CINXE.COM

Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications - PMC

<!DOCTYPE html> <html lang="en" > <head > <meta charset="UTF-8" /> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <meta name="HandheldFriendly" content="True" /> <meta name="MobileOptimized" content="320" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <link rel="stylesheet" href="/static/assets/style-70b9163a.css" /> <script type="module" crossorigin="" src="/static/assets/base_style-ec2bc71e.js"></script> <link rel="stylesheet" href="/static/assets/style-ef962842.css" /> <link rel="stylesheet" href="/static/assets/style-3ade8b5c.css" /> <script type="module" crossorigin="" src="/static/assets/article_style-d757a0dd.js"></script> <style> @media screen and (min-width: 64em) { div.pmc-wm { background: repeat-y; background-image: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' width='20' height='350' xmlns:xlink='http://www.w3.org/1999/xlink'%3E%3Cdefs%3E%3Cfilter x='-.02' y='0' width='1.05' height='1' id='c'%3E%3CfeFlood flood-color='%23FFF'/%3E%3CfeComposite in='SourceGraphic'/%3E%3C/filter%3E%3Ctext id='b' font-family='Helvetica' font-size='11pt' style='opacity:1;fill:%23005ea2;stroke:none;text-anchor:middle' x='175' y='14'%3E%3C/text%3E%3Cpath id='a' style='fill:%23005ea2' d='M0 8h350v3H0z'/%3E%3C/defs%3E%3Cuse xlink:href='%23a' transform='rotate(90 10 10)'/%3E%3Cuse xlink:href='%23b' transform='rotate(90 10 10)' filter='url(%23c)'/%3E%3C/svg%3E"); padding-left: 3rem; } } </style> <link rel="apple-touch-icon" sizes="180x180" href="/static/img/favicons/apple-touch-icon.png" /> <link rel="icon" type="image/png" sizes="48x48" href="/static/img/favicons/favicon-48x48.png" /> <link rel="icon" type="image/png" sizes="32x32" href="/static/img/favicons/favicon-32x32.png" /> <link rel="icon" type="image/png" sizes="16x16" href="/static/img/favicons/favicon-16x16.png" /> <link rel="manifest" href="/static/img/favicons/site.webmanifest" /> <link rel="mask-icon" href="/static/img/favicons/safari-pinned-tab.svg" color="#0071bc" /> <meta name="msapplication-config" content="/static/img/favicons/browserconfig.xml" /> <meta name="theme-color" content="#ffffff" /> <title> Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications - PMC </title> <!-- Logging params: Pinger defaults --> <meta name="ncbi_app" content="cloudpmc-viewer" /> <meta name="ncbi_db" content="pmc" /> <meta name="ncbi_phid" content="E5FD7928741EF4C30379280035164040.m_1" /> <!-- Logging params: Pinger custom --> <meta name="ncbi_pdid" content="article" /> <link rel="preconnect" href="https://www.google-analytics.com" /> <link rel="dns-prefetch" href="https://cdn.ncbi.nlm.nih.gov" /> <link rel="preconnect" href="https://code.jquery.com" /> <meta name="ncbi_domain" content="pheaaas"> <meta name="ncbi_type" content="fulltext"> <meta name="ncbi_pcid" content="journal"> <meta name="ncbi_feature" content="associated_data"> <link rel="canonical" href="https://pmc.ncbi.nlm.nih.gov/articles/PMC7402624/"> <meta name="robots" content="INDEX,NOFOLLOW,NOARCHIVE"> <meta name="citation_journal_title" content="Science (New York, N.y.)"> <meta name="citation_title" content="Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications"> <meta name="citation_author" content="Divij Mathew"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Josephine R Giles"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Amy E Baxter"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Derek A Oldridge"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Allison R Greenplate"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Jennifer E Wu"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Cécile Alanio"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Leticia Kuri-Cervantes"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="M Betina Pampena"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Kurt D’Andrea"> <meta name="citation_author_institution" content="Division of Translational Medicine and Human Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Sasikanth Manne"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Zeyu Chen"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Yinghui Jane Huang"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="John P Reilly"> <meta name="citation_author_institution" content="Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Ariel R Weisman"> <meta name="citation_author_institution" content="Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Caroline A G Ittner"> <meta name="citation_author_institution" content="Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Oliva Kuthuru"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Jeanette Dougherty"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Kito Nzingha"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Nicholas