CINXE.COM
Alessandro Treves | SISSA - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Alessandro Treves | SISSA - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="wRWgyrec/L/683cW0r4GR5sMss/i8K97gikrKSzcNYhaQHUg0RwuTeBS1oyGi56Ww8wHBDl+mrt38ZcM9grGGw==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="alessandro treves" /> <meta name="description" content="would-be theoretical neuroscientist, hoping that is a status without strict prerequisites or formal qualifications. Works at SISSA in Trieste" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '92477ec68c09d28ae4730a4143c926f074776319'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"113 million","monthly_visitor_count":113458213,"monthly_visitor_count_in_millions":113,"user_count":277546099,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732822679000); window.Aedu.timeDifference = new Date().getTime() - 1732822679000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-bae13f9b51961d5f1e06008e39e31d0138cb31332e8c2e874c6d6a250ec2bb14.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-19a25d160d01bde427443d06cd6b810c4c92c6026e7cb31519e06313eb24ed90.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://sissa.academia.edu/AlessandroTreves" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-e032f1d55548c2f2dee4eac9fe52f38beaf13471f2298bb2ea82725ae930b83c.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves","photo":"https://0.academia-photos.com/2162013/698120/866766/s65_alessandro.treves.jpg","has_photo":true,"department":{"id":402515,"name":"Neuroscience","url":"https://sissa.academia.edu/Departments/Neuroscience/Documents","university":{"id":1417,"name":"SISSA","url":"https://sissa.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":96780,"name":"Evolutionary neuroscience","url":"https://www.academia.edu/Documents/in/Evolutionary_neuroscience"},{"id":15594,"name":"Systems Neuroscience","url":"https://www.academia.edu/Documents/in/Systems_Neuroscience"},{"id":13692,"name":"Neurolinguistics","url":"https://www.academia.edu/Documents/in/Neurolinguistics"},{"id":2973,"name":"Spatial cognition","url":"https://www.academia.edu/Documents/in/Spatial_cognition"},{"id":55356,"name":"Theoretical Neuroscience","url":"https://www.academia.edu/Documents/in/Theoretical_Neuroscience"},{"id":100357,"name":"Ancient Near Eastern Studies","url":"https://www.academia.edu/Documents/in/Ancient_Near_Eastern_Studies"},{"id":26449,"name":"Ancient Mesopotamian Religions","url":"https://www.academia.edu/Documents/in/Ancient_Mesopotamian_Religions"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://sissa.academia.edu/AlessandroTreves","location":"/AlessandroTreves","scheme":"https","host":"sissa.academia.edu","port":null,"pathname":"/AlessandroTreves","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-dc817ad8-64a1-4fba-966e-a049ba1cf806"></div> <div id="ProfileCheckPaperUpdate-react-component-dc817ad8-64a1-4fba-966e-a049ba1cf806"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Alessandro Treves" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/2162013/698120/866766/s200_alessandro.treves.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Alessandro Treves</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://sissa.academia.edu/">SISSA</a>, <a class="u-tcGrayDarker" href="https://sissa.academia.edu/Departments/Neuroscience/Documents">Neuroscience</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Alessandro" data-follow-user-id="2162013" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="2162013"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">180</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">204</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">6</p></div></a><a href="/AlessandroTreves/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">would-be theoretical neuroscientist, hoping that is a status without strict prerequisites or formal qualifications. Works at SISSA in Trieste<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="2162013">View All (7)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="2162013" href="https://www.academia.edu/Documents/in/Evolutionary_neuroscience"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://sissa.academia.edu/AlessandroTreves","location":"/AlessandroTreves","scheme":"https","host":"sissa.academia.edu","port":null,"pathname":"/AlessandroTreves","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Evolutionary neuroscience"]}" data-trace="false" data-dom-id="Pill-react-component-e8c46bc4-db1e-4dfa-8c1b-b1ca403c757f"></div> <div id="Pill-react-component-e8c46bc4-db1e-4dfa-8c1b-b1ca403c757f"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="2162013" href="https://www.academia.edu/Documents/in/Systems_Neuroscience"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Systems Neuroscience"]}" data-trace="false" data-dom-id="Pill-react-component-497aa498-5401-4cd4-bb83-238d8dbece6f"></div> <div id="Pill-react-component-497aa498-5401-4cd4-bb83-238d8dbece6f"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="2162013" href="https://www.academia.edu/Documents/in/Neurolinguistics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Neurolinguistics"]}" data-trace="false" data-dom-id="Pill-react-component-f8878e7b-fa14-4ab7-9c1b-85bc004ed328"></div> <div id="Pill-react-component-f8878e7b-fa14-4ab7-9c1b-85bc004ed328"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="2162013" href="https://www.academia.edu/Documents/in/Spatial_cognition"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Spatial cognition"]}" data-trace="false" data-dom-id="Pill-react-component-9c21afac-6fa4-414f-8ff8-a233f38fc91b"></div> <div id="Pill-react-component-9c21afac-6fa4-414f-8ff8-a233f38fc91b"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="2162013" href="https://www.academia.edu/Documents/in/Theoretical_Neuroscience"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Theoretical Neuroscience"]}" data-trace="false" data-dom-id="Pill-react-component-21086e75-3424-4eef-82be-98176d07a910"></div> <div id="Pill-react-component-21086e75-3424-4eef-82be-98176d07a910"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Alessandro Treves</h3></div><div class="js-work-strip profile--work_container" data-work-id="124437592"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124437592/Taking_time_to_compose_thoughts_with_prefrontal_schemata"><img alt="Research paper thumbnail of Taking time to compose thoughts with prefrontal schemata" class="work-thumbnail" src="https://attachments.academia-assets.com/118662854/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124437592/Taking_time_to_compose_thoughts_with_prefrontal_schemata">Taking time to compose thoughts with prefrontal schemata</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Under what conditions can prefrontal cortex direct the composition of brain states, to generate c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Under what conditions can prefrontal cortex direct the composition of brain states, to generate coherent streams of thoughts? Using a simplified Potts model of cortical dynamics, crudely differentiated into two halves, we show that once activity levels are regulated, so as to disambiguate a single temporal sequence, whether the contents of the sequence are mainly determined by the frontal or by the posterior half, or by neither, depends on statistical parameters that describe its microcircuits. The frontal cortex tends to lead if it has more local attractors, longer-lasting and stronger ones, in order of increasing importance. Its guidance is particularly effective to the extent that posterior cortices do not tend to transition from state to state on their own. The result may be related to prefrontal cortex enforcing its temporally-oriented schemata driving coherent sequences of brain states, unlike the atemporal “context” contributed by the hippocampus. Modelling a mild prefrontal ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4a3b264715ba73d051b45e05a9d33f80" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":118662854,"asset_id":124437592,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/118662854/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124437592"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124437592"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124437592; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124437592]").text(description); $(".js-view-count[data-work-id=124437592]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124437592; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124437592']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124437592, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4a3b264715ba73d051b45e05a9d33f80" } } $('.js-work-strip[data-work-id=124437592]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124437592,"title":"Taking time to compose thoughts with prefrontal schemata","translated_title":"","metadata":{"abstract":"Under what conditions can prefrontal cortex direct the composition of brain states, to generate coherent streams of thoughts? Using a simplified Potts model of cortical dynamics, crudely differentiated into two halves, we show that once activity levels are regulated, so as to disambiguate a single temporal sequence, whether the contents of the sequence are mainly determined by the frontal or by the posterior half, or by neither, depends on statistical parameters that describe its microcircuits. The frontal cortex tends to lead if it has more local attractors, longer-lasting and stronger ones, in order of increasing importance. Its guidance is particularly effective to the extent that posterior cortices do not tend to transition from state to state on their own. The result may be related to prefrontal cortex enforcing its temporally-oriented schemata driving coherent sequences of brain states, unlike the atemporal “context” contributed by the hippocampus. Modelling a mild prefrontal ...","publisher":"Cold Spring Harbor Laboratory"},"translated_abstract":"Under what conditions can prefrontal cortex direct the composition of brain states, to generate coherent streams of thoughts? Using a simplified Potts model of cortical dynamics, crudely differentiated into two halves, we show that once activity levels are regulated, so as to disambiguate a single temporal sequence, whether the contents of the sequence are mainly determined by the frontal or by the posterior half, or by neither, depends on statistical parameters that describe its microcircuits. The frontal cortex tends to lead if it has more local attractors, longer-lasting and stronger ones, in order of increasing importance. Its guidance is particularly effective to the extent that posterior cortices do not tend to transition from state to state on their own. The result may be related to prefrontal cortex enforcing its temporally-oriented schemata driving coherent sequences of brain states, unlike the atemporal “context” contributed by the hippocampus. Modelling a mild prefrontal ...","internal_url":"https://www.academia.edu/124437592/Taking_time_to_compose_thoughts_with_prefrontal_schemata","translated_internal_url":"","created_at":"2024-10-05T01:10:24.971-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118662854,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118662854/thumbnails/1.jpg","file_name":"2023.07.25.550523.full.pdf","download_url":"https://www.academia.edu/attachments/118662854/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Taking_time_to_compose_thoughts_with_pre.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118662854/2023.07.25.550523.full-libre.pdf?1728117810=\u0026response-content-disposition=attachment%3B+filename%3DTaking_time_to_compose_thoughts_with_pre.pdf\u0026Expires=1732826278\u0026Signature=FW02fP83yYMW~wivha5nLj~-CBv4YiKRJHY662ouvzRSEBNZmuEEwE4z~dGLHvZ0pAeJ1h0yRvlSr3sZ8Da81Yj5zmA4OaEr741DOk4Sw83OFWIRhjI5umgPwTYioMmJon5NXqJz6-ZQHcumJW1xIymIlxxO-9E1dJ9fSZMTMPeiuCdjat005coPTvUUzVIJZsH3XP0fl~rL6urwufoiwe-9ec-KaC1jNJz5aATNdZ6fnkcCqdkK~2xwFEL-l3M~aPzRBDAjKP8P4pqsU~pMzy7mwmtq3BgGdsDBeLT-6VuJzXuQt3ZrDvh2rjpGUu-7uf~9vT15ViAQieWWojdPzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Taking_time_to_compose_thoughts_with_prefrontal_schemata","translated_slug":"","page_count":30,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":118662854,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118662854/thumbnails/1.jpg","file_name":"2023.07.25.550523.full.pdf","download_url":"https://www.academia.edu/attachments/118662854/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Taking_time_to_compose_thoughts_with_pre.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118662854/2023.07.25.550523.full-libre.pdf?1728117810=\u0026response-content-disposition=attachment%3B+filename%3DTaking_time_to_compose_thoughts_with_pre.pdf\u0026Expires=1732826278\u0026Signature=FW02fP83yYMW~wivha5nLj~-CBv4YiKRJHY662ouvzRSEBNZmuEEwE4z~dGLHvZ0pAeJ1h0yRvlSr3sZ8Da81Yj5zmA4OaEr741DOk4Sw83OFWIRhjI5umgPwTYioMmJon5NXqJz6-ZQHcumJW1xIymIlxxO-9E1dJ9fSZMTMPeiuCdjat005coPTvUUzVIJZsH3XP0fl~rL6urwufoiwe-9ec-KaC1jNJz5aATNdZ6fnkcCqdkK~2xwFEL-l3M~aPzRBDAjKP8P4pqsU~pMzy7mwmtq3BgGdsDBeLT-6VuJzXuQt3ZrDvh2rjpGUu-7uf~9vT15ViAQieWWojdPzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology"},{"id":28576,"name":"Prefrontal Cortex","url":"https://www.academia.edu/Documents/in/Prefrontal_Cortex"}],"urls":[{"id":44985942,"url":"https://syndication.highwire.org/content/doi/10.1101/2023.07.25.550523"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119849767"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/119849767/Can_grid_cell_ensembles_represent_multiple_spaces"><img alt="Research paper thumbnail of Can grid cell ensembles represent multiple spaces?" class="work-thumbnail" src="https://attachments.academia-assets.com/115175903/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/119849767/Can_grid_cell_ensembles_represent_multiple_spaces">Can grid cell ensembles represent multiple spaces?</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a14b7fcb9e50ed0bf66407e9b7ad408d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":115175903,"asset_id":119849767,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/115175903/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119849767"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119849767"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119849767; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119849767]").text(description); $(".js-view-count[data-work-id=119849767]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119849767; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119849767']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 119849767, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a14b7fcb9e50ed0bf66407e9b7ad408d" } } $('.js-work-strip[data-work-id=119849767]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119849767,"title":"Can grid cell ensembles represent multiple spaces?","translated_title":"","metadata":{"grobid_abstract":"The way grid cells represent space in the rodent brain has been a striking discovery, with theoretical implications still unclear. Differently from hippocampal place cells, which are known to encode multiple, environment-dependent spatial maps, grid cells have been widely believed to encode space through a single low dimensional manifold, in which coactivity relations between different neurons are preserved when the environment is changed. Does it have to be so? Here, we compute-using two alternative mathematical models-the storage capacity of a population of grid-like units, embedded in a continuous attractor neural network, for multiple spatial maps. We show that distinct representations of multiple environments can coexist, as existing models for grid cells have the potential to express several sets of hexagonal grid patterns, challenging the view of a universal grid map. This suggests that a population of grid cells can encode multiple non-congruent metric relationships, a feature that could in principle allow a grid-like code to represent environments with a variety of different geometries and possibly conceptual and cognitive spaces, which may be expected to entail such context-dependent metric relationships.","publication_date":{"day":2,"month":7,"year":2018,"errors":{}},"grobid_abstract_attachment_id":115175903},"translated_abstract":null,"internal_url":"https://www.academia.edu/119849767/Can_grid_cell_ensembles_represent_multiple_spaces","translated_internal_url":"","created_at":"2024-05-22T22:33:03.123-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115175903,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115175903/thumbnails/1.jpg","file_name":"527192.full.pdf","download_url":"https://www.academia.edu/attachments/115175903/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Can_grid_cell_ensembles_represent_multip.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115175903/527192.full-libre.pdf?1716446214=\u0026response-content-disposition=attachment%3B+filename%3DCan_grid_cell_ensembles_represent_multip.pdf\u0026Expires=1732826278\u0026Signature=UPOwtQb-mI17bwGBUzNT9F9yc3kovc56v~paxX0gacKoH37vZ3SmRERz3TNm0OFtXwUOEvE5mOJ8oEZ-uWC71n0wSg7p8mctR-Vm3qmzkyQZfPLmc8NFOz0rP1dwu0djzedcQmAzjfmYcrubIVWeO3ezpgWItIDNda7htWmApESe376RVxCRRfU7Kw8r9SCLz~z-cKPMfk-E0LCg2G4YRBihPhcJOlg6-vgxr3Z3JTidphY4VMFVVxesg1bJgmyrwlzY~KUh69uQtAxjJx3Jrsu1eEZpiPiLLlTKKC~FL-AbC5dIFEM45YzAZciz0vq74nToDieEjlHRy8CpC8V1~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Can_grid_cell_ensembles_represent_multiple_spaces","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":115175903,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115175903/thumbnails/1.jpg","file_name":"527192.full.pdf","download_url":"https://www.academia.edu/attachments/115175903/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Can_grid_cell_ensembles_represent_multip.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115175903/527192.full-libre.pdf?1716446214=\u0026response-content-disposition=attachment%3B+filename%3DCan_grid_cell_ensembles_represent_multip.pdf\u0026Expires=1732826278\u0026Signature=UPOwtQb-mI17bwGBUzNT9F9yc3kovc56v~paxX0gacKoH37vZ3SmRERz3TNm0OFtXwUOEvE5mOJ8oEZ-uWC71n0wSg7p8mctR-Vm3qmzkyQZfPLmc8NFOz0rP1dwu0djzedcQmAzjfmYcrubIVWeO3ezpgWItIDNda7htWmApESe376RVxCRRfU7Kw8r9SCLz~z-cKPMfk-E0LCg2G4YRBihPhcJOlg6-vgxr3Z3JTidphY4VMFVVxesg1bJgmyrwlzY~KUh69uQtAxjJx3Jrsu1eEZpiPiLLlTKKC~FL-AbC5dIFEM45YzAZciz0vq74nToDieEjlHRy8CpC8V1~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":64336,"name":"Population","url":"https://www.academia.edu/Documents/in/Population"},{"id":303727,"name":"Grid","url":"https://www.academia.edu/Documents/in/Grid"},{"id":624738,"name":"Neural Computation","url":"https://www.academia.edu/Documents/in/Neural_Computation"}],"urls":[{"id":42235102,"url":"https://doi.org/10.1101/527192"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119849766"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/119849766/Representing_Where_along_with_What_Information_in_a_Model_of_a_Cortical_Patch"><img alt="Research paper thumbnail of Representing Where along with What Information in a Model of a Cortical Patch" class="work-thumbnail" src="https://attachments.academia-assets.com/115175868/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/119849766/Representing_Where_along_with_What_Information_in_a_Model_of_a_Cortical_Patch">Representing Where along with What Information in a Model of a Cortical Patch</a></div><div class="wp-workCard_item"><span>PLOS Computational Biology</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="da824d305d9b7729bb1975e8d4f6b17b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":115175868,"asset_id":119849766,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/115175868/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119849766"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119849766"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119849766; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119849766]").text(description); $(".js-view-count[data-work-id=119849766]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119849766; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119849766']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 119849766, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "da824d305d9b7729bb1975e8d4f6b17b" } } $('.js-work-strip[data-work-id=119849766]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119849766,"title":"Representing Where along with What Information in a Model of a Cortical Patch","translated_title":"","metadata":{"publisher":"International Society for Computational Biology","grobid_abstract":"Behaving in the real world requires flexibly combining and maintaining information about both continuous and discrete variables. In the visual domain, several lines of evidence show that neurons in some cortical networks can simultaneously represent information about the position and identity of objects, and maintain this combined representation when the object is no longer present. The underlying network mechanism for this combined representation is, however, unknown. In this paper, we approach this issue through a theoretical analysis of recurrent networks. We present a model of a cortical network that can retrieve information about the identity of objects from incomplete transient cues, while simultaneously representing their spatial position. Our results show that two factors are important in making this possible: A) a metric organisation of the recurrent connections, and B) a spatially localised change in the linear gain of neurons. Metric connectivity enables a localised retrieval of information about object identity, while gain modulation ensures localisation in the correct position. Importantly, we find that the amount of information that the network can retrieve and retain about identity is strongly affected by the amount of information it maintains about position. This balance can be controlled by global signals that change the neuronal gain. These results show that anatomical and physiological properties, which have long been known to characterise cortical networks, naturally endow them with the ability to maintain a conjunctive representation of the identity and location of objects.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"PLOS Computational Biology","grobid_abstract_attachment_id":115175868},"translated_abstract":null,"internal_url":"https://www.academia.edu/119849766/Representing_Where_along_with_What_Information_in_a_Model_of_a_Cortical_Patch","translated_internal_url":"","created_at":"2024-05-22T22:33:01.737-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115175868,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115175868/thumbnails/1.jpg","file_name":"177313.pdf","download_url":"https://www.academia.edu/attachments/115175868/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Representing_Where_along_with_What_Infor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115175868/177313-libre.pdf?1716446229=\u0026response-content-disposition=attachment%3B+filename%3DRepresenting_Where_along_with_What_Infor.pdf\u0026Expires=1732826278\u0026Signature=LDLYgSte3-AOsFfnulNOb1~kb43wKGCep6GXYlrVZ7xARbvgmFtSANZnjY9o8qAnEXJup-xX5AwI-9S0oVj2tKCgodEWWXOSO5pfgS1kFN9x12JBBP1Zahi10wro5D6a3A0-Qu4UbDFjIHPt4cLEg1~SW3eRt3YGhNwWCDU-Q7LwQKFxbLbNKf8PCCZAjBGMxXTCKRboeYRELS0ISYosA~-RmddWJOGwhPVp7YDO2dV~3mpSS~b20ee~l6uEKYQibgm0o4ebtbdqJI2SLv9PmG7Ifktco69Af90Hk-pig0FJ8emA5blAdaKMGp9edq1Isu7-vE~M-EaHraA9Ku8Mgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Representing_Where_along_with_What_Information_in_a_Model_of_a_Cortical_Patch","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":115175868,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115175868/thumbnails/1.jpg","file_name":"177313.pdf","download_url":"https://www.academia.edu/attachments/115175868/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Representing_Where_along_with_What_Infor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115175868/177313-libre.pdf?1716446229=\u0026response-content-disposition=attachment%3B+filename%3DRepresenting_Where_along_with_What_Infor.pdf\u0026Expires=1732826278\u0026Signature=LDLYgSte3-AOsFfnulNOb1~kb43wKGCep6GXYlrVZ7xARbvgmFtSANZnjY9o8qAnEXJup-xX5AwI-9S0oVj2tKCgodEWWXOSO5pfgS1kFN9x12JBBP1Zahi10wro5D6a3A0-Qu4UbDFjIHPt4cLEg1~SW3eRt3YGhNwWCDU-Q7LwQKFxbLbNKf8PCCZAjBGMxXTCKRboeYRELS0ISYosA~-RmddWJOGwhPVp7YDO2dV~3mpSS~b20ee~l6uEKYQibgm0o4ebtbdqJI2SLv9PmG7Ifktco69Af90Hk-pig0FJ8emA5blAdaKMGp9edq1Isu7-vE~M-EaHraA9Ku8Mgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":17018,"name":"Music and identity","url":"https://www.academia.edu/Documents/in/Music_and_identity"},{"id":46858,"name":"Memory","url":"https://www.academia.edu/Documents/in/Memory"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":128285,"name":"Information Processing in Visual System","url":"https://www.academia.edu/Documents/in/Information_Processing_in_Visual_System"},{"id":132020,"name":"Neuronal Plasticity","url":"https://www.academia.edu/Documents/in/Neuronal_Plasticity"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":255453,"name":"Information Storage and Retrieval","url":"https://www.academia.edu/Documents/in/Information_Storage_and_Retrieval"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":968586,"name":"Visual Evoked Potentials","url":"https://www.academia.edu/Documents/in/Visual_Evoked_Potentials"},{"id":1122910,"name":"Attractor Neural Network","url":"https://www.academia.edu/Documents/in/Attractor_Neural_Network"},{"id":1763882,"name":"Representation Politics","url":"https://www.academia.edu/Documents/in/Representation_Politics"}],"urls":[{"id":42235101,"url":"http://discovery.ucl.ac.uk/177313/1/177313.