ltx_listingline" id="lstnumberx128"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx128.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx128.2" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx128.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx128.4" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx128.5" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx128.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx128.7" style="font-size:90%;">eigvals2</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx128.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx128.9" style="font-size:90%;">matrix</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx128.10" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx129"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx129.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx129.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx129.3" style="font-size:90%;color:#0000FF;">let</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx129.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx129.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx129.6" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx129.7" style="font-size:90%;">a</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx129.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx129.9" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx129.10" style="font-size:90%;">list</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx129.11" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx129.12" style="font-size:90%;">ref</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx129.13" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx129.14" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx129.15" style="font-size:90%;">list</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx129.16" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx129.17" style="font-size:90%;">ref</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx129.18" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx129.19" style="font-size:90%;">matrix</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx129.20" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx129.21" style="font-size:90%;">0</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx129.22" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx129.23" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx129.24" style="font-size:90%;">0</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx129.25" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx129.26" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx130"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx130.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx130.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx130.3" style="font-size:90%;">b</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx130.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx130.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx130.6" style="font-size:90%;">list</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx130.7" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx130.8" style="font-size:90%;">ref</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx130.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx130.10" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx130.11" style="font-size:90%;">list</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx130.12" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx130.13" style="font-size:90%;">ref</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx130.14" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx130.15" style="font-size:90%;">matrix</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx130.16" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx130.17" style="font-size:90%;">0</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx130.18" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx130.19" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx130.20" style="font-size:90%;">1</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx130.21" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx130.22" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx131"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx131.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx131.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx131.3" style="font-size:90%;">c</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx131.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx131.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx131.6" style="font-size:90%;">list</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx131.7" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx131.8" style="font-size:90%;">ref</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx131.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx131.10" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx131.11" style="font-size:90%;">list</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx131.12" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx131.13" style="font-size:90%;">ref</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx131.14" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx131.15" style="font-size:90%;">matrix</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx131.16" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx131.17" style="font-size:90%;">1</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx131.18" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx131.19" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx131.20" style="font-size:90%;">0</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx131.21" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx131.22" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx132"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx132.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx132.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx132.3" style="font-size:90%;">d</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx132.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx132.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx132.6" style="font-size:90%;">list</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx132.7" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx132.8" style="font-size:90%;">ref</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx132.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx132.10" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx132.11" style="font-size:90%;">list</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx132.12" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx132.13" style="font-size:90%;">ref</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx132.14" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx132.15" style="font-size:90%;">matrix</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx132.16" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx132.17" style="font-size:90%;">1</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx132.18" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx132.19" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx132.20" style="font-size:90%;">1</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx132.21" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx132.22" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx132.23" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx133"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx133.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx133.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx133.3" style="font-size:90%;">list</span> </div> <div class="ltx_listingline" id="lstnumberx134"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx134.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx134.2" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx134.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx134.4" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx134.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx134.6" style="font-size:90%;">0.5</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx134.7" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx134.8" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx134.9" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx134.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx134.11" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx134.12" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx134.13" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx134.14" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx134.15" style="font-size:90%;">a</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx134.16" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx134.17" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx134.18" style="font-size:90%;">sqrt</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx134.19" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx134.20" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx134.21" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx134.22" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx134.23" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx134.24" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx134.25" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx134.26" style="font-size:90%;">4.0</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx134.27" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx134.28" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx134.29" style="font-size:90%;">b</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx134.30" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx134.31" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx134.32" style="font-size:90%;">c</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx134.33" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx135"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx135.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx135.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx135.3" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx135.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx135.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx135.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx135.7" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx135.8" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx135.9" style="font-size:90%;">a</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx135.10" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx135.11" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx135.12" style="font-size:90%;">d</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx135.13" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx135.14" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx135.15" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx135.16" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx135.17" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx135.18" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx135.19" style="font-size:90%;">a</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx135.20" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx135.21" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx135.22" style="font-size:90%;">d</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx135.23" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx135.24" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx135.25" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx135.26" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx135.27" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx135.28" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx135.29" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx135.30" style="font-size:90%;">d</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx135.31" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx135.32" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx136"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx136.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx136.2" style="font-size:90%;">‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx136.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx136.4" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx136.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx136.6" style="font-size:90%;">0.5</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx136.7" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx136.8" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx136.9" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx136.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx136.11" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx136.12" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx136.13" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx136.14" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx136.15" style="font-size:90%;">a</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx136.16" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx136.17" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx136.18" style="font-size:90%;">sqrt</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx136.19" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx136.20" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx136.21" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx136.22" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx136.23" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx136.24" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx136.25" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx136.26" style="font-size:90%;">4.0</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx136.27" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx136.28" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx136.29" style="font-size:90%;">b</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx136.30" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx136.31" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx136.32" style="font-size:90%;">c</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx136.33" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx137"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx137.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx137.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx137.3" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx137.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx137.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx137.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx137.7" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx137.8" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx137.9" style="font-size:90%;">a</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx137.10" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx137.11" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx137.12" style="font-size:90%;">d</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx137.13" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx137.14" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx137.15" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx137.16" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx137.17" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx137.18" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx137.19" style="font-size:90%;">a</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx137.20" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx137.21" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx137.22" style="font-size:90%;">d</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx137.23" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx137.24" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx137.25" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx137.26" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx137.27" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx137.28" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx137.29" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx137.30" style="font-size:90%;">d</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx137.31" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx137.32" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx137.33" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx137.34" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx137.35" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx137.36" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx137.37" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS4.p3.1">where we have simply encoded the explicit solutions <math alttext="{\lambda_{\pm}}" class="ltx_Math" display="inline" id="S3.SS4.p3.1.m1.1"><semantics id="S3.SS4.p3.1.m1.1a"><msub id="S3.SS4.p3.1.m1.1.1" xref="S3.SS4.p3.1.m1.1.1.cmml"><mi id="S3.SS4.p3.1.m1.1.1.2" xref="S3.SS4.p3.1.m1.1.1.2.cmml">λ</mi><mo id="S3.SS4.p3.1.m1.1.1.3" xref="S3.SS4.p3.1.m1.1.1.3.cmml">±</mo></msub><annotation-xml encoding="MathML-Content" id="S3.SS4.p3.1.m1.1b"><apply id="S3.SS4.p3.1.m1.1.1.cmml" xref="S3.SS4.p3.1.m1.1.1"><csymbol cd="ambiguous" id="S3.SS4.p3.1.m1.1.1.1.cmml" xref="S3.SS4.p3.1.m1.1.1">subscript</csymbol><ci id="S3.SS4.p3.1.m1.1.1.2.cmml" xref="S3.SS4.p3.1.m1.1.1.2">𝜆</ci><csymbol cd="latexml" id="S3.SS4.p3.1.m1.1.1.3.cmml" xref="S3.SS4.p3.1.m1.1.1.3">plus-or-minus</csymbol></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS4.p3.1.m1.1c">{\lambda_{\pm}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS4.p3.1.m1.1d">italic_λ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT</annotation></semantics></math> of the characteristic polynomial for the 2x2 matrix:</p> </div> <div class="ltx_para" id="S3.SS4.p4"> <table class="ltx_equation ltx_eqn_table" id="S3.E42"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(42)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="M=\begin{bmatrix}a&b\\ c&d\end{bmatrix}," class="ltx_Math" display="block" id="S3.E42.m1.2"><semantics id="S3.E42.m1.2a"><mrow id="S3.E42.m1.2.2.1" xref="S3.E42.m1.2.2.1.1.cmml"><mrow id="S3.E42.m1.2.2.1.1" xref="S3.E42.m1.2.2.1.1.cmml"><mi id="S3.E42.m1.2.2.1.1.2" xref="S3.E42.m1.2.2.1.1.2.cmml">M</mi><mo id="S3.E42.m1.2.2.1.1.1" xref="S3.E42.m1.2.2.1.1.1.cmml">=</mo><mrow id="S3.E42.m1.1.1.3" xref="S3.E42.m1.1.1.2.cmml"><mo id="S3.E42.m1.1.1.3.1" xref="S3.E42.m1.1.1.2.1.cmml">[</mo><mtable columnspacing="5pt" displaystyle="true" id="S3.E42.m1.1.1.1.1" rowspacing="0pt" xref="S3.E42.m1.1.1.1.1.cmml"><mtr id="S3.E42.m1.1.1.1.1a" xref="S3.E42.m1.1.1.1.1.cmml"><mtd id="S3.E42.m1.1.1.1.1b" xref="S3.E42.m1.1.1.1.1.cmml"><mi id="S3.E42.m1.1.1.1.1.1.1.1" xref="S3.E42.m1.1.1.1.1.1.1.1.cmml">a</mi></mtd><mtd id="S3.E42.m1.1.1.1.1c" xref="S3.E42.m1.1.1.1.1.cmml"><mi id="S3.E42.m1.1.1.1.1.1.2.1" xref="S3.E42.m1.1.1.1.1.1.2.1.cmml">b</mi></mtd></mtr><mtr id="S3.E42.m1.1.1.1.1d" xref="S3.E42.m1.1.1.1.1.cmml"><mtd id="S3.E42.m1.1.1.1.1e" xref="S3.E42.m1.1.1.1.1.cmml"><mi id="S3.E42.m1.1.1.1.1.2.1.1" xref="S3.E42.m1.1.1.1.1.2.1.1.cmml">c</mi></mtd><mtd id="S3.E42.m1.1.1.1.1f" xref="S3.E42.m1.1.1.1.1.cmml"><mi id="S3.E42.m1.1.1.1.1.2.2.1" xref="S3.E42.m1.1.1.1.1.2.2.1.cmml">d</mi></mtd></mtr></mtable><mo id="S3.E42.m1.1.1.3.2" xref="S3.E42.m1.1.1.2.1.cmml">]</mo></mrow></mrow><mo id="S3.E42.m1.2.2.1.2" xref="S3.E42.m1.2.2.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S3.E42.m1.2b"><apply id="S3.E42.m1.2.2.1.1.cmml" xref="S3.E42.m1.2.2.1"><eq id="S3.E42.m1.2.2.1.1.1.cmml" xref="S3.E42.m1.2.2.1.1.1"></eq><ci id="S3.E42.m1.2.2.1.1.2.cmml" xref="S3.E42.m1.2.2.1.1.2">𝑀</ci><apply id="S3.E42.m1.1.1.2.cmml" xref="S3.E42.m1.1.1.3"><csymbol cd="latexml" id="S3.E42.m1.1.1.2.1.cmml" xref="S3.E42.m1.1.1.3.1">matrix</csymbol><matrix id="S3.E42.m1.1.1.1.1.cmml" xref="S3.E42.m1.1.1.1.1"><matrixrow id="S3.E42.m1.1.1.1.1a.cmml" xref="S3.E42.m1.1.1.1.1"><ci id="S3.E42.m1.1.1.1.1.1.1.1.cmml" xref="S3.E42.m1.1.1.1.1.1.1.1">𝑎</ci><ci id="S3.E42.m1.1.1.1.1.1.2.1.cmml" xref="S3.E42.m1.1.1.1.1.1.2.1">𝑏</ci></matrixrow><matrixrow id="S3.E42.m1.1.1.1.1b.cmml" xref="S3.E42.m1.1.1.1.1"><ci id="S3.E42.m1.1.1.1.1.2.1.1.cmml" xref="S3.E42.m1.1.1.1.1.2.1.1">𝑐</ci><ci id="S3.E42.m1.1.1.1.1.2.2.1.cmml" xref="S3.E42.m1.1.1.1.1.2.2.1">𝑑</ci></matrixrow></matrix></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.E42.m1.2c">M=\begin{bmatrix}a&b\\ c&d\end{bmatrix},</annotation><annotation encoding="application/x-llamapun" id="S3.E42.m1.2d">italic_M = [ start_ARG start_ROW start_CELL italic_a end_CELL start_CELL italic_b end_CELL end_ROW start_ROW start_CELL italic_c end_CELL start_CELL italic_d end_CELL end_ROW end_ARG ] ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S3.SS4.p4.1">i.e:</p> </div> <div class="ltx_para" id="S3.SS4.p5"> <table class="ltx_equation ltx_eqn_table" id="S3.E43"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(43)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\lambda_{\pm}=\frac{1}{2}\left(a+d\pm\sqrt{a^{2}+4bc-2ad+d^{2}}\right)." class="ltx_Math" display="block" id="S3.E43.m1.1"><semantics id="S3.E43.m1.1a"><mrow id="S3.E43.m1.1.1.1" xref="S3.E43.m1.1.1.1.1.cmml"><mrow id="S3.E43.m1.1.1.1.1" xref="S3.E43.m1.1.1.1.1.cmml"><msub id="S3.E43.m1.1.1.1.1.3" xref="S3.E43.m1.1.1.1.1.3.cmml"><mi id="S3.E43.m1.1.1.1.1.3.2" xref="S3.E43.m1.1.1.1.1.3.2.cmml">λ</mi><mo id="S3.E43.m1.1.1.1.1.3.3" xref="S3.E43.m1.1.1.1.1.3.3.cmml">±</mo></msub><mo id="S3.E43.m1.1.1.1.1.2" xref="S3.E43.m1.1.1.1.1.2.cmml">=</mo><mrow id="S3.E43.m1.1.1.1.1.1" xref="S3.E43.m1.1.1.1.1.1.cmml"><mfrac id="S3.E43.m1.1.1.1.1.1.3" xref="S3.E43.m1.1.1.1.1.1.3.cmml"><mn id="S3.E43.m1.1.1.1.1.1.3.2" xref="S3.E43.m1.1.1.1.1.1.3.2.cmml">1</mn><mn id="S3.E43.m1.1.1.1.1.1.3.3" xref="S3.E43.m1.1.1.1.1.1.3.3.cmml">2</mn></mfrac><mo id="S3.E43.m1.1.1.1.1.1.2" xref="S3.E43.m1.1.1.1.1.1.2.cmml"></mo><mrow id="S3.E43.m1.1.1.1.1.1.1.1" xref="S3.E43.m1.1.1.1.1.1.1.1.1.cmml"><mo id="S3.E43.m1.1.1.1.1.1.1.1.2" xref="S3.E43.m1.1.1.1.1.1.1.1.1.cmml">(</mo><mrow id="S3.E43.m1.1.1.1.1.1.1.1.1" xref="S3.E43.m1.1.1.1.1.1.1.1.1.cmml"><mrow id="S3.E43.m1.1.1.1.1.1.1.1.1.2" xref="S3.E43.m1.1.1.1.1.1.1.1.1.2.cmml"><mi id="S3.E43.m1.1.1.1.1.1.1.1.1.2.2" xref="S3.E43.m1.1.1.1.1.1.1.1.1.2.2.cmml">a</mi><mo id="S3.E43.m1.1.1.1.1.1.1.1.1.2.1" xref="S3.E43.m1.1.1.1.1.1.1.1.1.2.1.cmml">+</mo><mi id="S3.E43.m1.1.1.1.1.1.1.1.1.2.3" xref="S3.E43.m1.1.1.1.1.1.1.1.1.2.3.cmml">d</mi></mrow><mo id="S3.E43.m1.1.1.1.1.1.1.1.1.1" xref="S3.E43.m1.1.1.1.1.1.1.1.1.1.cmml">±</mo><msqrt id="S3.E43.m1.1.1.1.1.1.1.1.1.3" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.cmml"><mrow id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.cmml"><mrow id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.cmml"><mrow id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.cmml"><msup id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.2" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.2.cmml"><mi id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.2.2" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.2.2.cmml">a</mi><mn id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.2.3" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.2.3.cmml">2</mn></msup><mo id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.1" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.1.cmml">+</mo><mrow id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.cmml"><mn id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.2" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.2.cmml">4</mn><mo id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.1" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.1.cmml"></mo><mi id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.3" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.3.cmml">b</mi><mo id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.1a" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.1.cmml"></mo><mi id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.4" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.4.cmml">c</mi></mrow></mrow><mo id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.1" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.1.cmml">−</mo><mrow id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.cmml"><mn id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.2" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.2.cmml">2</mn><mo id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.1" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.1.cmml"></mo><mi id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.3" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.3.cmml">a</mi><mo id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.1a" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.1.cmml"></mo><mi id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.4" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.4.cmml">d</mi></mrow></mrow><mo id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.1" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.1.cmml">+</mo><msup id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.3" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.3.cmml"><mi id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.3.2" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.3.2.cmml">d</mi><mn id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.3.3" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.3.3.cmml">2</mn></msup></mrow></msqrt></mrow><mo id="S3.E43.m1.1.1.1.1.1.1.1.3" xref="S3.E43.m1.1.1.1.1.1.1.1.1.cmml">)</mo></mrow></mrow></mrow><mo id="S3.E43.m1.1.1.1.2" lspace="0em" xref="S3.E43.m1.1.1.1.1.cmml">.</mo></mrow><annotation-xml encoding="MathML-Content" id="S3.E43.m1.1b"><apply id="S3.E43.m1.1.1.1.1.cmml" xref="S3.E43.m1.1.1.1"><eq id="S3.E43.m1.1.1.1.1.2.cmml" xref="S3.E43.m1.1.1.1.1.2"></eq><apply id="S3.E43.m1.1.1.1.1.3.cmml" xref="S3.E43.m1.1.1.1.1.3"><csymbol cd="ambiguous" id="S3.E43.m1.1.1.1.1.3.1.cmml" xref="S3.E43.m1.1.1.1.1.3">subscript</csymbol><ci id="S3.E43.m1.1.1.1.1.3.2.cmml" xref="S3.E43.m1.1.1.1.1.3.2">𝜆</ci><csymbol cd="latexml" id="S3.E43.m1.1.1.1.1.3.3.cmml" xref="S3.E43.m1.1.1.1.1.3.3">plus-or-minus</csymbol></apply><apply id="S3.E43.m1.1.1.1.1.1.cmml" xref="S3.E43.m1.1.1.1.1.1"><times id="S3.E43.m1.1.1.1.1.1.2.cmml" xref="S3.E43.m1.1.1.1.1.1.2"></times><apply id="S3.E43.m1.1.1.1.1.1.3.cmml" xref="S3.E43.m1.1.1.1.1.1.3"><divide id="S3.E43.m1.1.1.1.1.1.3.1.cmml" xref="S3.E43.m1.1.1.1.1.1.3"></divide><cn id="S3.E43.m1.1.1.1.1.1.3.2.cmml" type="integer" xref="S3.E43.m1.1.1.1.1.1.3.2">1</cn><cn id="S3.E43.m1.1.1.1.1.1.3.3.cmml" type="integer" xref="S3.E43.m1.1.1.1.1.1.3.3">2</cn></apply><apply id="S3.E43.m1.1.1.1.1.1.1.1.1.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1"><csymbol cd="latexml" id="S3.E43.m1.1.1.1.1.1.1.1.1.1.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.1">plus-or-minus</csymbol><apply id="S3.E43.m1.1.1.1.1.1.1.1.1.2.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.2"><plus id="S3.E43.m1.1.1.1.1.1.1.1.1.2.1.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.2.1"></plus><ci id="S3.E43.m1.1.1.1.1.1.1.1.1.2.2.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.2.2">𝑎</ci><ci id="S3.E43.m1.1.1.1.1.1.1.1.1.2.3.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.2.3">𝑑</ci></apply><apply id="S3.E43.m1.1.1.1.1.1.1.1.1.3.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3"><root id="S3.E43.m1.1.1.1.1.1.1.1.1.3a.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3"></root><apply id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2"><plus id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.1.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.1"></plus><apply id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2"><minus id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.1.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.1"></minus><apply id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2"><plus id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.1.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.1"></plus><apply id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.2.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.2"><csymbol cd="ambiguous" id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.2.1.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.2">superscript</csymbol><ci id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.2.2.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.2.2">𝑎</ci><cn id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.2.3.cmml" type="integer" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.2.3">2</cn></apply><apply id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3"><times id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.1.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.1"></times><cn id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.2.cmml" type="integer" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.2">4</cn><ci id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.3.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.3">𝑏</ci><ci id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.4.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.2.3.4">𝑐</ci></apply></apply><apply id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3"><times id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.1.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.1"></times><cn id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.2.cmml" type="integer" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.2">2</cn><ci id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.3.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.3">𝑎</ci><ci id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.4.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.2.3.4">𝑑</ci></apply></apply><apply id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.3.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.3"><csymbol cd="ambiguous" id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.3.1.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.3">superscript</csymbol><ci id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.3.2.cmml" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.3.2">𝑑</ci><cn id="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.3.3.cmml" type="integer" xref="S3.E43.m1.1.1.1.1.1.1.1.1.3.2.3.3">2</cn></apply></apply></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.E43.m1.1c">\lambda_{\pm}=\frac{1}{2}\left(a+d\pm\sqrt{a^{2}+4bc-2ad+d^{2}}\right).</annotation><annotation encoding="application/x-llamapun" id="S3.E43.m1.1d">italic_λ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_a + italic_d ± square-root start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 4 italic_b italic_c - 2 italic_a italic_d + italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) .</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S3.SS4.p5.1">We can now proceed to apply <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS4.p5.1.1"><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="S3.SS4.p5.1.1.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS4.p5.1.1.2" style="font-size:90%;">abs</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="S3.SS4.p5.1.1.3" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="S3.SS4.p5.1.1.4" style="font-size:90%;">...<span class="ltx_text ltx_lst_literate" id="S3.SS4.p5.1.1.4.1" style="color:#999999;">)</span></span></span> to each symbolic eigenvalue, and then compare the absolute eigenvalues against the expressions in <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS4.p5.1.2"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS4.p5.1.2.1" style="font-size:90%;">max</span><span class="ltx_text ltx_font_typewriter" id="S3.SS4.p5.1.2.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p5.1.2.2.1">speed</span>-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p5.1.2.2.2">exprs</span></span></span> (after mapping <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS4.p5.1.3"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS4.p5.1.3.1" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="S3.SS4.p5.1.3.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p5.1.3.2.1">simp</span></span></span> over the two lists of expressions, reducing them to their respective normal forms) in order to confirm that they are indeed identical. Since the time-steps <math alttext="{\Delta t}" class="ltx_Math" display="inline" id="S3.SS4.p5.1.m1.1"><semantics id="S3.SS4.p5.1.m1.1a"><mrow id="S3.SS4.p5.1.m1.1.1" xref="S3.SS4.p5.1.m1.1.1.cmml"><mi id="S3.SS4.p5.1.m1.1.1.2" mathvariant="normal" xref="S3.SS4.p5.1.m1.1.1.2.cmml">Δ</mi><mo id="S3.SS4.p5.1.m1.1.1.1" xref="S3.SS4.p5.1.m1.1.1.1.cmml"></mo><mi id="S3.SS4.p5.1.m1.1.1.3" xref="S3.SS4.p5.1.m1.1.1.3.cmml">t</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS4.p5.1.m1.1b"><apply id="S3.SS4.p5.1.m1.1.1.cmml" xref="S3.SS4.p5.1.m1.1.1"><times id="S3.SS4.p5.1.m1.1.1.1.cmml" xref="S3.SS4.p5.1.m1.1.1.1"></times><ci id="S3.SS4.p5.1.m1.1.1.2.cmml" xref="S3.SS4.p5.1.m1.1.1.2">Δ</ci><ci id="S3.SS4.p5.1.m1.1.1.3.cmml" xref="S3.SS4.p5.1.m1.1.1.3">𝑡</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS4.p5.1.m1.1c">{\Delta t}</annotation><annotation encoding="application/x-llamapun" id="S3.SS4.p5.1.m1.1d">roman_Δ italic_t</annotation></semantics></math> within the generated C code are computed directly from the elements of <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS4.p5.1.4"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS4.p5.1.4.1" style="font-size:90%;">max</span><span class="ltx_text ltx_font_typewriter" id="S3.SS4.p5.1.4.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p5.1.4.2.1">speed</span>-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p5.1.4.2.2">exprs</span></span></span> as:</p> </div> <div class="ltx_para" id="S3.SS4.p6"> <table class="ltx_equation ltx_eqn_table" id="S3.E44"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(44)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\Delta t=\frac{C_{CFL}\Delta x}{\left\lvert a\right\rvert}," class="ltx_Math" display="block" id="S3.E44.m1.2"><semantics id="S3.E44.m1.2a"><mrow id="S3.E44.m1.2.2.1" xref="S3.E44.m1.2.2.1.1.cmml"><mrow id="S3.E44.m1.2.2.1.1" xref="S3.E44.m1.2.2.1.1.cmml"><mrow id="S3.E44.m1.2.2.1.1.2" xref="S3.E44.m1.2.2.1.1.2.cmml"><mi id="S3.E44.m1.2.2.1.1.2.2" mathvariant="normal" xref="S3.E44.m1.2.2.1.1.2.2.cmml">Δ</mi><mo id="S3.E44.m1.2.2.1.1.2.1" xref="S3.E44.m1.2.2.1.1.2.1.cmml"></mo><mi id="S3.E44.m1.2.2.1.1.2.3" xref="S3.E44.m1.2.2.1.1.2.3.cmml">t</mi></mrow><mo id="S3.E44.m1.2.2.1.1.1" xref="S3.E44.m1.2.2.1.1.1.cmml">=</mo><mfrac id="S3.E44.m1.1.1" xref="S3.E44.m1.1.1.cmml"><mrow id="S3.E44.m1.1.1.3" xref="S3.E44.m1.1.1.3.cmml"><msub id="S3.E44.m1.1.1.3.2" xref="S3.E44.m1.1.1.3.2.cmml"><mi id="S3.E44.m1.1.1.3.2.2" xref="S3.E44.m1.1.1.3.2.2.cmml">C</mi><mrow id="S3.E44.m1.1.1.3.2.3" xref="S3.E44.m1.1.1.3.2.3.cmml"><mi id="S3.E44.m1.1.1.3.2.3.2" xref="S3.E44.m1.1.1.3.2.3.2.cmml">C</mi><mo id="S3.E44.m1.1.1.3.2.3.1" xref="S3.E44.m1.1.1.3.2.3.1.cmml"></mo><mi id="S3.E44.m1.1.1.3.2.3.3" xref="S3.E44.m1.1.1.3.2.3.3.cmml">F</mi><mo id="S3.E44.m1.1.1.3.2.3.1a" xref="S3.E44.m1.1.1.3.2.3.1.cmml"></mo><mi id="S3.E44.m1.1.1.3.2.3.4" xref="S3.E44.m1.1.1.3.2.3.4.cmml">L</mi></mrow></msub><mo id="S3.E44.m1.1.1.3.1" xref="S3.E44.m1.1.1.3.1.cmml"></mo><mi id="S3.E44.m1.1.1.3.3" mathvariant="normal" xref="S3.E44.m1.1.1.3.3.cmml">Δ</mi><mo id="S3.E44.m1.1.1.3.1a" xref="S3.E44.m1.1.1.3.1.cmml"></mo><mi id="S3.E44.m1.1.1.3.4" xref="S3.E44.m1.1.1.3.4.cmml">x</mi></mrow><mrow id="S3.E44.m1.1.1.1.3" xref="S3.E44.m1.1.1.1.2.cmml"><mo id="S3.E44.m1.1.1.1.3.1" xref="S3.E44.m1.1.1.1.2.1.cmml">|</mo><mi id="S3.E44.m1.1.1.1.1" xref="S3.E44.m1.1.1.1.1.cmml">a</mi><mo id="S3.E44.m1.1.1.1.3.2" xref="S3.E44.m1.1.1.1.2.1.cmml">|</mo></mrow></mfrac></mrow><mo id="S3.E44.m1.2.2.1.2" xref="S3.E44.m1.2.2.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S3.E44.m1.2b"><apply id="S3.E44.m1.2.2.1.1.cmml" xref="S3.E44.m1.2.2.1"><eq id="S3.E44.m1.2.2.1.1.1.cmml" xref="S3.E44.m1.2.2.1.1.1"></eq><apply id="S3.E44.m1.2.2.1.1.2.cmml" xref="S3.E44.m1.2.2.1.1.2"><times id="S3.E44.m1.2.2.1.1.2.1.cmml" xref="S3.E44.m1.2.2.1.1.2.1"></times><ci id="S3.E44.m1.2.2.1.1.2.2.cmml" xref="S3.E44.m1.2.2.1.1.2.2">Δ</ci><ci id="S3.E44.m1.2.2.1.1.2.3.cmml" xref="S3.E44.m1.2.2.1.1.2.3">𝑡</ci></apply><apply id="S3.E44.m1.1.1.cmml" xref="S3.E44.m1.1.1"><divide id="S3.E44.m1.1.1.2.cmml" xref="S3.E44.m1.1.1"></divide><apply id="S3.E44.m1.1.1.3.cmml" xref="S3.E44.m1.1.1.3"><times id="S3.E44.m1.1.1.3.1.cmml" xref="S3.E44.m1.1.1.3.1"></times><apply id="S3.E44.m1.1.1.3.2.cmml" xref="S3.E44.m1.1.1.3.2"><csymbol cd="ambiguous" id="S3.E44.m1.1.1.3.2.1.cmml" xref="S3.E44.m1.1.1.3.2">subscript</csymbol><ci id="S3.E44.m1.1.1.3.2.2.cmml" xref="S3.E44.m1.1.1.3.2.2">𝐶</ci><apply id="S3.E44.m1.1.1.3.2.3.cmml" xref="S3.E44.m1.1.1.3.2.3"><times id="S3.E44.m1.1.1.3.2.3.1.cmml" xref="S3.E44.m1.1.1.3.2.3.1"></times><ci id="S3.E44.m1.1.1.3.2.3.2.cmml" xref="S3.E44.m1.1.1.3.2.3.2">𝐶</ci><ci id="S3.E44.m1.1.1.3.2.3.3.cmml" xref="S3.E44.m1.1.1.3.2.3.3">𝐹</ci><ci id="S3.E44.m1.1.1.3.2.3.4.cmml" xref="S3.E44.m1.1.1.3.2.3.4">𝐿</ci></apply></apply><ci id="S3.E44.m1.1.1.3.3.cmml" xref="S3.E44.m1.1.1.3.3">Δ</ci><ci id="S3.E44.m1.1.1.3.4.cmml" xref="S3.E44.m1.1.1.3.4">𝑥</ci></apply><apply id="S3.E44.m1.1.1.1.2.cmml" xref="S3.E44.m1.1.1.1.3"><abs id="S3.E44.m1.1.1.1.2.1.cmml" xref="S3.E44.m1.1.1.1.3.1"></abs><ci id="S3.E44.m1.1.1.1.1.cmml" xref="S3.E44.m1.1.1.1.1">𝑎</ci></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.E44.m1.2c">\Delta t=\frac{C_{CFL}\Delta x}{\left\lvert a\right\rvert},</annotation><annotation encoding="application/x-llamapun" id="S3.E44.m1.2d">roman_Δ italic_t = divide start_ARG italic_C start_POSTSUBSCRIPT italic_C italic_F italic_L end_POSTSUBSCRIPT roman_Δ italic_x end_ARG start_ARG | italic_a | end_ARG ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S3.SS4.p6.2">where <math alttext="{\left\lvert a\right\rvert}" class="ltx_Math" display="inline" id="S3.SS4.p6.1.m1.1"><semantics id="S3.SS4.p6.1.m1.1a"><mrow id="S3.SS4.p6.1.m1.1.2.2" xref="S3.SS4.p6.1.m1.1.2.1.cmml"><mo id="S3.SS4.p6.1.m1.1.2.2.1" xref="S3.SS4.p6.1.m1.1.2.1.1.cmml">|</mo><mi id="S3.SS4.p6.1.m1.1.1" xref="S3.SS4.p6.1.m1.1.1.cmml">a</mi><mo id="S3.SS4.p6.1.m1.1.2.2.2" xref="S3.SS4.p6.1.m1.1.2.1.1.cmml">|</mo></mrow><annotation-xml encoding="MathML-Content" id="S3.SS4.p6.1.m1.1b"><apply id="S3.SS4.p6.1.m1.1.2.1.cmml" xref="S3.SS4.p6.1.m1.1.2.2"><abs id="S3.SS4.p6.1.m1.1.2.1.1.cmml" xref="S3.SS4.p6.1.m1.1.2.2.1"></abs><ci id="S3.SS4.p6.1.m1.1.1.cmml" xref="S3.SS4.p6.1.m1.1.1">𝑎</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS4.p6.1.m1.1c">{\left\lvert a\right\rvert}</annotation><annotation encoding="application/x-llamapun" id="S3.SS4.p6.1.m1.1d">| italic_a |</annotation></semantics></math> is the largest value in <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS4.p6.2.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS4.p6.2.1.1" style="font-size:90%;">max</span><span class="ltx_text ltx_font_typewriter" id="S3.SS4.p6.2.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p6.2.1.2.1">speed</span>-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p6.2.1.2.2">exprs</span></span></span>, this condition is sufficient to guarantee CFL stability under Theorem <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.Thmtheorem2" title="Theorem 2.2. ‣ 2.2. The Lax-Friedrichs Flux ‣ 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2.2</span></a> provided that <math alttext="{0<C_{CFL}\leq 1}" class="ltx_Math" display="inline" id="S3.SS4.p6.2.m2.1"><semantics id="S3.SS4.p6.2.m2.1a"><mrow id="S3.SS4.p6.2.m2.1.1" xref="S3.SS4.p6.2.m2.1.1.cmml"><mn id="S3.SS4.p6.2.m2.1.1.2" xref="S3.SS4.p6.2.m2.1.1.2.cmml">0</mn><mo id="S3.SS4.p6.2.m2.1.1.3" xref="S3.SS4.p6.2.m2.1.1.3.cmml"><</mo><msub id="S3.SS4.p6.2.m2.1.1.4" xref="S3.SS4.p6.2.m2.1.1.4.cmml"><mi id="S3.SS4.p6.2.m2.1.1.4.2" xref="S3.SS4.p6.2.m2.1.1.4.2.cmml">C</mi><mrow id="S3.SS4.p6.2.m2.1.1.4.3" xref="S3.SS4.p6.2.m2.1.1.4.3.cmml"><mi id="S3.SS4.p6.2.m2.1.1.4.3.2" xref="S3.SS4.p6.2.m2.1.1.4.3.2.cmml">C</mi><mo id="S3.SS4.p6.2.m2.1.1.4.3.1" xref="S3.SS4.p6.2.m2.1.1.4.3.1.cmml"></mo><mi id="S3.SS4.p6.2.m2.1.1.4.3.3" xref="S3.SS4.p6.2.m2.1.1.4.3.3.cmml">F</mi><mo id="S3.SS4.p6.2.m2.1.1.4.3.1a" xref="S3.SS4.p6.2.m2.1.1.4.3.1.cmml"></mo><mi id="S3.SS4.p6.2.m2.1.1.4.3.4" xref="S3.SS4.p6.2.m2.1.1.4.3.4.cmml">L</mi></mrow></msub><mo id="S3.SS4.p6.2.m2.1.1.5" xref="S3.SS4.p6.2.m2.1.1.5.cmml">≤</mo><mn id="S3.SS4.p6.2.m2.1.1.6" xref="S3.SS4.p6.2.m2.1.1.6.cmml">1</mn></mrow><annotation-xml encoding="MathML-Content" id="S3.SS4.p6.2.m2.1b"><apply id="S3.SS4.p6.2.m2.1.1.cmml" xref="S3.SS4.p6.2.m2.1.1"><and id="S3.SS4.p6.2.m2.1.1a.cmml" xref="S3.SS4.p6.2.m2.1.1"></and><apply id="S3.SS4.p6.2.m2.1.1b.cmml" xref="S3.SS4.p6.2.m2.1.1"><lt id="S3.SS4.p6.2.m2.1.1.3.cmml" xref="S3.SS4.p6.2.m2.1.1.3"></lt><cn id="S3.SS4.p6.2.m2.1.1.2.cmml" type="integer" xref="S3.SS4.p6.2.m2.1.1.2">0</cn><apply id="S3.SS4.p6.2.m2.1.1.4.cmml" xref="S3.SS4.p6.2.m2.1.1.4"><csymbol cd="ambiguous" id="S3.SS4.p6.2.m2.1.1.4.1.cmml" xref="S3.SS4.p6.2.m2.1.1.4">subscript</csymbol><ci id="S3.SS4.p6.2.m2.1.1.4.2.cmml" xref="S3.SS4.p6.2.m2.1.1.4.2">𝐶</ci><apply id="S3.SS4.p6.2.m2.1.1.4.3.cmml" xref="S3.SS4.p6.2.m2.1.1.4.3"><times id="S3.SS4.p6.2.m2.1.1.4.3.1.cmml" xref="S3.SS4.p6.2.m2.1.1.4.3.1"></times><ci id="S3.SS4.p6.2.m2.1.1.4.3.2.cmml" xref="S3.SS4.p6.2.m2.1.1.4.3.2">𝐶</ci><ci id="S3.SS4.p6.2.m2.1.1.4.3.3.cmml" xref="S3.SS4.p6.2.m2.1.1.4.3.3">𝐹</ci><ci id="S3.SS4.p6.2.m2.1.1.4.3.4.cmml" xref="S3.SS4.p6.2.m2.1.1.4.3.4">𝐿</ci></apply></apply></apply><apply id="S3.SS4.p6.2.m2.1.1c.cmml" xref="S3.SS4.p6.2.m2.1.1"><leq id="S3.SS4.p6.2.m2.1.1.5.cmml" xref="S3.SS4.p6.2.m2.1.1.5"></leq><share href="https://arxiv.org/html/2503.13877v1#S3.SS4.p6.2.m2.1.1.4.cmml" id="S3.SS4.p6.2.m2.1.1d.cmml" xref="S3.SS4.p6.2.m2.1.1"></share><cn id="S3.SS4.p6.2.m2.1.1.6.cmml" type="integer" xref="S3.SS4.p6.2.m2.1.1.6">1</cn></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS4.p6.2.m2.1c">{0<C_{CFL}\leq 1}</annotation><annotation encoding="application/x-llamapun" id="S3.SS4.p6.2.m2.1d">0 < italic_C start_POSTSUBSCRIPT italic_C italic_F italic_L end_POSTSUBSCRIPT ≤ 1</annotation></semantics></math>, which is also verified by the theorem-prover during the initialization step:</p> </div> <div class="ltx_para" id="S3.SS4.p7"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS4.p7.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KGNvbmQKICBbKG9yICg8PSBjZmwgMCkgKD4gY2ZsIDEpKSAjZl0KICAuLi4KICBbZWxzZSAjdF0p">⬇</a></div> <div class="ltx_listingline" id="lstnumberx138"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx138.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx138.2" style="font-size:90%;color:#0000FF;">cond</span> </div> <div class="ltx_listingline" id="lstnumberx139"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx139.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx139.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx139.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx139.4" style="font-size:90%;color:#0000FF;">or</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx139.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx139.6" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx139.7" style="font-size:90%;"><=</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx139.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx139.9" style="font-size:90%;">cfl</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx139.10" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx139.11" style="font-size:90%;">0</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx139.12" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx139.13" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx139.14" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx139.15" style="font-size:90%;">></span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx139.16" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx139.17" style="font-size:90%;">cfl</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx139.18" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx139.19" style="font-size:90%;">1</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx139.20" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx139.21" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx139.22" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx139.23" style="font-size:90%;">#</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx139.24" style="font-size:90%;">f</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx139.25" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx140"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx140.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx140.2" style="font-size:90%;">...</span> </div> <div class="ltx_listingline" id="lstnumberx141"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx141.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx141.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx141.3" style="font-size:90%;color:#0000FF;">else</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx141.4" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx141.5" style="font-size:90%;">#</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx141.6" style="font-size:90%;">t</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx141.7" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx141.8" style="font-size:90%;color:#999999;">)</span> </div> </div> </div> <div class="ltx_para" id="S3.SS4.p8"> <p class="ltx_p" id="S3.SS4.p8.1">In order to prove that a given Lax-Friedrichs solver meets the hyperbolicity-preservation criterion listed in Theorem <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.Thmtheorem1" title="Theorem 2.1. ‣ 2.2. The Lax-Friedrichs Flux ‣ 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2.1</span></a>, one must, furthermore, determine whether each of the symbolic eigenvalues of the flux Jacobian <math alttext="{\mathbf{J}_{\mathbf{F}}}" class="ltx_Math" display="inline" id="S3.SS4.p8.1.m1.1"><semantics id="S3.SS4.p8.1.m1.1a"><msub id="S3.SS4.p8.1.m1.1.1" xref="S3.SS4.p8.1.m1.1.1.cmml"><mi id="S3.SS4.p8.1.m1.1.1.2" xref="S3.SS4.p8.1.m1.1.1.2.cmml">𝐉</mi><mi id="S3.SS4.p8.1.m1.1.1.3" xref="S3.SS4.p8.1.m1.1.1.3.cmml">𝐅</mi></msub><annotation-xml encoding="MathML-Content" id="S3.SS4.p8.1.m1.1b"><apply id="S3.SS4.p8.1.m1.1.1.cmml" xref="S3.SS4.p8.1.m1.1.1"><csymbol cd="ambiguous" id="S3.SS4.p8.1.m1.1.1.1.cmml" xref="S3.SS4.p8.1.m1.1.1">subscript</csymbol><ci id="S3.SS4.p8.1.m1.1.1.2.cmml" xref="S3.SS4.p8.1.m1.1.1.2">𝐉</ci><ci id="S3.SS4.p8.1.m1.1.1.3.cmml" xref="S3.SS4.p8.1.m1.1.1.3">𝐅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS4.p8.1.m1.1c">{\mathbf{J}_{\mathbf{F}}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS4.p8.1.m1.1d">bold_J start_POSTSUBSCRIPT bold_F end_POSTSUBSCRIPT</annotation></semantics></math> corresponds to a real number. For this purpose, we introduce an <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS4.p8.1.