Han"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Justin Kim"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Ajinkya Pattekar"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Eileen C Goodwin"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Elizabeth M Anderson"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Madison E Weirick"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Sigrid Gouma"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Claudia P Arevalo"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Marcus J Bolton"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Fang Chen"> <meta name="citation_author_institution" content="Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Simon F Lacey"> <meta name="citation_author_institution" content="Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Holly Ramage"> <meta name="citation_author_institution" content="Department of Microbiology, Thomas Jefferson University, Philadelphia, PA, USA."> <meta name="citation_author" content="Sara Cherry"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Scott E Hensley"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Sokratis A Apostolidis"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Alexander C Huang"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Laura A Vella"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Division of Infectious Disease, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA."> <meta name="citation_author" content="The UPenn COVID Processing Unit"> <meta name="citation_author" content="Michael R Betts"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="Nuala J Meyer"> <meta name="citation_author_institution" content="Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author" content="E John Wherry"> <meta name="citation_author_institution" content="Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_author_institution" content="Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA."> <meta name="citation_publication_date" content="2020 Jul 15"> <meta name="citation_volume" content="369"> <meta name="citation_issue" content="6508"> <meta name="citation_firstpage" content="eabc8511"> <meta name="citation_doi" content="10.1126/science.abc8511"> <meta name="citation_pmid" content="32669297"> <meta name="citation_abstract_html_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC7402624/"> <meta name="citation_fulltext_html_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC7402624/"> <meta name="citation_pdf_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC7402624/pdf/369_abc8511.pdf"> <meta name="description" content="Coronavirus disease 2019 (COVID-19) has affected millions of people globally, yet how the human immune system responds to and influences COVID-19 severity remains unclear. Mathew et al. present a comprehensive atlas of immune modulation associated ..."> <meta name="og:title" content="Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications"> <meta name="og:type" content="article"> <meta name="og:site_name" content="PubMed Central (PMC)"> <meta name="og:description" content="Coronavirus disease 2019 (COVID-19) has affected millions of people globally, yet how the human immune system responds to and influences COVID-19 severity remains unclear. Mathew et al. present a comprehensive atlas of immune modulation associated ..."> <meta name="og:url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC7402624/"> <meta name="og:image" content="https://cdn.ncbi.nlm.nih.gov/pmc/cms/images/pmc-card-share.jpg?_=0"> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:site" content="@ncbi"> </head> <body > <a class="usa-skipnav " href="#main-content"> Skip to main content </a> <section class="usa-banner " aria-label="Official website of the United States government" > <div class="usa-accordion"> <header class="usa-banner__header"> <div class="usa-banner__inner"> <div class="grid-col-auto"> <img aria-hidden="true" class="usa-banner__header-flag" src="/static/img/us_flag.svg" alt="" /> </div> <div class="grid-col-fill tablet:grid-col-auto" aria-hidden="true"> <p class="usa-banner__header-text"> An official website of the United States government </p> <span class="usa-banner__header-action">Here's how you know</span> </div> <button type="button" class="usa-accordion__button usa-banner__button " aria-expanded="false" aria-controls="gov-banner-default" data-testid="storybook-django-banner" > <span class="usa-banner__button-text">Here's how you know</span> </button> </div> </header> <div class="usa-banner__content usa-accordion__content" id="gov-banner-default" hidden> <div class="grid-row grid-gap-lg"> <div class="usa-banner__guidance tablet:grid-col-6"> <img class="usa-banner__icon usa-media-block__img" src="/static/img/icon-dot-gov.svg" alt="" aria-hidden="true" /> <div