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119849764"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/119849764/Angular_and_Linear_Speed_Cells_in_the_Parahippocampal_Circuits"><img alt="Research paper thumbnail of Angular and Linear Speed Cells in the Parahippocampal Circuits" class="work-thumbnail" src="https://attachments.academia-assets.com/115175899/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/119849764/Angular_and_Linear_Speed_Cells_in_the_Parahippocampal_Circuits">Angular and Linear Speed Cells in the Parahippocampal Circuits</a></div><div class="wp-workCard_item"><span>bioRxiv (Cold Spring Harbor Laboratory)</span><span>, Jan 29, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8b75cc366261283801ce477bb6051234" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":115175899,"asset_id":119849764,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/115175899/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119849764"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119849764"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119849764; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119849764]").text(description); $(".js-view-count[data-work-id=119849764]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119849764; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119849764']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 119849764, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8b75cc366261283801ce477bb6051234" } } $('.js-work-strip[data-work-id=119849764]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119849764,"title":"Angular and Linear Speed Cells in the Parahippocampal Circuits","translated_title":"","metadata":{"publisher":"Cold Spring Harbor Laboratory","grobid_abstract":"An essential role of the hippocampal region is to integrate information to compute and update representations. How this transpires is highly debated. Many theories hinge on the integration of self-motion signals and the existence of continuous attractor networks (CAN). CAN models hypothesise that neurons coding for navigational correlates-such as position and directionreceive inputs from cells conjunctively coding for position, direction and self-motion. As yet, such conjunctive coding had not been found in the hippocampal region. Here, we report neurons coding for angular and linear velocity, distributed across the medial entorhinal cortex, the presubiculum and the parasubiculum. These self-motion neurons often conjunctively encoded position and/or direction, yet lacked a structured organisation, calling for the revision of current CAN models. These results offer insights as to how linear/angular speed-derivative in time of position/direction-may allow the updating of spatial representations, possibly uncovering a generalised algorithm to update any representation. .","publication_date":{"day":29,"month":1,"year":2021,"errors":{}},"publication_name":"bioRxiv (Cold Spring Harbor Laboratory)","grobid_abstract_attachment_id":115175899},"translated_abstract":null,"internal_url":"https://www.academia.edu/119849764/Angular_and_Linear_Speed_Cells_in_the_Parahippocampal_Circuits","translated_internal_url":"","created_at":"2024-05-22T22:33:00.428-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115175899,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115175899/thumbnails/1.jpg","file_name":"2021.01.28.428631v1.full.pdf","download_url":"https://www.academia.edu/attachments/115175899/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Angular_and_Linear_Speed_Cells_in_the_Pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115175899/2021.01.28.428631v1.full-libre.pdf?1716446934=\u0026response-content-disposition=attachment%3B+filename%3DAngular_and_Linear_Speed_Cells_in_the_Pa.pdf\u0026Expires=1732782922\u0026Signature=R4L1~yyoXrhd-Knziw6ATp6eZ9oHr1LFHxTCGnSssk6IUiTXYlBxmcbRo0Inr7GCSUjPEr9S2XnigMsNPUKZlN5Srpj3dt1HUPsCxe7vMEbrqQRbdS9C3LeY7NLZYoLn-5x7yNm1xr8gbuyCKW2-WwKgLeVJ3o7iKCFnzp7tKCxKfgguSFufM-m6ctseJNvpOsFVwkoMgnBJ02bO8exFCDZStsNdaO-X-0UdrCkXFup5XZclOACXK4bzaYK~7pRzfR0IcNCXYTemaobxcHtMFZ7-xrEhjoDR2q6ns-R0Lu0ckJLzxr1YPI92zPeAf6UIJG4Y7~1SUJy7t6W60jZ3ig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Angular_and_Linear_Speed_Cells_in_the_Parahippocampal_Circuits","translated_slug":"","page_count":42,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":115175899,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115175899/thumbnails/1.jpg","file_name":"2021.01.28.428631v1.full.pdf","download_url":"https://www.academia.edu/attachments/115175899/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Angular_and_Linear_Speed_Cells_in_the_Pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115175899/2021.01.28.428631v1.full-libre.pdf?1716446934=\u0026response-content-disposition=attachment%3B+filename%3DAngular_and_Linear_Speed_Cells_in_the_Pa.pdf\u0026Expires=1732782922\u0026Signature=R4L1~yyoXrhd-Knziw6ATp6eZ9oHr1LFHxTCGnSssk6IUiTXYlBxmcbRo0Inr7GCSUjPEr9S2XnigMsNPUKZlN5Srpj3dt1HUPsCxe7vMEbrqQRbdS9C3LeY7NLZYoLn-5x7yNm1xr8gbuyCKW2-WwKgLeVJ3o7iKCFnzp7tKCxKfgguSFufM-m6ctseJNvpOsFVwkoMgnBJ02bO8exFCDZStsNdaO-X-0UdrCkXFup5XZclOACXK4bzaYK~7pRzfR0IcNCXYTemaobxcHtMFZ7-xrEhjoDR2q6ns-R0Lu0ckJLzxr1YPI92zPeAf6UIJG4Y7~1SUJy7t6W60jZ3ig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":2047736,"name":"Angular displacement","url":"https://www.academia.edu/Documents/in/Angular_displacement"},{"id":2226469,"name":"Hippocampal formation","url":"https://www.academia.edu/Documents/in/Hippocampal_formation"}],"urls":[{"id":42235100,"url":"https://doi.org/10.1101/2021.01.28.428631"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119849713"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/119849713/Computational_constraints_on_the_associative_recall_of_spatial_scenes"><img alt="Research paper thumbnail of Computational constraints on the associative recall of spatial scenes" class="work-thumbnail" src="https://attachments.academia-assets.com/115175858/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/119849713/Computational_constraints_on_the_associative_recall_of_spatial_scenes">Computational constraints on the associative recall of spatial scenes</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We consider a model of associative storage and retrieval of compositional memories in an extended...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We consider a model of associative storage and retrieval of compositional memories in an extended cortical network. Our model network is comprised of Potts units, which represent patches of cortex, interacting through long-range connections. The critical assumption is that a memory is composed of a limited number of items, each of which has a pre-established representation: storing a new memory only involves acquiring the connections, if novel, among the participating items. The model is shown to have a much lower storage capacity than when it stores simple unitary representations. It is also shown that an input from the hippocampus facilitates associative retrieval. When it is absent, it is advantageous to cue rare rather than frequent items. The implications of these results for emerging trends in empirical research are discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0bdb487caeec07511b3985df5db670c2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":115175858,"asset_id":119849713,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/115175858/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119849713"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119849713"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119849713; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119849713]").text(description); $(".js-view-count[data-work-id=119849713]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119849713; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119849713']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 119849713, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0bdb487caeec07511b3985df5db670c2" } } $('.js-work-strip[data-work-id=119849713]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119849713,"title":"Computational constraints on the associative recall of spatial scenes","translated_title":"","metadata":{"abstract":"We consider a model of associative storage and retrieval of compositional memories in an extended cortical network. Our model network is comprised of Potts units, which represent patches of cortex, interacting through long-range connections. The critical assumption is that a memory is composed of a limited number of items, each of which has a pre-established representation: storing a new memory only involves acquiring the connections, if novel, among the participating items. The model is shown to have a much lower storage capacity than when it stores simple unitary representations. It is also shown that an input from the hippocampus facilitates associative retrieval. When it is absent, it is advantageous to cue rare rather than frequent items. The implications of these results for emerging trends in empirical research are discussed.","publisher":"Cold Spring Harbor Laboratory"},"translated_abstract":"We consider a model of associative storage and retrieval of compositional memories in an extended cortical network. Our model network is comprised of Potts units, which represent patches of cortex, interacting through long-range connections. The critical assumption is that a memory is composed of a limited number of items, each of which has a pre-established representation: storing a new memory only involves acquiring the connections, if novel, among the participating items. The model is shown to have a much lower storage capacity than when it stores simple unitary representations. It is also shown that an input from the hippocampus facilitates associative retrieval. When it is absent, it is advantageous to cue rare rather than frequent items. The implications of these results for emerging trends in empirical research are discussed.","internal_url":"https://www.academia.edu/119849713/Computational_constraints_on_the_associative_recall_of_spatial_scenes","translated_internal_url":"","created_at":"2024-05-22T22:31:32.799-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115175858,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115175858/thumbnails/1.jpg","file_name":"2022.10.08.511429.full.pdf","download_url":"https://www.academia.edu/attachments/115175858/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Computational_constraints_on_the_associa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115175858/2022.10.08.511429.full-libre.pdf?1716446217=\u0026response-content-disposition=attachment%3B+filename%3DComputational_constraints_on_the_associa.pdf\u0026Expires=1732826278\u0026Signature=Lm9G-1BzJRGgcGiyzimV~Bk4pR150kOZG8LA23WEhaIPf9x6ast7KHhs~spJZgKPIUzifuoI3~~ShAgiw4c9mXYIN30xkIst-X5NV9AcXFuzORDywD8lChel3pyTSbywfSiVXlQQZhs7aGjH4MlRV2jdpSahPJx5lpu8Ifaflu1Uijxm3Eotq20NSIyKv0tgfcZRxOOgH-fcpDrBxMhNNglnoUh7CnJUthm~BVknwPpvjNaVo73sxAjdDlT2l6p8AtCAJxn7yyc5WbjVjGuy0CZ9NIlhjs5gOV3VVEAarQzt~Ib3xxtnE4jPk9LuKYh~fqwqSFsM5hrUCnbR7J6-RQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Computational_constraints_on_the_associative_recall_of_spatial_scenes","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":115175858,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115175858/thumbnails/1.jpg","file_name":"2022.10.08.511429.full.pdf","download_url":"https://www.academia.edu/attachments/115175858/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Computational_constraints_on_the_associa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115175858/2022.10.08.511429.full-libre.pdf?1716446217=\u0026response-content-disposition=attachment%3B+filename%3DComputational_constraints_on_the_associa.pdf\u0026Expires=1732826278\u0026Signature=Lm9G-1BzJRGgcGiyzimV~Bk4pR150kOZG8LA23WEhaIPf9x6ast7KHhs~spJZgKPIUzifuoI3~~ShAgiw4c9mXYIN30xkIst-X5NV9AcXFuzORDywD8lChel3pyTSbywfSiVXlQQZhs7aGjH4MlRV2jdpSahPJx5lpu8Ifaflu1Uijxm3Eotq20NSIyKv0tgfcZRxOOgH-fcpDrBxMhNNglnoUh7CnJUthm~BVknwPpvjNaVo73sxAjdDlT2l6p8AtCAJxn7yyc5WbjVjGuy0CZ9NIlhjs5gOV3VVEAarQzt~Ib3xxtnE4jPk9LuKYh~fqwqSFsM5hrUCnbR7J6-RQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":184535,"name":"Unitary State","url":"https://www.academia.edu/Documents/in/Unitary_State"},{"id":440689,"name":"Recall","url":"https://www.academia.edu/Documents/in/Recall"},{"id":1763882,"name":"Representation Politics","url":"https://www.academia.edu/Documents/in/Representation_Politics"},{"id":2527458,"name":"Content addressable memory","url":"https://www.academia.edu/Documents/in/Content_addressable_memory"}],"urls":[{"id":42235070,"url":"https://syndication.highwire.org/content/doi/10.1101/2022.10.08.511429"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657579"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657579/Cover_Image_Volume_30_Issue_4"><img alt="Research paper thumbnail of Cover Image, Volume 30, Issue 4" class="work-thumbnail" src="https://attachments.academia-assets.com/110561530/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657579/Cover_Image_Volume_30_Issue_4">Cover Image, Volume 30, Issue 4</a></div><div class="wp-workCard_item"><span>Hippocampus</span><span>, Apr 1, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d55f907521ae04fb678916397933e160" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561530,"asset_id":113657579,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561530/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657579"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657579"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657579; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657579]").text(description); $(".js-view-count[data-work-id=113657579]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657579; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657579']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657579, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d55f907521ae04fb678916397933e160" } } $('.js-work-strip[data-work-id=113657579]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657579,"title":"Cover Image, Volume 30, Issue 4","translated_title":"","metadata":{"publisher":"Wiley","publication_date":{"day":1,"month":4,"year":2020,"errors":{}},"publication_name":"Hippocampus"},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657579/Cover_Image_Volume_30_Issue_4","translated_internal_url":"","created_at":"2024-01-17T14:05:58.389-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561530,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561530/thumbnails/1.jpg","file_name":"hipo.pdf","download_url":"https://www.academia.edu/attachments/110561530/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cover_Image_Volume_30_Issue_4.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561530/hipo-libre.pdf?1705531045=\u0026response-content-disposition=attachment%3B+filename%3DCover_Image_Volume_30_Issue_4.pdf\u0026Expires=1732826278\u0026Signature=BcV1z1uFaxsZQ9xTDCRgyHz~sW1AA1G53prHX-yDtP68oB1p4ynyu8VMheFtd~JgJNaIRxptS6Bk8jLT7JGPMJNLPr6ktedt17WThpJXcCalN4J-17XQ3304tN5Xk32yuNeeIzd02s9H4r3setFTsW3mWlSpGyQGoXRKFfZrWYFnlMkRc6j8qXWjEuyuy9mEoSQ~pqLCegi7CoT-0nKa5eFYcO89v7cdxz-6-bsy~IDTh1Lur7JGw5xxPDJFN6ZaqjItSY2QA2nhaqA1CwsSP-SyU9-dWZCeIg8zacThHivQaLbFOJkVWNyGn-gKRfTfrqrOpFziOegw-5PSfOcTyQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cover_Image_Volume_30_Issue_4","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561530,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561530/thumbnails/1.jpg","file_name":"hipo.pdf","download_url":"https://www.academia.edu/attachments/110561530/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cover_Image_Volume_30_Issue_4.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561530/hipo-libre.pdf?1705531045=\u0026response-content-disposition=attachment%3B+filename%3DCover_Image_Volume_30_Issue_4.pdf\u0026Expires=1732826278\u0026Signature=BcV1z1uFaxsZQ9xTDCRgyHz~sW1AA1G53prHX-yDtP68oB1p4ynyu8VMheFtd~JgJNaIRxptS6Bk8jLT7JGPMJNLPr6ktedt17WThpJXcCalN4J-17XQ3304tN5Xk32yuNeeIzd02s9H4r3setFTsW3mWlSpGyQGoXRKFfZrWYFnlMkRc6j8qXWjEuyuy9mEoSQ~pqLCegi7CoT-0nKa5eFYcO89v7cdxz-6-bsy~IDTh1Lur7JGw5xxPDJFN6ZaqjItSY2QA2nhaqA1CwsSP-SyU9-dWZCeIg8zacThHivQaLbFOJkVWNyGn-gKRfTfrqrOpFziOegw-5PSfOcTyQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":596,"name":"Dentistry","url":"https://www.academia.edu/Documents/in/Dentistry"},{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":57556,"name":"Hippocampus","url":"https://www.academia.edu/Documents/in/Hippocampus"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[{"id":38676560,"url":"https://doi.org/10.1002/hipo.23204"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657578"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657578/Life_on_the_Edge_Latching_Dynamics_in_a_Potts_Neural_Network"><img alt="Research paper thumbnail of Life on the Edge: Latching Dynamics in a Potts Neural Network" class="work-thumbnail" src="https://attachments.academia-assets.com/110561505/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657578/Life_on_the_Edge_Latching_Dynamics_in_a_Potts_Neural_Network">Life on the Edge: Latching Dynamics in a Potts Neural Network</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="833e43aee37340c8800b05eebc03c4aa" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561505,"asset_id":113657578,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561505/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657578"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657578"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657578; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657578]").text(description); $(".js-view-count[data-work-id=113657578]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657578; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657578']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657578, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "833e43aee37340c8800b05eebc03c4aa" } } $('.js-work-strip[data-work-id=113657578]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657578,"title":"Life on the Edge: Latching Dynamics in a Potts Neural Network","translated_title":"","metadata":{"grobid_abstract":"We study latching dynamics in the adaptive Potts model network, through numerical simulations with randomly and also weakly correlated patterns, and we focus on comparing its slowly and fast adapting regimes. A measure, Q, is used to quantify the quality of latching in the phase space spanned by the number of Potts states S, the number of connections per Potts unit C and the number of stored memory patterns p. We find narrow regions, or bands in phase space, where distinct pattern retrieval and duration of latching combine to yield the highest values of Q. The bands are confined by the storage capacity curve, for large p, and by the onset of finite latching, for low p. Inside the band, in the slowly adapting regime, we observe complex structured dynamics, with transitions at high crossover between correlated memory patterns; while away from the band latching transitions lose complexity in different ways: below, they are clear-cut but last so few steps as to span a transition matrix between states with few asymmetrical entries and limited entropy; while above, they tend to become random, with large entropy and bi-directional transition frequencies, but indistinguishable from noise. Extrapolating from the simulations, the band appears to scale almost quadratically in the p − S plane, and sublinearly in p − C. In the fast adapting regime the band scales similarly, and it can be made even wider and more robust, but transitions between anti-correlated patterns dominate latching dynamics. This suggest that slow and fast adaptation have to be integrated in a scenario for viable latching in a cortical system. The results for the slowly adapting regime, obtained with randomly correlated patterns, remain valid also for the case with correlated patterns, with just a simple shift in phase space.","publication_date":{"day":4,"month":8,"year":2017,"errors":{}},"grobid_abstract_attachment_id":110561505},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657578/Life_on_the_Edge_Latching_Dynamics_in_a_Potts_Neural_Network","translated_internal_url":"","created_at":"2024-01-17T14:05:58.193-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561505,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561505/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/110561505/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Life_on_the_Edge_Latching_Dynamics_in_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561505/download-libre.pdf?1705531444=\u0026response-content-disposition=attachment%3B+filename%3DLife_on_the_Edge_Latching_Dynamics_in_a.pdf\u0026Expires=1732826278\u0026Signature=eZUGnQv-rXLywj-smpMUZyQ3xOjGJadxlzg2YyiV0eHbMsiKreIMJA0ztSsbc2HwEkSRI7kQnYZu-T~bwalWVXyRagZMwQp4X0gU-4beiw8aoRQGhgGzGOVvUHl0Ky~S0q8KevM~haR61Ty8Znc4TnrhC1vnu2xa9Vnw1QQ3QMapu2SawFjlT2B5mvd2i7GSTxDVrMDr5m1xbqhSUyudKt0g1oswib~0H~~7xMbau0pSh3iZg8ea7eG3WgeG1~Jxz86WpodLl4wKHoOCjrB9UoX7MHLdnprvgBYK5Fb9vpL3-fDkSR2mv4tG99wOKsgyLerZPPKxT-zZT2if-fQg8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Life_on_the_Edge_Latching_Dynamics_in_a_Potts_Neural_Network","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561505,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561505/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/110561505/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Life_on_the_Edge_Latching_Dynamics_in_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561505/download-libre.pdf?1705531444=\u0026response-content-disposition=attachment%3B+filename%3DLife_on_the_Edge_Latching_Dynamics_in_a.pdf\u0026Expires=1732826278\u0026Signature=eZUGnQv-rXLywj-smpMUZyQ3xOjGJadxlzg2YyiV0eHbMsiKreIMJA0ztSsbc2HwEkSRI7kQnYZu-T~bwalWVXyRagZMwQp4X0gU-4beiw8aoRQGhgGzGOVvUHl0Ky~S0q8KevM~haR61Ty8Znc4TnrhC1vnu2xa9Vnw1QQ3QMapu2SawFjlT2B5mvd2i7GSTxDVrMDr5m1xbqhSUyudKt0g1oswib~0H~~7xMbau0pSh3iZg8ea7eG3WgeG1~Jxz86WpodLl4wKHoOCjrB9UoX7MHLdnprvgBYK5Fb9vpL3-fDkSR2mv4tG99wOKsgyLerZPPKxT-zZT2if-fQg8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":36265,"name":"Entropy","url":"https://www.academia.edu/Documents/in/Entropy"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1174261,"name":"Potts Model","url":"https://www.academia.edu/Documents/in/Potts_Model"},{"id":1485949,"name":"Preprints","url":"https://www.academia.edu/Documents/in/Preprints"}],"urls":[{"id":38676559,"url":"https://www.preprints.org/manuscript/201708.0016/v1/download"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657577"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657577/Partial_coherence_of_grid_units_on_spherical_surfaces"><img alt="Research paper thumbnail of Partial coherence of grid units on spherical surfaces" class="work-thumbnail" src="https://attachments.academia-assets.com/110561503/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657577/Partial_coherence_of_grid_units_on_spherical_surfaces">Partial coherence of grid units on spherical surfaces</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="16f9af90831d3afcfe2c45e5557ff5f3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561503,"asset_id":113657577,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561503/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657577"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657577"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657577; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657577]").text(description); $(".js-view-count[data-work-id=113657577]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657577; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657577']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657577, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "16f9af90831d3afcfe2c45e5557ff5f3" } } $('.js-work-strip[data-work-id=113657577]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657577,"title":"Partial coherence of grid units on spherical surfaces","translated_title":"","metadata":{"publication_date":{"day":3,"month":7,"year":2018,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657577/Partial_coherence_of_grid_units_on_spherical_surfaces","translated_internal_url":"","created_at":"2024-01-17T14:05:58.026-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561503/thumbnails/1.jpg","file_name":"external_content.pdf","download_url":"https://www.academia.edu/attachments/110561503/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Partial_coherence_of_grid_units_on_spher.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561503/external_content-libre.pdf?1705531039=\u0026response-content-disposition=attachment%3B+filename%3DPartial_coherence_of_grid_units_on_spher.pdf\u0026Expires=1732826278\u0026Signature=T~qdbaMd~qiB17Qgvu0XNyc1DXjQKuh39idH5MW2WuyqNkmTjsdzOQHPDZOC4zf2vJzOjzMSrj04f5OHf0pyjrZBDcPL38HOiQ~O8Wmm5V39Xt5TIKXxqr2IZEbF0kVlngG15TxcF114FxHTopt-T5YUm20sF3TrS6Mq2o86n0zKOPlB~ndWixxlGJfw72dD5lcQdarilwejVBkjkEWU7XnQ1s211K9ZWWJMBqtp8NBWzhL2UXg1H6zinvWdgl~W-AbZw3qi6mm~TqEEIOwlArJV9Eq1GElLsCocLM7BlZXUMv-4SfQF5gpvmeXOxkHgwfnGpr7Yj2QLANK3Vwob8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Partial_coherence_of_grid_units_on_spherical_surfaces","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561503/thumbnails/1.jpg","file_name":"external_content.pdf","download_url":"https://www.academia.edu/attachments/110561503/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Partial_coherence_of_grid_units_on_spher.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561503/external_content-libre.pdf?1705531039=\u0026response-content-disposition=attachment%3B+filename%3DPartial_coherence_of_grid_units_on_spher.pdf\u0026Expires=1732826278\u0026Signature=T~qdbaMd~qiB17Qgvu0XNyc1DXjQKuh39idH5MW2WuyqNkmTjsdzOQHPDZOC4zf2vJzOjzMSrj04f5OHf0pyjrZBDcPL38HOiQ~O8Wmm5V39Xt5TIKXxqr2IZEbF0kVlngG15TxcF114FxHTopt-T5YUm20sF3TrS6Mq2o86n0zKOPlB~ndWixxlGJfw72dD5lcQdarilwejVBkjkEWU7XnQ1s211K9ZWWJMBqtp8NBWzhL2UXg1H6zinvWdgl~W-AbZw3qi6mm~TqEEIOwlArJV9Eq1GElLsCocLM7BlZXUMv-4SfQF5gpvmeXOxkHgwfnGpr7Yj2QLANK3Vwob8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":110561504,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561504/thumbnails/1.jpg","file_name":"external_content.pdf","download_url":"https://www.academia.edu/attachments/110561504/download_file","bulk_download_file_name":"Partial_coherence_of_grid_units_on_spher.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561504/external_content-libre.pdf?1705531039=\u0026response-content-disposition=attachment%3B+filename%3DPartial_coherence_of_grid_units_on_spher.pdf\u0026Expires=1732826278\u0026Signature=XFyBLD4GL3yBN7nF0MF4UCun3ODH~WOBA7Cv8q5oK5ZJYNQ7VQaTZHC0oBHRBdsDMi~3U3KXensSTA3qt4JMbQUnvv0jKEBXSylW-JgVOSmBTssXBJWtC28q45qOROVgdW0c--edOxg5xKuHb5Y~MnenuhY0Lu8fetkbKUAgGbWSpVZXniRLJyrCtyAb~nZ405OnO1JSXU3S119tniyLFnN81ezw54rYfgELmyryqabpS9M0WH5GxxYL-kbsGLPoqa2cQ0jia3uGP10npN5qeX9rHY8MczswMu1fkWMe6I4pEkbrl8lCCcw28vJcasiz7TWtN93EPOwq3LiBjEBUnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":303727,"name":"Grid","url":"https://www.academia.edu/Documents/in/Grid"}],"urls":[{"id":38676558,"url":"https://openresearchlibrary.org/ext/api/media/5b9881e0-b742-4a31-8b45-d21907b88210/assets/external_content.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657576"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657576/The_Effect_of_Slow_Synaptic_Coupling_on_Populations_of_Spiking_Neurons"><img alt="Research paper thumbnail of The Effect of Slow Synaptic Coupling on Populations of Spiking Neurons" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657576/The_Effect_of_Slow_Synaptic_Coupling_on_Populations_of_Spiking_Neurons">The Effect of Slow Synaptic Coupling on Populations of Spiking Neurons</a></div><div class="wp-workCard_item"><span>Springer eBooks</span><span>, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We examine the conditions under which a population of spiking neurons with all-to-all excitatory ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We examine the conditions under which a population of spiking neurons with all-to-all excitatory coupling can fire asynchronously. Synapses with time constants satisfying computed constraints assure the stability of an asynchronous firing state even in the absense of inhibition.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657576"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657576"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657576; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657576]").text(description); $(".js-view-count[data-work-id=113657576]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657576; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657576']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657576, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=113657576]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657576,"title":"The Effect of Slow Synaptic Coupling on Populations of Spiking Neurons","translated_title":"","metadata":{"abstract":"We examine the conditions under which a population of spiking neurons with all-to-all excitatory coupling can fire asynchronously. Synapses with time constants satisfying computed constraints assure the stability of an asynchronous firing state even in the absense of inhibition.","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1993,"errors":{}},"publication_name":"Springer eBooks"},"translated_abstract":"We examine the conditions under which a population of spiking neurons with all-to-all excitatory coupling can fire asynchronously. Synapses with time constants satisfying computed constraints assure the stability of an asynchronous firing state even in the absense of inhibition.","internal_url":"https://www.academia.edu/113657576/The_Effect_of_Slow_Synaptic_Coupling_on_Populations_of_Spiking_Neurons","translated_internal_url":"","created_at":"2024-01-17T14:05:57.837-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Effect_of_Slow_Synaptic_Coupling_on_Populations_of_Spiking_Neurons","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":64336,"name":"Population","url":"https://www.academia.edu/Documents/in/Population"},{"id":93194,"name":"Asynchronous Communication","url":"https://www.academia.edu/Documents/in/Asynchronous_Communication"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[{"id":38676557,"url":"https://doi.org/10.1007/978-1-4615-3254-5_10"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657575"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657575/Partial_coherence_and_frustration_in_self_organizing_spherical_grids"><img alt="Research paper thumbnail of Partial coherence and frustration in self‐organizing spherical grids" class="work-thumbnail" src="https://attachments.academia-assets.com/110561531/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657575/Partial_coherence_and_frustration_in_self_organizing_spherical_grids">Partial coherence and frustration in self‐organizing spherical grids</a></div><div class="wp-workCard_item"><span>Hippocampus</span><span>, Jul 24, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bc7646d0acb7ef9016121648d2190d6a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561531,"asset_id":113657575,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561531/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657575"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657575"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657575; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657575]").text(description); $(".js-view-count[data-work-id=113657575]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657575; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657575']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657575, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bc7646d0acb7ef9016121648d2190d6a" } } $('.js-work-strip[data-work-id=113657575]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657575,"title":"Partial coherence and frustration in self‐organizing spherical grids","translated_title":"","metadata":{"publisher":"Wiley","grobid_abstract":"Nearby grid cells have been observed to express a remarkable degree of long-range order, which is often idealized as extending potentially to infinity. Yet their strict periodic firing and ensemble coherence are theoretically possible only in flat environments, much unlike the burrows which rodents usually live in. Are the symmetrical, coherent grid maps inferred in the lab relevant to chart their way in their natural habitat? We consider spheres as simple models of curved environments and waiting for the appropriate experiments to be performed, we use our adaptation model to predict what grid maps would emerge in a network with the same type of recurrent connections, which on the plane produce coherence among the units. We find that on the sphere such connections distort the maps that single grid units would express on their own, and aggregate them into clusters. When remapping to a different spherical environment, units in each cluster maintain only partial coherence, similar to what is observed in disordered materials, such as spin glasses.","publication_date":{"day":24,"month":7,"year":2019,"errors":{}},"publication_name":"Hippocampus","grobid_abstract_attachment_id":110561531},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657575/Partial_coherence_and_frustration_in_self_organizing_spherical_grids","translated_internal_url":"","created_at":"2024-01-17T14:05:57.646-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561531,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561531/thumbnails/1.jpg","file_name":"hipo.pdf","download_url":"https://www.academia.edu/attachments/110561531/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Partial_coherence_and_frustration_in_sel.