CINXE.COM
Search results for: Prunus Armeniaca L.
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Prunus Armeniaca L.</title> <meta name="description" content="Search results for: Prunus Armeniaca L."> <meta name="keywords" content="Prunus Armeniaca L."> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Prunus Armeniaca L." name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Prunus Armeniaca L."> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 30</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Prunus Armeniaca L.</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Effect of Plant Biostimulants on Fruit Set, Yield, and Quality Attributes of “Farbaly” Apricot Cultivar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Tarantino">A. Tarantino</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Lops"> F. Lops</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Disciglio"> G. Disciglio</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Tarantino"> E. Tarantino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Apulia region (southern Italy) is excellent for heavy production of apricot (Prunus armeniaca L.). Fruit quality is a combination of physical, chemical and nutritional characteristics. The present experiment was laid in the commercial orchard in Cerignola (Foggia district, Apulia region, 41°15’49’’N; 15°53’59’’E; 126 a.s.l.) during the 2014-2015 season. The experiment consisted of the use of three biostimulant treatments (Hendophyt®, Ergostim® and Radicon®) compared with untreated control on ‘Farbaly’ apricot cultivar, in order to evaluate the vegeto-productive and fruit qualitative attributes. Foliar spray of biostimulants was applied at different times during the growth season (at red ball, fruit setting and fruit development stages). Experimental data showed some specific differences among the biostimulant treatments, which fruit set, growth and productivity were affected. Moderate influences were found regarding the qualitative attributes of fruits. The soluble solid content was positively affected by Hendophyt® treatment. Antioxidant capacity was significantly higher in Hendophyt® and Radicon® treatments respect to the untreated control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prunus%20Armeniaca%20L." title="Prunus Armeniaca L.">Prunus Armeniaca L.</a>, <a href="https://publications.waset.org/abstracts/search?q=biostimulants" title=" biostimulants"> biostimulants</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20set" title=" fruit set"> fruit set</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20quality" title=" fruit quality"> fruit quality</a> </p> <a href="https://publications.waset.org/abstracts/76675/effect-of-plant-biostimulants-on-fruit-set-yield-and-quality-attributes-of-farbaly-apricot-cultivar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Effect of Fermentation on the Bioavailability of Some Fruit Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kubra%20Ozkan">Kubra Ozkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20Sagdic"> Osman Sagdic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To better understand the benefits of these fresh and fermented fruits on human health, the consequences of human metabolism and the bioavailability must be known. In this study, brine with 10% salt content, sugar, and vinegar (5% acetic acid) was added to fruits (Prunus domestica L. and Prunus amygdalus Batsch) in different formulations. Samples were stored at 20±2˚C for their fermentation for 21 days. The effects of in vitro digestion were determined on the bioactive compounds in fresh and fermented fruits ((Prunus domestica L. and Prunus amygdalus Batsch). Total phenolic compounds, total flavonoid compounds and antioxidant capacities of post gastric (PG), IN (with small intestinal absorbers) and OUT (without small intestine absorbers) samples obtained as gastric and intestinal digestion in vitro were measured. Bioactive compounds and antioxidant capacity were determined by spectrophotometrically. Antioxidant capacity was tested by the CUPRAC methods, the total phenolic content (TPC) was determined by the Folin-Ciocalteu method, the total flavonoid content (TFC) determined by Aluminium trichloride (AlCl3) method. While the antioxidant capacity of fresh Prunus domestica L. and Prunus amygdalus Batsch samples were 2.21±0.05 mg TEAC/g, 4.39±0.02mg TEAC/g; these values for fermented fruits were found 2.37±0.08mg TEAC/g, 5.38±0.07mg TEAC/g respectively. While the total phenolic contents of fresh fruits namely, Prunus domestica L. and Prunus amygdalus Batsch samples were 0.51±0.01mg GAE/g, 5.56±0.01mg GAE/g; these values for fermented fruits were found as 0.52±0.01mg GAE/g, 6.81±0.03mg GAE/g, respectively. While the total flavonoid amounts of fresh Prunus domestica L. and Prunus amygdalus Batsch samples were 0.19±0.01mg CAE/g, 2.68±0.02mg CAE/g, these values for fermented fruits were found 0.20±0.01mg CAE/g, 2.93±0.02mg CAE/g, respectively. This study showed that phenolic, flavonoid compounds and antioxidant capacities of the samples were increased during the fermantation process. As a result of digestion, the amounts of bioactive components decreased in the stomach and intestinal environment. The bioavailability values of the phenolic compounds in fresh and fermented Prunus domestica L. fruits are 40.89% and 43.28%, respectively. The bioavailability values of the phenolic compounds in fresh and fermented Prunus amygdalus Batsch fruits 4.27% and 3.82%, respectively. The bioavailability values of the flavonoid compounds in fresh and fermented Prunus domestica L. fruits are 5.32% and 19.98%, respectively. The bioavailability values of the flavonoid compounds in fresh and fermented Prunus amygdalus Batsch fruits 2.22% and 1.53%, respectively. The bioavailability values of antioxidant capacity in fresh and fermented Prunus domestica L. fruits are 33.06% and 33.51, respectively. The bioavailability values of antioxidant capacity in fresh and fermented Prunus amygdalus Batsch fruits 14.50% and 15.31%, respectively. Fermentation process; Prunus amygdalus Batsch decreased bioavailability while Prunus domestica increased bioavailability. When two fruits are compared; Prunus domestica bioavailability is more than Prunus amygdalus Batsch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title="bioactivity">bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=bioavailability" title=" bioavailability"> bioavailability</a>, <a href="https://publications.waset.org/abstracts/search?q=fermented" title=" fermented"> fermented</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit" title=" fruit"> fruit</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a> </p> <a href="https://publications.waset.org/abstracts/86993/effect-of-fermentation-on-the-bioavailability-of-some-fruit-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Phytochemical Study and Evaluation of the Antioxidant Activity of Flavonoids Isolated from Prunus persica L. Leaves </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Fellah">K. Fellah</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Benmehdi"> H. Benmehdi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Amrouche"> A. Amrouche</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Malainine"> H. Malainine</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Memmou"> F. Memmou</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Dalile"> H. Dalile</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Siata"> W. Siata </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to evaluate the antioxidant of flavonoids extracted from the leaves of Prunus persica L. A phytochemical screening allowed us to highlight the different phytochemicals present in the leaves of the studied plant. The selective extraction of flavonoids gave yields of 0.71, 1.5, and 4.8% for the fractions ethyl ether, ethyl acetate and n- butanol, respectively. The reading of the antioxidant activity of different extracts of flavonoids by HPLTC method revealed positive reaction (yellow spots) on the TLC plates sprayed with DPPH. Using the DPPH method, the fractions of flavonoids (bunanol, ethyl acetate and Diethyl ether) showed a potent scavenging activity with IC50 = 0.22; 0.27 and 0.76 mg / ml, respectively. Furthermore, our findings revealed the extracts under study exhibited higher reducing potential which depends upon extract concentration. These results obtained from this investigation confirm that the Prunus persica remains a major resource of bioactive molecules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prunus%20persica%20L." title="Prunus persica L.">Prunus persica L.</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20study" title=" phytochemical study"> phytochemical study</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=TLC%20bioautographic" title=" TLC bioautographic"> TLC bioautographic</a>, <a href="https://publications.waset.org/abstracts/search?q=FRAP" title=" FRAP"> FRAP</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a> </p> <a href="https://publications.waset.org/abstracts/13223/phytochemical-study-and-evaluation-of-the-antioxidant-activity-of-flavonoids-isolated-from-prunus-persica-l-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> The Evaluation of Apricot (Prunus armeniaca L.) Materials Collected from Southeast Anatolia Region of Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kubilay%20%C3%96nal">M. Kubilay Önal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to determine the adaptabilities of native apricot materials collected from Southeast Anatolia region of Turkey to Aegean Region conditions. Different phenological and pomological characteristics of the cultivars were observed during study. Determination of promising types for adaptation trials were performed employing the 'weighed-ranking' method. To determine them the relative points were given to the characteristics such as yield, average fruit weight, attractiveness, soluble solid, seed ratio by weight and aroma. As a result of two-year evaluation studies on the phenological and pomological characteristics of 22 types, 9 out of them, viz., nos. 2235, 2236, 2237, 2239, 2242, 2244, 2246, 2249, 2257 were selected as promising ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apricot" title="apricot">apricot</a>, <a href="https://publications.waset.org/abstracts/search?q=phenological%20characters" title=" phenological characters"> phenological characters</a>, <a href="https://publications.waset.org/abstracts/search?q=pomological%20characters" title=" pomological characters"> pomological characters</a>, <a href="https://publications.waset.org/abstracts/search?q=weight-ranking%20method" title=" weight-ranking method "> weight-ranking method </a> </p> <a href="https://publications.waset.org/abstracts/6298/the-evaluation-of-apricot-prunus-armeniaca-l-materials-collected-from-southeast-anatolia-region-of-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Antioxidant Properties of Snack Crackers Incorporated with Mahaleb (Prunus mahaleb L.) Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elif%20Yildiz">Elif Yildiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Gizem%20Gungor"> Gizem Gungor</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatice%20Yilmaz"> Hatice Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Duygu%20%20Gocmen"> Duygu Gocmen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, consumer demand has been increasing for the healthy and functional food. In this context, some natural products rich in phenolic compounds are also added to cereal based food for health benefits. Natural phenolic compounds have many beneficial bioactivities such as anti-allergic, antiviral, anti-inflammatory and anti-mutagenic activities. It has been found that various plant species contain natural bioactive phytochemicals with antioxidant function. One of these plant species is mahaleb (Prunus mahaleb L). Mahaleb berries with dark blue or red colours have the highest antioxidant capacities among all common fruits and vegetables. The aim of this study was to determine the possibilities of improving the antioxidant properties of novel snack crackers by supplementing with mahaleb (Prunus mahaleb L) powder. For this purpose mahaleb powder were used to replace wheat flour in the snack cracker formulation at two different levels (5%, and 7.5% w/w). As a result, mahaleb supplementation caused an increase in total phenolic contents and antioxidant activities of crackers. It can be say that mahaleb powder can be used as an alternative functional and nutritional ingredient in bakery products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=cracker" title=" cracker"> cracker</a>, <a href="https://publications.waset.org/abstracts/search?q=mahaleb%20%28Prunus%20mahaleb%20L%29" title=" mahaleb (Prunus mahaleb L)"> mahaleb (Prunus mahaleb L)</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20contents" title=" phenolic contents"> phenolic contents</a> </p> <a href="https://publications.waset.org/abstracts/69038/antioxidant-properties-of-snack-crackers-incorporated-with-mahaleb-prunus-mahaleb-l-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Apricot (Prunus armeniaca L.) Fruit Quality: Phytochemical Attributes of Some Apricot Cultivars as Affected by Genotype and Ripening</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Ayour">Jamal Ayour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Benichou"> Mohamed Benichou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fruit quality is one of the main concerns of consumers, producers, and distributors. The evolution of apricot fruits undergoes a strong acceleration during maturation, and the rapidity of post-harvest evolution of the ripe fruit is particularly selective in the apricot. The objective of this study is to identify new cultivars with an interesting quality as well as a better yield allowing a more prolonged production over time. The evaluation of the fruit quality of new apricot cultivars from the Marrakech region was carried out by analyzing their physical and biochemical attributes during ripening. The results obtained clearly show a great diversity of the physicochemical attributes of the selected clones. Also, some genotypes of apricots showed contents of sugars, organic acids (vitamin C) and β carotene significantly higher than those of the most famous varieties of Morocco: Canino, Delpatriarca, and Maoui. Principal component analysis (PCA), taking into account the maturity stage and the diversity of cultivars, made it possible to define three groups with similar physicochemical attributes. The results of this study are of great use, particularly for the selection of genotypes with a better quality of fruit, both for consumption or industrial processing and with important contents of physicochemical attributes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apricot" title="apricot">apricot</a>, <a href="https://publications.waset.org/abstracts/search?q=acidity" title=" acidity"> acidity</a>, <a href="https://publications.waset.org/abstracts/search?q=carotenoids" title=" carotenoids"> carotenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=color" title=" color"> color</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar" title=" sugar"> sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20C" title=" vitamin C"> vitamin C</a> </p> <a href="https://publications.waset.org/abstracts/68227/apricot-prunus-armeniaca-l-fruit-quality-phytochemical-attributes-of-some-apricot-cultivars-as-affected-by-genotype-and-ripening" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Plant Supporting Units (Ekobox) Application Project for Increasing Planting Success in Arid and Semi-Arid Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCrcan%20D.%20Baysal">Gürcan D. Baysal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Tan%C4%B1%C5%9F"> Ali Tanış</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, samples of plant types including rose hip (<em>Rosa canina </em>L.), jujube (<em>Ziziphus jujube</em>), sea buckthorn (<em>Hippophae rhamnoides</em>), elderberry (<em>Sambucus nigra</em>), apricot (<em>Prunus armeniaca</em>), scots pine (<em>Pinus sylvestris</em>), and cedar of Lebanon (<em>Cedrus libani</em>) were grown using plant supporting units called Ekobox and drip irrigation systems in the Karapınar, Konya region of Turkey to reveal the efficiency of Ekobox and drip irrigation compared against a control with no irrigation. The plant diameter, height, and survival rates were determined, compared with each other, and statistically analyzed. According to the statistical analysis of the results, Ekobox applications resulted in the highest values for survival rate, diameter, and height measurements whereas the lowest values were determined in the control groups. These results indicate that the cultivation of plants with Ekobox may help protect against the loss of fertile soils as an effective mechanism for combating erosion and desertification. These advantages may also lead to a lasting economic effect on the cultivation of plants by locals of the Karapınar, Konya province who suffer from an ever-decreasing underground water level as a result of agricultural consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drip%20irrigation" title="drip irrigation">drip irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=ekobox" title=" ekobox"> ekobox</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20diameter" title=" plant diameter"> plant diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20height" title=" plant height"> plant height</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20survival%20rate" title=" plant survival rate"> plant survival rate</a> </p> <a href="https://publications.waset.org/abstracts/116488/plant-supporting-units-ekobox-application-project-for-increasing-planting-success-in-arid-and-semi-arid-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Characterization of Bacteriophage for Biocontrol of Pseudomonas syringae, Causative Agent of Canker in Prunus spp.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojgan%20Rabiey">Mojgan Rabiey</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyamali%20Roy"> Shyamali Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Billy%20Quilty"> Billy Quilty</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Creeth"> Ryan Creeth</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Sundin"> George Sundin</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20W.%20Jackson"> Robert W. Jackson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacterial canker is a major disease of Prunus species such as cherry (Prunus avium). It is caused by Pseudomonas syringae species including P. syringae pv. syringae (Pss) and P. syringae pv. morsprunorum race 1 (Psm1) and race 2 (Psm2). Concerns over the environmental impact of, and developing resistance to, copper controls call for alternative approaches to disease management. One method of control could be achieved using naturally occurring bacteriophage (phage) infective to the bacterial pathogens. Phages were isolated from soil, leaf, and bark of cherry trees in five locations in the South East of England. The phages were assessed for their host range against strains of Pss, Psm1, and Psm2. The phages exhibited a differential ability to infect and lyse different Pss and Psm isolates as well as some other P. syringae pathovars. However, the phages were unable to infect beneficial bacteria such as Pseudomonas fluorescens. A subset of 18 of these phages were further characterised genetically (Random Amplification of Polymorphic DNA-PCR fingerprinting and sequencing) and using electron microscopy. The phages are tentatively identified as belonging to the order Caudovirales and the families Myoviridae, Podoviridae, and Siphoviridae, with genetic material being dsDNA. Future research will fully sequence the phage genomes. The efficacy of the phage, both individually and in cocktails, to reduce disease progression in vivo will be investigated to understand the potential for practical use of these phages as biocontrol agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteriophage" title="bacteriophage">bacteriophage</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomonas" title=" pseudomonas"> pseudomonas</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial%20cancker" title=" bacterial cancker"> bacterial cancker</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title=" biological control"> biological control</a> </p> <a href="https://publications.waset.org/abstracts/108768/characterization-of-bacteriophage-for-biocontrol-of-pseudomonas-syringae-causative-agent-of-canker-in-prunus-spp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Comparative Production of Secondary Metabolites by Prunus africana (Hook. F.) Kalkman Provenances in Cameroon and Some Associated Endophytic Fungi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gloria%20M.%20Ntuba-Jua">Gloria M. Ntuba-Jua</a>, <a href="https://publications.waset.org/abstracts/search?q=Afui%20M.%20Mih"> Afui M. Mih</a>, <a href="https://publications.waset.org/abstracts/search?q=Eneke%20E.%20T.