class="usa-media-block__body"> <p> <strong>Official websites use .gov</strong> <br /> A <strong>.gov</strong> website belongs to an official government organization in the United States. </p> </div> </div> <div class="usa-banner__guidance tablet:grid-col-6"> <img class="usa-banner__icon usa-media-block__img" src="/static/img/icon-https.svg" alt="" aria-hidden="true" /> <div class="usa-media-block__body"> <p> <strong>Secure .gov websites use HTTPS</strong> <br /> A <strong>lock</strong> ( <span class="icon-lock"> <svg xmlns="http://www.w3.org/2000/svg" width="52" height="64" viewBox="0 0 52 64" class="usa-banner__lock-image" role="graphics-symbol" aria-labelledby="banner-lock-description" focusable="false"> <title id="banner-lock-title">Lock</title> <desc id="banner-lock-description"> Locked padlock icon </desc> <path fill="#000000" fill-rule="evenodd" d="M26 0c10.493 0 19 8.507 19 19v9h3a4 4 0 0 1 4 4v28a4 4 0 0 1-4 4H4a4 4 0 0 1-4-4V32a4 4 0 0 1 4-4h3v-9C7 8.507 15.507 0 26 0zm0 8c-5.979 0-10.843 4.77-10.996 10.712L15 19v9h22v-9c0-6.075-4.925-11-11-11z" /> </svg> </span>) or <strong>https://</strong> means you've safely connected to the .gov website. Share sensitive information only on official, secure websites. </p> </div> </div> </div> </div> </div> </section> <div class="usa-overlay"> </div> <header class="usa-header usa-header--extended usa-header--wide" data-testid="header" data-header > <div class="ncbi-header"> <div class="ncbi-header__container"> <a class="ncbi-header__logo-container" href="/"> <img alt=" PMC home page " class="ncbi-header__logo-image" src="/static/img/ncbi-logos/nih-nlm-ncbi--white.svg" /> </a> <!-- Mobile menu hamburger button --> <button type="button" class="usa-menu-btn ncbi-header__hamburger-button " aria-label="Show menu" data-testid="navMenuButton" > <svg aria-hidden="true" class="ncbi-hamburger-icon" fill="none" focusable="false" height="21" viewBox="0 0 31 21" width="31" xmlns="http://www.w3.org/2000/svg"> <path clip-rule="evenodd" d="M0.125 20.75H30.875V17.3333H0.125V20.75ZM0.125 12.2083H30.875V8.79167H0.125V12.2083ZM0.125 0.25V3.66667H30.875V0.25H0.125Z" fill="#F1F1F1" fill-rule="evenodd" /> </svg> </button> <!-- Desktop buttons--> <div class="ncbi-header__desktop-buttons"> <!-- Desktop search button --> <button type="button" class="usa-button usa-button--unstyled ncbi-header__desktop-button " aria-expanded="false" aria-controls="search-field-desktop-navigation" aria-label="Show search overlay" data-testid="toggleSearchPanelButton" data-toggle-search-panel-button > <svg class="usa-icon " role="graphics-symbol" aria-hidden="true" > <use xlink:href="/static/img/sprite.svg#search" /> </svg> Search </button> <!-- Desktop login dropdown --> <div class="ncbi-header__login-dropdown"> <button type="button" class="usa-button usa-button--unstyled ncbi-header__desktop-button ncbi-header__login-dropdown-button " aria-expanded="false" aria-controls="login-dropdown-menu" aria-label="Show login menu" data-testid="toggleLoginMenuDropdown" data-desktop-login-button > <svg class="usa-icon " role="graphics-symbol" aria-hidden="true" > <use xlink:href="/static/img/sprite.svg#person" /> </svg> <span data-login-dropdown-text>Log in</span> <!-- Dropdown icon pointing up --> <svg class="usa-icon ncbi-header__login-dropdown-icon ncbi-header__login-dropdown-icon--expand-less ncbi-header__login-dropdown-icon--hidden" role="graphics-symbol" aria-hidden="true" data-login-dropdown-up-arrow> <use xlink:href="/static/img/sprite.svg#expand_less" /> </svg> <!-- Dropdown icon pointing down --> <svg class="usa-icon ncbi-header__login-dropdown-icon ncbi-header__login-dropdown-icon--expand-more ncbi-header__login-dropdown-icon--hidden" role="graphics-symbol" aria-hidden="true" data-login-dropdown-down-arrow> <use xlink:href="/static/img/sprite.svg#expand_more" /> </svg> </button> <!-- Login dropdown menu --> <ul class="usa-nav__submenu ncbi-header__login-dropdown-menu" id="login-dropdown-menu" data-desktop-login-menu-dropdown hidden> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/myncbi/" class="usa-link " > Dashboard </a> </li> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/" class="usa-link " > Publications </a> </li> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/account/settings/" class="usa-link " > Account settings </a> </li> <li class="usa-nav__submenu-item"> <button type="button" class="usa-button usa-button--outline ncbi-header__login-dropdown-logout-button " data-testid="desktopLogoutButton" data-desktop-logout-button > Log out </button> </li> </ul> </div> </div> </div> </div> <!