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561531/hipo-libre.pdf?1705531049=\u0026response-content-disposition=attachment%3B+filename%3DPartial_coherence_and_frustration_in_sel.pdf\u0026Expires=1732782922\u0026Signature=gbk9w4Bc3y1XsD9PZYWmXCZC4fDa7UEtUSrieOkdEydJlrICRX9DI-LRPxXimlZbE9GgjUHQP1KOSvqBoeaSf6o7bfIk9xgdGf1nEKKEGG1BmP6CcLFgrY7eeCg9BlBMnA5yPVcF5oF05DmWmSQQZJ0DSJTcv-7z0bAv5m-hUv76rqq6wkJzf~ow-CKnsjdrRZgpVfrcmP5qaEOw~h0ls2HHEndxV~OPJF49huy7rqNJyGsYvNKCCV3EPOfTVMcuzDTCpAc6RrkOrQZSYhVe3xbi5sYdVWnRHRNN5IKY2aRmusPqnWz2QsqKXrb0AyRNrS3AEUFbhYRAVLCU0UNUhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Partial_coherence_and_frustration_in_self_organizing_spherical_grids","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561531,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561531/thumbnails/1.jpg","file_name":"hipo.pdf","download_url":"https://www.academia.edu/attachments/110561531/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Partial_coherence_and_frustration_in_sel.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561531/hipo-libre.pdf?1705531049=\u0026response-content-disposition=attachment%3B+filename%3DPartial_coherence_and_frustration_in_sel.pdf\u0026Expires=1732782922\u0026Signature=gbk9w4Bc3y1XsD9PZYWmXCZC4fDa7UEtUSrieOkdEydJlrICRX9DI-LRPxXimlZbE9GgjUHQP1KOSvqBoeaSf6o7bfIk9xgdGf1nEKKEGG1BmP6CcLFgrY7eeCg9BlBMnA5yPVcF5oF05DmWmSQQZJ0DSJTcv-7z0bAv5m-hUv76rqq6wkJzf~ow-CKnsjdrRZgpVfrcmP5qaEOw~h0ls2HHEndxV~OPJF49huy7rqNJyGsYvNKCCV3EPOfTVMcuzDTCpAc6RrkOrQZSYhVe3xbi5sYdVWnRHRNN5IKY2aRmusPqnWz2QsqKXrb0AyRNrS3AEUFbhYRAVLCU0UNUhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology"},{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":22590,"name":"Frustration","url":"https://www.academia.edu/Documents/in/Frustration"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":57556,"name":"Hippocampus","url":"https://www.academia.edu/Documents/in/Hippocampus"},{"id":303727,"name":"Grid","url":"https://www.academia.edu/Documents/in/Grid"},{"id":307228,"name":"Regular Grid","url":"https://www.academia.edu/Documents/in/Regular_Grid"},{"id":379574,"name":"Spatial Coherence","url":"https://www.academia.edu/Documents/in/Spatial_Coherence"},{"id":515169,"name":"DDC","url":"https://www.academia.edu/Documents/in/DDC"},{"id":976192,"name":"Spheres","url":"https://www.academia.edu/Documents/in/Spheres"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[{"id":38676556,"url":"https://doi.org/10.1002/hipo.23144"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657574"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657574/Grammatical_Parameters_from_a_Gene_like_Code_to_Self_Organizing_Attractors"><img alt="Research paper thumbnail of Grammatical Parameters from a Gene-like Code to Self-Organizing Attractors" class="work-thumbnail" src="https://attachments.academia-assets.com/110561499/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657574/Grammatical_Parameters_from_a_Gene_like_Code_to_Self_Organizing_Attractors">Grammatical Parameters from a Gene-like Code to Self-Organizing Attractors</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jul 6, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="87c9af2a0e53b0884a1e5fa6dbb2f64b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561499,"asset_id":113657574,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561499/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657574"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657574"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657574; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657574]").text(description); $(".js-view-count[data-work-id=113657574]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657574; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657574']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657574, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "87c9af2a0e53b0884a1e5fa6dbb2f64b" } } $('.js-work-strip[data-work-id=113657574]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657574,"title":"Grammatical Parameters from a Gene-like Code to Self-Organizing Attractors","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"Parametric approaches to grammatical diversity range from Chomsky's 1981 classical Principles \u0026 Parameters model to minimalist reinterpretations: in some proposals of the latter framework, parameters need not be an extensional list given at the initial state S0 of the mind, but can be constructed through a bio-program in the course of language development. In this contribution we pursue this lead and discuss initial data and ideas relevant for the elaboration of three sets of questions: 1) how can binary parameters be conceivably implemented in cortical and subcortical circuitry in the human brain? 2) how can parameter mutations be taken to occur? 3) given the distribution of parameter values across languages and their implications, can multi-parental models of language phylogenies, departing from ultrametricity, also account for some of the available evidence?","publication_date":{"day":6,"month":7,"year":2023,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":110561499},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657574/Grammatical_Parameters_from_a_Gene_like_Code_to_Self_Organizing_Attractors","translated_internal_url":"","created_at":"2024-01-17T14:05:56.540-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561499,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561499/thumbnails/1.jpg","file_name":"2307.03152.pdf","download_url":"https://www.academia.edu/attachments/110561499/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Grammatical_Parameters_from_a_Gene_like.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561499/2307.03152-libre.pdf?1705531056=\u0026response-content-disposition=attachment%3B+filename%3DGrammatical_Parameters_from_a_Gene_like.pdf\u0026Expires=1732826278\u0026Signature=QEpD683pDt~bD2ojUdPiPtcOlb~zP1Sf8aEuPTVOwWL~~Jy9xdwPxWhqsBJetpyHt79-LM7hcz5l0ykEZbWq0M1mqkOphCsqcUy4e0hf5Soyk0LKR~PNJljCiX7k6AXowivouuY3t3sLufMpSajAl0tt8Xd1tooMonobO35V4a5mMU7OQZR-cDZqztTED9hfI3EFnzriWTiiB3kX3HBnJBX27s-IuBuW~Rb0ljYMROmcQBihLwC15aNKYX2bveFXbZAlOcelzfR99qTbKmbG2nOIS7s5LSeI8F-0cMUmHCAkXF5CP-fKm~Nwc7nOcgayumaC~0Kd0~HsWucJUK5Wjg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Grammatical_Parameters_from_a_Gene_like_Code_to_Self_Organizing_Attractors","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561499,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561499/thumbnails/1.jpg","file_name":"2307.03152.pdf","download_url":"https://www.academia.edu/attachments/110561499/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Grammatical_Parameters_from_a_Gene_like.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561499/2307.03152-libre.pdf?1705531056=\u0026response-content-disposition=attachment%3B+filename%3DGrammatical_Parameters_from_a_Gene_like.pdf\u0026Expires=1732826278\u0026Signature=QEpD683pDt~bD2ojUdPiPtcOlb~zP1Sf8aEuPTVOwWL~~Jy9xdwPxWhqsBJetpyHt79-LM7hcz5l0ykEZbWq0M1mqkOphCsqcUy4e0hf5Soyk0LKR~PNJljCiX7k6AXowivouuY3t3sLufMpSajAl0tt8Xd1tooMonobO35V4a5mMU7OQZR-cDZqztTED9hfI3EFnzriWTiiB3kX3HBnJBX27s-IuBuW~Rb0ljYMROmcQBihLwC15aNKYX2bveFXbZAlOcelzfR99qTbKmbG2nOIS7s5LSeI8F-0cMUmHCAkXF5CP-fKm~Nwc7nOcgayumaC~0Kd0~HsWucJUK5Wjg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":110561502,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561502/thumbnails/1.jpg","file_name":"2307.03152.pdf","download_url":"https://www.academia.edu/attachments/110561502/download_file","bulk_download_file_name":"Grammatical_Parameters_from_a_Gene_like.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561502/2307.03152-libre.pdf?1705531054=\u0026response-content-disposition=attachment%3B+filename%3DGrammatical_Parameters_from_a_Gene_like.pdf\u0026Expires=1732826278\u0026Signature=SGwWfN-cbKJLNi6UG8SKD-NSqXqc3-sY~vtpna-ccy2GrCO1akbgeU3O4E3qvN9KDkG~lVOlLn2tLNuwCpPJegg7osPkXP7WAQY4li5h6ApX04eDG3sAq29JSfHs-mxx1pWo20MR209dH543ptMHqoocxsZ4TVftWuI1lezJQD2nwiqnDBOQfU6U8q4HArn-hAJz2TxQLSPeiXLVYIqqmWnwlnSl8KEiYO91oJ9MzWEDEUI0HL2tC4llYp9uQkcr6~PXhgwVdxLQIAKjf7FrVpp4CZE-d40zE0QmNjMPzBYd1s2U6jgW5bszcxjy6r0IJb9u-nYULOsT7VijiCfj9w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":901940,"name":"Parametric Statistics","url":"https://www.academia.edu/Documents/in/Parametric_Statistics"},{"id":3167069,"name":"attractor","url":"https://www.academia.edu/Documents/in/attractor"}],"urls":[{"id":38676555,"url":"https://arxiv.org/pdf/2307.03152"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657573"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657573/Facial_Expressions_Computational_Perspectives"><img alt="Research paper thumbnail of Facial Expressions, Computational Perspectives" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657573/Facial_Expressions_Computational_Perspectives">Facial Expressions, Computational Perspectives</a></div><div class="wp-workCard_item"><span>Encyclopedia of the Mind</span><span>, Mar 1, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657573"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657573"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657573; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657573]").text(description); $(".js-view-count[data-work-id=113657573]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657573; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657573']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657573, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=113657573]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657573,"title":"Facial Expressions, Computational Perspectives","translated_title":"","metadata":{"publication_date":{"day":1,"month":3,"year":2013,"errors":{}},"publication_name":"Encyclopedia of the Mind"},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657573/Facial_Expressions_Computational_Perspectives","translated_internal_url":"","created_at":"2024-01-17T14:05:56.331-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Facial_Expressions_Computational_Perspectives","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[],"research_interests":[{"id":21269,"name":"Facial expression","url":"https://www.academia.edu/Documents/in/Facial_expression"}],"urls":[{"id":38676554,"url":"https://doi.org/10.4135/9781452257044.n129"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657572"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657572/Computational_constraints_on_the_associative_recall_of_spatial_scenes"><img alt="Research paper thumbnail of Computational constraints on the associative recall of spatial scenes" class="work-thumbnail" src="https://attachments.academia-assets.com/110561498/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657572/Computational_constraints_on_the_associative_recall_of_spatial_scenes">Computational constraints on the associative recall of spatial scenes</a></div><div class="wp-workCard_item"><span>bioRxiv (Cold Spring Harbor Laboratory)</span><span>, Oct 10, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="24c43ac6caa36668c7e6ce6160e930f5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561498,"asset_id":113657572,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561498/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657572"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657572"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657572; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657572]").text(description); $(".js-view-count[data-work-id=113657572]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657572; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657572']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657572, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "24c43ac6caa36668c7e6ce6160e930f5" } } $('.js-work-strip[data-work-id=113657572]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657572,"title":"Computational constraints on the associative recall of spatial scenes","translated_title":"","metadata":{"publisher":"Cold Spring Harbor Laboratory","grobid_abstract":"We consider a model of associative storage and retrieval of compositional memories in an extended cortical network. Our model network is comprised of Potts units, which represent patches of cortex, interacting through long-range connections. The critical assumption is that a memory is composed of a limited number of items, each of which has a pre-established representation: storing a new memory only involves acquiring the connections, if novel, among the participating items. The model is shown to have a much lower storage capacity than when it stores simple unitary representations. It is also shown that an input from the hippocampus facilitates associative retrieval. When it is absent, it is advantageous to cue rare rather than frequent items. The implications of these results for emerging trends in empirical research are discussed.","publication_date":{"day":10,"month":10,"year":2022,"errors":{}},"publication_name":"bioRxiv (Cold Spring Harbor Laboratory)","grobid_abstract_attachment_id":110561498},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657572/Computational_constraints_on_the_associative_recall_of_spatial_scenes","translated_internal_url":"","created_at":"2024-01-17T14:05:56.067-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561498,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561498/thumbnails/1.jpg","file_name":"2022.10.08.511429.full.pdf","download_url":"https://www.academia.edu/attachments/110561498/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Computational_constraints_on_the_associa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561498/2022.10.08.511429.full-libre.pdf?1705531047=\u0026response-content-disposition=attachment%3B+filename%3DComputational_constraints_on_the_associa.pdf\u0026Expires=1732826278\u0026Signature=Xv0WIO8FI5YzYZOVBx-ny1qH0x26jpe8JEhgvUPx1pDw8sbm8Xs8Mdu~xPzEvUbFTzpUt9hjZvPpyxaCAhGZRTKio5lYm8nX1c2YYhDRWP3r4BsaTr9yGb-EJJLrXXMK13VadkV43tyeScliAoQJlQwoYft7GiPJUSij0PGtG0o-UC3WE99bGETUR7ui~u4sMoHaFL7Pw3Gq-n4zXJOQY0OAm7EBSrQ0LxZ4v8YpRmD19yBEHtOyIQtBU1z9zvSEhzlizno8-Pzjs3y1bZpZ3MJnPLCFA38aedjW521t2uETqPxmxRjgF1Utw4T3y4Pn68vaGqVrpR4X4q1DGP1ziw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Computational_constraints_on_the_associative_recall_of_spatial_scenes","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561498,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561498/thumbnails/1.jpg","file_name":"2022.10.08.511429.full.pdf","download_url":"https://www.academia.edu/attachments/110561498/download_file?st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Computational_constraints_on_the_associa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561498/2022.10.08.511429.full-libre.pdf?1705531047=\u0026response-content-disposition=attachment%3B+filename%3DComputational_constraints_on_the_associa.pdf\u0026Expires=1732826278\u0026Signature=Xv0WIO8FI5YzYZOVBx-ny1qH0x26jpe8JEhgvUPx1pDw8sbm8Xs8Mdu~xPzEvUbFTzpUt9hjZvPpyxaCAhGZRTKio5lYm8nX1c2YYhDRWP3r4BsaTr9yGb-EJJLrXXMK13VadkV43tyeScliAoQJlQwoYft7GiPJUSij0PGtG0o-UC3WE99bGETUR7ui~u4sMoHaFL7Pw3Gq-n4zXJOQY0OAm7EBSrQ0LxZ4v8YpRmD19yBEHtOyIQtBU1z9zvSEhzlizno8-Pzjs3y1bZpZ3MJnPLCFA38aedjW521t2uETqPxmxRjgF1Utw4T3y4Pn68vaGqVrpR4X4q1DGP1ziw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":110561500,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561500/thumbnails/1.jpg","file_name":"2022.10.08.511429.full.pdf","download_url":"https://www.academia.edu/attachments/110561500/download_file","bulk_download_file_name":"Computational_constraints_on_the_associa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561500/2022.10.08.511429.full-libre.pdf?1705531054=\u0026response-content-disposition=attachment%3B+filename%3DComputational_constraints_on_the_associa.pdf\u0026Expires=1732826278\u0026Signature=YOKsUBnHZ1x8p~1ZkLaHvxJGIv3rGMAzAmuUudZWx-2e-KyYZYSqaSjLE5cCAeBK3hUQjco9RGe2IuQWajS7uJoSbF~LOHqCqP1KRe9CDlG2j~yoDquCJmyGKvzPmWEhnE6JhZlociVd0uCv95asPZ5-q-238GPTJxNCycQ8WNNeP~OSUcey3QthNzTmYEb4fla1MadrYWDf1WuGnmSdsWWB2Q3Ywt~gSJyV1zxsyNt7BqUeQ354thJ3pFOEHthgD6L0JWJ5f~2Mq-yXZ86FsB7hNY0yBJ~1PKQkO2d2mW29kRnvictGHlW~H8VenUwjsGgHAZHZS0Q0J10xcqRUVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":184535,"name":"Unitary State","url":"https://www.academia.edu/Documents/in/Unitary_State"},{"id":440689,"name":"Recall","url":"https://www.academia.edu/Documents/in/Recall"},{"id":1763882,"name":"Representation Politics","url":"https://www.academia.edu/Documents/in/Representation_Politics"},{"id":2527458,"name":"Content addressable memory","url":"https://www.academia.edu/Documents/in/Content_addressable_memory"}],"urls":[{"id":38676553,"url":"https://www.biorxiv.org/content/biorxiv/early/2022/10/10/2022.10.08.511429.full.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657571"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657571/Can_Grid_Cell_Ensembles_Represent_Multiple_Spaces"><img alt="Research paper thumbnail of Can Grid Cell Ensembles Represent Multiple Spaces?" class="work-thumbnail" src="https://attachments.academia-assets.com/110561528/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657571/Can_Grid_Cell_Ensembles_Represent_Multiple_Spaces">Can Grid Cell Ensembles Represent Multiple Spaces?</a></div><div class="wp-workCard_item"><span>Neural Computation</span><span>, Dec 1, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="474bc03fc251b840e1d2b1e29973268d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561528,"asset_id":113657571,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561528/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657571"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657571"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657571; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657571]").text(description); $(".js-view-count[data-work-id=113657571]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657571; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657571']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657571, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "474bc03fc251b840e1d2b1e29973268d" } } $('.js-work-strip[data-work-id=113657571]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657571,"title":"Can Grid Cell Ensembles Represent Multiple Spaces?","translated_title":"","metadata":{"publisher":"The MIT Press","grobid_abstract":"The way grid cells represent space in the rodent brain has been a striking discovery, with theoretical implications still unclear. Differently from hippocampal place cells, which are known to encode multiple, environment-dependent spatial maps, grid cells have been widely believed to encode space through a single low dimensional manifold, in which coactivity relations between different neurons are preserved when the environment is changed. Does it have to be so? Here, we compute-using two alternative mathematical models-the storage capacity of a population of grid-like units, embedded in a continuous attractor neural network, for multiple spatial maps. We show that distinct representations of multiple environments can coexist, as existing models for grid cells have the potential to express several sets of hexagonal grid patterns, challenging the view of a universal grid map. This suggests that a population of grid cells can encode multiple non-congruent metric relationships, a feature that could in principle allow a grid-like code to represent environments with a variety of different geometries and possibly conceptual and cognitive spaces, which may be expected to entail such context-dependent metric relationships.","publication_date":{"day":1,"month":12,"year":2019,"errors":{}},"publication_name":"Neural Computation","grobid_abstract_attachment_id":110561528},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657571/Can_Grid_Cell_Ensembles_Represent_Multiple_Spaces","translated_internal_url":"","created_at":"2024-01-17T14:05:55.890-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561528,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561528/thumbnails/1.jpg","file_name":"527192.full.pdf","download_url":"https://www.academia.edu/attachments/110561528/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Can_Grid_Cell_Ensembles_Represent_Multip.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561528/527192.full-libre.pdf?1705531053=\u0026response-content-disposition=attachment%3B+filename%3DCan_Grid_Cell_Ensembles_Represent_Multip.pdf\u0026Expires=1732826279\u0026Signature=LVmQrxNO~Mvjet1qZqMbx02iZp1Z~5nJ~wRr8WLqtZGb8ST4JobOx6CvCs9VtJFuzWM12itg3dcvNV9YiPMzrBFQ4l2zW3j4i9CEOGyP4daUjY1tjCd9n3eW7jQiUykNM6IYU~ElWyD1RIc-QxXl1u0vt7txakFAfjX-z-VaS3VvPOGW8XXvewkVQfJxZT14FZQjAujfsa85j50r0LaEhr8dYP~p03QTSAzfieiWhTR8jFh4GhFPxOhZUNlXVfoQctzGp9y~SvESBjbSLITgvtmUE3O9-vbZWIFoh643Wf2tjZUj0z1LfZd~6ZoxqCHqB0S1KbhZ72KZ6m9uaMOO2Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Can_Grid_Cell_Ensembles_Represent_Multiple_Spaces","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561528,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561528/thumbnails/1.jpg","file_name":"527192.full.pdf","download_url":"https://www.academia.edu/attachments/110561528/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Can_Grid_Cell_Ensembles_Represent_Multip.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561528/527192.full-libre.pdf?1705531053=\u0026response-content-disposition=attachment%3B+filename%3DCan_Grid_Cell_Ensembles_Represent_Multip.pdf\u0026Expires=1732826279\u0026Signature=LVmQrxNO~Mvjet1qZqMbx02iZp1Z~5nJ~wRr8WLqtZGb8ST4JobOx6CvCs9VtJFuzWM12itg3dcvNV9YiPMzrBFQ4l2zW3j4i9CEOGyP4daUjY1tjCd9n3eW7jQiUykNM6IYU~ElWyD1RIc-QxXl1u0vt7txakFAfjX-z-VaS3VvPOGW8XXvewkVQfJxZT14FZQjAujfsa85j50r0LaEhr8dYP~p03QTSAzfieiWhTR8jFh4GhFPxOhZUNlXVfoQctzGp9y~SvESBjbSLITgvtmUE3O9-vbZWIFoh643Wf2tjZUj0z1LfZd~6ZoxqCHqB0S1KbhZ72KZ6m9uaMOO2Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":64336,"name":"Population","url":"https://www.academia.edu/Documents/in/Population"},{"id":303727,"name":"Grid","url":"https://www.academia.edu/Documents/in/Grid"},{"id":624738,"name":"Neural Computation","url":"https://www.academia.edu/Documents/in/Neural_Computation"}],"urls":[{"id":38676552,"url":"https://doi.org/10.1162/neco_a_01237"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657570"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657570/The_Capacity_for_Correlated_Semantic_Memories_in_the_Cortex"><img alt="Research paper thumbnail of The Capacity for Correlated Semantic Memories in the Cortex" class="work-thumbnail" src="https://attachments.academia-assets.com/110561497/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657570/The_Capacity_for_Correlated_Semantic_Memories_in_the_Cortex">The Capacity for Correlated Semantic Memories in the Cortex</a></div><div class="wp-workCard_item"><span>Entropy</span><span>, Oct 26, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7b790f37251d2451e686b3cb4e65025e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561497,"asset_id":113657570,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561497/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657570"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657570"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657570; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657570]").text(description); $(".js-view-count[data-work-id=113657570]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657570; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657570']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657570, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7b790f37251d2451e686b3cb4e65025e" } } $('.js-work-strip[data-work-id=113657570]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657570,"title":"The Capacity for Correlated Semantic Memories in the Cortex","translated_title":"","metadata":{"publisher":"Multidisciplinary Digital Publishing Institute","grobid_abstract":"A statistical analysis of semantic memory should reflect the complex, multifactorial structure of the relations among its items. Still, a dominant paradigm in the study of semantic memory has been the idea that the mental representation of concepts is structured along a simple branching tree spanned by superordinate and subordinate categories. We propose a generative model of item representation with correlations that overcomes the limitations of a tree structure. The items are generated through \"factors\" that represent semantic features or real-world attributes. The correlation between items has its source in the extent to which items share such factors and the strength of such factors: if many factors are balanced, correlations are overall low; whereas if a few factors dominate, they become strong. Our model allows for correlations that are neither trivial nor hierarchical, but may reproduce the general spectrum of correlations present in a dataset of nouns. We find that such correlations reduce the storage capacity of a Potts network to a limited extent, so that the number of concepts that can be stored and retrieved in a large, human-scale cortical network may still be of order 10 7 , as originally estimated without correlations. When this storage capacity is exceeded, however, retrieval fails completely only for balanced factors; above a critical degree of imbalance, a phase transition leads to a regime where the network still extracts considerable information about the cued item, even if not recovering its detailed representation: partial categorization seems to emerge spontaneously as a consequence of the dominance of particular factors, rather than being imposed ad hoc. We argue this to be a relevant model of semantic memory resilience in Tulving's remember/know