%20Bechem"> Eneke E. T. Bechem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prunus africana (Hook. F.) Kalkman, commonly known as Pygeum or African cherry belongs to the Rosaceae family. It is a medium to large, evergreen tree with a spreading crown of 10 to 20 m. It is used by the traditional medical practitioners for the treatment of over 45ailments in Cameroon and sub-Sahara Africa. In modern medicine, it is used in the treatment of benign prostrate hyperplasia (BPH), prostate gland hypertrophy (enlarged prostate glands). This is possible because of its ability to produce some secondary metabolites which are believed to have bioactivity against these ailments. The ready international market for the sale of Prunus bark, uncontrolled exploitation, illegal harvesting using inappropriate techniques and poor timing of harvesting have contributed enormously to making the plant endangered. It is known to harbor a large number of endophytic fungi with the potential to produce similar secondary metabolites as the parent plant. Alternative sourcing of medicinal principles through endophytic fungi requires succinct knowledge of the endophytic fungi. This will serve as a conservation measure for Prunus africana by reducing dependence on Prunus bark for such metabolites. This work thus sought to compare the production of some major secondary metabolites produced by P. africana and some of its associated endophytic fungi. The leaves and stem bark of the plant from different provenances were soaked in methanol for 72 hrs to yield the methanolic crude extract. The phytochemical screening of the methanolic crude extracts using different standard procedures revealed the presence of tannins, flavonoids, terpenoids, saponins, phenolics and steroids. Pure cultures of some predominantly isolated endophyte species from the difference Prunus provenances such as Curvularia sp, and Morphospecies P001 were also grown in Potato Dextrose Broth (PDB) for 21 days and later extracted with Methylene dichloride (MDC) solvent after 24hrs to produce crude culture extracts. Qualitative assessment of crude culture extracts showed the presence of tannins, terpenoids, phenolics and steroids particularly β-Sitosterol, (a major bioactive metabolite) as did the plant tissues. Qualitative analysis by thin layer chromatography (TLC) was done to confirm and compare the production of β-Sitosterol (as marker compounds) in the crude extracts of the plant and endophyte. Samples were loaded on TLC silica gel aluminium barked plate (Kieselgel 60 F254, 0.2 mm, Merck) using acetone/hexane, (3.0:7.0) solvent system. They were visualized under an ultra violet lamp (UV254 and UV360). TLC revealed that leaves had a higher concentration of β-sitosterol in terms of band intensity than stem barks from the different provenances. The intensity of β-sitosterol bands in the culture extracts of endophytes was comparable to the plant extracts except for Curvularia sp (very minute) whose band was very faint. The ability of these fungi to make β-sitosterol was confirmed by TLC analysis with the compound having chromatographic properties (retention factor) similar to those of β-sitosterol standard. The ability of these major endophytes to produce secondary metabolites similar to the host has therefore been demonstrated. There is, therefore, the potential of developing the in vitro production system of Prunus secondary metabolites thereby enhancing its conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caneroon" title="Caneroon">Caneroon</a>, <a href="https://publications.waset.org/abstracts/search?q=endophytic%20fungi" title=" endophytic fungi"> endophytic fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=Prunus%20africana" title=" Prunus africana"> Prunus africana</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20metabolite" title=" secondary metabolite"> secondary metabolite</a> </p> <a href="https://publications.waset.org/abstracts/81073/comparative-production-of-secondary-metabolites-by-prunus-africana-hook-f-kalkman-provenances-in-cameroon-and-some-associated-endophytic-fungi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Biochemical and Pomological Variability among 14 Moroccan and Foreign Cultivars of Prunus dulcis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hanine">H. Hanine</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20H%27ssaini"> H. H'ssaini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ibno%20Alaoui"> M. Ibno Alaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nablousi"> A. Nablousi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Zahir"> H. Zahir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ennahli"> S. Ennahli</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Latrache"> H. Latrache</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Zine%20Abidine"> H. Zine Abidine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biochemical and pomological variability among 14 cultivars of Prunus dulcis planted in a germoplasm collection site in Morocco were evaluated. Almond samples from six local and eight foreign cultivars (France, Italy, Spain, and USA) were characterized. Biochemical and pomological data revealed significant genetic variability among the 14 cultivars; local cultivars exhibited higher total polyphenol content. Oil content ranged from 35 to 57% among cultivars; both Texas and Toundout genotypes recorded the highest oil content. Total protein concentration from select cultivars ranged from 50 mg/g in Ferraduel to 105 mg/g in Rizlane1 cultivars. Antioxidant activity of almond samples was examined by a DPPH (1,1-diphenyl-2-picrylhydrazyl) radical-scavenging assay; the antioxidant activity varied significantly within the cultivars, with IC50 (the half-maximal inhibitory concentration) values ranging from 2.25 to 20 mg/ml. Autochthonous cultivars originated from the Oujda region exhibited higher tegument total polyphenol and amino acid content compared to others. The genotype Rizlane2 recorded the highest flavonoid content. Pomological traits revealed a large variability within the almond germplasms. The hierarchical clustering analysis of all the data regarding pomological traits distinguished two groups with some particular genotypes as distinct cultivars, and groups of cultivars as polyclone varieties. These results strongly exhibit a potential use of Moroccan-originated almonds as potential clones for future selection due to their nutritional values and pomological traits compared to well-established cultivars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=DDPH" title=" DDPH"> DDPH</a>, <a href="https://publications.waset.org/abstracts/search?q=Moroccan%20almonds" title=" Moroccan almonds"> Moroccan almonds</a>, <a href="https://publications.waset.org/abstracts/search?q=Prunus%20dulcis" title=" Prunus dulcis"> Prunus dulcis</a> </p> <a href="https://publications.waset.org/abstracts/13640/biochemical-and-pomological-variability-among-14-moroccan-and-foreign-cultivars-of-prunus-dulcis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Clinical Study of the Prunus dulcis (Almond) Shell Extract on Tinea capitis Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasreen%20Thebo">Nasreen Thebo</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Shaikh"> W. Shaikh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Laghari"> A. J. Laghari</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Nangni"> P. Nangni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prunus dulcis (Almond) shell extract is demonstrated for its biomedical applications. Shell extract prepared by soxhlet method and further characterized by UV-Visible spectrophotometer, atomic absorption spectrophotometer (AAS), FTIR, GC-MS techniques. In this study, the antifungal activity of almond shell extract was observed against clinically isolated pathogenic fungi by strip method. The antioxidant potential of crude shell extract of was evaluated by using DPPH (2-2-diphenyl-1-picryhydrazyl) and radical scavenging system. The possibility of short term therapy was only 20 days. The total antioxidant activity varied from 94.38 to 95.49% and total phenolic content was found as 4.455 mg/gm in almond shell extract. Finally the results provide a great therapeutic potential against Tinea capitis infection of scalp. Included in this study of shell extract that show scientific evidence for clinical efficacy, as well as found to be more useful in the treatment of dermatologic disorders and without any doubt it can be recommended to be Patent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tinea%20capitis" title="Tinea capitis">Tinea capitis</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS%20therapeutic%0D%0Atreatment" title=" GC-MS therapeutic treatment"> GC-MS therapeutic treatment</a> </p> <a href="https://publications.waset.org/abstracts/2647/clinical-study-of-the-prunus-dulcis-almond-shell-extract-on-tinea-capitis-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Technological Properties, in Vitro Starch Digestibility, and Antioxidant Activity of Gluten-Free Cakes Enriched With Prunus spinosa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elif%20Cakir">Elif Cakir</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6rkem%20%C3%96z%C3%BClk%C3%BC"> Görkem Özülkü</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatice%20Bekiro%C4%9Flu"> Hatice Bekiroğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammet%20Arici"> Muhammet Arici</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20Sa%C4%9Fdic"> Osman Sağdic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is important to be able to formulate cakes with a wide consumption mass with gluten-free and high nutritional value ingredients to increase the consumption possibilities of people with limited nutrition opportunities. Although people do not prefer Prunus spinosa (PS)because of its sour taste and its use in the food industry is limited on a local scale, the potential of using PS, which is a naturally rich source of many micronutrients and bioactive compounds, in glutenfree cake production has been investigated. In this study, the potential of using PS, a natural wild fruit, in the production of functional gluten-free cakes was investigated. It was aimed to evaluate the effects of freeze-dried and powdered PS-enriched rice flour cakes on tech functionality, nutrition and eating quality. In terms of physicochemical properties, PS raises increased the ash, protein, and moisture values of the cakes. PS with high phenolic content, phenolic component content, and radical reducing power made by ABTS, FRAP, and DPPH techniques were higher in all samples than control, and the highest 4% PS was determined in cakes. In terms of the glycemic index (GI), which is an important feature of diet products, it was determined that the GI in cakes decreased by 86.30±1.04.75.05±1.16 and 69.38±1.21, respectively, with the increase in PS ratio. Except for the 1%, PS added sample, the increase in PS caused a decrease in specific volume, % porosity and increase in hardness, including 4 days of storage. PS increase decreased the L* and b* values and increased a* value and redness of the cake. Sensory liking of the cake samples containing PS was scored significantly (p<0.05) higher of control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prunus%20spinosa" title="Prunus spinosa">Prunus spinosa</a>, <a href="https://publications.waset.org/abstracts/search?q=gluten-free%20cake" title=" gluten-free cake"> gluten-free cake</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic" title=" phenolic"> phenolic</a>, <a href="https://publications.waset.org/abstracts/search?q=glycemic%20index" title=" glycemic index"> glycemic index</a> </p> <a href="https://publications.waset.org/abstracts/156988/technological-properties-in-vitro-starch-digestibility-and-antioxidant-activity-of-gluten-free-cakes-enriched-with-prunus-spinosa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> The Antibacterial Efficacy of Gold Nanoparticles Derived from Gomphrena celosioides and Prunus amygdalus (Almond) Leaves on Selected Bacterial Pathogens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Abalaka">M. E. Abalaka</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Daniyan"> S. Y. Daniyan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Adeyemo"> S. O. Adeyemo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Damisa"> D. Damisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gold nanoparticles (AuNPs) have gained increasing interest in recent times. This is greatly due to their special features, which include unusual optical and electronic properties, high stability and biological compatibility, controllable morphology and size dispersion, and easy surface functionalization. In typical synthesis, AuNPs were produced by reduction of gold salt AuCl4 in an appropriate solvent. A stabilizing agent was added to prevent the particles from aggregating. The antibacterial activity of different sizes of gold nanoparticles was investigated against Staphylococcus aureus, Salmonella typhi and Pseudomonas pneumonia using the disk diffusion method in a Müeller–Hinton Agar. The Au-NPs were effective against all bacteria tested. That the Au-NPs were successfully synthesized in suspension and were used to study the antibacterial activity of the two medicinal plants against some bacterial pathogens suggests that Au-NPs can be employed as an effective bacteria inhibitor and may be an effective tool in medical field. The study clearly showed that the Au-NPs exhibiting inhibition towards the tested pathogenic bacteria in vitro could have the same effects in vivo and thus may be useful in the medical field if well researched into. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title="gold nanoparticles">gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Gomphrena%20celesioides" title=" Gomphrena celesioides"> Gomphrena celesioides</a>, <a href="https://publications.waset.org/abstracts/search?q=Prunus%20amygdalus" title=" Prunus amygdalus"> Prunus amygdalus</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogens" title=" pathogens"> pathogens</a> </p> <a href="https://publications.waset.org/abstracts/7179/the-antibacterial-efficacy-of-gold-nanoparticles-derived-from-gomphrena-celosioides-and-prunus-amygdalus-almond-leaves-on-selected-bacterial-pathogens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Effects of Mild Heat Treatment on the Physical and Microbial Quality of Salak Apricot Cultivar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bengi%20Hakguder%20Taze">Bengi Hakguder Taze</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevcan%20Unluturk"> Sevcan Unluturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Şalak apricot (Prunus armeniaca L., cv. Şalak) is a specific variety grown in Igdir, Turkey. The fruit has distinctive properties distinguish it from other cultivars, such as its unique size, color, taste and higher water content. Drying is the widely used method for preservation of apricots. However, fresh consumption is preferred for Şalak apricot instead of drying due to its low dry matter content. Higher amounts of water in the structure and climacteric nature make the fruit sensitive against rapid quality loss during storage. Hence, alternative processing methods need to be introduced to extend the shelf life of the fresh produce. Mild heat (MH) treatment is of great interest as it can reduce the microbial load and inhibit enzymatic activities. Therefore, the aim of this study was to evaluate the impact of mild heat treatment on the natural microflora found on Şalak apricot surfaces and some physical quality parameters of the fruit, such as color and firmness. For this purpose, apricot samples were treated at different temperatures between 40 and 60 ℃ for different periods ranging between 10 to 60 min using a temperature controlled water bath. Natural flora on the fruit surfaces was examined using standard plating technique both before and after the treatment. Moreover, any changes in color and firmness of the fruit samples were also monitored. It was found that control samples were initially containing 7.5 ± 0.32 log CFU/g of total aerobic plate count (TAPC), 5.8±0.31 log CFU/g of yeast and mold count (YMC), and 5.17 ± 0.22 log CFU/g of coliforms. The highest log reductions in TAPC and YMC were observed as 3.87-log and 5.8-log after the treatments at 60 ℃ and 50 ℃, respectively. Nevertheless, the fruit lost its characteristic aroma at temperatures above 50 ℃. Furthermore, great color changes (ΔE ˃ 6) were observed and firmness of the apricot samples was reduced at these conditions. On the other hand, MH treatment at 41 ℃ for 10 min resulted in 1.6-log and 0.91-log reductions in TAPC and YMC, respectively, with slightly noticeable changes in color (ΔE ˂ 3). In conclusion, application of temperatures higher than 50 ℃ caused undesirable changes in physical quality of Şalak apricots. Although higher microbial reductions were achieved at those temperatures, temperatures between 40 and 50°C should be further investigated considering the fruit quality parameters. Another strategy may be the use of high temperatures for short time periods not exceeding 1-5 min. Besides all, MH treatment with UV-C light irradiation can be also considered as a hurdle strategy for better inactivation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color" title="color">color</a>, <a href="https://publications.waset.org/abstracts/search?q=firmness" title=" firmness"> firmness</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20heat" title=" mild heat"> mild heat</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20flora" title=" natural flora"> natural flora</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20quality" title=" physical quality"> physical quality</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Falak%20apricot" title=" şalak apricot"> şalak apricot</a> </p> <a href="https://publications.waset.org/abstracts/95007/effects-of-mild-heat-treatment-on-the-physical-and-microbial-quality-of-salak-apricot-cultivar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Nucleotide Diversity and Bacterial Endosymbionts of the Black Cherry Aphid Myzus cerasi (Fabricus, 1775) (Hemiptera: Aphididae) from Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burcu%20Inal">Burcu Inal</a>, <a href="https://publications.waset.org/abstracts/search?q=Irfan%20Kandemir"> Irfan Kandemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sequences of mitochondrial cytochrome oxidase I (COI) gene of twenty-five Turkish and one Greek Myzus cerasi (Fabricus) (Hemiptera: Aphididae) in populations were collected from Prunus avium and Prunus cerasus. The partial coding region of COI studied is 605 bp for all the populations, from which 565 nucleotides were conserved, 40 were variable, 37 were singleton, and 3 sites were parsimony-informative. Four haplotypes were identified based on nucleotide substitutions, and the mean of intraspecific divergence was calculated to be 0.3%. Phylogenetic trees were constructed using Maximum Likelihood, Minimum Evolution, Neighbor-joining, and Unweighed Pair Group Method of Arithmetic Averages (UPGMA) and Myzus persicae (Sulzer) and Myzus borealis Ossiannilson were included as outgroups. The population of M. cerasi from Isparta diverged from the rest of the groups and formed a clade (Haplotype B) with Myzus borealis. The rest of the haplotype diversity includes Haplotype A and Haplotype C with individuals characterized as Myzus cerasi pruniavium and Haplotype D with Myzus cerasi cerasi. M. cerasi diverge into two subspecies and it must be reevaluated whether this pest is monophagous or oligophagous in terms of plant type dependence. The obligated endosymbiont Buchnera aphidicola was also found during this research, but no facultative symbionts could be found. It is expected further studies will be required for a complete barcoding and diversity of bacterial endosymbionts present. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20endosymbionts" title="bacterial endosymbionts">bacterial endosymbionts</a>, <a href="https://publications.waset.org/abstracts/search?q=barcoding" title=" barcoding"> barcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20cherry%20aphid" title=" black cherry aphid"> black cherry aphid</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleotide%20diversity" title=" nucleotide diversity"> nucleotide diversity</a> </p> <a href="https://publications.waset.org/abstracts/96291/nucleotide-diversity-and-bacterial-endosymbionts-of-the-black-cherry-aphid-myzus-cerasi-fabricus-1775-hemiptera-aphididae-from-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Stems of Prunus avium: An Unexplored By-product with Great Bioactive Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADs%20R.%20Silva">Luís R. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=F%C3%A1bio%20Jesus"> Fábio Jesus</a>, <a href="https://publications.waset.org/abstracts/search?q=Catarina%20Bento"> Catarina Bento</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20C.%20Gon%C3%A7alves"> Ana C. Gonçalves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last few years, the traditional medicine has gained ground at nutritional and pharmacological level. The natural products and their derivatives have great importance in several drugs used in modern therapeutics. Plant-based systems continue to play an essential role in primary healthcare. Additionally, the utilization of their plant parts, such as leaves, stems and flowers as nutraceutical and pharmaceutical products, can add a high value in the natural products market, not just by the nutritional value due to the significant levels of phytochemicals, but also by to the high benefit for the producers and manufacturers business. Stems of Prunus avium L. are a byproduct resulting from the processing of cherry, and have been consumed over the years as infusions and decoctions due to its bioactive properties, being used as sedative, diuretic and draining, to relief of renal stones, edema and hypertension. In this work, we prepared a hydroethanolic and infusion extracts from stems of P. avium collected in Fundão Region (Portugal), and evaluate the phenolic profile by LC/DAD, antioxidant capacity, α-glucosidase inhibitory activity and protection of human erythrocytes against oxidative damage. The LC-DAD analysis allowed to the identification of 19 phenolic compounds, catechin and 3-O-caffolquinic acid were the main ones. In a general way, hydroethanolic extract proved to be more active than infusion. This extract had the best antioxidant activity against DPPH• (IC50=22.37 ± 0.28 µg/mL) and superoxide radical (IC50=13.93 ± 0.30 µg/mL). Furthermore, it was the most active concerning inhibition of hemoglobin oxidation (IC50=13.73 ± 0.67 µg/mL), hemolysis (IC50=1.49 ± 0.18 µg/mL) and lipid peroxidation (IC50=26.20 ± 0.38 µg/mL) on human erythrocytes. On the other hand, infusion revealed to be more efficient towards α-glucosidase inhibitory activity (IC50=3.18 ± 0.23 µg/mL) and against nitric oxide radical (IC50=99.99 ± 1.89 µg/mL). The Sweet cherry sector is very