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS4.p8.1.1.1" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="S3.SS4.p8.1.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p8.1.1.2.1">real</span></span></span> function:</p> </div> <div class="ltx_para" id="S3.SS4.p9"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS4.p9.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KGRlZmluZSAoaXMtcmVhbCBleHByIGNvbnMtdmFyIHBhcmFtZXRlcnMpCiAgKG1hdGNoIGV4cHIKICAgIFsoPyByZWFsPykgI3RdCiAgICAuLi4KICAgIFsoPyAobGFtYmRhIChhcmcpCiAgICAgIChub3QgKGVxdWFsPyAobWVtYmVyIGFyZyBjb25zLXZhcnMpCiAgICAgICAgI2YpKSkpICN0XQogICAgLi4uCiAgICBbKD8gKGxhbWJkYSAoYXJnKQogICAgICAoYW5kIChub3QgKGVtcHR5PyBwYXJhbWV0ZXJzKSkgKG9ybWFwCiAgICAgICAgKGxhbWJkYSAocGFyYW1ldGVyKSAoZXF1YWw/IGFyZwogICAgICAgICAgKGxpc3QtcmVmIHBhcmFtZXRlciAxKSkpCiAgICAgICAgcGFyYW1ldGVycykpKSkgI3RdCiAgICAuLi4KICAgIFsoZWxzZSAjZildKSk=">⬇</a></div> <div class="ltx_listingline" id="lstnumberx142"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx142.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx142.2" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx142.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx142.4" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx142.5" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx142.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx142.7" style="font-size:90%;">real</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx142.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx142.9" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx142.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx142.11" style="font-size:90%;">cons</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx142.12" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx142.13" style="font-size:90%;">var</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx142.14" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx142.15" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx142.16" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx143"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx143.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx143.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx143.3" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx143.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx143.5" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx144"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx144.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx144.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx144.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx144.4" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx144.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx144.6" style="font-size:90%;">real</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx144.7" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx144.8" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx144.9" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx144.10" style="font-size:90%;">#</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx144.11" style="font-size:90%;">t</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx144.12" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx145"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx145.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx145.2" style="font-size:90%;">...</span> </div> <div class="ltx_listingline" id="lstnumberx146"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx146.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx146.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx146.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx146.4" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx146.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx146.6" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keyword ltx_font_typewriter" id="lstnumberx146.7" style="font-size:90%;color:#0000FF;">lambda</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx146.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx146.9" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx146.10" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx146.11" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx147"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx147.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx147.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx147.3" style="font-size:90%;">not</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx147.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx147.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx147.6" style="font-size:90%;">equal</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx147.7" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx147.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx147.9" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx147.10" style="font-size:90%;">member</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx147.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx147.12" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx147.13" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx147.14" style="font-size:90%;">cons</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx147.15" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx147.16" style="font-size:90%;">vars</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx147.17" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx148"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx148.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx148.2" style="font-size:90%;">#</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx148.3" style="font-size:90%;">f</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx148.4" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx148.5" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx148.6" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx148.7" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx148.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx148.9" style="font-size:90%;">#</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx148.10" style="font-size:90%;">t</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx148.11" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx149"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx149.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx149.2" style="font-size:90%;">...</span> </div> <div class="ltx_listingline" id="lstnumberx150"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx150.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx150.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx150.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx150.4" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx150.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx150.6" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keyword ltx_font_typewriter" id="lstnumberx150.7" style="font-size:90%;color:#0000FF;">lambda</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx150.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx150.9" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx150.10" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx150.11" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx151"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx151.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx151.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx151.3" style="font-size:90%;color:#0000FF;">and</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx151.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx151.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx151.6" style="font-size:90%;">not</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx151.7" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx151.8" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx151.9" style="font-size:90%;">empty</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx151.10" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx151.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx151.12" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx151.13" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx151.14" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx151.15" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx151.16" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx151.17" style="font-size:90%;">ormap</span> </div> <div class="ltx_listingline" id="lstnumberx152"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx152.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx152.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keyword ltx_font_typewriter" id="lstnumberx152.3" style="font-size:90%;color:#0000FF;">lambda</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx152.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx152.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx152.6" style="font-size:90%;">parameter</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx152.7" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx152.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx152.9" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx152.10" style="font-size:90%;">equal</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx152.11" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx152.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx152.13" style="font-size:90%;">arg</span> </div> <div class="ltx_listingline" id="lstnumberx153"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx153.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx153.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx153.3" style="font-size:90%;">list</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx153.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx153.5" style="font-size:90%;">ref</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx153.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx153.7" style="font-size:90%;">parameter</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx153.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx153.9" style="font-size:90%;">1</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx153.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx153.11" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx153.12" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx154"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx154.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx154.2" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx154.3" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx154.4" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx154.5" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx154.6" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx154.7" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx154.8" style="font-size:90%;">#</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx154.9" style="font-size:90%;">t</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx154.10" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx155"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx155.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx155.2" style="font-size:90%;">...</span> </div> <div class="ltx_listingline" id="lstnumberx156"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx156.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx156.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx156.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx156.4" style="font-size:90%;color:#0000FF;">else</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx156.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx156.6" style="font-size:90%;">#</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx156.7" style="font-size:90%;">f</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx156.8" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx156.9" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx156.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx156.11" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS4.p9.2">The base case of <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS4.p9.2.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS4.p9.2.1.1" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="S3.SS4.p9.2.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p9.2.1.2.1">real</span></span></span> treats any real numerical constant as a real number, and any simulation parameter or conserved variable is also assumed to be real by default. This latter condition is then enforced during the simulation initialization step itself:</p> </div> <div class="ltx_para" id="S3.SS4.p10"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS4.p10.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KGNvbmQKICBbKG5vdCAob3IgKGVtcHR5PyBwYXJhbWV0ZXJzKSAoYW5kbWFwCiAgICAobGFtYmRhIChwYXJhbWV0ZXIpIChpcy1yZWFsCiAgICAgIChsaXN0LXJlZiBwYXJhbWV0ZXIgMikgKGxpc3QgY29ucy1leHByKQogICAgICBwYXJhbWV0ZXJzKSkgcGFyYW1ldGVycykpKSAjZl0KICBbKG5vdCAoaXMtcmVhbCBpbml0LWZ1bmMgKGxpc3QgY29ucy1leHByKQogICAgcGFyYW1ldGVycykpICNmXQogIC4uLgogIFtlbHNlICN0XSk=">⬇</a></div> <div class="ltx_listingline" id="lstnumberx157"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx157.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx157.2" style="font-size:90%;color:#0000FF;">cond</span> </div> <div class="ltx_listingline" id="lstnumberx158"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx158.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx158.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx158.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx158.4" style="font-size:90%;">not</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx158.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx158.6" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx158.7" style="font-size:90%;color:#0000FF;">or</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx158.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx158.9" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx158.10" style="font-size:90%;">empty</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx158.11" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx158.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx158.13" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx158.14" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx158.15" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx158.16" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx158.17" style="font-size:90%;">andmap</span> </div> <div class="ltx_listingline" id="lstnumberx159"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx159.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx159.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keyword ltx_font_typewriter" id="lstnumberx159.3" style="font-size:90%;color:#0000FF;">lambda</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx159.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx159.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx159.6" style="font-size:90%;">parameter</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx159.7" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx159.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx159.9" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx159.10" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx159.11" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx159.12" style="font-size:90%;">real</span> </div> <div class="ltx_listingline" id="lstnumberx160"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx160.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx160.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx160.3" style="font-size:90%;">list</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx160.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx160.5" style="font-size:90%;">ref</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx160.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx160.7" style="font-size:90%;">parameter</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx160.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx160.9" style="font-size:90%;">2</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx160.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx160.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx160.12" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx160.13" style="font-size:90%;">list</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx160.14" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx160.15" style="font-size:90%;">cons</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx160.16" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx160.17" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx160.18" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx161"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx161.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx161.2" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx161.3" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx161.4" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx161.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx161.6" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx161.7" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx161.8" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx161.9" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx161.10" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx161.11" style="font-size:90%;">#</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx161.12" style="font-size:90%;">f</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx161.13" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx162"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx162.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx162.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx162.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx162.4" style="font-size:90%;">not</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx162.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx162.6" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx162.7" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx162.8" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx162.9" style="font-size:90%;">real</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx162.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx162.11" style="font-size:90%;">init</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx162.12" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx162.13" style="font-size:90%;">func</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx162.14" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx162.15" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx162.16" style="font-size:90%;">list</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx162.17" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx162.18" style="font-size:90%;">cons</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx162.19" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx162.20" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx162.21" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx163"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx163.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx163.2" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx163.3" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx163.4" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx163.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx163.6" style="font-size:90%;">#</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx163.7" style="font-size:90%;">f</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx163.8" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx164"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx164.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx164.2" style="font-size:90%;">...</span> </div> <div class="ltx_listingline" id="lstnumberx165"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx165.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx165.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx165.3" style="font-size:90%;color:#0000FF;">else</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx165.4" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx165.5" style="font-size:90%;">#</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx165.6" style="font-size:90%;">t</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx165.7" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx165.8" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS4.p10.2">We enforce that the set of real numbers is closed under operations like addition, subtraction, and multiplication, e.g:</p> </div> <div class="ltx_para" id="S3.SS4.p11"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS4.p11.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KG1hdGNoIGV4cHIKICBbYCgrIC4gLHRlcm1zKQogICAgKGFuZG1hcCAobGFtYmRhICh0ZXJtKQogICAgICAoaXMtcmVhbCB0ZXJtIGNvbnMtdmFycyBwYXJhbWV0ZXJzKSkKICAgIHRlcm1zKV0KICAuLi4p">⬇</a></div> <div class="ltx_listingline" id="lstnumberx166"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx166.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx166.2" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx166.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx166.4" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx167"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx167.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx167.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx167.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx167.4" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx167.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx167.6" style="font-size:90%;">.</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx167.7" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx167.8" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx167.9" style="font-size:90%;">terms</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx167.10" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx168"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx168.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx168.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx168.3" style="font-size:90%;">andmap</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx168.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx168.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keyword ltx_font_typewriter" id="lstnumberx168.6" style="font-size:90%;color:#0000FF;">lambda</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx168.7" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx168.8" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx168.9" style="font-size:90%;">term</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx168.10" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx169"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx169.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx169.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx169.3" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx169.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx169.5" style="font-size:90%;">real</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx169.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx169.7" style="font-size:90%;">term</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx169.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx169.9" style="font-size:90%;">cons</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx169.10" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx169.11" style="font-size:90%;">vars</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx169.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx169.13" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx169.14" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx169.15" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx170"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx170.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx170.2" style="font-size:90%;">terms</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx170.3" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx170.4" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx171"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx171.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx171.2" style="font-size:90%;">...</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx171.3" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS4.p11.2">etc., and also that the set of reals remains closed under division so long as the denominator is non-zero, and under square roots so long as the argument is non-negative; these latter two conditions are enforced via the additional functions <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS4.p11.2.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS4.p11.2.1.1" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="S3.SS4.p11.2.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p11.2.1.2.1">non</span>-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p11.2.1.2.2">zero</span></span></span> and <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS4.p11.2.2"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS4.p11.2.2.1" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="S3.SS4.p11.2.2.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p11.2.2.2.1">non</span>-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p11.2.2.2.2">negative</span></span></span>, which will be described momentarily.</p> </div> <div class="ltx_para" id="S3.SS4.p12"> <p class="ltx_p" id="S3.SS4.p12.1">Moreover, <span class="ltx_text ltx_font_italic" id="S3.SS4.p12.1.1">strict</span> hyperbolicity-preservation of a given Lax-Friedrichs solver can be proven (in the 2x2 case) by proving that the symbolic eigenvalues of the flux Jacobian <math alttext="{\mathbf{J}_{\mathbf{F}}}" class="ltx_Math" display="inline" id="S3.SS4.p12.1.m1.1"><semantics id="S3.SS4.p12.1.m1.1a"><msub id="S3.SS4.p12.1.m1.1.1" xref="S3.SS4.p12.1.m1.1.1.cmml"><mi id="S3.SS4.p12.1.m1.1.1.2" xref="S3.SS4.p12.1.m1.1.1.2.cmml">𝐉</mi><mi id="S3.SS4.p12.1.m1.1.1.3" xref="S3.SS4.p12.1.m1.1.1.3.cmml">𝐅</mi></msub><annotation-xml encoding="MathML-Content" id="S3.SS4.p12.1.m1.1b"><apply id="S3.SS4.p12.1.m1.1.1.cmml" xref="S3.SS4.p12.1.m1.1.1"><csymbol cd="ambiguous" id="S3.SS4.p12.1.m1.1.1.1.cmml" xref="S3.SS4.p12.1.m1.1.1">subscript</csymbol><ci id="S3.SS4.p12.1.m1.1.1.2.cmml" xref="S3.SS4.p12.1.m1.1.1.2">𝐉</ci><ci id="S3.SS4.p12.1.m1.1.1.3.cmml" xref="S3.SS4.p12.1.m1.1.1.3">𝐅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS4.p12.1.m1.1c">{\mathbf{J}_{\mathbf{F}}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS4.p12.1.m1.1d">bold_J start_POSTSUBSCRIPT bold_F end_POSTSUBSCRIPT</annotation></semantics></math> are not only real but also distinct, using the <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS4.p12.1.2"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS4.p12.1.2.1" style="font-size:90%;">are</span><span class="ltx_text ltx_font_typewriter" id="S3.SS4.p12.1.2.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p12.1.2.2.1">distinct</span></span></span> function:</p> </div> <div class="ltx_para" id="S3.SS4.p13"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS4.p13.5"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KGRlZmluZSAoYXJlLWRpc3RpbmN0IGV4cHIgcGFyYW1ldGVycykKICAobWF0Y2ggZXhwcgogICAgWyg/IChsYW1iZGEgKGFyZykgKGFuZCAobnVtYmVyPwogICAgICAobGlzdC1yZWYgYXJnIDApKSAobnVtYmVyPwogICAgICAgIChsaXN0LXJlZiBhcmcgMSkpCiAgICAgIChub3QgKGVxdWFsPyAobGlzdC1yZWYgYXJnIDApCiAgICAgICAgKGxpc3QtcmVmIGFyZyAxKSkpKSkpICN0XQogIC4uLgogIFtlbHNlICNmXSkp">⬇</a></div> <div class="ltx_listingline" id="lstnumberx172"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx172.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx172.2" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx172.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx172.4" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx172.5" style="font-size:90%;">are</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx172.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx172.7" style="font-size:90%;">distinct</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx172.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx172.9" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx172.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx172.11" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx172.12" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx173"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx173.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx173.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx173.3" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx173.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx173.5" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx174"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx174.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx174.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx174.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx174.4" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx174.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx174.6" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keyword ltx_font_typewriter" id="lstnumberx174.7" style="font-size:90%;color:#0000FF;">lambda</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx174.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx174.9" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx174.10" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx174.11" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx174.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx174.13" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx174.14" style="font-size:90%;color:#0000FF;">and</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx174.15" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx174.16" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx174.17" style="font-size:90%;">number</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx174.18" style="font-size:90%;">?</span> </div> <div class="ltx_listingline" id="lstnumberx175"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx175.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx175.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx175.3" style="font-size:90%;">list</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx175.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx175.5" style="font-size:90%;">ref</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx175.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx175.7" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx175.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx175.9" style="font-size:90%;">0</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx175.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx175.11" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx175.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx175.13" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx175.14" style="font-size:90%;">number</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx175.15" style="font-size:90%;">?</span> </div> <div class="ltx_listingline" id="lstnumberx176"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx176.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx176.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx176.3" style="font-size:90%;">list</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx176.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx176.5" style="font-size:90%;">ref</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx176.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx176.7" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx176.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx176.9" style="font-size:90%;">1</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx176.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx176.11" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx177"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx177.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx177.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx177.3" style="font-size:90%;">not</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx177.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx177.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx177.6" style="font-size:90%;">equal</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx177.7" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx177.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx177.9" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx177.10" style="font-size:90%;">list</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx177.11" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx177.12" style="font-size:90%;">ref</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx177.13" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx177.14" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx177.15" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx177.16" style="font-size:90%;">0</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx177.17" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx178"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx178.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx178.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx178.3" style="font-size:90%;">list</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx178.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx178.5" style="font-size:90%;">ref</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx178.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx178.7" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx178.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx178.9" style="font-size:90%;">1</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx178.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx178.11" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx178.12" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx178.13" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx178.14" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx178.15" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx178.16" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx178.17" style="font-size:90%;">#</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx178.18" style="font-size:90%;">t</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx178.19" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx179"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx179.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx179.2" style="font-size:90%;">...</span> </div> <div class="ltx_listingline" id="lstnumberx180"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx180.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx180.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx180.3" style="font-size:90%;color:#0000FF;">else</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx180.4" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx180.5" style="font-size:90%;">#</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx180.6" style="font-size:90%;">f</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx180.7" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx180.8" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx180.9" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS4.p13.4">The base case of <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS4.p13.4.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS4.p13.4.1.1" style="font-size:90%;">are</span><span class="ltx_text ltx_font_typewriter" id="S3.SS4.p13.4.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p13.4.1.2.1">distinct</span></span></span> treats any pair of non-equal numerical constants as distinct. Pairs of expressions of the form <math alttext="{\left\{x,-x\right\}}" class="ltx_Math" display="inline" id="S3.SS4.p13.1.m1.2"><semantics id="S3.SS4.p13.1.m1.2a"><mrow id="S3.SS4.p13.1.m1.2.2.1" xref="S3.SS4.p13.1.m1.2.2.2.cmml"><mo id="S3.SS4.p13.1.m1.2.2.1.2" xref="S3.SS4.p13.1.m1.2.2.2.cmml">{</mo><mi id="S3.SS4.p13.1.m1.1.1" xref="S3.SS4.p13.1.m1.1.1.cmml">x</mi><mo id="S3.SS4.p13.1.m1.2.2.1.3" xref="S3.SS4.p13.1.m1.2.2.2.cmml">,</mo><mrow id="S3.SS4.p13.1.m1.2.2.1.1" xref="S3.SS4.p13.1.m1.2.2.1.1.cmml"><mo id="S3.SS4.p13.1.m1.2.2.1.1a" xref="S3.SS4.p13.1.m1.2.2.1.1.cmml">−</mo><mi id="S3.SS4.p13.1.m1.2.2.1.1.2" xref="S3.SS4.p13.1.m1.2.2.1.1.2.cmml">x</mi></mrow><mo id="S3.SS4.p13.1.m1.2.2.1.4" xref="S3.SS4.p13.1.m1.2.2.2.cmml">}</mo></mrow><annotation-xml encoding="MathML-Content" id="S3.SS4.p13.1.m1.2b"><set id="S3.SS4.p13.1.m1.2.2.2.cmml" xref="S3.SS4.p13.1.m1.2.2.1"><ci id="S3.SS4.p13.1.m1.1.1.cmml" xref="S3.SS4.p13.1.m1.1.1">𝑥</ci><apply id="S3.SS4.p13.1.m1.2.2.1.1.cmml" xref="S3.SS4.p13.1.m1.2.2.1.1"><minus id="S3.SS4.p13.1.m1.2.2.1.1.1.cmml" xref="S3.SS4.p13.1.m1.2.2.1.1"></minus><ci id="S3.SS4.p13.1.m1.2.2.1.1.2.cmml" xref="S3.SS4.p13.1.m1.2.2.1.1.2">𝑥</ci></apply></set></annotation-xml><annotation encoding="application/x-tex" id="S3.SS4.p13.1.m1.2c">{\left\{x,-x\right\}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS4.p13.1.m1.2d">{ italic_x , - italic_x }</annotation></semantics></math> or <math alttext="{\left\{x+y,x-y\right\}}" class="ltx_Math" display="inline" id="S3.SS4.p13.2.m2.2"><semantics id="S3.SS4.p13.2.m2.2a"><mrow id="S3.SS4.p13.2.m2.2.2.2" xref="S3.SS4.p13.2.m2.2.2.3.cmml"><mo id="S3.SS4.p13.2.m2.2.2.2.3" xref="S3.SS4.p13.2.m2.2.2.3.cmml">{</mo><mrow id="S3.SS4.p13.2.m2.1.1.1.1" xref="S3.SS4.p13.2.m2.1.1.1.1.cmml"><mi id="S3.SS4.p13.2.m2.1.1.1.1.2" xref="S3.SS4.p13.2.m2.1.1.1.1.2.cmml">x</mi><mo id="S3.SS4.p13.2.m2.1.1.1.1.1" xref="S3.SS4.p13.2.m2.1.1.1.1.1.cmml">+</mo><mi id="S3.SS4.p13.2.m2.1.1.1.1.3" xref="S3.SS4.p13.2.m2.1.1.1.1.3.cmml">y</mi></mrow><mo id="S3.SS4.p13.2.m2.2.2.2.4" xref="S3.SS4.p13.2.m2.2.2.3.cmml">,</mo><mrow id="S3.SS4.p13.2.m2.2.2.2.2" xref="S3.SS4.p13.2.m2.2.2.2.2.cmml"><mi id="S3.SS4.p13.2.m2.2.2.2.2.2" xref="S3.SS4.p13.2.m2.2.2.2.2.2.cmml">x</mi><mo id="S3.SS4.p13.2.m2.2.2.2.2.1" xref="S3.SS4.p13.2.m2.2.2.2.2.1.cmml">−</mo><mi id="S3.SS4.p13.2.m2.2.2.2.2.3" xref="S3.SS4.p13.2.m2.2.2.2.2.3.cmml">y</mi></mrow><mo id="S3.SS4.p13.2.m2.2.2.2.5" xref="S3.SS4.p13.2.m2.2.2.3.cmml">}</mo></mrow><annotation-xml encoding="MathML-Content" id="S3.SS4.p13.2.m2.2b"><set id="S3.SS4.p13.2.m2.2.2.3.cmml" xref="S3.SS4.p13.2.m2.2.2.2"><apply id="S3.SS4.p13.2.m2.1.1.1.1.cmml" xref="S3.SS4.p13.2.m2.1.1.1.1"><plus id="S3.SS4.p13.2.m2.1.1.1.1.1.cmml" xref="S3.SS4.p13.2.m2.1.1.1.1.1"></plus><ci id="S3.SS4.p13.2.m2.1.1.1.1.2.cmml" xref="S3.SS4.p13.2.m2.1.1.1.1.2">𝑥</ci><ci id="S3.SS4.p13.2.m2.1.1.1.1.3.cmml" xref="S3.SS4.p13.2.m2.1.1.1.1.3">𝑦</ci></apply><apply id="S3.SS4.p13.2.m2.2.2.2.2.cmml" xref="S3.SS4.p13.2.m2.2.2.2.2"><minus id="S3.SS4.p13.2.m2.2.2.2.2.1.cmml" xref="S3.SS4.p13.2.m2.2.2.2.2.1"></minus><ci id="S3.SS4.p13.2.m2.2.2.2.2.2.cmml" xref="S3.SS4.p13.2.m2.2.2.2.2.2">𝑥</ci><ci id="S3.SS4.p13.2.m2.2.2.2.2.3.cmml" xref="S3.SS4.p13.2.m2.2.2.2.2.3">𝑦</ci></apply></set></annotation-xml><annotation encoding="application/x-tex" id="S3.SS4.p13.2.m2.2c">{\left\{x+y,x-y\right\}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS4.p13.2.m2.2d">{ italic_x + italic_y , italic_x - italic_y }</annotation></semantics></math> are then also treated as distinct, provided that the expressions <math alttext="x" class="ltx_Math" display="inline" id="S3.SS4.p13.3.m3.1"><semantics id="S3.SS4.p13.3.m3.1a"><mi id="S3.SS4.p13.3.m3.1.1" xref="S3.SS4.p13.3.m3.1.1.cmml">x</mi><annotation-xml encoding="MathML-Content" id="S3.SS4.p13.3.m3.1b"><ci id="S3.SS4.p13.3.m3.1.1.cmml" xref="S3.SS4.p13.3.m3.1.1">𝑥</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS4.p13.3.m3.1c">x</annotation><annotation encoding="application/x-llamapun" id="S3.SS4.p13.3.m3.1d">italic_x</annotation></semantics></math> or <math alttext="y" class="ltx_Math" display="inline" id="S3.SS4.p13.4.m4.1"><semantics id="S3.SS4.p13.4.m4.1a"><mi id="S3.SS4.p13.4.m4.1.1" xref="S3.SS4.p13.4.m4.1.1.cmml">y</mi><annotation-xml encoding="MathML-Content" id="S3.SS4.p13.4.m4.1b"><ci id="S3.SS4.p13.4.m4.1.1.cmml" xref="S3.SS4.p13.4.m4.1.1">𝑦</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS4.p13.4.m4.1c">y</annotation><annotation encoding="application/x-llamapun" id="S3.SS4.p13.4.m4.1d">italic_y</annotation></semantics></math> are themselves non-zero, respectively:</p> </div> <div class="ltx_para" id="S3.SS4.p14"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS4.p14.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KG1hdGNoIGV4cHIKICBbYCgseCAoKiAtMSAseCkpIChpcy1ub24temVybyB4IHBhcmFtZXRlcnMpXQogIFtgKCgqIC0xICx4KSAseCkgKGlzLW5vbi16ZXJvIHggcGFyYW1ldGVycyldCiAgW2AoKCsgLHggLHkpICgtICx4ICx5KSkKICAgIChpcy1ub24temVybyB5IHBhcmFtZXRlcnMpXQogIFtgKCgtICx4ICx5KSAoKyAseCAseSkpCiAgICAoaXMtbm9uLXplcm8geSBwYXJhbWV0ZXJzKV0KICAuLi4p">⬇</a></div> <div class="ltx_listingline" id="lstnumberx181"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx181.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx181.2" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx181.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx181.4" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx182"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx182.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx182.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx182.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx182.4" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx182.5" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx182.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx182.7" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx182.8" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx182.9" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx182.10" style="font-size:90%;">-1</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx182.11" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx182.12" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx182.13" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx182.14" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx182.15" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx182.16" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx182.17" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx182.18" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx182.19" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx182.20" style="font-size:90%;">non</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx182.21" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx182.22" style="font-size:90%;">zero</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx182.23" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx182.24" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx182.25" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx182.26" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx182.27" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx182.28" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx183"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx183.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx183.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx183.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx183.4" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx183.5" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx183.6" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx183.7" style="font-size:90%;">-1</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx183.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx183.9" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx183.10" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx183.11" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx183.12" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx183.13" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx183.14" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx183.15" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx183.16" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx183.17" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx183.18" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx183.19" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx183.20" style="font-size:90%;">non</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx183.21" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx183.22" style="font-size:90%;">zero</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx183.23" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx183.24" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx183.25" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx183.26" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx183.27" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx183.28" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx184"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx184.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx184.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx184.