paradigms.","publication_date":{"day":26,"month":10,"year":2018,"errors":{}},"publication_name":"Entropy","grobid_abstract_attachment_id":110561497},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657570/The_Capacity_for_Correlated_Semantic_Memories_in_the_Cortex","translated_internal_url":"","created_at":"2024-01-17T14:05:55.655-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561497,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561497/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/110561497/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Capacity_for_Correlated_Semantic_Mem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561497/pdf-libre.pdf?1705531087=\u0026response-content-disposition=attachment%3B+filename%3DThe_Capacity_for_Correlated_Semantic_Mem.pdf\u0026Expires=1732826279\u0026Signature=CnSsGnBmqoFVTeJBIqxwc8VyHUPO4a9K4Ig~2cRSZwK~-GCJtJKW26kMkfU4kJPdFUR7BPge7aP2A7yjP1ul0ZanYaWKfcdsCcM5ehRyW1ECcJd~YT5IP1iA7rI2r4jo-EOfON5x1EB4XrGsC8cxJOKy-u4PZxfyhezSm-FlKPHnMYvELEKLUmQPZATQ-FTAThY3j7~B5~F-3A79pzn8A35sh3inOW~TNvJqkkjXNyU1levVBz8n2ZTUmXp4XxPyfU97H6JFWgjaZPdDa26~x-TFY7d8-SY6pKNlV9fmy3VNlFFLYnydD51Z8ywMptjTHIcChd1E-gdtYJLxiaQbyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Capacity_for_Correlated_Semantic_Memories_in_the_Cortex","translated_slug":"","page_count":33,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561497,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561497/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/110561497/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Capacity_for_Correlated_Semantic_Mem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561497/pdf-libre.pdf?1705531087=\u0026response-content-disposition=attachment%3B+filename%3DThe_Capacity_for_Correlated_Semantic_Mem.pdf\u0026Expires=1732826279\u0026Signature=CnSsGnBmqoFVTeJBIqxwc8VyHUPO4a9K4Ig~2cRSZwK~-GCJtJKW26kMkfU4kJPdFUR7BPge7aP2A7yjP1ul0ZanYaWKfcdsCcM5ehRyW1ECcJd~YT5IP1iA7rI2r4jo-EOfON5x1EB4XrGsC8cxJOKy-u4PZxfyhezSm-FlKPHnMYvELEKLUmQPZATQ-FTAThY3j7~B5~F-3A79pzn8A35sh3inOW~TNvJqkkjXNyU1levVBz8n2ZTUmXp4XxPyfU97H6JFWgjaZPdDa26~x-TFY7d8-SY6pKNlV9fmy3VNlFFLYnydD51Z8ywMptjTHIcChd1E-gdtYJLxiaQbyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":9189,"name":"Semantic Memory","url":"https://www.academia.edu/Documents/in/Semantic_Memory"},{"id":18573,"name":"Categorization","url":"https://www.academia.edu/Documents/in/Categorization"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":36265,"name":"Entropy","url":"https://www.academia.edu/Documents/in/Entropy"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":114550,"name":"Cortex","url":"https://www.academia.edu/Documents/in/Cortex"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":38676551,"url":"https://www.mdpi.com/1099-4300/20/11/824/pdf?version=1540551580"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657569"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657569/The_dentate_gyrus"><img alt="Research paper thumbnail of The dentate gyrus" class="work-thumbnail" src="https://attachments.academia-assets.com/110561527/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657569/The_dentate_gyrus">The dentate gyrus</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Nov 3, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1baf995d27a7eb372aa79f7b48c2aa28" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561527,"asset_id":113657569,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561527/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657569"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657569"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657569; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657569]").text(description); $(".js-view-count[data-work-id=113657569]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657569; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657569']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657569, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1baf995d27a7eb372aa79f7b48c2aa28" } } $('.js-work-strip[data-work-id=113657569]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657569,"title":"The dentate gyrus","translated_title":"","metadata":{"publisher":"Oxford University Press","publication_date":{"day":3,"month":11,"year":2016,"errors":{}},"publication_name":"Oxford University Press eBooks"},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657569/The_dentate_gyrus","translated_internal_url":"","created_at":"2024-01-17T14:05:55.454-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561527,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561527/thumbnails/1.jpg","file_name":"doku.pdf","download_url":"https://www.academia.edu/attachments/110561527/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_dentate_gyrus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561527/doku-libre.pdf?1705531054=\u0026response-content-disposition=attachment%3B+filename%3DThe_dentate_gyrus.pdf\u0026Expires=1732826279\u0026Signature=LagANLc3vrJbJ4WK4G9y2V12Dpp1Vavct-vE9AIJK3Ux2OcPjczr2XLlb5Z3O3YvFgtJc8zkUI0vOGjQABwpgSSh2y-PyT~Z08WnahrTaDPmDGGlF1VykF4w2qmVi5N2wKHAPlZU3wudqS4sPa1JC5taksGa9b0ktKz7rX~QdlCwbY1Q~HRAbj9H7MSoJrb0tiCfW-enQs9tmSl-CG34Z5UgYTXRJCpenLUxa3qvYYFkZCy3ApHIQaRkJhg4YIMh2UQuneIH47AvH36T8aLrAKHYANOyx93Z7L~RudScvmSA8yV~1yz5X2WDxxW4ltYJJoc0uVY8Bt-Xkv4XvLEvNQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_dentate_gyrus","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561527,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561527/thumbnails/1.jpg","file_name":"doku.pdf","download_url":"https://www.academia.edu/attachments/110561527/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_dentate_gyrus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561527/doku-libre.pdf?1705531054=\u0026response-content-disposition=attachment%3B+filename%3DThe_dentate_gyrus.pdf\u0026Expires=1732826279\u0026Signature=LagANLc3vrJbJ4WK4G9y2V12Dpp1Vavct-vE9AIJK3Ux2OcPjczr2XLlb5Z3O3YvFgtJc8zkUI0vOGjQABwpgSSh2y-PyT~Z08WnahrTaDPmDGGlF1VykF4w2qmVi5N2wKHAPlZU3wudqS4sPa1JC5taksGa9b0ktKz7rX~QdlCwbY1Q~HRAbj9H7MSoJrb0tiCfW-enQs9tmSl-CG34Z5UgYTXRJCpenLUxa3qvYYFkZCy3ApHIQaRkJhg4YIMh2UQuneIH47AvH36T8aLrAKHYANOyx93Z7L~RudScvmSA8yV~1yz5X2WDxxW4ltYJJoc0uVY8Bt-Xkv4XvLEvNQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":246876,"name":"Dentate Gyrus","url":"https://www.academia.edu/Documents/in/Dentate_Gyrus"}],"urls":[{"id":38676550,"url":"https://doi.org/10.1093/acprof:oso/9780198749783.003.0005"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657568"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657568/Non_hexagonal_neural_dynamics_in_vowel_space"><img alt="Research paper thumbnail of Non-hexagonal neural dynamics in vowel space" class="work-thumbnail" src="https://attachments.academia-assets.com/110561526/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657568/Non_hexagonal_neural_dynamics_in_vowel_space">Non-hexagonal neural dynamics in vowel space</a></div><div class="wp-workCard_item"><span>AIMS neuroscience</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7e0358be5a807e201425da742a7fc1b8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561526,"asset_id":113657568,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561526/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657568"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657568"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657568; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657568]").text(description); $(".js-view-count[data-work-id=113657568]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657568; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657568']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657568, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7e0358be5a807e201425da742a7fc1b8" } } $('.js-work-strip[data-work-id=113657568]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657568,"title":"Non-hexagonal neural dynamics in vowel space","translated_title":"","metadata":{"publisher":"AIMS Press","grobid_abstract":"Are the grid cells discovered in rodents relevant to human cognition? Following up on two seminal studies by others, we aimed to check whether an approximate 6-fold, grid-like symmetry shows up in the cortical activity of humans who \"navigate\" between vowels, given that vowel space can be approximated with a continuous trapezoidal 2D manifold, spanned by the first and second formant frequencies. We created 30 vowel trajectories in the assumedly flat central portion of the trapezoid. Each of these trajectories had a duration of 240 milliseconds, with a steady start and end point on the perimeter of a \"wheel\". We hypothesized that if the neural representation of this \"box\" is similar to that of rodent grid units, there should be an at least partial hexagonal (6-fold) symmetry in the EEG response of participants who navigate it. We have not found any dominant n-fold symmetry, however, but instead, using PCAs, we find indications that the vowel representation may reflect phonetic features, as positioned on the vowel manifold. The suggestion, therefore, is that vowels are encoded in relation to their salient sensory-perceptual variables, and are not assigned to arbitrary gridlike abstract maps. Finally, we explored the relationship between the first PCA eigenvector and putative vowel attractors for native Italian speakers, who served as the subjects in our study.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"AIMS neuroscience","grobid_abstract_attachment_id":110561526},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657568/Non_hexagonal_neural_dynamics_in_vowel_space","translated_internal_url":"","created_at":"2024-01-17T14:05:55.171-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561526,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561526/thumbnails/1.jpg","file_name":"475265981.pdf","download_url":"https://www.academia.edu/attachments/110561526/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Non_hexagonal_neural_dynamics_in_vowel_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561526/475265981-libre.pdf?1705531084=\u0026response-content-disposition=attachment%3B+filename%3DNon_hexagonal_neural_dynamics_in_vowel_s.pdf\u0026Expires=1732826279\u0026Signature=FV-oTAy5QaN2SHvpmM-cuJZiE1LHK8PEBFMwfRLQo15yfuOik2wGidLUgFrNnEwlQuBIWoUtV1RXT4bVZda2HU9ABtY8-Dq9KuhXpRUqxHmOP48c3Z7vFhqeslgvTdOEBAVZOHgMcwEQafmKzfSMJ0jwNSzEIk3PQWZI2cUdU9p3t86FVHWDjFDe7cqW82h8TtgtXPKRyOoRjEkTVldVt43TL~k2vsrYPsPh9A9EOV8sXADFBSGRJ1usB8aHogcFfktFX5ZBLJomVIvPbeWlMJscFdoIBnLlBwFSkFgha-qPmFiSFr6uIAlbFKqxLWUFjID37omv2JlCCsbnwP9rqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Non_hexagonal_neural_dynamics_in_vowel_space","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561526,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561526/thumbnails/1.jpg","file_name":"475265981.pdf","download_url":"https://www.academia.edu/attachments/110561526/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Non_hexagonal_neural_dynamics_in_vowel_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561526/475265981-libre.pdf?1705531084=\u0026response-content-disposition=attachment%3B+filename%3DNon_hexagonal_neural_dynamics_in_vowel_s.pdf\u0026Expires=1732826279\u0026Signature=FV-oTAy5QaN2SHvpmM-cuJZiE1LHK8PEBFMwfRLQo15yfuOik2wGidLUgFrNnEwlQuBIWoUtV1RXT4bVZda2HU9ABtY8-Dq9KuhXpRUqxHmOP48c3Z7vFhqeslgvTdOEBAVZOHgMcwEQafmKzfSMJ0jwNSzEIk3PQWZI2cUdU9p3t86FVHWDjFDe7cqW82h8TtgtXPKRyOoRjEkTVldVt43TL~k2vsrYPsPh9A9EOV8sXADFBSGRJ1usB8aHogcFfktFX5ZBLJomVIvPbeWlMJscFdoIBnLlBwFSkFgha-qPmFiSFr6uIAlbFKqxLWUFjID37omv2JlCCsbnwP9rqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":6147,"name":"Diphthongs","url":"https://www.academia.edu/Documents/in/Diphthongs"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":127474,"name":"Formant","url":"https://www.academia.edu/Documents/in/Formant"},{"id":303727,"name":"Grid","url":"https://www.academia.edu/Documents/in/Grid"},{"id":1114253,"name":"VOWEL","url":"https://www.academia.edu/Documents/in/VOWEL"}],"urls":[{"id":38676549,"url":"https://doi.org/10.3934/neuroscience.2020015"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657567"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657567/Redundancy_and_synergy_arising_from_correlations_in_large_ensembles"><img alt="Research paper thumbnail of Redundancy and synergy arising from correlations in large ensembles" class="work-thumbnail" src="https://attachments.academia-assets.com/110561496/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657567/Redundancy_and_synergy_arising_from_correlations_in_large_ensembles">Redundancy and synergy arising from correlations in large ensembles</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4825f81646b52aa12afe952d7486ec51" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561496,"asset_id":113657567,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561496/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657567"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657567"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657567; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657567]").text(description); $(".js-view-count[data-work-id=113657567]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657567; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657567']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657567, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4825f81646b52aa12afe952d7486ec51" } } $('.js-work-strip[data-work-id=113657567]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657567,"title":"Redundancy and synergy arising from correlations in large ensembles","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"Multielectrode arrays allow recording of the activity of many single neurons, from which correlations can be calculated. The functional roles of correlations can be revealed by the measures of the information conveyed by neuronal activity; a simple formula has been shown to discriminate the information transmitted by individual spikes from the positive or negative contributions due to correlations (Panzeri et al, Proc. Roy. Soc. B., 266: 1001-1012 (1999)). The formula quantifies the corrections to the single-unit instantaneous information rate which result from correlations in spike emission between pairs of neurons. Positive corrections imply synergy, while negative corrections indicate redundancy. Here, this analysis, previously applied to recordings from small ensembles, is developed further by considering a model of a large ensemble, in which correlations among the signal and noise components of neuronal firing are small in absolute value and entirely random in origin. Even such small random correlations are shown to lead to large possible synergy or redundancy, whenever the time window for extracting information from neuronal firing extends to the order of the mean interspike interval. In addition, a sample of recordings from rat barrel cortex illustrates the mean time window at which such 'corrections' dominate when correlations are, as often in the real brain, neither random nor small. The presence of this kind of correlations for a large ensemble of cells restricts further the time of validity of the expansion, unless what is decodable by the receiver is also taken into account.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":110561496},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657567/Redundancy_and_synergy_arising_from_correlations_in_large_ensembles","translated_internal_url":"","created_at":"2024-01-17T14:05:54.974-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561496,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561496/thumbnails/1.jpg","file_name":"0012119.pdf","download_url":"https://www.academia.edu/attachments/110561496/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Redundancy_and_synergy_arising_from_corr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561496/0012119-libre.pdf?1705531048=\u0026response-content-disposition=attachment%3B+filename%3DRedundancy_and_synergy_arising_from_corr.pdf\u0026Expires=1732826279\u0026Signature=bm~tHXWOsMiRgGcVWV7MuWGvwwtIOdrOaWSwkl5OcXguH1~NCkFr4mqUGuy3l4xE1JIyNLBjeKLWNhCV4qFQOO7-Y3Fx9muX~fH4zhA8yDQm6s5-65kShEJFgMQfgUA7HUXKCl3CW9VoMFOpf6H7dYl5qHD4ZhKFB3ahkQupk9MEc~3oU47G3E5Qnh6f84B2bMlHLUD7NTzVjkGiD6g8GhUu4YZ9nWRWaLNsj-~8qYTw5Q2n7R3Z~ABvysoLF-jULsbChQTMtk05jx02k0YVOqT9e7CAAPx7OQFkO3E0tE4H38RXnGlsZodKDt96v4R8V55y914uFE1k-DVnz0NcMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Redundancy_and_synergy_arising_from_correlations_in_large_ensembles","translated_slug":"","page_count":28,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561496,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561496/thumbnails/1.jpg","file_name":"0012119.pdf","download_url":"https://www.academia.edu/attachments/110561496/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Redundancy_and_synergy_arising_from_corr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561496/0012119-libre.pdf?1705531048=\u0026response-content-disposition=attachment%3B+filename%3DRedundancy_and_synergy_arising_from_corr.pdf\u0026Expires=1732826279\u0026Signature=bm~tHXWOsMiRgGcVWV7MuWGvwwtIOdrOaWSwkl5OcXguH1~NCkFr4mqUGuy3l4xE1JIyNLBjeKLWNhCV4qFQOO7-Y3Fx9muX~fH4zhA8yDQm6s5-65kShEJFgMQfgUA7HUXKCl3CW9VoMFOpf6H7dYl5qHD4ZhKFB3ahkQupk9MEc~3oU47G3E5Qnh6f84B2bMlHLUD7NTzVjkGiD6g8GhUu4YZ9nWRWaLNsj-~8qYTw5Q2n7R3Z~ABvysoLF-jULsbChQTMtk05jx02k0YVOqT9e7CAAPx7OQFkO3E0tE4H38RXnGlsZodKDt96v4R8V55y914uFE1k-DVnz0NcMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":5451,"name":"Computational Neuroscience","url":"https://www.academia.edu/Documents/in/Computational_Neuroscience"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":432091,"name":"Barrel Cortex","url":"https://www.academia.edu/Documents/in/Barrel_Cortex"},{"id":473567,"name":"Neuronal Activity","url":"https://www.academia.edu/Documents/in/Neuronal_Activity"},{"id":952560,"name":"Information Rate","url":"https://www.academia.edu/Documents/in/Information_Rate"},{"id":1202769,"name":"Multielectrode Array","url":"https://www.academia.edu/Documents/in/Multielectrode_Array"}],"urls":[{"id":38676548,"url":"https://arxiv.org/pdf/cond-mat/0012119"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657566"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657566/Angular_and_linear_speed_cells_in_the_parahippocampal_circuits"><img alt="Research paper thumbnail of Angular and linear speed cells in the parahippocampal circuits" class="work-thumbnail" src="https://attachments.academia-assets.com/110561494/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657566/Angular_and_linear_speed_cells_in_the_parahippocampal_circuits">Angular and linear speed cells in the parahippocampal circuits</a></div><div class="wp-workCard_item"><span>Nature Communications</span><span>, Apr 7, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="39fbc639a90ece2d6305dfcdbc0be877" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561494,"asset_id":113657566,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561494/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657566"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657566"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657566; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657566]").text(description); $(".js-view-count[data-work-id=113657566]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657566; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657566']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657566, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "39fbc639a90ece2d6305dfcdbc0be877" } } $('.js-work-strip[data-work-id=113657566]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657566,"title":"Angular and linear speed cells in the parahippocampal circuits","translated_title":"","metadata":{"publisher":"Nature Portfolio","grobid_abstract":"An essential role of the hippocampal region is to integrate information to compute and update representations. How this transpires is highly debated. Many theories hinge on the integration of self-motion signals and the existence of continuous attractor networks (CAN). CAN models hypothesise that neurons coding for navigational correlatessuch as position and directionreceive inputs from cells conjunctively coding for position, direction, and selfmotion. As yet, very little data exist on such conjunctive coding in the hippocampal region. Here, we report neurons coding for angular and linear velocity, uniformly distributed across the medial entorhinal cortex (MEC), the presubiculum and the parasubiculum, except for MEC layer II. Self-motion neurons often conjunctively encoded position and/or direction, yet lacked a structured organisation. These results offer insights as to how linear/angular speedderivative in time of position/directionmay allow the updating of spatial representations, possibly uncovering a generalised algorithm to update any representation.","publication_date":{"day":7,"month":4,"year":2022,"errors":{}},"publication_name":"Nature Communications","grobid_abstract_attachment_id":110561494},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657566/Angular_and_linear_speed_cells_in_the_parahippocampal_circuits","translated_internal_url":"","created_at":"2024-01-17T14:05:53.905-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561494,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561494/thumbnails/1.jpg","file_name":"s41467-022-29583-z.pdf","download_url":"https://www.academia.edu/attachments/110561494/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Angular_and_linear_speed_cells_in_the_pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561494/s41467-022-29583-z-libre.pdf?1705531078=\u0026response-content-disposition=attachment%3B+filename%3DAngular_and_linear_speed_cells_in_the_pa.pdf\u0026Expires=1732826279\u0026Signature=Nz4s0tp61AkNubWH3p~yUxHQH7JCfoZv05yXOe~s97B8~ErGI1Rz~rT3G-1FEugrcrHoYA3YAj5iVdpUtBEpaA5Dfql24QWlmrDxkwSrRwzHhqnOH4qwI7RyFxZYApBI6ki6Ur0ADQuZu8eOnpnKBMtRkWX93YOk27CPwp75Ld6BXZCjx9j0UYtrp4RkZtjvVGH0aTa0OJuUcUHf7a44Q86CfdhFWrYtR9HC8jdIA2bVmoRml-YtL4CcWdzWOKUYCNTV~N4ETeKr0PhDdVdDcnv1PaKrqCTA-N-tFfD9VJRNfvJpYfNHMDhbchDAT~N9KXt7FmGTzFGntZsXuroiZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Angular_and_linear_speed_cells_in_the_parahippocampal_circuits","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561494,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561494/thumbnails/1.jpg","file_name":"s41467-022-29583-z.pdf","download_url":"https://www.academia.edu/attachments/110561494/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Angular_and_linear_speed_cells_in_the_pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561494/s41467-022-29583-z-libre.pdf?1705531078=\u0026response-content-disposition=attachment%3B+filename%3DAngular_and_linear_speed_cells_in_the_pa.pdf\u0026Expires=1732826279\u0026Signature=Nz4s0tp61AkNubWH3p~yUxHQH7JCfoZv05yXOe~s97B8~ErGI1Rz~rT3G-1FEugrcrHoYA3YAj5iVdpUtBEpaA5Dfql24QWlmrDxkwSrRwzHhqnOH4qwI7RyFxZYApBI6ki6Ur0ADQuZu8eOnpnKBMtRkWX93YOk27CPwp75Ld6BXZCjx9j0UYtrp4RkZtjvVGH0aTa0OJuUcUHf7a44Q86CfdhFWrYtR9HC8jdIA2bVmoRml-YtL4CcWdzWOKUYCNTV~N4ETeKr0PhDdVdDcnv1PaKrqCTA-N-tFfD9VJRNfvJpYfNHMDhbchDAT~N9KXt7FmGTzFGntZsXuroiZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":1267800,"name":"Nature Communications","url":"https://www.academia.edu/Documents/in/Nature_Communications"},{"id":2047736,"name":"Angular displacement","url":"https://www.academia.edu/Documents/in/Angular_displacement"},{"id":2226469,"name":"Hippocampal formation","url":"https://www.academia.edu/Documents/in/Hippocampal_formation"}],"urls":[{"id":38676547,"url":"https://www.nature.com/articles/s41467-022-29583-z.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657565"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657565/Representing_Where_along_with_What_Information_in_a_Model_of_a_Cortical_Patch"><img alt="Research paper thumbnail of Representing Where along with What Information in a Model of a Cortical Patch" class="work-thumbnail" src="https://attachments.academia-assets.com/110561492/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657565/Representing_Where_along_with_What_Information_in_a_Model_of_a_Cortical_Patch">Representing Where along with What Information in a Model of a Cortical Patch</a></div><div class="wp-workCard_item"><span>PLOS Computational Biology</span><span>, Mar 21, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bc09d9e69b1dd9c5cbf4e1662c3fc804" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561492,"asset_id":113657565,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561492/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657565"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657565"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657565; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657565]").text(description); $(".js-view-count[data-work-id=113657565]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657565; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657565']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657565, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bc09d9e69b1dd9c5cbf4e1662c3fc804" } } $('.js-work-strip[data-work-id=113657565]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657565,"title":"Representing Where along with What Information in a Model of a Cortical Patch","translated_title":"","metadata":{"publisher":"International Society for Computational Biology","grobid_abstract":"Behaving in the real world requires flexibly combining and maintaining information about both continuous and discrete variables. In the visual domain, several lines of evidence show that neurons in some cortical networks can simultaneously represent information about the position and identity of objects, and maintain this combined representation when the object is no longer present. The underlying network mechanism for this combined representation is, however, unknown. In this paper, we approach this issue through a theoretical analysis of recurrent networks. We present a model of a cortical network that can retrieve information about the identity of objects from incomplete transient cues, while simultaneously representing their spatial position. Our results show that two factors are important in making this possible: A) a metric organisation of the recurrent connections, and B) a spatially localised change in the linear gain of neurons. Metric connectivity enables a localised retrieval of information about object identity, while gain modulation ensures localisation in the correct position. Importantly, we find that the amount of information that the network can retrieve and retain about identity is strongly affected by the amount of information it maintains about position. This balance can be controlled by global signals that change the neuronal gain. These results show that anatomical and physiological properties, which have long been known to characterise cortical networks, naturally endow them with the ability to maintain a conjunctive representation of the identity and location of objects.","publication_date":{"day":21,"month":3,"year":2008,"errors":{}},"publication_name":"PLOS Computational Biology","grobid_abstract_attachment_id":110561492},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657565/Representing_Where_along_with_What_Information_in_a_Model_of_a_Cortical_Patch","translated_internal_url":"","created_at":"2024-01-17T14:05:53.654-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561492,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561492/thumbnails/1.jpg","file_name":"file.pdf","download_url":"https://www.academia.edu/attachments/110561492/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Representing_Where_along_with_What_Infor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561492/file-libre.pdf?1705531068=\u0026response-content-disposition=attachment%3B+filename%3DRepresenting_Where_along_with_What_Infor.pdf\u0026Expires=1732826279\u0026Signature=hG6sAkS0NsYZ4tgowtwke9WcEaTohfow3fMjqtMqZotBL2akSp12imlXgVT5Hy3l8rVGA33fO7k35cOVv9Ck-NjiqzH3qcWHerkXmmUlZmh9ePiqxYTmSOXb8LjanBxA2xiefLhApvawTsSbmWVJc62-uTwwUoU215eLsn8-YMWJjQYB7hzHfClmLDWYpXgomQxkymCH5tucEdYMCovYRnX3G8Mjw8kMfPWMSRUxXE5bQimsjm9EBLavnDRfoTpXVlLbHe4fLA1QgHYsjWhrGPsRIUEj~80iniOas9M1OtcKDOMLhSnL-MUOJ9Lik7eZyVnEzdu~GMjBxVkrl~UDow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Representing_Where_along_with_What_Information_in_a_Model_of_a_Cortical_Patch","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561492,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561492/thumbnails/1.jpg","file_name":"file.pdf","download_url":"https://www.academia.edu/attachments/110561492/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Representing_Where_along_with_What_Infor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561492/file-libre.pdf?1705531068=\u0026response-content-disposition=attachment%3B+filename%3DRepresenting_Where_along_with_What_Infor.pdf\u0026Expires=1732826279\u0026Signature=hG6sAkS0NsYZ4tgowtwke9WcEaTohfow3fMjqtMqZotBL2akSp12imlXgVT5Hy3l8rVGA33fO7k35cOVv9Ck-NjiqzH3qcWHerkXmmUlZmh9ePiqxYTmSOXb8LjanBxA2xiefLhApvawTsSbmWVJc62-uTwwUoU215eLsn8-YMWJjQYB7hzHfClmLDWYpXgomQxkymCH5tucEdYMCovYRnX3G8Mjw8kMfPWMSRUxXE5bQimsjm9EBLavnDRfoTpXVlLbHe4fLA1QgHYsjWhrGPsRIUEj~80iniOas9M1OtcKDOMLhSnL-MUOJ9Lik7eZyVnEzdu~GMjBxVkrl~UDow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":110561493,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561493/thumbnails/1.jpg","file_name":"file.pdf","download_url":"https://www.academia.edu/attachments/110561493/download_file","bulk_download_file_name":"Representing_Where_along_with_What_Infor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561493/file-libre.pdf?1705531070=\u0026response-content-disposition=attachment%3B+filename%3DRepresenting_Where_along_with_What_Infor.pdf\u0026Expires=1732826279\u0026Signature=UqvYkKmqgst0pzj75QOTGwT0rt8hH3w-4piOMJTic50doU9CALpOFkFKUqNBlPzMijM4gWZgCFMOkXmS-iaFUXJJy-dudimy1TbgUQ7SdkOeFGjqKVYQNG4LEnGVdMxLjg7VqvmijG7qfN1U0oKn4TwwqBvHIY8N7Xu7exwLpCVNjTcV8s8GmJ7xvwESHtIYZGAuRyZ0didZPFzg~cImD7eh7E1lfzlQ5hefxtpsWOny7csuBYSBZirbwzpAbnJ-tXclQ207mmTEuUHwC~ihZ-AfAx9iTUecvNbu2fIHt9suydszW9lxJ8VKxdv90ApopeJqDHyGcPjj9bjKJfan5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":46858,"name":"Memory","url":"https://www.academia.edu/Documents/in/Memory"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":128285,"name":"Information