important in Fundão Region (Portugal), and taking profit from the great wastes produced during processing of the cherry to produce added-value products, such as food supplements cannot be ignored. Our results demonstrate that P. avium stems possesses remarkable antioxidant and free radical scavenging properties. It is therefore, suggest, that P. avium stems can be used as a natural antioxidant with high potential to prevent or slow the progress of human diseases mediated by oxidative stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stems" title="stems">stems</a>, <a href="https://publications.waset.org/abstracts/search?q=Prunus%20avium" title=" Prunus avium"> Prunus avium</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20potential" title=" biological potential"> biological potential</a> </p> <a href="https://publications.waset.org/abstracts/70858/stems-of-prunus-avium-an-unexplored-by-product-with-great-bioactive-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Effect of Different Media and Planting Time on the Cuttings of Cherry (Prunus Avium L.) Rootstock Colt Under the Agro Climatic Conditions of Temprate Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Ali%20Khan%20Sajjad%20Ali%20Khan">Sajjad Ali Khan Sajjad Ali Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gohar%20Ayub"> Gohar Ayub</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Ur%20Rahman"> Khalil Ur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sajid"> Muhammad Sajid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mumtaz%20Farooq"> Mumtaz Farooq</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Irshad"> Mohammad Irshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Haider%20Ali"> Haider Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A trail was carried out to know the effect of different soil media and planting time on the cuttings of cherry (Prunus avium L.) rootstock Colt at Agriculture Research Institute (ARI) Mingora swat, during winter 2011. The experiment was laid out in Randomized Complete Block Design (RCBD) with split plot arrangement and was replicated three times. Soil media (Silt, Garden soil and Silt+Garden soil+FYM) were assigned to main plots whereas, planting Dates (1st Jan, 11th Jan, 21st Jan, 1st Feb, 11th Feb, 21st Feb and 2nd March) subjected to sub plots. The data recorded on sprouting percentage, shoot diameter cutting-1, number of leaves cutting-1, rootstock height (cm), survival percentage, number of roots, root length (cm), root volume (cm3) and root weight (gm) were significantly affected by different soil media. Maximum sprouting percentage (100%), shoot diameter (1.72 mm), number of leaves cutting-1 (76.74), rootstock height (104.36 cm), survival percentage (41.67%), number of roots (76.35), root length (11.28 cm), root volume (4.43 cm3) and root weight (4.64 gm) were recorded in media M3 (Garden soil+silt+FYM). A significant response to various planting dates were observed for most of vegetative and rooting attributes of cherry rootstock Colt. 1st January plantation showed maximum sprouting percentage (100%), shoot diameter (1.99 mm), number of leaves (81.46), rootstock height (126.24 cm), survival percentage (58.12%), whereas 11th January plantation showed more number of roots (94.43), root length (10.60 cm), root volume (3.68 cm3) and root weight (3.71 gm). Based on the results from the experimental work, it is recommended that cherry cuttings should be planted in early January in soil media (Silt+Garden soil+ FYM) for better growth and development under the agro climatic conditions of temperate region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20media" title="soil media">soil media</a>, <a href="https://publications.waset.org/abstracts/search?q=cherry%20rootstock" title=" cherry rootstock"> cherry rootstock</a>, <a href="https://publications.waset.org/abstracts/search?q=planting%20dates" title=" planting dates"> planting dates</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20parameters" title=" growth parameters"> growth parameters</a> </p> <a href="https://publications.waset.org/abstracts/157329/effect-of-different-media-and-planting-time-on-the-cuttings-of-cherry-prunus-avium-l-rootstock-colt-under-the-agro-climatic-conditions-of-temprate-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Evolution of Propiconazole and Tebuconazole Residues through the Post-Harvest Application in 'Angeleno' Plum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Rodr%C3%ADguez">M. J. Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20S%C3%A1nchez"> F. M. Sánchez</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Velardo"> B. Velardo</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Calvo"> P. Calvo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Serradilla"> M. J. Serradilla</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Delgado"> J. Delgado</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20L%C3%B3pez"> J. M. López</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main problems in storage and later transport of fruits, are the decays developed that reduce the quality on destination’s markets. Nowadays, there is an increasing interest in the use of compounds to avoid decays in post-harvest. Triazole fungicides are agrochemicals widely used in the agricultural industry due to their wide spectrum of actions, and in some case, they are used in citrus fruit post-harvest. Moreover, its use is not authorized in plum post-harvest, but in order to a future possible authorization, the evolutions of propiconazole and tebuconazole residues are studied after its post-harvest application in ‘Angeleno’ plum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maximum%20residue%20limit%20%28MRL%29" title="maximum residue limit (MRL)">maximum residue limit (MRL)</a>, <a href="https://publications.waset.org/abstracts/search?q=triazole%20fungicides" title=" triazole fungicides"> triazole fungicides</a>, <a href="https://publications.waset.org/abstracts/search?q=decay" title=" decay"> decay</a>, <a href="https://publications.waset.org/abstracts/search?q=Prunus%20salicina" title=" Prunus salicina"> Prunus salicina</a> </p> <a href="https://publications.waset.org/abstracts/46899/evolution-of-propiconazole-and-tebuconazole-residues-through-the-post-harvest-application-in-angeleno-plum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Polymerase Chain Reaction Analysis and Random Amplified Polymorphic DNA of Agrobacterium Tumefaciens </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeer%20M.%20Algeblawi">Abeer M. Algeblawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fifteen isolates of Agrobacterium tumefaciens were obtained from crown gall samples collected from six locations (Tripoli, Alzahra, Ain-Zara, Alzawia, Alazezia in Libya) from Grape (Vitis vinifera L.), Pear (Pyrus communis L.), Peach (Prunus persica L.) and Alexandria in Egypt from Guava (Psidium guajava L.) trees, Artichoke (Cynara cardunculus L.) and Sugar beet (Beta vulgaris L.). Total DNA was extracted from the eight isolates as well as the identification of six isolates used into Polymerase Chain Reaction (PCR) analysis and Random Amplified Polymorphic DNA (RAPD) technique were used. High similarity (55.5%) was observed among the eight A. tumefaciens isolates (Agro1, Agro2, Agro3, Agro4, Agro5, Agro6, Agro7, and Agro8). The PCR amplification products were resulting from the use of two specific primers (virD2A-virD2C). Analysis induction six isolates of A. tumefaciens obtained from different hosts. A visible band was specific to A. tumefaciens of (220 bp, 224 bp) and 338 bp produced with total DNA extracted from bacterial cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agrobacterium%20tumefaciens" title="Agrobacterium tumefaciens">Agrobacterium tumefaciens</a>, <a href="https://publications.waset.org/abstracts/search?q=crown%20gall" title=" crown gall"> crown gall</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20characterization" title=" molecular characterization"> molecular characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=RAPD" title=" RAPD"> RAPD</a> </p> <a href="https://publications.waset.org/abstracts/113521/polymerase-chain-reaction-analysis-and-random-amplified-polymorphic-dna-of-agrobacterium-tumefaciens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Eco-Friendly Natural Dyes from Butea monosperma and Their Application on Cotton Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Archna%20Mall">Archna Mall</a>, <a href="https://publications.waset.org/abstracts/search?q=Neelam%20Agrawal"> Neelam Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hari%20O.%20Saxena"> Hari O. Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhavana%20Sharma"> Bhavana Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Butea monosperma occurs widely throughout central Indian states. Eco-friendly natural dyes were isolated in aqueous medium from leaves, bark and flowers of this plant. These dyes were used for dyeing on cotton fabric using various chemical (potassium aluminium sulphate, potassium dichromate, ferrous sulphate, stannous chloride & tannic acid) and natural mordants (rinds of Terminallia bellerica & Terminalia chebula fruits and shells of Prunus dulcis & Juglans regia nuts). Dyeing was carried out using the pre-mordanting technique. Large range of beautiful shades in terms of hue and darkness were recorded because of varying mordant concentrations and combinations. More importantly dyed fabrics registered varying the degree of colour fastness properties to washing (1-3, colour change and 4-5, colour staining), light (2-4), rubbing (4-5, dry and 3-5, wet) and perspiration (1-4, colour change and 4-5, colour staining). Thus, along with flowers which are traditionally known for natural dyes, the leaves and bark may also find their place in textile industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Butea%20monosperma" title="Butea monosperma">Butea monosperma</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=mordants" title=" mordants"> mordants</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title=" natural dyes"> natural dyes</a> </p> <a href="https://publications.waset.org/abstracts/57950/eco-friendly-natural-dyes-from-butea-monosperma-and-their-application-on-cotton-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Production of Plum (Prunus Cerasifera) Concentrate as Edible Color and Evaluation of Color Change Kinetics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azade%20Ghorbani-HasanSaraei">Azade Ghorbani-HasanSaraei</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed-Ahmad%20Shahidi"> Seyed-Ahmad Shahidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakineh%20Alizadeh"> Sakineh Alizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeleh%20Maghsoudlou"> Adeleh Maghsoudlou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improvement of color, as a quality attribute of Plum Concentrate, has been made possible by the increase in knowledge of kinetic of color change. Three different heating/evaporation processes were employed for the production