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx184.4" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx184.5" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx184.6" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx184.7" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx184.8" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx184.9" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx184.10" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx184.11" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx184.12" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx184.13" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx184.14" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx184.15" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx184.16" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx184.17" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx184.18" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx184.19" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx184.20" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx184.21" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx184.22" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx184.23" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx185"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx185.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx185.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx185.3" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx185.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx185.5" style="font-size:90%;">non</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx185.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx185.7" style="font-size:90%;">zero</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx185.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx185.9" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx185.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx185.11" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx185.12" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx185.13" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx186"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx186.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx186.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx186.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx186.4" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx186.5" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx186.6" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx186.7" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx186.8" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx186.9" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx186.10" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx186.11" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx186.12" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx186.13" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx186.14" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx186.15" style="font-size:90%;">+</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx186.16" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx186.17" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx186.18" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx186.19" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx186.20" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx186.21" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx186.22" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx186.23" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx187"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx187.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx187.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx187.3" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx187.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx187.5" style="font-size:90%;">non</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx187.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx187.7" style="font-size:90%;">zero</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx187.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx187.9" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx187.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx187.11" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx187.12" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx187.13" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx188"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx188.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx188.2" style="font-size:90%;">...</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx188.3" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS4.p14.2">where the function <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS4.p14.2.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS4.p14.2.1.1" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="S3.SS4.p14.2.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p14.2.1.2.1">non</span>-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p14.2.1.2.2">zero</span></span></span> treats all non-zero numerical constants as non-zero, as its base case:</p> </div> <div class="ltx_para" id="S3.SS4.p15"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS4.p15.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KGRlZmluZSAoaXMtbm9uLXplcm8gZXhwciBwYXJhbWV0ZXJzKQogIChtYXRjaCBleHByCiAgICBbKD8gbGFtYmRhIChhcmcpCiAgICAgIChhbmQgKG51bWJlcj8gYXJnKSAobm90IChlcXVhbD8gYXJnIDApKSkpKQogICAgICAgICN0XQogICAgLi4uCiAgICBbZWxzZSAjZl0pKQ==">⬇</a></div> <div class="ltx_listingline" id="lstnumberx189"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx189.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx189.2" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx189.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx189.4" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx189.5" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx189.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx189.7" style="font-size:90%;">non</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx189.8" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx189.9" style="font-size:90%;">zero</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx189.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx189.11" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx189.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx189.13" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx189.14" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx190"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx190.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx190.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx190.3" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx190.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx190.5" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx191"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx191.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx191.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx191.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx191.4" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx191.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_keyword ltx_font_typewriter" id="lstnumberx191.6" style="font-size:90%;color:#0000FF;">lambda</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx191.7" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx191.8" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx191.9" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx191.10" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx192"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx192.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx192.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx192.3" style="font-size:90%;color:#0000FF;">and</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx192.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx192.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx192.6" style="font-size:90%;">number</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx192.7" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx192.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx192.9" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx192.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx192.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx192.12" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx192.13" style="font-size:90%;">not</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx192.14" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx192.15" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx192.16" style="font-size:90%;">equal</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx192.17" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx192.18" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx192.19" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx192.20" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx192.21" style="font-size:90%;">0</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx192.22" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx192.23" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx192.24" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx192.25" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx192.26" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx193"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx193.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx193.2" style="font-size:90%;">#</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx193.3" style="font-size:90%;">t</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx193.4" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx194"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx194.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx194.2" style="font-size:90%;">...</span> </div> <div class="ltx_listingline" id="lstnumberx195"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx195.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx195.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx195.3" style="font-size:90%;color:#0000FF;">else</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx195.4" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx195.5" style="font-size:90%;">#</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx195.6" style="font-size:90%;">f</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx195.7" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx195.8" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx195.9" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS4.p15.2">It also treats all simulation parameters as non-zero, and enforces this condition, using similar logic to what was previously described for <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS4.p15.2.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS4.p15.2.1.1" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="S3.SS4.p15.2.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p15.2.1.2.1">real</span></span></span>. Finally, it treats the product of any two non-zero expressions as non-zero:</p> </div> <div class="ltx_para" id="S3.SS4.p16"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS4.p16.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KG1hdGNoIGV4cHIKICBbYCgqICx4ICx5KSAoYW5kIChpcy1ub24temVybyB4IHBhcmFtZXRlcnMpCiAgICAoaXMtbm9uLXplcm8geSBwYXJhbWV0ZXJzKSldKQ==">⬇</a></div> <div class="ltx_listingline" id="lstnumberx196"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx196.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx196.2" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx196.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx196.4" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx197"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx197.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx197.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx197.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx197.4" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx197.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx197.6" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx197.7" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx197.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx197.9" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx197.10" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx197.11" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx197.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx197.13" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx197.14" style="font-size:90%;color:#0000FF;">and</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx197.15" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx197.16" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx197.17" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx197.18" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx197.19" style="font-size:90%;">non</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx197.20" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx197.21" style="font-size:90%;">zero</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx197.22" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx197.23" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx197.24" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx197.25" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx197.26" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx198"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx198.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx198.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx198.3" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx198.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx198.5" style="font-size:90%;">non</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx198.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx198.7" style="font-size:90%;">zero</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx198.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx198.9" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx198.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx198.11" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx198.12" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx198.13" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx198.14" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx198.15" style="font-size:90%;color:#999999;">)</span> </div> </div> </div> <div class="ltx_para" id="S3.SS4.p17"> <p class="ltx_p" id="S3.SS4.p17.1">Finally, in order to prove that a given Lax-Friedrichs solver meets the local Lipschitz continuity criterion listed in Theorems <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.Thmtheorem3" title="Theorem 2.3. ‣ 2.2. The Lax-Friedrichs Flux ‣ 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2.3</span></a> and <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.Thmtheorem4" title="Theorem 2.4. ‣ 2.2. The Lax-Friedrichs Flux ‣ 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2.4</span></a>, it is sufficient to compute the symbolic Hessian <math alttext="{\mathbf{H}_{f}}" class="ltx_Math" display="inline" id="S3.SS4.p17.1.m1.1"><semantics id="S3.SS4.p17.1.m1.1a"><msub id="S3.SS4.p17.1.m1.1.1" xref="S3.SS4.p17.1.m1.1.1.cmml"><mi id="S3.SS4.p17.1.m1.1.1.2" xref="S3.SS4.p17.1.m1.1.1.2.cmml">𝐇</mi><mi id="S3.SS4.p17.1.m1.1.1.3" xref="S3.SS4.p17.1.m1.1.1.3.cmml">f</mi></msub><annotation-xml encoding="MathML-Content" id="S3.SS4.p17.1.m1.1b"><apply id="S3.SS4.p17.1.m1.1.1.cmml" xref="S3.SS4.p17.1.m1.1.1"><csymbol cd="ambiguous" id="S3.SS4.p17.1.m1.1.1.1.cmml" xref="S3.SS4.p17.1.m1.1.1">subscript</csymbol><ci id="S3.SS4.p17.1.m1.1.1.2.cmml" xref="S3.SS4.p17.1.m1.1.1.2">𝐇</ci><ci id="S3.SS4.p17.1.m1.1.1.3.cmml" xref="S3.SS4.p17.1.m1.1.1.3">𝑓</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS4.p17.1.m1.1c">{\mathbf{H}_{f}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS4.p17.1.m1.1d">bold_H start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT</annotation></semantics></math> by evaluating:</p> </div> <div class="ltx_para" id="S3.SS4.p18"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS4.p18.2"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KHN5bWJvbGljLWhlc3NpYW4gZmx1eC1leHByIGNvbnMtZXhwcnMp">⬇</a></div> <div class="ltx_listingline" id="lstnumberx199"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx199.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx199.2" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx199.3" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx199.4" style="font-size:90%;">hessian</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx199.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx199.6" style="font-size:90%;">flux</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx199.7" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx199.8" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx199.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx199.10" style="font-size:90%;">cons</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx199.11" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx199.12" style="font-size:90%;">exprs</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx199.13" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS4.p18.1">for each <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS4.p18.1.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS4.p18.1.1.1" style="font-size:90%;">flux</span><span class="ltx_text ltx_font_typewriter" id="S3.SS4.p18.1.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p18.1.1.2.1">expr</span></span></span> <math alttext="f" class="ltx_Math" display="inline" id="S3.SS4.p18.1.m1.1"><semantics id="S3.SS4.p18.1.m1.1a"><mi id="S3.SS4.p18.1.m1.1.1" xref="S3.SS4.p18.1.m1.1.1.cmml">f</mi><annotation-xml encoding="MathML-Content" id="S3.SS4.p18.1.m1.1b"><ci id="S3.SS4.p18.1.m1.1.1.cmml" xref="S3.SS4.p18.1.m1.1.1">𝑓</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS4.p18.1.m1.1c">f</annotation><annotation encoding="application/x-llamapun" id="S3.SS4.p18.1.m1.1d">italic_f</annotation></semantics></math> in the list <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS4.p18.1.2"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS4.p18.1.2.1" style="font-size:90%;">flux</span><span class="ltx_text ltx_font_typewriter" id="S3.SS4.p18.1.2.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p18.1.2.2.1">exprs</span></span></span>, and then to compute its symbolic eigenvalues using <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS4.p18.1.3"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS4.p18.1.3.1" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="S3.SS4.p18.1.3.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p18.1.3.2.1">eigvals2</span></span></span> (at least in the 2x2 case), in order to confirm that each symbolic eigenvalue is non-negative. Non-negativity can be checked using the <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS4.p18.1.4"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS4.p18.1.4.1" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="S3.SS4.p18.1.4.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p18.1.4.2.1">non</span>-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p18.1.4.2.2">negative</span></span></span> function:</p> </div> <div class="ltx_para" id="S3.SS4.p19"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS4.p19.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KGRlZmluZSAoaXMtbm9uLW5lZ2F0aXZlIGV4cHIgcGFyYW1ldGVycykKICAobWF0Y2ggZXhwcgogICAgWyg/IGxhbWJkYSAoYXJnKQogICAgICAoYW5kIChudW1iZXI/IGFyZykgKD49IGFyZyAwKSkpKSAjdF0KICAgIC4uLgogICAgW2Vsc2UgI2ZdKSk=">⬇</a></div> <div class="ltx_listingline" id="lstnumberx200"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx200.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx200.2" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx200.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx200.4" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx200.5" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx200.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx200.7" style="font-size:90%;">non</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx200.8" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx200.9" style="font-size:90%;">negative</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx200.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx200.11" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx200.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx200.13" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx200.14" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx201"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx201.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx201.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx201.3" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx201.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx201.5" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx202"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx202.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx202.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx202.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx202.4" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx202.5" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_keyword ltx_font_typewriter" id="lstnumberx202.6" style="font-size:90%;color:#0000FF;">lambda</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx202.7" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx202.8" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx202.9" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx202.10" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx203"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx203.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx203.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx203.3" style="font-size:90%;color:#0000FF;">and</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx203.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx203.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx203.6" style="font-size:90%;">number</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx203.7" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx203.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx203.9" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx203.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx203.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx203.12" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx203.13" style="font-size:90%;">>=</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx203.14" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx203.15" style="font-size:90%;">arg</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx203.16" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx203.17" style="font-size:90%;">0</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx203.18" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx203.19" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx203.20" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx203.21" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx203.22" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx203.23" style="font-size:90%;">#</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx203.24" style="font-size:90%;">t</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx203.25" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx204"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx204.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx204.2" style="font-size:90%;">...</span> </div> <div class="ltx_listingline" id="lstnumberx205"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx205.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx205.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx205.3" style="font-size:90%;color:#0000FF;">else</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx205.4" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx205.5" style="font-size:90%;">#</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx205.6" style="font-size:90%;">f</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx205.7" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx205.8" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx205.9" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS4.p19.2">whose base case treats all non-negative numerical constants as non-negative. Moreover, we enforce that the sum, product or quotient of two non-negative numbers is always non-negative, e.g:</p> </div> <div class="ltx_para" id="S3.SS4.p20"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS4.p20.2"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KG1hdGNoIGV4cHIKICBbYCgqICx4ICx5KSAoYW5kCiAgICAoaXMtbm9uLW5lZ2F0aXZlIHggcGFyYW1ldGVycykKICAgIChpcy1ub24tbmVnYXRpdmUgeSBwYXJhbWV0ZXJzKSldCiAgLi4uKQ==">⬇</a></div> <div class="ltx_listingline" id="lstnumberx206"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx206.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx206.2" style="font-size:90%;color:#0000FF;">match</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx206.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx206.4" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx207"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx207.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx207.2" style="font-size:90%;">[‘</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx207.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx207.4" style="font-size:90%;">*</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx207.5" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx207.6" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx207.7" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx207.8" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx207.9" style="font-size:90%;">,</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx207.10" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx207.11" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx207.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx207.13" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx207.14" style="font-size:90%;color:#0000FF;">and</span> </div> <div class="ltx_listingline" id="lstnumberx208"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx208.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx208.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx208.3" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx208.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx208.5" style="font-size:90%;">non</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx208.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx208.7" style="font-size:90%;">negative</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx208.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx208.9" style="font-size:90%;">x</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx208.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx208.11" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx208.12" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx209"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx209.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx209.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx209.3" style="font-size:90%;">is</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx209.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx209.5" style="font-size:90%;">non</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx209.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx209.7" style="font-size:90%;">negative</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx209.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx209.9" style="font-size:90%;">y</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx209.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx209.11" style="font-size:90%;">parameters</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx209.12" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx209.13" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx209.14" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx210"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx210.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx210.2" style="font-size:90%;">...</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx210.3" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS4.p20.1">etc. Although we have described these techniques in the context of proving the hyperbolicity-preserving and strict hyperbolicity-preserving properties of Lax-Friedrichs solvers via Theorem <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.Thmtheorem1" title="Theorem 2.1. ‣ 2.2. The Lax-Friedrichs Flux ‣ 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2.1</span></a>, we note that the same techniques can be used to prove the hyperbolicity-preserving and strict hyperbolicity-preserving properties of Roe solvers also, via Theorem <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.Thmtheorem5" title="Theorem 2.5. ‣ 2.3. The Roe Flux ‣ 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2.5</span></a>, by exploiting the fact that a valid symbolic Roe matrix <math alttext="{\mathbf{A}\left(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)}" class="ltx_Math" display="inline" id="S3.SS4.p20.1.m1.2"><semantics id="S3.SS4.p20.1.m1.2a"><mrow id="S3.SS4.p20.1.m1.2.2" xref="S3.SS4.p20.1.m1.2.2.cmml"><mi id="S3.SS4.p20.1.m1.2.2.4" xref="S3.SS4.p20.1.m1.2.2.4.cmml">𝐀</mi><mo id="S3.SS4.p20.1.m1.2.2.3" xref="S3.SS4.p20.1.m1.2.2.3.cmml"></mo><mrow id="S3.SS4.p20.1.m1.2.2.2.2" xref="S3.SS4.p20.1.m1.2.2.2.3.cmml"><mo id="S3.SS4.p20.1.m1.2.2.2.2.3" xref="S3.SS4.p20.1.m1.2.2.2.3.cmml">(</mo><msubsup id="S3.SS4.p20.1.m1.1.1.1.1.1" xref="S3.SS4.p20.1.m1.1.1.1.1.1.cmml"><mi id="S3.SS4.p20.1.m1.1.1.1.1.1.2.2" xref="S3.SS4.p20.1.m1.1.1.1.1.1.2.2.cmml">𝐔</mi><mi id="S3.SS4.p20.1.m1.1.1.1.1.1.2.3" xref="S3.SS4.p20.1.m1.1.1.1.1.1.2.3.cmml">i</mi><mi id="S3.SS4.p20.1.m1.1.1.1.1.1.3" xref="S3.SS4.p20.1.m1.1.1.1.1.1.3.cmml">n</mi></msubsup><mo id="S3.SS4.p20.1.m1.2.2.2.2.4" xref="S3.SS4.p20.1.m1.2.2.2.3.cmml">,</mo><msubsup id="S3.SS4.p20.1.m1.2.2.2.2.2" xref="S3.SS4.p20.1.m1.2.2.2.2.2.cmml"><mi id="S3.SS4.p20.1.m1.2.2.2.2.2.2.2" xref="S3.SS4.p20.1.m1.2.2.2.2.2.2.2.cmml">𝐔</mi><mrow id="S3.SS4.p20.1.m1.2.2.2.2.2.2.3" xref="S3.SS4.p20.1.m1.2.2.2.2.2.2.3.cmml"><mi id="S3.SS4.p20.1.m1.2.2.2.2.2.2.3.2" xref="S3.SS4.p20.1.m1.2.2.2.2.2.2.3.2.cmml">i</mi><mo id="S3.SS4.p20.1.m1.2.2.2.2.2.2.3.1" xref="S3.SS4.p20.1.m1.2.2.2.2.2.2.3.1.cmml">+</mo><mn id="S3.SS4.p20.1.m1.2.2.2.2.2.2.3.3" xref="S3.SS4.p20.1.m1.2.2.2.2.2.2.3.3.cmml">1</mn></mrow><mi id="S3.SS4.p20.1.m1.2.2.2.2.2.3" xref="S3.SS4.p20.1.m1.2.2.2.2.2.3.cmml">n</mi></msubsup><mo id="S3.SS4.p20.1.m1.2.2.2.2.5" xref="S3.SS4.p20.1.m1.2.2.2.3.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S3.SS4.p20.1.m1.2b"><apply id="S3.SS4.p20.1.m1.2.2.cmml" xref="S3.SS4.p20.1.m1.2.2"><times id="S3.SS4.p20.1.m1.2.2.3.cmml" xref="S3.SS4.p20.1.m1.2.2.3"></times><ci id="S3.SS4.p20.1.m1.2.2.4.cmml" xref="S3.SS4.p20.1.m1.2.2.4">𝐀</ci><interval closure="open" id="S3.SS4.p20.1.m1.2.2.2.3.cmml" xref="S3.SS4.p20.1.m1.2.2.2.2"><apply id="S3.SS4.p20.1.m1.1.1.1.1.1.cmml" xref="S3.SS4.p20.1.m1.1.1.1.1.1"><csymbol cd="ambiguous" id="S3.SS4.p20.1.m1.1.1.1.1.1.1.cmml" xref="S3.SS4.p20.1.m1.1.1.1.1.1">superscript</csymbol><apply id="S3.SS4.p20.1.m1.1.1.1.1.1.2.cmml" xref="S3.SS4.p20.1.m1.1.1.1.1.1"><csymbol cd="ambiguous" id="S3.SS4.p20.1.m1.1.1.1.1.1.2.1.cmml" xref="S3.SS4.p20.1.m1.1.1.1.1.1">subscript</csymbol><ci id="S3.SS4.p20.1.m1.1.1.1.1.1.2.2.cmml" xref="S3.SS4.p20.1.m1.1.1.1.1.1.2.2">𝐔</ci><ci id="S3.SS4.p20.1.m1.1.1.1.1.1.2.3.cmml" xref="S3.SS4.p20.1.m1.1.1.1.1.1.2.3">𝑖</ci></apply><ci id="S3.SS4.p20.1.m1.1.1.1.1.1.3.cmml" xref="S3.SS4.p20.1.m1.1.1.1.1.1.3">𝑛</ci></apply><apply id="S3.SS4.p20.1.m1.2.2.2.2.2.cmml" xref="S3.SS4.p20.1.m1.2.2.2.2.2"><csymbol cd="ambiguous" id="S3.SS4.p20.1.m1.2.2.2.2.2.1.cmml" xref="S3.SS4.p20.1.m1.2.2.2.2.2">superscript</csymbol><apply id="S3.SS4.p20.1.m1.2.2.2.2.2.2.cmml" xref="S3.SS4.p20.1.m1.2.2.2.2.2"><csymbol cd="ambiguous" id="S3.SS4.p20.1.m1.2.2.2.2.2.2.1.cmml" xref="S3.SS4.p20.1.m1.2.2.2.2.2">subscript</csymbol><ci id="S3.SS4.p20.1.m1.2.2.2.2.2.2.2.cmml" xref="S3.SS4.p20.1.m1.2.2.2.2.2.2.2">𝐔</ci><apply id="S3.SS4.p20.1.m1.2.2.2.2.2.2.3.cmml" xref="S3.SS4.p20.1.m1.2.2.2.2.2.2.3"><plus id="S3.SS4.p20.1.m1.2.2.2.2.2.2.3.1.cmml" xref="S3.SS4.p20.1.m1.2.2.2.2.2.2.3.1"></plus><ci id="S3.SS4.p20.1.m1.2.2.2.2.2.2.3.2.cmml" xref="S3.SS4.p20.1.m1.2.2.2.2.2.2.3.2">𝑖</ci><cn id="S3.SS4.p20.1.m1.2.2.2.2.2.2.3.3.cmml" type="integer" xref="S3.SS4.p20.1.m1.2.2.2.2.2.2.3.3">1</cn></apply></apply><ci id="S3.SS4.p20.1.m1.2.2.2.2.2.3.cmml" xref="S3.SS4.p20.1.m1.2.2.2.2.2.3">𝑛</ci></apply></interval></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS4.p20.1.m1.2c">{\mathbf{A}\left(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)}</annotation><annotation encoding="application/x-llamapun" id="S3.SS4.p20.1.m1.2d">bold_A ( bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT )</annotation></semantics></math> can be calculated as an average of the two symbolic flux Jacobians:</p> </div> <div class="ltx_para" id="S3.SS4.p21"> <table class="ltx_equation ltx_eqn_table" id="S3.E45"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(45)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\mathbf{A}\left(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)=\frac{1}{2}% \left[\nabla_{\mathbf{U}}\mathbf{F}\left(\mathbf{U}_{i}^{n}\right)+\nabla_{% \mathbf{U}}\mathbf{F}\left(\mathbf{U}_{i+1}^{n}\right)\right]," class="ltx_Math" display="block" id="S3.E45.m1.1"><semantics id="S3.E45.m1.1a"><mrow id="S3.E45.m1.1.1.1" xref="S3.E45.m1.1.1.1.1.cmml"><mrow id="S3.E45.m1.1.1.1.1" xref="S3.E45.m1.1.1.1.1.cmml"><mrow id="S3.E45.m1.1.1.1.1.2" xref="S3.E45.m1.1.1.1.1.2.cmml"><mi id="S3.E45.m1.1.1.1.1.2.4" xref="S3.E45.m1.1.1.1.1.2.4.cmml">𝐀</mi><mo id="S3.E45.m1.1.1.1.1.2.3" xref="S3.E45.m1.1.1.1.1.2.3.cmml"></mo><mrow id="S3.E45.m1.1.1.1.1.2.2.2" xref="S3.E45.m1.1.1.1.1.2.2.3.cmml"><mo id="S3.E45.m1.1.1.1.1.2.2.2.3" xref="S3.E45.m1.1.1.1.1.2.2.3.cmml">(</mo><msubsup id="S3.E45.m1.1.1.1.1.1.1.1.1" xref="S3.E45.m1.1.1.1.1.1.1.1.1.cmml"><mi id="S3.E45.m1.1.1.1.1.1.1.1.1.2.2" xref="S3.E45.m1.1.1.1.1.1.1.1.1.2.2.cmml">𝐔</mi><mi id="S3.E45.m1.1.1.1.1.1.1.1.1.2.3" xref="S3.E45.m1.1.1.1.1.1.1.1.1.2.3.cmml">i</mi><mi id="S3.E45.m1.1.1.1.1.1.1.1.1.3" xref="S3.E45.m1.1.1.1.1.1.1.1.1.3.cmml">n</mi></msubsup><mo id="S3.E45.m1.1.1.1.1.2.2.2.4" xref="S3.E45.m1.1.1.1.1.2.2.3.cmml">,</mo><msubsup id="S3.E45.m1.1.1.1.1.2.2.2.2" xref="S3.E45.m1.1.1.1.1.2.2.2.2.cmml"><mi id="S3.E45.m1.1.1.1.1.2.2.2.2.2.2" xref="S3.E45.m1.1.1.1.1.2.2.2.2.2.2.cmml">𝐔</mi><mrow id="S3.E45.m1.1.1.1.1.2.2.2.2.2.3" xref="S3.E45.m1.1.1.1.1.2.2.2.2.2.3.cmml"><mi id="S3.E45.m1.1.1.1.1.2.2.2.2.2.3.2" xref="S3.E45.m1.1.1.1.1.2.2.2.2.2.3.2.cmml">i</mi><mo id="S3.E45.m1.1.1.1.1.2.2.2.2.2.3.1" xref="S3.E45.m1.1.1.1.1.2.2.2.2.2.3.1.cmml">+</mo><mn id="S3.E45.m1.1.1.1.1.2.2.2.2.2.3.3" xref="S3.E45.m1.1.1.1.1.2.2.2.2.2.3.3.cmml">1</mn></mrow><mi id="S3.E45.m1.1.1.1.1.2.2.2.2.3" xref="S3.E45.m1.1.1.1.1.2.2.2.2.3.cmml">n</mi></msubsup><mo id="S3.E45.m1.1.1.1.1.2.2.2.5" xref="S3.E45.m1.1.1.1.1.2.2.3.cmml">)</mo></mrow></mrow><mo id="S3.E45.m1.1.1.1.1.4" xref="S3.E45.m1.1.1.1.1.4.cmml">=</mo><mrow id="S3.E45.m1.1.1.1.1.3" xref="S3.E45.m1.1.1.1.1.3.cmml"><mfrac id="S3.E45.m1.1.1.1.1.3.3" xref="S3.E45.m1.1.1.1.1.3.3.cmml"><mn id="S3.E45.m1.1.1.1.1.3.3.2" xref="S3.E45.m1.1.1.1.1.3.3.2.cmml">1</mn><mn id="S3.E45.m1.1.1.1.1.3.3.3" xref="S3.E45.m1.1.1.1.1.3.3.3.cmml">2</mn></mfrac><mo id="S3.E45.m1.1.1.1.1.3.2" xref="S3.E45.m1.1.1.1.1.3.2.cmml"></mo><mrow id="S3.E45.m1.1.1.1.1.3.1.1" xref="S3.E45.m1.1.1.1.1.3.1.2.cmml"><mo id="S3.E45.m1.1.1.1.1.3.1.1.2" xref="S3.E45.m1.1.1.1.1.3.1.2.1.cmml">[</mo><mrow id="S3.E45.m1.1.1.1.1.3.1.1.1" xref="S3.E45.m1.1.1.1.1.3.1.1.1.cmml"><mrow id="S3.E45.m1.1.1.1.1.3.1.1.1.1" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.cmml"><mrow id="S3.E45.m1.1.1.1.1.3.1.1.1.1.3" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.cmml"><msub id="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.1" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.1.cmml"><mo id="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.1.2" rspace="0.167em" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.1.2.cmml">∇</mo><mi id="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.1.3" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.1.3.cmml">𝐔</mi></msub><mi id="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.2" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.2.cmml">𝐅</mi></mrow><mo id="S3.E45.m1.1.1.1.1.3.1.1.1.1.2" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.2.cmml"></mo><mrow id="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.cmml"><mo id="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.2" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.cmml">(</mo><msubsup id="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.cmml"><mi id="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.2.2" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.2.2.cmml">𝐔</mi><mi id="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.2.3" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.2.3.cmml">i</mi><mi id="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.3" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.3.cmml">n</mi></msubsup><mo id="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.3" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.cmml">)</mo></mrow></mrow><mo id="S3.E45.m1.1.1.1.1.3.1.1.1.3" xref="S3.E45.m1.1.1.1.1.3.1.1.1.3.cmml">+</mo><mrow id="S3.E45.m1.1.1.1.1.3.1.1.1.2" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.cmml"><mrow id="S3.E45.m1.1.1.1.1.3.1.1.1.2.3" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.cmml"><msub id="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.1" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.1.cmml"><mo id="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.1.2" rspace="0.167em" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.1.2.cmml">∇</mo><mi id="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.1.3" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.1.3.cmml">𝐔</mi></msub><mi id="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.2" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.2.cmml">𝐅</mi></mrow><mo id="S3.E45.m1.1.1.1.1.3.1.1.1.2.2" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.2.cmml"></mo><mrow id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.cmml"><mo id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.2" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.cmml">(</mo><msubsup id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.cmml"><mi id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.2" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.2.cmml">𝐔</mi><mrow id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.3" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.3.cmml"><mi id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.3.2" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.3.2.cmml">i</mi><mo id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.3.1" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.3.1.cmml">+</mo><mn id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.3.3" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.3.3.cmml">1</mn></mrow><mi id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.3" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.3.cmml">n</mi></msubsup><mo id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.3" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.cmml">)</mo></mrow></mrow></mrow><mo id="S3.E45.m1.1.1.1.1.3.1.1.3" xref="S3.E45.m1.1.1.1.1.3.1.2.1.cmml">]</mo></mrow></mrow></mrow><mo id="S3.E45.m1.1.1.1.2" xref="S3.E45.m1.1.1.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S3.E45.m1.1b"><apply id="S3.E45.m1.1.1.1.1.cmml" xref="S3.E45.m1.1.1.1"><eq id="S3.E45.m1.1.1.1.1.4.cmml" xref="S3.E45.m1.1.1.1.1.4"></eq><apply id="S3.E45.m1.1.1.1.1.2.cmml" xref="S3.E45.m1.1.1.1.1.2"><times id="S3.E45.m1.1.1.1.1.2.3.cmml" xref="S3.E45.m1.1.1.1.1.2.3"></times><ci id="S3.E45.m1.1.1.1.1.2.4.cmml" xref="S3.E45.m1.1.1.1.1.2.4">𝐀</ci><interval closure="open" id="S3.E45.m1.1.1.1.1.2.2.3.cmml" xref="S3.E45.m1.1.1.1.1.2.2.2"><apply id="S3.E45.m1.1.1.1.1.1.1.1.1.cmml" xref="S3.E45.m1.1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S3.E45.m1.1.1.1.1.1.1.1.1.1.cmml" xref="S3.E45.m1.1.1.1.1.1.1.1.1">superscript</csymbol><apply id="S3.E45.m1.1.1.1.1.1.1.1.1.2.cmml" xref="S3.E45.m1.1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S3.E45.m1.1.1.1.1.1.1.1.1.2.1.cmml" xref="S3.E45.m1.1.1.1.1.1.1.1.1">subscript</csymbol><ci id="S3.E45.m1.1.1.1.1.1.1.1.1.2.2.cmml" xref="S3.E45.m1.1.1.1.1.1.1.1.1.2.2">𝐔</ci><ci id="S3.E45.m1.1.1.1.1.1.1.1.1.2.3.cmml" xref="S3.E45.m1.1.1.1.1.1.1.1.1.2.3">𝑖</ci></apply><ci id="S3.E45.m1.1.1.1.1.1.1.1.1.3.cmml" xref="S3.E45.m1.1.1.1.1.1.1.1.1.3">𝑛</ci></apply><apply id="S3.E45.m1.1.1.1.1.2.2.2.2.cmml" xref="S3.E45.m1.1.1.1.1.2.2.2.2"><csymbol cd="ambiguous" id="S3.E45.m1.1.1.1.1.2.2.2.2.1.cmml" xref="S3.E45.m1.1.1.1.1.2.2.2.2">superscript</csymbol><apply id="S3.E45.m1.1.1.1.1.2.2.2.2.2.cmml" xref="S3.E45.m1.1.1.1.1.2.2.2.2"><csymbol cd="ambiguous" id="S3.E45.m1.1.1.1.1.2.2.2.2.2.1.cmml" xref="S3.E45.m1.1.1.1.1.2.2.2.2">subscript</csymbol><ci id="S3.E45.m1.1.1.1.1.2.2.2.2.2.2.cmml" xref="S3.E45.m1.1.1.1.1.2.2.2.2.2.2">𝐔</ci><apply id="S3.E45.m1.1.1.1.1.2.2.2.2.2.3.cmml" xref="S3.E45.m1.1.1.1.1.2.2.2.2.2.3"><plus id="S3.E45.m1.1.1.1.1.2.2.2.2.2.3.1.cmml" xref="S3.E45.m1.1.1.1.1.2.2.2.2.2.3.1"></plus><ci id="S3.E45.m1.1.1.1.1.2.2.2.2.2.3.2.cmml" xref="S3.E45.m1.1.1.1.1.2.2.2.2.2.3.2">𝑖</ci><cn id="S3.E45.m1.1.1.1.1.2.2.2.2.2.3.3.cmml" type="integer" xref="S3.E45.m1.1.1.1.1.2.2.2.2.2.3.3">1</cn></apply></apply><ci id="S3.E45.m1.1.1.1.1.2.2.2.2.3.cmml" xref="S3.E45.m1.1.1.1.1.2.2.2.2.3">𝑛</ci></apply></interval></apply><apply id="S3.E45.m1.1.1.1.1.3.cmml" xref="S3.E45.m1.1.1.1.1.3"><times id="S3.E45.m1.1.1.1.1.3.2.cmml" xref="S3.E45.m1.1.1.1.1.3.2"></times><apply id="S3.E45.m1.1.1.1.1.3.3.cmml" xref="S3.E45.m1.1.1.1.1.3.3"><divide id="S3.E45.m1.1.1.1.1.3.3.1.cmml" xref="S3.E45.m1.1.1.1.1.3.3"></divide><cn id="S3.E45.m1.1.1.1.1.3.3.2.cmml" type="integer" xref="S3.E45.m1.1.1.1.1.3.3.2">1</cn><cn id="S3.E45.m1.1.1.1.1.3.3.3.cmml" type="integer" xref="S3.E45.m1.1.1.1.1.3.3.3">2</cn></apply><apply id="S3.E45.m1.1.1.1.1.3.1.2.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1"><csymbol cd="latexml" id="S3.E45.m1.1.1.1.1.3.1.2.1.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.2">delimited-[]</csymbol><apply id="S3.E45.m1.1.1.1.1.3.1.1.1.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1"><plus id="S3.E45.m1.1.1.1.1.3.1.1.1.3.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.3"></plus><apply id="S3.E45.m1.1.1.1.1.3.1.1.1.1.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1"><times id="S3.E45.m1.1.1.1.1.3.1.1.1.1.2.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.2"></times><apply id="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.3"><apply id="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.1.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.1"><csymbol cd="ambiguous" id="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.1.1.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.1">subscript</csymbol><ci id="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.1.2.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.1.2">∇</ci><ci id="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.1.3.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.1.3">𝐔</ci></apply><ci id="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.2.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.3.2">𝐅</ci></apply><apply id="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.1.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1">superscript</csymbol><apply id="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.2.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.2.1.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1">subscript</csymbol><ci id="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.2.2.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.2.2">𝐔</ci><ci id="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.2.3.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.2.3">𝑖</ci></apply><ci id="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.3.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.1.1.1.1.3">𝑛</ci></apply></apply><apply id="S3.E45.m1.1.1.1.1.3.1.1.1.2.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2"><times id="S3.E45.m1.1.1.1.1.3.1.1.1.2.2.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.2"></times><apply id="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.3"><apply id="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.1.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.1"><csymbol cd="ambiguous" id="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.1.1.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.1">subscript</csymbol><ci id="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.1.2.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.1.2">∇</ci><ci id="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.1.3.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.1.3">𝐔</ci></apply><ci id="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.2.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.3.2">𝐅</ci></apply><apply id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1"><csymbol cd="ambiguous" id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.1.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1">superscript</csymbol><apply id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1"><csymbol cd="ambiguous" id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.1.