Processing in Visual System","url":"https://www.academia.edu/Documents/in/Information_Processing_in_Visual_System"},{"id":132020,"name":"Neuronal Plasticity","url":"https://www.academia.edu/Documents/in/Neuronal_Plasticity"},{"id":184965,"name":"Theoretical Analysis","url":"https://www.academia.edu/Documents/in/Theoretical_Analysis"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":255453,"name":"Information Storage and Retrieval","url":"https://www.academia.edu/Documents/in/Information_Storage_and_Retrieval"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":968586,"name":"Visual Evoked Potentials","url":"https://www.academia.edu/Documents/in/Visual_Evoked_Potentials"},{"id":1122910,"name":"Attractor Neural Network","url":"https://www.academia.edu/Documents/in/Attractor_Neural_Network"},{"id":1763882,"name":"Representation Politics","url":"https://www.academia.edu/Documents/in/Representation_Politics"},{"id":1837730,"name":"Neural Network Model","url":"https://www.academia.edu/Documents/in/Neural_Network_Model"}],"urls":[{"id":38676546,"url":"https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000012\u0026type=printable"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="249982" id="papers"><div class="js-work-strip profile--work_container" data-work-id="124437592"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124437592/Taking_time_to_compose_thoughts_with_prefrontal_schemata"><img alt="Research paper thumbnail of Taking time to compose thoughts with prefrontal schemata" class="work-thumbnail" src="https://attachments.academia-assets.com/118662854/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124437592/Taking_time_to_compose_thoughts_with_prefrontal_schemata">Taking time to compose thoughts with prefrontal schemata</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Under what conditions can prefrontal cortex direct the composition of brain states, to generate c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Under what conditions can prefrontal cortex direct the composition of brain states, to generate coherent streams of thoughts? Using a simplified Potts model of cortical dynamics, crudely differentiated into two halves, we show that once activity levels are regulated, so as to disambiguate a single temporal sequence, whether the contents of the sequence are mainly determined by the frontal or by the posterior half, or by neither, depends on statistical parameters that describe its microcircuits. The frontal cortex tends to lead if it has more local attractors, longer-lasting and stronger ones, in order of increasing importance. Its guidance is particularly effective to the extent that posterior cortices do not tend to transition from state to state on their own. The result may be related to prefrontal cortex enforcing its temporally-oriented schemata driving coherent sequences of brain states, unlike the atemporal “context” contributed by the hippocampus. Modelling a mild prefrontal ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4a3b264715ba73d051b45e05a9d33f80" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":118662854,"asset_id":124437592,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/118662854/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124437592"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124437592"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124437592; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124437592]").text(description); $(".js-view-count[data-work-id=124437592]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124437592; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124437592']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124437592, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4a3b264715ba73d051b45e05a9d33f80" } } $('.js-work-strip[data-work-id=124437592]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124437592,"title":"Taking time to compose thoughts with prefrontal schemata","translated_title":"","metadata":{"abstract":"Under what conditions can prefrontal cortex direct the composition of brain states, to generate coherent streams of thoughts? Using a simplified Potts model of cortical dynamics, crudely differentiated into two halves, we show that once activity levels are regulated, so as to disambiguate a single temporal sequence, whether the contents of the sequence are mainly determined by the frontal or by the posterior half, or by neither, depends on statistical parameters that describe its microcircuits. The frontal cortex tends to lead if it has more local attractors, longer-lasting and stronger ones, in order of increasing importance. Its guidance is particularly effective to the extent that posterior cortices do not tend to transition from state to state on their own. The result may be related to prefrontal cortex enforcing its temporally-oriented schemata driving coherent sequences of brain states, unlike the atemporal “context” contributed by the hippocampus. Modelling a mild prefrontal ...","publisher":"Cold Spring Harbor Laboratory"},"translated_abstract":"Under what conditions can prefrontal cortex direct the composition of brain states, to generate coherent streams of thoughts? Using a simplified Potts model of cortical dynamics, crudely differentiated into two halves, we show that once activity levels are regulated, so as to disambiguate a single temporal sequence, whether the contents of the sequence are mainly determined by the frontal or by the posterior half, or by neither, depends on statistical parameters that describe its microcircuits. The frontal cortex tends to lead if it has more local attractors, longer-lasting and stronger ones, in order of increasing importance. Its guidance is particularly effective to the extent that posterior cortices do not tend to transition from state to state on their own. The result may be related to prefrontal cortex enforcing its temporally-oriented schemata driving coherent sequences of brain states, unlike the atemporal “context” contributed by the hippocampus. Modelling a mild prefrontal ...","internal_url":"https://www.academia.edu/124437592/Taking_time_to_compose_thoughts_with_prefrontal_schemata","translated_internal_url":"","created_at":"2024-10-05T01:10:24.971-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118662854,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118662854/thumbnails/1.jpg","file_name":"2023.07.25.550523.full.pdf","download_url":"https://www.academia.edu/attachments/118662854/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Taking_time_to_compose_thoughts_with_pre.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118662854/2023.07.25.550523.full-libre.pdf?1728117810=\u0026response-content-disposition=attachment%3B+filename%3DTaking_time_to_compose_thoughts_with_pre.pdf\u0026Expires=1732826278\u0026Signature=FW02fP83yYMW~wivha5nLj~-CBv4YiKRJHY662ouvzRSEBNZmuEEwE4z~dGLHvZ0pAeJ1h0yRvlSr3sZ8Da81Yj5zmA4OaEr741DOk4Sw83OFWIRhjI5umgPwTYioMmJon5NXqJz6-ZQHcumJW1xIymIlxxO-9E1dJ9fSZMTMPeiuCdjat005coPTvUUzVIJZsH3XP0fl~rL6urwufoiwe-9ec-KaC1jNJz5aATNdZ6fnkcCqdkK~2xwFEL-l3M~aPzRBDAjKP8P4pqsU~pMzy7mwmtq3BgGdsDBeLT-6VuJzXuQt3ZrDvh2rjpGUu-7uf~9vT15ViAQieWWojdPzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Taking_time_to_compose_thoughts_with_prefrontal_schemata","translated_slug":"","page_count":30,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":118662854,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118662854/thumbnails/1.jpg","file_name":"2023.07.25.550523.full.pdf","download_url":"https://www.academia.edu/attachments/118662854/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Taking_time_to_compose_thoughts_with_pre.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118662854/2023.07.25.550523.full-libre.pdf?1728117810=\u0026response-content-disposition=attachment%3B+filename%3DTaking_time_to_compose_thoughts_with_pre.pdf\u0026Expires=1732826278\u0026Signature=FW02fP83yYMW~wivha5nLj~-CBv4YiKRJHY662ouvzRSEBNZmuEEwE4z~dGLHvZ0pAeJ1h0yRvlSr3sZ8Da81Yj5zmA4OaEr741DOk4Sw83OFWIRhjI5umgPwTYioMmJon5NXqJz6-ZQHcumJW1xIymIlxxO-9E1dJ9fSZMTMPeiuCdjat005coPTvUUzVIJZsH3XP0fl~rL6urwufoiwe-9ec-KaC1jNJz5aATNdZ6fnkcCqdkK~2xwFEL-l3M~aPzRBDAjKP8P4pqsU~pMzy7mwmtq3BgGdsDBeLT-6VuJzXuQt3ZrDvh2rjpGUu-7uf~9vT15ViAQieWWojdPzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology"},{"id":28576,"name":"Prefrontal Cortex","url":"https://www.academia.edu/Documents/in/Prefrontal_Cortex"}],"urls":[{"id":44985942,"url":"https://syndication.highwire.org/content/doi/10.1101/2023.07.25.550523"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119849767"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/119849767/Can_grid_cell_ensembles_represent_multiple_spaces"><img alt="Research paper thumbnail of Can grid cell ensembles represent multiple spaces?" class="work-thumbnail" src="https://attachments.academia-assets.com/115175903/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/119849767/Can_grid_cell_ensembles_represent_multiple_spaces">Can grid cell ensembles represent multiple spaces?</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a14b7fcb9e50ed0bf66407e9b7ad408d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":115175903,"asset_id":119849767,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/115175903/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119849767"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119849767"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119849767; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119849767]").text(description); $(".js-view-count[data-work-id=119849767]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119849767; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119849767']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 119849767, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a14b7fcb9e50ed0bf66407e9b7ad408d" } } $('.js-work-strip[data-work-id=119849767]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119849767,"title":"Can grid cell ensembles represent multiple spaces?","translated_title":"","metadata":{"grobid_abstract":"The way grid cells represent space in the rodent brain has been a striking discovery, with theoretical implications still unclear. Differently from hippocampal place cells, which are known to encode multiple, environment-dependent spatial maps, grid cells have been widely believed to encode space through a single low dimensional manifold, in which coactivity relations between different neurons are preserved when the environment is changed. Does it have to be so? Here, we compute-using two alternative mathematical models-the storage capacity of a population of grid-like units, embedded in a continuous attractor neural network, for multiple spatial maps. We show that distinct representations of multiple environments can coexist, as existing models for grid cells have the potential to express several sets of hexagonal grid patterns, challenging the view of a universal grid map. This suggests that a population of grid cells can encode multiple non-congruent metric relationships, a feature that could in principle allow a grid-like code to represent environments with a variety of different geometries and possibly conceptual and cognitive spaces, which may be expected to entail such context-dependent metric relationships.","publication_date":{"day":2,"month":7,"year":2018,"errors":{}},"grobid_abstract_attachment_id":115175903},"translated_abstract":null,"internal_url":"https://www.academia.edu/119849767/Can_grid_cell_ensembles_represent_multiple_spaces","translated_internal_url":"","created_at":"2024-05-22T22:33:03.123-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115175903,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115175903/thumbnails/1.jpg","file_name":"527192.full.pdf","download_url":"https://www.academia.edu/attachments/115175903/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Can_grid_cell_ensembles_represent_multip.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115175903/527192.full-libre.pdf?1716446214=\u0026response-content-disposition=attachment%3B+filename%3DCan_grid_cell_ensembles_represent_multip.pdf\u0026Expires=1732826278\u0026Signature=UPOwtQb-mI17bwGBUzNT9F9yc3kovc56v~paxX0gacKoH37vZ3SmRERz3TNm0OFtXwUOEvE5mOJ8oEZ-uWC71n0wSg7p8mctR-Vm3qmzkyQZfPLmc8NFOz0rP1dwu0djzedcQmAzjfmYcrubIVWeO3ezpgWItIDNda7htWmApESe376RVxCRRfU7Kw8r9SCLz~z-cKPMfk-E0LCg2G4YRBihPhcJOlg6-vgxr3Z3JTidphY4VMFVVxesg1bJgmyrwlzY~KUh69uQtAxjJx3Jrsu1eEZpiPiLLlTKKC~FL-AbC5dIFEM45YzAZciz0vq74nToDieEjlHRy8CpC8V1~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Can_grid_cell_ensembles_represent_multiple_spaces","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":115175903,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115175903/thumbnails/1.jpg","file_name":"527192.full.pdf","download_url":"https://www.academia.edu/attachments/115175903/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Can_grid_cell_ensembles_represent_multip.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115175903/527192.full-libre.pdf?1716446214=\u0026response-content-disposition=attachment%3B+filename%3DCan_grid_cell_ensembles_represent_multip.pdf\u0026Expires=1732826278\u0026Signature=UPOwtQb-mI17bwGBUzNT9F9yc3kovc56v~paxX0gacKoH37vZ3SmRERz3TNm0OFtXwUOEvE5mOJ8oEZ-uWC71n0wSg7p8mctR-Vm3qmzkyQZfPLmc8NFOz0rP1dwu0djzedcQmAzjfmYcrubIVWeO3ezpgWItIDNda7htWmApESe376RVxCRRfU7Kw8r9SCLz~z-cKPMfk-E0LCg2G4YRBihPhcJOlg6-vgxr3Z3JTidphY4VMFVVxesg1bJgmyrwlzY~KUh69uQtAxjJx3Jrsu1eEZpiPiLLlTKKC~FL-AbC5dIFEM45YzAZciz0vq74nToDieEjlHRy8CpC8V1~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":64336,"name":"Population","url":"https://www.academia.edu/Documents/in/Population"},{"id":303727,"name":"Grid","url":"https://www.academia.edu/Documents/in/Grid"},{"id":624738,"name":"Neural Computation","url":"https://www.academia.edu/Documents/in/Neural_Computation"}],"urls":[{"id":42235102,"url":"https://doi.org/10.1101/527192"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119849766"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/119849766/Representing_Where_along_with_What_Information_in_a_Model_of_a_Cortical_Patch"><img alt="Research paper thumbnail of Representing Where along with What Information in a Model of a Cortical Patch" class="work-thumbnail" src="https://attachments.academia-assets.com/115175868/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/119849766/Representing_Where_along_with_What_Information_in_a_Model_of_a_Cortical_Patch">Representing Where along with What Information in a Model of a Cortical Patch</a></div><div class="wp-workCard_item"><span>PLOS Computational Biology</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="da824d305d9b7729bb1975e8d4f6b17b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":115175868,"asset_id":119849766,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/115175868/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119849766"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119849766"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119849766; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119849766]").text(description); $(".js-view-count[data-work-id=119849766]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119849766; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119849766']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 119849766, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "da824d305d9b7729bb1975e8d4f6b17b" } } $('.js-work-strip[data-work-id=119849766]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119849766,"title":"Representing Where along with What Information in a Model of a Cortical Patch","translated_title":"","metadata":{"publisher":"International Society for Computational Biology","grobid_abstract":"Behaving in the real world requires flexibly combining and maintaining information about both continuous and discrete variables. In the visual domain, several lines of evidence show that neurons in some cortical networks can simultaneously represent information about the position and identity of objects, and maintain this combined representation when the object is no longer present. The underlying network mechanism for this combined representation is, however, unknown. In this paper, we approach this issue through a theoretical analysis of recurrent networks. We present a model of a cortical network that can retrieve information about the identity of objects from incomplete transient cues, while simultaneously representing their spatial position. Our results show that two factors are important in making this possible: A) a metric organisation of the recurrent connections, and B) a spatially localised change in the linear gain of neurons. Metric connectivity enables a localised retrieval of information about object identity, while gain modulation ensures localisation in the correct position. Importantly, we find that the amount of information that the network can retrieve and retain about identity is strongly affected by the amount of information it maintains about position. This balance can be controlled by global signals that change the neuronal gain. These results show that anatomical and physiological properties, which have long been known to characterise cortical networks, naturally endow them with the ability to maintain a conjunctive representation of the identity and location of objects.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"PLOS Computational Biology","grobid_abstract_attachment_id":115175868},"translated_abstract":null,"internal_url":"https://www.academia.edu/119849766/Representing_Where_along_with_What_Information_in_a_Model_of_a_Cortical_Patch","translated_internal_url":"","created_at":"2024-05-22T22:33:01.737-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115175868,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115175868/thumbnails/1.jpg","file_name":"177313.pdf","download_url":"https://www.academia.edu/attachments/115175868/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Representing_Where_along_with_What_Infor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115175868/177313-libre.pdf?1716446229=\u0026response-content-disposition=attachment%3B+filename%3DRepresenting_Where_along_with_What_Infor.pdf\u0026Expires=1732826278\u0026Signature=LDLYgSte3-AOsFfnulNOb1~kb43wKGCep6GXYlrVZ7xARbvgmFtSANZnjY9o8qAnEXJup-xX5AwI-9S0oVj2tKCgodEWWXOSO5pfgS1kFN9x12JBBP1Zahi10wro5D6a3A0-Qu4UbDFjIHPt4cLEg1~SW3eRt3YGhNwWCDU-Q7LwQKFxbLbNKf8PCCZAjBGMxXTCKRboeYRELS0ISYosA~-RmddWJOGwhPVp7YDO2dV~3mpSS~b20ee~l6uEKYQibgm0o4ebtbdqJI2SLv9PmG7Ifktco69Af90Hk-pig0FJ8emA5blAdaKMGp9edq1Isu7-vE~M-EaHraA9Ku8Mgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Representing_Where_along_with_What_Information_in_a_Model_of_a_Cortical_Patch","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":115175868,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115175868/thumbnails/1.jpg","file_name":"177313.pdf","download_url":"https://www.academia.edu/attachments/115175868/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Representing_Where_along_with_What_Infor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115175868/177313-libre.pdf?1716446229=\u0026response-content-disposition=attachment%3B+filename%3DRepresenting_Where_along_with_What_Infor.pdf\u0026Expires=1732826278\u0026Signature=LDLYgSte3-AOsFfnulNOb1~kb43wKGCep6GXYlrVZ7xARbvgmFtSANZnjY9o8qAnEXJup-xX5AwI-9S0oVj2tKCgodEWWXOSO5pfgS1kFN9x12JBBP1Zahi10wro5D6a3A0-Qu4UbDFjIHPt4cLEg1~SW3eRt3YGhNwWCDU-Q7LwQKFxbLbNKf8PCCZAjBGMxXTCKRboeYRELS0ISYosA~-RmddWJOGwhPVp7YDO2dV~3mpSS~b20ee~l6uEKYQibgm0o4ebtbdqJI2SLv9PmG7Ifktco69Af90Hk-pig0FJ8emA5blAdaKMGp9edq1Isu7-vE~M-EaHraA9Ku8Mgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":17018,"name":"Music and identity","url":"https://www.academia.edu/Documents/in/Music_and_identity"},{"id":46858,"name":"Memory","url":"https://www.academia.edu/Documents/in/Memory"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":128285,"name":"Information Processing in Visual System","url":"https://www.academia.edu/Documents/in/Information_Processing_in_Visual_System"},{"id":132020,"name":"Neuronal Plasticity","url":"https://www.academia.edu/Documents/in/Neuronal_Plasticity"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":255453,"name":"Information Storage and Retrieval","url":"https://www.academia.edu/Documents/in/Information_Storage_and_Retrieval"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":968586,"name":"Visual Evoked Potentials","url":"https://www.academia.edu/Documents/in/Visual_Evoked_Potentials"},{"id":1122910,"name":"Attractor Neural Network","url":"https://www.academia.edu/Documents/in/Attractor_Neural_Network"},{"id":1763882,"name":"Representation Politics","url":"https://www.academia.edu/Documents/in/Representation_Politics"}],"urls":[{"id":42235101,"url":"http://discovery.ucl.ac.uk/177313/1/177313.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119849764"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/119849764/Angular_and_Linear_Speed_Cells_in_the_Parahippocampal_Circuits"><img alt="Research paper thumbnail of Angular and Linear Speed Cells in the Parahippocampal Circuits" class="work-thumbnail" src="https://attachments.academia-assets.com/115175899/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/119849764/Angular_and_Linear_Speed_Cells_in_the_Parahippocampal_Circuits">Angular and Linear Speed Cells in the Parahippocampal Circuits</a></div><div class="wp-workCard_item"><span>bioRxiv (Cold Spring Harbor Laboratory)</span><span>, Jan 29, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8b75cc366261283801ce477bb6051234" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":115175899,"asset_id":119849764,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/115175899/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119849764"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119849764"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119849764; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119849764]").text(description); $(".js-view-count[data-work-id=119849764]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119849764; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119849764']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 119849764, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8b75cc366261283801ce477bb6051234" } } $('.js-work-strip[data-work-id=119849764]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119849764,"title":"Angular and Linear Speed Cells in the Parahippocampal Circuits","translated_title":"","metadata":{"publisher":"Cold Spring Harbor Laboratory","grobid_abstract":"An essential role of the hippocampal region is to integrate information to compute and update representations. How this transpires is highly debated. Many theories hinge on the integration of self-motion signals and the existence of continuous attractor networks (CAN). CAN models hypothesise that neurons coding for navigational correlates-such as position and directionreceive inputs from cells conjunctively coding for position, direction and self-motion. As yet, such conjunctive coding had not been found in the hippocampal region. Here, we report neurons coding for angular and linear velocity, distributed across the medial entorhinal cortex, the presubiculum and the parasubiculum. These self-motion neurons often conjunctively encoded position and/or direction, yet lacked a structured organisation, calling for the revision of current CAN models. These results offer insights as to how linear/angular speed-derivative in time of position/direction-may allow the updating of spatial representations, possibly uncovering a generalised algorithm to update any representation. .","publication_date":{"day":29,"month":1,"year":2021,"errors":{}},"publication_name":"bioRxiv (Cold Spring Harbor Laboratory)","grobid_abstract_attachment_id":115175899},"translated_abstract":null,"internal_url":"https://www.academia.edu/119849764/Angular_and_Linear_Speed_Cells_in_the_Parahippocampal_Circuits","translated_internal_url":"","created_at":"2024-05-22T22:33:00.428-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115175899,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115175899/thumbnails/1.jpg","file_name":"2021.01.28.428631v1.full.pdf","download_url":"https://www.academia.edu/attachments/115175899/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Angular_and_Linear_Speed_Cells_in_the_Pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115175899/2021.01.28.428631v1.full-libre.pdf?1716446934=\u0026response-content-disposition=attachment%3B+filename%3DAngular_and_Linear_Speed_Cells_in_the_Pa.pdf\u0026Expires=1732782922\u0026Signature=R4L1~yyoXrhd-Knziw6ATp6eZ9oHr1LFHxTCGnSssk6IUiTXYlBxmcbRo0Inr7GCSUjPEr9S2XnigMsNPUKZlN5Srpj3dt1HUPsCxe7vMEbrqQRbdS9C3LeY7NLZYoLn-5x7yNm1xr8gbuyCKW2-WwKgLeVJ3o7iKCFnzp7tKCxKfgguSFufM-m6ctseJNvpOsFVwkoMgnBJ02bO8exFCDZStsNdaO-X-0UdrCkXFup5XZclOACXK4bzaYK~7pRzfR0IcNCXYTemaobxcHtMFZ7-xrEhjoDR2q6ns-R0Lu0ckJLzxr1YPI92zPeAf6UIJG4Y7~1SUJy7t6W60jZ3ig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Angular_and_Linear_Speed_Cells_in_the_Parahippocampal_Circuits","translated_slug":"","page_count":42,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":115175899,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115175899/thumbnails/1.jpg","file_name":"2021.01.28.428631v1.full.pdf","download_url":"https://www.academia.edu/attachments/115175899/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Angular_and_Linear_Speed_Cells_in_the_Pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115175899/2021.01.28.428631v1.full-libre.pdf?1716446934=\u0026response-content-disposition=attachment%3B+filename%3DAngular_and_Linear_Speed_Cells_in_the_Pa.pdf\u0026Expires=1732782922\u0026Signature=R4L1~yyoXrhd-Knziw6ATp6eZ9oHr1LFHxTCGnSssk6IUiTXYlBxmcbRo0Inr7GCSUjPEr9S2XnigMsNPUKZlN5Srpj3dt1HUPsCxe7vMEbrqQRbdS9C3LeY7NLZYoLn-5x7yNm1xr8gbuyCKW2-WwKgLeVJ3o7iKCFnzp7tKCxKfgguSFufM-m6ctseJNvpOsFVwkoMgnBJ02bO8exFCDZStsNdaO-X-0UdrCkXFup5XZclOACXK4bzaYK~7pRzfR0IcNCXYTemaobxcHtMFZ7-xrEhjoDR2q6ns-R0Lu0ckJLzxr1YPI92zPeAf6UIJG4Y7~1SUJy7t6W60jZ3ig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":2047736,"name":"Angular displacement","url":"https://www.academia.edu/Documents/in/Angular_displacement"},{"id":2226469,"name":"Hippocampal formation","url":"https://www.academia.edu/Documents/in/Hippocampal_formation"}],"urls":[{"id":42235100,"url":"https://doi.org/10.1101/2021.01.28.428631"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119849713"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/119849713/Computational_constraints_on_the_associative_recall_of_spatial_scenes"><img alt="Research paper thumbnail of Computational constraints on the associative recall of spatial scenes" class="work-thumbnail" src="https://attachments.academia-assets.com/115175858/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/119849713/Computational_constraints_on_the_associative_recall_of_spatial_scenes">Computational constraints on the associative recall of spatial scenes</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We consider a model of associative storage and retrieval of compositional memories in an extended...