of pPlum juice concentrate. The Plum juice was concentrated to a final 55 °Bx from an initial °Bx of 15 by microwave heating, rotary vacuum evaporator and evaporating at atmospheric pressure. The final Plum juice concentration of 55 °Bx was achieved in 17, 24 and 57 min by using the microwave, rotary vacuum and atmospheric heating processes, respectively. The colour change during concentration processes was investigated. Total colour differences, Hunter L, a and b parameters were used to estimate the extent of colour loss. All Hunter colour parameters decreased with time. The zero-order, first-order and a combined kinetics model were applied to the changes in colour parameters. Results indicated that variation in TCD followed both first-order and combined kinetics models, and parameters L, a and b followed only combined model. This model implied that the colour formation and pigment destruction occurred during concentration processes of plum juice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colour" title="colour">colour</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=plum%20juice" title=" plum juice"> plum juice</a> </p> <a href="https://publications.waset.org/abstracts/36135/production-of-plum-prunus-cerasifera-concentrate-as-edible-color-and-evaluation-of-color-change-kinetics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Micropropagation and in vitro Conservation via Slow Growth Techniques of Prunus webbii (Spach) Vierh: An Endangered Plant Species in Albania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valbona%20Sota">Valbona Sota</a>, <a href="https://publications.waset.org/abstracts/search?q=Efigjeni%20Kongjika"> Efigjeni Kongjika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wild almond is a woody species, which is difficult to propagate either generatively by seed or by vegetative methods (grafting or cuttings) and also considered as Endangered (EN) in Albania based on IUCN criteria. As a wild relative of cultivated fruit trees, this species represents a source of genetic variability and can be very important in breeding programs and cultivation. For this reason, it would be of interest to use an effective method of in vitro mid-term conservation, which involves strategies to slow plant growth through physicochemical alterations of in vitro growth conditions. Multiplication of wild almond was carried out using zygotic embryos, as primary explants, with the purpose to develop a successful propagation protocol. Results showed that zygotic embryos can proliferate through direct or indirect organogenesis. During subculture, stage was obtained a great number of new plantlets identical to mother plants derived from the zygotic embryos. All in vitro plantlets obtained from subcultures underwent in vitro conservation by minimal growth in low temperature (4ºC) and darkness. The efficiency of this technique was evaluated for 3, 6, and 10 months of conservation period. Maintenance in these conditions reduced micro cuttings growth. Survival and regeneration rates for each period were evaluated and resulted that the maximal time of conservation without subculture on 4ºC was 10 months, but survival and regeneration rates were significantly reduced, specifically 15.6% and 7.6%. An optimal period of conservation in these conditions can be considered the 5-6 months storage, which can lead to 60-50% of survival and regeneration rates. This protocol may be beneficial for mass propagation, mid-term conservation, and for genetic manipulation of wild almond. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micropropagation" title="micropropagation">micropropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20growth" title=" minimal growth"> minimal growth</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=wild%20almond" title=" wild almond"> wild almond</a> </p> <a href="https://publications.waset.org/abstracts/110346/micropropagation-and-in-vitro-conservation-via-slow-growth-techniques-of-prunus-webbii-spach-vierh-an-endangered-plant-species-in-albania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Postharvest Studies Beyond Fresh Market Eating Quality: Phytochemical Changes in Peach Fruit During Ripening and Advanced Senescence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20Singh%20Mer">Mukesh Singh Mer</a>, <a href="https://publications.waset.org/abstracts/search?q=Brij%20Lal%20Attri"> Brij Lal Attri</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20Narayan"> Raj Narayan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20Kumar"> Anil Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Postharvest studies were conducted under the concept that fruit do not qualify for the fresh market may be used as a source of bioactive compounds. One peach (Prunus persica cvs Red June) were evaluated for their photochemical content and antioxidant capacity during the ripening and over ripening periods (advanced senescence) for 12 and 15 d, respectively. Firmness decreased rapidly during this period from an initial pre –ripe stage of 5.85 lb/in2 for peach until the fruit reached the fully ripe stage of lb/in2. In this study we evaluate the varietal performance in respect of the quality beyond fresh market eating and nutrition levels. The varieties are (T-1 F-16-23), (T-2 Florda king), (T-3 Nectarine), (T-4 Red June). The result pertaining are there the highest fruit length (68.50 mm), fruit breadth (71.38 mm), fruit weight (186.11 g) found in T4 Red June and fruit firmness (8.74 lb/in 2) found in T3-Nectarine. The acidity (1.66 %), ascorbic acid (440 mg/100 g), reducing sugar (19.77 %) and total sugar (51.73 %) found in T4- Red June, T-2 Florda King, T-3 Nectarine at harvesting time but decrease in fruit length ( 60.81 mm), fruit breadth (51.84 mm), fruit weight (143.03 g) found in T4 Red June and fruit firmness (6.29 lb/in 2) found in T3-Nectarine. The acidity (0.80 %), ascorbic acid (329.50 mg/100 g), reducing sugar (34.03 %) and total sugar (26.97 %) found in T1- F-16-23, T-2 Florda King, T-1 F-16-23 and T-3 Nectarine after 15 days in freeze conditions when will have been since reached beyond market. The study reveals that the size and yield good in Red June and the nutritional value higher in Florda King and Nectarine peach. Fruit firmness remained unchanged afterwards. In addition, total soluble solids in peach were basically similar during the ripening and over ripening periods. Further research on secondary metabolism regulation during ripening and advanced senescence is needed to obtain fruit as enriched dietary sources of bioactive compounds or for its use in alternative high value health markets including dietary supplements, functional foods cosmetics and pharmaceuticals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metabolism" title="metabolism">metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=acidity" title=" acidity"> acidity</a>, <a href="https://publications.waset.org/abstracts/search?q=ascorbic%20acid" title=" ascorbic acid"> ascorbic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceuticals" title=" pharmaceuticals"> pharmaceuticals</a> </p> <a href="https://publications.waset.org/abstracts/23442/postharvest-studies-beyond-fresh-market-eating-quality-phytochemical-changes-in-peach-fruit-during-ripening-and-advanced-senescence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Peach as a Potential Functional Food: Biological Activity and Important Phenolic Compound Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADs%20R.%20Silva">Luís R. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Catarina%20Bento"> Catarina Bento</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20C.%20Gon%C3%A7alves"> Ana C. Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=F%C3%A1bio%20Jesus"> Fábio Jesus</a>, <a href="https://publications.waset.org/abstracts/search?q=Branca%20M.%20Silva"> Branca M. Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the general population is more and more concerned about nutrition and the health implications of an unbalanced diet. Current knowledge regarding the health benefits and antioxidant properties of certain foods such as fruits and vegetables has gained the interest of both the general public and scientific community. Peach (Prunus persica (L.) Batsch) is one of the most consumed fruits worldwide, with low sugar contents and a broad range of nutrients essential to the normal functioning of the body. Six different peach cultivars from the Fundão region in Portugal were evaluated regarding their phenolic composition by LC-DAD and biological activity. The prepared extracts’ capacity to scavenge free-radicals was tested through the stable free radical DPPH• and nitric oxide (•NO). Additionally, antidiabetic potential and protective effects against peroxyl radical (ROO•) induced damage to erythrocytes were also tested. LC-DAD analysis allowed the identification of 17 phenolic compounds, among which 5-O-caffeoylquinic acids and 3-O-caffeoylquinic acids are pointed out as the most abundant. Regarding the antioxidant activity, all cultivars displayed concentration-dependent free-radical scavenging activity against both nitrogen species and DPPH•. In respect to α-glucosidase inhibitory activity, Royal Magister and Royal Glory presented the highest inhibitory activity (IC50 = 11.7 ± 1.4 and 17.1 ± 1.7 μg/mL, respectively), nevertheless all six cultivars presented higher activity than the control acarbose. As for the protective effect of Royal Lu extract on the oxidative damage induced in erythrocytes by ROO•, the results were quite promising showing inhibition IC50 values of 110.0 ± 4.5 μg/mL and 83.8 ± 6.5 μg/mL for hemolysis and hemoglobin oxidation, respectively. The demonstrated activity is of course associated to the peaches’ phenolic profile, rich in phenolic acids and flavonoids with high hydrogen donating capacity. These compounds have great industrial interest for the manufacturing of natural products. The following step would naturally be the extraction and isolation from the plant tissues and large-scale production through biotechnology techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20food" title=" functional food"> functional food</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=peach" title=" peach"> peach</a> </p> <a href="https://publications.waset.org/abstracts/70855/peach-as-a-potential-functional-food-biological-activity-and-important-phenolic-compound-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Evaluation of Natural Waste Materials for Ammonia Removal in Biofilters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20F.%20Vieira">R. F. Vieira</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Lopes"> D. Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Baptista"> I. Baptista</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Figueiredo"> S. A. Figueiredo</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20F.