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1">subscript</csymbol><ci id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.2.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.2">𝐔</ci><apply id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.3.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.3"><plus id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.3.1.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.3.1"></plus><ci id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.3.2.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.3.2">𝑖</ci><cn id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.3.3.cmml" type="integer" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.2.3.3">1</cn></apply></apply><ci id="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.3.cmml" xref="S3.E45.m1.1.1.1.1.3.1.1.1.2.1.1.1.3">𝑛</ci></apply></apply></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.E45.m1.1c">\mathbf{A}\left(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)=\frac{1}{2}% \left[\nabla_{\mathbf{U}}\mathbf{F}\left(\mathbf{U}_{i}^{n}\right)+\nabla_{% \mathbf{U}}\mathbf{F}\left(\mathbf{U}_{i+1}^{n}\right)\right],</annotation><annotation encoding="application/x-llamapun" id="S3.E45.m1.1d">bold_A ( bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ ∇ start_POSTSUBSCRIPT bold_U end_POSTSUBSCRIPT bold_F ( bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) + ∇ start_POSTSUBSCRIPT bold_U end_POSTSUBSCRIPT bold_F ( bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) ] ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S3.SS4.p21.1">and the reality and distinctness of its eigenvalues can therefore be verified in exactly the same way as for <math alttext="{\mathbf{J}_{\mathbf{F}}}" class="ltx_Math" display="inline" id="S3.SS4.p21.1.m1.1"><semantics id="S3.SS4.p21.1.m1.1a"><msub id="S3.SS4.p21.1.m1.1.1" xref="S3.SS4.p21.1.m1.1.1.cmml"><mi id="S3.SS4.p21.1.m1.1.1.2" xref="S3.SS4.p21.1.m1.1.1.2.cmml">𝐉</mi><mi id="S3.SS4.p21.1.m1.1.1.3" xref="S3.SS4.p21.1.m1.1.1.3.cmml">𝐅</mi></msub><annotation-xml encoding="MathML-Content" id="S3.SS4.p21.1.m1.1b"><apply id="S3.SS4.p21.1.m1.1.1.cmml" xref="S3.SS4.p21.1.m1.1.1"><csymbol cd="ambiguous" id="S3.SS4.p21.1.m1.1.1.1.cmml" xref="S3.SS4.p21.1.m1.1.1">subscript</csymbol><ci id="S3.SS4.p21.1.m1.1.1.2.cmml" xref="S3.SS4.p21.1.m1.1.1.2">𝐉</ci><ci id="S3.SS4.p21.1.m1.1.1.3.cmml" xref="S3.SS4.p21.1.m1.1.1.3">𝐅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS4.p21.1.m1.1c">{\mathbf{J}_{\mathbf{F}}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS4.p21.1.m1.1d">bold_J start_POSTSUBSCRIPT bold_F end_POSTSUBSCRIPT</annotation></semantics></math>. The flux conservation/jump continuity condition can be verified purely algebraically, by simply confirming that the two sides of the equation in Theorem <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.Thmtheorem6" title="Theorem 2.6. ‣ 2.3. The Roe Flux ‣ 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2.6</span></a> both reduce to the same canonical form using <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS4.p21.1.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS4.p21.1.1.1" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="S3.SS4.p21.1.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS4.p21.1.1.2.1">simp</span></span></span>.</p> </div> </section> <section class="ltx_subsection" id="S3.SS5"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">3.5. </span>Symbolic Limits and Symmetry</h3> <div class="ltx_para" id="S3.SS5.p1"> <p class="ltx_p" id="S3.SS5.p1.4">In order to determine whether a given flux limiter <math alttext="{\phi\left(r\right)}" class="ltx_Math" display="inline" id="S3.SS5.p1.1.m1.1"><semantics id="S3.SS5.p1.1.m1.1a"><mrow id="S3.SS5.p1.1.m1.1.2" xref="S3.SS5.p1.1.m1.1.2.cmml"><mi id="S3.SS5.p1.1.m1.1.2.2" xref="S3.SS5.p1.1.m1.1.2.2.cmml">ϕ</mi><mo id="S3.SS5.p1.1.m1.1.2.1" xref="S3.SS5.p1.1.m1.1.2.1.cmml"></mo><mrow id="S3.SS5.p1.1.m1.1.2.3.2" xref="S3.SS5.p1.1.m1.1.2.cmml"><mo id="S3.SS5.p1.1.m1.1.2.3.2.1" xref="S3.SS5.p1.1.m1.1.2.cmml">(</mo><mi id="S3.SS5.p1.1.m1.1.1" xref="S3.SS5.p1.1.m1.1.1.cmml">r</mi><mo id="S3.SS5.p1.1.m1.1.2.3.2.2" xref="S3.SS5.p1.1.m1.1.2.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S3.SS5.p1.1.m1.1b"><apply id="S3.SS5.p1.1.m1.1.2.cmml" xref="S3.SS5.p1.1.m1.1.2"><times id="S3.SS5.p1.1.m1.1.2.1.cmml" xref="S3.SS5.p1.1.m1.1.2.1"></times><ci id="S3.SS5.p1.1.m1.1.2.2.cmml" xref="S3.SS5.p1.1.m1.1.2.2">italic-ϕ</ci><ci id="S3.SS5.p1.1.m1.1.1.cmml" xref="S3.SS5.p1.1.m1.1.1">𝑟</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS5.p1.1.m1.1c">{\phi\left(r\right)}</annotation><annotation encoding="application/x-llamapun" id="S3.SS5.p1.1.m1.1d">italic_ϕ ( italic_r )</annotation></semantics></math> satisfies the symmetry condition presented in Theorem <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.Thmtheorem7" title="Theorem 2.7. ‣ 2.4. Flux Extrapolation and Limiters ‣ 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2.7</span></a>, it is necessary to perform a <math alttext="{r\to\frac{1}{r}}" class="ltx_Math" display="inline" id="S3.SS5.p1.2.m2.1"><semantics id="S3.SS5.p1.2.m2.1a"><mrow id="S3.SS5.p1.2.m2.1.1" xref="S3.SS5.p1.2.m2.1.1.cmml"><mi id="S3.SS5.p1.2.m2.1.1.2" xref="S3.SS5.p1.2.m2.1.1.2.cmml">r</mi><mo id="S3.SS5.p1.2.m2.1.1.1" stretchy="false" xref="S3.SS5.p1.2.m2.1.1.1.cmml">→</mo><mfrac id="S3.SS5.p1.2.m2.1.1.3" xref="S3.SS5.p1.2.m2.1.1.3.cmml"><mn id="S3.SS5.p1.2.m2.1.1.3.2" xref="S3.SS5.p1.2.m2.1.1.3.2.cmml">1</mn><mi id="S3.SS5.p1.2.m2.1.1.3.3" xref="S3.SS5.p1.2.m2.1.1.3.3.cmml">r</mi></mfrac></mrow><annotation-xml encoding="MathML-Content" id="S3.SS5.p1.2.m2.1b"><apply id="S3.SS5.p1.2.m2.1.1.cmml" xref="S3.SS5.p1.2.m2.1.1"><ci id="S3.SS5.p1.2.m2.1.1.1.cmml" xref="S3.SS5.p1.2.m2.1.1.1">→</ci><ci id="S3.SS5.p1.2.m2.1.1.2.cmml" xref="S3.SS5.p1.2.m2.1.1.2">𝑟</ci><apply id="S3.SS5.p1.2.m2.1.1.3.cmml" xref="S3.SS5.p1.2.m2.1.1.3"><divide id="S3.SS5.p1.2.m2.1.1.3.1.cmml" xref="S3.SS5.p1.2.m2.1.1.3"></divide><cn id="S3.SS5.p1.2.m2.1.1.3.2.cmml" type="integer" xref="S3.SS5.p1.2.m2.1.1.3.2">1</cn><ci id="S3.SS5.p1.2.m2.1.1.3.3.cmml" xref="S3.SS5.p1.2.m2.1.1.3.3">𝑟</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS5.p1.2.m2.1c">{r\to\frac{1}{r}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS5.p1.2.m2.1d">italic_r → divide start_ARG 1 end_ARG start_ARG italic_r end_ARG</annotation></semantics></math> variable transformation throughout the expression for <math alttext="{\phi\left(r\right)}" class="ltx_Math" display="inline" id="S3.SS5.p1.3.m3.1"><semantics id="S3.SS5.p1.3.m3.1a"><mrow id="S3.SS5.p1.3.m3.1.2" xref="S3.SS5.p1.3.m3.1.2.cmml"><mi id="S3.SS5.p1.3.m3.1.2.2" xref="S3.SS5.p1.3.m3.1.2.2.cmml">ϕ</mi><mo id="S3.SS5.p1.3.m3.1.2.1" xref="S3.SS5.p1.3.m3.1.2.1.cmml"></mo><mrow id="S3.SS5.p1.3.m3.1.2.3.2" xref="S3.SS5.p1.3.m3.1.2.cmml"><mo id="S3.SS5.p1.3.m3.1.2.3.2.1" xref="S3.SS5.p1.3.m3.1.2.cmml">(</mo><mi id="S3.SS5.p1.3.m3.1.1" xref="S3.SS5.p1.3.m3.1.1.cmml">r</mi><mo id="S3.SS5.p1.3.m3.1.2.3.2.2" xref="S3.SS5.p1.3.m3.1.2.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S3.SS5.p1.3.m3.1b"><apply id="S3.SS5.p1.3.m3.1.2.cmml" xref="S3.SS5.p1.3.m3.1.2"><times id="S3.SS5.p1.3.m3.1.2.1.cmml" xref="S3.SS5.p1.3.m3.1.2.1"></times><ci id="S3.SS5.p1.3.m3.1.2.2.cmml" xref="S3.SS5.p1.3.m3.1.2.2">italic-ϕ</ci><ci id="S3.SS5.p1.3.m3.1.1.cmml" xref="S3.SS5.p1.3.m3.1.1">𝑟</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS5.p1.3.m3.1c">{\phi\left(r\right)}</annotation><annotation encoding="application/x-llamapun" id="S3.SS5.p1.3.m3.1d">italic_ϕ ( italic_r )</annotation></semantics></math>, in order to determine whether this transformed expression is algebraically equivalent to <math alttext="{\frac{\phi\left(r\right)}{r}}" class="ltx_Math" display="inline" id="S3.SS5.p1.4.m4.1"><semantics id="S3.SS5.p1.4.m4.1a"><mfrac id="S3.SS5.p1.4.m4.1.1" xref="S3.SS5.p1.4.m4.1.1.cmml"><mrow id="S3.SS5.p1.4.m4.1.1.1" xref="S3.SS5.p1.4.m4.1.1.1.cmml"><mi id="S3.SS5.p1.4.m4.1.1.1.3" xref="S3.SS5.p1.4.m4.1.1.1.3.cmml">ϕ</mi><mo id="S3.SS5.p1.4.m4.1.1.1.2" xref="S3.SS5.p1.4.m4.1.1.1.2.cmml"></mo><mrow id="S3.SS5.p1.4.m4.1.1.1.4.2" xref="S3.SS5.p1.4.m4.1.1.1.cmml"><mo id="S3.SS5.p1.4.m4.1.1.1.4.2.1" xref="S3.SS5.p1.4.m4.1.1.1.cmml">(</mo><mi id="S3.SS5.p1.4.m4.1.1.1.1" xref="S3.SS5.p1.4.m4.1.1.1.1.cmml">r</mi><mo id="S3.SS5.p1.4.m4.1.1.1.4.2.2" xref="S3.SS5.p1.4.m4.1.1.1.cmml">)</mo></mrow></mrow><mi id="S3.SS5.p1.4.m4.1.1.3" xref="S3.SS5.p1.4.m4.1.1.3.cmml">r</mi></mfrac><annotation-xml encoding="MathML-Content" id="S3.SS5.p1.4.m4.1b"><apply id="S3.SS5.p1.4.m4.1.1.cmml" xref="S3.SS5.p1.4.m4.1.1"><divide id="S3.SS5.p1.4.m4.1.1.2.cmml" xref="S3.SS5.p1.4.m4.1.1"></divide><apply id="S3.SS5.p1.4.m4.1.1.1.cmml" xref="S3.SS5.p1.4.m4.1.1.1"><times id="S3.SS5.p1.4.m4.1.1.1.2.cmml" xref="S3.SS5.p1.4.m4.1.1.1.2"></times><ci id="S3.SS5.p1.4.m4.1.1.1.3.cmml" xref="S3.SS5.p1.4.m4.1.1.1.3">italic-ϕ</ci><ci id="S3.SS5.p1.4.m4.1.1.1.1.cmml" xref="S3.SS5.p1.4.m4.1.1.1.1">𝑟</ci></apply><ci id="S3.SS5.p1.4.m4.1.1.3.cmml" xref="S3.SS5.p1.4.m4.1.1.3">𝑟</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS5.p1.4.m4.1c">{\frac{\phi\left(r\right)}{r}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS5.p1.4.m4.1d">divide start_ARG italic_ϕ ( italic_r ) end_ARG start_ARG italic_r end_ARG</annotation></semantics></math>. For this purpose, we use the recursively-defined <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS5.p1.4.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS5.p1.4.1.1" style="font-size:90%;">variable</span><span class="ltx_text ltx_font_typewriter" id="S3.SS5.p1.4.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS5.p1.4.1.2.1">transform</span></span></span> function:</p> </div> <div class="ltx_para" id="S3.SS5.p2"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS5.p2.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KGRlZmluZSAodmFyaWFibGUtdHJhbnNmb3JtIGV4cHIgdmFyIG5ldy12YXIpCiAgKGNvbmQKICAgIFsoc3ltYm9sPyBleHByKSAoY29uZAogICAgICBbKGVxdWFsPyBleHByIHZhcikgbmV3LXZhcl0KICAgICAgW2Vsc2UgZXhwcl0pXQogICAgWyhwYWlyPyBleHByXSAobWFwIChsYW1iZGEgKHN1YmV4cHIpCiAgICAgICh2YXJpYWJsZS10cmFuc2Zvcm0gc3ViZXhwciB2YXIgbmV3LXZhcikpCiAgICAgIGV4cHIpXQogICAgW2Vsc2UgZXhwcl0pKQ==">⬇</a></div> <div class="ltx_listingline" id="lstnumberx211"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx211.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx211.2" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx211.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx211.4" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx211.5" style="font-size:90%;">variable</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx211.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx211.7" style="font-size:90%;">transform</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx211.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx211.9" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx211.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx211.11" style="font-size:90%;">var</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx211.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx211.13" style="font-size:90%;">new</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx211.14" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx211.15" style="font-size:90%;">var</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx211.16" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx212"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx212.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx212.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx212.3" style="font-size:90%;color:#0000FF;">cond</span> </div> <div class="ltx_listingline" id="lstnumberx213"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx213.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx213.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx213.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx213.4" style="font-size:90%;">symbol</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx213.5" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx213.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx213.7" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx213.8" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx213.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx213.10" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx213.11" style="font-size:90%;color:#0000FF;">cond</span> </div> <div class="ltx_listingline" id="lstnumberx214"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx214.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx214.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx214.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx214.4" style="font-size:90%;">equal</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx214.5" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx214.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx214.7" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx214.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx214.9" style="font-size:90%;">var</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx214.10" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx214.11" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx214.12" style="font-size:90%;">new</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx214.13" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx214.14" style="font-size:90%;">var</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx214.15" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx215"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx215.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx215.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx215.3" style="font-size:90%;color:#0000FF;">else</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx215.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx215.5" style="font-size:90%;">expr</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx215.6" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx215.7" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx215.8" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx216"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx216.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx216.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx216.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx216.4" style="font-size:90%;">pair</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx216.5" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx216.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx216.7" style="font-size:90%;">expr</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx216.8" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx216.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx216.10" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx216.11" style="font-size:90%;color:#0000FF;">map</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx216.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx216.13" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keyword ltx_font_typewriter" id="lstnumberx216.14" style="font-size:90%;color:#0000FF;">lambda</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx216.15" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx216.16" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx216.17" style="font-size:90%;">subexpr</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx216.18" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx217"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx217.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx217.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx217.3" style="font-size:90%;">variable</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx217.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx217.5" style="font-size:90%;">transform</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx217.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx217.7" style="font-size:90%;">subexpr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx217.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx217.9" style="font-size:90%;">var</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx217.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx217.11" style="font-size:90%;">new</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx217.12" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx217.13" style="font-size:90%;">var</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx217.14" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx217.15" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx218"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx218.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx218.2" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx218.3" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx218.4" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx219"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx219.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx219.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx219.3" style="font-size:90%;color:#0000FF;">else</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx219.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx219.5" style="font-size:90%;">expr</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx219.6" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx219.7" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx219.8" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS5.p2.2">which applies itself recursively to all subexpressions, and replaces any subexpression it finds which matches <span class="ltx_text ltx_lst_identifier ltx_lst_language_Scheme ltx_lstlisting ltx_font_typewriter" id="S3.SS5.p2.2.1" style="font-size:90%;">var</span> with a new subexpression matching <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS5.p2.2.2"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS5.p2.2.2.1" style="font-size:90%;">new</span><span class="ltx_text ltx_font_typewriter" id="S3.SS5.p2.2.2.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS5.p2.2.2.2.1">var</span></span></span>. For the second-order total variation diminishing (TVD) condition presented in Theorem <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S2.Thmtheorem8" title="Theorem 2.8. ‣ 2.4. Flux Extrapolation and Limiters ‣ 2. Preliminaries ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2.8</span></a>, we use a strictly stronger set of conditions which imply (but are not equivalent to) the Sweby criteria, namely the limiting conditions that:</p> </div> <div class="ltx_para" id="S3.SS5.p3"> <table class="ltx_equation ltx_eqn_table" id="S3.E46"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(46)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="0\leq\lim_{r\to 0}\left[\phi\left(r\right)\right]\leq 1,\qquad 1\leq\lim_{r\to 2% }\left[\phi\left(r\right)\right]\leq 2," class="ltx_Math" display="block" id="S3.E46.m1.3"><semantics id="S3.E46.m1.3a"><mrow id="S3.E46.m1.3.3.1"><mrow id="S3.E46.m1.3.3.1.1.2" xref="S3.E46.m1.3.3.1.1.3.cmml"><mrow id="S3.E46.m1.3.3.1.1.1.1" xref="S3.E46.m1.3.3.1.1.1.1.cmml"><mn id="S3.E46.m1.3.3.1.1.1.1.3" xref="S3.E46.m1.3.3.1.1.1.1.3.cmml">0</mn><mo id="S3.E46.m1.3.3.1.1.1.1.4" rspace="0.1389em" xref="S3.E46.m1.3.3.1.1.1.1.4.cmml">≤</mo><mrow id="S3.E46.m1.3.3.1.1.1.1.1" xref="S3.E46.m1.3.3.1.1.1.1.1.cmml"><munder id="S3.E46.m1.3.3.1.1.1.1.1.2" xref="S3.E46.m1.3.3.1.1.1.1.1.2.cmml"><mo id="S3.E46.m1.3.3.1.1.1.1.1.2.2" lspace="0.1389em" movablelimits="false" rspace="0em" xref="S3.E46.m1.3.3.1.1.1.1.1.2.2.cmml">lim</mo><mrow id="S3.E46.m1.3.3.1.1.1.1.1.2.3" xref="S3.E46.m1.3.3.1.1.1.1.1.2.3.cmml"><mi id="S3.E46.m1.3.3.1.1.1.1.1.2.3.2" xref="S3.E46.m1.3.3.1.1.1.1.1.2.3.2.cmml">r</mi><mo id="S3.E46.m1.3.3.1.1.1.1.1.2.3.1" stretchy="false" xref="S3.E46.m1.3.3.1.1.1.1.1.2.3.1.cmml">→</mo><mn id="S3.E46.m1.3.3.1.1.1.1.1.2.3.3" xref="S3.E46.m1.3.3.1.1.1.1.1.2.3.3.cmml">0</mn></mrow></munder><mrow id="S3.E46.m1.3.3.1.1.1.1.1.1.1" xref="S3.E46.m1.3.3.1.1.1.1.1.1.2.cmml"><mo id="S3.E46.m1.3.3.1.1.1.1.1.1.1.2" xref="S3.E46.m1.3.3.1.1.1.1.1.1.2.1.cmml">[</mo><mrow id="S3.E46.m1.3.3.1.1.1.1.1.1.1.1" xref="S3.E46.m1.3.3.1.1.1.1.1.1.1.1.cmml"><mi id="S3.E46.m1.3.3.1.1.1.1.1.1.1.1.2" xref="S3.E46.m1.3.3.1.1.1.1.1.1.1.1.2.cmml">ϕ</mi><mo id="S3.E46.m1.3.3.1.1.1.1.1.1.1.1.1" xref="S3.E46.m1.3.3.1.1.1.1.1.1.1.1.1.cmml"></mo><mrow id="S3.E46.m1.3.3.1.1.1.1.1.1.1.1.3.2" xref="S3.E46.m1.3.3.1.1.1.1.1.1.1.1.cmml"><mo id="S3.E46.m1.3.3.1.1.1.1.1.1.1.1.3.2.1" xref="S3.E46.m1.3.3.1.1.1.1.1.1.1.1.cmml">(</mo><mi id="S3.E46.m1.1.1" xref="S3.E46.m1.1.1.cmml">r</mi><mo id="S3.E46.m1.3.3.1.1.1.1.1.1.1.1.3.2.2" xref="S3.E46.m1.3.3.1.1.1.1.1.1.1.1.cmml">)</mo></mrow></mrow><mo id="S3.E46.m1.3.3.1.1.1.1.1.1.1.3" xref="S3.E46.m1.3.3.1.1.1.1.1.1.2.1.cmml">]</mo></mrow></mrow><mo id="S3.E46.m1.3.3.1.1.1.1.5" xref="S3.E46.m1.3.3.1.1.1.1.5.cmml">≤</mo><mn id="S3.E46.m1.3.3.1.1.1.1.6" xref="S3.E46.m1.3.3.1.1.1.1.6.cmml">1</mn></mrow><mo id="S3.E46.m1.3.3.1.1.2.3" rspace="2.167em" xref="S3.E46.m1.3.3.1.1.3a.cmml">,</mo><mrow id="S3.E46.m1.3.3.1.1.2.2" xref="S3.E46.m1.3.3.1.1.2.2.cmml"><mn id="S3.E46.m1.3.3.1.1.2.2.3" xref="S3.E46.m1.3.3.1.1.2.2.3.cmml">1</mn><mo id="S3.E46.m1.3.3.1.1.2.2.4" rspace="0.1389em" xref="S3.E46.m1.3.3.1.1.2.2.4.cmml">≤</mo><mrow id="S3.E46.m1.3.3.1.1.2.2.1" xref="S3.E46.m1.3.3.1.1.2.2.1.cmml"><munder id="S3.E46.m1.3.3.1.1.2.2.1.2" xref="S3.E46.m1.3.3.1.1.2.2.1.2.cmml"><mo id="S3.E46.m1.3.3.1.1.2.2.1.2.2" lspace="0.1389em" movablelimits="false" rspace="0em" xref="S3.E46.m1.3.3.1.1.2.2.1.2.2.cmml">lim</mo><mrow id="S3.E46.m1.3.3.1.1.2.2.1.2.3" xref="S3.E46.m1.3.3.1.1.2.2.1.2.3.cmml"><mi id="S3.E46.m1.3.3.1.1.2.2.1.2.3.2" xref="S3.E46.m1.3.3.1.1.2.2.1.2.3.2.cmml">r</mi><mo id="S3.E46.m1.3.3.1.1.2.2.1.2.3.1" stretchy="false" xref="S3.E46.m1.3.3.1.1.2.2.1.2.3.1.cmml">→</mo><mn id="S3.E46.m1.3.3.1.1.2.2.1.2.3.3" xref="S3.E46.m1.3.3.1.1.2.2.1.2.3.3.cmml">2</mn></mrow></munder><mrow id="S3.E46.m1.3.3.1.1.2.2.1.1.1" xref="S3.E46.m1.3.3.1.1.2.2.1.1.2.cmml"><mo id="S3.E46.m1.3.3.1.1.2.2.1.1.1.2" xref="S3.E46.m1.3.3.1.1.2.2.1.1.2.1.cmml">[</mo><mrow id="S3.E46.m1.3.3.1.1.2.2.1.1.1.1" xref="S3.E46.m1.3.3.1.1.2.2.1.1.1.1.cmml"><mi id="S3.E46.m1.3.3.1.1.2.2.1.1.1.1.2" xref="S3.E46.m1.3.3.1.1.2.2.1.1.1.1.2.cmml">ϕ</mi><mo id="S3.E46.m1.3.3.1.1.2.2.1.1.1.1.1" xref="S3.E46.m1.3.3.1.1.2.2.1.1.1.1.1.cmml"></mo><mrow id="S3.E46.m1.3.3.1.1.2.2.1.1.1.1.3.2" xref="S3.E46.m1.3.3.1.1.2.2.1.1.1.1.cmml"><mo id="S3.E46.m1.3.3.1.1.2.2.1.1.1.1.3.2.1" xref="S3.E46.m1.3.3.1.1.2.2.1.1.1.1.cmml">(</mo><mi id="S3.E46.m1.2.2" xref="S3.E46.m1.2.2.cmml">r</mi><mo id="S3.E46.m1.3.3.1.1.2.2.1.1.1.1.3.2.2" xref="S3.E46.m1.3.3.1.1.2.2.1.1.1.1.cmml">)</mo></mrow></mrow><mo id="S3.E46.m1.3.3.1.1.2.2.1.1.1.3" xref="S3.E46.m1.3.3.1.1.2.2.1.1.2.1.cmml">]</mo></mrow></mrow><mo id="S3.E46.m1.3.3.1.1.2.2.5" xref="S3.E46.m1.3.3.1.1.2.2.5.cmml">≤</mo><mn id="S3.E46.m1.3.3.1.1.2.2.6" xref="S3.E46.m1.3.3.1.1.2.2.6.cmml">2</mn></mrow></mrow><mo id="S3.E46.m1.3.3.1.2">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S3.E46.m1.3b"><apply id="S3.E46.m1.3.3.1.1.3.cmml" xref="S3.E46.m1.3.3.1.1.2"><csymbol cd="ambiguous" id="S3.E46.m1.3.3.1.1.3a.cmml" xref="S3.E46.m1.3.3.1.1.2.3">formulae-sequence</csymbol><apply id="S3.E46.m1.3.3.1.1.1.1.cmml" xref="S3.E46.m1.3.3.1.1.1.1"><and id="S3.E46.m1.3.3.1.1.1.1a.cmml" xref="S3.E46.m1.3.3.1.1.1.1"></and><apply id="S3.E46.m1.3.3.1.1.1.1b.cmml" xref="S3.E46.m1.3.3.1.1.1.1"><leq id="S3.E46.m1.3.3.1.1.1.1.4.cmml" xref="S3.E46.m1.3.3.1.1.1.1.4"></leq><cn id="S3.E46.m1.3.3.1.1.1.1.3.cmml" type="integer" xref="S3.E46.m1.3.3.1.1.1.1.3">0</cn><apply id="S3.E46.m1.3.3.1.1.1.1.1.cmml" xref="S3.E46.m1.3.3.1.1.1.1.1"><apply id="S3.E46.m1.3.3.1.1.1.1.1.2.cmml" xref="S3.E46.m1.3.3.1.1.1.1.1.2"><csymbol cd="ambiguous" id="S3.E46.m1.3.3.1.1.1.1.1.2.1.cmml" xref="S3.E46.m1.3.3.1.1.1.1.1.2">subscript</csymbol><limit id="S3.E46.m1.3.3.1.1.1.1.1.2.2.cmml" xref="S3.E46.m1.3.3.1.1.1.1.1.2.2"></limit><apply id="S3.E46.m1.3.3.1.1.1.1.1.2.3.cmml" xref="S3.E46.m1.3.3.1.1.1.1.1.2.3"><ci id="S3.E46.m1.3.3.1.1.1.1.1.2.3.1.cmml" xref="S3.E46.m1.3.3.1.1.1.1.1.2.3.1">→</ci><ci id="S3.E46.m1.3.3.1.1.1.1.1.2.3.2.cmml" xref="S3.E46.m1.3.3.1.1.1.1.1.2.3.2">𝑟</ci><cn id="S3.E46.m1.3.3.1.1.1.1.1.2.3.3.cmml" type="integer" xref="S3.E46.m1.3.3.1.1.1.1.1.2.3.3">0</cn></apply></apply><apply id="S3.E46.m1.3.3.1.1.1.1.1.1.2.cmml" xref="S3.E46.m1.3.3.1.1.1.1.1.1.1"><csymbol cd="latexml" id="S3.E46.m1.3.3.1.1.1.1.1.1.2.1.cmml" xref="S3.E46.m1.3.3.1.1.1.1.1.1.1.2">delimited-[]</csymbol><apply id="S3.E46.m1.3.3.1.1.1.1.1.1.1.1.cmml" xref="S3.E46.m1.3.3.1.1.1.1.1.1.1.1"><times id="S3.E46.m1.3.3.1.1.1.1.1.1.1.1.1.cmml" xref="S3.E46.m1.3.3.1.1.1.1.1.1.1.1.1"></times><ci id="S3.E46.m1.3.3.1.1.1.1.1.1.1.1.2.cmml" xref="S3.E46.m1.3.3.1.1.1.1.1.1.1.1.2">italic-ϕ</ci><ci id="S3.E46.m1.1.1.cmml" xref="S3.E46.m1.1.1">𝑟</ci></apply></apply></apply></apply><apply id="S3.E46.m1.3.3.1.1.1.1c.cmml" xref="S3.E46.m1.3.3.1.1.1.1"><leq id="S3.E46.m1.3.3.1.1.1.1.5.cmml" xref="S3.E46.m1.3.3.1.1.1.1.5"></leq><share href="https://arxiv.org/html/2503.13877v1#S3.E46.m1.3.3.1.1.1.1.1.cmml" id="S3.E46.m1.3.3.1.1.1.1d.cmml" xref="S3.E46.m1.3.3.1.1.1.1"></share><cn id="S3.E46.m1.3.3.1.1.1.1.6.cmml" type="integer" xref="S3.E46.m1.3.3.1.1.1.1.6">1</cn></apply></apply><apply id="S3.E46.m1.3.3.1.1.2.2.cmml" xref="S3.E46.m1.3.3.1.1.2.2"><and id="S3.E46.m1.3.3.1.1.2.2a.cmml" xref="S3.E46.m1.3.3.1.1.2.2"></and><apply id="S3.E46.m1.3.3.1.1.2.2b.cmml" xref="S3.E46.m1.3.3.1.1.2.2"><leq id="S3.E46.m1.3.3.1.1.2.2.4.cmml" xref="S3.E46.m1.3.3.1.1.2.2.4"></leq><cn id="S3.E46.m1.3.3.1.1.2.2.3.cmml" type="integer" xref="S3.E46.m1.3.3.1.1.2.2.3">1</cn><apply id="S3.E46.m1.3.3.1.1.2.2.1.cmml" xref="S3.E46.m1.3.3.1.1.2.2.1"><apply id="S3.E46.m1.3.3.1.1.2.2.1.2.cmml" xref="S3.E46.m1.3.3.1.1.2.2.1.2"><csymbol cd="ambiguous" id="S3.E46.m1.3.3.1.1.2.2.1.2.1.cmml" xref="S3.E46.m1.3.3.1.1.2.2.1.2">subscript</csymbol><limit id="S3.E46.m1.3.3.1.1.2.2.1.2.2.cmml" xref="S3.E46.m1.3.3.1.1.2.2.1.2.2"></limit><apply id="S3.E46.m1.3.3.1.1.2.2.1.2.3.cmml" xref="S3.E46.m1.3.3.1.1.2.2.1.2.3"><ci id="S3.E46.m1.3.3.1.1.2.2.1.2.3.1.cmml" xref="S3.E46.m1.3.3.1.1.2.2.1.2.3.1">→</ci><ci id="S3.E46.m1.3.3.1.1.2.2.1.2.3.2.cmml" xref="S3.E46.m1.3.3.1.1.2.2.1.2.3.2">𝑟</ci><cn id="S3.E46.m1.3.3.1.1.2.2.1.2.3.3.cmml" type="integer" xref="S3.E46.m1.3.3.1.1.2.2.1.2.3.3">2</cn></apply></apply><apply id="S3.E46.m1.3.3.1.1.2.2.1.1.2.cmml" xref="S3.E46.m1.3.3.1.1.2.2.1.1.1"><csymbol cd="latexml" id="S3.E46.m1.3.3.1.1.2.2.1.1.2.1.cmml" xref="S3.E46.m1.3.3.1.1.2.2.1.1.1.2">delimited-[]</csymbol><apply id="S3.E46.m1.3.3.1.1.2.2.1.1.1.1.cmml" xref="S3.E46.m1.3.3.1.1.2.2.1.1.1.1"><times id="S3.E46.m1.3.3.1.1.2.2.1.1.1.1.1.cmml" xref="S3.E46.m1.3.3.1.1.2.2.1.1.1.1.1"></times><ci id="S3.E46.m1.3.3.1.1.2.2.1.1.1.1.2.cmml" xref="S3.E46.m1.3.3.1.1.2.2.1.1.1.1.2">italic-ϕ</ci><ci id="S3.E46.m1.2.2.cmml" xref="S3.E46.m1.2.2">𝑟</ci></apply></apply></apply></apply><apply id="S3.E46.m1.3.3.1.1.2.2c.cmml" xref="S3.E46.m1.3.3.1.1.2.2"><leq id="S3.E46.m1.3.3.1.1.2.2.5.cmml" xref="S3.E46.m1.3.3.1.1.2.2.5"></leq><share href="https://arxiv.org/html/2503.13877v1#S3.E46.m1.3.3.1.1.2.2.1.cmml" id="S3.E46.m1.3.3.1.1.2.2d.cmml" xref="S3.E46.m1.3.3.1.1.2.2"></share><cn id="S3.E46.m1.3.3.1.1.2.2.6.cmml" type="integer" xref="S3.E46.m1.3.3.1.1.2.2.6">2</cn></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.E46.m1.3c">0\leq\lim_{r\to 0}\left[\phi\left(r\right)\right]\leq 1,\qquad 1\leq\lim_{r\to 2% }\left[\phi\left(r\right)\right]\leq 2,</annotation><annotation encoding="application/x-llamapun" id="S3.E46.m1.3d">0 ≤ roman_lim start_POSTSUBSCRIPT italic_r → 0 end_POSTSUBSCRIPT [ italic_ϕ ( italic_r ) ] ≤ 1 , 1 ≤ roman_lim start_POSTSUBSCRIPT italic_r → 2 end_POSTSUBSCRIPT [ italic_ϕ ( italic_r ) ] ≤ 2 ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <table class="ltx_equation ltx_eqn_table" id="S3.E47"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(47)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\lim_{r\to 1}\left[\phi\left(r\right)\right]=1,\qquad\lim_{r\to\infty}\left[% \phi\left(r\right)\right]\leq 2," class="ltx_Math" display="block" id="S3.E47.m1.3"><semantics id="S3.E47.m1.3a"><mrow id="S3.E47.m1.3.3.1"><mrow id="S3.E47.m1.3.3.1.1.2" xref="S3.E47.m1.3.3.1.1.3.cmml"><mrow id="S3.E47.m1.3.3.1.1.1.1" xref="S3.E47.m1.3.3.1.1.1.1.cmml"><mrow id="S3.E47.m1.3.3.1.1.1.1.1" xref="S3.E47.m1.3.3.1.1.1.1.1.cmml"><munder id="S3.E47.m1.3.3.1.1.1.1.1.2" xref="S3.E47.m1.3.3.1.1.1.1.1.2.cmml"><mo id="S3.E47.m1.3.3.1.1.1.1.1.2.2" movablelimits="false" xref="S3.E47.m1.3.3.1.1.1.1.1.2.2.cmml">lim</mo><mrow id="S3.E47.m1.3.3.1.1.1.1.1.2.3" xref="S3.E47.m1.3.3.1.1.1.1.1.2.3.cmml"><mi id="S3.E47.m1.3.3.1.1.1.1.1.2.3.2" xref="S3.E47.m1.3.3.1.1.1.1.1.2.3.2.cmml">r</mi><mo id="S3.E47.m1.3.3.1.1.1.1.1.2.3.1" stretchy="false" xref="S3.E47.m1.3.3.1.1.1.1.1.2.3.1.cmml">→</mo><mn id="S3.E47.m1.3.3.1.1.1.1.1.2.3.3" xref="S3.E47.m1.3.3.1.1.1.1.1.2.3.3.cmml">1</mn></mrow></munder><mrow id="S3.E47.m1.3.3.1.1.1.1.1.1.1" xref="S3.E47.m1.3.3.1.1.1.1.1.1.2.cmml"><mo id="S3.E47.m1.3.3.1.1.1.1.1.1.1.2" lspace="0em" xref="S3.E47.m1.3.3.1.1.1.1.1.1.2.1.cmml">[</mo><mrow id="S3.E47.m1.3.3.1.1.1.1.1.1.1.1" xref="S3.E47.m1.3.3.1.1.1.1.1.1.1.1.cmml"><mi id="S3.E47.m1.3.3.1.1.1.1.1.1.1.1.2" xref="S3.E47.m1.3.3.1.1.1.1.1.1.1.1.2.cmml">ϕ</mi><mo id="S3.E47.m1.3.3.1.1.1.1.1.1.1.1.1" xref="S3.E47.m1.3.3.1.1.1.1.1.1.1.1.1.cmml"></mo><mrow id="S3.E47.m1.3.3.1.1.1.1.1.1.1.1.3.2" xref="S3.E47.m1.3.3.1.1.1.1.1.1.1.1.cmml"><mo id="S3.E47.m1.3.3.1.1.1.1.1.1.1.1.3.2.1" xref="S3.E47.m1.3.3.1.1.1.1.1.1.1.1.cmml">(</mo><mi id="S3.E47.m1.1.1" xref="S3.E47.m1.1.1.cmml">r</mi><mo id="S3.E47.m1.3.3.1.1.1.1.1.1.1.1.3.2.2" xref="S3.E47.m1.3.3.1.1.1.1.1.1.1.1.cmml">)</mo></mrow></mrow><mo id="S3.E47.m1.3.3.1.1.1.1.1.1.1.3" xref="S3.E47.m1.3.3.1.1.1.1.1.1.2.1.cmml">]</mo></mrow></mrow><mo id="S3.E47.m1.3.3.1.1.1.1.2" xref="S3.E47.m1.3.3.1.1.1.1.2.cmml">=</mo><mn id="S3.E47.m1.3.3.1.1.1.1.3" xref="S3.E47.m1.3.3.1.1.1.1.3.cmml">1</mn></mrow><mo id="S3.E47.m1.3.3.1.1.2.3" rspace="1.889em" xref="S3.E47.m1.3.3.1.1.3a.cmml">,</mo><mrow id="S3.E47.m1.3.3.1.1.2.2" xref="S3.E47.m1.3.3.1.1.2.2.cmml"><mrow id="S3.E47.m1.3.3.1.1.2.2.1" xref="S3.E47.m1.3.3.1.1.2.2.1.cmml"><munder id="S3.E47.m1.3.3.1.1.2.2.1.2" xref="S3.E47.m1.3.3.1.1.2.2.1.2.cmml"><mo id="S3.E47.m1.3.3.1.1.2.2.1.2.2" movablelimits="false" rspace="0em" xref="S3.E47.m1.3.3.1.1.2.2.1.2.2.cmml">lim</mo><mrow id="S3.E47.m1.3.3.1.1.2.2.1.2.3" xref="S3.E47.m1.3.3.1.1.2.2.1.2.3.cmml"><mi id="S3.E47.m1.3.3.1.1.2.2.1.2.3.2" xref="S3.E47.m1.3.3.1.1.2.2.1.2.3.2.cmml">r</mi><mo id="S3.E47.m1.3.3.1.1.2.2.1.2.3.1" stretchy="false" xref="S3.E47.m1.3.3.1.1.2.2.1.2.3.1.cmml">→</mo><mi id="S3.E47.m1.3.3.1.1.2.2.1.2.3.3" mathvariant="normal" xref="S3.E47.m1.3.3.1.1.2.2.1.2.3.3.cmml">∞</mi></mrow></munder><mrow id="S3.E47.m1.3.3.1.1.2.2.1.1.1" xref="S3.E47.m1.3.3.1.1.2.2.1.1.2.cmml"><mo id="S3.E47.m1.3.3.1.1.2.2.1.1.1.2" xref="S3.E47.m1.3.3.1.1.2.2.1.1.2.1.cmml">[</mo><mrow id="S3.E47.m1.3.3.1.1.2.2.1.1.1.1" xref="S3.E47.m1.3.3.1.1.2.2.1.1.1.1.cmml"><mi id="S3.E47.m1.3.3.1.1.2.2.1.1.1.1.2" xref="S3.E47.m1.3.3.1.1.2.2.1.1.1.1.2.cmml">ϕ</mi><mo id="S3.E47.m1.3.3.1.1.2.2.1.1.1.1.1" xref="S3.E47.m1.3.3.1.1.2.2.1.1.1.1.1.cmml"></mo><mrow id="S3.E47.m1.3.3.1.1.2.2.1.1.1.1.3.2" xref="S3.E47.m1.3.3.1.1.2.2.1.1.1.1.cmml"><mo id="S3.E47.m1.3.3.1.1.2.2.1.1.1.1.3.2.1" xref="S3.E47.m1.3.3.1.1.2.2.1.1.1.1.cmml">(</mo><mi id="S3.E47.m1.2.2" xref="S3.E47.m1.2.2.cmml">r</mi><mo id="S3.E47.m1.3.3.1.1.2.2.1.1.1.1.3.2.2" xref="S3.E47.m1.3.3.1.1.2.2.1.1.1.1.cmml">)</mo></mrow></mrow><mo id="S3.E47.m1.3.3.1.1.2.2.1.1.1.3" xref="S3.E47.m1.3.3.1.1.2.2.1.1.2.1.cmml">]</mo></mrow></mrow><mo id="S3.E47.m1.3.3.1.1.2.2.2" xref="S3.E47.m1.3.3.1.1.2.2.2.cmml">≤</mo><mn id="S3.E47.m1.3.3.1.1.2.2.3" xref="S3.E47.m1.3.3.1.1.2.2.3.cmml">2</mn></mrow></mrow><mo id="S3.E47.m1.3.3.1.2">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S3.E47.m1.3b"><apply id="S3.E47.m1.3.3.1.1.3.cmml" xref="S3.E47.m1.3.3.1.1.2"><csymbol cd="ambiguous" id="S3.E47.m1.3.3.1.1.3a.cmml" xref="S3.E47.m1.3.3.1.1.2.3">formulae-sequence</csymbol><apply id="S3.E47.m1.3.3.1.1.1.1.cmml" xref="S3.E47.m1.3.3.1.1.1.1"><eq id="S3.E47.m1.3.3.1.1.1.1.2.cmml" xref="S3.E47.m1.3.3.1.1.1.1.2"></eq><apply id="S3.E47.m1.3.3.1.1.1.1.1.cmml" xref="S3.E47.m1.3.3.1.1.1.1.1"><apply id="S3.E47.m1.3.3.1.1.1.1.1.2.cmml" xref="S3.E47.m1.3.3.1.1.1.1.1.2"><csymbol cd="ambiguous" id="S3.E47.m1.3.3.1.1.1.1.1.2.1.cmml" xref="S3.E47.m1.3.3.1.1.1.1.1.2">subscript</csymbol><limit id="S3.E47.m1.3.3.1.1.1.1.1.2.2.cmml" xref="S3.E47.m1.3.3.1.1.1.1.1.2.2"></limit><apply id="S3.E47.m1.3.3.1.1.1.1.1.2.3.cmml" xref="S3.E47.m1.3.3.1.1.1.1.1.2.3"><ci id="S3.E47.m1.3.3.1.1.1.1.1.2.3.1.cmml" xref="S3.E47.m1.3.3.1.1.1.1.1.2.3.1">→</ci><ci id="S3.E47.m1.3.3.1.1.1.1.1.2.3.2.cmml" xref="S3.E47.m1.3.3.1.1.1.1.1.2.3.2">𝑟</ci><cn id="S3.E47.m1.3.3.1.1.1.1.1.2.3.3.cmml" type="integer" xref="S3.E47.m1.3.3.1.1.1.1.1.2.3.3">1</cn></apply></apply><apply id="S3.E47.m1.3.3.1.1.1.1.1.1.2.cmml" xref="S3.E47.m1.3.3.1.1.1.1.1.1.1"><csymbol cd="latexml" id="S3.E47.m1.3.3.1.1.1.1.1.1.2.1.cmml" xref="S3.E47.m1.3.3.1.1.1.1.1.1.1.2">delimited-[]</csymbol><apply id="S3.E47.m1.3.3.1.1.1.1.1.1.1.1.cmml" xref="S3.E47.m1.3.3.1.1.1.1.1.1.1.1"><times id="S3.E47.m1.3.3.1.1.1.1.1.1.1.1.1.cmml" xref="S3.E47.m1.3.3.1.1.1.1.1.1.1.1.1"></times><ci id="S3.E47.m1.3.3.1.1.1.1.1.1.1.1.2.cmml" xref="S3.E47.m1.3.3.1.1.1.1.1.1.1.1.2">italic-ϕ</ci><ci id="S3.E47.m1.1.1.cmml" xref="S3.E47.m1.1.1">𝑟</ci></apply></apply></apply><cn id="S3.E47.m1.3.3.1.1.1.1.3.cmml" type="integer" xref="S3.E47.m1.3.3.1.1.1.1.3">1</cn></apply><apply id="S3.E47.m1.3.3.1.1.2.2.cmml" xref="S3.E47.m1.3.3.1.1.2.2"><leq id="S3.E47.m1.3.3.1.1.2.2.2.cmml" xref="S3.E47.m1.3.3.1.1.2.2.2"></leq><apply id="S3.E47.m1.3.3.1.1.2.2.1.cmml" xref="S3.E47.m1.3.3.1.1.2.2.1"><apply id="S3.E47.m1.3.3.1.1.2.2.1.2.cmml" xref="S3.E47.m1.3.3.1.1.2.2.1.2"><csymbol cd="ambiguous" id="S3.E47.m1.3.3.1.1.2.2.1.2.1.cmml" xref="S3.E47.m1.3.3.1.1.2.2.1.2">subscript</csymbol><limit id="S3.E47.m1.3.3.1.1.2.2.1.2.2.cmml" xref="S3.E47.m1.3.3.1.1.2.2.1.2.2"></limit><apply id="S3.E47.m1.3.3.1.1.2.2.1.2.3.cmml" xref="S3.E47.m1.3.3.1.1.2.2.1.2.3"><ci id="S3.E47.m1.3.3.1.1.2.2.1.2.3.1.cmml" xref="S3.E47.m1.3.3.1.1.2.2.1.2.3.1">→</ci><ci id="S3.E47.m1.3.3.1.1.2.2.1.2.3.2.cmml" xref="S3.E47.m1.3.3.1.1.2.2.1.2.3.2">𝑟</ci><infinity id="S3.E47.m1.3.3.1.1.2.2.1.2.3.3.cmml" xref="S3.E47.m1.3.3.1.1.2.2.1.2.3.3"></infinity></apply></apply><apply id="S3.E47.m1.3.3.1.1.2.2.1.1.2.cmml" xref="S3.E47.m1.3.3.1.1.2.2.1.1.1"><csymbol cd="latexml" id="S3.E47.m1.3.3.1.1.2.2.1.1.2.1.cmml" xref="S3.E47.m1.3.3.1.1.2.2.1.1.1.2">delimited-[]</csymbol><apply id="S3.E47.m1.3.3.1.1.2.2.1.1.1.1.cmml" xref="S3.E47.m1.3.3.1.1.2.2.1.1.1.1"><times id="S3.E47.m1.3.3.1.1.2.2.1.1.1.1.1.cmml" xref="S3.E47.m1.3.3.1.1.2.2.1.1.1.1.1"></times><ci id="S3.E47.m1.3.3.1.1.2.2.1.1.1.1.2.cmml" xref="S3.E47.m1.3.3.1.1.2.2.1.1.1.1.2">italic-ϕ</ci><ci id="S3.E47.m1.2.2.cmml" xref="S3.E47.m1.2.2">𝑟</ci></apply></apply></apply><cn id="S3.E47.m1.3.3.1.1.2.2.3.cmml" type="integer" xref="S3.E47.m1.3.3.1.1.2.2.3">2</cn></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.E47.m1.3c">\lim_{r\to 1}\left[\phi\left(r\right)\right]=1,\qquad\lim_{r\to\infty}\left[% \phi\left(r\right)\right]\leq 2,</annotation><annotation encoding="application/x-llamapun" id="S3.E47.m1.3d">roman_lim start_POSTSUBSCRIPT italic_r → 1 end_POSTSUBSCRIPT [ italic_ϕ ( italic_r ) ] = 1 , roman_lim start_POSTSUBSCRIPT italic_r → ∞ end_POSTSUBSCRIPT [ italic_ϕ ( italic_r ) ] ≤ 2 ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S3.SS5.p3.3">assuming that <math alttext="{\phi\left(r\right)=0}" class="ltx_Math" display="inline" id="S3.SS5.p3.1.m1.1"><semantics id="S3.SS5.p3.1.m1.1a"><mrow id="S3.SS5.p3.1.m1.1.2" xref="S3.SS5.p3.1.m1.1.2.cmml"><mrow id="S3.SS5.p3.1.m1.1.2.2" xref="S3.SS5.p3.1.m1.1.2.2.cmml"><mi id="S3.SS5.p3.1.m1.1.2.2.2" xref="S3.SS5.p3.1.m1.1.2.2.2.cmml">ϕ</mi><mo id="S3.SS5.p3.1.m1.1.2.2.1" xref="S3.SS5.p3.1.m1.1.2.2.1.cmml"></mo><mrow id="S3.SS5.p3.1.m1.1.2.2.3.2" xref="S3.SS5.p3.1.m1.1.2.2.cmml"><mo id="S3.SS5.p3.1.m1.1.2.2.3.2.1" xref="S3.SS5.p3.1.m1.1.2.2.cmml">(</mo><mi id="S3.SS5.p3.1.m1.1.1" xref="S3.SS5.p3.1.m1.1.1.cmml">r</mi><mo id="S3.SS5.p3.1.m1.1.2.2.3.2.2" xref="S3.SS5.p3.1.m1.1.2.2.cmml">)</mo></mrow></mrow><mo id="S3.SS5.p3.1.m1.1.2.1" xref="S3.SS5.p3.1.m1.1.2.1.cmml">=</mo><mn id="S3.SS5.p3.1.m1.1.2.3" xref="S3.SS5.p3.1.m1.1.2.3.cmml">0</mn></mrow><annotation-xml encoding="MathML-Content" id="S3.SS5.p3.1.m1.1b"><apply id="S3.SS5.p3.1.m1.1.2.cmml" xref="S3.SS5.p3.1.m1.1.2"><eq id="S3.SS5.p3.1.m1.1.2.1.cmml" xref="S3.SS5.p3.1.m1.1.2.1"></eq><apply id="S3.SS5.p3.1.m1.1.2.2.cmml" xref="S3.SS5.p3.1.m1.1.2.2"><times id="S3.SS5.p3.1.m1.1.2.2.1.cmml" xref="S3.SS5.p3.1.m1.1.2.2.1"></times><ci id="S3.SS5.p3.1.m1.1.2.2.2.cmml" xref="S3.SS5.p3.1.m1.1.2.2.2">italic-ϕ</ci><ci id="S3.SS5.p3.1.m1.1.1.cmml" xref="S3.SS5.p3.1.m1.1.1">𝑟</ci></apply><cn id="S3.SS5.p3.1.m1.1.2.3.cmml" type="integer" xref="S3.SS5.p3.1.m1.1.2.3">0</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS5.p3.1.m1.1c">{\phi\left(r\right)=0}</annotation><annotation encoding="application/x-llamapun" id="S3.SS5.p3.1.m1.1d">italic_ϕ ( italic_r ) = 0</annotation></semantics></math> for all <math alttext="{r<0}" class="ltx_Math" display="inline" id="S3.SS5.p3.2.m2.1"><semantics id="S3.SS5.p3.2.m2.1a"><mrow id="S3.SS5.p3.2.m2.1.1" xref="S3.SS5.p3.2.m2.1.1.cmml"><mi id="S3.SS5.p3.2.m2.1.1.2" xref="S3.SS5.p3.2.m2.1.1.2.cmml">r</mi><mo id="S3.SS5.p3.2.m2.1.1.1" xref="S3.SS5.p3.2.m2.1.1.1.cmml"><</mo><mn id="S3.SS5.p3.2.m2.1.1.3" xref="S3.SS5.p3.2.m2.1.1.3.cmml">0</mn></mrow><annotation-xml encoding="MathML-Content" id="S3.SS5.p3.2.m2.1b"><apply id="S3.SS5.p3.2.m2.1.1.cmml" xref="S3.SS5.p3.2.m2.1.1"><lt id="S3.SS5.p3.2.m2.1.1.1.cmml" xref="S3.SS5.p3.2.m2.1.1.1"></lt><ci id="S3.SS5.p3.2.m2.1.1.2.cmml" xref="S3.SS5.p3.2.m2.1.1.2">𝑟</ci><cn id="S3.SS5.p3.2.m2.1.1.3.cmml" type="integer" xref="S3.SS5.p3.2.m2.1.1.3">0</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS5.p3.2.m2.1c">{r<0}</annotation><annotation encoding="application/x-llamapun" id="S3.SS5.p3.2.m2.1d">italic_r < 0</annotation></semantics></math>, combined with the condition that <math alttext="{\phi\left(r\right)}" class="ltx_Math" display="inline" id="S3.SS5.p3.3.m3.1"><semantics id="S3.SS5.p3.3.m3.1a"><mrow id="S3.SS5.p3.3.m3.1.2" xref="S3.SS5.p3.3.m3.1.2.cmml"><mi id="S3.SS5.p3.3.m3.1.2.2" xref="S3.SS5.p3.3.m3.1.2.2.cmml">ϕ</mi><mo id="S3.SS5.p3.3.m3.1.2.1" xref="S3.SS5.p3.3.m3.1.2.1.cmml"></mo><mrow id="S3.SS5.p3.3.m3.1.2.3.2" xref="S3.SS5.p3.3.m3.1.2.cmml"><mo id="S3.SS5.p3.3.m3.1.2.3.2.1" xref="S3.SS5.p3.3.m3.1.2.cmml">(</mo><mi id="S3.SS5.p3.3.m3.1.1" xref="S3.SS5.p3.3.m3.1.1.cmml">r</mi><mo id="S3.SS5.p3.3.m3.1.2.3.2.2" xref="S3.SS5.p3.3.m3.1.2.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S3.SS5.p3.3.m3.1b"><apply id="S3.SS5.p3.3.m3.1.2.cmml" xref="S3.SS5.p3.3.m3.1.2"><times id="S3.SS5.p3.3.m3.1.2.1.cmml" xref="S3.SS5.p3.3.m3.1.2.1"></times><ci id="S3.SS5.p3.3.m3.1.2.2.cmml" xref="S3.SS5.p3.3.m3.1.2.2">italic-ϕ</ci><ci id="S3.SS5.p3.3.m3.1.1.cmml" xref="S3.SS5.p3.3.m3.1.1">𝑟</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS5.p3.3.m3.1c">{\phi\left(r\right)}</annotation><annotation encoding="application/x-llamapun" id="S3.SS5.p3.3.m3.1d">italic_ϕ ( italic_r )</annotation></semantics></math> be a (non-strictly) concave function:</p> </div> <div class="ltx_para" id="S3.SS5.p4"> <table class="ltx_equation ltx_eqn_table" id="S3.E48"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(48)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\frac{d^{2}\phi\left(r\right)}{dr^{2}}\leq 0." class="ltx_Math" display="block" id="S3.E48.m1.2"><semantics id="S3.E48.m1.2a"><mrow id="S3.E48.m1.2.2.1" xref="S3.E48.m1.2.2.1.1.cmml"><mrow id="S3.E48.m1.2.2.1.1" xref="S3.E48.m1.2.2.1.1.cmml"><mfrac id="S3.E48.m1.1.1" xref="S3.E48.m1.1.1.cmml"><mrow id="S3.E48.m1.1.1.1" xref="S3.E48.m1.1.1.1.cmml"><msup id="S3.E48.m1.1.1.1.3" xref="S3.E48.m1.1.1.1.3.cmml"><mi id="S3.E48.m1.1.1.1.3.2" xref="S3.E48.m1.1.1.1.3.2.cmml">d</mi><mn id="S3.E48.m1.1.1.1.3.3" xref="S3.E48.m1.1.1.1.3.3.cmml">2</mn></msup><mo id="S3.E48.m1.1.1.1.2" xref="S3.E48.m1.1.1.1.2.cmml"></mo><mi id="S3.E48.m1.1.1.1.4" xref="S3.E48.m1.1.1.1.4.cmml">ϕ</mi><mo id="S3.E48.m1.1.1.1.2a" xref="S3.E48.m1.1.1.1.2.cmml"></mo><mrow id="S3.E48.m1.1.1.1.5.2" xref="S3.E48.m1.1.1.1.cmml"><mo id="S3.E48.m1.1.1.1.5.2.1" xref="S3.E48.m1.1.1.1.cmml">(</mo><mi id="S3.E48.m1.1.1.1.1" xref="S3.E48.m1.1.1.1.1.cmml">r</mi><mo id="S3.E48.m1.1.1.1.5.2.2" xref="S3.E48.m1.1.1.1.cmml">)</mo></mrow></mrow><mrow id="S3.E48.m1.1.1.3" xref="S3.E48.m1.1.1.3.cmml"><mi id="S3.E48.m1.1.1.3.2" xref="S3.E48.m1.1.1.3.2.cmml">d</mi><mo id="S3.E48.m1.1.1.3.1" xref="S3.E48.m1.1.1.3.1.cmml"></mo><msup id="S3.E48.m1.1.1.3.3" xref="S3.E48.m1.1.1.3.3.cmml"><mi id="S3.E48.m1.1.1.3.3.2" xref="S3.E48.m1.1.1.3.3.2.cmml">r</mi><mn id="S3.E48.m1.1.1.3.3.3" xref="S3.E48.m1.1.1.3.3.3.cmml">2</mn></msup></mrow></mfrac><mo id="S3.E48.m1.2.2.1.1.1" xref="S3.E48.m1.2.2.1.1.1.cmml">≤</mo><mn id="S3.E48.m1.2.2.1.1.2" xref="S3.E48.m1.2.2.1.1.2.cmml">0</mn></mrow><mo id="S3.E48.m1.2.2.1.2" lspace="0em" xref="S3.E48.m1.2.2.1.1.cmml">.</mo></mrow><annotation-xml encoding="MathML-Content" id="S3.E48.m1.2b"><apply id="S3.E48.m1.2.2.1.1.cmml" xref="S3.E48.m1.2.2.1"><leq id="S3.E48.m1.2.2.1.1.1.cmml" xref="S3.E48.m1.2.2.1.1.1"></leq><apply id="S3.E48.m1.1.1.cmml" xref="S3.E48.m1.1.1"><divide id="S3.E48.m1.1.1.2.cmml" xref="S3.E48.m1.1.1"></divide><apply id="S3.E48.m1.1.1.1.cmml" xref="S3.E48.m1.1.1.1"><times id="S3.E48.m1.1.1.1.2.cmml" xref="S3.E48.m1.1.1.1.2"></times><apply id="S3.E48.m1.1.1.1.3.cmml" xref="S3.E48.m1.1.1.1.3"><csymbol cd="ambiguous" id="S3.E48.m1.1.1.1.3.1.cmml" xref="S3.E48.m1.1.1.1.3">superscript</csymbol><ci id="S3.E48.m1.1.1.1.3.2.cmml" xref="S3.E48.m1.1.1.1.3.2">𝑑</ci><cn id="S3.E48.m1.1.1.1.3.3.cmml" type="integer" xref="S3.E48.m1.1.1.1.3.3">2</cn></apply><ci id="S3.E48.m1.1.1.1.4.cmml" xref="S3.E48.m1.1.1.1.4">italic-ϕ</ci><ci id="S3.E48.m1.1.1.1.1.cmml" xref="S3.E48.m1.1.1.1.1">𝑟</ci></apply><apply id="S3.E48.m1.1.1.3.cmml" xref="S3.E48.m1.1.1.3"><times id="S3.E48.m1.1.1.3.1.cmml" xref="S3.E48.m1.1.1.3.1"></times><ci id="S3.E48.m1.1.1.3.2.cmml" xref="S3.E48.m1.1.1.3.2">𝑑</ci><apply id="S3.E48.m1.1.1.3.3.cmml" xref="S3.E48.m1.1.1.3.3"><csymbol cd="ambiguous" id="S3.E48.m1.1.1.3.3.1.cmml" xref="S3.E48.m1.1.1.3.3">superscript</csymbol><ci id="S3.E48.m1.1.1.3.3.2.cmml" xref="S3.E48.m1.1.1.3.3.2">𝑟</ci><cn id="S3.E48.m1.1.1.3.3.3.cmml" type="integer" xref="S3.E48.m1.1.1.3.3.3">2</cn></apply></apply></apply><cn id="S3.E48.m1.2.2.1.1.2.cmml" type="integer" xref="S3.E48.m1.2.2.1.1.2">0</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.E48.m1.2c">\frac{d^{2}\phi\left(r\right)}{dr^{2}}\leq 0.</annotation><annotation encoding="application/x-llamapun" id="S3.E48.m1.2d">divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ ( italic_r ) end_ARG start_ARG italic_d italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ≤ 0 .</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S3.SS5.p4.3">These symbolic limits of the form <math alttext="{\lim\limits_{x\to x_{0}}\left[f\left(x\right)\right]}" class="ltx_Math" display="inline" id="S3.SS5.p4.1.m1.2"><semantics id="S3.SS5.p4.1.m1.2a"><mrow id="S3.SS5.p4.1.m1.2.2" xref="S3.SS5.p4.1.m1.2.2.cmml"><munder id="S3.SS5.p4.1.m1.2.2.2" xref="S3.SS5.p4.1.m1.2.2.2.cmml"><mo id="S3.SS5.p4.1.m1.2.2.2.2" movablelimits="false" xref="S3.SS5.p4.1.m1.2.2.2.2.cmml">lim</mo><mrow id="S3.SS5.p4.1.m1.2.2.2.3" xref="S3.SS5.p4.1.m1.2.2.2.3.cmml"><mi id="S3.SS5.p4.1.m1.2.2.2.3.2" xref="S3.SS5.p4.1.m1.2.2.2.3.2.cmml">x</mi><mo id="S3.SS5.p4.1.m1.2.2.2.3.1" stretchy="false" xref="S3.SS5.p4.1.m1.2.2.2.3.1.cmml">→</mo><msub id="S3.SS5.p4.1.m1.2.2.2.3.3" xref="S3.SS5.p4.1.m1.2.2.2.3.3.cmml"><mi id="S3.SS5.p4.1.m1.2.2.2.3.3.2" xref="S3.SS5.p4.1.m1.2.2.2.3.3.2.cmml">x</mi><mn id="S3.SS5.p4.1.m1.2.2.2.3.3.3" xref="S3.SS5.p4.1.m1.2.2.2.3.3.3.cmml">0</mn></msub></mrow></munder><mrow id="S3.SS5.p4.1.m1.2.2.1.1" xref="S3.SS5.p4.1.m1.2.2.1.2.cmml"><mo id="S3.SS5.p4.1.m1.2.2.1.1.2" lspace="0em" xref="S3.SS5.p4.1.m1.2.2.1.2.1.cmml">[</mo><mrow id="S3.SS5.p4.1.m1.2.2.1.1.1" xref="S3.SS5.p4.1.m1.2.2.1.1.1.cmml"><mi id="S3.SS5.p4.1.m1.2.2.1.1.1.2" xref="S3.SS5.p4.1.m1.2.2.1.1.1.2.cmml">f</mi><mo id="S3.SS5.p4.1.m1.2.2.1.1.1.1" xref="S3.SS5.p4.1.m1.2.2.1.1.1.1.cmml"></mo><mrow id="S3.SS5.p4.1.m1.2.2.1.1.1.3.2" xref="S3.SS5.p4.1.m1.2.2.1.1.1.cmml"><mo id="S3.SS5.p4.1.m1.2.2.1.1.1.3.2.1" xref="S3.SS5.p4.1.m1.2.2.1.1.1.cmml">(</mo><mi id="S3.SS5.p4.1.m1.1.1" xref="S3.SS5.p4.1.m1.1.1.cmml">x</mi><mo id="S3.SS5.p4.1.m1.2.2.1.1.1.3.2.2" xref="S3.SS5.p4.1.m1.2.2.1.1.1.cmml">)</mo></mrow></mrow><mo id="S3.SS5.p4.1.m1.2.2.1.1.3" xref="S3.SS5.p4.1.m1.2.2.1.2.1.cmml">]</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S3.SS5.p4.1.m1.2b"><apply id="S3.SS5.p4.1.m1.2.2.cmml" xref="S3.SS5.p4.1.m1.2.2"><apply id="S3.SS5.p4.1.m1.2.2.2.cmml" xref="S3.SS5.p4.1.m1.2.2.2"><csymbol cd="ambiguous" id="S3.SS5.p4.1.m1.2.2.2.1.cmml" xref="S3.SS5.p4.1.m1.2.2.2">subscript</csymbol><limit id="S3.SS5.p4.1.m1.2.2.2.2.cmml" xref="S3.SS5.p4.1.m1.2.2.2.2"></limit><apply id="S3.SS5.p4.1.m1.2.2.2.3.cmml" xref="S3.SS5.p4.1.m1.2.2.2.3"><ci id="S3.SS5.p4.1.m1.2.2.2.3.1.cmml" xref="S3.SS5.p4.1.m1.2.2.2.3.1">→</ci><ci id="S3.SS5.p4.1.m1.2.2.2.3.2.cmml" xref="S3.SS5.p4.1.m1.2.2.2.3.2">𝑥</ci><apply id="S3.SS5.p4.1.m1.2.2.2.3.3.cmml" xref="S3.SS5.p4.1.m1.2.2.2.3.3"><csymbol cd="ambiguous" id="S3.SS5.p4.1.m1.2.2.2.3.3.1.cmml" xref="S3.SS5.p4.1.m1.2.2.2.3.3">subscript</csymbol><ci id="S3.SS5.p4.1.m1.2.2.2.3.3.2.cmml" xref="S3.SS5.p4.1.m1.2.2.2.3.3.2">𝑥</ci><cn id="S3.SS5.p4.1.m1.2.2.2.3.3.3.cmml" type="integer" xref="S3.SS5.p4.1.m1.2.2.2.3.3.3">0</cn></apply></apply></apply><apply id="S3.SS5.p4.1.m1.2.2.1.2.cmml" xref="S3.SS5.p4.1.m1.2.2.1.1"><csymbol cd="latexml" id="S3.SS5.p4.1.m1.2.2.1.2.1.cmml" xref="S3.SS5.p4.1.m1.2.2.1.1.2">delimited-[]</csymbol><apply id="S3.SS5.p4.1.m1.2.2.1.1.1.cmml" xref="S3.SS5.p4.1.m1.2.2.1.1.1"><times id="S3.SS5.p4.1.m1.2.2.1.1.1.1.cmml" xref="S3.SS5.p4.1.m1.2.2.1.1.1.1"></times><ci id="S3.SS5.p4.1.m1.2.2.1.1.1.2.cmml" xref="S3.SS5.p4.1.m1.2.2.1.1.1.2">𝑓</ci><ci id="S3.SS5.p4.1.m1.1.1.cmml" xref="S3.SS5.p4.1.m1.1.1">𝑥</ci></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS5.p4.1.m1.2c">{\lim\limits_{x\to x_{0}}\left[f\left(x\right)\right]}</annotation><annotation encoding="application/x-llamapun" id="S3.SS5.p4.1.m1.2d">roman_lim start_POSTSUBSCRIPT italic_x → italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ italic_f ( italic_x ) ]</annotation></semantics></math> are evaluated via the <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS5.p4.3.