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We consider a model of associative storage and retrieval of compositional memories in an extended cortical network. Our model network is comprised of Potts units, which represent patches of cortex, interacting through long-range connections. The critical assumption is that a memory is composed of a limited number of items, each of which has a pre-established representation: storing a new memory only involves acquiring the connections, if novel, among the participating items. The model is shown to have a much lower storage capacity than when it stores simple unitary representations. It is also shown that an input from the hippocampus facilitates associative retrieval. When it is absent, it is advantageous to cue rare rather than frequent items. The implications of these results for emerging trends in empirical research are discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0bdb487caeec07511b3985df5db670c2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":115175858,"asset_id":119849713,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/115175858/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119849713"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119849713"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119849713; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119849713]").text(description); $(".js-view-count[data-work-id=119849713]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119849713; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119849713']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 119849713, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0bdb487caeec07511b3985df5db670c2" } } $('.js-work-strip[data-work-id=119849713]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119849713,"title":"Computational constraints on the associative recall of spatial scenes","translated_title":"","metadata":{"abstract":"We consider a model of associative storage and retrieval of compositional memories in an extended cortical network. Our model network is comprised of Potts units, which represent patches of cortex, interacting through long-range connections. The critical assumption is that a memory is composed of a limited number of items, each of which has a pre-established representation: storing a new memory only involves acquiring the connections, if novel, among the participating items. The model is shown to have a much lower storage capacity than when it stores simple unitary representations. It is also shown that an input from the hippocampus facilitates associative retrieval. When it is absent, it is advantageous to cue rare rather than frequent items. The implications of these results for emerging trends in empirical research are discussed.","publisher":"Cold Spring Harbor Laboratory"},"translated_abstract":"We consider a model of associative storage and retrieval of compositional memories in an extended cortical network. Our model network is comprised of Potts units, which represent patches of cortex, interacting through long-range connections. The critical assumption is that a memory is composed of a limited number of items, each of which has a pre-established representation: storing a new memory only involves acquiring the connections, if novel, among the participating items. The model is shown to have a much lower storage capacity than when it stores simple unitary representations. It is also shown that an input from the hippocampus facilitates associative retrieval. When it is absent, it is advantageous to cue rare rather than frequent items. The implications of these results for emerging trends in empirical research are discussed.","internal_url":"https://www.academia.edu/119849713/Computational_constraints_on_the_associative_recall_of_spatial_scenes","translated_internal_url":"","created_at":"2024-05-22T22:31:32.799-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115175858,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115175858/thumbnails/1.jpg","file_name":"2022.10.08.511429.full.pdf","download_url":"https://www.academia.edu/attachments/115175858/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Computational_constraints_on_the_associa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115175858/2022.10.08.511429.full-libre.pdf?1716446217=\u0026response-content-disposition=attachment%3B+filename%3DComputational_constraints_on_the_associa.pdf\u0026Expires=1732826278\u0026Signature=Lm9G-1BzJRGgcGiyzimV~Bk4pR150kOZG8LA23WEhaIPf9x6ast7KHhs~spJZgKPIUzifuoI3~~ShAgiw4c9mXYIN30xkIst-X5NV9AcXFuzORDywD8lChel3pyTSbywfSiVXlQQZhs7aGjH4MlRV2jdpSahPJx5lpu8Ifaflu1Uijxm3Eotq20NSIyKv0tgfcZRxOOgH-fcpDrBxMhNNglnoUh7CnJUthm~BVknwPpvjNaVo73sxAjdDlT2l6p8AtCAJxn7yyc5WbjVjGuy0CZ9NIlhjs5gOV3VVEAarQzt~Ib3xxtnE4jPk9LuKYh~fqwqSFsM5hrUCnbR7J6-RQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Computational_constraints_on_the_associative_recall_of_spatial_scenes","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":115175858,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115175858/thumbnails/1.jpg","file_name":"2022.10.08.511429.full.pdf","download_url":"https://www.academia.edu/attachments/115175858/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Computational_constraints_on_the_associa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115175858/2022.10.08.511429.full-libre.pdf?1716446217=\u0026response-content-disposition=attachment%3B+filename%3DComputational_constraints_on_the_associa.pdf\u0026Expires=1732826278\u0026Signature=Lm9G-1BzJRGgcGiyzimV~Bk4pR150kOZG8LA23WEhaIPf9x6ast7KHhs~spJZgKPIUzifuoI3~~ShAgiw4c9mXYIN30xkIst-X5NV9AcXFuzORDywD8lChel3pyTSbywfSiVXlQQZhs7aGjH4MlRV2jdpSahPJx5lpu8Ifaflu1Uijxm3Eotq20NSIyKv0tgfcZRxOOgH-fcpDrBxMhNNglnoUh7CnJUthm~BVknwPpvjNaVo73sxAjdDlT2l6p8AtCAJxn7yyc5WbjVjGuy0CZ9NIlhjs5gOV3VVEAarQzt~Ib3xxtnE4jPk9LuKYh~fqwqSFsM5hrUCnbR7J6-RQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":184535,"name":"Unitary State","url":"https://www.academia.edu/Documents/in/Unitary_State"},{"id":440689,"name":"Recall","url":"https://www.academia.edu/Documents/in/Recall"},{"id":1763882,"name":"Representation Politics","url":"https://www.academia.edu/Documents/in/Representation_Politics"},{"id":2527458,"name":"Content addressable memory","url":"https://www.academia.edu/Documents/in/Content_addressable_memory"}],"urls":[{"id":42235070,"url":"https://syndication.highwire.org/content/doi/10.1101/2022.10.08.511429"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657579"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657579/Cover_Image_Volume_30_Issue_4"><img alt="Research paper thumbnail of Cover Image, Volume 30, Issue 4" class="work-thumbnail" src="https://attachments.academia-assets.com/110561530/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657579/Cover_Image_Volume_30_Issue_4">Cover Image, Volume 30, Issue 4</a></div><div class="wp-workCard_item"><span>Hippocampus</span><span>, Apr 1, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d55f907521ae04fb678916397933e160" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561530,"asset_id":113657579,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561530/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657579"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657579"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657579; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657579]").text(description); $(".js-view-count[data-work-id=113657579]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657579; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657579']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657579, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d55f907521ae04fb678916397933e160" } } $('.js-work-strip[data-work-id=113657579]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657579,"title":"Cover Image, Volume 30, Issue 4","translated_title":"","metadata":{"publisher":"Wiley","publication_date":{"day":1,"month":4,"year":2020,"errors":{}},"publication_name":"Hippocampus"},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657579/Cover_Image_Volume_30_Issue_4","translated_internal_url":"","created_at":"2024-01-17T14:05:58.389-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561530,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561530/thumbnails/1.jpg","file_name":"hipo.pdf","download_url":"https://www.academia.edu/attachments/110561530/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cover_Image_Volume_30_Issue_4.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561530/hipo-libre.pdf?1705531045=\u0026response-content-disposition=attachment%3B+filename%3DCover_Image_Volume_30_Issue_4.pdf\u0026Expires=1732826278\u0026Signature=BcV1z1uFaxsZQ9xTDCRgyHz~sW1AA1G53prHX-yDtP68oB1p4ynyu8VMheFtd~JgJNaIRxptS6Bk8jLT7JGPMJNLPr6ktedt17WThpJXcCalN4J-17XQ3304tN5Xk32yuNeeIzd02s9H4r3setFTsW3mWlSpGyQGoXRKFfZrWYFnlMkRc6j8qXWjEuyuy9mEoSQ~pqLCegi7CoT-0nKa5eFYcO89v7cdxz-6-bsy~IDTh1Lur7JGw5xxPDJFN6ZaqjItSY2QA2nhaqA1CwsSP-SyU9-dWZCeIg8zacThHivQaLbFOJkVWNyGn-gKRfTfrqrOpFziOegw-5PSfOcTyQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cover_Image_Volume_30_Issue_4","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561530,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561530/thumbnails/1.jpg","file_name":"hipo.pdf","download_url":"https://www.academia.edu/attachments/110561530/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cover_Image_Volume_30_Issue_4.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561530/hipo-libre.pdf?1705531045=\u0026response-content-disposition=attachment%3B+filename%3DCover_Image_Volume_30_Issue_4.pdf\u0026Expires=1732826278\u0026Signature=BcV1z1uFaxsZQ9xTDCRgyHz~sW1AA1G53prHX-yDtP68oB1p4ynyu8VMheFtd~JgJNaIRxptS6Bk8jLT7JGPMJNLPr6ktedt17WThpJXcCalN4J-17XQ3304tN5Xk32yuNeeIzd02s9H4r3setFTsW3mWlSpGyQGoXRKFfZrWYFnlMkRc6j8qXWjEuyuy9mEoSQ~pqLCegi7CoT-0nKa5eFYcO89v7cdxz-6-bsy~IDTh1Lur7JGw5xxPDJFN6ZaqjItSY2QA2nhaqA1CwsSP-SyU9-dWZCeIg8zacThHivQaLbFOJkVWNyGn-gKRfTfrqrOpFziOegw-5PSfOcTyQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":596,"name":"Dentistry","url":"https://www.academia.edu/Documents/in/Dentistry"},{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":57556,"name":"Hippocampus","url":"https://www.academia.edu/Documents/in/Hippocampus"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[{"id":38676560,"url":"https://doi.org/10.1002/hipo.23204"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657578"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657578/Life_on_the_Edge_Latching_Dynamics_in_a_Potts_Neural_Network"><img alt="Research paper thumbnail of Life on the Edge: Latching Dynamics in a Potts Neural Network" class="work-thumbnail" src="https://attachments.academia-assets.com/110561505/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657578/Life_on_the_Edge_Latching_Dynamics_in_a_Potts_Neural_Network">Life on the Edge: Latching Dynamics in a Potts Neural Network</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="833e43aee37340c8800b05eebc03c4aa" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561505,"asset_id":113657578,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561505/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657578"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657578"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657578; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657578]").text(description); $(".js-view-count[data-work-id=113657578]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657578; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657578']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657578, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "833e43aee37340c8800b05eebc03c4aa" } } $('.js-work-strip[data-work-id=113657578]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657578,"title":"Life on the Edge: Latching Dynamics in a Potts Neural Network","translated_title":"","metadata":{"grobid_abstract":"We study latching dynamics in the adaptive Potts model network, through numerical simulations with randomly and also weakly correlated patterns, and we focus on comparing its slowly and fast adapting regimes. A measure, Q, is used to quantify the quality of latching in the phase space spanned by the number of Potts states S, the number of connections per Potts unit C and the number of stored memory patterns p. We find narrow regions, or bands in phase space, where distinct pattern retrieval and duration of latching combine to yield the highest values of Q. The bands are confined by the storage capacity curve, for large p, and by the onset of finite latching, for low p. Inside the band, in the slowly adapting regime, we observe complex structured dynamics, with transitions at high crossover between correlated memory patterns; while away from the band latching transitions lose complexity in different ways: below, they are clear-cut but last so few steps as to span a transition matrix between states with few asymmetrical entries and limited entropy; while above, they tend to become random, with large entropy and bi-directional transition frequencies, but indistinguishable from noise. Extrapolating from the simulations, the band appears to scale almost quadratically in the p − S plane, and sublinearly in p − C. In the fast adapting regime the band scales similarly, and it can be made even wider and more robust, but transitions between anti-correlated patterns dominate latching dynamics. This suggest that slow and fast adaptation have to be integrated in a scenario for viable latching in a cortical system. The results for the slowly adapting regime, obtained with randomly correlated patterns, remain valid also for the case with correlated patterns, with just a simple shift in phase space.","publication_date":{"day":4,"month":8,"year":2017,"errors":{}},"grobid_abstract_attachment_id":110561505},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657578/Life_on_the_Edge_Latching_Dynamics_in_a_Potts_Neural_Network","translated_internal_url":"","created_at":"2024-01-17T14:05:58.193-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561505,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561505/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/110561505/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Life_on_the_Edge_Latching_Dynamics_in_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561505/download-libre.pdf?1705531444=\u0026response-content-disposition=attachment%3B+filename%3DLife_on_the_Edge_Latching_Dynamics_in_a.pdf\u0026Expires=1732826278\u0026Signature=eZUGnQv-rXLywj-smpMUZyQ3xOjGJadxlzg2YyiV0eHbMsiKreIMJA0ztSsbc2HwEkSRI7kQnYZu-T~bwalWVXyRagZMwQp4X0gU-4beiw8aoRQGhgGzGOVvUHl0Ky~S0q8KevM~haR61Ty8Znc4TnrhC1vnu2xa9Vnw1QQ3QMapu2SawFjlT2B5mvd2i7GSTxDVrMDr5m1xbqhSUyudKt0g1oswib~0H~~7xMbau0pSh3iZg8ea7eG3WgeG1~Jxz86WpodLl4wKHoOCjrB9UoX7MHLdnprvgBYK5Fb9vpL3-fDkSR2mv4tG99wOKsgyLerZPPKxT-zZT2if-fQg8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Life_on_the_Edge_Latching_Dynamics_in_a_Potts_Neural_Network","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561505,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561505/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/110561505/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Life_on_the_Edge_Latching_Dynamics_in_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561505/download-libre.pdf?1705531444=\u0026response-content-disposition=attachment%3B+filename%3DLife_on_the_Edge_Latching_Dynamics_in_a.pdf\u0026Expires=1732826278\u0026Signature=eZUGnQv-rXLywj-smpMUZyQ3xOjGJadxlzg2YyiV0eHbMsiKreIMJA0ztSsbc2HwEkSRI7kQnYZu-T~bwalWVXyRagZMwQp4X0gU-4beiw8aoRQGhgGzGOVvUHl0Ky~S0q8KevM~haR61Ty8Znc4TnrhC1vnu2xa9Vnw1QQ3QMapu2SawFjlT2B5mvd2i7GSTxDVrMDr5m1xbqhSUyudKt0g1oswib~0H~~7xMbau0pSh3iZg8ea7eG3WgeG1~Jxz86WpodLl4wKHoOCjrB9UoX7MHLdnprvgBYK5Fb9vpL3-fDkSR2mv4tG99wOKsgyLerZPPKxT-zZT2if-fQg8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":36265,"name":"Entropy","url":"https://www.academia.edu/Documents/in/Entropy"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1174261,"name":"Potts Model","url":"https://www.academia.edu/Documents/in/Potts_Model"},{"id":1485949,"name":"Preprints","url":"https://www.academia.edu/Documents/in/Preprints"}],"urls":[{"id":38676559,"url":"https://www.preprints.org/manuscript/201708.0016/v1/download"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657577"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657577/Partial_coherence_of_grid_units_on_spherical_surfaces"><img alt="Research paper thumbnail of Partial coherence of grid units on spherical surfaces" class="work-thumbnail" src="https://attachments.academia-assets.com/110561503/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657577/Partial_coherence_of_grid_units_on_spherical_surfaces">Partial coherence of grid units on spherical surfaces</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="16f9af90831d3afcfe2c45e5557ff5f3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561503,"asset_id":113657577,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561503/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657577"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657577"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657577; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657577]").text(description); $(".js-view-count[data-work-id=113657577]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657577; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657577']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657577, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "16f9af90831d3afcfe2c45e5557ff5f3" } } $('.js-work-strip[data-work-id=113657577]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657577,"title":"Partial coherence of grid units on spherical surfaces","translated_title":"","metadata":{"publication_date":{"day":3,"month":7,"year":2018,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657577/Partial_coherence_of_grid_units_on_spherical_surfaces","translated_internal_url":"","created_at":"2024-01-17T14:05:58.026-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561503/thumbnails/1.jpg","file_name":"external_content.pdf","download_url":"https://www.academia.edu/attachments/110561503/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Partial_coherence_of_grid_units_on_spher.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561503/external_content-libre.pdf?1705531039=\u0026response-content-disposition=attachment%3B+filename%3DPartial_coherence_of_grid_units_on_spher.pdf\u0026Expires=1732826278\u0026Signature=T~qdbaMd~qiB17Qgvu0XNyc1DXjQKuh39idH5MW2WuyqNkmTjsdzOQHPDZOC4zf2vJzOjzMSrj04f5OHf0pyjrZBDcPL38HOiQ~O8Wmm5V39Xt5TIKXxqr2IZEbF0kVlngG15TxcF114FxHTopt-T5YUm20sF3TrS6Mq2o86n0zKOPlB~ndWixxlGJfw72dD5lcQdarilwejVBkjkEWU7XnQ1s211K9ZWWJMBqtp8NBWzhL2UXg1H6zinvWdgl~W-AbZw3qi6mm~TqEEIOwlArJV9Eq1GElLsCocLM7BlZXUMv-4SfQF5gpvmeXOxkHgwfnGpr7Yj2QLANK3Vwob8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Partial_coherence_of_grid_units_on_spherical_surfaces","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561503/thumbnails/1.jpg","file_name":"external_content.pdf","download_url":"https://www.academia.edu/attachments/110561503/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Partial_coherence_of_grid_units_on_spher.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561503/external_content-libre.pdf?1705531039=\u0026response-content-disposition=attachment%3B+filename%3DPartial_coherence_of_grid_units_on_spher.pdf\u0026Expires=1732826278\u0026Signature=T~qdbaMd~qiB17Qgvu0XNyc1DXjQKuh39idH5MW2WuyqNkmTjsdzOQHPDZOC4zf2vJzOjzMSrj04f5OHf0pyjrZBDcPL38HOiQ~O8Wmm5V39Xt5TIKXxqr2IZEbF0kVlngG15TxcF114FxHTopt-T5YUm20sF3TrS6Mq2o86n0zKOPlB~ndWixxlGJfw72dD5lcQdarilwejVBkjkEWU7XnQ1s211K9ZWWJMBqtp8NBWzhL2UXg1H6zinvWdgl~W-AbZw3qi6mm~TqEEIOwlArJV9Eq1GElLsCocLM7BlZXUMv-4SfQF5gpvmeXOxkHgwfnGpr7Yj2QLANK3Vwob8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":110561504,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561504/thumbnails/1.jpg","file_name":"external_content.pdf","download_url":"https://www.academia.edu/attachments/110561504/download_file","bulk_download_file_name":"Partial_coherence_of_grid_units_on_spher.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561504/external_content-libre.pdf?1705531039=\u0026response-content-disposition=attachment%3B+filename%3DPartial_coherence_of_grid_units_on_spher.pdf\u0026Expires=1732826278\u0026Signature=XFyBLD4GL3yBN7nF0MF4UCun3ODH~WOBA7Cv8q5oK5ZJYNQ7VQaTZHC0oBHRBdsDMi~3U3KXensSTA3qt4JMbQUnvv0jKEBXSylW-JgVOSmBTssXBJWtC28q45qOROVgdW0c--edOxg5xKuHb5Y~MnenuhY0Lu8fetkbKUAgGbWSpVZXniRLJyrCtyAb~nZ405OnO1JSXU3S119tniyLFnN81ezw54rYfgELmyryqabpS9M0WH5GxxYL-kbsGLPoqa2cQ0jia3uGP10npN5qeX9rHY8MczswMu1fkWMe6I4pEkbrl8lCCcw28vJcasiz7TWtN93EPOwq3LiBjEBUnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":303727,"name":"Grid","url":"https://www.academia.edu/Documents/in/Grid"}],"urls":[{"id":38676558,"url":"https://openresearchlibrary.org/ext/api/media/5b9881e0-b742-4a31-8b45-d21907b88210/assets/external_content.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657576"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657576/The_Effect_of_Slow_Synaptic_Coupling_on_Populations_of_Spiking_Neurons"><img alt="Research paper thumbnail of The Effect of Slow Synaptic Coupling on Populations of Spiking Neurons" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657576/The_Effect_of_Slow_Synaptic_Coupling_on_Populations_of_Spiking_Neurons">The Effect of Slow Synaptic Coupling on Populations of Spiking Neurons</a></div><div class="wp-workCard_item"><span>Springer eBooks</span><span>, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We examine the conditions under which a population of spiking neurons with all-to-all excitatory ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We examine the conditions under which a population of spiking neurons with all-to-all excitatory coupling can fire asynchronously. Synapses with time constants satisfying computed constraints assure the stability of an asynchronous firing state even in the absense of inhibition.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657576"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657576"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657576; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657576]").text(description); $(".js-view-count[data-work-id=113657576]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657576; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657576']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657576, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=113657576]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657576,"title":"The Effect of Slow Synaptic Coupling on Populations of Spiking Neurons","translated_title":"","metadata":{"abstract":"We examine the conditions under which a population of spiking neurons with all-to-all excitatory coupling can fire asynchronously. Synapses with time constants satisfying computed constraints assure the stability of an asynchronous firing state even in the absense of inhibition.","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1993,"errors":{}},"publication_name":"Springer eBooks"},"translated_abstract":"We examine the conditions under which a population of spiking neurons with all-to-all excitatory coupling can fire asynchronously. Synapses with time constants satisfying computed constraints assure the stability of an asynchronous firing state even in the absense of inhibition.","internal_url":"https://www.academia.edu/113657576/The_Effect_of_Slow_Synaptic_Coupling_on_Populations_of_Spiking_Neurons","translated_internal_url":"","created_at":"2024-01-17T14:05:57.837-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Effect_of_Slow_Synaptic_Coupling_on_Populations_of_Spiking_Neurons","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":64336,"name":"Population","url":"https://www.academia.edu/Documents/in/Population"},{"id":93194,"name":"Asynchronous Communication","url":"https://www.academia.edu/Documents/in/Asynchronous_Communication"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[{"id":38676557,"url":"https://doi.org/10.1007/978-1-4615-3254-5_10"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657575"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657575/Partial_coherence_and_frustration_in_self_organizing_spherical_grids"><img alt="Research paper thumbnail of Partial coherence and frustration in self‐organizing spherical grids" class="work-thumbnail" src="https://attachments.academia-assets.com/110561531/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657575/Partial_coherence_and_frustration_in_self_organizing_spherical_grids">Partial coherence and frustration in self‐organizing spherical grids</a></div><div class="wp-workCard_item"><span>Hippocampus</span><span>, Jul 24, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bc7646d0acb7ef9016121648d2190d6a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561531,"asset_id":113657575,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561531/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657575"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657575"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657575; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657575]").text(description); $(".js-view-count[data-work-id=113657575]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657575; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657575']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657575, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bc7646d0acb7ef9016121648d2190d6a" } } $('.js-work-strip[data-work-id=113657575]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657575,"title":"Partial coherence and frustration in self‐organizing spherical grids","translated_title":"","metadata":{"publisher":"Wiley","grobid_abstract":"Nearby grid cells have been observed to express a remarkable degree of long-range order, which is often idealized as extending potentially to infinity. Yet their strict periodic firing and ensemble coherence are theoretically possible only in flat environments, much unlike the burrows which rodents usually live in. Are the symmetrical, coherent grid maps inferred in the lab relevant to chart their way in their natural habitat? We consider spheres as simple models of curved environments and waiting for the appropriate experiments to be performed, we use our adaptation model to predict what grid maps would emerge in a network with the same type of recurrent connections, which on the plane produce coherence among the units. We find that on the sphere such connections distort the maps that single grid units would express on their own, and aggregate them into clusters. When remapping to a different spherical environment, units in each cluster maintain only partial coherence, similar to what is observed in disordered materials, such as spin glasses.","publication_date":{"day":24,"month":7,"year":2019,"errors":{}},"publication_name":"Hippocampus","grobid_abstract_attachment_id":110561531},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657575/Partial_coherence_and_frustration_in_self_organizing_spherical_grids","translated_internal_url":"","created_at":"2024-01-17T14:05:57.646-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561531,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561531/thumbnails/1.jpg","file_name":"hipo.pdf","download_url":"https://www.academia.edu/attachments/110561531/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Partial_coherence_and_frustration_in_sel.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561531/hipo-libre.pdf?1705531049=\u0026response-content-disposition=attachment%3B+filename%3DPartial_coherence_and_frustration_in_sel.pdf\u0026Expires=1732782922\u0026Signature=gbk9w4Bc3y1XsD9PZYWmXCZC4fDa7UEtUSrieOkdEydJlrICRX9DI-LRPxXimlZbE9GgjUHQP1KOSvqBoeaSf6o7bfIk9xgdGf1nEKKEGG1BmP6CcLFgrY7eeCg9BlBMnA5yPVcF5oF05DmWmSQQZJ0DSJTcv-7z0bAv5m-hUv76rqq6wkJzf~ow-CKnsjdrRZgpVfrcmP5qaEOw~h0ls2HHEndxV~OPJF49huy7rqNJyGsYvNKCCV3EPOfTVMcuzDTCpAc6RrkOrQZSYhVe3xbi5sYdVWnRHRNN5IKY2aRmusPqnWz2QsqKXrb0AyRNrS3AEUFbhYRAVLCU0UNUhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Partial_coherence_and_frustration_in_self_organizing_spherical_grids","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561531,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561531/thumbnails/1.jpg","file_name":"hipo.pdf","download_url":"https://www.academia.edu/attachments/110561531/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Partial_coherence_and_frustration_in_sel.