%20Domingues"> V. F. Domingues</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Jorge"> R. Jorge</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Delerue-matos"> C. Delerue-matos</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20Freitas"> O. M. Freitas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Odours are generated in municipal solid wastes management plants as a result of decomposition of organic matter, especially when anaerobic degradation occurs. Information was collected about the substances and respective concentration in the surrounding atmosphere of some management plants. The main components which are associated with these unpleasant odours were identified: ammonia, hydrogen sulfide and mercaptans. The first is the most common and the one that presents the highest concentrations, reaching values of 700 mg/m3. Biofiltration, which involves simultaneously biodegradation, absorption and adsorption processes, is a sustainable technology for the treatment of these odour emissions when a natural packing material is used. The packing material should ideally be cheap, durable, and allow the maximum microbiological activity and adsorption/absorption. The presence of nutrients and water is required for biodegradation processes. Adsorption and absorption are enhanced by high specific surface area, high porosity and low density. The main purpose of this work is the exploitation of natural waste materials, locally available, as packing media: heather (Erica lusitanica), chestnut bur (from Castanea sativa), peach pits (from Prunus persica) and eucalyptus bark (from Eucalyptus globulus). Preliminary batch tests of ammonia removal were performed in order to select the most interesting materials for biofiltration, which were then characterized. The following physical and chemical parameters were evaluated: density, moisture, pH, buffer and water retention capacity. The determination of equilibrium isotherms and the adjustment to Langmuir and Freundlich models was also performed. Both models can fit the experimental results. Based both in the material performance as adsorbent and in its physical and chemical characteristics, eucalyptus bark was considered the best material. It presents a maximum adsorption capacity of 0.78±0.45 mol/kg for ammonia. The results from its characterization are: 121 kg/m3 density, 9.8% moisture, pH equal to 5.7, buffer capacity of 0.370 mmol H+/kg of dry matter and water retention capacity of 1.4 g H2O/g of dry matter. The application of natural materials locally available, with little processing, in biofiltration is an economic and sustainable alternative that should be explored. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonia%20removal" title="ammonia removal">ammonia removal</a>, <a href="https://publications.waset.org/abstracts/search?q=biofiltration" title=" biofiltration"> biofiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20materials" title=" natural materials"> natural materials</a>, <a href="https://publications.waset.org/abstracts/search?q=odour%20control" title=" odour control"> odour control</a> </p> <a href="https://publications.waset.org/abstracts/24769/evaluation-of-natural-waste-materials-for-ammonia-removal-in-biofilters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Saco Sweet Cherry from Fundão Region, Portugal: Chemical Profile and Health-Promoting Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADs%20R.%20Silva">Luís R. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20C.%20Gon%C3%A7alves"> Ana C. Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Catarina%20Bento"> Catarina Bento</a>, <a href="https://publications.waset.org/abstracts/search?q=F%C3%A1bio%20Jesus"> Fábio Jesus</a>, <a href="https://publications.waset.org/abstracts/search?q=Branca%20M.%20Silva"> Branca M. Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prunus avium Linnaeus, more known as sweet cherry, is one of the most appreciated fruit worldwide. Most of these quantities are produced in Fundão region, being Saco the cultivar most produced. Saco is very rich in bioactive compounds, especially phenolics, and presents great antioxidant capacity. The purpose of the present study was to investigate the chemical profile and biological potential, concerning antioxidant, anti-diabetic activity and protective effects towards erythrocytes by Saco sweet cherry collected from Fundão region (Portugal). The hydroethanolic extracts were prepared and passed through a C18 solid-phase extraction column. The phenolic profile analyzed by LC-DAD method allowed to the identification of 22 phenolic compounds, being 16 non-phenolics and 6 anthocyanins. In respect to non-coloured phenolics, 3-O-caffeoylquinic and ρ-coumaroylquinic acids were the main ones. Concerning to anthocyanins, cyanidin-3-O-rutinoside was found in higher amounts. Relatively to biological potential, Saco showed great antioxidant potential, through DPPH and NO radical assays, with IC50 =16.24 ± 0.46 µg/mL and IC50 = 176.69 ± 3.35 µg/mL for DPPH and NO, respectively. These results were similar to those obtained for ascorbic acid control (IC50 = 16.92 ± 0.69 and IC50 = 162.66 ± 1.31 μg/mL for DPPH and NO, respectively). In respect to antidiabetic potential, Saco revealed capacity to inhibit α-glucosidase in a dose-dependent manner (IC50 = 10.79 ± 0.40 µg/mL), being much active than positive control acarbose (IC50 = 306.66 ± 0.84 μg/mL). Additionally, Saco extracts revealed protective effects against ROO•-mediated toxicity generated by AAPH in human blood erythrocytes, inhibiting hemoglobin oxidation (IC50 = 38.57 ± 0.96 μg/mL) and hemolysis (IC50 = 73.03 ± 1.48 μg/mL), in a concentration-dependent manner. However, Saco extracts were less effective than quercetin control (IC50 = 3.10 μg/mL and IC50 = 0.7 μg/mL for inhibition of hemoglobin oxidation and hemolysis, respectively). The results obtained showed that Saco is an excellent source of phenolic compounds. These ones are natural antioxidant substances, which easily capture reactive species. This work presents new insights regarding sweet cherry antioxidant properties which may be useful for the future development of new therapeutic strategies for preventing or attenuating oxidative-related disorders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20capacity" title="antioxidant capacity">antioxidant capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20benefits" title=" health benefits"> health benefits</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=saco" title=" saco"> saco</a> </p> <a href="https://publications.waset.org/abstracts/70856/saco-sweet-cherry-from-fundao-region-portugal-chemical-profile-and-health-promoting-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Effects of Centrifugation, Encapsulation Method and Different Coating Materials on the Total Antioxidant Activity of the Microcapsules of Powdered Cherry Laurels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Cilek%20Tatar">B. Cilek Tatar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Sumnu"> G. Sumnu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Oztop"> M. Oztop</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ayaz"> E. Ayaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Encapsulation protects sensitive food ingredients against heat, oxygen, moisture and pH until they are released to the system. It can mask the unwanted taste of nutrients that are added to the foods for fortification purposes. Cherry laurels (<em>Prunus</em> <em>laurocerasus</em>) contain phenolic compounds which decrease the proneness to several chronic diseases such as types of cancer and cardiovascular diseases. The objective of this research was to study the effects of centrifugation, different coating materials and homogenization methods on microencapsulation of powders obtained from cherry laurels. In this study, maltodextrin and mixture of maltodextrin:whey protein with a ratio of 1:3 (w/w) were chosen as coating materials. Total solid content of coating materials was kept constant as 10% (w/w). Capsules were obtained from powders of freeze-dried cherry laurels through encapsulation process by silent crusher homogenizer or microfluidization. Freeze-dried cherry laurels were core materials and core to coating ratio was chosen as 1:10 by weight. To homogenize the mixture, high speed homogenizer was used at 4000 rpm for 5 min. Then, silent crusher or microfluidizer was used to complete encapsulation process. The mixtures were treated either by silent crusher for 1 min at 75000 rpm or microfluidizer at 50 MPa for 3 passes. Freeze drying for 48 hours was applied to emulsions to obtain capsules in powder form. After these steps, dry capsules were grounded manually into a fine powder. The microcapsules were analyzed for total antioxidant activity with DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging method. Prior to high speed homogenization, the samples were centrifuged (4000 rpm, 1 min). Centrifugation was found to have positive effect on total antioxidant activity of capsules. Microcapsules treated by microfluidizer were found to have higher total antioxidant activities than those treated by silent crusher. It was found that increasing whey protein concentration in coating material (using maltodextrin:whey protein 1:3 mixture) had positive effect on total antioxidant activity for both silent crusher and microfluidization methods. Therefore, capsules prepared by microfluidization of centrifuged mixtures can be selected as the best conditions for encapsulation of cherry laurel powder by considering their total antioxidant activity. In this study, it was shown that capsules prepared by these methods can be recommended to be incorporated into foods in order to enhance their functionality by increasing antioxidant activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=cherry%20laurel" title=" cherry laurel"> cherry laurel</a>, <a href="https://publications.waset.org/abstracts/search?q=microencapsulation" title=" microencapsulation"> microencapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidization" title=" microfluidization"> microfluidization</a> </p> <a href="https://publications.waset.org/abstracts/50598/effects-of-centrifugation-encapsulation-method-and-different-coating-materials-on-the-total-antioxidant-activity-of-the-microcapsules-of-powdered-cherry-laurels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Development of Allergenic and Melliferous Floral Pollen Spectrum Using Scanning Electron Microscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehwish%20Jamil%20Noor">Mehwish Jamil Noor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Morphological features of pollen (sculpturing) were useful for identification of different floral taxa. In this study 49 pollen grains, types belonging to 25 families were studied using Scanning Electron Microscope. Shape and sculpturing of pollen ranging from Psilate, scabrate to reticulate, bireticulate and echinolophate. Honey pollen was identified using morphological features, number and arrangement of pore and colpi, size and shape. It presents the first attempt from Pakistan involving extraction of pollen from honey, its identification and taxonomic analysis. Among pollen studied diversity in shape and sculpturing has