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS5.p4.3.1.1" style="font-size:90%;">evaluate</span><span class="ltx_text ltx_font_typewriter" id="S3.SS5.p4.3.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS5.p4.3.1.2.1">limit</span></span></span> function, which first performs a variable transformation <math alttext="{x\to x_{0}}" class="ltx_Math" display="inline" id="S3.SS5.p4.2.m2.1"><semantics id="S3.SS5.p4.2.m2.1a"><mrow id="S3.SS5.p4.2.m2.1.1" xref="S3.SS5.p4.2.m2.1.1.cmml"><mi id="S3.SS5.p4.2.m2.1.1.2" xref="S3.SS5.p4.2.m2.1.1.2.cmml">x</mi><mo id="S3.SS5.p4.2.m2.1.1.1" stretchy="false" xref="S3.SS5.p4.2.m2.1.1.1.cmml">→</mo><msub id="S3.SS5.p4.2.m2.1.1.3" xref="S3.SS5.p4.2.m2.1.1.3.cmml"><mi id="S3.SS5.p4.2.m2.1.1.3.2" xref="S3.SS5.p4.2.m2.1.1.3.2.cmml">x</mi><mn id="S3.SS5.p4.2.m2.1.1.3.3" xref="S3.SS5.p4.2.m2.1.1.3.3.cmml">0</mn></msub></mrow><annotation-xml encoding="MathML-Content" id="S3.SS5.p4.2.m2.1b"><apply id="S3.SS5.p4.2.m2.1.1.cmml" xref="S3.SS5.p4.2.m2.1.1"><ci id="S3.SS5.p4.2.m2.1.1.1.cmml" xref="S3.SS5.p4.2.m2.1.1.1">→</ci><ci id="S3.SS5.p4.2.m2.1.1.2.cmml" xref="S3.SS5.p4.2.m2.1.1.2">𝑥</ci><apply id="S3.SS5.p4.2.m2.1.1.3.cmml" xref="S3.SS5.p4.2.m2.1.1.3"><csymbol cd="ambiguous" id="S3.SS5.p4.2.m2.1.1.3.1.cmml" xref="S3.SS5.p4.2.m2.1.1.3">subscript</csymbol><ci id="S3.SS5.p4.2.m2.1.1.3.2.cmml" xref="S3.SS5.p4.2.m2.1.1.3.2">𝑥</ci><cn id="S3.SS5.p4.2.m2.1.1.3.3.cmml" type="integer" xref="S3.SS5.p4.2.m2.1.1.3.3">0</cn></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS5.p4.2.m2.1c">{x\to x_{0}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS5.p4.2.m2.1d">italic_x → italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT</annotation></semantics></math> (using the extended reals <math alttext="{x\in\mathbb{R}\cup\left\{-\infty,+\infty\right\}}" class="ltx_Math" display="inline" id="S3.SS5.p4.3.m3.2"><semantics id="S3.SS5.p4.3.m3.2a"><mrow id="S3.SS5.p4.3.m3.2.2" xref="S3.SS5.p4.3.m3.2.2.cmml"><mi id="S3.SS5.p4.3.m3.2.2.4" xref="S3.SS5.p4.3.m3.2.2.4.cmml">x</mi><mo id="S3.SS5.p4.3.m3.2.2.3" xref="S3.SS5.p4.3.m3.2.2.3.cmml">∈</mo><mrow id="S3.SS5.p4.3.m3.2.2.2" xref="S3.SS5.p4.3.m3.2.2.2.cmml"><mi id="S3.SS5.p4.3.m3.2.2.2.4" xref="S3.SS5.p4.3.m3.2.2.2.4.cmml">ℝ</mi><mo id="S3.SS5.p4.3.m3.2.2.2.3" xref="S3.SS5.p4.3.m3.2.2.2.3.cmml">∪</mo><mrow id="S3.SS5.p4.3.m3.2.2.2.2.2" xref="S3.SS5.p4.3.m3.2.2.2.2.3.cmml"><mo id="S3.SS5.p4.3.m3.2.2.2.2.2.3" xref="S3.SS5.p4.3.m3.2.2.2.2.3.cmml">{</mo><mrow id="S3.SS5.p4.3.m3.1.1.1.1.1.1" xref="S3.SS5.p4.3.m3.1.1.1.1.1.1.cmml"><mo id="S3.SS5.p4.3.m3.1.1.1.1.1.1a" xref="S3.SS5.p4.3.m3.1.1.1.1.1.1.cmml">−</mo><mi id="S3.SS5.p4.3.m3.1.1.1.1.1.1.2" mathvariant="normal" xref="S3.SS5.p4.3.m3.1.1.1.1.1.1.2.cmml">∞</mi></mrow><mo id="S3.SS5.p4.3.m3.2.2.2.2.2.4" xref="S3.SS5.p4.3.m3.2.2.2.2.3.cmml">,</mo><mrow id="S3.SS5.p4.3.m3.2.2.2.2.2.2" xref="S3.SS5.p4.3.m3.2.2.2.2.2.2.cmml"><mo id="S3.SS5.p4.3.m3.2.2.2.2.2.2a" xref="S3.SS5.p4.3.m3.2.2.2.2.2.2.cmml">+</mo><mi id="S3.SS5.p4.3.m3.2.2.2.2.2.2.2" mathvariant="normal" xref="S3.SS5.p4.3.m3.2.2.2.2.2.2.2.cmml">∞</mi></mrow><mo id="S3.SS5.p4.3.m3.2.2.2.2.2.5" xref="S3.SS5.p4.3.m3.2.2.2.2.3.cmml">}</mo></mrow></mrow></mrow><annotation-xml encoding="MathML-Content" id="S3.SS5.p4.3.m3.2b"><apply id="S3.SS5.p4.3.m3.2.2.cmml" xref="S3.SS5.p4.3.m3.2.2"><in id="S3.SS5.p4.3.m3.2.2.3.cmml" xref="S3.SS5.p4.3.m3.2.2.3"></in><ci id="S3.SS5.p4.3.m3.2.2.4.cmml" xref="S3.SS5.p4.3.m3.2.2.4">𝑥</ci><apply id="S3.SS5.p4.3.m3.2.2.2.cmml" xref="S3.SS5.p4.3.m3.2.2.2"><union id="S3.SS5.p4.3.m3.2.2.2.3.cmml" xref="S3.SS5.p4.3.m3.2.2.2.3"></union><ci id="S3.SS5.p4.3.m3.2.2.2.4.cmml" xref="S3.SS5.p4.3.m3.2.2.2.4">ℝ</ci><set id="S3.SS5.p4.3.m3.2.2.2.2.3.cmml" xref="S3.SS5.p4.3.m3.2.2.2.2.2"><apply id="S3.SS5.p4.3.m3.1.1.1.1.1.1.cmml" xref="S3.SS5.p4.3.m3.1.1.1.1.1.1"><minus id="S3.SS5.p4.3.m3.1.1.1.1.1.1.1.cmml" xref="S3.SS5.p4.3.m3.1.1.1.1.1.1"></minus><infinity id="S3.SS5.p4.3.m3.1.1.1.1.1.1.2.cmml" xref="S3.SS5.p4.3.m3.1.1.1.1.1.1.2"></infinity></apply><apply id="S3.SS5.p4.3.m3.2.2.2.2.2.2.cmml" xref="S3.SS5.p4.3.m3.2.2.2.2.2.2"><plus id="S3.SS5.p4.3.m3.2.2.2.2.2.2.1.cmml" xref="S3.SS5.p4.3.m3.2.2.2.2.2.2"></plus><infinity id="S3.SS5.p4.3.m3.2.2.2.2.2.2.2.cmml" xref="S3.SS5.p4.3.m3.2.2.2.2.2.2.2"></infinity></apply></set></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS5.p4.3.m3.2c">{x\in\mathbb{R}\cup\left\{-\infty,+\infty\right\}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS5.p4.3.m3.2d">italic_x ∈ blackboard_R ∪ { - ∞ , + ∞ }</annotation></semantics></math>), and then recursively simplifies until the limiting expression achieves a fixed point:</p> </div> <div class="ltx_para" id="S3.SS5.p5"> <div class="ltx_listing ltx_lst_language_Scheme ltx_lstlisting ltx_listing" id="S3.SS5.p5.1"> <div class="ltx_listing_data"><a download="" href="data:text/plain;base64,KGRlZmluZSAoZXZhbHVhdGUtbGltaXQgZXhwciB2YXIgbGltaXQpCiAgKGRlZmluZSBsaW1pdC12YWwKICAgICh2YXJpYWJsZS10cmFuc2Zvcm0gZXhwciB2YXIgbGltaXQpKQogIChkZWZpbmUgbGltaXQtZXhwcgogICAgKGV2YWx1YXRlLWxpbWl0LXJ1bGUgbGltaXQtdmFsIHZhciBsaW1pdCkpCiAgKGNvbmQKICAgIFsoZXF1YWw/IGxpbWl0LWV4cHIgZXhwcikgZXhwcl0KICAgIFtlbHNlIChldmFsdWF0ZS1saW1pdCBsaW1pdC1leHByIHZhciBsaW1pdCldKSk=">⬇</a></div> <div class="ltx_listingline" id="lstnumberx220"> <span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx220.1" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx220.2" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx220.3" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx220.4" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx220.5" style="font-size:90%;">evaluate</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx220.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx220.7" style="font-size:90%;">limit</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx220.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx220.9" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx220.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx220.11" style="font-size:90%;">var</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx220.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx220.13" style="font-size:90%;">limit</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx220.14" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx221"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx221.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx221.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx221.3" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx221.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx221.5" style="font-size:90%;">limit</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx221.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx221.7" style="font-size:90%;">val</span> </div> <div class="ltx_listingline" id="lstnumberx222"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx222.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx222.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx222.3" style="font-size:90%;">variable</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx222.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx222.5" style="font-size:90%;">transform</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx222.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx222.7" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx222.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx222.9" style="font-size:90%;">var</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx222.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx222.11" style="font-size:90%;">limit</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx222.12" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx222.13" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx223"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx223.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx223.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx223.3" style="font-size:90%;color:#0000FF;">define</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx223.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx223.5" style="font-size:90%;">limit</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx223.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx223.7" style="font-size:90%;">expr</span> </div> <div class="ltx_listingline" id="lstnumberx224"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx224.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx224.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx224.3" style="font-size:90%;">evaluate</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx224.4" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx224.5" style="font-size:90%;">limit</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx224.6" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx224.7" style="font-size:90%;">rule</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx224.8" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx224.9" style="font-size:90%;">limit</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx224.10" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx224.11" style="font-size:90%;">val</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx224.12" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx224.13" style="font-size:90%;">var</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx224.14" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx224.15" style="font-size:90%;">limit</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx224.16" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx224.17" style="font-size:90%;color:#999999;">)</span> </div> <div class="ltx_listingline" id="lstnumberx225"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx225.1" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx225.2" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx225.3" style="font-size:90%;color:#0000FF;">cond</span> </div> <div class="ltx_listingline" id="lstnumberx226"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx226.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx226.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx226.3" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx226.4" style="font-size:90%;">equal</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx226.5" style="font-size:90%;">?</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx226.6" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx226.7" style="font-size:90%;">limit</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx226.8" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx226.9" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx226.10" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx226.11" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx226.12" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx226.13" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx226.14" style="font-size:90%;">expr</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx226.15" style="font-size:90%;">]</span> </div> <div class="ltx_listingline" id="lstnumberx227"> <span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx227.1" style="font-size:90%;"> </span><span class="ltx_text ltx_font_typewriter" id="lstnumberx227.2" style="font-size:90%;">[</span><span class="ltx_text ltx_lst_keywords2 ltx_font_typewriter" id="lstnumberx227.3" style="font-size:90%;color:#0000FF;">else</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx227.4" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx227.5" style="font-size:90%;color:#999999;">(</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx227.6" style="font-size:90%;">evaluate</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx227.7" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx227.8" style="font-size:90%;">limit</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx227.9" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx227.10" style="font-size:90%;">limit</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx227.11" style="font-size:90%;">-</span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx227.12" style="font-size:90%;">expr</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx227.13" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx227.14" style="font-size:90%;">var</span><span class="ltx_text ltx_lst_space ltx_font_typewriter" id="lstnumberx227.15" style="font-size:90%;"> </span><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="lstnumberx227.16" style="font-size:90%;">limit</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx227.17" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_font_typewriter" id="lstnumberx227.18" style="font-size:90%;">]</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx227.19" style="font-size:90%;color:#999999;">)</span><span class="ltx_text ltx_lst_literate ltx_font_typewriter" id="lstnumberx227.20" style="font-size:90%;color:#999999;">)</span> </div> </div> <p class="ltx_p" id="S3.SS5.p5.2">where <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS5.p5.2.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS5.p5.2.1.1" style="font-size:90%;">evaluate</span><span class="ltx_text ltx_font_typewriter" id="S3.SS5.p5.2.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS5.p5.2.1.2.1">limit</span>-<span class="ltx_text ltx_lst_identifier" id="S3.SS5.p5.2.1.2.2">rule</span></span></span> encodes valid algebraic simplification rules over the extended reals (a specialized subset of the algebraic rules encoded by <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS5.p5.2.2"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS5.p5.2.2.1" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="S3.SS5.p5.2.2.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS5.p5.2.2.2.1">simp</span>-<span class="ltx_text ltx_lst_identifier" id="S3.SS5.p5.2.2.2.2">rule</span></span></span>).</p> </div> </section> <section class="ltx_subsection" id="S3.SS6"> <h3 class="ltx_title ltx_title_subsection"> <span class="ltx_tag ltx_tag_subsection">3.6. </span>Results</h3> <div class="ltx_para" id="S3.SS6.p1"> <p class="ltx_p" id="S3.SS6.p1.23">For the two scalar PDEs (i.e. the linear advection and inviscid Burgers’ equations), the hyperbolicity-preservation, CFL stability and local Lipschitz continuity properties of the Lax-Friedrichs solver, and the hyperbolicity-preservation and flux conservation (jump continuity) properties of the Roe solver, can all be proved directly and without further complication, as outlined in Tables <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3.T1" title="Table 1 ‣ 3.6. Results ‣ 3. Methodology and Results ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">1</span></a> and <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3.T2" title="Table 2 ‣ 3.6. Results ‣ 3. Methodology and Results ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">2</span></a>. For the two vector PDE systems (i.e. the perfectly hyperbolic Maxwell’s equations and isothermal Euler equations), slightly more work is required. In order to ensure that the theorem-prover never needs to manipulate any higher-dimensional (i.e. beyond 2x2) matrices, we first “factorize” these equation systems into coupled pairs of PDEs, with each pair being dealt with independently. Maxwell’s equations effectively “factorize” into four coupled pairs of linear advection equations, for the <math alttext="{E^{y}}" class="ltx_Math" display="inline" id="S3.SS6.p1.1.m1.1"><semantics id="S3.SS6.p1.1.m1.1a"><msup id="S3.SS6.p1.1.m1.1.1" xref="S3.SS6.p1.1.m1.1.1.cmml"><mi id="S3.SS6.p1.1.m1.1.1.2" xref="S3.SS6.p1.1.m1.1.1.2.cmml">E</mi><mi id="S3.SS6.p1.1.m1.1.1.3" xref="S3.SS6.p1.1.m1.1.1.3.cmml">y</mi></msup><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.1.m1.1b"><apply id="S3.SS6.p1.1.m1.1.1.cmml" xref="S3.SS6.p1.1.m1.1.1"><csymbol cd="ambiguous" id="S3.SS6.p1.1.m1.1.1.1.cmml" xref="S3.SS6.p1.1.m1.1.1">superscript</csymbol><ci id="S3.SS6.p1.1.m1.1.1.2.cmml" xref="S3.SS6.p1.1.m1.1.1.2">𝐸</ci><ci id="S3.SS6.p1.1.m1.1.1.3.cmml" xref="S3.SS6.p1.1.m1.1.1.3">𝑦</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.1.m1.1c">{E^{y}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.1.m1.1d">italic_E start_POSTSUPERSCRIPT italic_y end_POSTSUPERSCRIPT</annotation></semantics></math> and <math alttext="{B^{z}}" class="ltx_Math" display="inline" id="S3.SS6.p1.2.m2.1"><semantics id="S3.SS6.p1.2.m2.1a"><msup id="S3.SS6.p1.2.m2.1.1" xref="S3.SS6.p1.2.m2.1.1.cmml"><mi id="S3.SS6.p1.2.m2.1.1.2" xref="S3.SS6.p1.2.m2.1.1.2.cmml">B</mi><mi id="S3.SS6.p1.2.m2.1.1.3" xref="S3.SS6.p1.2.m2.1.1.3.cmml">z</mi></msup><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.2.m2.1b"><apply id="S3.SS6.p1.2.m2.1.1.cmml" xref="S3.SS6.p1.2.m2.1.1"><csymbol cd="ambiguous" id="S3.SS6.p1.2.m2.1.1.1.cmml" xref="S3.SS6.p1.2.m2.1.1">superscript</csymbol><ci id="S3.SS6.p1.2.m2.1.1.2.cmml" xref="S3.SS6.p1.2.m2.1.1.2">𝐵</ci><ci id="S3.SS6.p1.2.m2.1.1.3.cmml" xref="S3.SS6.p1.2.m2.1.1.3">𝑧</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.2.m2.1c">{B^{z}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.2.m2.1d">italic_B start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT</annotation></semantics></math> components, the <math alttext="{E^{z}}" class="ltx_Math" display="inline" id="S3.SS6.p1.3.m3.1"><semantics id="S3.SS6.p1.3.m3.1a"><msup id="S3.SS6.p1.3.m3.1.1" xref="S3.SS6.p1.3.m3.1.1.cmml"><mi id="S3.SS6.p1.3.m3.1.1.2" xref="S3.SS6.p1.3.m3.1.1.2.cmml">E</mi><mi id="S3.SS6.p1.3.m3.1.1.3" xref="S3.SS6.p1.3.m3.1.1.3.cmml">z</mi></msup><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.3.m3.1b"><apply id="S3.SS6.p1.3.m3.1.1.cmml" xref="S3.SS6.p1.3.m3.1.1"><csymbol cd="ambiguous" id="S3.SS6.p1.3.m3.1.1.1.cmml" xref="S3.SS6.p1.3.m3.1.1">superscript</csymbol><ci id="S3.SS6.p1.3.m3.1.1.2.cmml" xref="S3.SS6.p1.3.m3.1.1.2">𝐸</ci><ci id="S3.SS6.p1.3.m3.1.1.3.cmml" xref="S3.SS6.p1.3.m3.1.1.3">𝑧</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.3.m3.1c">{E^{z}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.3.m3.1d">italic_E start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT</annotation></semantics></math> and <math alttext="{B^{y}}" class="ltx_Math" display="inline" id="S3.SS6.p1.4.m4.1"><semantics id="S3.SS6.p1.4.m4.1a"><msup id="S3.SS6.p1.4.m4.1.1" xref="S3.SS6.p1.4.m4.1.1.cmml"><mi id="S3.SS6.p1.4.m4.1.1.2" xref="S3.SS6.p1.4.m4.1.1.2.cmml">B</mi><mi id="S3.SS6.p1.4.m4.1.1.3" xref="S3.SS6.p1.4.m4.1.1.3.cmml">y</mi></msup><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.4.m4.1b"><apply id="S3.SS6.p1.4.m4.1.1.cmml" xref="S3.SS6.p1.4.m4.1.1"><csymbol cd="ambiguous" id="S3.SS6.p1.4.m4.1.1.1.cmml" xref="S3.SS6.p1.4.m4.1.1">superscript</csymbol><ci id="S3.SS6.p1.4.m4.1.1.2.cmml" xref="S3.SS6.p1.4.m4.1.1.2">𝐵</ci><ci id="S3.SS6.p1.4.m4.1.1.3.cmml" xref="S3.SS6.p1.4.m4.1.1.3">𝑦</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.4.m4.1c">{B^{y}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.4.m4.1d">italic_B start_POSTSUPERSCRIPT italic_y end_POSTSUPERSCRIPT</annotation></semantics></math> components, the <math alttext="{E^{x}}" class="ltx_Math" display="inline" id="S3.SS6.p1.5.m5.1"><semantics id="S3.SS6.p1.5.m5.1a"><msup id="S3.SS6.p1.5.m5.1.1" xref="S3.SS6.p1.5.m5.1.1.cmml"><mi id="S3.SS6.p1.5.m5.1.1.2" xref="S3.SS6.p1.5.m5.1.1.2.cmml">E</mi><mi id="S3.SS6.p1.5.m5.1.1.3" xref="S3.SS6.p1.5.m5.1.1.3.cmml">x</mi></msup><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.5.m5.1b"><apply id="S3.SS6.p1.5.m5.1.1.cmml" xref="S3.SS6.p1.5.m5.1.1"><csymbol cd="ambiguous" id="S3.SS6.p1.5.m5.1.1.1.cmml" xref="S3.SS6.p1.5.m5.1.1">superscript</csymbol><ci id="S3.SS6.p1.5.m5.1.1.2.cmml" xref="S3.SS6.p1.5.m5.1.1.2">𝐸</ci><ci id="S3.SS6.p1.5.m5.1.1.3.cmml" xref="S3.SS6.p1.5.m5.1.1.3">𝑥</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.5.m5.1c">{E^{x}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.5.m5.1d">italic_E start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT</annotation></semantics></math> and <math alttext="{\phi}" class="ltx_Math" display="inline" id="S3.SS6.p1.6.m6.1"><semantics id="S3.SS6.p1.6.m6.1a"><mi id="S3.SS6.p1.6.m6.1.1" xref="S3.SS6.p1.6.m6.1.1.cmml">ϕ</mi><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.6.m6.1b"><ci id="S3.SS6.p1.6.m6.1.1.cmml" xref="S3.SS6.p1.6.m6.1.1">italic-ϕ</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.6.m6.1c">{\phi}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.6.m6.1d">italic_ϕ</annotation></semantics></math> components, and the <math alttext="{B^{x}}" class="ltx_Math" display="inline" id="S3.SS6.p1.7.m7.1"><semantics id="S3.SS6.p1.7.m7.1a"><msup id="S3.SS6.p1.7.m7.1.1" xref="S3.SS6.p1.7.m7.1.1.cmml"><mi id="S3.SS6.p1.7.m7.1.1.2" xref="S3.SS6.p1.7.m7.1.1.2.cmml">B</mi><mi id="S3.SS6.p1.7.m7.1.1.3" xref="S3.SS6.p1.7.m7.1.1.3.cmml">x</mi></msup><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.7.m7.1b"><apply id="S3.SS6.p1.7.m7.1.1.cmml" xref="S3.SS6.p1.7.m7.1.1"><csymbol cd="ambiguous" id="S3.SS6.p1.7.m7.1.1.1.cmml" xref="S3.SS6.p1.7.m7.1.1">superscript</csymbol><ci id="S3.SS6.p1.7.m7.1.1.2.cmml" xref="S3.SS6.p1.7.m7.1.1.2">𝐵</ci><ci id="S3.SS6.p1.7.m7.1.1.3.cmml" xref="S3.SS6.p1.7.m7.1.1.3">𝑥</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.7.m7.1c">{B^{x}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.7.m7.1d">italic_B start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT</annotation></semantics></math> and <math alttext="{\psi}" class="ltx_Math" display="inline" id="S3.SS6.p1.8.m8.1"><semantics id="S3.SS6.p1.8.m8.1a"><mi id="S3.SS6.p1.8.m8.1.1" xref="S3.SS6.p1.8.m8.1.1.cmml">ψ</mi><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.8.m8.1b"><ci id="S3.SS6.p1.8.m8.1.1.cmml" xref="S3.SS6.p1.8.m8.1.1">𝜓</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.8.m8.1c">{\psi}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.8.m8.1d">italic_ψ</annotation></semantics></math> components, respectively. The isothermal Euler equations effectively “factorize” into a non-linear pair of equations for the <math alttext="{\rho}" class="ltx_Math" display="inline" id="S3.SS6.p1.9.m9.1"><semantics id="S3.SS6.p1.9.m9.1a"><mi id="S3.SS6.p1.9.m9.1.1" xref="S3.SS6.p1.9.m9.1.1.cmml">ρ</mi><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.9.m9.1b"><ci id="S3.SS6.p1.9.m9.1.1.cmml" xref="S3.SS6.p1.9.m9.1.1">𝜌</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.9.m9.1c">{\rho}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.9.m9.1d">italic_ρ</annotation></semantics></math> and <math alttext="{\rho u}" class="ltx_Math" display="inline" id="S3.SS6.p1.10.m10.1"><semantics id="S3.SS6.p1.10.m10.1a"><mrow id="S3.SS6.p1.10.m10.1.1" xref="S3.SS6.p1.10.m10.1.1.cmml"><mi id="S3.SS6.p1.10.m10.1.1.2" xref="S3.SS6.p1.10.m10.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p1.10.m10.1.1.1" xref="S3.SS6.p1.10.m10.1.1.1.cmml"></mo><mi id="S3.SS6.p1.10.m10.1.1.3" xref="S3.SS6.p1.10.m10.1.1.3.cmml">u</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.10.m10.1b"><apply id="S3.SS6.p1.10.m10.1.1.cmml" xref="S3.SS6.p1.10.m10.1.1"><times id="S3.SS6.p1.10.m10.1.1.1.cmml" xref="S3.SS6.p1.10.m10.1.1.1"></times><ci id="S3.SS6.p1.10.m10.1.1.2.cmml" xref="S3.SS6.p1.10.m10.1.1.2">𝜌</ci><ci id="S3.SS6.p1.10.m10.1.1.3.cmml" xref="S3.SS6.p1.10.m10.1.1.3">𝑢</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.10.m10.1c">{\rho u}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.10.m10.1d">italic_ρ italic_u</annotation></semantics></math> components, and a linear pair of equations for the <math alttext="{\rho v}" class="ltx_Math" display="inline" id="S3.SS6.p1.11.m11.1"><semantics id="S3.SS6.p1.11.m11.1a"><mrow id="S3.SS6.p1.11.m11.1.1" xref="S3.SS6.p1.11.m11.1.1.cmml"><mi id="S3.SS6.p1.11.m11.1.1.2" xref="S3.SS6.p1.11.m11.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p1.11.m11.1.1.1" xref="S3.SS6.p1.11.m11.1.1.1.cmml"></mo><mi id="S3.SS6.p1.11.m11.1.1.3" xref="S3.SS6.p1.11.m11.1.1.3.cmml">v</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.11.m11.1b"><apply id="S3.SS6.p1.11.m11.1.1.cmml" xref="S3.SS6.p1.11.m11.1.1"><times id="S3.SS6.p1.11.m11.1.1.1.cmml" xref="S3.SS6.p1.11.m11.1.1.1"></times><ci id="S3.SS6.p1.11.m11.1.1.2.cmml" xref="S3.SS6.p1.11.m11.1.1.2">𝜌</ci><ci id="S3.SS6.p1.11.m11.1.1.3.cmml" xref="S3.SS6.p1.11.m11.1.1.3">𝑣</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.11.m11.1c">{\rho v}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.11.m11.1d">italic_ρ italic_v</annotation></semantics></math> and <math alttext="{\rho w}" class="ltx_Math" display="inline" id="S3.SS6.p1.12.m12.1"><semantics id="S3.SS6.p1.12.m12.1a"><mrow id="S3.SS6.p1.12.m12.1.1" xref="S3.SS6.p1.12.m12.1.1.cmml"><mi id="S3.SS6.p1.12.m12.1.1.2" xref="S3.SS6.p1.12.m12.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p1.12.m12.1.1.1" xref="S3.SS6.p1.12.m12.1.1.1.cmml"></mo><mi id="S3.SS6.p1.12.m12.1.1.3" xref="S3.SS6.p1.12.m12.1.1.3.cmml">w</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.12.m12.1b"><apply id="S3.SS6.p1.12.m12.1.1.cmml" xref="S3.SS6.p1.12.m12.1.1"><times id="S3.SS6.p1.12.m12.1.1.1.cmml" xref="S3.SS6.p1.12.m12.1.1.1"></times><ci id="S3.SS6.p1.12.m12.1.1.2.cmml" xref="S3.SS6.p1.12.m12.1.1.2">𝜌</ci><ci id="S3.SS6.p1.12.m12.1.1.3.cmml" xref="S3.SS6.p1.12.m12.1.1.3">𝑤</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.12.m12.1c">{\rho w}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.12.m12.1d">italic_ρ italic_w</annotation></semantics></math> components (since the <math alttext="{\rho v}" class="ltx_Math" display="inline" id="S3.SS6.p1.13.m13.1"><semantics id="S3.SS6.p1.13.m13.1a"><mrow id="S3.SS6.p1.13.m13.1.1" xref="S3.SS6.p1.13.m13.1.1.cmml"><mi id="S3.SS6.p1.13.m13.1.1.2" xref="S3.SS6.p1.13.m13.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p1.13.m13.1.1.1" xref="S3.SS6.p1.13.m13.1.1.1.cmml"></mo><mi id="S3.SS6.p1.13.m13.1.1.3" xref="S3.SS6.p1.13.m13.1.1.3.cmml">v</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.13.m13.1b"><apply id="S3.SS6.p1.13.m13.1.1.cmml" xref="S3.SS6.p1.13.m13.1.1"><times id="S3.SS6.p1.13.m13.1.1.1.cmml" xref="S3.SS6.p1.13.m13.1.1.1"></times><ci id="S3.SS6.p1.13.m13.1.1.2.cmml" xref="S3.SS6.p1.13.m13.1.1.2">𝜌</ci><ci id="S3.SS6.p1.13.m13.1.1.3.cmml" xref="S3.SS6.p1.13.m13.1.1.3">𝑣</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.13.m13.1c">{\rho v}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.13.m13.1d">italic_ρ italic_v</annotation></semantics></math> and <math alttext="{\rho w}" class="ltx_Math" display="inline" id="S3.SS6.p1.14.m14.1"><semantics id="S3.SS6.p1.14.m14.1a"><mrow id="S3.SS6.p1.14.m14.1.1" xref="S3.SS6.p1.14.m14.1.1.cmml"><mi id="S3.SS6.p1.14.m14.1.1.2" xref="S3.SS6.p1.14.m14.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p1.14.m14.1.1.1" xref="S3.SS6.p1.14.m14.1.1.1.cmml"></mo><mi id="S3.SS6.p1.14.m14.1.1.3" xref="S3.SS6.p1.14.m14.1.1.3.cmml">w</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.14.m14.1b"><apply id="S3.SS6.p1.14.m14.1.1.cmml" xref="S3.SS6.p1.14.m14.1.1"><times id="S3.SS6.p1.14.m14.1.1.1.cmml" xref="S3.SS6.p1.14.m14.1.1.1"></times><ci id="S3.SS6.p1.14.m14.1.1.2.cmml" xref="S3.SS6.p1.14.m14.1.1.2">𝜌</ci><ci id="S3.SS6.p1.14.m14.1.1.3.cmml" xref="S3.SS6.p1.14.m14.1.1.3">𝑤</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.14.m14.1c">{\rho w}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.14.m14.1d">italic_ρ italic_w</annotation></semantics></math> momentum components can each be regarded as being advected linearly with a speed of <math alttext="u" class="ltx_Math" display="inline" id="S3.SS6.p1.15.m15.1"><semantics id="S3.SS6.p1.15.m15.1a"><mi id="S3.SS6.p1.15.m15.1.1" xref="S3.SS6.p1.15.m15.1.1.cmml">u</mi><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.15.m15.1b"><ci id="S3.SS6.p1.15.m15.1.1.cmml" xref="S3.SS6.p1.15.m15.1.1">𝑢</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.15.m15.1c">u</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.15.m15.1d">italic_u</annotation></semantics></math> at each time-step). As shown in Tables <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3.T3" title="Table 3 ‣ 3.6. Results ‣ 3. Methodology and Results ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">3</span></a> and <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3.T4" title="Table 4 ‣ 3.6. Results ‣ 3. Methodology and Results ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">4</span></a>, for all four coupled systems constituting the perfectly hyperbolic Maxwell’s equations, the hyperbolicity-preservation, strict hyperbolicity-preservation, CFL stability and local Lipschitz continuity properties of the Lax-Friedrichs solver, and the hyperbolicity-preservation, strict hyperbolicity-preservation and flux conservation (jump continuity) properties of the Roe solver, can all be proved unproblematically. However, for the two coupled systems constituting the isothermal Euler equations, several properties cannot immediately be proven: for the Lax-Friedrichs solver, proofs cannot be found for the local Lipschitz continuity property for the <math alttext="{\rho}" class="ltx_Math" display="inline" id="S3.SS6.p1.16.m16.1"><semantics id="S3.SS6.p1.16.m16.1a"><mi id="S3.SS6.p1.16.m16.1.1" xref="S3.SS6.p1.16.m16.1.1.cmml">ρ</mi><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.16.m16.1b"><ci id="S3.SS6.p1.16.m16.1.1.cmml" xref="S3.SS6.p1.16.m16.1.1">𝜌</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.16.m16.1c">{\rho}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.16.m16.1d">italic_ρ</annotation></semantics></math> and <math alttext="{\rho u}" class="ltx_Math" display="inline" id="S3.SS6.p1.17.m17.1"><semantics id="S3.SS6.p1.17.m17.1a"><mrow id="S3.SS6.p1.17.m17.1.1" xref="S3.SS6.p1.17.m17.1.1.cmml"><mi id="S3.SS6.p1.17.m17.1.1.2" xref="S3.SS6.p1.17.m17.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p1.17.m17.1.1.1" xref="S3.SS6.p1.17.m17.1.1.1.cmml"></mo><mi id="S3.SS6.p1.17.m17.1.1.3" xref="S3.SS6.p1.17.m17.1.1.3.cmml">u</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.17.m17.1b"><apply id="S3.SS6.p1.17.m17.1.1.cmml" xref="S3.SS6.p1.17.m17.1.1"><times id="S3.SS6.p1.17.m17.1.1.1.cmml" xref="S3.SS6.p1.17.m17.1.1.1"></times><ci id="S3.SS6.p1.17.m17.1.1.2.cmml" xref="S3.SS6.p1.17.m17.1.1.2">𝜌</ci><ci id="S3.SS6.p1.17.m17.1.1.3.cmml" xref="S3.SS6.p1.17.m17.1.1.3">𝑢</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.17.m17.1c">{\rho u}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.17.m17.1d">italic_ρ italic_u</annotation></semantics></math> components, or for the strict hyperbolicity-preservation property for the <math alttext="{\rho v}" class="ltx_Math" display="inline" id="S3.SS6.p1.18.m18.1"><semantics id="S3.SS6.p1.18.m18.1a"><mrow id="S3.SS6.p1.18.m18.1.1" xref="S3.SS6.p1.18.m18.1.1.cmml"><mi id="S3.SS6.p1.18.m18.1.1.2" xref="S3.SS6.p1.18.m18.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p1.18.m18.1.1.1" xref="S3.SS6.p1.18.m18.1.1.1.cmml"></mo><mi id="S3.SS6.p1.18.m18.1.1.3" xref="S3.SS6.p1.18.m18.1.1.3.cmml">v</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.18.m18.1b"><apply id="S3.SS6.p1.18.m18.1.1.cmml" xref="S3.SS6.p1.18.m18.1.1"><times id="S3.SS6.p1.18.m18.1.1.1.cmml" xref="S3.SS6.p1.18.m18.1.1.1"></times><ci id="S3.SS6.p1.18.m18.1.1.2.cmml" xref="S3.SS6.p1.18.m18.1.1.2">𝜌</ci><ci id="S3.SS6.p1.18.m18.1.1.3.cmml" xref="S3.SS6.p1.18.m18.1.1.3">𝑣</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.18.m18.1c">{\rho v}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.18.m18.1d">italic_ρ italic_v</annotation></semantics></math> and <math alttext="{\rho w}" class="ltx_Math" display="inline" id="S3.SS6.p1.19.m19.1"><semantics id="S3.SS6.p1.19.m19.1a"><mrow id="S3.SS6.p1.19.m19.1.1" xref="S3.SS6.p1.19.m19.1.1.cmml"><mi id="S3.SS6.p1.19.m19.1.1.2" xref="S3.SS6.p1.19.m19.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p1.19.m19.1.1.1" xref="S3.SS6.p1.19.m19.1.1.1.cmml"></mo><mi id="S3.SS6.p1.19.m19.1.1.3" xref="S3.SS6.p1.19.m19.1.1.3.cmml">w</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.19.m19.1b"><apply id="S3.SS6.p1.19.m19.1.1.cmml" xref="S3.SS6.p1.19.m19.1.1"><times id="S3.SS6.p1.19.m19.1.1.1.cmml" xref="S3.SS6.p1.19.m19.1.1.1"></times><ci id="S3.SS6.p1.19.m19.1.1.2.cmml" xref="S3.SS6.p1.19.m19.1.1.2">𝜌</ci><ci id="S3.SS6.p1.19.m19.1.1.3.cmml" xref="S3.SS6.p1.19.m19.1.1.3">𝑤</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.19.m19.1c">{\rho w}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.19.m19.1d">italic_ρ italic_w</annotation></semantics></math> components, while for the Roe solver, proofs cannot be found for <span class="ltx_text ltx_font_italic" id="S3.SS6.p1.23.1">any</span> of the properties for the <math alttext="{\rho}" class="ltx_Math" display="inline" id="S3.SS6.p1.20.m20.1"><semantics id="S3.SS6.p1.20.m20.1a"><mi id="S3.SS6.p1.20.m20.1.1" xref="S3.SS6.p1.20.m20.1.1.cmml">ρ</mi><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.20.m20.1b"><ci id="S3.SS6.p1.20.m20.1.1.cmml" xref="S3.SS6.p1.20.m20.1.1">𝜌</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.20.m20.1c">{\rho}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.20.m20.1d">italic_ρ</annotation></semantics></math> and <math alttext="{\rho u}" class="ltx_Math" display="inline" id="S3.SS6.p1.21.m21.1"><semantics id="S3.SS6.p1.21.m21.1a"><mrow id="S3.SS6.p1.21.m21.1.1" xref="S3.SS6.p1.21.m21.1.1.cmml"><mi id="S3.SS6.p1.21.m21.1.1.2" xref="S3.SS6.p1.21.m21.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p1.21.m21.1.1.1" xref="S3.SS6.p1.21.m21.1.1.1.cmml"></mo><mi id="S3.SS6.p1.21.m21.1.1.3" xref="S3.SS6.p1.21.m21.1.1.3.cmml">u</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.21.m21.1b"><apply id="S3.SS6.p1.21.m21.1.1.cmml" xref="S3.SS6.p1.21.m21.1.1"><times id="S3.SS6.p1.21.m21.1.1.1.cmml" xref="S3.SS6.p1.21.m21.1.1.1"></times><ci id="S3.SS6.p1.21.m21.1.1.2.cmml" xref="S3.SS6.p1.21.m21.1.1.2">𝜌</ci><ci id="S3.SS6.p1.21.m21.1.1.3.cmml" xref="S3.SS6.p1.21.m21.1.1.3">𝑢</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.21.m21.1c">{\rho u}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.21.m21.1d">italic_ρ italic_u</annotation></semantics></math> components, or for the strict hyperbolicity-preservation property for the <math alttext="{\rho v}" class="ltx_Math" display="inline" id="S3.SS6.p1.22.m22.1"><semantics id="S3.SS6.p1.22.m22.1a"><mrow id="S3.SS6.p1.22.m22.1.1" xref="S3.SS6.p1.22.m22.1.1.cmml"><mi id="S3.SS6.p1.22.m22.1.1.2" xref="S3.SS6.p1.22.m22.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p1.22.m22.1.1.1" xref="S3.SS6.p1.22.m22.1.1.1.cmml"></mo><mi id="S3.SS6.p1.22.m22.1.1.3" xref="S3.SS6.p1.22.m22.1.1.3.cmml">v</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.22.m22.1b"><apply id="S3.SS6.p1.22.m22.1.1.cmml" xref="S3.SS6.p1.22.m22.1.1"><times id="S3.SS6.p1.22.m22.1.1.1.cmml" xref="S3.SS6.p1.22.m22.1.1.1"></times><ci id="S3.SS6.p1.22.m22.1.1.2.cmml" xref="S3.SS6.p1.22.m22.1.1.2">𝜌</ci><ci id="S3.SS6.p1.22.m22.1.1.3.cmml" xref="S3.SS6.p1.22.m22.1.1.3">𝑣</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.22.m22.1c">{\rho v}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.22.m22.1d">italic_ρ italic_v</annotation></semantics></math> and <math alttext="{\rho w}" class="ltx_Math" display="inline" id="S3.SS6.p1.23.m23.1"><semantics id="S3.SS6.p1.23.m23.1a"><mrow id="S3.SS6.p1.23.m23.1.1" xref="S3.SS6.p1.23.m23.1.1.cmml"><mi id="S3.SS6.p1.23.m23.1.1.2" xref="S3.SS6.p1.23.m23.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p1.23.m23.1.1.1" xref="S3.SS6.p1.23.m23.1.1.1.cmml"></mo><mi id="S3.SS6.p1.23.m23.1.1.3" xref="S3.SS6.p1.23.m23.1.1.3.cmml">w</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p1.23.m23.1b"><apply id="S3.SS6.p1.23.m23.1.1.cmml" xref="S3.SS6.p1.23.m23.1.1"><times id="S3.SS6.p1.23.m23.1.1.1.cmml" xref="S3.SS6.p1.23.m23.1.1.1"></times><ci id="S3.SS6.p1.23.m23.1.1.2.cmml" xref="S3.SS6.p1.23.m23.1.1.2">𝜌</ci><ci id="S3.SS6.p1.23.m23.1.1.3.cmml" xref="S3.SS6.p1.23.m23.1.1.3">𝑤</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p1.23.m23.1c">{\rho w}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p1.23.m23.1d">italic_ρ italic_w</annotation></semantics></math> components. It is worth expanding upon each of these “failure” cases in greater detail.</p> </div> <figure class="ltx_table" id="S3.T1"> <table class="ltx_tabular ltx_centering ltx_guessed_headers ltx_align_middle" id="S3.T1.1"> <thead class="ltx_thead"> <tr class="ltx_tr" id="S3.T1.1.1.1"> <th class="ltx_td ltx_align_center ltx_th ltx_th_column ltx_th_row ltx_border_l ltx_border_r ltx_border_t" id="S3.T1.1.1.1.1"><span class="ltx_text ltx_font_bold" id="S3.T1.1.1.1.1.1">Equation</span></th> <th class="ltx_td ltx_align_center ltx_th ltx_th_column ltx_border_r ltx_border_t" id="S3.T1.1.1.1.2"><span class="ltx_text ltx_font_bold" id="S3.T1.1.1.1.2.1">Hyperbolicity (Lax)</span></th> <th class="ltx_td ltx_align_center ltx_th ltx_th_column ltx_border_r ltx_border_t" id="S3.T1.1.1.1.3"><span class="ltx_text ltx_font_bold" id="S3.T1.1.1.1.3.1">Stability (Lax)</span></th> <th class="ltx_td ltx_align_center ltx_th ltx_th_column ltx_border_r ltx_border_t" id="S3.T1.1.1.1.4"><span class="ltx_text ltx_font_bold" id="S3.T1.1.1.1.4.1">Local Lipschitz (Lax)</span></th> </tr> </thead> <tbody class="ltx_tbody"> <tr class="ltx_tr" id="S3.T1.1.2.1"> <th class="ltx_td ltx_align_center ltx_th ltx_th_row ltx_border_l ltx_border_r ltx_border_t" id="S3.T1.1.2.1.1">Linear Advection</th> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T1.1.2.1.2">33</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T1.1.2.1.3">45</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T1.1.2.1.4">39</td> </tr> <tr class="ltx_tr" id="S3.T1.1.3.2"> <th class="ltx_td ltx_align_center ltx_th ltx_th_row ltx_border_b ltx_border_l ltx_border_r ltx_border_t" id="S3.T1.1.3.2.1">Inviscid Burgers’</th> <td class="ltx_td ltx_align_center ltx_border_b ltx_border_r ltx_border_t" id="S3.T1.1.3.2.2">90</td> <td class="ltx_td ltx_align_center ltx_border_b ltx_border_r ltx_border_t" id="S3.T1.1.3.2.3">116</td> <td class="ltx_td ltx_align_center ltx_border_b ltx_border_r ltx_border_t" id="S3.T1.1.3.2.4">96</td> </tr> </tbody> </table> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_table">Table 1. </span>Numbers of proof steps required to prove hyperbolicity-preservation, CFL stability and local Lipschitz continuity for the Lax-Friedrichs solver, across both the linear advection and inviscid Burgers’ scalar conservation equations.</figcaption> </figure> <figure class="ltx_table" id="S3.T2"> <table class="ltx_tabular ltx_centering ltx_guessed_headers ltx_align_middle" id="S3.T2.1"> <thead class="ltx_thead"> <tr class="ltx_tr" id="S3.T2.1.1.1"> <th class="ltx_td ltx_align_center ltx_th ltx_th_column ltx_th_row ltx_border_l ltx_border_r ltx_border_t" id="S3.T2.1.1.1.1"><span class="ltx_text ltx_font_bold" id="S3.T2.1.1.1.1.1">Equation</span></th> <th class="ltx_td ltx_align_center ltx_th ltx_th_column ltx_border_r ltx_border_t" id="S3.T2.1.1.1.2"><span class="ltx_text ltx_font_bold" id="S3.T2.1.1.1.2.1">Hyperbolicity (Roe)</span></th> <th class="ltx_td ltx_align_center ltx_th ltx_th_column ltx_border_r ltx_border_t" id="S3.T2.1.1.1.3"><span class="ltx_text ltx_font_bold" id="S3.T2.1.1.1.3.1">Conservation (Roe)</span></th> </tr> </thead> <tbody class="ltx_tbody"> <tr class="ltx_tr" id="S3.T2.1.2.1"> <th class="ltx_td ltx_align_center ltx_th ltx_th_row ltx_border_l ltx_border_r ltx_border_t" id="S3.T2.1.2.1.1">Linear Advection</th> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T2.1.2.1.2">55</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T2.1.2.1.3">92</td> </tr> <tr class="ltx_tr" id="S3.T2.1.3.2"> <th class="ltx_td ltx_align_center ltx_th ltx_th_row ltx_border_b ltx_border_l ltx_border_r ltx_border_t" id="S3.T2.1.3.2.1">Inviscid Burgers’</th> <td class="ltx_td ltx_align_center ltx_border_b ltx_border_r ltx_border_t" id="S3.T2.1.3.2.2">120</td> <td class="ltx_td ltx_align_center ltx_border_b ltx_border_r ltx_border_t" id="S3.T2.1.3.2.3">188</td> </tr> </tbody> </table> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_table">Table 2. </span>Numbers of proof steps required to prove hyperbolicity-preservation and flux conservation (jump continuity) for the Roe solver, across both the linear advection and inviscid Burgers’ scalar conservation equations.