-- Search panel --> <div class="ncbi-search-panel ncbi--show-only-at-desktop" data-testid="searchPanel" data-header-search-panel hidden> <div class="ncbi-search-panel__container"> <form action="https://www.ncbi.nlm.nih.gov/search/all/" aria-describedby="search-field-desktop-navigation-help-text" autocomplete="off" class="usa-search usa-search--big ncbi-search-panel__form" data-testid="form" method="GET" role="search"> <label class="usa-sr-only" data-testid="label" for="search-field-desktop-navigation"> Search… </label> <input class="usa-input" data-testid="textInput" id="search-field-desktop-navigation" name="term" placeholder="Search NCBI" type="search" value="" /> <button type="submit" class="usa-button " data-testid="button" > <span class="usa-search__submit-text"> Search NCBI </span> </button> </form> </div> </div> <nav aria-label="Primary navigation" class="usa-nav"> <p class="usa-sr-only" id="primary-navigation-sr-only-title"> Primary site navigation </p> <!-- Mobile menu close button --> <button type="button" class="usa-nav__close ncbi-nav__close-button " aria-label="Close navigation menu" data-testid="navCloseButton" > <img src="/static/img/usa-icons/close.svg" alt="Close" /> </button> <!-- Mobile search component --> <form class="usa-search usa-search--small ncbi--hide-at-desktop margin-top-6" role="search"> <label class="usa-sr-only" for="search-field"> Search </label> <input class="usa-input" id="search-field-mobile-navigation" type="search" placeholder="Search NCBI" name="search" /> <button type="submit" class="usa-button " > <!-- This SVG should be kept inline and not replaced with a link to the icon as otherwise it will render in the wrong color --> <img src="" class="usa-search__submit-icon" alt="Search" /> </button> </form> <!-- Primary navigation menu items --> <!-- This usa-nav__inner wrapper is required to correctly style the navigation items on Desktop --> <div class="ncbi-nav__mobile-login-menu ncbi--hide-at-desktop" data-mobile-login-menu hidden> <p class="ncbi-nav__mobile-login-menu-status"> Logged in as: <strong class="ncbi-nav__mobile-login-menu-email" data-mobile-login-email-text></strong> </p> <ul class="usa-nav__primary usa-accordion"> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/myncbi/" class="usa-link " > Dashboard </a> </li> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/" class="usa-link " > Publications </a> </li> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/account/settings/" class="usa-link " > Account settings </a> </li> </ul> </div> <button type="button" class="usa-button ncbi-nav__mobile-login-button ncbi--hide-at-desktop " data-testid="mobileLoginButton" data-mobile-login-button > Log in </button> </nav> </header> <section class="pmc-header pmc-header--basic" aria-label="PMC Header with search box"> <div class="pmc-nav-container"> <div class="pmc-header__bar"> <div class="pmc-header__logo"> <a href="/" title="Home" aria-label="PMC Home"></a> </div> <button type="button" class="usa-button usa-button--unstyled pmc-header__search__button" aria-label="Open search" data-ga-category="search" data-ga-action="PMC" data-ga-label="pmc_search_panel_mobile" > <svg class="usa-icon width-4 height-4 pmc-icon__open" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#search"></use> </svg> <svg class="usa-icon width-4 height-4 pmc-icon__close" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#close"></use> </svg> </button> </div> <div class="pmc-header__search"> <form class="usa-search usa-search--extra usa-search--article-right-column pmc-header__search__form" autocomplete="off" role="search"> <label class="usa-sr-only" for="pmc-search">Search PMC Full-Text Archive</label> <span class="autoComplete_wrapper flex-1"> <input class="usa-input width-full maxw-none" required="required" placeholder="Search PMC Full-Text Archive" id="pmc-search" type="search" name="term" data-autocomplete-url="/search/autocomplete/"/> </span> <button class="usa-button" type="submit" formaction="https://www.ncbi.nlm.nih.gov/pmc/" data-ga-category="search" data-ga-action="PMC" data-ga-label="PMC_search_button" > <span class="usa-search__submit-text">Search in PMC</span> <img src="/static/img/usa-icons-bg/search--white.svg" class="usa-search__submit-icon" alt="Search" /> </button> </form> <ul class="pmc-header__search__menu"> <li> <a class="usa-link" href="https://www.ncbi.nlm.nih.gov/pmc/advanced/" data-ga-action="featured_link" data-ga-label="advanced_search"> Advanced Search </a> </li> <li> <a class="usa-link" href="/journals/" data-ga-action="featured_link" data-ga-label="journal list"> Journal List </a> </li> <li> <a class="usa-link" href="/about/userguide/" data-ga-action="featured_link" data-ga-label="user guide"> User Guide </a> </li> </ul> </div> </div> </section> <div class="usa-section padding-top-0 desktop:padding-top-6 pmc-article-section" data-article-db="pmc" data-article-id="7402624"> <div class="grid-container pmc-actions-bar" aria-label="Actions bar" role="complementary"> <div class="grid-row"> <div class="grid-col-fill display-flex"> <div class="display-flex"> <ul class="usa-list