been observed ranging from Psilate, scabrate to reticulate to bireticulate and echinolophate condition. Pollen has been identified with the help of morphological feature, number and arrangement of pore and colpi, size and shape, reference slides, light microscopic data and previous literature have been consulted for pollen identification. Pollen of closely related species resemble each other therefore pollen identification of airborne and honey pollen is not possible till species level. Survey of flora was carried in parallel to keep the record about the allergenic and melliferous preference of specific sites through surveys and interviews. Their pollination season and geographical distribution were recorded. Two hundred and five including wild and cultivated taxa were identified belonging to sixty-seven families. Major bee attracting wild shrub and trees includes Justicia adhatoda, Acacia nilotica, Ziziphus jujuba, Taraxicum officinalis, Artemisia dubia, Casuarina sp., Ulmus sp., Broussonetia papyrifera, Cupressus sp. or Pinus roxburghii etc. Cultivated crops like Pennisetum typhoides, Nigella sativa, Triticum sativum along with fruit trees of Pyrus, Prunus, Eryobotria, Citrus etc. are popular melliferous floras. Exotic/ introduced species like Eucalyptus or Parthenium hysterophorus, are also frequently visited by bees indicating the significance of those plants in the honey industry. It is concluded that different microscopic analysis techniques give more clear and authentic pictures of and melliferous pollen identification which is well supported by the floral calendar. The diversity of pollen are observed in case of melliferous pollen, and most of the windborne pollen were found less sculptured or psilate expressing the adaptation to the specific mode of pollination. Pollen morphology and sculpturing would serve as a reference for future studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pollen" title="pollen">pollen</a>, <a href="https://publications.waset.org/abstracts/search?q=allergenic%20flora" title=" allergenic flora"> allergenic flora</a>, <a href="https://publications.waset.org/abstracts/search?q=sem" title=" sem"> sem</a>, <a href="https://publications.waset.org/abstracts/search?q=pollen%20key" title=" pollen key"> pollen key</a>, <a href="https://publications.waset.org/abstracts/search?q=Scanning%20Electron%20Microscopy%20%28SEM%29" title=" Scanning Electron Microscopy (SEM)"> Scanning Electron Microscopy (SEM)</a> </p> <a href="https://publications.waset.org/abstracts/72487/development-of-allergenic-and-melliferous-floral-pollen-spectrum-using-scanning-electron-microscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Saco Sweet Cherry: Phenolic Profile and Biological Activity of Coloured and Non-Coloured Fractions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Catarina%20Bento">Catarina Bento</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Carolina%20Gon%C3%A7alves"> Ana Carolina Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=F%C3%A1bio%20Jesus"> Fábio Jesus</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADs%20Rodrigues%20Silva"> Luís Rodrigues Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing evidence suggests that a diet rich in fruits and vegetables plays important roles in the prevention of chronic diseases, such as heart disease, cancer, stroke, diabetes, Alzheimer’s disease, among others. Fruits and vegetables gained prominence due their richness in bioactive compounds, being the focus of many studies due to their biological properties acting as health promoters. Prunus avium Linnaeus (L.), commonly known as sweet cherry has been the centre of attention due to its health benefits, and has been highly studied. In Portugal, most of the cherry production comes from the Fundão region. The Saco is one of the most important cultivar produced in this region, attributed with geographical protection. In this work, we prepared 3 extracts through solid-phase extraction (SPE): a whole extract, fraction I (non-coloured phenolics) and fraction II (coloured phenolics). The three extracts were used to determine the phenolic profile of Saco cultivar by liquid chromatography with diode array detection (LC-DAD) technique. This was followed by the evaluation of their biological potential, testing the extracts’ capacity to scavenge free-radicals (DPPH•, nitric oxide (•NO) and superoxide radical (O2●-)) and to inhibit α-glucosidase enzyme of all extracts. Additionally, we evaluated, for the first time, the protective effects against peroxyl radical (ROO•)-induced hemoglobin oxidation and hemolysis in human erythrocytes. A total of 16 non-coloured phenolics were detected, 3-O-caffeoylquinic and ρ-coumaroylquinic acids were the main ones, and 6 anthocyanins were found, among which cyanidin-3-O-rutinoside represented the majority. In respect to antioxidant activity, Saco showed great antioxidant potential in a concentration-dependent manner, demonstrated through the DPPH•,•NO and O2●-radicals, and greater ability to inhibit the α-glucosidase enzyme in comparison to the regular drug acarbose used to treat diabetes. Additionally, Saco proved to be effective to protect erythrocytes against oxidative damage in a concentration-dependent manner against hemoglobin oxidation and hemolysis. Our work demonstrated that Saco cultivar is an excellent source of phenolic compounds which are natural antioxidants that easily capture reactive species, such as ROO• before they can attack the erythrocytes’ membrane. In a general way, the whole extract showed the best efficiency, most likely due to a synergetic interaction between the different compounds. Finally, comparing the two separate fractions, the coloured fraction showed the most activity in all the assays, proving to be the biggest contributor of Saco cherries’ biological activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20potential" title="biological potential">biological potential</a>, <a href="https://publications.waset.org/abstracts/search?q=coloured%20phenolics" title=" coloured phenolics"> coloured phenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=non-coloured%20phenolics" title=" non-coloured phenolics"> non-coloured phenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=sweet%20cherry" title=" sweet cherry"> sweet cherry</a> </p> <a href="https://publications.waset.org/abstracts/76618/saco-sweet-cherry-phenolic-profile-and-biological-activity-of-coloured-and-non-coloured-fractions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Detection of Mustard Traces in Food by an Official Food Safety Laboratory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clara%20Tramuta">Clara Tramuta</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucia%20Decastelli"> Lucia Decastelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Elisa%20Barcucci"> Elisa Barcucci</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Fragassi"> Sandra Fragassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Samantha%20Lupi"> Samantha Lupi</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrico%20Arletti"> Enrico Arletti</a>, <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Bizzarri"> Melissa Bizzarri</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Manila%20Bianchi"> Daniela Manila Bianchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introdution: Food allergies occurs, in the Western World, 2% of adults and up to 8% of children. The protection of allergic consumers is guaranted, in Eurrope, by Regulation (EU) No 1169/2011 of the European Parliament which governs the consumer's right to information and identifies 14 food allergens to be mandatory indicated on the label. Among these, mustard is a popular spice added to enhance the flavour and taste of foods. It is frequently present as an ingredient in spice blends, marinades, salad dressings, sausages, and other products. Hypersensitivity to mustard is a public health problem since the ingestion of even low amounts can trigger severe allergic reactions. In order to protect the allergic consumer, high performance methods are required for the detection of allergenic ingredients. Food safety laboratories rely on validated methods that detect hidden allergens in food to ensure the safety and health of allergic consumers. Here we present the test results for the validation and accreditation of a Real time PCR assay (RT-PCR: SPECIALfinder MC Mustard, Generon), for the detection of mustard traces in food. Materials and Methods. The method was tested on five classes of food matrices: bakery and pastry products (chocolate cookies), meats (ragù), ready-to-eat (mixed salad), dairy products (yogurt), grains, and milling products (rice and barley flour). Blank samples were spiked starting with the mustard samples (Sinapis Alba), lyophilized and stored at -18 °C, at a concentration of 1000 ppm. Serial dilutions were then prepared to a final concentration of 0.5 ppm, using the DNA extracted by ION Force FAST (Generon) from the blank samples. The Real Time PCR reaction was performed by RT-PCR SPECIALfinder MC Mustard (Generon), using CFX96 System (BioRad). Results. Real Time PCR showed a limit of detection (LOD) of 0.5 ppm in grains and milling products, ready-to-eat, meats, bakery, pastry products, and dairy products (range Ct 25-34). To determine the exclusivity parameter of the method, the ragù matrix was contaminated with Prunus dulcis (almonds), peanut (Arachis hypogaea), Glycine max (soy), Apium graveolens (celery), Allium cepa (onion), Pisum sativum (peas), Daucus carota (carrots), and Theobroma cacao (cocoa) and no cross-reactions were observed. Discussion. In terms of sensitivity, the Real Time PCR confirmed, even in complex matrix, a LOD of 0.5 ppm in five classes of food matrices tested; these values are compatible with the current regulatory situation that does not consider, at international level, to establish a quantitative criterion for the allergen considered in this study. The Real Time PCR SPECIALfinder kit for the detection of mustard proved to be easy to use and particularly appreciated for the rapid response times considering that the amplification and detection phase has a duration of less than 50 minutes. Method accuracy was rated satisfactory for sensitivity (100%) and specificity (100%) and was fully validated and accreditated. It was found adequate for the needs of the laboratory as it met the purpose for which it was applied. This study was funded in part within a project of the Italian Ministry of Health (IZS PLV 02/19 RC). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allergens" title="allergens">allergens</a>, <a href="https://publications.waset.org/abstracts/search?q=food" title=" food"> food</a>, <a href="https://publications.waset.org/abstracts/search?q=mustard" title=" mustard"> mustard</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20PCR" title=" real time PCR"> real time PCR</a> </p> <a href="https://publications.waset.org/abstracts/144177/detection-of-mustard-traces-in-food-by-an-official-food-safety-laboratory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>