</figcaption> </figure> <figure class="ltx_table" id="S3.T3"> <table class="ltx_tabular ltx_centering ltx_align_middle" id="S3.T3.12"> <tbody class="ltx_tbody"> <tr class="ltx_tr" id="S3.T3.12.13.1"> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_t" id="S3.T3.12.13.1.1"><span class="ltx_text ltx_font_bold" id="S3.T3.12.13.1.1.1">Equations</span></td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.12.13.1.2"><span class="ltx_text ltx_font_bold" id="S3.T3.12.13.1.2.1">Hyperbolicity (Lax)</span></td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.12.13.1.3"><span class="ltx_text ltx_font_bold" id="S3.T3.12.13.1.3.1">Strict Hyperbolicity (Lax)</span></td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.12.13.1.4"><span class="ltx_text ltx_font_bold" id="S3.T3.12.13.1.4.1">Stability (Lax)</span></td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.12.13.1.5"><span class="ltx_text ltx_font_bold" id="S3.T3.12.13.1.5.1">Local Lipschitz (Lax)</span></td> </tr> <tr class="ltx_tr" id="S3.T3.2.2"> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_t" id="S3.T3.2.2.2">Maxwell’s (<math alttext="{E^{y}}" class="ltx_Math" display="inline" id="S3.T3.1.1.1.m1.1"><semantics id="S3.T3.1.1.1.m1.1a"><msup id="S3.T3.1.1.1.m1.1.1" xref="S3.T3.1.1.1.m1.1.1.cmml"><mi id="S3.T3.1.1.1.m1.1.1.2" xref="S3.T3.1.1.1.m1.1.1.2.cmml">E</mi><mi id="S3.T3.1.1.1.m1.1.1.3" xref="S3.T3.1.1.1.m1.1.1.3.cmml">y</mi></msup><annotation-xml encoding="MathML-Content" id="S3.T3.1.1.1.m1.1b"><apply id="S3.T3.1.1.1.m1.1.1.cmml" xref="S3.T3.1.1.1.m1.1.1"><csymbol cd="ambiguous" id="S3.T3.1.1.1.m1.1.1.1.cmml" xref="S3.T3.1.1.1.m1.1.1">superscript</csymbol><ci id="S3.T3.1.1.1.m1.1.1.2.cmml" xref="S3.T3.1.1.1.m1.1.1.2">𝐸</ci><ci id="S3.T3.1.1.1.m1.1.1.3.cmml" xref="S3.T3.1.1.1.m1.1.1.3">𝑦</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T3.1.1.1.m1.1c">{E^{y}}</annotation><annotation encoding="application/x-llamapun" id="S3.T3.1.1.1.m1.1d">italic_E start_POSTSUPERSCRIPT italic_y end_POSTSUPERSCRIPT</annotation></semantics></math> and <math alttext="{B^{z}}" class="ltx_Math" display="inline" id="S3.T3.2.2.2.m2.1"><semantics id="S3.T3.2.2.2.m2.1a"><msup id="S3.T3.2.2.2.m2.1.1" xref="S3.T3.2.2.2.m2.1.1.cmml"><mi id="S3.T3.2.2.2.m2.1.1.2" xref="S3.T3.2.2.2.m2.1.1.2.cmml">B</mi><mi id="S3.T3.2.2.2.m2.1.1.3" xref="S3.T3.2.2.2.m2.1.1.3.cmml">z</mi></msup><annotation-xml encoding="MathML-Content" id="S3.T3.2.2.2.m2.1b"><apply id="S3.T3.2.2.2.m2.1.1.cmml" xref="S3.T3.2.2.2.m2.1.1"><csymbol cd="ambiguous" id="S3.T3.2.2.2.m2.1.1.1.cmml" xref="S3.T3.2.2.2.m2.1.1">superscript</csymbol><ci id="S3.T3.2.2.2.m2.1.1.2.cmml" xref="S3.T3.2.2.2.m2.1.1.2">𝐵</ci><ci id="S3.T3.2.2.2.m2.1.1.3.cmml" xref="S3.T3.2.2.2.m2.1.1.3">𝑧</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T3.2.2.2.m2.1c">{B^{z}}</annotation><annotation encoding="application/x-llamapun" id="S3.T3.2.2.2.m2.1d">italic_B start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT</annotation></semantics></math>)</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.2.2.3">499</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.2.2.4">502</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.2.2.5">575</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.2.2.6">272</td> </tr> <tr class="ltx_tr" id="S3.T3.4.4"> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_t" id="S3.T3.4.4.2">Maxwell’s (<math alttext="{E^{z}}" class="ltx_Math" display="inline" id="S3.T3.3.3.1.m1.1"><semantics id="S3.T3.3.3.1.m1.1a"><msup id="S3.T3.3.3.1.m1.1.1" xref="S3.T3.3.3.1.m1.1.1.cmml"><mi id="S3.T3.3.3.1.m1.1.1.2" xref="S3.T3.3.3.1.m1.1.1.2.cmml">E</mi><mi id="S3.T3.3.3.1.m1.1.1.3" xref="S3.T3.3.3.1.m1.1.1.3.cmml">z</mi></msup><annotation-xml encoding="MathML-Content" id="S3.T3.3.3.1.m1.1b"><apply id="S3.T3.3.3.1.m1.1.1.cmml" xref="S3.T3.3.3.1.m1.1.1"><csymbol cd="ambiguous" id="S3.T3.3.3.1.m1.1.1.1.cmml" xref="S3.T3.3.3.1.m1.1.1">superscript</csymbol><ci id="S3.T3.3.3.1.m1.1.1.2.cmml" xref="S3.T3.3.3.1.m1.1.1.2">𝐸</ci><ci id="S3.T3.3.3.1.m1.1.1.3.cmml" xref="S3.T3.3.3.1.m1.1.1.3">𝑧</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T3.3.3.1.m1.1c">{E^{z}}</annotation><annotation encoding="application/x-llamapun" id="S3.T3.3.3.1.m1.1d">italic_E start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT</annotation></semantics></math> and <math alttext="{B^{y}}" class="ltx_Math" display="inline" id="S3.T3.4.4.2.m2.1"><semantics id="S3.T3.4.4.2.m2.1a"><msup id="S3.T3.4.4.2.m2.1.1" xref="S3.T3.4.4.2.m2.1.1.cmml"><mi id="S3.T3.4.4.2.m2.1.1.2" xref="S3.T3.4.4.2.m2.1.1.2.cmml">B</mi><mi id="S3.T3.4.4.2.m2.1.1.3" xref="S3.T3.4.4.2.m2.1.1.3.cmml">y</mi></msup><annotation-xml encoding="MathML-Content" id="S3.T3.4.4.2.m2.1b"><apply id="S3.T3.4.4.2.m2.1.1.cmml" xref="S3.T3.4.4.2.m2.1.1"><csymbol cd="ambiguous" id="S3.T3.4.4.2.m2.1.1.1.cmml" xref="S3.T3.4.4.2.m2.1.1">superscript</csymbol><ci id="S3.T3.4.4.2.m2.1.1.2.cmml" xref="S3.T3.4.4.2.m2.1.1.2">𝐵</ci><ci id="S3.T3.4.4.2.m2.1.1.3.cmml" xref="S3.T3.4.4.2.m2.1.1.3">𝑦</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T3.4.4.2.m2.1c">{B^{y}}</annotation><annotation encoding="application/x-llamapun" id="S3.T3.4.4.2.m2.1d">italic_B start_POSTSUPERSCRIPT italic_y end_POSTSUPERSCRIPT</annotation></semantics></math>)</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.4.4.3">627</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.4.4.4">630</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.4.4.5">711</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.4.4.6">452</td> </tr> <tr class="ltx_tr" id="S3.T3.6.6"> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_t" id="S3.T3.6.6.2">Maxwell’s (<math alttext="{E^{x}}" class="ltx_Math" display="inline" id="S3.T3.5.5.1.m1.1"><semantics id="S3.T3.5.5.1.m1.1a"><msup id="S3.T3.5.5.1.m1.1.1" xref="S3.T3.5.5.1.m1.1.1.cmml"><mi id="S3.T3.5.5.1.m1.1.1.2" xref="S3.T3.5.5.1.m1.1.1.2.cmml">E</mi><mi id="S3.T3.5.5.1.m1.1.1.3" xref="S3.T3.5.5.1.m1.1.1.3.cmml">x</mi></msup><annotation-xml encoding="MathML-Content" id="S3.T3.5.5.1.m1.1b"><apply id="S3.T3.5.5.1.m1.1.1.cmml" xref="S3.T3.5.5.1.m1.1.1"><csymbol cd="ambiguous" id="S3.T3.5.5.1.m1.1.1.1.cmml" xref="S3.T3.5.5.1.m1.1.1">superscript</csymbol><ci id="S3.T3.5.5.1.m1.1.1.2.cmml" xref="S3.T3.5.5.1.m1.1.1.2">𝐸</ci><ci id="S3.T3.5.5.1.m1.1.1.3.cmml" xref="S3.T3.5.5.1.m1.1.1.3">𝑥</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T3.5.5.1.m1.1c">{E^{x}}</annotation><annotation encoding="application/x-llamapun" id="S3.T3.5.5.1.m1.1d">italic_E start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT</annotation></semantics></math> and <math alttext="{\phi}" class="ltx_Math" display="inline" id="S3.T3.6.6.2.m2.1"><semantics id="S3.T3.6.6.2.m2.1a"><mi id="S3.T3.6.6.2.m2.1.1" xref="S3.T3.6.6.2.m2.1.1.cmml">ϕ</mi><annotation-xml encoding="MathML-Content" id="S3.T3.6.6.2.m2.1b"><ci id="S3.T3.6.6.2.m2.1.1.cmml" xref="S3.T3.6.6.2.m2.1.1">italic-ϕ</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.T3.6.6.2.m2.1c">{\phi}</annotation><annotation encoding="application/x-llamapun" id="S3.T3.6.6.2.m2.1d">italic_ϕ</annotation></semantics></math>)</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.6.6.3">729</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.6.6.4">735</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.6.6.5">803</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.6.6.6">450</td> </tr> <tr class="ltx_tr" id="S3.T3.8.8"> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_t" id="S3.T3.8.8.2">Maxwell’s (<math alttext="{B^{x}}" class="ltx_Math" display="inline" id="S3.T3.7.7.1.m1.1"><semantics id="S3.T3.7.7.1.m1.1a"><msup id="S3.T3.7.7.1.m1.1.1" xref="S3.T3.7.7.1.m1.1.1.cmml"><mi id="S3.T3.7.7.1.m1.1.1.2" xref="S3.T3.7.7.1.m1.1.1.2.cmml">B</mi><mi id="S3.T3.7.7.1.m1.1.1.3" xref="S3.T3.7.7.1.m1.1.1.3.cmml">x</mi></msup><annotation-xml encoding="MathML-Content" id="S3.T3.7.7.1.m1.1b"><apply id="S3.T3.7.7.1.m1.1.1.cmml" xref="S3.T3.7.7.1.m1.1.1"><csymbol cd="ambiguous" id="S3.T3.7.7.1.m1.1.1.1.cmml" xref="S3.T3.7.7.1.m1.1.1">superscript</csymbol><ci id="S3.T3.7.7.1.m1.1.1.2.cmml" xref="S3.T3.7.7.1.m1.1.1.2">𝐵</ci><ci id="S3.T3.7.7.1.m1.1.1.3.cmml" xref="S3.T3.7.7.1.m1.1.1.3">𝑥</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T3.7.7.1.m1.1c">{B^{x}}</annotation><annotation encoding="application/x-llamapun" id="S3.T3.7.7.1.m1.1d">italic_B start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT</annotation></semantics></math> and <math alttext="{\psi}" class="ltx_Math" display="inline" id="S3.T3.8.8.2.m2.1"><semantics id="S3.T3.8.8.2.m2.1a"><mi id="S3.T3.8.8.2.m2.1.1" xref="S3.T3.8.8.2.m2.1.1.cmml">ψ</mi><annotation-xml encoding="MathML-Content" id="S3.T3.8.8.2.m2.1b"><ci id="S3.T3.8.8.2.m2.1.1.cmml" xref="S3.T3.8.8.2.m2.1.1">𝜓</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.T3.8.8.2.m2.1c">{\psi}</annotation><annotation encoding="application/x-llamapun" id="S3.T3.8.8.2.m2.1d">italic_ψ</annotation></semantics></math>)</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.8.8.3">731</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.8.8.4">737</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.8.8.5">805</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.8.8.6">450</td> </tr> <tr class="ltx_tr" id="S3.T3.10.10"> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_t" id="S3.T3.10.10.2">Isothermal Euler (<math alttext="{\rho}" class="ltx_Math" display="inline" id="S3.T3.9.9.1.m1.1"><semantics id="S3.T3.9.9.1.m1.1a"><mi id="S3.T3.9.9.1.m1.1.1" xref="S3.T3.9.9.1.m1.1.1.cmml">ρ</mi><annotation-xml encoding="MathML-Content" id="S3.T3.9.9.1.m1.1b"><ci id="S3.T3.9.9.1.m1.1.1.cmml" xref="S3.T3.9.9.1.m1.1.1">𝜌</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.T3.9.9.1.m1.1c">{\rho}</annotation><annotation encoding="application/x-llamapun" id="S3.T3.9.9.1.m1.1d">italic_ρ</annotation></semantics></math> and <math alttext="{\rho u}" class="ltx_Math" display="inline" id="S3.T3.10.10.2.m2.1"><semantics id="S3.T3.10.10.2.m2.1a"><mrow id="S3.T3.10.10.2.m2.1.1" xref="S3.T3.10.10.2.m2.1.1.cmml"><mi id="S3.T3.10.10.2.m2.1.1.2" xref="S3.T3.10.10.2.m2.1.1.2.cmml">ρ</mi><mo id="S3.T3.10.10.2.m2.1.1.1" xref="S3.T3.10.10.2.m2.1.1.1.cmml"></mo><mi id="S3.T3.10.10.2.m2.1.1.3" xref="S3.T3.10.10.2.m2.1.1.3.cmml">u</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.T3.10.10.2.m2.1b"><apply id="S3.T3.10.10.2.m2.1.1.cmml" xref="S3.T3.10.10.2.m2.1.1"><times id="S3.T3.10.10.2.m2.1.1.1.cmml" xref="S3.T3.10.10.2.m2.1.1.1"></times><ci id="S3.T3.10.10.2.m2.1.1.2.cmml" xref="S3.T3.10.10.2.m2.1.1.2">𝜌</ci><ci id="S3.T3.10.10.2.m2.1.1.3.cmml" xref="S3.T3.10.10.2.m2.1.1.3">𝑢</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T3.10.10.2.m2.1c">{\rho u}</annotation><annotation encoding="application/x-llamapun" id="S3.T3.10.10.2.m2.1d">italic_ρ italic_u</annotation></semantics></math>)</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.10.10.3">1462</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.10.10.4">1465</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.10.10.5">1558</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T3.10.10.6">-</td> </tr> <tr class="ltx_tr" id="S3.T3.12.12"> <td class="ltx_td ltx_align_center ltx_border_b ltx_border_l ltx_border_r ltx_border_t" id="S3.T3.12.12.2">Isothermal Euler (<math alttext="{\rho v}" class="ltx_Math" display="inline" id="S3.T3.11.11.1.m1.1"><semantics id="S3.T3.11.11.1.m1.1a"><mrow id="S3.T3.11.11.1.m1.1.1" xref="S3.T3.11.11.1.m1.1.1.cmml"><mi id="S3.T3.11.11.1.m1.1.1.2" xref="S3.T3.11.11.1.m1.1.1.2.cmml">ρ</mi><mo id="S3.T3.11.11.1.m1.1.1.1" xref="S3.T3.11.11.1.m1.1.1.1.cmml"></mo><mi id="S3.T3.11.11.1.m1.1.1.3" xref="S3.T3.11.11.1.m1.1.1.3.cmml">v</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.T3.11.11.1.m1.1b"><apply id="S3.T3.11.11.1.m1.1.1.cmml" xref="S3.T3.11.11.1.m1.1.1"><times id="S3.T3.11.11.1.m1.1.1.1.cmml" xref="S3.T3.11.11.1.m1.1.1.1"></times><ci id="S3.T3.11.11.1.m1.1.1.2.cmml" xref="S3.T3.11.11.1.m1.1.1.2">𝜌</ci><ci id="S3.T3.11.11.1.m1.1.1.3.cmml" xref="S3.T3.11.11.1.m1.1.1.3">𝑣</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T3.11.11.1.m1.1c">{\rho v}</annotation><annotation encoding="application/x-llamapun" id="S3.T3.11.11.1.m1.1d">italic_ρ italic_v</annotation></semantics></math> and <math alttext="{\rho w}" class="ltx_Math" display="inline" id="S3.T3.12.12.2.m2.1"><semantics id="S3.T3.12.12.2.m2.1a"><mrow id="S3.T3.12.12.2.m2.1.1" xref="S3.T3.12.12.2.m2.1.1.cmml"><mi id="S3.T3.12.12.2.m2.1.1.2" xref="S3.T3.12.12.2.m2.1.1.2.cmml">ρ</mi><mo id="S3.T3.12.12.2.m2.1.1.1" xref="S3.T3.12.12.2.m2.1.1.1.cmml"></mo><mi id="S3.T3.12.12.2.m2.1.1.3" xref="S3.T3.12.12.2.m2.1.1.3.cmml">w</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.T3.12.12.2.m2.1b"><apply id="S3.T3.12.12.2.m2.1.1.cmml" xref="S3.T3.12.12.2.m2.1.1"><times id="S3.T3.12.12.2.m2.1.1.1.cmml" xref="S3.T3.12.12.2.m2.1.1.1"></times><ci id="S3.T3.12.12.2.m2.1.1.2.cmml" xref="S3.T3.12.12.2.m2.1.1.2">𝜌</ci><ci id="S3.T3.12.12.2.m2.1.1.3.cmml" xref="S3.T3.12.12.2.m2.1.1.3">𝑤</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T3.12.12.2.m2.1c">{\rho w}</annotation><annotation encoding="application/x-llamapun" id="S3.T3.12.12.2.m2.1d">italic_ρ italic_w</annotation></semantics></math>)</td> <td class="ltx_td ltx_align_center ltx_border_b ltx_border_r ltx_border_t" id="S3.T3.12.12.3">1189</td> <td class="ltx_td ltx_align_center ltx_border_b ltx_border_r ltx_border_t" id="S3.T3.12.12.4">-</td> <td class="ltx_td ltx_align_center ltx_border_b ltx_border_r ltx_border_t" id="S3.T3.12.12.5">1329</td> <td class="ltx_td ltx_align_center ltx_border_b ltx_border_r ltx_border_t" id="S3.T3.12.12.6">251</td> </tr> </tbody> </table> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_table">Table 3. </span>Numbers of proof steps (where applicable) required to prove hyperbolicity-preservation, strict hyperbolicity-preservation, CFL stability and local Lipschitz continuity for the Lax-Friedrichs solver, across all coupled pairs of components for the perfectly hyperbolic Maxwell’s and isothermal Euler equation systems.</figcaption> </figure> <figure class="ltx_table" id="S3.T4"> <table class="ltx_tabular ltx_centering ltx_align_middle" id="S3.T4.12"> <tbody class="ltx_tbody"> <tr class="ltx_tr" id="S3.T4.12.13.1"> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_t" id="S3.T4.12.13.1.1"><span class="ltx_text ltx_font_bold" id="S3.T4.12.13.1.1.1">Equations</span></td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T4.12.13.1.2"><span class="ltx_text ltx_font_bold" id="S3.T4.12.13.1.2.1">Hyperbolicity (Roe)</span></td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T4.12.13.1.3"><span class="ltx_text ltx_font_bold" id="S3.T4.12.13.1.3.1">Strict Hyperbolicity (Roe)</span></td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T4.12.13.1.4"><span class="ltx_text ltx_font_bold" id="S3.T4.12.13.1.4.1">Conservation (Roe)</span></td> </tr> <tr class="ltx_tr" id="S3.T4.2.2"> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_t" id="S3.T4.2.2.2">Maxwell’s (<math alttext="{E^{y}}" class="ltx_Math" display="inline" id="S3.T4.1.1.1.m1.1"><semantics id="S3.T4.1.1.1.m1.1a"><msup id="S3.T4.1.1.1.m1.1.1" xref="S3.T4.1.1.1.m1.1.1.cmml"><mi id="S3.T4.1.1.1.m1.1.1.2" xref="S3.T4.1.1.1.m1.1.1.2.cmml">E</mi><mi id="S3.T4.1.1.1.m1.1.1.3" xref="S3.T4.1.1.1.m1.1.1.3.cmml">y</mi></msup><annotation-xml encoding="MathML-Content" id="S3.T4.1.1.1.m1.1b"><apply id="S3.T4.1.1.1.m1.1.1.cmml" xref="S3.T4.1.1.1.m1.1.1"><csymbol cd="ambiguous" id="S3.T4.1.1.1.m1.1.1.1.cmml" xref="S3.T4.1.1.1.m1.1.1">superscript</csymbol><ci id="S3.T4.1.1.1.m1.1.1.2.cmml" xref="S3.T4.1.1.1.m1.1.1.2">𝐸</ci><ci id="S3.T4.1.1.1.m1.1.1.3.cmml" xref="S3.T4.1.1.1.m1.1.1.3">𝑦</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T4.1.1.1.m1.1c">{E^{y}}</annotation><annotation encoding="application/x-llamapun" id="S3.T4.1.1.1.m1.1d">italic_E start_POSTSUPERSCRIPT italic_y end_POSTSUPERSCRIPT</annotation></semantics></math> and <math alttext="{B^{z}}" class="ltx_Math" display="inline" id="S3.T4.2.2.2.m2.1"><semantics id="S3.T4.2.2.2.m2.1a"><msup id="S3.T4.2.2.2.m2.1.1" xref="S3.T4.2.2.2.m2.1.1.cmml"><mi id="S3.T4.2.2.2.m2.1.1.2" xref="S3.T4.2.2.2.m2.1.1.2.cmml">B</mi><mi id="S3.T4.2.2.2.m2.1.1.3" xref="S3.T4.2.2.2.m2.1.1.3.cmml">z</mi></msup><annotation-xml encoding="MathML-Content" id="S3.T4.2.2.2.m2.1b"><apply id="S3.T4.2.2.2.m2.1.1.cmml" xref="S3.T4.2.2.2.m2.1.1"><csymbol cd="ambiguous" id="S3.T4.2.2.2.m2.1.1.1.cmml" xref="S3.T4.2.2.2.m2.1.1">superscript</csymbol><ci id="S3.T4.2.2.2.m2.1.1.2.cmml" xref="S3.T4.2.2.2.m2.1.1.2">𝐵</ci><ci id="S3.T4.2.2.2.m2.1.1.3.cmml" xref="S3.T4.2.2.2.m2.1.1.3">𝑧</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T4.2.2.2.m2.1c">{B^{z}}</annotation><annotation encoding="application/x-llamapun" id="S3.T4.2.2.2.m2.1d">italic_B start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT</annotation></semantics></math>)</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T4.2.2.3">616</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T4.2.2.4">619</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T4.2.2.5">412</td> </tr> <tr class="ltx_tr" id="S3.T4.4.4"> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_t" id="S3.T4.4.4.2">Maxwell’s (<math alttext="{E^{z}}" class="ltx_Math" display="inline" id="S3.T4.3.3.1.m1.1"><semantics id="S3.T4.3.3.1.m1.1a"><msup id="S3.T4.3.3.1.m1.1.1" xref="S3.T4.3.3.1.m1.1.1.cmml"><mi id="S3.T4.3.3.1.m1.1.1.2" xref="S3.T4.3.3.1.m1.1.1.2.cmml">E</mi><mi id="S3.T4.3.3.1.m1.1.1.3" xref="S3.T4.3.3.1.m1.1.1.3.cmml">z</mi></msup><annotation-xml encoding="MathML-Content" id="S3.T4.3.3.1.m1.1b"><apply id="S3.T4.3.3.1.m1.1.1.cmml" xref="S3.T4.3.3.1.m1.1.1"><csymbol cd="ambiguous" id="S3.T4.3.3.1.m1.1.1.1.cmml" xref="S3.T4.3.3.1.m1.1.1">superscript</csymbol><ci id="S3.T4.3.3.1.m1.1.1.2.cmml" xref="S3.T4.3.3.1.m1.1.1.2">𝐸</ci><ci id="S3.T4.3.3.1.m1.1.1.3.cmml" xref="S3.T4.3.3.1.m1.1.1.3">𝑧</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T4.3.3.1.m1.1c">{E^{z}}</annotation><annotation encoding="application/x-llamapun" id="S3.T4.3.3.1.m1.1d">italic_E start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT</annotation></semantics></math> and <math alttext="{B^{y}}" class="ltx_Math" display="inline" id="S3.T4.4.4.2.m2.1"><semantics id="S3.T4.4.4.2.m2.1a"><msup id="S3.T4.4.4.2.m2.1.1" xref="S3.T4.4.4.2.m2.1.1.cmml"><mi id="S3.T4.4.4.2.m2.1.1.2" xref="S3.T4.4.4.2.m2.1.1.2.cmml">B</mi><mi id="S3.T4.4.4.2.m2.1.1.3" xref="S3.T4.4.4.2.m2.1.1.3.cmml">y</mi></msup><annotation-xml encoding="MathML-Content" id="S3.T4.4.4.2.m2.1b"><apply id="S3.T4.4.4.2.m2.1.1.cmml" xref="S3.T4.4.4.2.m2.1.1"><csymbol cd="ambiguous" id="S3.T4.4.4.2.m2.1.1.1.cmml" xref="S3.T4.4.4.2.m2.1.1">superscript</csymbol><ci id="S3.T4.4.4.2.m2.1.1.2.cmml" xref="S3.T4.4.4.2.m2.1.1.2">𝐵</ci><ci id="S3.T4.4.4.2.m2.1.1.3.cmml" xref="S3.T4.4.4.2.m2.1.1.3">𝑦</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T4.4.4.2.m2.1c">{B^{y}}</annotation><annotation encoding="application/x-llamapun" id="S3.T4.4.4.2.m2.1d">italic_B start_POSTSUPERSCRIPT italic_y end_POSTSUPERSCRIPT</annotation></semantics></math>)</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T4.4.4.3">826</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T4.4.4.4">829</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T4.4.4.5">643</td> </tr> <tr class="ltx_tr" id="S3.T4.6.6"> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_t" id="S3.T4.6.6.2">Maxwell’s (<math alttext="{E^{x}}" class="ltx_Math" display="inline" id="S3.T4.5.5.1.m1.1"><semantics id="S3.T4.5.5.1.m1.1a"><msup id="S3.T4.5.5.1.m1.1.1" xref="S3.T4.5.5.1.m1.1.1.cmml"><mi id="S3.T4.5.5.1.m1.1.1.2" xref="S3.T4.5.5.1.m1.1.1.2.cmml">E</mi><mi id="S3.T4.5.5.1.m1.1.1.3" xref="S3.T4.5.5.1.m1.1.1.3.cmml">x</mi></msup><annotation-xml encoding="MathML-Content" id="S3.T4.5.5.1.m1.1b"><apply id="S3.T4.5.5.1.m1.1.1.cmml" xref="S3.T4.5.5.1.m1.1.1"><csymbol cd="ambiguous" id="S3.T4.5.5.1.m1.1.1.1.cmml" xref="S3.T4.5.5.1.m1.1.1">superscript</csymbol><ci id="S3.T4.5.5.1.m1.1.1.2.cmml" xref="S3.T4.5.5.1.m1.1.1.2">𝐸</ci><ci id="S3.T4.5.5.1.m1.1.1.3.cmml" xref="S3.T4.5.5.1.m1.1.1.3">𝑥</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T4.5.5.1.m1.1c">{E^{x}}</annotation><annotation encoding="application/x-llamapun" id="S3.T4.5.5.1.m1.1d">italic_E start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT</annotation></semantics></math> and <math alttext="{\phi}" class="ltx_Math" display="inline" id="S3.T4.6.6.2.m2.1"><semantics id="S3.T4.6.6.2.m2.1a"><mi id="S3.T4.6.6.2.m2.1.1" xref="S3.T4.6.6.2.m2.1.1.cmml">ϕ</mi><annotation-xml encoding="MathML-Content" id="S3.T4.6.6.2.m2.1b"><ci id="S3.T4.6.6.2.m2.1.1.cmml" xref="S3.T4.6.6.2.m2.1.1">italic-ϕ</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.T4.6.6.2.m2.1c">{\phi}</annotation><annotation encoding="application/x-llamapun" id="S3.T4.6.6.2.m2.1d">italic_ϕ</annotation></semantics></math>)</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T4.6.6.3">871</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T4.6.6.4">877</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T4.6.6.5">642</td> </tr> <tr class="ltx_tr" id="S3.T4.8.8"> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_t" id="S3.T4.8.8.2">Maxwell’s (<math alttext="{B^{x}}" class="ltx_Math" display="inline" id="S3.T4.7.7.1.m1.1"><semantics id="S3.T4.7.7.1.m1.1a"><msup id="S3.T4.7.7.1.m1.1.1" xref="S3.T4.7.7.1.m1.1.1.cmml"><mi id="S3.T4.7.7.1.m1.1.1.2" xref="S3.T4.7.7.1.m1.1.1.2.cmml">B</mi><mi id="S3.T4.7.7.1.m1.1.1.3" xref="S3.T4.7.7.1.m1.1.1.3.cmml">x</mi></msup><annotation-xml encoding="MathML-Content" id="S3.T4.7.7.1.m1.1b"><apply id="S3.T4.7.7.1.m1.1.1.cmml" xref="S3.T4.7.7.1.m1.1.1"><csymbol cd="ambiguous" id="S3.T4.7.7.1.m1.1.1.1.cmml" xref="S3.T4.7.7.1.m1.1.1">superscript</csymbol><ci id="S3.T4.7.7.1.m1.1.1.2.cmml" xref="S3.T4.7.7.1.m1.1.1.2">𝐵</ci><ci id="S3.T4.7.7.1.m1.1.1.3.cmml" xref="S3.T4.7.7.1.m1.1.1.3">𝑥</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T4.7.7.1.m1.1c">{B^{x}}</annotation><annotation encoding="application/x-llamapun" id="S3.T4.7.7.1.m1.1d">italic_B start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT</annotation></semantics></math> and <math alttext="{\psi}" class="ltx_Math" display="inline" id="S3.T4.8.8.2.m2.1"><semantics id="S3.T4.8.8.2.m2.1a"><mi id="S3.T4.8.8.2.m2.1.1" xref="S3.T4.8.8.2.m2.1.1.cmml">ψ</mi><annotation-xml encoding="MathML-Content" id="S3.T4.8.8.2.m2.1b"><ci id="S3.T4.8.8.2.m2.1.1.cmml" xref="S3.T4.8.8.2.m2.1.1">𝜓</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.T4.8.8.2.m2.1c">{\psi}</annotation><annotation encoding="application/x-llamapun" id="S3.T4.8.8.2.m2.1d">italic_ψ</annotation></semantics></math>)</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T4.8.8.3">873</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T4.8.8.4">879</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T4.8.8.5">642</td> </tr> <tr class="ltx_tr" id="S3.T4.10.10"> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_t" id="S3.T4.10.10.2">Isothermal Euler (<math alttext="{\rho}" class="ltx_Math" display="inline" id="S3.T4.9.9.1.m1.1"><semantics id="S3.T4.9.9.1.m1.1a"><mi id="S3.T4.9.9.1.m1.1.1" xref="S3.T4.9.9.1.m1.1.1.cmml">ρ</mi><annotation-xml encoding="MathML-Content" id="S3.T4.9.9.1.m1.1b"><ci id="S3.T4.9.9.1.m1.1.1.cmml" xref="S3.T4.9.9.1.m1.1.1">𝜌</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.T4.9.9.1.m1.1c">{\rho}</annotation><annotation encoding="application/x-llamapun" id="S3.T4.9.9.1.m1.1d">italic_ρ</annotation></semantics></math> and <math alttext="{\rho u}" class="ltx_Math" display="inline" id="S3.T4.10.10.2.m2.1"><semantics id="S3.T4.10.10.2.m2.1a"><mrow id="S3.T4.10.10.2.m2.1.1" xref="S3.T4.10.10.2.m2.1.1.cmml"><mi id="S3.T4.10.10.2.m2.1.1.2" xref="S3.T4.10.10.2.m2.1.1.2.cmml">ρ</mi><mo id="S3.T4.10.10.2.m2.1.1.1" xref="S3.T4.10.10.2.m2.1.1.1.cmml"></mo><mi id="S3.T4.10.10.2.m2.1.1.3" xref="S3.T4.10.10.2.m2.1.1.3.cmml">u</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.T4.10.10.2.m2.1b"><apply id="S3.T4.10.10.2.m2.1.1.cmml" xref="S3.T4.10.10.2.m2.1.1"><times id="S3.T4.10.10.2.m2.1.1.1.cmml" xref="S3.T4.10.10.2.m2.1.1.1"></times><ci id="S3.T4.10.10.2.m2.1.1.2.cmml" xref="S3.T4.10.10.2.m2.1.1.2">𝜌</ci><ci id="S3.T4.10.10.2.m2.1.1.3.cmml" xref="S3.T4.10.10.2.m2.1.1.3">𝑢</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T4.10.10.2.m2.1c">{\rho u}</annotation><annotation encoding="application/x-llamapun" id="S3.T4.10.10.2.m2.1d">italic_ρ italic_u</annotation></semantics></math>)</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T4.10.10.3">-</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T4.10.10.4">-</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T4.10.10.5">-</td> </tr> <tr class="ltx_tr" id="S3.T4.12.12"> <td class="ltx_td ltx_align_center ltx_border_b ltx_border_l ltx_border_r ltx_border_t" id="S3.T4.12.12.2">Isothermal Euler (<math alttext="{\rho v}" class="ltx_Math" display="inline" id="S3.T4.11.11.1.m1.1"><semantics id="S3.T4.11.11.1.m1.1a"><mrow id="S3.T4.11.11.1.m1.1.1" xref="S3.T4.11.11.1.m1.1.1.cmml"><mi id="S3.T4.11.11.1.m1.1.1.2" xref="S3.T4.11.11.1.m1.1.1.2.cmml">ρ</mi><mo id="S3.T4.11.11.1.m1.1.1.1" xref="S3.T4.11.11.1.m1.1.1.1.cmml"></mo><mi id="S3.T4.11.11.1.m1.1.1.3" xref="S3.T4.11.11.1.m1.1.1.3.cmml">v</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.T4.11.11.1.m1.1b"><apply id="S3.T4.11.11.1.m1.1.1.cmml" xref="S3.T4.11.11.1.m1.1.1"><times id="S3.T4.11.11.1.m1.1.1.1.cmml" xref="S3.T4.11.11.1.m1.1.1.1"></times><ci id="S3.T4.11.11.1.m1.1.1.2.cmml" xref="S3.T4.11.11.1.m1.1.1.2">𝜌</ci><ci id="S3.T4.11.11.1.m1.1.1.3.cmml" xref="S3.T4.11.11.1.m1.1.1.3">𝑣</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T4.11.11.1.m1.1c">{\rho v}</annotation><annotation encoding="application/x-llamapun" id="S3.T4.11.11.1.m1.1d">italic_ρ italic_v</annotation></semantics></math> and <math alttext="{\rho w}" class="ltx_Math" display="inline" id="S3.T4.12.12.2.m2.1"><semantics id="S3.T4.12.12.2.m2.1a"><mrow id="S3.T4.12.12.2.m2.1.1" xref="S3.T4.12.12.2.m2.1.1.cmml"><mi id="S3.T4.12.12.2.m2.1.1.2" xref="S3.T4.12.12.2.m2.1.1.2.cmml">ρ</mi><mo id="S3.T4.12.12.2.m2.1.1.1" xref="S3.T4.12.12.2.m2.1.1.1.cmml"></mo><mi id="S3.T4.12.12.2.m2.1.1.3" xref="S3.T4.12.12.2.m2.1.1.3.cmml">w</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.T4.12.12.2.m2.1b"><apply id="S3.T4.12.12.2.m2.1.1.cmml" xref="S3.T4.12.12.2.m2.1.1"><times id="S3.T4.12.12.2.m2.1.1.1.cmml" xref="S3.T4.12.12.2.m2.1.1.1"></times><ci id="S3.T4.12.12.2.m2.1.1.2.cmml" xref="S3.T4.12.12.2.m2.1.1.2">𝜌</ci><ci id="S3.T4.12.12.2.m2.1.1.3.cmml" xref="S3.T4.12.12.2.m2.1.1.3">𝑤</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.T4.12.12.2.m2.1c">{\rho w}</annotation><annotation encoding="application/x-llamapun" id="S3.T4.12.12.2.m2.1d">italic_ρ italic_w</annotation></semantics></math>)</td> <td class="ltx_td ltx_align_center ltx_border_b ltx_border_r ltx_border_t" id="S3.T4.12.12.3">1315</td> <td class="ltx_td ltx_align_center ltx_border_b ltx_border_r ltx_border_t" id="S3.T4.12.12.4">-</td> <td class="ltx_td ltx_align_center ltx_border_b ltx_border_r ltx_border_t" id="S3.T4.12.12.5">498</td> </tr> </tbody> </table> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_table">Table 4. </span>Numbers of proof steps (where applicable) required to prove hyperbolicity-preservation, strict hyperbolicity-preservation and flux conservation (jump continuity) for the Roe solver, across all coupled pairs of components for the perfectly hyperbolic Maxwell’s and isothermal Euler equation systems.</figcaption> </figure> <figure class="ltx_table" id="S3.T5"> <table class="ltx_tabular ltx_centering ltx_align_middle" id="S3.T5.1"> <tbody class="ltx_tbody"> <tr class="ltx_tr" id="S3.T5.1.1.1"> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_t" id="S3.T5.1.1.1.1"><span class="ltx_text ltx_font_bold" id="S3.T5.1.1.1.1.1">Flux Limiter</span></td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T5.1.1.1.2"><span class="ltx_text ltx_font_bold" id="S3.T5.1.1.1.2.1">Symmetry</span></td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T5.1.1.1.3"><span class="ltx_text ltx_font_bold" id="S3.T5.1.1.1.3.1">Second-Order TVD</span></td> </tr> <tr class="ltx_tr" id="S3.T5.1.2.2"> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_t" id="S3.T5.1.2.2.1">minmod</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T5.1.2.2.2">863</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T5.1.2.2.3">513</td> </tr> <tr class="ltx_tr" id="S3.T5.1.3.3"> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_t" id="S3.T5.1.3.3.1">monotonized-centered</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T5.1.3.3.2">4171</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T5.1.3.3.3">2251</td> </tr> <tr class="ltx_tr" id="S3.T5.1.4.4"> <td class="ltx_td ltx_align_center ltx_border_l ltx_border_r ltx_border_t" id="S3.T5.1.4.4.1">superbee</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T5.1.4.4.2">-</td> <td class="ltx_td ltx_align_center ltx_border_r ltx_border_t" id="S3.T5.1.4.4.3">2125</td> </tr> <tr class="ltx_tr" id="S3.T5.1.5.5"> <td class="ltx_td ltx_align_center ltx_border_b ltx_border_l ltx_border_r ltx_border_t" id="S3.T5.1.5.5.1">van Leer</td> <td class="ltx_td ltx_align_center ltx_border_b ltx_border_r ltx_border_t" id="S3.T5.1.5.5.2">244</td> <td class="ltx_td ltx_align_center ltx_border_b ltx_border_r ltx_border_t" id="S3.T5.1.5.5.3">-</td> </tr> </tbody> </table> <figcaption class="ltx_caption ltx_centering"><span class="ltx_tag ltx_tag_table">Table 5. </span>Numbers of proof steps (where applicable) required to prove the symmetry and second-order total variation diminishing properties of the minmod, monotonized-centered, superbee and van Leer flux limiters.</figcaption> </figure> <div class="ltx_para" id="S3.SS6.p2"> <p class="ltx_p" id="S3.SS6.p2.2">By interrogating the attempted proof of local Lipschitz continuity for the Lax-Friedrichs solver for the <math alttext="{\rho}" class="ltx_Math" display="inline" id="S3.SS6.p2.1.m1.1"><semantics id="S3.SS6.p2.1.m1.1a"><mi id="S3.SS6.p2.1.m1.1.1" xref="S3.SS6.p2.1.m1.1.1.cmml">ρ</mi><annotation-xml encoding="MathML-Content" id="S3.SS6.p2.1.m1.1b"><ci id="S3.SS6.p2.1.m1.1.1.cmml" xref="S3.SS6.p2.1.m1.1.1">𝜌</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p2.1.m1.1c">{\rho}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p2.1.m1.1d">italic_ρ</annotation></semantics></math> and <math alttext="{\rho u}" class="ltx_Math" display="inline" id="S3.SS6.p2.2.m2.1"><semantics id="S3.SS6.p2.2.m2.1a"><mrow id="S3.SS6.p2.2.m2.1.1" xref="S3.SS6.p2.2.m2.1.1.cmml"><mi id="S3.SS6.p2.2.m2.1.1.2" xref="S3.SS6.p2.2.m2.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p2.2.m2.1.1.1" xref="S3.SS6.p2.2.m2.1.1.1.cmml"></mo><mi id="S3.SS6.p2.2.m2.1.1.3" xref="S3.SS6.p2.2.m2.1.1.3.cmml">u</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p2.2.m2.1b"><apply id="S3.SS6.p2.2.m2.1.1.cmml" xref="S3.SS6.p2.2.m2.1.1"><times id="S3.SS6.p2.2.m2.1.1.1.cmml" xref="S3.SS6.p2.2.m2.1.1.1"></times><ci id="S3.SS6.p2.2.m2.1.1.2.cmml" xref="S3.SS6.p2.2.m2.1.1.2">𝜌</ci><ci id="S3.SS6.p2.2.m2.1.1.3.cmml" xref="S3.SS6.p2.2.m2.1.1.3">𝑢</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p2.2.m2.1c">{\rho u}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p2.2.m2.1d">italic_ρ italic_u</annotation></semantics></math> components, we see that the theorem-prover succeeds in reducing the problem of proving flux convexity to the problem of proving that the inequality:</p> </div> <div class="ltx_para" id="S3.SS6.p3"> <table class="ltx_equation ltx_eqn_table" id="S3.E49"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(49)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="\frac{2\left(\left(\rho u\right)^{2}+\rho^{2}\right)}{\rho^{3}}\geq 0," class="ltx_Math" display="block" id="S3.E49.m1.2"><semantics id="S3.E49.m1.2a"><mrow id="S3.E49.m1.2.2.1" xref="S3.E49.m1.2.2.1.1.cmml"><mrow id="S3.E49.m1.2.2.1.1" xref="S3.E49.m1.2.2.1.1.cmml"><mfrac id="S3.E49.m1.1.1" xref="S3.E49.m1.1.1.cmml"><mrow id="S3.E49.m1.1.1.1" xref="S3.E49.m1.1.1.1.cmml"><mn id="S3.E49.m1.1.1.1.3" xref="S3.E49.m1.1.1.1.3.cmml">2</mn><mo id="S3.E49.m1.1.1.1.2" xref="S3.E49.m1.1.1.1.2.cmml"></mo><mrow id="S3.E49.m1.1.1.1.1.1" xref="S3.E49.m1.1.1.1.1.1.1.cmml"><mo id="S3.E49.m1.1.1.1.1.1.2" xref="S3.E49.m1.1.1.1.1.1.1.cmml">(</mo><mrow id="S3.E49.m1.1.1.1.1.1.1" xref="S3.E49.m1.1.1.1.1.1.1.cmml"><msup id="S3.E49.m1.1.1.1.1.1.1.1" xref="S3.E49.m1.1.1.1.1.1.1.1.cmml"><mrow id="S3.E49.m1.1.1.1.1.1.1.1.1.1" xref="S3.E49.m1.1.1.1.1.1.1.1.1.1.1.cmml"><mo id="S3.E49.m1.1.1.1.1.1.1.1.1.1.2" xref="S3.E49.m1.1.1.1.1.1.1.1.1.1.1.cmml">(</mo><mrow id="S3.E49.m1.1.1.1.1.1.1.1.1.1.1" xref="S3.E49.m1.1.1.1.1.1.1.1.1.1.1.cmml"><mi id="S3.E49.m1.1.1.1.1.1.1.1.1.1.1.2" xref="S3.E49.m1.1.1.1.1.1.1.1.1.1.1.2.cmml">ρ</mi><mo id="S3.E49.m1.1.1.1.1.1.1.1.1.1.1.1" xref="S3.E49.m1.1.1.1.1.1.1.1.1.1.1.1.cmml"></mo><mi id="S3.E49.m1.1.1.1.1.1.1.1.1.1.1.3" xref="S3.E49.m1.1.1.1.1.1.1.1.1.1.1.3.cmml">u</mi></mrow><mo id="S3.E49.m1.1.1.1.1.1.1.1.1.1.3" xref="S3.E49.m1.1.1.1.1.1.1.1.1.1.1.cmml">)</mo></mrow><mn id="S3.E49.m1.1.1.1.1.1.1.1.3" xref="S3.E49.m1.1.1.1.1.1.1.1.3.cmml">2</mn></msup><mo id="S3.E49.m1.1.1.1.1.1.1.2" xref="S3.E49.m1.1.1.1.1.1.1.2.cmml">+</mo><msup id="S3.E49.m1.1.1.1.1.1.1.3" xref="S3.E49.m1.1.1.1.1.1.1.3.cmml"><mi id="S3.E49.m1.1.1.1.1.1.1.3.2" xref="S3.E49.m1.1.1.1.1.1.1.3.2.cmml">ρ</mi><mn id="S3.E49.m1.1.1.1.1.1.1.3.3" xref="S3.E49.m1.1.1.1.1.1.1.3.3.cmml">2</mn></msup></mrow><mo id="S3.E49.m1.1.1.1.1.1.3" xref="S3.E49.m1.1.1.1.1.1.1.cmml">)</mo></mrow></mrow><msup id="S3.E49.m1.1.1.3" xref="S3.E49.m1.1.1.3.cmml"><mi id="S3.E49.m1.1.1.3.2" xref="S3.E49.m1.1.1.3.2.cmml">ρ</mi><mn id="S3.E49.m1.1.1.3.3" xref="S3.E49.m1.1.1.3.3.cmml">3</mn></msup></mfrac><mo id="S3.E49.m1.2.2.1.1.1" xref="S3.E49.m1.2.2.1.1.1.cmml">≥</mo><mn id="S3.E49.m1.2.2.1.1.2" xref="S3.E49.m1.2.2.1.1.2.cmml">0</mn></mrow><mo id="S3.E49.m1.2.2.1.2" xref="S3.E49.m1.2.2.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S3.E49.m1.2b"><apply id="S3.E49.m1.2.2.1.1.cmml" xref="S3.E49.m1.2.2.1"><geq id="S3.E49.m1.2.2.1.1.1.cmml" xref="S3.E49.m1.2.2.1.1.1"></geq><apply id="S3.E49.m1.1.1.cmml" xref="S3.E49.m1.1.1"><divide id="S3.E49.m1.1.1.2.cmml" xref="S3.E49.m1.1.1"></divide><apply id="S3.E49.m1.1.1.1.cmml" xref="S3.E49.m1.1.1.1"><times id="S3.E49.m1.1.1.1.2.cmml" xref="S3.E49.m1.1.1.1.2"></times><cn id="S3.E49.m1.1.1.1.3.cmml" type="integer" xref="S3.E49.m1.1.1.1.3">2</cn><apply id="S3.E49.m1.1.1.1.1.1.1.cmml" xref="S3.E49.m1.1.1.1.1.1"><plus id="S3.E49.m1.1.1.1.1.1.1.2.cmml" xref="S3.E49.m1.1.1.1.1.1.1.2"></plus><apply id="S3.E49.m1.1.1.1.1.1.1.1.cmml" xref="S3.E49.m1.1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S3.E49.m1.1.1.1.1.1.1.1.2.cmml" xref="S3.E49.m1.1.1.1.1.1.1.1">superscript</csymbol><apply id="S3.E49.m1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S3.E49.m1.1.1.1.1.1.1.1.1.1"><times id="S3.E49.m1.1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S3.E49.m1.1.1.1.1.1.1.1.1.1.1.1"></times><ci id="S3.E49.m1.1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S3.E49.m1.1.1.1.1.1.1.1.1.1.1.2">𝜌</ci><ci id="S3.E49.m1.1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S3.E49.m1.1.1.1.1.1.1.1.1.1.1.3">𝑢</ci></apply><cn id="S3.E49.m1.1.1.1.1.1.1.1.3.cmml" type="integer" xref="S3.E49.m1.1.1.1.1.1.1.1.3">2</cn></apply><apply id="S3.E49.m1.1.1.1.1.1.1.3.cmml" xref="S3.E49.m1.1.1.1.1.1.1.3"><csymbol cd="ambiguous" id="S3.E49.m1.1.1.1.1.1.1.3.1.cmml" xref="S3.E49.m1.1.1.1.1.1.1.3">superscript</csymbol><ci id="S3.E49.m1.1.1.1.1.1.1.3.2.cmml" xref="S3.E49.m1.1.1.1.1.1.1.3.2">𝜌</ci><cn id="S3.E49.m1.1.1.1.1.1.1.3.3.cmml" type="integer" xref="S3.E49.m1.1.1.1.1.1.1.3.3">2</cn></apply></apply></apply><apply id="S3.E49.m1.1.1.3.cmml" xref="S3.E49.m1.1.1.3"><csymbol cd="ambiguous" id="S3.E49.m1.1.1.3.1.cmml" xref="S3.E49.m1.1.1.3">superscript</csymbol><ci id="S3.E49.m1.1.1.3.2.cmml" xref="S3.E49.m1.1.1.3.2">𝜌</ci><cn id="S3.E49.m1.1.1.3.3.cmml" type="integer" xref="S3.E49.m1.1.1.3.3">3</cn></apply></apply><cn id="S3.E49.m1.2.2.1.1.2.cmml" type="integer" xref="S3.E49.m1.2.2.1.1.2">0</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.E49.m1.2c">\frac{2\left(\left(\rho u\right)^{2}+\rho^{2}\right)}{\rho^{3}}\geq 0,</annotation><annotation encoding="application/x-llamapun" id="S3.E49.m1.2d">divide start_ARG 2 ( ( italic_ρ italic_u ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ≥ 0 ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S3.SS6.p3.8">always holds. However, in the absence of any guarantee that <math alttext="{\rho>0}" class="ltx_Math" display="inline" id="S3.SS6.p3.1.m1.1"><semantics id="S3.SS6.p3.1.m1.1a"><mrow id="S3.SS6.p3.1.m1.1.1" xref="S3.SS6.p3.1.m1.1.1.cmml"><mi id="S3.SS6.p3.1.m1.1.1.2" xref="S3.SS6.p3.1.m1.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p3.1.m1.1.1.1" xref="S3.SS6.p3.1.m1.1.1.1.cmml">></mo><mn id="S3.SS6.p3.1.m1.1.1.3" xref="S3.SS6.p3.1.m1.1.1.3.cmml">0</mn></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p3.1.m1.1b"><apply id="S3.SS6.p3.1.m1.1.1.cmml" xref="S3.SS6.p3.1.m1.1.1"><gt id="S3.SS6.p3.1.m1.1.1.1.cmml" xref="S3.SS6.p3.1.m1.1.1.1"></gt><ci id="S3.SS6.p3.1.m1.1.1.2.cmml" xref="S3.SS6.p3.1.m1.1.1.2">𝜌</ci><cn id="S3.SS6.p3.1.m1.1.1.3.cmml" type="integer" xref="S3.SS6.p3.1.m1.1.1.3">0</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p3.1.m1.1c">{\rho>0}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p3.1.m1.1d">italic_ρ > 0</annotation></semantics></math>, it is unable to proceed further. Thus, we see that the theorem-prover has correctly concluded that it is unable to guarantee local Lipschitz continuity of the flux function in the absence of the additional constraint that the fluid density <math alttext="{\rho}" class="ltx_Math" display="inline" id="S3.SS6.p3.2.m2.1"><semantics id="S3.SS6.p3.2.m2.1a"><mi id="S3.SS6.p3.2.m2.1.1" xref="S3.SS6.p3.2.m2.1.1.cmml">ρ</mi><annotation-xml encoding="MathML-Content" id="S3.SS6.p3.2.m2.1b"><ci id="S3.SS6.p3.2.m2.1.1.cmml" xref="S3.SS6.p3.2.m2.1.1">𝜌</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p3.2.m2.1c">{\rho}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p3.2.m2.1d">italic_ρ</annotation></semantics></math> always be strictly positive (which the solver in isolation does not guarantee). The theorem-prover is also correct to conclude that strict hyperbolicity-preservation for the Lax-Friedrichs solver for the <math alttext="{\rho v}" class="ltx_Math" display="inline" id="S3.SS6.p3.3.m3.1"><semantics id="S3.SS6.p3.3.m3.1a"><mrow id="S3.SS6.p3.3.m3.1.1" xref="S3.SS6.p3.3.m3.1.1.cmml"><mi id="S3.SS6.p3.3.m3.1.1.2" xref="S3.SS6.p3.3.m3.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p3.3.m3.1.1.1" xref="S3.SS6.p3.3.m3.1.1.1.cmml"></mo><mi id="S3.SS6.p3.3.m3.1.1.3" xref="S3.SS6.p3.3.m3.1.1.3.cmml">v</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p3.3.m3.1b"><apply id="S3.SS6.p3.3.m3.1.1.cmml" xref="S3.SS6.p3.3.m3.1.1"><times id="S3.SS6.p3.3.m3.1.1.1.cmml" xref="S3.SS6.p3.3.m3.1.1.1"></times><ci id="S3.SS6.p3.3.m3.1.1.2.cmml" xref="S3.SS6.p3.3.m3.1.1.2">𝜌</ci><ci id="S3.SS6.p3.3.m3.1.1.3.cmml" xref="S3.SS6.p3.3.m3.1.1.3">𝑣</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p3.3.m3.1c">{\rho v}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p3.3.m3.1d">italic_ρ italic_v</annotation></semantics></math> and <math alttext="{\rho w}" class="ltx_Math" display="inline" id="S3.SS6.p3.4.m4.1"><semantics id="S3.SS6.p3.4.m4.1a"><mrow id="S3.SS6.p3.4.m4.1.1" xref="S3.SS6.p3.4.m4.1.1.cmml"><mi id="S3.SS6.p3.4.m4.1.1.2" xref="S3.SS6.p3.4.m4.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p3.4.m4.1.1.1" xref="S3.SS6.p3.4.m4.1.1.1.cmml"></mo><mi id="S3.SS6.p3.4.m4.1.1.3" xref="S3.SS6.p3.4.m4.1.1.3.cmml">w</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p3.4.m4.1b"><apply id="S3.SS6.p3.4.m4.1.1.cmml" xref="S3.SS6.p3.4.m4.1.1"><times id="S3.SS6.p3.4.m4.1.1.1.cmml" xref="S3.SS6.p3.4.m4.1.1.1"></times><ci id="S3.SS6.p3.4.m4.1.1.2.cmml" xref="S3.SS6.p3.4.m4.1.1.2">𝜌</ci><ci id="S3.SS6.p3.4.m4.1.1.3.cmml" xref="S3.SS6.p3.4.m4.1.1.3">𝑤</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p3.4.m4.1c">{\rho w}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p3.4.m4.1d">italic_ρ italic_w</annotation></semantics></math> components does not hold, due to the presence of a repeated “<math alttext="u" class="ltx_Math" display="inline" id="S3.SS6.p3.5.m5.1"><semantics id="S3.SS6.p3.5.m5.1a"><mi id="S3.SS6.p3.5.m5.1.1" xref="S3.SS6.p3.5.m5.1.1.cmml">u</mi><annotation-xml encoding="MathML-Content" id="S3.SS6.p3.5.m5.1b"><ci id="S3.SS6.p3.5.m5.1.1.cmml" xref="S3.SS6.p3.5.m5.1.1">𝑢</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p3.5.m5.1c">u</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p3.5.m5.1d">italic_u</annotation></semantics></math>” eigenvalue within the flux Jacobian <math alttext="{\mathbf{J}_{\mathbf{F}}}" class="ltx_Math" display="inline" id="S3.SS6.p3.6.m6.1"><semantics id="S3.SS6.p3.6.m6.1a"><msub id="S3.SS6.p3.6.m6.1.1" xref="S3.SS6.p3.6.m6.1.1.cmml"><mi id="S3.SS6.p3.6.m6.1.1.2" xref="S3.SS6.p3.6.m6.1.1.2.cmml">𝐉</mi><mi id="S3.SS6.p3.6.m6.1.1.3" xref="S3.SS6.p3.6.m6.1.1.3.cmml">𝐅</mi></msub><annotation-xml encoding="MathML-Content" id="S3.SS6.p3.6.m6.1b"><apply id="S3.SS6.p3.6.m6.1.1.cmml" xref="S3.SS6.p3.6.m6.1.1"><csymbol cd="ambiguous" id="S3.SS6.p3.6.m6.1.1.1.cmml" xref="S3.SS6.p3.6.m6.1.1">subscript</csymbol><ci id="S3.SS6.p3.6.m6.1.1.2.cmml" xref="S3.SS6.p3.6.m6.1.1.2">𝐉</ci><ci id="S3.SS6.p3.6.m6.1.1.3.cmml" xref="S3.SS6.p3.6.m6.1.1.3">𝐅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p3.6.m6.1c">{\mathbf{J}_{\mathbf{F}}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p3.6.m6.1d">bold_J start_POSTSUBSCRIPT bold_F end_POSTSUBSCRIPT</annotation></semantics></math>. Likewise, by interrogating the attempted proofs of hyperbolicity- and strict hyperbolicity-preservation for the Roe solver for the <math alttext="{\rho}" class="ltx_Math" display="inline" id="S3.SS6.p3.7.m7.1"><semantics id="S3.SS6.p3.7.m7.1a"><mi id="S3.SS6.p3.7.m7.1.1" xref="S3.SS6.p3.7.m7.1.1.cmml">ρ</mi><annotation-xml encoding="MathML-Content" id="S3.SS6.p3.7.m7.1b"><ci id="S3.SS6.p3.7.m7.1.1.cmml" xref="S3.SS6.p3.7.m7.1.1">𝜌</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p3.7.m7.1c">{\rho}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p3.7.m7.1d">italic_ρ</annotation></semantics></math> and <math alttext="{\rho u}" class="ltx_Math" display="inline" id="S3.SS6.p3.8.m8.1"><semantics id="S3.SS6.p3.8.m8.1a"><mrow id="S3.SS6.p3.8.m8.1.1" xref="S3.SS6.p3.8.m8.1.1.cmml"><mi id="S3.SS6.p3.8.m8.1.1.2" xref="S3.SS6.p3.8.m8.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p3.8.m8.1.1.1" xref="S3.SS6.p3.8.m8.1.1.1.cmml"></mo><mi id="S3.SS6.p3.8.m8.1.1.3" xref="S3.SS6.p3.8.m8.1.1.3.cmml">u</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p3.8.m8.1b"><apply id="S3.SS6.p3.8.m8.1.1.cmml" xref="S3.SS6.p3.8.m8.1.1"><times id="S3.SS6.p3.8.m8.1.1.1.cmml" xref="S3.SS6.p3.8.m8.1.1.1"></times><ci id="S3.SS6.p3.8.m8.1.1.2.cmml" xref="S3.SS6.p3.8.m8.1.1.2">𝜌</ci><ci id="S3.SS6.p3.8.m8.1.1.3.cmml" xref="S3.SS6.p3.8.m8.1.1.3">𝑢</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p3.8.m8.1c">{\rho u}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p3.8.m8.1d">italic_ρ italic_u</annotation></semantics></math> components, we see that the theorem-prover reduces these problems to the problem of proving that the quantities:</p> </div> <div class="ltx_para" id="S3.SS6.p4"> <table class="ltx_equation ltx_eqn_table" id="S3.E50"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(50)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext='\lambda_{\pm}=\frac{1}{2\rho_{L}^{2}\rho_{R}^{2}}\left[\rho_{L}\rho_{R}\left(% \left(\rho_{R}u_{R}\right)\rho_{L}+\left(\rho_{L}u_{L}\right)\rho_{R}\right)% \right]\\ \pm\frac{1}{2\rho_{L}^{2}\rho_{R}^{2}}\left[\sqrt{-\rho_{L}^{2}\rho_{R}^{2}% \left(\left(\rho_{R}u_{R}\right)\rho_{L}-\left(\rho_{L}u_{L}\right)\rho_{R}% \right)^{2}+\rho_{"L}^{4}\rho_{R}^{4}v_{th}^{2}}\right],' class="ltx_Math" display="block" id="S3.E50.m1.38"><semantics id="S3.E50.m1.38a"><mtable displaystyle="true" id="S3.E50.m1.38.38.3" rowspacing="0pt"><mtr id="S3.E50.m1.38.38.3a"><mtd class="ltx_align_left" columnalign="left" id="S3.E50.m1.38.38.3b"><mrow id="S3.E50.m1.37.37.2.36.30.30"><msub id="S3.E50.m1.37.37.2.36.30.30.31"><mi id="S3.E50.m1.1.1.1.1.1.1" xref="S3.E50.m1.1.1.1.1.1.1.cmml">λ</mi><mo id="S3.E50.m1.2.2.2.2.2.2.1" xref="S3.E50.m1.2.2.2.2.2.2.1.cmml">±</mo></msub><mo id="S3.E50.m1.3.3.3.3.3.3" xref="S3.E50.m1.3.3.3.3.3.3.cmml">=</mo><mrow id="S3.E50.m1.37.37.2.36.30.30.30"><mfrac id="S3.E50.m1.4.4.4.4.4.4" xref="S3.E50.m1.4.4.4.4.4.4.cmml"><mn id="S3.E50.m1.4.4.4.4.4.4.2" xref="S3.E50.m1.4.4.4.4.4.4.2.cmml">1</mn><mrow id="S3.E50.m1.4.4.4.4.4.4.3" xref="S3.E50.m1.4.4.4.4.4.4.3.cmml"><mn id="S3.E50.m1.4.4.4.4.4.4.3.2" xref="S3.E50.m1.4.4.4.4.4.4.3.2.cmml">2</mn><mo id="S3.E50.m1.4.4.4.4.4.4.3.1" xref="S3.E50.m1.4.4.4.4.4.4.3.1.cmml"></mo><msubsup id="S3.E50.m1.4.4.4.4.4.4.3.3" xref="S3.E50.m1.4.4.4.4.4.4.3.3.cmml"><mi id="S3.E50.m1.4.4.4.4.4.4.3.3.2.2" xref="S3.E50.m1.4.4.4.4.4.4.3.3.2.2.cmml">ρ</mi><mi id="S3.E50.m1.4.4.4.4.4.4.3.3.2.3" xref="S3.E50.m1.4.4.4.4.4.4.3.3.2.3.cmml">L</mi><mn id="S3.E50.m1.4.4.4.4.4.4.3.3.3" xref="S3.E50.m1.4.4.4.4.4.4.3.3.3.cmml">2</mn></msubsup><mo id="S3.E50.m1.4.4.4.4.4.4.3.1a" xref="S3.E50.m1.4.4.4.4.4.4.3.1.cmml"></mo><msubsup id="S3.E50.m1.4.4.4.4.4.4.3.4" xref="S3.E50.m1.4.4.4.4.4.4.3.4.cmml"><mi id="S3.E50.m1.4.4.4.4.4.4.3.4.2.2" xref="S3.E50.m1.4.4.4.4.4.4.3.4.2.2.cmml">ρ</mi><mi id="S3.E50.m1.4.4.4.4.4.4.3.4.2.3" xref="S3.E50.m1.4.4.4.4.4.4.3.4.2.3.cmml">R</mi><mn id="S3.E50.m1.4.4.4.4.4.4.3.4.3" xref="S3.E50.m1.4.4.4.4.4.4.3.4.3.cmml">2</mn></msubsup></mrow></mfrac><mo id="S3.E50.m1.37.37.2.36.30.30.30.2" xref="S3.E50.m1.36.36.1.1.1.cmml"></mo><mrow id="S3.E50.m1.37.37.2.36.30.30.30.1.1"><mo id="S3.E50.m1.5.5.5.5.5.5" xref="S3.E50.m1.36.36.1.1.1.cmml">[</mo><mrow id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1"><msub id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.3"><mi id="S3.E50.m1.6.6.6.6.6.6" xref="S3.E50.m1.6.6.6.6.6.6.cmml">ρ</mi><mi id="S3.E50.m1.7.7.7.7.7.7.1" xref="S3.E50.m1.7.7.7.7.7.7.1.cmml">L</mi></msub><mo id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.2" xref="S3.E50.m1.36.36.1.1.1.cmml"></mo><msub id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.4"><mi id="S3.E50.m1.8.8.8.8.8.8" xref="S3.E50.m1.8.8.8.8.8.8.cmml">ρ</mi><mi id="S3.E50.m1.9.9.9.9.9.9.1" xref="S3.E50.m1.9.9.9.9.9.9.1.cmml">R</mi></msub><mo id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.2a" xref="S3.E50.m1.36.36.1.1.1.cmml"></mo><mrow id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.1.1"><mo id="S3.E50.m1.10.10.10.10.10.10" xref="S3.E50.m1.36.36.1.1.1.cmml">(</mo><mrow id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.1.1.1"><mrow id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.1.1.1.1"><mrow id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.1.1.1.1.1.1"><mo id="S3.E50.m1.11.11.11.11.11.11" xref="S3.E50.m1.36.36.1.1.1.cmml">(</mo><mrow id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.1.1.1.1.1.1.1"><msub id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.1.1.1.1.1.1.1.2"><mi id="S3.E50.m1.12.12.12.12.12.12" xref="S3.E50.m1.12.12.12.12.12.12.cmml">ρ</mi><mi id="S3.E50.m1.13.13.13.13.13.13.1" xref="S3.E50.m1.13.13.13.13.13.13.1.cmml">R</mi></msub><mo id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.1.1.1.1.1.1.1.1" xref="S3.E50.m1.36.36.1.1.1.cmml"></mo><msub id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.1.1.1.1.1.1.1.3"><mi id="S3.E50.m1.14.14.14.14.14.14" xref="S3.E50.m1.14.14.14.14.14.14.cmml">u</mi><mi id="S3.E50.m1.15.15.15.15.15.15.1" xref="S3.E50.m1.15.15.15.15.15.15.1.cmml">R</mi></msub></mrow><mo id="S3.E50.m1.16.16.16.16.16.16" xref="S3.E50.m1.36.36.1.1.1.cmml">)</mo></mrow><mo id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.1.1.1.1.2" xref="S3.E50.m1.36.36.1.1.1.cmml"></mo><msub id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.1.1.1.1.3"><mi id="S3.E50.m1.17.17.17.17.17.17" xref="S3.E50.m1.17.17.17.17.17.17.cmml">ρ</mi><mi id="S3.E50.m1.18.18.18.18.18.18.1" xref="S3.E50.m1.18.18.18.18.18.18.1.cmml">L</mi></msub></mrow><mo id="S3.E50.m1.19.19.19.19.19.19" xref="S3.E50.m1.19.19.19.19.19.19.cmml">+</mo><mrow id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.1.1.1.2"><mrow id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.1.1.1.2.1.1"><mo id="S3.E50.m1.20.20.20.20.20.20" xref="S3.E50.m1.36.36.1.1.1.cmml">(</mo><mrow id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.1.1.1.2.1.1.1"><msub id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.1.1.1.2.1.1.1.2"><mi id="S3.E50.m1.21.21.21.21.21.21" xref="S3.E50.m1.21.21.21.21.21.21.cmml">ρ</mi><mi id="S3.E50.m1.22.22.22.22.22.22.1" xref="S3.E50.m1.22.22.22.22.22.22.1.cmml">L</mi></msub><mo id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.1.1.1.2.1.1.1.1" xref="S3.E50.m1.36.36.1.1.1.cmml"></mo><msub id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.1.1.1.2.1.1.1.3"><mi id="S3.E50.m1.23.23.23.23.23.23" xref="S3.E50.m1.23.23.23.23.23.23.cmml">u</mi><mi id="S3.E50.m1.24.24.24.24.24.24.1" xref="S3.E50.m1.24.24.24.24.24.24.1.cmml">L</mi></msub></mrow><mo id="S3.E50.m1.25.25.25.25.25.25" xref="S3.E50.m1.36.36.1.1.1.cmml">)</mo></mrow><mo id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.1.1.1.2.2" xref="S3.E50.m1.36.36.1.1.1.cmml"></mo><msub id="S3.E50.m1.37.37.2.36.30.30.30.1.1.1.1.1.1.2.3"><mi id="S3.E50.m1.26.26.26.26.26.26" xref="S3.E50.m1.26.26.26.26.26.26.cmml">ρ</mi><mi id="S3.E50.m1.27.27.27.27.27.27.1" xref="S3.E50.m1.27.27.27.27.27.27.1.cmml">R</mi></msub></mrow></mrow><mo id="S3.E50.m1.28.28.28.28.28.28" xref="S3.E50.m1.36.36.1.1.1.cmml">)</mo></mrow></mrow><mo id="S3.E50.m1.29.29.29.29.29.29" xref="S3.E50.m1.36.36.1.1.1.cmml">]</mo></mrow></mrow></mrow></mtd></mtr><mtr id="S3.E50.m1.38.38.3c"><mtd class="ltx_align_right" columnalign="right" id="S3.E50.m1.38.38.3d"><mrow id="S3.E50.m1.38.38.3.37.7.7.7"><mrow id="S3.E50.m1.38.38.3.37.7.7.7.1"><mo id="S3.E50.m1.38.38.3.37.7.7.7.1a" xref="S3.E50.m1.36.36.1.1.1.cmml">±</mo><mrow id="S3.E50.m1.38.38.3.37.7.7.7.1.1"><mfrac id="S3.E50.m1.31.31.31.2.2.2" xref="S3.E50.m1.31.31.31.2.2.2.cmml"><mn id="S3.E50.m1.31.31.31.2.2.2.2" xref="S3.E50.m1.31.31.31.2.2.2.2.cmml">1</mn><mrow id="S3.E50.m1.31.31.31.2.2.2.3" xref="S3.E50.m1.31.31.31.2.2.2.3.cmml"><mn id="S3.E50.m1.31.31.31.2.2.2.3.2" xref="S3.E50.m1.31.31.31.2.2.2.3.2.cmml">2</mn><mo id="S3.E50.m1.31.31.31.2.2.2.3.1" xref="S3.E50.m1.31.31.31.2.2.2.3.1.cmml"></mo><msubsup id="S3.E50.m1.31.31.31.2.2.2.3.3" xref="S3.E50.m1.31.31.31.2.2.2.3.3.cmml"><mi id="S3.E50.m1.31.31.31.2.2.2.3.3.2.2" xref="S3.E50.m1.31.31.31.2.2.2.3.3.2.2.cmml">ρ</mi><mi id="S3.E50.m1.31.31.31.2.2.2.3.3.2.3" xref="S3.E50.m1.31.31.31.2.2.2.3.3.2.3.cmml">L</mi><mn id="S3.E50.m1.31.31.31.2.2.2.3.3.3" xref="S3.E50.m1.31.31.31.2.2.2.3.3.3.cmml">2</mn></msubsup><mo id="S3.E50.m1.31.31.31.2.2.2.3.1a" xref="S3.E50.m1.31.31.31.2.2.2.3.1.cmml"></mo><msubsup id="S3.E50.m1.31.31.31.2.2.2.3.4" xref="S3.E50.m1.31.31.31.2.2.2.3.4.cmml"><mi id="S3.E50.m1.31.31.31.2.2.2.3.4.2.2" xref="S3.E50.m1.31.31.31.2.2.2.3.4.2.2.cmml">ρ</mi><mi id="S3.E50.m1.31.31.31.2.2.2.3.4.2.3" xref="S3.E50.m1.31.31.31.2.2.2.3.4.2.3.cmml">R</mi><mn id="S3.E50.m1.31.31.31.2.2.2.3.4.3" xref="S3.E50.m1.31.31.31.2.2.2.3.4.3.cmml">2</mn></msubsup></mrow></mfrac><mo id="S3.E50.m1.38.38.3.37.7.7.7.1.1.1" xref="S3.E50.m1.36.36.1.1.1.cmml"></mo><mrow id="S3.E50.m1.38.38.3.37.7.7.7.1.1.2"><mo id="S3.E50.m1.32.32.32.3.3.3" xref="S3.E50.m1.36.36.1.1.1.cmml">[</mo><msqrt id="S3.E50.m1.33.33.33.4.4.4" xref="S3.E50.m1.33.33.33.4.4.4.cmml"><mrow id="S3.E50.m1.33.33.33.4.4.4.1" xref="S3.E50.m1.33.33.33.4.4.4.1.cmml"><mrow id="S3.E50.m1.33.33.33.4.4.4.1.1" xref="S3.E50.m1.33.33.33.4.4.4.1.1.cmml"><mo id="S3.E50.m1.33.33.33.4.4.4.1.1a" xref="S3.E50.m1.33.33.33.4.4.4.1.1.cmml">−</mo><mrow id="S3.E50.m1.33.33.33.4.4.4.1.1.1" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.cmml"><msubsup id="S3.E50.m1.33.33.33.4.4.4.1.1.1.