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561531/hipo-libre.pdf?1705531049=\u0026response-content-disposition=attachment%3B+filename%3DPartial_coherence_and_frustration_in_sel.pdf\u0026Expires=1732782922\u0026Signature=gbk9w4Bc3y1XsD9PZYWmXCZC4fDa7UEtUSrieOkdEydJlrICRX9DI-LRPxXimlZbE9GgjUHQP1KOSvqBoeaSf6o7bfIk9xgdGf1nEKKEGG1BmP6CcLFgrY7eeCg9BlBMnA5yPVcF5oF05DmWmSQQZJ0DSJTcv-7z0bAv5m-hUv76rqq6wkJzf~ow-CKnsjdrRZgpVfrcmP5qaEOw~h0ls2HHEndxV~OPJF49huy7rqNJyGsYvNKCCV3EPOfTVMcuzDTCpAc6RrkOrQZSYhVe3xbi5sYdVWnRHRNN5IKY2aRmusPqnWz2QsqKXrb0AyRNrS3AEUFbhYRAVLCU0UNUhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":221,"name":"Psychology","url":"https://www.academia.edu/Documents/in/Psychology"},{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":22590,"name":"Frustration","url":"https://www.academia.edu/Documents/in/Frustration"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":57556,"name":"Hippocampus","url":"https://www.academia.edu/Documents/in/Hippocampus"},{"id":303727,"name":"Grid","url":"https://www.academia.edu/Documents/in/Grid"},{"id":307228,"name":"Regular Grid","url":"https://www.academia.edu/Documents/in/Regular_Grid"},{"id":379574,"name":"Spatial Coherence","url":"https://www.academia.edu/Documents/in/Spatial_Coherence"},{"id":515169,"name":"DDC","url":"https://www.academia.edu/Documents/in/DDC"},{"id":976192,"name":"Spheres","url":"https://www.academia.edu/Documents/in/Spheres"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[{"id":38676556,"url":"https://doi.org/10.1002/hipo.23144"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657574"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657574/Grammatical_Parameters_from_a_Gene_like_Code_to_Self_Organizing_Attractors"><img alt="Research paper thumbnail of Grammatical Parameters from a Gene-like Code to Self-Organizing Attractors" class="work-thumbnail" src="https://attachments.academia-assets.com/110561499/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657574/Grammatical_Parameters_from_a_Gene_like_Code_to_Self_Organizing_Attractors">Grammatical Parameters from a Gene-like Code to Self-Organizing Attractors</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jul 6, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="87c9af2a0e53b0884a1e5fa6dbb2f64b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561499,"asset_id":113657574,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561499/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657574"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657574"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657574; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657574]").text(description); $(".js-view-count[data-work-id=113657574]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657574; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657574']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657574, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "87c9af2a0e53b0884a1e5fa6dbb2f64b" } } $('.js-work-strip[data-work-id=113657574]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657574,"title":"Grammatical Parameters from a Gene-like Code to Self-Organizing Attractors","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"Parametric approaches to grammatical diversity range from Chomsky's 1981 classical Principles \u0026 Parameters model to minimalist reinterpretations: in some proposals of the latter framework, parameters need not be an extensional list given at the initial state S0 of the mind, but can be constructed through a bio-program in the course of language development. In this contribution we pursue this lead and discuss initial data and ideas relevant for the elaboration of three sets of questions: 1) how can binary parameters be conceivably implemented in cortical and subcortical circuitry in the human brain? 2) how can parameter mutations be taken to occur? 3) given the distribution of parameter values across languages and their implications, can multi-parental models of language phylogenies, departing from ultrametricity, also account for some of the available evidence?","publication_date":{"day":6,"month":7,"year":2023,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":110561499},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657574/Grammatical_Parameters_from_a_Gene_like_Code_to_Self_Organizing_Attractors","translated_internal_url":"","created_at":"2024-01-17T14:05:56.540-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561499,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561499/thumbnails/1.jpg","file_name":"2307.03152.pdf","download_url":"https://www.academia.edu/attachments/110561499/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Grammatical_Parameters_from_a_Gene_like.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561499/2307.03152-libre.pdf?1705531056=\u0026response-content-disposition=attachment%3B+filename%3DGrammatical_Parameters_from_a_Gene_like.pdf\u0026Expires=1732826278\u0026Signature=QEpD683pDt~bD2ojUdPiPtcOlb~zP1Sf8aEuPTVOwWL~~Jy9xdwPxWhqsBJetpyHt79-LM7hcz5l0ykEZbWq0M1mqkOphCsqcUy4e0hf5Soyk0LKR~PNJljCiX7k6AXowivouuY3t3sLufMpSajAl0tt8Xd1tooMonobO35V4a5mMU7OQZR-cDZqztTED9hfI3EFnzriWTiiB3kX3HBnJBX27s-IuBuW~Rb0ljYMROmcQBihLwC15aNKYX2bveFXbZAlOcelzfR99qTbKmbG2nOIS7s5LSeI8F-0cMUmHCAkXF5CP-fKm~Nwc7nOcgayumaC~0Kd0~HsWucJUK5Wjg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Grammatical_Parameters_from_a_Gene_like_Code_to_Self_Organizing_Attractors","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561499,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561499/thumbnails/1.jpg","file_name":"2307.03152.pdf","download_url":"https://www.academia.edu/attachments/110561499/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Grammatical_Parameters_from_a_Gene_like.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561499/2307.03152-libre.pdf?1705531056=\u0026response-content-disposition=attachment%3B+filename%3DGrammatical_Parameters_from_a_Gene_like.pdf\u0026Expires=1732826278\u0026Signature=QEpD683pDt~bD2ojUdPiPtcOlb~zP1Sf8aEuPTVOwWL~~Jy9xdwPxWhqsBJetpyHt79-LM7hcz5l0ykEZbWq0M1mqkOphCsqcUy4e0hf5Soyk0LKR~PNJljCiX7k6AXowivouuY3t3sLufMpSajAl0tt8Xd1tooMonobO35V4a5mMU7OQZR-cDZqztTED9hfI3EFnzriWTiiB3kX3HBnJBX27s-IuBuW~Rb0ljYMROmcQBihLwC15aNKYX2bveFXbZAlOcelzfR99qTbKmbG2nOIS7s5LSeI8F-0cMUmHCAkXF5CP-fKm~Nwc7nOcgayumaC~0Kd0~HsWucJUK5Wjg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":110561502,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561502/thumbnails/1.jpg","file_name":"2307.03152.pdf","download_url":"https://www.academia.edu/attachments/110561502/download_file","bulk_download_file_name":"Grammatical_Parameters_from_a_Gene_like.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561502/2307.03152-libre.pdf?1705531054=\u0026response-content-disposition=attachment%3B+filename%3DGrammatical_Parameters_from_a_Gene_like.pdf\u0026Expires=1732826278\u0026Signature=SGwWfN-cbKJLNi6UG8SKD-NSqXqc3-sY~vtpna-ccy2GrCO1akbgeU3O4E3qvN9KDkG~lVOlLn2tLNuwCpPJegg7osPkXP7WAQY4li5h6ApX04eDG3sAq29JSfHs-mxx1pWo20MR209dH543ptMHqoocxsZ4TVftWuI1lezJQD2nwiqnDBOQfU6U8q4HArn-hAJz2TxQLSPeiXLVYIqqmWnwlnSl8KEiYO91oJ9MzWEDEUI0HL2tC4llYp9uQkcr6~PXhgwVdxLQIAKjf7FrVpp4CZE-d40zE0QmNjMPzBYd1s2U6jgW5bszcxjy6r0IJb9u-nYULOsT7VijiCfj9w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":901940,"name":"Parametric Statistics","url":"https://www.academia.edu/Documents/in/Parametric_Statistics"},{"id":3167069,"name":"attractor","url":"https://www.academia.edu/Documents/in/attractor"}],"urls":[{"id":38676555,"url":"https://arxiv.org/pdf/2307.03152"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657573"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657573/Facial_Expressions_Computational_Perspectives"><img alt="Research paper thumbnail of Facial Expressions, Computational Perspectives" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657573/Facial_Expressions_Computational_Perspectives">Facial Expressions, Computational Perspectives</a></div><div class="wp-workCard_item"><span>Encyclopedia of the Mind</span><span>, Mar 1, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657573"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657573"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657573; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657573]").text(description); $(".js-view-count[data-work-id=113657573]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657573; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657573']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657573, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=113657573]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657573,"title":"Facial Expressions, Computational Perspectives","translated_title":"","metadata":{"publication_date":{"day":1,"month":3,"year":2013,"errors":{}},"publication_name":"Encyclopedia of the Mind"},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657573/Facial_Expressions_Computational_Perspectives","translated_internal_url":"","created_at":"2024-01-17T14:05:56.331-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Facial_Expressions_Computational_Perspectives","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[],"research_interests":[{"id":21269,"name":"Facial expression","url":"https://www.academia.edu/Documents/in/Facial_expression"}],"urls":[{"id":38676554,"url":"https://doi.org/10.4135/9781452257044.n129"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657572"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657572/Computational_constraints_on_the_associative_recall_of_spatial_scenes"><img alt="Research paper thumbnail of Computational constraints on the associative recall of spatial scenes" class="work-thumbnail" src="https://attachments.academia-assets.com/110561498/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657572/Computational_constraints_on_the_associative_recall_of_spatial_scenes">Computational constraints on the associative recall of spatial scenes</a></div><div class="wp-workCard_item"><span>bioRxiv (Cold Spring Harbor Laboratory)</span><span>, Oct 10, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="24c43ac6caa36668c7e6ce6160e930f5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561498,"asset_id":113657572,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561498/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657572"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657572"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657572; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657572]").text(description); $(".js-view-count[data-work-id=113657572]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657572; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657572']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657572, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "24c43ac6caa36668c7e6ce6160e930f5" } } $('.js-work-strip[data-work-id=113657572]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657572,"title":"Computational constraints on the associative recall of spatial scenes","translated_title":"","metadata":{"publisher":"Cold Spring Harbor Laboratory","grobid_abstract":"We consider a model of associative storage and retrieval of compositional memories in an extended cortical network. Our model network is comprised of Potts units, which represent patches of cortex, interacting through long-range connections. The critical assumption is that a memory is composed of a limited number of items, each of which has a pre-established representation: storing a new memory only involves acquiring the connections, if novel, among the participating items. The model is shown to have a much lower storage capacity than when it stores simple unitary representations. It is also shown that an input from the hippocampus facilitates associative retrieval. When it is absent, it is advantageous to cue rare rather than frequent items. The implications of these results for emerging trends in empirical research are discussed.","publication_date":{"day":10,"month":10,"year":2022,"errors":{}},"publication_name":"bioRxiv (Cold Spring Harbor Laboratory)","grobid_abstract_attachment_id":110561498},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657572/Computational_constraints_on_the_associative_recall_of_spatial_scenes","translated_internal_url":"","created_at":"2024-01-17T14:05:56.067-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561498,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561498/thumbnails/1.jpg","file_name":"2022.10.08.511429.full.pdf","download_url":"https://www.academia.edu/attachments/110561498/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Computational_constraints_on_the_associa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561498/2022.10.08.511429.full-libre.pdf?1705531047=\u0026response-content-disposition=attachment%3B+filename%3DComputational_constraints_on_the_associa.pdf\u0026Expires=1732826278\u0026Signature=Xv0WIO8FI5YzYZOVBx-ny1qH0x26jpe8JEhgvUPx1pDw8sbm8Xs8Mdu~xPzEvUbFTzpUt9hjZvPpyxaCAhGZRTKio5lYm8nX1c2YYhDRWP3r4BsaTr9yGb-EJJLrXXMK13VadkV43tyeScliAoQJlQwoYft7GiPJUSij0PGtG0o-UC3WE99bGETUR7ui~u4sMoHaFL7Pw3Gq-n4zXJOQY0OAm7EBSrQ0LxZ4v8YpRmD19yBEHtOyIQtBU1z9zvSEhzlizno8-Pzjs3y1bZpZ3MJnPLCFA38aedjW521t2uETqPxmxRjgF1Utw4T3y4Pn68vaGqVrpR4X4q1DGP1ziw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Computational_constraints_on_the_associative_recall_of_spatial_scenes","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561498,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561498/thumbnails/1.jpg","file_name":"2022.10.08.511429.full.pdf","download_url":"https://www.academia.edu/attachments/110561498/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Computational_constraints_on_the_associa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561498/2022.10.08.511429.full-libre.pdf?1705531047=\u0026response-content-disposition=attachment%3B+filename%3DComputational_constraints_on_the_associa.pdf\u0026Expires=1732826278\u0026Signature=Xv0WIO8FI5YzYZOVBx-ny1qH0x26jpe8JEhgvUPx1pDw8sbm8Xs8Mdu~xPzEvUbFTzpUt9hjZvPpyxaCAhGZRTKio5lYm8nX1c2YYhDRWP3r4BsaTr9yGb-EJJLrXXMK13VadkV43tyeScliAoQJlQwoYft7GiPJUSij0PGtG0o-UC3WE99bGETUR7ui~u4sMoHaFL7Pw3Gq-n4zXJOQY0OAm7EBSrQ0LxZ4v8YpRmD19yBEHtOyIQtBU1z9zvSEhzlizno8-Pzjs3y1bZpZ3MJnPLCFA38aedjW521t2uETqPxmxRjgF1Utw4T3y4Pn68vaGqVrpR4X4q1DGP1ziw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":110561500,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561500/thumbnails/1.jpg","file_name":"2022.10.08.511429.full.pdf","download_url":"https://www.academia.edu/attachments/110561500/download_file","bulk_download_file_name":"Computational_constraints_on_the_associa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561500/2022.10.08.511429.full-libre.pdf?1705531054=\u0026response-content-disposition=attachment%3B+filename%3DComputational_constraints_on_the_associa.pdf\u0026Expires=1732826278\u0026Signature=YOKsUBnHZ1x8p~1ZkLaHvxJGIv3rGMAzAmuUudZWx-2e-KyYZYSqaSjLE5cCAeBK3hUQjco9RGe2IuQWajS7uJoSbF~LOHqCqP1KRe9CDlG2j~yoDquCJmyGKvzPmWEhnE6JhZlociVd0uCv95asPZ5-q-238GPTJxNCycQ8WNNeP~OSUcey3QthNzTmYEb4fla1MadrYWDf1WuGnmSdsWWB2Q3Ywt~gSJyV1zxsyNt7BqUeQ354thJ3pFOEHthgD6L0JWJ5f~2Mq-yXZ86FsB7hNY0yBJ~1PKQkO2d2mW29kRnvictGHlW~H8VenUwjsGgHAZHZS0Q0J10xcqRUVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":184535,"name":"Unitary State","url":"https://www.academia.edu/Documents/in/Unitary_State"},{"id":440689,"name":"Recall","url":"https://www.academia.edu/Documents/in/Recall"},{"id":1763882,"name":"Representation Politics","url":"https://www.academia.edu/Documents/in/Representation_Politics"},{"id":2527458,"name":"Content addressable memory","url":"https://www.academia.edu/Documents/in/Content_addressable_memory"}],"urls":[{"id":38676553,"url":"https://www.biorxiv.org/content/biorxiv/early/2022/10/10/2022.10.08.511429.full.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657571"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657571/Can_Grid_Cell_Ensembles_Represent_Multiple_Spaces"><img alt="Research paper thumbnail of Can Grid Cell Ensembles Represent Multiple Spaces?" class="work-thumbnail" src="https://attachments.academia-assets.com/110561528/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657571/Can_Grid_Cell_Ensembles_Represent_Multiple_Spaces">Can Grid Cell Ensembles Represent Multiple Spaces?</a></div><div class="wp-workCard_item"><span>Neural Computation</span><span>, Dec 1, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="474bc03fc251b840e1d2b1e29973268d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561528,"asset_id":113657571,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561528/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657571"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657571"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657571; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657571]").text(description); $(".js-view-count[data-work-id=113657571]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657571; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657571']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657571, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "474bc03fc251b840e1d2b1e29973268d" } } $('.js-work-strip[data-work-id=113657571]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657571,"title":"Can Grid Cell Ensembles Represent Multiple Spaces?","translated_title":"","metadata":{"publisher":"The MIT Press","grobid_abstract":"The way grid cells represent space in the rodent brain has been a striking discovery, with theoretical implications still unclear. Differently from hippocampal place cells, which are known to encode multiple, environment-dependent spatial maps, grid cells have been widely believed to encode space through a single low dimensional manifold, in which coactivity relations between different neurons are preserved when the environment is changed. Does it have to be so? Here, we compute-using two alternative mathematical models-the storage capacity of a population of grid-like units, embedded in a continuous attractor neural network, for multiple spatial maps. We show that distinct representations of multiple environments can coexist, as existing models for grid cells have the potential to express several sets of hexagonal grid patterns, challenging the view of a universal grid map. This suggests that a population of grid cells can encode multiple non-congruent metric relationships, a feature that could in principle allow a grid-like code to represent environments with a variety of different geometries and possibly conceptual and cognitive spaces, which may be expected to entail such context-dependent metric relationships.","publication_date":{"day":1,"month":12,"year":2019,"errors":{}},"publication_name":"Neural Computation","grobid_abstract_attachment_id":110561528},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657571/Can_Grid_Cell_Ensembles_Represent_Multiple_Spaces","translated_internal_url":"","created_at":"2024-01-17T14:05:55.890-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561528,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561528/thumbnails/1.jpg","file_name":"527192.full.pdf","download_url":"https://www.academia.edu/attachments/110561528/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Can_Grid_Cell_Ensembles_Represent_Multip.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561528/527192.full-libre.pdf?1705531053=\u0026response-content-disposition=attachment%3B+filename%3DCan_Grid_Cell_Ensembles_Represent_Multip.pdf\u0026Expires=1732826279\u0026Signature=LVmQrxNO~Mvjet1qZqMbx02iZp1Z~5nJ~wRr8WLqtZGb8ST4JobOx6CvCs9VtJFuzWM12itg3dcvNV9YiPMzrBFQ4l2zW3j4i9CEOGyP4daUjY1tjCd9n3eW7jQiUykNM6IYU~ElWyD1RIc-QxXl1u0vt7txakFAfjX-z-VaS3VvPOGW8XXvewkVQfJxZT14FZQjAujfsa85j50r0LaEhr8dYP~p03QTSAzfieiWhTR8jFh4GhFPxOhZUNlXVfoQctzGp9y~SvESBjbSLITgvtmUE3O9-vbZWIFoh643Wf2tjZUj0z1LfZd~6ZoxqCHqB0S1KbhZ72KZ6m9uaMOO2Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Can_Grid_Cell_Ensembles_Represent_Multiple_Spaces","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561528,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561528/thumbnails/1.jpg","file_name":"527192.full.pdf","download_url":"https://www.academia.edu/attachments/110561528/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Can_Grid_Cell_Ensembles_Represent_Multip.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561528/527192.full-libre.pdf?1705531053=\u0026response-content-disposition=attachment%3B+filename%3DCan_Grid_Cell_Ensembles_Represent_Multip.pdf\u0026Expires=1732826279\u0026Signature=LVmQrxNO~Mvjet1qZqMbx02iZp1Z~5nJ~wRr8WLqtZGb8ST4JobOx6CvCs9VtJFuzWM12itg3dcvNV9YiPMzrBFQ4l2zW3j4i9CEOGyP4daUjY1tjCd9n3eW7jQiUykNM6IYU~ElWyD1RIc-QxXl1u0vt7txakFAfjX-z-VaS3VvPOGW8XXvewkVQfJxZT14FZQjAujfsa85j50r0LaEhr8dYP~p03QTSAzfieiWhTR8jFh4GhFPxOhZUNlXVfoQctzGp9y~SvESBjbSLITgvtmUE3O9-vbZWIFoh643Wf2tjZUj0z1LfZd~6ZoxqCHqB0S1KbhZ72KZ6m9uaMOO2Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":64336,"name":"Population","url":"https://www.academia.edu/Documents/in/Population"},{"id":303727,"name":"Grid","url":"https://www.academia.edu/Documents/in/Grid"},{"id":624738,"name":"Neural Computation","url":"https://www.academia.edu/Documents/in/Neural_Computation"}],"urls":[{"id":38676552,"url":"https://doi.org/10.1162/neco_a_01237"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657570"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657570/The_Capacity_for_Correlated_Semantic_Memories_in_the_Cortex"><img alt="Research paper thumbnail of The Capacity for Correlated Semantic Memories in the Cortex" class="work-thumbnail" src="https://attachments.academia-assets.com/110561497/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657570/The_Capacity_for_Correlated_Semantic_Memories_in_the_Cortex">The Capacity for Correlated Semantic Memories in the Cortex</a></div><div class="wp-workCard_item"><span>Entropy</span><span>, Oct 26, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7b790f37251d2451e686b3cb4e65025e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561497,"asset_id":113657570,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561497/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657570"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657570"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657570; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657570]").text(description); $(".js-view-count[data-work-id=113657570]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657570; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657570']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657570, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7b790f37251d2451e686b3cb4e65025e" } } $('.js-work-strip[data-work-id=113657570]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657570,"title":"The Capacity for Correlated Semantic Memories in the Cortex","translated_title":"","metadata":{"publisher":"Multidisciplinary Digital Publishing Institute","grobid_abstract":"A statistical analysis of semantic memory should reflect the complex, multifactorial structure of the relations among its items. Still, a dominant paradigm in the study of semantic memory has been the idea that the mental representation of concepts is structured along a simple branching tree spanned by superordinate and subordinate categories. We propose a generative model of item representation with correlations that overcomes the limitations of a tree structure. The items are generated through \"factors\" that represent semantic features or real-world attributes. The correlation between items has its source in the extent to which items share such factors and the strength of such factors: if many factors are balanced, correlations are overall low; whereas if a few factors dominate, they become strong. Our model allows for correlations that are neither trivial nor hierarchical, but may reproduce the general spectrum of correlations present in a dataset of nouns. We find that such correlations reduce the storage capacity of a Potts network to a limited extent, so that the number of concepts that can be stored and retrieved in a large, human-scale cortical network may still be of order 10 7 , as originally estimated without correlations. When this storage capacity is exceeded, however, retrieval fails completely only for balanced factors; above a critical degree of imbalance, a phase transition leads to a regime where the network still extracts considerable information about the cued item, even if not recovering its detailed representation: partial categorization seems to emerge spontaneously as a consequence of the dominance of particular factors, rather than being imposed ad hoc. We argue this to be a relevant model of semantic memory resilience in Tulving's remember/know paradigms.","publication_date":{"day":26,"month":10,"year":2018,"errors":{}},"publication_name":"Entropy","grobid_abstract_attachment_id":110561497},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657570/The_Capacity_for_Correlated_Semantic_Memories_in_the_Cortex","translated_internal_url":"","created_at":"2024-01-17T14:05:55.655-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561497,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561497/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/110561497/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Capacity_for_Correlated_Semantic_Mem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561497/pdf-libre.pdf?1705531087=\u0026response-content-disposition=attachment%3B+filename%3DThe_Capacity_for_Correlated_Semantic_Mem.pdf\u0026Expires=1732826279\u0026Signature=CnSsGnBmqoFVTeJBIqxwc8VyHUPO4a9K4Ig~2cRSZwK~-GCJtJKW26kMkfU4kJPdFUR7BPge7aP2A7yjP1ul0ZanYaWKfcdsCcM5ehRyW1ECcJd~YT5IP1iA7rI2r4jo-EOfON5x1EB4XrGsC8cxJOKy-u4PZxfyhezSm-FlKPHnMYvELEKLUmQPZATQ-FTAThY3j7~B5~F-3A79pzn8A35sh3inOW~TNvJqkkjXNyU1levVBz8n2ZTUmXp4XxPyfU97H6JFWgjaZPdDa26~x-TFY7d8-SY6pKNlV9fmy3VNlFFLYnydD51Z8ywMptjTHIcChd1E-gdtYJLxiaQbyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Capacity_for_Correlated_Semantic_Memories_in_the_Cortex","translated_slug":"","page_count":33,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561497,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561497/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/110561497/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Capacity_for_Correlated_Semantic_Mem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561497/pdf-libre.pdf?1705531087=\u0026response-content-disposition=attachment%3B+filename%3DThe_Capacity_for_Correlated_Semantic_Mem.pdf\u0026Expires=1732826279\u0026Signature=CnSsGnBmqoFVTeJBIqxwc8VyHUPO4a9K4Ig~2cRSZwK~-GCJtJKW26kMkfU4kJPdFUR7BPge7aP2A7yjP1ul0ZanYaWKfcdsCcM5ehRyW1ECcJd~YT5IP1iA7rI2r4jo-EOfON5x1EB4XrGsC8cxJOKy-u4PZxfyhezSm-FlKPHnMYvELEKLUmQPZATQ-FTAThY3j7~B5~F-3A79pzn8A35sh3inOW~TNvJqkkjXNyU1levVBz8n2ZTUmXp4XxPyfU97H6JFWgjaZPdDa26~x-TFY7d8-SY6pKNlV9fmy3VNlFFLYnydD51Z8ywMptjTHIcChd1E-gdtYJLxiaQbyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":9189,"name":"Semantic Memory","url":"https://www.academia.edu/Documents/in/Semantic_Memory"},{"id":18573,"name":"Categorization","url":"https://www.academia.edu/Documents/in/Categorization"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":36265,"name":"Entropy","url":"https://www.academia.edu/Documents/in/Entropy"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":114550,"name":"Cortex","url":"https://www.academia.edu/Documents/in/Cortex"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":38676551,"url":"https://www.mdpi.com/1099-4300/20/11/824/pdf?version=1540551580"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657569"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657569/The_dentate_gyrus"><img alt="Research paper thumbnail of The dentate gyrus" class="work-thumbnail" src="https://attachments.academia-assets.com/110561527/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657569/The_dentate_gyrus">The dentate gyrus</a></div><div class="wp-workCard_item"><span>Oxford University Press eBooks</span><span>, Nov 3, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1baf995d27a7eb372aa79f7b48c2aa28" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561527,"asset_id":113657569,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561527/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657569"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657569"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657569; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657569]").text(description); $(".js-view-count[data-work-id=113657569]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657569; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657569']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657569, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1baf995d27a7eb372aa79f7b48c2aa28" } } $('.js-work-strip[data-work-id=113657569]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657569,"title":"The