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.3.cmml"><mi id="S3.E50.m1.33.33.33.4.4.4.1.1.1.3.2.2" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.3.2.2.cmml">ρ</mi><mi id="S3.E50.m1.33.33.33.4.4.4.1.1.1.3.2.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.3.2.3.cmml">L</mi><mn id="S3.E50.m1.33.33.33.4.4.4.1.1.1.3.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.3.3.cmml">2</mn></msubsup><mo id="S3.E50.m1.33.33.33.4.4.4.1.1.1.2" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.2.cmml"></mo><msubsup id="S3.E50.m1.33.33.33.4.4.4.1.1.1.4" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.4.cmml"><mi id="S3.E50.m1.33.33.33.4.4.4.1.1.1.4.2.2" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.4.2.2.cmml">ρ</mi><mi id="S3.E50.m1.33.33.33.4.4.4.1.1.1.4.2.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.4.2.3.cmml">R</mi><mn id="S3.E50.m1.33.33.33.4.4.4.1.1.1.4.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.4.3.cmml">2</mn></msubsup><mo id="S3.E50.m1.33.33.33.4.4.4.1.1.1.2a" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.2.cmml"></mo><msup id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.cmml"><mrow id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.cmml"><mo id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.2" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.cmml">(</mo><mrow id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.cmml"><mrow id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.cmml"><mrow id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.cmml"><mo id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.2" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.cmml">(</mo><mrow id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.cmml"><msub id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.2" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.2.cmml"><mi id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.2.2" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.2.2.cmml">ρ</mi><mi id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.2.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.2.3.cmml">R</mi></msub><mo id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.1" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.1.cmml"></mo><msub id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.3.cmml"><mi id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.3.2" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.3.2.cmml">u</mi><mi id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.3.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.3.3.cmml">R</mi></msub></mrow><mo id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.cmml">)</mo></mrow><mo id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.2" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.2.cmml"></mo><msub id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.3.cmml"><mi id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.3.2" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.3.2.cmml">ρ</mi><mi id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.3.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.3.3.cmml">L</mi></msub></mrow><mo id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.3.cmml">−</mo><mrow id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.cmml"><mrow id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.cmml"><mo id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.2" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.cmml">(</mo><mrow id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.cmml"><msub id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.2" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.2.cmml"><mi id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.2.2" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.2.2.cmml">ρ</mi><mi id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.2.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.2.3.cmml">L</mi></msub><mo id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.1" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.1.cmml"></mo><msub id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.3.cmml"><mi id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.3.2" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.3.2.cmml">u</mi><mi id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.3.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.3.3.cmml">L</mi></msub></mrow><mo id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.cmml">)</mo></mrow><mo id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.2" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.2.cmml"></mo><msub id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.3.cmml"><mi id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.3.2" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.3.2.cmml">ρ</mi><mi id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.3.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.3.3.cmml">R</mi></msub></mrow></mrow><mo id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.cmml">)</mo></mrow><mn id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.3" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.3.cmml">2</mn></msup></mrow></mrow><mo id="S3.E50.m1.33.33.33.4.4.4.1.2" xref="S3.E50.m1.33.33.33.4.4.4.1.2.cmml">+</mo><mrow id="S3.E50.m1.33.33.33.4.4.4.1.3" xref="S3.E50.m1.33.33.33.4.4.4.1.3.cmml"><msubsup id="S3.E50.m1.33.33.33.4.4.4.1.3.2" xref="S3.E50.m1.33.33.33.4.4.4.1.3.2.cmml"><mi id="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.2" xref="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.2.cmml">ρ</mi><mrow id="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.3" xref="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.3.cmml"><mi id="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.3.2" mathvariant="normal" xref="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.3.2.cmml">"</mi><mo id="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.3.1" xref="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.3.1.cmml"></mo><mi id="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.3.3" xref="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.3.3.cmml">L</mi></mrow><mn id="S3.E50.m1.33.33.33.4.4.4.1.3.2.3" xref="S3.E50.m1.33.33.33.4.4.4.1.3.2.3.cmml">4</mn></msubsup><mo id="S3.E50.m1.33.33.33.4.4.4.1.3.1" xref="S3.E50.m1.33.33.33.4.4.4.1.3.1.cmml"></mo><msubsup id="S3.E50.m1.33.33.33.4.4.4.1.3.3" xref="S3.E50.m1.33.33.33.4.4.4.1.3.3.cmml"><mi id="S3.E50.m1.33.33.33.4.4.4.1.3.3.2.2" xref="S3.E50.m1.33.33.33.4.4.4.1.3.3.2.2.cmml">ρ</mi><mi id="S3.E50.m1.33.33.33.4.4.4.1.3.3.2.3" xref="S3.E50.m1.33.33.33.4.4.4.1.3.3.2.3.cmml">R</mi><mn id="S3.E50.m1.33.33.33.4.4.4.1.3.3.3" xref="S3.E50.m1.33.33.33.4.4.4.1.3.3.3.cmml">4</mn></msubsup><mo id="S3.E50.m1.33.33.33.4.4.4.1.3.1a" xref="S3.E50.m1.33.33.33.4.4.4.1.3.1.cmml"></mo><msubsup id="S3.E50.m1.33.33.33.4.4.4.1.3.4" xref="S3.E50.m1.33.33.33.4.4.4.1.3.4.cmml"><mi id="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.2" xref="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.2.cmml">v</mi><mrow id="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.3" xref="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.3.cmml"><mi id="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.3.2" xref="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.3.2.cmml">t</mi><mo id="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.3.1" xref="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.3.1.cmml"></mo><mi id="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.3.3" xref="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.3.3.cmml">h</mi></mrow><mn id="S3.E50.m1.33.33.33.4.4.4.1.3.4.3" xref="S3.E50.m1.33.33.33.4.4.4.1.3.4.3.cmml">2</mn></msubsup></mrow></mrow></msqrt><mo id="S3.E50.m1.34.34.34.5.5.5" xref="S3.E50.m1.36.36.1.1.1.cmml">]</mo></mrow></mrow></mrow><mo id="S3.E50.m1.35.35.35.6.6.6" xref="S3.E50.m1.36.36.1.1.1.cmml">,</mo></mrow></mtd></mtr></mtable><annotation-xml encoding="MathML-Content" id="S3.E50.m1.38b"><apply id="S3.E50.m1.36.36.1.1.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><eq id="S3.E50.m1.3.3.3.3.3.3.cmml" xref="S3.E50.m1.3.3.3.3.3.3"></eq><apply id="S3.E50.m1.36.36.1.1.1.3.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><csymbol cd="ambiguous" id="S3.E50.m1.36.36.1.1.1.3.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2">subscript</csymbol><ci id="S3.E50.m1.1.1.1.1.1.1.cmml" xref="S3.E50.m1.1.1.1.1.1.1">𝜆</ci><csymbol cd="latexml" id="S3.E50.m1.2.2.2.2.2.2.1.cmml" xref="S3.E50.m1.2.2.2.2.2.2.1">plus-or-minus</csymbol></apply><apply id="S3.E50.m1.36.36.1.1.1.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><csymbol cd="latexml" id="S3.E50.m1.30.30.30.1.1.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2">plus-or-minus</csymbol><apply id="S3.E50.m1.36.36.1.1.1.1.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><times id="S3.E50.m1.36.36.1.1.1.1.1.2.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"></times><apply id="S3.E50.m1.4.4.4.4.4.4.cmml" xref="S3.E50.m1.4.4.4.4.4.4"><divide id="S3.E50.m1.4.4.4.4.4.4.1.cmml" xref="S3.E50.m1.4.4.4.4.4.4"></divide><cn id="S3.E50.m1.4.4.4.4.4.4.2.cmml" type="integer" xref="S3.E50.m1.4.4.4.4.4.4.2">1</cn><apply id="S3.E50.m1.4.4.4.4.4.4.3.cmml" xref="S3.E50.m1.4.4.4.4.4.4.3"><times id="S3.E50.m1.4.4.4.4.4.4.3.1.cmml" xref="S3.E50.m1.4.4.4.4.4.4.3.1"></times><cn id="S3.E50.m1.4.4.4.4.4.4.3.2.cmml" type="integer" xref="S3.E50.m1.4.4.4.4.4.4.3.2">2</cn><apply id="S3.E50.m1.4.4.4.4.4.4.3.3.cmml" xref="S3.E50.m1.4.4.4.4.4.4.3.3"><csymbol cd="ambiguous" id="S3.E50.m1.4.4.4.4.4.4.3.3.1.cmml" xref="S3.E50.m1.4.4.4.4.4.4.3.3">superscript</csymbol><apply id="S3.E50.m1.4.4.4.4.4.4.3.3.2.cmml" xref="S3.E50.m1.4.4.4.4.4.4.3.3"><csymbol cd="ambiguous" id="S3.E50.m1.4.4.4.4.4.4.3.3.2.1.cmml" xref="S3.E50.m1.4.4.4.4.4.4.3.3">subscript</csymbol><ci id="S3.E50.m1.4.4.4.4.4.4.3.3.2.2.cmml" xref="S3.E50.m1.4.4.4.4.4.4.3.3.2.2">𝜌</ci><ci id="S3.E50.m1.4.4.4.4.4.4.3.3.2.3.cmml" xref="S3.E50.m1.4.4.4.4.4.4.3.3.2.3">𝐿</ci></apply><cn id="S3.E50.m1.4.4.4.4.4.4.3.3.3.cmml" type="integer" xref="S3.E50.m1.4.4.4.4.4.4.3.3.3">2</cn></apply><apply id="S3.E50.m1.4.4.4.4.4.4.3.4.cmml" xref="S3.E50.m1.4.4.4.4.4.4.3.4"><csymbol cd="ambiguous" id="S3.E50.m1.4.4.4.4.4.4.3.4.1.cmml" xref="S3.E50.m1.4.4.4.4.4.4.3.4">superscript</csymbol><apply id="S3.E50.m1.4.4.4.4.4.4.3.4.2.cmml" xref="S3.E50.m1.4.4.4.4.4.4.3.4"><csymbol cd="ambiguous" id="S3.E50.m1.4.4.4.4.4.4.3.4.2.1.cmml" xref="S3.E50.m1.4.4.4.4.4.4.3.4">subscript</csymbol><ci id="S3.E50.m1.4.4.4.4.4.4.3.4.2.2.cmml" xref="S3.E50.m1.4.4.4.4.4.4.3.4.2.2">𝜌</ci><ci id="S3.E50.m1.4.4.4.4.4.4.3.4.2.3.cmml" xref="S3.E50.m1.4.4.4.4.4.4.3.4.2.3">𝑅</ci></apply><cn id="S3.E50.m1.4.4.4.4.4.4.3.4.3.cmml" type="integer" xref="S3.E50.m1.4.4.4.4.4.4.3.4.3">2</cn></apply></apply></apply><apply id="S3.E50.m1.36.36.1.1.1.1.1.1.2.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><csymbol cd="latexml" id="S3.E50.m1.36.36.1.1.1.1.1.1.2.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2">delimited-[]</csymbol><apply id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><times id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.2.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"></times><apply id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.3.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><csymbol cd="ambiguous" id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.3.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2">subscript</csymbol><ci id="S3.E50.m1.6.6.6.6.6.6.cmml" xref="S3.E50.m1.6.6.6.6.6.6">𝜌</ci><ci id="S3.E50.m1.7.7.7.7.7.7.1.cmml" xref="S3.E50.m1.7.7.7.7.7.7.1">𝐿</ci></apply><apply id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.4.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><csymbol cd="ambiguous" id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.4.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2">subscript</csymbol><ci id="S3.E50.m1.8.8.8.8.8.8.cmml" xref="S3.E50.m1.8.8.8.8.8.8">𝜌</ci><ci id="S3.E50.m1.9.9.9.9.9.9.1.cmml" xref="S3.E50.m1.9.9.9.9.9.9.1">𝑅</ci></apply><apply id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><plus id="S3.E50.m1.19.19.19.19.19.19.cmml" xref="S3.E50.m1.19.19.19.19.19.19"></plus><apply id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><times id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"></times><apply id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><times id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"></times><apply id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><csymbol cd="ambiguous" id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2">subscript</csymbol><ci id="S3.E50.m1.12.12.12.12.12.12.cmml" xref="S3.E50.m1.12.12.12.12.12.12">𝜌</ci><ci id="S3.E50.m1.13.13.13.13.13.13.1.cmml" xref="S3.E50.m1.13.13.13.13.13.13.1">𝑅</ci></apply><apply id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><csymbol cd="ambiguous" id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2">subscript</csymbol><ci id="S3.E50.m1.14.14.14.14.14.14.cmml" xref="S3.E50.m1.14.14.14.14.14.14">𝑢</ci><ci id="S3.E50.m1.15.15.15.15.15.15.1.cmml" xref="S3.E50.m1.15.15.15.15.15.15.1">𝑅</ci></apply></apply><apply id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><csymbol cd="ambiguous" id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.1.3.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2">subscript</csymbol><ci id="S3.E50.m1.17.17.17.17.17.17.cmml" xref="S3.E50.m1.17.17.17.17.17.17">𝜌</ci><ci id="S3.E50.m1.18.18.18.18.18.18.1.cmml" xref="S3.E50.m1.18.18.18.18.18.18.1">𝐿</ci></apply></apply><apply id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><times id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.2.2.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"></times><apply id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><times id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.2.1.1.1.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"></times><apply id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><csymbol cd="ambiguous" id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2">subscript</csymbol><ci id="S3.E50.m1.21.21.21.21.21.21.cmml" xref="S3.E50.m1.21.21.21.21.21.21">𝜌</ci><ci id="S3.E50.m1.22.22.22.22.22.22.1.cmml" xref="S3.E50.m1.22.22.22.22.22.22.1">𝐿</ci></apply><apply id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><csymbol cd="ambiguous" id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2">subscript</csymbol><ci id="S3.E50.m1.23.23.23.23.23.23.cmml" xref="S3.E50.m1.23.23.23.23.23.23">𝑢</ci><ci id="S3.E50.m1.24.24.24.24.24.24.1.cmml" xref="S3.E50.m1.24.24.24.24.24.24.1">𝐿</ci></apply></apply><apply id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.2.3.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><csymbol cd="ambiguous" id="S3.E50.m1.36.36.1.1.1.1.1.1.1.1.1.1.1.2.3.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2">subscript</csymbol><ci id="S3.E50.m1.26.26.26.26.26.26.cmml" xref="S3.E50.m1.26.26.26.26.26.26">𝜌</ci><ci id="S3.E50.m1.27.27.27.27.27.27.1.cmml" xref="S3.E50.m1.27.27.27.27.27.27.1">𝑅</ci></apply></apply></apply></apply></apply></apply><apply id="S3.E50.m1.36.36.1.1.1.1.3.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><times id="S3.E50.m1.36.36.1.1.1.1.3.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"></times><apply id="S3.E50.m1.31.31.31.2.2.2.cmml" xref="S3.E50.m1.31.31.31.2.2.2"><divide id="S3.E50.m1.31.31.31.2.2.2.1.cmml" xref="S3.E50.m1.31.31.31.2.2.2"></divide><cn id="S3.E50.m1.31.31.31.2.2.2.2.cmml" type="integer" xref="S3.E50.m1.31.31.31.2.2.2.2">1</cn><apply id="S3.E50.m1.31.31.31.2.2.2.3.cmml" xref="S3.E50.m1.31.31.31.2.2.2.3"><times id="S3.E50.m1.31.31.31.2.2.2.3.1.cmml" xref="S3.E50.m1.31.31.31.2.2.2.3.1"></times><cn id="S3.E50.m1.31.31.31.2.2.2.3.2.cmml" type="integer" xref="S3.E50.m1.31.31.31.2.2.2.3.2">2</cn><apply id="S3.E50.m1.31.31.31.2.2.2.3.3.cmml" xref="S3.E50.m1.31.31.31.2.2.2.3.3"><csymbol cd="ambiguous" id="S3.E50.m1.31.31.31.2.2.2.3.3.1.cmml" xref="S3.E50.m1.31.31.31.2.2.2.3.3">superscript</csymbol><apply id="S3.E50.m1.31.31.31.2.2.2.3.3.2.cmml" xref="S3.E50.m1.31.31.31.2.2.2.3.3"><csymbol cd="ambiguous" id="S3.E50.m1.31.31.31.2.2.2.3.3.2.1.cmml" xref="S3.E50.m1.31.31.31.2.2.2.3.3">subscript</csymbol><ci id="S3.E50.m1.31.31.31.2.2.2.3.3.2.2.cmml" xref="S3.E50.m1.31.31.31.2.2.2.3.3.2.2">𝜌</ci><ci id="S3.E50.m1.31.31.31.2.2.2.3.3.2.3.cmml" xref="S3.E50.m1.31.31.31.2.2.2.3.3.2.3">𝐿</ci></apply><cn id="S3.E50.m1.31.31.31.2.2.2.3.3.3.cmml" type="integer" xref="S3.E50.m1.31.31.31.2.2.2.3.3.3">2</cn></apply><apply id="S3.E50.m1.31.31.31.2.2.2.3.4.cmml" xref="S3.E50.m1.31.31.31.2.2.2.3.4"><csymbol cd="ambiguous" id="S3.E50.m1.31.31.31.2.2.2.3.4.1.cmml" xref="S3.E50.m1.31.31.31.2.2.2.3.4">superscript</csymbol><apply id="S3.E50.m1.31.31.31.2.2.2.3.4.2.cmml" xref="S3.E50.m1.31.31.31.2.2.2.3.4"><csymbol cd="ambiguous" id="S3.E50.m1.31.31.31.2.2.2.3.4.2.1.cmml" xref="S3.E50.m1.31.31.31.2.2.2.3.4">subscript</csymbol><ci id="S3.E50.m1.31.31.31.2.2.2.3.4.2.2.cmml" xref="S3.E50.m1.31.31.31.2.2.2.3.4.2.2">𝜌</ci><ci id="S3.E50.m1.31.31.31.2.2.2.3.4.2.3.cmml" xref="S3.E50.m1.31.31.31.2.2.2.3.4.2.3">𝑅</ci></apply><cn id="S3.E50.m1.31.31.31.2.2.2.3.4.3.cmml" type="integer" xref="S3.E50.m1.31.31.31.2.2.2.3.4.3">2</cn></apply></apply></apply><apply id="S3.E50.m1.36.36.1.1.1.1.3.3.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2"><csymbol cd="latexml" id="S3.E50.m1.36.36.1.1.1.1.3.3.1.cmml" xref="S3.E50.m1.37.37.2.36.30.30.30.2">delimited-[]</csymbol><apply id="S3.E50.m1.33.33.33.4.4.4.cmml" xref="S3.E50.m1.33.33.33.4.4.4"><root id="S3.E50.m1.33.33.33.4.4.4a.cmml" xref="S3.E50.m1.33.33.33.4.4.4"></root><apply id="S3.E50.m1.33.33.33.4.4.4.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1"><plus id="S3.E50.m1.33.33.33.4.4.4.1.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.2"></plus><apply id="S3.E50.m1.33.33.33.4.4.4.1.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1"><minus id="S3.E50.m1.33.33.33.4.4.4.1.1.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1"></minus><apply id="S3.E50.m1.33.33.33.4.4.4.1.1.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1"><times id="S3.E50.m1.33.33.33.4.4.4.1.1.1.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.2"></times><apply id="S3.E50.m1.33.33.33.4.4.4.1.1.1.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.3"><csymbol cd="ambiguous" id="S3.E50.m1.33.33.33.4.4.4.1.1.1.3.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.3">superscript</csymbol><apply id="S3.E50.m1.33.33.33.4.4.4.1.1.1.3.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.3"><csymbol cd="ambiguous" id="S3.E50.m1.33.33.33.4.4.4.1.1.1.3.2.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.3">subscript</csymbol><ci id="S3.E50.m1.33.33.33.4.4.4.1.1.1.3.2.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.3.2.2">𝜌</ci><ci id="S3.E50.m1.33.33.33.4.4.4.1.1.1.3.2.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.3.2.3">𝐿</ci></apply><cn id="S3.E50.m1.33.33.33.4.4.4.1.1.1.3.3.cmml" type="integer" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.3.3">2</cn></apply><apply id="S3.E50.m1.33.33.33.4.4.4.1.1.1.4.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.4"><csymbol cd="ambiguous" id="S3.E50.m1.33.33.33.4.4.4.1.1.1.4.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.4">superscript</csymbol><apply id="S3.E50.m1.33.33.33.4.4.4.1.1.1.4.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.4"><csymbol cd="ambiguous" id="S3.E50.m1.33.33.33.4.4.4.1.1.1.4.2.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.4">subscript</csymbol><ci id="S3.E50.m1.33.33.33.4.4.4.1.1.1.4.2.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.4.2.2">𝜌</ci><ci id="S3.E50.m1.33.33.33.4.4.4.1.1.1.4.2.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.4.2.3">𝑅</ci></apply><cn id="S3.E50.m1.33.33.33.4.4.4.1.1.1.4.3.cmml" type="integer" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.4.3">2</cn></apply><apply id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1"><csymbol cd="ambiguous" id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1">superscript</csymbol><apply id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1"><minus id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.3"></minus><apply id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1"><times id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.2"></times><apply id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1"><times id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.1"></times><apply id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.2"><csymbol cd="ambiguous" id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.2.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.2">subscript</csymbol><ci id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.2.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.2.2">𝜌</ci><ci id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.2.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.2.3">𝑅</ci></apply><apply id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.3"><csymbol cd="ambiguous" id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.3.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.3">subscript</csymbol><ci id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.3.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.3.2">𝑢</ci><ci id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.3.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.1.1.1.3.3">𝑅</ci></apply></apply><apply id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.3"><csymbol cd="ambiguous" id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.3.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.3">subscript</csymbol><ci id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.3.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.3.2">𝜌</ci><ci id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.3.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.1.3.3">𝐿</ci></apply></apply><apply id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2"><times id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.2"></times><apply id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1"><times id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.1"></times><apply id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.2"><csymbol cd="ambiguous" id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.2.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.2">subscript</csymbol><ci id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.2.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.2.2">𝜌</ci><ci id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.2.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.2.3">𝐿</ci></apply><apply id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.3"><csymbol cd="ambiguous" id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.3.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.3">subscript</csymbol><ci id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.3.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.3.2">𝑢</ci><ci id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.3.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.1.1.1.3.3">𝐿</ci></apply></apply><apply id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.3"><csymbol cd="ambiguous" id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.3.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.3">subscript</csymbol><ci id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.3.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.3.2">𝜌</ci><ci id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.3.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.1.1.1.2.3.3">𝑅</ci></apply></apply></apply><cn id="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.3.cmml" type="integer" xref="S3.E50.m1.33.33.33.4.4.4.1.1.1.1.3">2</cn></apply></apply></apply><apply id="S3.E50.m1.33.33.33.4.4.4.1.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3"><times id="S3.E50.m1.33.33.33.4.4.4.1.3.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.1"></times><apply id="S3.E50.m1.33.33.33.4.4.4.1.3.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.2"><csymbol cd="ambiguous" id="S3.E50.m1.33.33.33.4.4.4.1.3.2.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.2">superscript</csymbol><apply id="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.2"><csymbol cd="ambiguous" id="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.2">subscript</csymbol><ci id="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.2">𝜌</ci><apply id="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.3"><times id="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.3.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.3.1"></times><ci id="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.3.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.3.2">"</ci><ci id="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.3.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.2.2.3.3">𝐿</ci></apply></apply><cn id="S3.E50.m1.33.33.33.4.4.4.1.3.2.3.cmml" type="integer" xref="S3.E50.m1.33.33.33.4.4.4.1.3.2.3">4</cn></apply><apply id="S3.E50.m1.33.33.33.4.4.4.1.3.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.3"><csymbol cd="ambiguous" id="S3.E50.m1.33.33.33.4.4.4.1.3.3.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.3">superscript</csymbol><apply id="S3.E50.m1.33.33.33.4.4.4.1.3.3.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.3"><csymbol cd="ambiguous" id="S3.E50.m1.33.33.33.4.4.4.1.3.3.2.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.3">subscript</csymbol><ci id="S3.E50.m1.33.33.33.4.4.4.1.3.3.2.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.3.2.2">𝜌</ci><ci id="S3.E50.m1.33.33.33.4.4.4.1.3.3.2.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.3.2.3">𝑅</ci></apply><cn id="S3.E50.m1.33.33.33.4.4.4.1.3.3.3.cmml" type="integer" xref="S3.E50.m1.33.33.33.4.4.4.1.3.3.3">4</cn></apply><apply id="S3.E50.m1.33.33.33.4.4.4.1.3.4.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.4"><csymbol cd="ambiguous" id="S3.E50.m1.33.33.33.4.4.4.1.3.4.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.4">superscript</csymbol><apply id="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.4"><csymbol cd="ambiguous" id="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.4">subscript</csymbol><ci id="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.2">𝑣</ci><apply id="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.3"><times id="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.3.1.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.3.1"></times><ci id="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.3.2.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.3.2">𝑡</ci><ci id="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.3.3.cmml" xref="S3.E50.m1.33.33.33.4.4.4.1.3.4.2.3.3">ℎ</ci></apply></apply><cn id="S3.E50.m1.33.33.33.4.4.4.1.3.4.3.cmml" type="integer" xref="S3.E50.m1.33.33.33.4.4.4.1.3.4.3">2</cn></apply></apply></apply></apply></apply></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.E50.m1.38c">\lambda_{\pm}=\frac{1}{2\rho_{L}^{2}\rho_{R}^{2}}\left[\rho_{L}\rho_{R}\left(% \left(\rho_{R}u_{R}\right)\rho_{L}+\left(\rho_{L}u_{L}\right)\rho_{R}\right)% \right]\\ \pm\frac{1}{2\rho_{L}^{2}\rho_{R}^{2}}\left[\sqrt{-\rho_{L}^{2}\rho_{R}^{2}% \left(\left(\rho_{R}u_{R}\right)\rho_{L}-\left(\rho_{L}u_{L}\right)\rho_{R}% \right)^{2}+\rho_{"L}^{4}\rho_{R}^{4}v_{th}^{2}}\right],</annotation><annotation encoding="application/x-llamapun" id="S3.E50.m1.38d">start_ROW start_CELL italic_λ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 italic_ρ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG [ italic_ρ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( ( italic_ρ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ) italic_ρ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT + ( italic_ρ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) italic_ρ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ) ] end_CELL end_ROW start_ROW start_CELL ± divide start_ARG 1 end_ARG start_ARG 2 italic_ρ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG [ square-root start_ARG - italic_ρ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( ( italic_ρ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ) italic_ρ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT - ( italic_ρ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) italic_ρ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_ρ start_POSTSUBSCRIPT " italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_t italic_h end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ] , end_CELL end_ROW</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S3.SS6.p4.1">are always real and distinct, which itself can only be true if the inequality:</p> </div> <div class="ltx_para" id="S3.SS6.p5"> <table class="ltx_equation ltx_eqn_table" id="S3.E51"> <tbody><tr class="ltx_equation ltx_eqn_row ltx_align_baseline"> <td class="ltx_eqn_cell ltx_eqn_eqno ltx_align_middle ltx_align_left" rowspan="1"><span class="ltx_tag ltx_tag_equation ltx_align_left">(51)</span></td> <td class="ltx_eqn_cell ltx_eqn_center_padleft"></td> <td class="ltx_eqn_cell ltx_align_center"><math alttext="4\rho_{L}^{4}\rho_{R}^{4}v_{th}^{2}\geq\rho_{L}^{2}\rho_{R}^{2}\left(\left(% \rho_{R}u_{R}\right)\rho_{L}-\left(\rho_{L}u_{L}\right)\rho_{R}\right)^{2}," class="ltx_Math" display="block" id="S3.E51.m1.1"><semantics id="S3.E51.m1.1a"><mrow id="S3.E51.m1.1.1.1" xref="S3.E51.m1.1.1.1.1.cmml"><mrow id="S3.E51.m1.1.1.1.1" xref="S3.E51.m1.1.1.1.1.cmml"><mrow id="S3.E51.m1.1.1.1.1.3" xref="S3.E51.m1.1.1.1.1.3.cmml"><mn id="S3.E51.m1.1.1.1.1.3.2" xref="S3.E51.m1.1.1.1.1.3.2.cmml">4</mn><mo id="S3.E51.m1.1.1.1.1.3.1" xref="S3.E51.m1.1.1.1.1.3.1.cmml"></mo><msubsup id="S3.E51.m1.1.1.1.1.3.3" xref="S3.E51.m1.1.1.1.1.3.3.cmml"><mi id="S3.E51.m1.1.1.1.1.3.3.2.2" xref="S3.E51.m1.1.1.1.1.3.3.2.2.cmml">ρ</mi><mi id="S3.E51.m1.1.1.1.1.3.3.2.3" xref="S3.E51.m1.1.1.1.1.3.3.2.3.cmml">L</mi><mn id="S3.E51.m1.1.1.1.1.3.3.3" xref="S3.E51.m1.1.1.1.1.3.3.3.cmml">4</mn></msubsup><mo id="S3.E51.m1.1.1.1.1.3.1a" xref="S3.E51.m1.1.1.1.1.3.1.cmml"></mo><msubsup id="S3.E51.m1.1.1.1.1.3.4" xref="S3.E51.m1.1.1.1.1.3.4.cmml"><mi id="S3.E51.m1.1.1.1.1.3.4.2.2" xref="S3.E51.m1.1.1.1.1.3.4.2.2.cmml">ρ</mi><mi id="S3.E51.m1.1.1.1.1.3.4.2.3" xref="S3.E51.m1.1.1.1.1.3.4.2.3.cmml">R</mi><mn id="S3.E51.m1.1.1.1.1.3.4.3" xref="S3.E51.m1.1.1.1.1.3.4.3.cmml">4</mn></msubsup><mo id="S3.E51.m1.1.1.1.1.3.1b" xref="S3.E51.m1.1.1.1.1.3.1.cmml"></mo><msubsup id="S3.E51.m1.1.1.1.1.3.5" xref="S3.E51.m1.1.1.1.1.3.5.cmml"><mi id="S3.E51.m1.1.1.1.1.3.5.2.2" xref="S3.E51.m1.1.1.1.1.3.5.2.2.cmml">v</mi><mrow id="S3.E51.m1.1.1.1.1.3.5.2.3" xref="S3.E51.m1.1.1.1.1.3.5.2.3.cmml"><mi id="S3.E51.m1.1.1.1.1.3.5.2.3.2" xref="S3.E51.m1.1.1.1.1.3.5.2.3.2.cmml">t</mi><mo id="S3.E51.m1.1.1.1.1.3.5.2.3.1" xref="S3.E51.m1.1.1.1.1.3.5.2.3.1.cmml"></mo><mi id="S3.E51.m1.1.1.1.1.3.5.2.3.3" xref="S3.E51.m1.1.1.1.1.3.5.2.3.3.cmml">h</mi></mrow><mn id="S3.E51.m1.1.1.1.1.3.5.3" xref="S3.E51.m1.1.1.1.1.3.5.3.cmml">2</mn></msubsup></mrow><mo id="S3.E51.m1.1.1.1.1.2" xref="S3.E51.m1.1.1.1.1.2.cmml">≥</mo><mrow id="S3.E51.m1.1.1.1.1.1" xref="S3.E51.m1.1.1.1.1.1.cmml"><msubsup id="S3.E51.m1.1.1.1.1.1.3" xref="S3.E51.m1.1.1.1.1.1.3.cmml"><mi id="S3.E51.m1.1.1.1.1.1.3.2.2" xref="S3.E51.m1.1.1.1.1.1.3.2.2.cmml">ρ</mi><mi id="S3.E51.m1.1.1.1.1.1.3.2.3" xref="S3.E51.m1.1.1.1.1.1.3.2.3.cmml">L</mi><mn id="S3.E51.m1.1.1.1.1.1.3.3" xref="S3.E51.m1.1.1.1.1.1.3.3.cmml">2</mn></msubsup><mo id="S3.E51.m1.1.1.1.1.1.2" xref="S3.E51.m1.1.1.1.1.1.2.cmml"></mo><msubsup id="S3.E51.m1.1.1.1.1.1.4" xref="S3.E51.m1.1.1.1.1.1.4.cmml"><mi id="S3.E51.m1.1.1.1.1.1.4.2.2" xref="S3.E51.m1.1.1.1.1.1.4.2.2.cmml">ρ</mi><mi id="S3.E51.m1.1.1.1.1.1.4.2.3" xref="S3.E51.m1.1.1.1.1.1.4.2.3.cmml">R</mi><mn id="S3.E51.m1.1.1.1.1.1.4.3" xref="S3.E51.m1.1.1.1.1.1.4.3.cmml">2</mn></msubsup><mo id="S3.E51.m1.1.1.1.1.1.2a" xref="S3.E51.m1.1.1.1.1.1.2.cmml"></mo><msup id="S3.E51.m1.1.1.1.1.1.1" xref="S3.E51.m1.1.1.1.1.1.1.cmml"><mrow id="S3.E51.m1.1.1.1.1.1.1.1.1" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.cmml"><mo id="S3.E51.m1.1.1.1.1.1.1.1.1.2" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.cmml">(</mo><mrow id="S3.E51.m1.1.1.1.1.1.1.1.1.1" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.cmml"><mrow id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.cmml"><mrow id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml"><mo id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.2" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml">(</mo><mrow id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml"><msub id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.cmml"><mi id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.cmml">ρ</mi><mi id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.cmml">R</mi></msub><mo id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.1" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml"></mo><msub id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.cmml"><mi id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.2" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.2.cmml">u</mi><mi id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.3" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.3.cmml">R</mi></msub></mrow><mo id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.3" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml">)</mo></mrow><mo id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.2" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.2.cmml"></mo><msub id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.3" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.3.cmml"><mi id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.3.2" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.3.2.cmml">ρ</mi><mi id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.3.3" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.3.3.cmml">L</mi></msub></mrow><mo id="S3.E51.m1.1.1.1.1.1.1.1.1.1.3" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.3.cmml">−</mo><mrow id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.cmml"><mrow id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml"><mo id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.2" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml">(</mo><mrow id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml"><msub id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.cmml"><mi id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2.cmml">ρ</mi><mi id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.cmml">L</mi></msub><mo id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.1" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.1.cmml"></mo><msub id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.cmml"><mi id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.2" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.2.cmml">u</mi><mi id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.3" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.3.cmml">L</mi></msub></mrow><mo id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.3" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml">)</mo></mrow><mo id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.2" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.2.cmml"></mo><msub id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.3" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.3.cmml"><mi id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.3.2" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.3.2.cmml">ρ</mi><mi id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.3.3" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.3.3.cmml">R</mi></msub></mrow></mrow><mo id="S3.E51.m1.1.1.1.1.1.1.1.1.3" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.cmml">)</mo></mrow><mn id="S3.E51.m1.1.1.1.1.1.1.3" xref="S3.E51.m1.1.1.1.1.1.1.3.cmml">2</mn></msup></mrow></mrow><mo id="S3.E51.m1.1.1.1.2" xref="S3.E51.m1.1.1.1.1.cmml">,</mo></mrow><annotation-xml encoding="MathML-Content" id="S3.E51.m1.1b"><apply id="S3.E51.m1.1.1.1.1.cmml" xref="S3.E51.m1.1.1.1"><geq id="S3.E51.m1.1.1.1.1.2.cmml" xref="S3.E51.m1.1.1.1.1.2"></geq><apply id="S3.E51.m1.1.1.1.1.3.cmml" xref="S3.E51.m1.1.1.1.1.3"><times id="S3.E51.m1.1.1.1.1.3.1.cmml" xref="S3.E51.m1.1.1.1.1.3.1"></times><cn id="S3.E51.m1.1.1.1.1.3.2.cmml" type="integer" xref="S3.E51.m1.1.1.1.1.3.2">4</cn><apply id="S3.E51.m1.1.1.1.1.3.3.cmml" xref="S3.E51.m1.1.1.1.1.3.3"><csymbol cd="ambiguous" id="S3.E51.m1.1.1.1.1.3.3.1.cmml" xref="S3.E51.m1.1.1.1.1.3.3">superscript</csymbol><apply id="S3.E51.m1.1.1.1.1.3.3.2.cmml" xref="S3.E51.m1.1.1.1.1.3.3"><csymbol cd="ambiguous" id="S3.E51.m1.1.1.1.1.3.3.2.1.cmml" xref="S3.E51.m1.1.1.1.1.3.3">subscript</csymbol><ci id="S3.E51.m1.1.1.1.1.3.3.2.2.cmml" xref="S3.E51.m1.1.1.1.1.3.3.2.2">𝜌</ci><ci id="S3.E51.m1.1.1.1.1.3.3.2.3.cmml" xref="S3.E51.m1.1.1.1.1.3.3.2.3">𝐿</ci></apply><cn id="S3.E51.m1.1.1.1.1.3.3.3.cmml" type="integer" xref="S3.E51.m1.1.1.1.1.3.3.3">4</cn></apply><apply id="S3.E51.m1.1.1.1.1.3.4.cmml" xref="S3.E51.m1.1.1.1.1.3.4"><csymbol cd="ambiguous" id="S3.E51.m1.1.1.1.1.3.4.1.cmml" xref="S3.E51.m1.1.1.1.1.3.4">superscript</csymbol><apply id="S3.E51.m1.1.1.1.1.3.4.2.cmml" xref="S3.E51.m1.1.1.1.1.3.4"><csymbol cd="ambiguous" id="S3.E51.m1.1.1.1.1.3.4.2.1.cmml" xref="S3.E51.m1.1.1.1.1.3.4">subscript</csymbol><ci id="S3.E51.m1.1.1.1.1.3.4.2.2.cmml" xref="S3.E51.m1.1.1.1.1.3.4.2.2">𝜌</ci><ci id="S3.E51.m1.1.1.1.1.3.4.2.3.cmml" xref="S3.E51.m1.1.1.1.1.3.4.2.3">𝑅</ci></apply><cn id="S3.E51.m1.1.1.1.1.3.4.3.cmml" type="integer" xref="S3.E51.m1.1.1.1.1.3.4.3">4</cn></apply><apply id="S3.E51.m1.1.1.1.1.3.5.cmml" xref="S3.E51.m1.1.1.1.1.3.5"><csymbol cd="ambiguous" id="S3.E51.m1.1.1.1.1.3.5.1.cmml" xref="S3.E51.m1.1.1.1.1.3.5">superscript</csymbol><apply id="S3.E51.m1.1.1.1.1.3.5.2.cmml" xref="S3.E51.m1.1.1.1.1.3.5"><csymbol cd="ambiguous" id="S3.E51.m1.1.1.1.1.3.5.2.1.cmml" xref="S3.E51.m1.1.1.1.1.3.5">subscript</csymbol><ci id="S3.E51.m1.1.1.1.1.3.5.2.2.cmml" xref="S3.E51.m1.1.1.1.1.3.5.2.2">𝑣</ci><apply id="S3.E51.m1.1.1.1.1.3.5.2.3.cmml" xref="S3.E51.m1.1.1.1.1.3.5.2.3"><times id="S3.E51.m1.1.1.1.1.3.5.2.3.1.cmml" xref="S3.E51.m1.1.1.1.1.3.5.2.3.1"></times><ci id="S3.E51.m1.1.1.1.1.3.5.2.3.2.cmml" xref="S3.E51.m1.1.1.1.1.3.5.2.3.2">𝑡</ci><ci id="S3.E51.m1.1.1.1.1.3.5.2.3.3.cmml" xref="S3.E51.m1.1.1.1.1.3.5.2.3.3">ℎ</ci></apply></apply><cn id="S3.E51.m1.1.1.1.1.3.5.3.cmml" type="integer" xref="S3.E51.m1.1.1.1.1.3.5.3">2</cn></apply></apply><apply id="S3.E51.m1.1.1.1.1.1.cmml" xref="S3.E51.m1.1.1.1.1.1"><times id="S3.E51.m1.1.1.1.1.1.2.cmml" xref="S3.E51.m1.1.1.1.1.1.2"></times><apply id="S3.E51.m1.1.1.1.1.1.3.cmml" xref="S3.E51.m1.1.1.1.1.1.3"><csymbol cd="ambiguous" id="S3.E51.m1.1.1.1.1.1.3.1.cmml" xref="S3.E51.m1.1.1.1.1.1.3">superscript</csymbol><apply id="S3.E51.m1.1.1.1.1.1.3.2.cmml" xref="S3.E51.m1.1.1.1.1.1.3"><csymbol cd="ambiguous" id="S3.E51.m1.1.1.1.1.1.3.2.1.cmml" xref="S3.E51.m1.1.1.1.1.1.3">subscript</csymbol><ci id="S3.E51.m1.1.1.1.1.1.3.2.2.cmml" xref="S3.E51.m1.1.1.1.1.1.3.2.2">𝜌</ci><ci id="S3.E51.m1.1.1.1.1.1.3.2.3.cmml" xref="S3.E51.m1.1.1.1.1.1.3.2.3">𝐿</ci></apply><cn id="S3.E51.m1.1.1.1.1.1.3.3.cmml" type="integer" xref="S3.E51.m1.1.1.1.1.1.3.3">2</cn></apply><apply id="S3.E51.m1.1.1.1.1.1.4.cmml" xref="S3.E51.m1.1.1.1.1.1.4"><csymbol cd="ambiguous" id="S3.E51.m1.1.1.1.1.1.4.1.cmml" xref="S3.E51.m1.1.1.1.1.1.4">superscript</csymbol><apply id="S3.E51.m1.1.1.1.1.1.4.2.cmml" xref="S3.E51.m1.1.1.1.1.1.4"><csymbol cd="ambiguous" id="S3.E51.m1.1.1.1.1.1.4.2.1.cmml" xref="S3.E51.m1.1.1.1.1.1.4">subscript</csymbol><ci id="S3.E51.m1.1.1.1.1.1.4.2.2.cmml" xref="S3.E51.m1.1.1.1.1.1.4.2.2">𝜌</ci><ci id="S3.E51.m1.1.1.1.1.1.4.2.3.cmml" xref="S3.E51.m1.1.1.1.1.1.4.2.3">𝑅</ci></apply><cn id="S3.E51.m1.1.1.1.1.1.4.3.cmml" type="integer" xref="S3.E51.m1.1.1.1.1.1.4.3">2</cn></apply><apply id="S3.E51.m1.1.1.1.1.1.1.cmml" xref="S3.E51.m1.1.1.1.1.1.1"><csymbol cd="ambiguous" id="S3.E51.m1.1.1.1.1.1.1.2.cmml" xref="S3.E51.m1.1.1.1.1.1.1">superscript</csymbol><apply id="S3.E51.m1.1.1.1.1.1.1.1.1.1.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1"><minus id="S3.E51.m1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.3"></minus><apply id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1"><times id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.2"></times><apply id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1"><times id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.1"></times><apply id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2"><csymbol cd="ambiguous" id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.1.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2">subscript</csymbol><ci id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2">𝜌</ci><ci id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.3">𝑅</ci></apply><apply id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3"><csymbol cd="ambiguous" id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.1.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3">subscript</csymbol><ci id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.2.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.2">𝑢</ci><ci id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.3.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.1.1.1.3.3">𝑅</ci></apply></apply><apply id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.3.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.3"><csymbol cd="ambiguous" id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.3.1.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.3">subscript</csymbol><ci id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.3.2.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.3.2">𝜌</ci><ci id="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.3.3.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.1.3.3">𝐿</ci></apply></apply><apply id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2"><times id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.2.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.2"></times><apply id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1"><times id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.1.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.1"></times><apply id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2"><csymbol cd="ambiguous" id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.1.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2">subscript</csymbol><ci id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.2">𝜌</ci><ci id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.2.3">𝐿</ci></apply><apply id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3"><csymbol cd="ambiguous" id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.1.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3">subscript</csymbol><ci id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.2.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.2">𝑢</ci><ci id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.3.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.1.1.1.3.3">𝐿</ci></apply></apply><apply id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.3.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.3"><csymbol cd="ambiguous" id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.3.1.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.3">subscript</csymbol><ci id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.3.2.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.3.2">𝜌</ci><ci id="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.3.3.cmml" xref="S3.E51.m1.1.1.1.1.1.1.1.1.1.2.3.3">𝑅</ci></apply></apply></apply><cn id="S3.E51.m1.1.1.1.1.1.1.3.cmml" type="integer" xref="S3.E51.m1.1.1.1.1.1.1.3">2</cn></apply></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.E51.m1.1c">4\rho_{L}^{4}\rho_{R}^{4}v_{th}^{2}\geq\rho_{L}^{2}\rho_{R}^{2}\left(\left(% \rho_{R}u_{R}\right)\rho_{L}-\left(\rho_{L}u_{L}\right)\rho_{R}\right)^{2},</annotation><annotation encoding="application/x-llamapun" id="S3.E51.m1.1d">4 italic_ρ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_t italic_h end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≥ italic_ρ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( ( italic_ρ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ) italic_ρ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT - ( italic_ρ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) italic_ρ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,</annotation></semantics></math></td> <td class="ltx_eqn_cell ltx_eqn_center_padright"></td> </tr></tbody> </table> <p class="ltx_p" id="S3.SS6.p5.15">is satisfied, where <math alttext="{\rho_{L}}" class="ltx_Math" display="inline" id="S3.SS6.p5.1.m1.1"><semantics id="S3.SS6.p5.1.m1.1a"><msub id="S3.SS6.p5.1.m1.1.1" xref="S3.SS6.p5.1.m1.1.1.cmml"><mi id="S3.SS6.p5.1.m1.1.1.2" xref="S3.SS6.p5.1.m1.1.1.2.cmml">ρ</mi><mi id="S3.SS6.p5.1.m1.1.1.3" xref="S3.SS6.p5.1.m1.1.1.3.cmml">L</mi></msub><annotation-xml encoding="MathML-Content" id="S3.SS6.p5.1.m1.1b"><apply id="S3.SS6.p5.1.m1.1.1.cmml" xref="S3.SS6.p5.1.m1.1.1"><csymbol cd="ambiguous" id="S3.SS6.p5.1.m1.1.1.1.cmml" xref="S3.SS6.p5.1.m1.1.1">subscript</csymbol><ci id="S3.SS6.p5.1.m1.1.1.2.cmml" xref="S3.SS6.p5.1.m1.1.1.2">𝜌</ci><ci id="S3.SS6.p5.1.m1.1.1.3.cmml" xref="S3.SS6.p5.1.m1.1.1.3">𝐿</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p5.1.m1.1c">{\rho_{L}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p5.1.m1.1d">italic_ρ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT</annotation></semantics></math>, <math alttext="{\rho_{L}u_{L}}" class="ltx_Math" display="inline" id="S3.SS6.p5.2.m2.1"><semantics id="S3.SS6.p5.2.m2.1a"><mrow id="S3.SS6.p5.2.m2.1.1" xref="S3.SS6.p5.2.m2.1.1.cmml"><msub id="S3.SS6.p5.2.m2.1.1.2" xref="S3.SS6.p5.2.m2.1.1.2.cmml"><mi id="S3.SS6.p5.2.m2.1.1.2.2" xref="S3.SS6.p5.2.m2.1.1.2.2.cmml">ρ</mi><mi id="S3.SS6.p5.2.m2.1.1.2.3" xref="S3.SS6.p5.2.m2.1.1.2.3.cmml">L</mi></msub><mo id="S3.SS6.p5.2.m2.1.1.1" xref="S3.SS6.p5.2.m2.1.1.1.cmml"></mo><msub id="S3.SS6.p5.2.m2.1.1.3" xref="S3.SS6.p5.2.m2.1.1.3.cmml"><mi id="S3.SS6.p5.2.m2.1.1.3.2" xref="S3.SS6.p5.2.m2.1.1.3.2.cmml">u</mi><mi id="S3.SS6.p5.2.m2.1.1.3.3" xref="S3.SS6.p5.2.m2.1.1.3.3.cmml">L</mi></msub></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p5.2.m2.1b"><apply id="S3.SS6.p5.2.m2.1.1.cmml" xref="S3.SS6.p5.2.m2.1.1"><times id="S3.SS6.p5.2.m2.1.1.1.cmml" xref="S3.SS6.p5.2.m2.1.1.1"></times><apply id="S3.SS6.p5.2.m2.1.1.2.cmml" xref="S3.SS6.p5.2.m2.1.1.2"><csymbol cd="ambiguous" id="S3.SS6.p5.2.m2.1.1.2.1.cmml" xref="S3.SS6.p5.2.m2.1.1.2">subscript</csymbol><ci id="S3.SS6.p5.2.m2.1.1.2.2.cmml" xref="S3.SS6.p5.2.m2.1.1.2.2">𝜌</ci><ci id="S3.SS6.p5.2.m2.1.1.2.3.cmml" xref="S3.SS6.p5.2.m2.1.1.2.3">𝐿</ci></apply><apply id="S3.SS6.p5.2.m2.1.1.3.cmml" xref="S3.SS6.p5.2.m2.1.1.3"><csymbol cd="ambiguous" id="S3.SS6.p5.2.m2.1.1.3.1.cmml" xref="S3.SS6.p5.2.m2.1.1.3">subscript</csymbol><ci id="S3.SS6.p5.2.m2.1.1.3.2.cmml" xref="S3.SS6.p5.2.m2.1.1.3.2">𝑢</ci><ci id="S3.SS6.p5.2.m2.1.1.3.3.cmml" xref="S3.SS6.p5.2.m2.1.1.3.3">𝐿</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p5.2.m2.1c">{\rho_{L}u_{L}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p5.2.m2.1d">italic_ρ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT</annotation></semantics></math> and <math alttext="{\rho_{R}}" class="ltx_Math" display="inline" id="S3.SS6.p5.3.m3.1"><semantics id="S3.SS6.p5.3.m3.1a"><msub id="S3.SS6.p5.3.m3.1.1" xref="S3.SS6.p5.3.m3.1.1.cmml"><mi id="S3.SS6.p5.3.m3.1.1.2" xref="S3.SS6.p5.3.m3.1.1.2.cmml">ρ</mi><mi id="S3.SS6.p5.3.m3.1.1.3" xref="S3.SS6.p5.3.m3.1.1.3.cmml">R</mi></msub><annotation-xml encoding="MathML-Content" id="S3.SS6.p5.3.m3.1b"><apply id="S3.SS6.p5.3.m3.1.1.cmml" xref="S3.SS6.p5.3.m3.1.1"><csymbol cd="ambiguous" id="S3.SS6.p5.3.m3.1.1.1.cmml" xref="S3.SS6.p5.3.m3.1.1">subscript</csymbol><ci id="S3.SS6.p5.3.m3.1.1.2.cmml" xref="S3.SS6.p5.3.m3.1.1.2">𝜌</ci><ci id="S3.SS6.p5.3.m3.1.1.3.cmml" xref="S3.SS6.p5.3.m3.1.1.3">𝑅</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p5.3.m3.1c">{\rho_{R}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p5.3.m3.1d">italic_ρ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT</annotation></semantics></math>, <math alttext="{\rho_{R}u_{R}}" class="ltx_Math" display="inline" id="S3.SS6.p5.4.m4.1"><semantics id="S3.SS6.p5.4.m4.1a"><mrow id="S3.SS6.p5.4.m4.1.1" xref="S3.SS6.p5.4.m4.1.1.cmml"><msub id="S3.SS6.p5.4.m4.1.1.2" xref="S3.SS6.p5.4.m4.1.1.2.cmml"><mi id="S3.SS6.p5.4.m4.1.1.2.2" xref="S3.SS6.p5.4.m4.1.1.2.2.cmml">ρ</mi><mi id="S3.SS6.p5.4.m4.1.1.2.3" xref="S3.SS6.p5.4.m4.1.1.2.3.cmml">R</mi></msub><mo id="S3.SS6.p5.4.m4.1.1.1" xref="S3.SS6.p5.4.m4.1.1.1.cmml"></mo><msub id="S3.SS6.p5.4.m4.1.1.3" xref="S3.SS6.p5.4.m4.1.1.3.cmml"><mi id="S3.SS6.p5.4.m4.1.1.3.2" xref="S3.SS6.p5.4.m4.1.1.3.2.cmml">u</mi><mi id="S3.SS6.p5.4.m4.1.1.3.3" xref="S3.SS6.p5.4.m4.1.1.3.3.cmml">R</mi></msub></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p5.4.m4.1b"><apply id="S3.SS6.p5.4.m4.1.1.cmml" xref="S3.SS6.p5.4.m4.1.1"><times id="S3.SS6.p5.4.m4.1.1.1.cmml" xref="S3.SS6.p5.4.m4.1.1.1"></times><apply id="S3.SS6.p5.4.m4.1.1.2.cmml" xref="S3.SS6.p5.4.m4.1.1.2"><csymbol cd="ambiguous" id="S3.SS6.p5.4.m4.1.1.2.1.cmml" xref="S3.SS6.p5.4.m4.1.1.2">subscript</csymbol><ci id="S3.SS6.p5.4.m4.1.1.2.2.cmml" xref="S3.SS6.p5.4.m4.1.1.2.2">𝜌</ci><ci id="S3.SS6.p5.4.m4.1.1.2.3.cmml" xref="S3.SS6.p5.4.m4.1.1.2.3">𝑅</ci></apply><apply id="S3.SS6.p5.4.m4.1.1.3.cmml" xref="S3.SS6.p5.4.m4.1.1.3"><csymbol cd="ambiguous" id="S3.SS6.p5.4.m4.1.1.3.1.cmml" xref="S3.SS6.p5.4.m4.1.1.3">subscript</csymbol><ci id="S3.SS6.p5.4.m4.1.1.3.2.cmml" xref="S3.SS6.p5.4.m4.1.1.3.2">𝑢</ci><ci id="S3.SS6.p5.4.m4.1.1.3.3.cmml" xref="S3.SS6.p5.4.m4.1.1.3.3">𝑅</ci></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p5.4.m4.1c">{\rho_{R}u_{R}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p5.4.m4.1d">italic_ρ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT</annotation></semantics></math> denote the fluid density <math alttext="{\rho}" class="ltx_Math" display="inline" id="S3.SS6.p5.5.m5.1"><semantics id="S3.SS6.p5.5.m5.1a"><mi id="S3.SS6.p5.5.m5.1.1" xref="S3.SS6.p5.5.m5.1.1.cmml">ρ</mi><annotation-xml encoding="MathML-Content" id="S3.SS6.p5.5.m5.1b"><ci id="S3.SS6.p5.5.m5.1.1.cmml" xref="S3.SS6.p5.5.m5.1.1">𝜌</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p5.5.m5.1c">{\rho}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p5.5.m5.1d">italic_ρ</annotation></semantics></math> and fluid momentum <math alttext="{\rho u}" class="ltx_Math" display="inline" id="S3.SS6.p5.6.m6.1"><semantics id="S3.SS6.p5.6.m6.1a"><mrow id="S3.SS6.p5.6.m6.1.1" xref="S3.SS6.p5.6.m6.1.1.cmml"><mi id="S3.SS6.p5.6.m6.1.1.2" xref="S3.SS6.p5.6.m6.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p5.6.m6.1.1.1" xref="S3.SS6.p5.6.m6.1.1.1.cmml"></mo><mi id="S3.SS6.p5.6.m6.1.1.3" xref="S3.SS6.p5.6.m6.1.1.3.cmml">u</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p5.6.m6.1b"><apply id="S3.SS6.p5.6.m6.1.1.cmml" xref="S3.SS6.p5.6.m6.1.1"><times id="S3.SS6.p5.6.m6.1.1.1.cmml" xref="S3.SS6.p5.6.m6.1.1.1"></times><ci id="S3.SS6.p5.6.m6.1.1.2.cmml" xref="S3.SS6.p5.6.m6.1.1.2">𝜌</ci><ci id="S3.SS6.p5.6.m6.1.1.3.cmml" xref="S3.SS6.p5.6.m6.1.1.3">𝑢</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p5.6.m6.1c">{\rho u}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p5.6.m6.1d">italic_ρ italic_u</annotation></semantics></math> within the left and right cells <math alttext="{x_{i}}" class="ltx_Math" display="inline" id="S3.SS6.p5.7.m7.1"><semantics id="S3.SS6.p5.7.m7.1a"><msub id="S3.SS6.p5.7.m7.1.1" xref="S3.SS6.p5.7.m7.1.1.cmml"><mi id="S3.SS6.p5.7.m7.1.1.2" xref="S3.SS6.p5.7.m7.1.1.2.cmml">x</mi><mi id="S3.SS6.p5.7.m7.1.1.3" xref="S3.SS6.p5.7.m7.1.1.3.cmml">i</mi></msub><annotation-xml encoding="MathML-Content" id="S3.SS6.p5.7.m7.1b"><apply id="S3.SS6.p5.7.m7.1.1.cmml" xref="S3.SS6.p5.7.m7.1.1"><csymbol cd="ambiguous" id="S3.SS6.p5.7.m7.1.1.1.cmml" xref="S3.SS6.p5.7.m7.1.1">subscript</csymbol><ci id="S3.SS6.p5.7.m7.1.1.2.cmml" xref="S3.SS6.p5.7.m7.1.1.2">𝑥</ci><ci id="S3.SS6.p5.7.m7.1.1.3.cmml" xref="S3.SS6.p5.7.m7.1.1.3">𝑖</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p5.7.m7.1c">{x_{i}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p5.7.m7.1d">italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT</annotation></semantics></math> and <math alttext="{x_{i+1}}" class="ltx_Math" display="inline" id="S3.SS6.p5.8.m8.1"><semantics id="S3.SS6.p5.8.m8.1a"><msub id="S3.SS6.p5.8.m8.1.1" xref="S3.SS6.p5.8.m8.1.1.cmml"><mi id="S3.SS6.p5.8.m8.1.1.2" xref="S3.SS6.p5.8.m8.1.1.2.cmml">x</mi><mrow id="S3.SS6.p5.8.m8.1.1.3" xref="S3.SS6.p5.8.m8.1.1.3.cmml"><mi id="S3.SS6.p5.8.m8.1.1.3.2" xref="S3.SS6.p5.8.m8.1.1.3.2.cmml">i</mi><mo id="S3.SS6.p5.8.m8.1.1.3.1" xref="S3.SS6.p5.8.m8.1.1.3.1.cmml">+</mo><mn id="S3.SS6.p5.8.m8.1.1.3.3" xref="S3.SS6.p5.8.m8.1.1.3.3.cmml">1</mn></mrow></msub><annotation-xml encoding="MathML-Content" id="S3.SS6.p5.8.m8.1b"><apply id="S3.SS6.p5.8.m8.1.1.cmml" xref="S3.SS6.p5.8.m8.1.1"><csymbol cd="ambiguous" id="S3.SS6.p5.8.m8.1.1.1.cmml" xref="S3.SS6.p5.8.m8.1.1">subscript</csymbol><ci id="S3.SS6.p5.8.m8.1.1.2.cmml" xref="S3.SS6.p5.8.m8.1.1.2">𝑥</ci><apply id="S3.SS6.p5.8.m8.1.1.3.cmml" xref="S3.SS6.p5.8.m8.1.1.3"><plus id="S3.SS6.p5.8.m8.1.1.3.1.cmml" xref="S3.SS6.p5.8.m8.1.1.3.1"></plus><ci id="S3.SS6.p5.8.m8.1.1.3.2.cmml" xref="S3.SS6.p5.8.m8.1.1.3.2">𝑖</ci><cn id="S3.SS6.p5.8.m8.1.1.3.3.cmml" type="integer" xref="S3.SS6.p5.8.m8.1.1.3.3">1</cn></apply></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p5.8.m8.1c">{x_{i+1}}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p5.8.m8.1d">italic_x start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT</annotation></semantics></math>, respectively. Therefore, once again, we find that the theorem-prover correctly determines that these properties cannot be guaranteed in the absence of some form of positivity restriction on the fluid density <math alttext="{\rho}" class="ltx_Math" display="inline" id="S3.SS6.p5.9.m9.1"><semantics id="S3.SS6.p5.9.m9.1a"><mi id="S3.SS6.p5.9.m9.1.1" xref="S3.SS6.p5.9.m9.1.1.cmml">ρ</mi><annotation-xml encoding="MathML-Content" id="S3.SS6.p5.9.m9.1b"><ci id="S3.SS6.p5.9.m9.1.1.cmml" xref="S3.SS6.p5.9.m9.1.1">𝜌</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p5.9.m9.1c">{\rho}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p5.9.m9.1d">italic_ρ</annotation></semantics></math>. Similarly, the presence of the repeated “<math alttext="u" class="ltx_Math" display="inline" id="S3.SS6.p5.10.m10.1"><semantics id="S3.SS6.p5.10.m10.1a"><mi id="S3.SS6.p5.10.m10.1.1" xref="S3.SS6.p5.10.m10.1.1.cmml">u</mi><annotation-xml encoding="MathML-Content" id="S3.SS6.p5.10.m10.1b"><ci id="S3.SS6.p5.10.m10.1.1.cmml" xref="S3.SS6.p5.10.m10.1.1">𝑢</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p5.10.m10.1c">u</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p5.10.m10.1d">italic_u</annotation></semantics></math>” eigenvalue within the Roe matrix <math alttext="{\mathbf{A}\left(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)}" class="ltx_Math" display="inline" id="S3.SS6.p5.11.m11.2"><semantics id="S3.SS6.p5.11.m11.2a"><mrow id="S3.SS6.p5.11.m11.2.2" xref="S3.SS6.p5.11.m11.2.2.cmml"><mi id="S3.SS6.p5.11.m11.2.2.4" xref="S3.SS6.p5.11.m11.2.2.4.cmml">𝐀</mi><mo id="S3.SS6.p5.11.m11.2.2.3" xref="S3.SS6.p5.11.m11.2.2.3.cmml"></mo><mrow id="S3.SS6.p5.11.m11.2.2.2.2" xref="S3.SS6.p5.11.m11.2.2.2.3.cmml"><mo id="S3.SS6.p5.11.m11.2.2.2.2.3" xref="S3.SS6.p5.11.m11.2.2.2.3.cmml">(</mo><msubsup id="S3.SS6.p5.11.m11.1.1.1.1.1" xref="S3.SS6.p5.11.m11.1.1.1.1.1.cmml"><mi id="S3.SS6.p5.11.m11.1.1.1.1.1.2.2" xref="S3.SS6.p5.11.m11.1.1.1.1.1.2.2.cmml">𝐔</mi><mi id="S3.SS6.p5.11.m11.1.1.1.1.1.2.3" xref="S3.SS6.p5.11.m11.1.1.1.1.1.2.3.cmml">i</mi><mi id="S3.SS6.p5.11.m11.1.1.1.1.1.3" xref="S3.SS6.p5.11.m11.1.1.1.1.1.3.cmml">n</mi></msubsup><mo id="S3.SS6.p5.11.m11.2.2.2.2.4" xref="S3.SS6.p5.11.m11.2.2.2.3.cmml">,</mo><msubsup id="S3.SS6.p5.11.m11.2.2.2.2.2" xref="S3.SS6.p5.11.m11.2.2.2.2.2.cmml"><mi id="S3.SS6.p5.11.m11.2.2.2.2.2.2.2" xref="S3.SS6.p5.11.m11.2.2.2.2.2.2.2.cmml">𝐔</mi><mrow id="S3.SS6.p5.11.m11.2.2.2.2.2.2.3" xref="S3.SS6.p5.11.m11.2.2.2.2.2.2.3.cmml"><mi id="S3.SS6.p5.11.m11.2.2.2.2.2.2.3.2" xref="S3.SS6.p5.11.m11.2.2.2.2.2.2.3.2.cmml">i</mi><mo id="S3.SS6.p5.11.m11.2.2.2.2.2.2.3.1" xref="S3.SS6.p5.11.m11.2.2.2.2.2.2.3.1.cmml">+</mo><mn id="S3.SS6.p5.11.m11.2.2.2.2.2.2.3.3" xref="S3.SS6.p5.11.m11.2.2.2.2.2.2.3.3.cmml">1</mn></mrow><mi id="S3.SS6.p5.11.m11.2.2.2.2.2.3" xref="S3.SS6.p5.11.m11.2.2.2.2.2.3.cmml">n</mi></msubsup><mo id="S3.SS6.p5.11.m11.2.2.2.2.5" xref="S3.SS6.p5.11.m11.2.2.2.3.cmml">)</mo></mrow></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p5.11.m11.2b"><apply id="S3.SS6.p5.11.m11.2.2.cmml" xref="S3.SS6.p5.11.m11.2.2"><times id="S3.SS6.p5.11.m11.2.2.3.cmml" xref="S3.SS6.p5.11.m11.2.2.3"></times><ci id="S3.SS6.p5.11.m11.2.2.4.cmml" xref="S3.SS6.p5.11.m11.2.2.4">𝐀</ci><interval closure="open" id="S3.SS6.p5.11.m11.2.2.2.3.cmml" xref="S3.SS6.p5.11.m11.2.2.2.2"><apply id="S3.SS6.p5.11.m11.1.1.1.1.1.cmml" xref="S3.SS6.p5.11.m11.1.1.1.1.1"><csymbol cd="ambiguous" id="S3.SS6.p5.11.m11.1.1.1.1.1.1.cmml" xref="S3.SS6.p5.11.m11.1.1.1.1.1">superscript</csymbol><apply id="S3.SS6.p5.11.m11.1.1.1.1.1.2.cmml" xref="S3.SS6.p5.11.m11.1.1.1.1.1"><csymbol cd="ambiguous" id="S3.SS6.p5.11.m11.1.1.1.1.1.2.1.cmml" xref="S3.SS6.p5.11.m11.1.1.1.1.1">subscript</csymbol><ci id="S3.SS6.p5.11.m11.1.1.1.1.1.2.2.cmml" xref="S3.SS6.p5.11.m11.1.1.1.1.1.2.2">𝐔</ci><ci id="S3.SS6.p5.11.m11.1.1.1.1.1.2.3.cmml" xref="S3.SS6.p5.11.m11.1.1.1.1.1.2.3">𝑖</ci></apply><ci id="S3.SS6.p5.11.m11.1.1.1.1.1.3.cmml" xref="S3.SS6.p5.11.m11.1.1.1.1.1.3">𝑛</ci></apply><apply id="S3.SS6.p5.11.m11.2.2.2.2.2.cmml" xref="S3.SS6.p5.11.m11.2.2.2.2.2"><csymbol cd="ambiguous" id="S3.SS6.p5.11.m11.2.2.2.2.2.1.cmml" xref="S3.SS6.p5.11.m11.2.2.2.2.2">superscript</csymbol><apply id="S3.SS6.p5.11.m11.2.2.2.2.2.2.cmml" xref="S3.SS6.p5.11.m11.2.2.2.2.2"><csymbol cd="ambiguous" id="S3.SS6.p5.11.m11.2.2.2.2.2.2.1.cmml" xref="S3.SS6.p5.11.m11.2.2.2.2.2">subscript</csymbol><ci id="S3.SS6.p5.11.m11.2.2.2.2.2.2.2.cmml" xref="S3.SS6.p5.11.m11.2.2.2.2.2.2.2">𝐔</ci><apply id="S3.SS6.p5.11.m11.2.2.2.2.2.2.3.cmml" xref="S3.SS6.p5.11.m11.2.2.2.2.2.2.3"><plus id="S3.SS6.p5.11.m11.2.2.2.2.2.2.3.1.cmml" xref="S3.SS6.p5.11.m11.2.2.2.2.2.2.3.1"></plus><ci id="S3.SS6.p5.11.m11.2.2.2.2.2.2.3.2.cmml" xref="S3.SS6.p5.11.m11.2.2.2.2.2.2.3.2">𝑖</ci><cn id="S3.SS6.p5.11.m11.2.2.2.2.2.2.3.3.cmml" type="integer" xref="S3.SS6.p5.11.m11.2.2.2.2.2.2.3.3">1</cn></apply></apply><ci id="S3.SS6.p5.11.m11.2.2.2.2.2.3.cmml" xref="S3.SS6.p5.11.m11.2.2.2.2.2.3">𝑛</ci></apply></interval></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p5.11.m11.2c">{\mathbf{A}\left(\mathbf{U}_{i}^{n},\mathbf{U}_{i+1}^{n}\right)}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p5.11.m11.2d">bold_A ( bold_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , bold_U start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT )</annotation></semantics></math> for the <math alttext="{\rho v}" class="ltx_Math" display="inline" id="S3.SS6.p5.12.m12.1"><semantics id="S3.SS6.p5.12.m12.1a"><mrow id="S3.SS6.p5.12.m12.1.1" xref="S3.SS6.p5.12.m12.1.1.cmml"><mi id="S3.SS6.p5.12.m12.1.1.2" xref="S3.SS6.p5.12.m12.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p5.12.m12.1.1.1" xref="S3.SS6.p5.12.m12.1.1.1.cmml"></mo><mi id="S3.SS6.p5.12.m12.1.1.3" xref="S3.SS6.p5.12.m12.1.1.3.cmml">v</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p5.12.m12.1b"><apply id="S3.SS6.p5.12.m12.1.1.cmml" xref="S3.SS6.p5.12.m12.1.1"><times id="S3.SS6.p5.12.m12.1.1.1.cmml" xref="S3.SS6.p5.12.m12.1.1.1"></times><ci id="S3.SS6.p5.12.m12.1.1.2.cmml" xref="S3.SS6.p5.12.m12.1.1.2">𝜌</ci><ci id="S3.SS6.p5.12.m12.1.1.3.cmml" xref="S3.SS6.p5.12.m12.1.1.3">𝑣</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p5.12.m12.1c">{\rho v}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p5.12.m12.1d">italic_ρ italic_v</annotation></semantics></math> and <math alttext="{\rho w}" class="ltx_Math" display="inline" id="S3.SS6.p5.13.m13.1"><semantics id="S3.SS6.p5.13.m13.1a"><mrow id="S3.SS6.p5.13.m13.1.1" xref="S3.SS6.p5.13.m13.1.1.cmml"><mi id="S3.SS6.p5.13.m13.1.1.2" xref="S3.SS6.p5.13.m13.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p5.13.m13.1.1.1" xref="S3.SS6.p5.13.m13.1.1.1.cmml"></mo><mi id="S3.SS6.p5.13.m13.1.1.3" xref="S3.SS6.p5.13.m13.1.1.3.cmml">w</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p5.13.m13.1b"><apply id="S3.SS6.p5.13.m13.1.1.cmml" xref="S3.SS6.p5.13.m13.1.1"><times id="S3.SS6.p5.13.m13.1.1.1.cmml" xref="S3.SS6.p5.13.m13.1.1.1"></times><ci id="S3.SS6.p5.13.m13.1.1.2.cmml" xref="S3.SS6.p5.13.m13.1.1.2">𝜌</ci><ci id="S3.SS6.p5.13.m13.1.1.3.cmml" xref="S3.SS6.p5.13.m13.1.1.3">𝑤</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p5.13.m13.1c">{\rho w}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p5.13.m13.1d">italic_ρ italic_w</annotation></semantics></math> components implies that strict hyperbolicity-preservation does not hold here either. Hence, we see that the only property for which the theorem-prover truly <span class="ltx_text ltx_font_italic" id="S3.SS6.p5.15.1">fails</span> (i.e. where it does not succeed in finding a proof for a statement which is unconditionally true) is the flux conservation/jump continuity condition for the Roe solver for the <math alttext="{\rho}" class="ltx_Math" display="inline" id="S3.SS6.p5.14.m14.1"><semantics id="S3.SS6.p5.14.m14.1a"><mi id="S3.SS6.p5.14.m14.1.1" xref="S3.SS6.p5.14.m14.1.1.cmml">ρ</mi><annotation-xml encoding="MathML-Content" id="S3.SS6.p5.14.m14.1b"><ci id="S3.SS6.p5.14.m14.1.1.cmml" xref="S3.SS6.p5.14.m14.1.1">𝜌</ci></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p5.14.m14.1c">{\rho}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p5.14.m14.1d">italic_ρ</annotation></semantics></math> and <math alttext="{\rho u}" class="ltx_Math" display="inline" id="S3.SS6.p5.15.m15.1"><semantics id="S3.SS6.p5.15.m15.1a"><mrow id="S3.SS6.p5.15.m15.1.1" xref="S3.SS6.p5.15.m15.1.1.cmml"><mi id="S3.SS6.p5.15.m15.1.1.2" xref="S3.SS6.p5.15.m15.1.1.2.cmml">ρ</mi><mo id="S3.SS6.p5.15.m15.1.1.1" xref="S3.SS6.p5.15.m15.1.1.1.cmml"></mo><mi id="S3.SS6.p5.15.m15.1.1.3" xref="S3.SS6.p5.15.m15.1.1.3.cmml">u</mi></mrow><annotation-xml encoding="MathML-Content" id="S3.SS6.p5.15.m15.1b"><apply id="S3.SS6.p5.15.m15.1.1.cmml" xref="S3.SS6.p5.15.m15.1.1"><times id="S3.SS6.p5.15.m15.1.1.1.cmml" xref="S3.SS6.p5.15.m15.1.1.1"></times><ci id="S3.SS6.p5.15.m15.1.1.2.cmml" xref="S3.SS6.p5.15.m15.1.1.2">𝜌</ci><ci id="S3.SS6.p5.15.m15.1.1.3.cmml" xref="S3.SS6.p5.15.m15.1.1.3">𝑢</ci></apply></annotation-xml><annotation encoding="application/x-tex" id="S3.SS6.p5.15.m15.1c">{\rho u}</annotation><annotation encoding="application/x-llamapun" id="S3.SS6.p5.15.m15.1d">italic_ρ italic_u</annotation></semantics></math> components.</p> </div> <div class="ltx_para" id="S3.SS6.p6"> <p class="ltx_p" id="S3.SS6.p6.1">For the minmod and monotonized-centered flux limiters, the symmetry and second-order TVD properties can both be proved directly and unproblematically, as shown in Table <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#S3.T5" title="Table 5 ‣ 3.6. Results ‣ 3. Methodology and Results ‣ Shock with Confidence: Formal Proofs of Correctness for Hyperbolic Partial Differential Equation Solvers"><span class="ltx_text ltx_ref_tag">5</span></a>. However, we see that the theorem-prover fails to find valid proofs for the symmetry property of the superbee limiter, and the second-order TVD property of the van Leer limiter. As in the case of the flux conservation condition for the isothermal Euler Roe solver, this is due entirely to present algebraic limitations of the simplification algorithm (since these properties certainly do hold, unconditionally, in the case of these limiters); these limitations can presumably be circumvented via the judicious introduction of stronger symbolic simplification rules into <span class="ltx_text ltx_lst_language_Scheme ltx_lstlisting" id="S3.SS6.p6.1.1"><span class="ltx_text ltx_lst_identifier ltx_font_typewriter" id="S3.SS6.p6.1.1.1" style="font-size:90%;">symbolic</span><span class="ltx_text ltx_font_typewriter" id="S3.SS6.p6.1.1.2" style="font-size:90%;">-<span class="ltx_text ltx_lst_identifier" id="S3.SS6.p6.1.1.2.1">simp</span>-<span class="ltx_text ltx_lst_identifier" id="S3.SS6.p6.1.1.2.2">rule</span></span></span> and related functions.</p> </div> </section> </section> <section class="ltx_section" id="S4"> <h2 class="ltx_title ltx_title_section"> <span class="ltx_tag ltx_tag_section">4. </span>Conclusions and Future Work</h2> <div class="ltx_para" id="S4.p1"> <p class="ltx_p" id="S4.p1.1">In this paper, we have introduced a new formal verification pipeline in Racket for first-order hyperbolic PDE solvers, with a particular emphasis upon finite volume, high-resolution shock-capturing methods. Although the resulting automated theorem-proving framework still exhibits some notable limitations, we see that it is nevertheless able to produce full proofs of correctness for several linear and non-linear hyperbolic PDE solvers (with both first- and second-order spatial accuracy), and to produce conditional/partial proofs of correctness for others. These general correctness results encompass both mathematical (e.g. hyperbolicity-preservation) and physical (e.g. thermodynamic validity) notions of correctness. At present, this pipeline constitutes around 15,000 lines of Racket in total, although the vast majority of this is boilerplate for the purposes of synthesizing functionally complete C code (both in the standalone case, and for integration into the <span class="ltx_text ltx_font_smallcaps" id="S4.p1.1.1">Gkeyll</span> codebase, which includes automatic synthesis of header files, regression tests, etc.): the core theorem-proving, automatic differentiation, and symbolic limit evaluation routines fit within just a few hundred lines of Racket each, and it is likely that these can all be optimized further. We consider this work to be a successful proof-of-concept, representing a solid foundation upon which further such verification pipelines may be built, expanding into a wider variety of numerical solvers, equation systems, reconstruction algorithms, and discretization schemes.</p> </div> <div class="ltx_para" id="S4.p2"> <p class="ltx_p" id="S4.p2.1">In addition to reinforcing the weak points in the existing theorem-prover, such as adding new and more powerful rewriting rules (for instance, those needed to complete the proofs of correctness for the superbee and van Leer flux limiters) and introducing more systematic techniques for proving conditional results (such as those needed to complete the formalization of the conditional correctness proofs for the isothermal Euler solvers), we intend to expand this overall framework in several key directions. One such direction involves introducing formal verification tools for ordinary differential equation (ODE) integrators too, including the kinds of both explicit (e.g. strong stability-preserving Runge-Kutta<cite class="ltx_cite ltx_citemacro_citep">(Gottlieb et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib12" title="">2001</a>)</cite>) and implicit (e.g. time-centered Crank-Nicolson) ODE integrators used within the <span class="ltx_text ltx_font_smallcaps" id="S4.p2.1.1">Gkeyll</span> code, for instance when coupling hydrodynamic and electromagnetic PDE systems together<cite class="ltx_cite ltx_citemacro_citep">(Wang et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib37" title="">2020</a>)</cite> or handling geometric source terms in general relativity<cite class="ltx_cite ltx_citemacro_citep">(Gorard et al<span class="ltx_text">.</span>, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib11" title="">2024</a>)</cite>. Being able to automate the deduction of properties such as absolute stability regions for explicit Runge-Kutta integrators would, in itself, be an important and highly useful advance. Another major frontier of expansion would be the formalization of the kinds of modal discontinuous Galerkin (DG) algorithms used for solving kinetic equations within codes such as <span class="ltx_text ltx_font_smallcaps" id="S4.p2.1.2">Gkeyll<cite class="ltx_cite ltx_citemacro_citep"><span class="ltx_text ltx_font_upright" id="S4.p2.1.2.1.1">(</span>Juno et al<span class="ltx_text">.</span><span class="ltx_text ltx_font_upright" id="S4.p2.1.2.2.2.1.1">, </span><a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib19" title="">2018</a><span class="ltx_text ltx_font_upright" id="S4.p2.1.2.3.3">)</span></cite></span>, for which properties like <math alttext="{L^{2}}" class="ltx_Math" display="inline" id="S4.p2.1.m1.1"><semantics id="S4.p2.1.m1.1a"><msup id="S4.p2.1.m1.1.1" xref="S4.p2.1.m1.1.1.cmml"><mi id="S4.p2.1.m1.1.1.2" xref="S4.p2.1.m1.1.1.2.cmml">L</mi><mn id="S4.p2.1.m1.1.1.3" xref="S4.p2.1.m1.1.1.3.cmml">2</mn></msup><annotation-xml encoding="MathML-Content" id="S4.p2.1.m1.1b"><apply id="S4.p2.1.m1.1.1.cmml" xref="S4.p2.1.m1.1.1"><csymbol cd="ambiguous" id="S4.p2.1.m1.1.1.1.cmml" xref="S4.p2.1.m1.1.1">superscript</csymbol><ci id="S4.p2.1.m1.1.1.2.cmml" xref="S4.p2.1.m1.1.1.2">𝐿</ci><cn id="S4.p2.1.m1.1.1.3.cmml" type="integer" xref="S4.p2.1.m1.1.1.3">2</cn></apply></annotation-xml><annotation encoding="application/x-tex" id="S4.p2.1.m1.1c">{L^{2}}</annotation><annotation encoding="application/x-llamapun" id="S4.p2.1.m1.1d">italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT</annotation></semantics></math> stability and entropy convexity are significantly more subtle and fragile than they are in the case of finite volume solvers, depending sensitively upon particular choices of basis functions<cite class="ltx_cite ltx_citemacro_citep">(Juno, <a class="ltx_ref" href="https://arxiv.org/html/2503.13877v1#bib.bib18" title="">2020</a>)</cite>, etc. Overall, it is hoped that the construction of <span class="ltx_text ltx_font_italic" id="S4.p2.1.3">formally verified simulations</span>, of the kind described here, will become an increasingly pervasive methodology throughout scientific computing in general, and within computational physics in particular.</p> </div> <div class="ltx_pagination ltx_role_newpage"></div> <div class="ltx_acknowledgements"> <h6 class="ltx_title ltx_title_acknowledgements">Acknowledgements.</h6> J.G. was partially funded by the Princeton University Research Computing group. J.G. and A.H. were partially funded by the U.S. Department of Energy under Contract No. DE-AC02-09CH1146 via an LDRD grant. The development of <span class="ltx_text ltx_font_smallcaps" id="S4.1.1">Gkeyll</span> was partially funded by the NSF-CSSI program, Award Number 2209471. J.G. thanks Nikola Bukowiecka for her proofreading and suggestions. </div> </section> <section class="ltx_bibliography" id="bib"> <h2 class="ltx_title ltx_title_bibliography">References</h2> <ul class="ltx_biblist"> <li class="ltx_bibitem" id="bib.bib1"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">(1)</span> <span class="ltx_bibblock"> </span> </li> <li class="ltx_bibitem" id="bib.bib2"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Auger and Plagnol (2017)</span> <span class="ltx_bibblock"> Gerard Auger and Eric Plagnol. 2017. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib2.1.1">An overview of gravitational waves: theory, sources and detection</em>. </span> <span class="ltx_bibblock">World scientific, New Jersey. </span> <span class="ltx_bibblock"> </span> </li> <li class="ltx_bibitem" id="bib.bib3"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Baader and Nipkow (1999)</span> <span class="ltx_bibblock"> Franz Baader and Tobias Nipkow. 1999. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib3.1.1">Term rewriting and all that</em> (1st paperback edition ed.). </span> <span class="ltx_bibblock">Cambridge University Press, Cambridge New York Melbourne Madrid Cape Town. </span> <span class="ltx_bibblock"> </span> </li> <li class="ltx_bibitem" id="bib.bib4"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Bläsius and Bürckert (1992)</span> <span class="ltx_bibblock"> Karl Hans Bläsius and Hans-Jürgen Bürckert (Eds.). 1992. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib4.1.1">Deduktionssysteme: Automatisierung des logischen Denkens</em> (2., völlig überarbeitete und erweiterte auflage ed.). </span> <span class="ltx_bibblock">Oldenbourg, München Wien. </span> <span class="ltx_bibblock"> </span> </li> <li class="ltx_bibitem" id="bib.bib5"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Breuß (2004)</span> <span class="ltx_bibblock"> Michael Breuß. 2004. </span> <span class="ltx_bibblock">The correct use of the Lax–Friedrichs method. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib5.1.1">ESAIM: Mathematical Modelling and Numerical Analysis</em> 38, 3 (May 2004), 519–540. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1051/m2an:2004027" title="">doi:<span class="ltx_ref ltx_nolink">10.1051/m2an:2004027</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib6"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Courant et al<span class="ltx_text" id="bib.bib6.2.2.1">.</span> (1967)</span> <span class="ltx_bibblock"> R. Courant, K. Friedrichs, and H. Lewy. 1967. </span> <span class="ltx_bibblock">On the Partial Difference Equations of Mathematical Physics. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib6.3.1">IBM Journal of Research and Development</em> 11, 2 (March 1967), 215–234. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1147/rd.112.0215" title="">doi:<span class="ltx_ref ltx_nolink">10.1147/rd.112.0215</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib7"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Felleisen et al<span class="ltx_text" id="bib.bib7.2.2.1">.</span> (2015)</span> <span class="ltx_bibblock"> Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. 2015. </span> <span class="ltx_bibblock">The Racket Manifesto. In <em class="ltx_emph ltx_font_italic" id="bib.bib7.3.1">1st Summit on Advances in Programming Languages (SNAPL 2015)</em> <em class="ltx_emph ltx_font_italic" id="bib.bib7.4.2">(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 32)</em>, Thomas Ball, Rastislav Bodik, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morriset (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 113–128. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.4230/LIPIcs.SNAPL.2015.113" title="">doi:<span class="ltx_ref ltx_nolink">10.4230/LIPIcs.SNAPL.2015.113</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib8"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Fickett (1985)</span> <span class="ltx_bibblock"> Wildon Fickett. 1985. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib8.1.1">Introduction to detonation theory</em>. </span> <span class="ltx_bibblock">Univ. of California Pr, Berkeley. </span> <span class="ltx_bibblock"> </span> </li> <li class="ltx_bibitem" id="bib.bib9"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Goldberg (1991)</span> <span class="ltx_bibblock"> David Goldberg. 1991. </span> <span class="ltx_bibblock">What every computer scientist should know about floating-point arithmetic. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib9.1.1">Comput. Surveys</em> 23, 1 (March 1991), 5–48. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1145/103162.103163" title="">doi:<span class="ltx_ref ltx_nolink">10.1145/103162.103163</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib10"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Gorard (2024)</span> <span class="ltx_bibblock"> Jonathan Gorard. 2024. </span> <span class="ltx_bibblock">Computational General Relativity in the Wolfram Language using Gravitas II: ADM Formalism and Numerical Relativity. </span> <span class="ltx_bibblock">arXiv:2401.14209 [gr-qc] <a class="ltx_ref ltx_url ltx_font_typewriter" href="https://arxiv.org/abs/2401.14209" title="">https://arxiv.org/abs/2401.14209</a> </span> </li> <li class="ltx_bibitem" id="bib.bib11"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Gorard et al<span class="ltx_text" id="bib.bib11.2.2.1">.</span> (2024)</span> <span class="ltx_bibblock"> Jonathan Gorard, Ammar Hakim, James Juno, and Jason M. TenBarge. 2024. </span> <span class="ltx_bibblock">A Tetrad-First Approach to Robust Numerical Algorithms in General Relativity. </span> <span class="ltx_bibblock">arXiv:2410.02549 [gr-qc] <a class="ltx_ref ltx_url ltx_font_typewriter" href="https://arxiv.org/abs/2410.02549" title="">https://arxiv.org/abs/2410.02549</a> </span> </li> <li class="ltx_bibitem" id="bib.bib12"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Gottlieb et al<span class="ltx_text" id="bib.bib12.2.2.1">.</span> (2001)</span> <span class="ltx_bibblock"> Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor. 2001. </span> <span class="ltx_bibblock">Strong Stability-Preserving High-Order Time Discretization Methods. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib12.3.1">SIAM Rev.</em> 43, 1 (Jan. 2001), 89–112. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1137/S003614450036757X" title="">doi:<span class="ltx_ref ltx_nolink">10.1137/S003614450036757X</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib13"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Hakim et al<span class="ltx_text" id="bib.bib13.2.2.1">.</span> (2006)</span> <span class="ltx_bibblock"> A. Hakim, J. Loverich, and U. Shumlak. 2006. </span> <span class="ltx_bibblock">A high resolution wave propagation scheme for ideal Two-Fluid plasma equations. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib13.3.1">J. Comput. Phys.</em> 219, 1 (Nov. 2006), 418–442. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1016/j.jcp.2006.03.036" title="">doi:<span class="ltx_ref ltx_nolink">10.1016/j.jcp.2006.03.036</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib14"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Harten (1983)</span> <span class="ltx_bibblock"> Ami Harten. 1983. </span> <span class="ltx_bibblock">High resolution schemes for hyperbolic conservation laws. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib14.1.1">J. Comput. Phys.</em> 49, 3 (March 1983), 357–393. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1016/0021-9991(83)90136-5" title="">doi:<span class="ltx_ref ltx_nolink">10.1016/0021-9991(83)90136-5</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib15"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Harten et al<span class="ltx_text" id="bib.bib15.2.2.1">.</span> (1976)</span> <span class="ltx_bibblock"> A. Harten, J. M. Hyman, P. D. Lax, and B. Keyfitz. 1976. </span> <span class="ltx_bibblock">On finite‐difference approximations and entropy conditions for shocks. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib15.3.1">Communications on Pure and Applied Mathematics</em> 29, 3 (May 1976), 297–322. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1002/cpa.3160290305" title="">doi:<span class="ltx_ref ltx_nolink">10.1002/cpa.3160290305</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib16"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Hartman (1960)</span> <span class="ltx_bibblock"> Philip Hartman. 1960. </span> <span class="ltx_bibblock">A lemma in the theory of structural stability of differential equations. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib16.1.1">Proc. Amer. Math. Soc.</em> 11, 4 (Aug. 1960), 610–620. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1090/S0002-9939-1960-0121542-7" title="">doi:<span class="ltx_ref ltx_nolink">10.1090/S0002-9939-1960-0121542-7</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib17"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">IEEE Computer Society et al<span class="ltx_text" id="bib.bib17.2.2.1">.</span> (2008)</span> <span class="ltx_bibblock"> IEEE Computer Society, Institute of Electrical and Electronics Engineers, and IEEE-SA Standards Board (Eds.). 2008. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib17.3.1">IEEE standard for floating-point arithmetic</em>. </span> <span class="ltx_bibblock">Institute of Electrical and Electronics Engineers, New York, NY. </span> <span class="ltx_bibblock"> </span> </li> <li class="ltx_bibitem" id="bib.bib18"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Juno (2020)</span> <span class="ltx_bibblock"> James Juno. 2020. </span> <span class="ltx_bibblock">A Deep Dive into the Distribution Function: Understanding Phase Space Dynamics with Continuum Vlasov-Maxwell Simulations. </span> <span class="ltx_bibblock">arXiv:2005.13539 [physics.plasm-ph] <a class="ltx_ref ltx_url ltx_font_typewriter" href="https://arxiv.org/abs/2005.13539" title="">https://arxiv.org/abs/2005.13539</a> </span> </li> <li class="ltx_bibitem" id="bib.bib19"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Juno et al<span class="ltx_text" id="bib.bib19.2.2.1">.</span> (2018)</span> <span class="ltx_bibblock"> J. Juno, A. Hakim, J. TenBarge, E. Shi, and W. Dorland. 2018. </span> <span class="ltx_bibblock">Discontinuous Galerkin algorithms for fully kinetic plasmas. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib19.3.1">J. Comput. Phys.</em> 353 (Jan. 2018), 110–147. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1016/j.jcp.2017.10.009" title="">doi:<span class="ltx_ref ltx_nolink">10.1016/j.jcp.2017.10.009</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib20"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Laney (1998)</span> <span class="ltx_bibblock"> Culbert B. Laney. 1998. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib20.1.1">Computational Gasdynamics</em> (1 ed.). </span> <span class="ltx_bibblock">Cambridge University Press. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1017/CBO9780511605604" title="">doi:<span class="ltx_ref ltx_nolink">10.1017/CBO9780511605604</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib21"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Lax (1954)</span> <span class="ltx_bibblock"> Peter D. Lax. 1954. </span> <span class="ltx_bibblock">Weak solutions of nonlinear hyperbolic equations and their numerical computation. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib21.1.1">Communications on Pure and Applied Mathematics</em> 7, 1 (Feb. 1954), 159–193. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1002/cpa.3160070112" title="">doi:<span class="ltx_ref ltx_nolink">10.1002/cpa.3160070112</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib22"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">LeVeque (1992)</span> <span class="ltx_bibblock"> Randall J. LeVeque. 1992. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib22.1.1">Numerical Methods for Conservation Laws</em>. </span> <span class="ltx_bibblock">Birkhäuser Basel, Basel. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1007/978-3-0348-8629-1" title="">doi:<span class="ltx_ref ltx_nolink">10.1007/978-3-0348-8629-1</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib23"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">LeVeque (2011)</span> <span class="ltx_bibblock"> Randall J. LeVeque. 2011. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib23.1.1">Finite volume methods for hyperbolic problems</em> (10. printing ed.). </span> <span class="ltx_bibblock">Cambridge Univ. Press, Cambridge. </span> <span class="ltx_bibblock"> </span> </li> <li class="ltx_bibitem" id="bib.bib24"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Munz et al<span class="ltx_text" id="bib.bib24.2.2.1">.</span> (2000)</span> <span class="ltx_bibblock"> C.-D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, and U. Voß. 2000. </span> <span class="ltx_bibblock">Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib24.3.1">J. Comput. Phys.</em> 161, 2 (July 2000), 484–511. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1006/jcph.2000.6507" title="">doi:<span class="ltx_ref ltx_nolink">10.1006/jcph.2000.6507</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib25"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Musha and Higuchi (1978)</span> <span class="ltx_bibblock"> Toshimitsu Musha and Hideyo Higuchi. 1978. </span> <span class="ltx_bibblock">Traffic Current Fluctuation and the Burgers Equation. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib25.1.1">Japanese Journal of Applied Physics</em> 17, 5 (May 1978), 811–816. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1143/JJAP.17.811" title="">doi:<span class="ltx_ref ltx_nolink">10.1143/JJAP.17.811</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib26"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Osher (1984)</span> <span class="ltx_bibblock"> Stanley Osher. 1984. </span> <span class="ltx_bibblock">Riemann Solvers, the Entropy Condition, and Difference Approximations. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib26.1.1">SIAM J. Numer. Anal.</em> 21, 2 (April 1984), 217–235. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1137/0721016" title="">doi:<span class="ltx_ref ltx_nolink">10.1137/0721016</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib27"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Robinson and Voronkov (2001)</span> <span class="ltx_bibblock"> John Alan Robinson and Andrei Voronkov. 2001. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib27.1.1">Handbook of automated reasoning</em>. </span> <span class="ltx_bibblock">Elsevier MIT Press, Amsterdam New York Cambridge, Mass. </span> <span class="ltx_bibblock"> </span> </li> <li class="ltx_bibitem" id="bib.bib28"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Roe (1981)</span> <span class="ltx_bibblock"> P.L Roe. 1981. </span> <span class="ltx_bibblock">Approximate Riemann solvers, parameter vectors, and difference schemes. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib28.1.1">J. Comput. Phys.</em> 43, 2 (Oct. 1981), 357–372. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1016/0021-9991(81)90128-5" title="">doi:<span class="ltx_ref ltx_nolink">10.1016/0021-9991(81)90128-5</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib29"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Roe (1986)</span> <span class="ltx_bibblock"> P L Roe. 1986. </span> <span class="ltx_bibblock">Characteristic-Based Schemes for the Euler Equations. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib29.1.1">Annual Review of Fluid Mechanics</em> 18, 1 (Jan. 1986), 337–365. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1146/annurev.fl.18.010186.002005" title="">doi:<span class="ltx_ref ltx_nolink">10.1146/annurev.fl.18.010186.002005</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib30"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Sweby (1984)</span> <span class="ltx_bibblock"> P. K. Sweby. 1984. </span> <span class="ltx_bibblock">High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib30.1.1">SIAM J. Numer. Anal.</em> 21, 5 (Oct. 1984), 995–1011. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1137/0721062" title="">doi:<span class="ltx_ref ltx_nolink">10.1137/0721062</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib31"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Toro (2009)</span> <span class="ltx_bibblock"> E. F. Toro. 2009. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib31.1.1">Riemann solvers and numerical methods for fluid dynamics: a practical introduction</em> (3rd ed ed.). </span> <span class="ltx_bibblock">Springer, Dordrecht New York. </span> <span class="ltx_bibblock"> </span> </li> <li class="ltx_bibitem" id="bib.bib32"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Toro and Billett (2000)</span> <span class="ltx_bibblock"> E. F. Toro and S. J. Billett. 2000. </span> <span class="ltx_bibblock">Centred TVD schemes for hyperbolic conservation laws. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib32.1.1">IMA J. Numer. Anal.</em> 20, 1 (Jan. 2000), 47–79. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1093/imanum/20.1.47" title="">doi:<span class="ltx_ref ltx_nolink">10.1093/imanum/20.1.47</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib33"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Van Leer (1974)</span> <span class="ltx_bibblock"> Bram Van Leer. 1974. </span> <span class="ltx_bibblock">Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib33.1.1">J. Comput. Phys.</em> 14, 4 (March 1974), 361–370. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1016/0021-9991(74)90019-9" title="">doi:<span class="ltx_ref ltx_nolink">10.1016/0021-9991(74)90019-9</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib34"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Van Leer (1977)</span> <span class="ltx_bibblock"> Bram Van Leer. 1977. </span> <span class="ltx_bibblock">Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib34.1.1">J. Comput. Phys.</em> 23, 3 (March 1977), 263–275. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1016/0021-9991(77)90094-8" title="">doi:<span class="ltx_ref ltx_nolink">10.1016/0021-9991(77)90094-8</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib35"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Van Leer (1979)</span> <span class="ltx_bibblock"> Bram Van Leer. 1979. </span> <span class="ltx_bibblock">Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib35.1.1">J. Comput. Phys.</em> 32, 1 (July 1979), 101–136. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1016/0021-9991(79)90145-1" title="">doi:<span class="ltx_ref ltx_nolink">10.1016/0021-9991(79)90145-1</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib36"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Vreugdenhil (1994)</span> <span class="ltx_bibblock"> C. B. Vreugdenhil. 1994. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib36.1.1">Numerical Methods for Shallow-Water Flow</em>. Water Science and Technology Library, Vol. 13. </span> <span class="ltx_bibblock">Springer Netherlands, Dordrecht. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1007/978-94-015-8354-1" title="">doi:<span class="ltx_ref ltx_nolink">10.1007/978-94-015-8354-1</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib37"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Wang et al<span class="ltx_text" id="bib.bib37.2.2.1">.</span> (2020)</span> <span class="ltx_bibblock"> Liang Wang, Ammar H. Hakim, Jonathan Ng, Chuanfei Dong, and Kai Germaschewski. 2020. </span> <span class="ltx_bibblock">Exact and locally implicit source term solvers for multifluid-Maxwell systems. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib37.3.1">J. Comput. Phys.</em> 415 (Aug. 2020), 109510. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1016/j.jcp.2020.109510" title="">doi:<span class="ltx_ref ltx_nolink">10.1016/j.jcp.2020.109510</span></a> </span> </li> <li class="ltx_bibitem" id="bib.bib38"> <span class="ltx_tag ltx_role_refnum ltx_tag_bibitem">Wesseling (2001)</span> <span class="ltx_bibblock"> Pieter Wesseling. 2001. </span> <span class="ltx_bibblock"><em class="ltx_emph ltx_font_italic" id="bib.bib38.1.1">Principles of Computational Fluid Dynamics</em>. Springer Series in Computational Mathematics, Vol. 29. </span> <span class="ltx_bibblock">Springer Berlin Heidelberg, Berlin, Heidelberg. </span> <span class="ltx_bibblock"> <a class="ltx_ref ltx_href" href="https://doi.org/10.1007/978-3-642-05146-3" title="">doi:<span class="ltx_ref ltx_nolink">10.1007/978-3-642-05146-3</span></a> </span> </li> </ul> </section> </article> </div> <footer class="ltx_page_footer"> <div class="ltx_page_logo">Generated on Tue Mar 18 04:06:02 2025 by <a class="ltx_LaTeXML_logo" href="http://dlmf.nist.gov/LaTeXML/"><span style="letter-spacing:-0.2em; margin-right:0.1em;">L<span class="ltx_font_smallcaps" style="position:relative; bottom:2.2pt;">a</span>T<span class="ltx_font_smallcaps" style="font-size:120%;position:relative; bottom:-0.2ex;">e</span></span><span style="font-size:90%; position:relative; bottom:-0.2ex;">XML</span><img alt="Mascot Sammy" src=""/></a> </div></footer> </div> </body> </html>