dentate gyrus","translated_title":"","metadata":{"publisher":"Oxford University Press","publication_date":{"day":3,"month":11,"year":2016,"errors":{}},"publication_name":"Oxford University Press eBooks"},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657569/The_dentate_gyrus","translated_internal_url":"","created_at":"2024-01-17T14:05:55.454-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561527,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561527/thumbnails/1.jpg","file_name":"doku.pdf","download_url":"https://www.academia.edu/attachments/110561527/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_dentate_gyrus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561527/doku-libre.pdf?1705531054=\u0026response-content-disposition=attachment%3B+filename%3DThe_dentate_gyrus.pdf\u0026Expires=1732826279\u0026Signature=LagANLc3vrJbJ4WK4G9y2V12Dpp1Vavct-vE9AIJK3Ux2OcPjczr2XLlb5Z3O3YvFgtJc8zkUI0vOGjQABwpgSSh2y-PyT~Z08WnahrTaDPmDGGlF1VykF4w2qmVi5N2wKHAPlZU3wudqS4sPa1JC5taksGa9b0ktKz7rX~QdlCwbY1Q~HRAbj9H7MSoJrb0tiCfW-enQs9tmSl-CG34Z5UgYTXRJCpenLUxa3qvYYFkZCy3ApHIQaRkJhg4YIMh2UQuneIH47AvH36T8aLrAKHYANOyx93Z7L~RudScvmSA8yV~1yz5X2WDxxW4ltYJJoc0uVY8Bt-Xkv4XvLEvNQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_dentate_gyrus","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561527,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561527/thumbnails/1.jpg","file_name":"doku.pdf","download_url":"https://www.academia.edu/attachments/110561527/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_dentate_gyrus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561527/doku-libre.pdf?1705531054=\u0026response-content-disposition=attachment%3B+filename%3DThe_dentate_gyrus.pdf\u0026Expires=1732826279\u0026Signature=LagANLc3vrJbJ4WK4G9y2V12Dpp1Vavct-vE9AIJK3Ux2OcPjczr2XLlb5Z3O3YvFgtJc8zkUI0vOGjQABwpgSSh2y-PyT~Z08WnahrTaDPmDGGlF1VykF4w2qmVi5N2wKHAPlZU3wudqS4sPa1JC5taksGa9b0ktKz7rX~QdlCwbY1Q~HRAbj9H7MSoJrb0tiCfW-enQs9tmSl-CG34Z5UgYTXRJCpenLUxa3qvYYFkZCy3ApHIQaRkJhg4YIMh2UQuneIH47AvH36T8aLrAKHYANOyx93Z7L~RudScvmSA8yV~1yz5X2WDxxW4ltYJJoc0uVY8Bt-Xkv4XvLEvNQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":246876,"name":"Dentate Gyrus","url":"https://www.academia.edu/Documents/in/Dentate_Gyrus"}],"urls":[{"id":38676550,"url":"https://doi.org/10.1093/acprof:oso/9780198749783.003.0005"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657568"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657568/Non_hexagonal_neural_dynamics_in_vowel_space"><img alt="Research paper thumbnail of Non-hexagonal neural dynamics in vowel space" class="work-thumbnail" src="https://attachments.academia-assets.com/110561526/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657568/Non_hexagonal_neural_dynamics_in_vowel_space">Non-hexagonal neural dynamics in vowel space</a></div><div class="wp-workCard_item"><span>AIMS neuroscience</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7e0358be5a807e201425da742a7fc1b8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561526,"asset_id":113657568,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561526/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657568"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657568"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657568; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657568]").text(description); $(".js-view-count[data-work-id=113657568]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657568; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657568']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657568, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7e0358be5a807e201425da742a7fc1b8" } } $('.js-work-strip[data-work-id=113657568]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657568,"title":"Non-hexagonal neural dynamics in vowel space","translated_title":"","metadata":{"publisher":"AIMS Press","grobid_abstract":"Are the grid cells discovered in rodents relevant to human cognition? Following up on two seminal studies by others, we aimed to check whether an approximate 6-fold, grid-like symmetry shows up in the cortical activity of humans who \"navigate\" between vowels, given that vowel space can be approximated with a continuous trapezoidal 2D manifold, spanned by the first and second formant frequencies. We created 30 vowel trajectories in the assumedly flat central portion of the trapezoid. Each of these trajectories had a duration of 240 milliseconds, with a steady start and end point on the perimeter of a \"wheel\". We hypothesized that if the neural representation of this \"box\" is similar to that of rodent grid units, there should be an at least partial hexagonal (6-fold) symmetry in the EEG response of participants who navigate it. We have not found any dominant n-fold symmetry, however, but instead, using PCAs, we find indications that the vowel representation may reflect phonetic features, as positioned on the vowel manifold. The suggestion, therefore, is that vowels are encoded in relation to their salient sensory-perceptual variables, and are not assigned to arbitrary gridlike abstract maps. Finally, we explored the relationship between the first PCA eigenvector and putative vowel attractors for native Italian speakers, who served as the subjects in our study.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"AIMS neuroscience","grobid_abstract_attachment_id":110561526},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657568/Non_hexagonal_neural_dynamics_in_vowel_space","translated_internal_url":"","created_at":"2024-01-17T14:05:55.171-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561526,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561526/thumbnails/1.jpg","file_name":"475265981.pdf","download_url":"https://www.academia.edu/attachments/110561526/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Non_hexagonal_neural_dynamics_in_vowel_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561526/475265981-libre.pdf?1705531084=\u0026response-content-disposition=attachment%3B+filename%3DNon_hexagonal_neural_dynamics_in_vowel_s.pdf\u0026Expires=1732826279\u0026Signature=FV-oTAy5QaN2SHvpmM-cuJZiE1LHK8PEBFMwfRLQo15yfuOik2wGidLUgFrNnEwlQuBIWoUtV1RXT4bVZda2HU9ABtY8-Dq9KuhXpRUqxHmOP48c3Z7vFhqeslgvTdOEBAVZOHgMcwEQafmKzfSMJ0jwNSzEIk3PQWZI2cUdU9p3t86FVHWDjFDe7cqW82h8TtgtXPKRyOoRjEkTVldVt43TL~k2vsrYPsPh9A9EOV8sXADFBSGRJ1usB8aHogcFfktFX5ZBLJomVIvPbeWlMJscFdoIBnLlBwFSkFgha-qPmFiSFr6uIAlbFKqxLWUFjID37omv2JlCCsbnwP9rqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Non_hexagonal_neural_dynamics_in_vowel_space","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561526,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561526/thumbnails/1.jpg","file_name":"475265981.pdf","download_url":"https://www.academia.edu/attachments/110561526/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Non_hexagonal_neural_dynamics_in_vowel_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561526/475265981-libre.pdf?1705531084=\u0026response-content-disposition=attachment%3B+filename%3DNon_hexagonal_neural_dynamics_in_vowel_s.pdf\u0026Expires=1732826279\u0026Signature=FV-oTAy5QaN2SHvpmM-cuJZiE1LHK8PEBFMwfRLQo15yfuOik2wGidLUgFrNnEwlQuBIWoUtV1RXT4bVZda2HU9ABtY8-Dq9KuhXpRUqxHmOP48c3Z7vFhqeslgvTdOEBAVZOHgMcwEQafmKzfSMJ0jwNSzEIk3PQWZI2cUdU9p3t86FVHWDjFDe7cqW82h8TtgtXPKRyOoRjEkTVldVt43TL~k2vsrYPsPh9A9EOV8sXADFBSGRJ1usB8aHogcFfktFX5ZBLJomVIvPbeWlMJscFdoIBnLlBwFSkFgha-qPmFiSFr6uIAlbFKqxLWUFjID37omv2JlCCsbnwP9rqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":6147,"name":"Diphthongs","url":"https://www.academia.edu/Documents/in/Diphthongs"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":127474,"name":"Formant","url":"https://www.academia.edu/Documents/in/Formant"},{"id":303727,"name":"Grid","url":"https://www.academia.edu/Documents/in/Grid"},{"id":1114253,"name":"VOWEL","url":"https://www.academia.edu/Documents/in/VOWEL"}],"urls":[{"id":38676549,"url":"https://doi.org/10.3934/neuroscience.2020015"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657567"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657567/Redundancy_and_synergy_arising_from_correlations_in_large_ensembles"><img alt="Research paper thumbnail of Redundancy and synergy arising from correlations in large ensembles" class="work-thumbnail" src="https://attachments.academia-assets.com/110561496/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657567/Redundancy_and_synergy_arising_from_correlations_in_large_ensembles">Redundancy and synergy arising from correlations in large ensembles</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4825f81646b52aa12afe952d7486ec51" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561496,"asset_id":113657567,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561496/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657567"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657567"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657567; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657567]").text(description); $(".js-view-count[data-work-id=113657567]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657567; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657567']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657567, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4825f81646b52aa12afe952d7486ec51" } } $('.js-work-strip[data-work-id=113657567]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657567,"title":"Redundancy and synergy arising from correlations in large ensembles","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"Multielectrode arrays allow recording of the activity of many single neurons, from which correlations can be calculated. The functional roles of correlations can be revealed by the measures of the information conveyed by neuronal activity; a simple formula has been shown to discriminate the information transmitted by individual spikes from the positive or negative contributions due to correlations (Panzeri et al, Proc. Roy. Soc. B., 266: 1001-1012 (1999)). The formula quantifies the corrections to the single-unit instantaneous information rate which result from correlations in spike emission between pairs of neurons. Positive corrections imply synergy, while negative corrections indicate redundancy. Here, this analysis, previously applied to recordings from small ensembles, is developed further by considering a model of a large ensemble, in which correlations among the signal and noise components of neuronal firing are small in absolute value and entirely random in origin. Even such small random correlations are shown to lead to large possible synergy or redundancy, whenever the time window for extracting information from neuronal firing extends to the order of the mean interspike interval. In addition, a sample of recordings from rat barrel cortex illustrates the mean time window at which such 'corrections' dominate when correlations are, as often in the real brain, neither random nor small. The presence of this kind of correlations for a large ensemble of cells restricts further the time of validity of the expansion, unless what is decodable by the receiver is also taken into account.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":110561496},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657567/Redundancy_and_synergy_arising_from_correlations_in_large_ensembles","translated_internal_url":"","created_at":"2024-01-17T14:05:54.974-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561496,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561496/thumbnails/1.jpg","file_name":"0012119.pdf","download_url":"https://www.academia.edu/attachments/110561496/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Redundancy_and_synergy_arising_from_corr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561496/0012119-libre.pdf?1705531048=\u0026response-content-disposition=attachment%3B+filename%3DRedundancy_and_synergy_arising_from_corr.pdf\u0026Expires=1732826279\u0026Signature=bm~tHXWOsMiRgGcVWV7MuWGvwwtIOdrOaWSwkl5OcXguH1~NCkFr4mqUGuy3l4xE1JIyNLBjeKLWNhCV4qFQOO7-Y3Fx9muX~fH4zhA8yDQm6s5-65kShEJFgMQfgUA7HUXKCl3CW9VoMFOpf6H7dYl5qHD4ZhKFB3ahkQupk9MEc~3oU47G3E5Qnh6f84B2bMlHLUD7NTzVjkGiD6g8GhUu4YZ9nWRWaLNsj-~8qYTw5Q2n7R3Z~ABvysoLF-jULsbChQTMtk05jx02k0YVOqT9e7CAAPx7OQFkO3E0tE4H38RXnGlsZodKDt96v4R8V55y914uFE1k-DVnz0NcMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Redundancy_and_synergy_arising_from_correlations_in_large_ensembles","translated_slug":"","page_count":28,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561496,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561496/thumbnails/1.jpg","file_name":"0012119.pdf","download_url":"https://www.academia.edu/attachments/110561496/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Redundancy_and_synergy_arising_from_corr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561496/0012119-libre.pdf?1705531048=\u0026response-content-disposition=attachment%3B+filename%3DRedundancy_and_synergy_arising_from_corr.pdf\u0026Expires=1732826279\u0026Signature=bm~tHXWOsMiRgGcVWV7MuWGvwwtIOdrOaWSwkl5OcXguH1~NCkFr4mqUGuy3l4xE1JIyNLBjeKLWNhCV4qFQOO7-Y3Fx9muX~fH4zhA8yDQm6s5-65kShEJFgMQfgUA7HUXKCl3CW9VoMFOpf6H7dYl5qHD4ZhKFB3ahkQupk9MEc~3oU47G3E5Qnh6f84B2bMlHLUD7NTzVjkGiD6g8GhUu4YZ9nWRWaLNsj-~8qYTw5Q2n7R3Z~ABvysoLF-jULsbChQTMtk05jx02k0YVOqT9e7CAAPx7OQFkO3E0tE4H38RXnGlsZodKDt96v4R8V55y914uFE1k-DVnz0NcMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":5451,"name":"Computational Neuroscience","url":"https://www.academia.edu/Documents/in/Computational_Neuroscience"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":432091,"name":"Barrel Cortex","url":"https://www.academia.edu/Documents/in/Barrel_Cortex"},{"id":473567,"name":"Neuronal Activity","url":"https://www.academia.edu/Documents/in/Neuronal_Activity"},{"id":952560,"name":"Information Rate","url":"https://www.academia.edu/Documents/in/Information_Rate"},{"id":1202769,"name":"Multielectrode Array","url":"https://www.academia.edu/Documents/in/Multielectrode_Array"}],"urls":[{"id":38676548,"url":"https://arxiv.org/pdf/cond-mat/0012119"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657566"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657566/Angular_and_linear_speed_cells_in_the_parahippocampal_circuits"><img alt="Research paper thumbnail of Angular and linear speed cells in the parahippocampal circuits" class="work-thumbnail" src="https://attachments.academia-assets.com/110561494/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657566/Angular_and_linear_speed_cells_in_the_parahippocampal_circuits">Angular and linear speed cells in the parahippocampal circuits</a></div><div class="wp-workCard_item"><span>Nature Communications</span><span>, Apr 7, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="39fbc639a90ece2d6305dfcdbc0be877" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561494,"asset_id":113657566,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561494/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657566"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657566"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657566; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657566]").text(description); $(".js-view-count[data-work-id=113657566]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657566; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657566']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657566, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "39fbc639a90ece2d6305dfcdbc0be877" } } $('.js-work-strip[data-work-id=113657566]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657566,"title":"Angular and linear speed cells in the parahippocampal circuits","translated_title":"","metadata":{"publisher":"Nature Portfolio","grobid_abstract":"An essential role of the hippocampal region is to integrate information to compute and update representations. How this transpires is highly debated. Many theories hinge on the integration of self-motion signals and the existence of continuous attractor networks (CAN). CAN models hypothesise that neurons coding for navigational correlatessuch as position and directionreceive inputs from cells conjunctively coding for position, direction, and selfmotion. As yet, very little data exist on such conjunctive coding in the hippocampal region. Here, we report neurons coding for angular and linear velocity, uniformly distributed across the medial entorhinal cortex (MEC), the presubiculum and the parasubiculum, except for MEC layer II. Self-motion neurons often conjunctively encoded position and/or direction, yet lacked a structured organisation. These results offer insights as to how linear/angular speedderivative in time of position/directionmay allow the updating of spatial representations, possibly uncovering a generalised algorithm to update any representation.","publication_date":{"day":7,"month":4,"year":2022,"errors":{}},"publication_name":"Nature Communications","grobid_abstract_attachment_id":110561494},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657566/Angular_and_linear_speed_cells_in_the_parahippocampal_circuits","translated_internal_url":"","created_at":"2024-01-17T14:05:53.905-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561494,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561494/thumbnails/1.jpg","file_name":"s41467-022-29583-z.pdf","download_url":"https://www.academia.edu/attachments/110561494/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Angular_and_linear_speed_cells_in_the_pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561494/s41467-022-29583-z-libre.pdf?1705531078=\u0026response-content-disposition=attachment%3B+filename%3DAngular_and_linear_speed_cells_in_the_pa.pdf\u0026Expires=1732826279\u0026Signature=Nz4s0tp61AkNubWH3p~yUxHQH7JCfoZv05yXOe~s97B8~ErGI1Rz~rT3G-1FEugrcrHoYA3YAj5iVdpUtBEpaA5Dfql24QWlmrDxkwSrRwzHhqnOH4qwI7RyFxZYApBI6ki6Ur0ADQuZu8eOnpnKBMtRkWX93YOk27CPwp75Ld6BXZCjx9j0UYtrp4RkZtjvVGH0aTa0OJuUcUHf7a44Q86CfdhFWrYtR9HC8jdIA2bVmoRml-YtL4CcWdzWOKUYCNTV~N4ETeKr0PhDdVdDcnv1PaKrqCTA-N-tFfD9VJRNfvJpYfNHMDhbchDAT~N9KXt7FmGTzFGntZsXuroiZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Angular_and_linear_speed_cells_in_the_parahippocampal_circuits","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561494,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561494/thumbnails/1.jpg","file_name":"s41467-022-29583-z.pdf","download_url":"https://www.academia.edu/attachments/110561494/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Angular_and_linear_speed_cells_in_the_pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561494/s41467-022-29583-z-libre.pdf?1705531078=\u0026response-content-disposition=attachment%3B+filename%3DAngular_and_linear_speed_cells_in_the_pa.pdf\u0026Expires=1732826279\u0026Signature=Nz4s0tp61AkNubWH3p~yUxHQH7JCfoZv05yXOe~s97B8~ErGI1Rz~rT3G-1FEugrcrHoYA3YAj5iVdpUtBEpaA5Dfql24QWlmrDxkwSrRwzHhqnOH4qwI7RyFxZYApBI6ki6Ur0ADQuZu8eOnpnKBMtRkWX93YOk27CPwp75Ld6BXZCjx9j0UYtrp4RkZtjvVGH0aTa0OJuUcUHf7a44Q86CfdhFWrYtR9HC8jdIA2bVmoRml-YtL4CcWdzWOKUYCNTV~N4ETeKr0PhDdVdDcnv1PaKrqCTA-N-tFfD9VJRNfvJpYfNHMDhbchDAT~N9KXt7FmGTzFGntZsXuroiZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":1267800,"name":"Nature Communications","url":"https://www.academia.edu/Documents/in/Nature_Communications"},{"id":2047736,"name":"Angular displacement","url":"https://www.academia.edu/Documents/in/Angular_displacement"},{"id":2226469,"name":"Hippocampal formation","url":"https://www.academia.edu/Documents/in/Hippocampal_formation"}],"urls":[{"id":38676547,"url":"https://www.nature.com/articles/s41467-022-29583-z.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113657565"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113657565/Representing_Where_along_with_What_Information_in_a_Model_of_a_Cortical_Patch"><img alt="Research paper thumbnail of Representing Where along with What Information in a Model of a Cortical Patch" class="work-thumbnail" src="https://attachments.academia-assets.com/110561492/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113657565/Representing_Where_along_with_What_Information_in_a_Model_of_a_Cortical_Patch">Representing Where along with What Information in a Model of a Cortical Patch</a></div><div class="wp-workCard_item"><span>PLOS Computational Biology</span><span>, Mar 21, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bc09d9e69b1dd9c5cbf4e1662c3fc804" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110561492,"asset_id":113657565,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110561492/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113657565"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113657565"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113657565; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113657565]").text(description); $(".js-view-count[data-work-id=113657565]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113657565; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113657565']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113657565, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bc09d9e69b1dd9c5cbf4e1662c3fc804" } } $('.js-work-strip[data-work-id=113657565]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113657565,"title":"Representing Where along with What Information in a Model of a Cortical Patch","translated_title":"","metadata":{"publisher":"International Society for Computational Biology","grobid_abstract":"Behaving in the real world requires flexibly combining and maintaining information about both continuous and discrete variables. In the visual domain, several lines of evidence show that neurons in some cortical networks can simultaneously represent information about the position and identity of objects, and maintain this combined representation when the object is no longer present. The underlying network mechanism for this combined representation is, however, unknown. In this paper, we approach this issue through a theoretical analysis of recurrent networks. We present a model of a cortical network that can retrieve information about the identity of objects from incomplete transient cues, while simultaneously representing their spatial position. Our results show that two factors are important in making this possible: A) a metric organisation of the recurrent connections, and B) a spatially localised change in the linear gain of neurons. Metric connectivity enables a localised retrieval of information about object identity, while gain modulation ensures localisation in the correct position. Importantly, we find that the amount of information that the network can retrieve and retain about identity is strongly affected by the amount of information it maintains about position. This balance can be controlled by global signals that change the neuronal gain. These results show that anatomical and physiological properties, which have long been known to characterise cortical networks, naturally endow them with the ability to maintain a conjunctive representation of the identity and location of objects.","publication_date":{"day":21,"month":3,"year":2008,"errors":{}},"publication_name":"PLOS Computational Biology","grobid_abstract_attachment_id":110561492},"translated_abstract":null,"internal_url":"https://www.academia.edu/113657565/Representing_Where_along_with_What_Information_in_a_Model_of_a_Cortical_Patch","translated_internal_url":"","created_at":"2024-01-17T14:05:53.654-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":2162013,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110561492,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561492/thumbnails/1.jpg","file_name":"file.pdf","download_url":"https://www.academia.edu/attachments/110561492/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Representing_Where_along_with_What_Infor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561492/file-libre.pdf?1705531068=\u0026response-content-disposition=attachment%3B+filename%3DRepresenting_Where_along_with_What_Infor.pdf\u0026Expires=1732826279\u0026Signature=hG6sAkS0NsYZ4tgowtwke9WcEaTohfow3fMjqtMqZotBL2akSp12imlXgVT5Hy3l8rVGA33fO7k35cOVv9Ck-NjiqzH3qcWHerkXmmUlZmh9ePiqxYTmSOXb8LjanBxA2xiefLhApvawTsSbmWVJc62-uTwwUoU215eLsn8-YMWJjQYB7hzHfClmLDWYpXgomQxkymCH5tucEdYMCovYRnX3G8Mjw8kMfPWMSRUxXE5bQimsjm9EBLavnDRfoTpXVlLbHe4fLA1QgHYsjWhrGPsRIUEj~80iniOas9M1OtcKDOMLhSnL-MUOJ9Lik7eZyVnEzdu~GMjBxVkrl~UDow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Representing_Where_along_with_What_Information_in_a_Model_of_a_Cortical_Patch","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":2162013,"first_name":"Alessandro","middle_initials":null,"last_name":"Treves","page_name":"AlessandroTreves","domain_name":"sissa","created_at":"2012-07-20T21:26:34.978-07:00","display_name":"Alessandro Treves","url":"https://sissa.academia.edu/AlessandroTreves"},"attachments":[{"id":110561492,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561492/thumbnails/1.jpg","file_name":"file.pdf","download_url":"https://www.academia.edu/attachments/110561492/download_file?st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&st=MTczMjgyMjY3OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Representing_Where_along_with_What_Infor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561492/file-libre.pdf?1705531068=\u0026response-content-disposition=attachment%3B+filename%3DRepresenting_Where_along_with_What_Infor.pdf\u0026Expires=1732826279\u0026Signature=hG6sAkS0NsYZ4tgowtwke9WcEaTohfow3fMjqtMqZotBL2akSp12imlXgVT5Hy3l8rVGA33fO7k35cOVv9Ck-NjiqzH3qcWHerkXmmUlZmh9ePiqxYTmSOXb8LjanBxA2xiefLhApvawTsSbmWVJc62-uTwwUoU215eLsn8-YMWJjQYB7hzHfClmLDWYpXgomQxkymCH5tucEdYMCovYRnX3G8Mjw8kMfPWMSRUxXE5bQimsjm9EBLavnDRfoTpXVlLbHe4fLA1QgHYsjWhrGPsRIUEj~80iniOas9M1OtcKDOMLhSnL-MUOJ9Lik7eZyVnEzdu~GMjBxVkrl~UDow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":110561493,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110561493/thumbnails/1.jpg","file_name":"file.pdf","download_url":"https://www.academia.edu/attachments/110561493/download_file","bulk_download_file_name":"Representing_Where_along_with_What_Infor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110561493/file-libre.pdf?1705531070=\u0026response-content-disposition=attachment%3B+filename%3DRepresenting_Where_along_with_What_Infor.pdf\u0026Expires=1732826279\u0026Signature=UqvYkKmqgst0pzj75QOTGwT0rt8hH3w-4piOMJTic50doU9CALpOFkFKUqNBlPzMijM4gWZgCFMOkXmS-iaFUXJJy-dudimy1TbgUQ7SdkOeFGjqKVYQNG4LEnGVdMxLjg7VqvmijG7qfN1U0oKn4TwwqBvHIY8N7Xu7exwLpCVNjTcV8s8GmJ7xvwESHtIYZGAuRyZ0didZPFzg~cImD7eh7E1lfzlQ5hefxtpsWOny7csuBYSBZirbwzpAbnJ-tXclQ207mmTEuUHwC~ihZ-AfAx9iTUecvNbu2fIHt9suydszW9lxJ8VKxdv90ApopeJqDHyGcPjj9bjKJfan5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":46858,"name":"Memory","url":"https://www.academia.edu/Documents/in/Memory"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":128285,"name":"Information Processing in Visual System","url":"https://www.academia.edu/Documents/in/Information_Processing_in_Visual_System"},{"id":132020,"name":"Neuronal Plasticity","url":"https://www.academia.edu/Documents/in/Neuronal_Plasticity"},{"id":184965,"name":"Theoretical Analysis","url":"https://www.academia.edu/Documents/in/Theoretical_Analysis"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":255453,"name":"Information Storage and Retrieval","url":"https://www.academia.edu/Documents/in/Information_Storage_and_Retrieval"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":968586,"name":"Visual Evoked Potentials","url":"https://www.academia.edu/Documents/in/Visual_Evoked_Potentials"},{"id":1122910,"name":"Attractor Neural Network","url":"https://www.academia.edu/Documents/in/Attractor_Neural_Network"},{"id":1763882,"name":"Representation Politics","url":"https://www.academia.edu/Documents/in/Representation_Politics"},{"id":1837730,"name":"Neural Network Model","url":"https://www.academia.edu/Documents/in/Neural_Network_Model"}],"urls":[{"id":38676546,"url":"https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000012\u0026type=printable"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "9295592a7a1f371bd38c150737ff733d565080c8fbde7d4063815742095f918d", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="ZM21ehRW8et4Y8sN/pUjybeixC2W79cLzkY1rGugKTv/mGCQctYjGWLCapeqoLsY72Jx5k1h4ss7nomJsXbaqA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://sissa.academia.edu/AlessandroTreves" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="Bd4PgSCigUWkbsZWkQcJI60fY0vFW5L+3dkyHj7EYnSei9prRiJTt77PZ8zFMpHy9d/WgB7Vpz4oAY475BKR5w==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>