usa-list--unstyled usa-list--horizontal"> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex mob"> <button type="button" class="usa-button pmc-sidenav__container__open usa-button--unstyled width-auto display-flex" aria-label="Open resources" data-extra-class="is-visible-resources" data-ga-category="resources_accordion" data-ga-action="click" data-ga-label="mobile_icon" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#more_vert"></use> </svg> </button> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex mob"> <a href="https://doi.org/10.1126/science.abc8511" class="usa-link display-flex" role="button" target="_blank" rel="noreferrer noopener" aria-label="View on publisher site" data-ga-category="actions" data-ga-action="click" data-ga-label="publisher_link_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#launch"></use> </svg> </a> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <a href="pdf/369_abc8511.pdf" class="usa-link display-flex" role="button" aria-label="Download PDF" data-ga-category="actions" data-ga-action="click" data-ga-label="pdf_download_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> </a> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <button class="usa-button usa-button--unstyled collections-dialog-trigger collections-button display-flex collections-button-empty" aria-label="Save article in MyNCBI collections." data-ga-category="actions" data-ga-action="click" data-ga-label="collections_button_mobile" data-collections-open-dialog-enabled="false" data-collections-open-dialog-url="https://account.ncbi.nlm.nih.gov/?back_url=https%3A%2F%2Fpmc.ncbi.nlm.nih.gov%2Farticles%2FPMC7402624%2F%23open-collections-dialog" data-in-collections="false" > <svg class="usa-icon width-4 height-4 usa-icon--bookmark-full" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-full.svg#icon"></use> </svg> <svg class="usa-icon width-4 height-4 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-empty.svg#icon"></use> </svg> </button> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <button role="button" class="usa-button usa-button--unstyled citation-dialog-trigger display-flex" aria-label="Open dialog with citation text in different styles" data-ga-category="actions" data-ga-action="open" data-ga-label="cite_mobile" data-all-citations-url="/resources/citations/7402624/" data-citation-style="nlm" data-download-format-link="/resources/citations/7402624/export/" > <svg class="usa-icon width-4 height-4 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#format_quote"></use> </svg> </button> </li> <li class="pmc-permalink display-flex"> <button type="button" class="usa-button usa-button--unstyled display-flex" aria-label="Show article permalink" aria-expanded="false" aria-haspopup="true" data-ga-category="actions" data-ga-action="open" data-ga-label="permalink_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#share"></use> </svg> </button> <div class="pmc-permalink__dropdown" hidden> <div class="pmc-permalink__dropdown__container"> <h2 class="usa-modal__heading margin-top-0 margin-bottom-2">PERMALINK</h2> <div class="pmc-permalink__dropdown__content"> <input type="text" class="usa-input" value="https://pmc.ncbi.nlm.nih.gov/articles/PMC7402624/" aria-label="Article permalink"> <button class="usa-button display-inline-flex pmc-permalink__dropdown__copy__btn margin-right-0" title="Copy article permalink" data-ga-category="save_share" data-ga-action="link" data-ga-label="copy_link"> <svg class="usa-icon" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span class="margin-left-1">Copy</span> </button> </div> </div> </div> </li> </ul> </div> <button type="button" class="usa-button pmc-sidenav__container__open usa-button--unstyled width-auto display-flex" aria-label="Open article navigation" data-extra-class="is-visible-in-page" data-ga-category="actions" data-ga-action="open" data-ga-label="article_nav_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#list"></use> </svg> </button> </div> </div> </div> <div class="grid-container desktop:padding-left-6"> <div id="article-container" class="grid-row grid-gap"> <div class="grid-col-12 desktop:grid-col-8 order-2 pmc-layout__content"> <div class="grid-container padding-left-0 padding-right-0"> <div class="grid-row desktop:margin-left-neg-6"> <div class="grid-col-12"> <div class="pmc-layout__disclaimer" role="complementary" aria-label="Disclaimer note"> As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.<br/> Learn more: <a class="usa-link" data-ga-category="Link click" data-ga-action="Disclaimer" data-ga-label="New disclaimer box" href="/about/disclaimer/">PMC Disclaimer</a> | <a class="usa-link" data-ga-category="Link click" data-ga-action="PMC Copyright Notice" data-ga-label="New disclaimer box" href="/about/copyright/"> PMC Copyright Notice </a> </div> </div> </div> <div class="grid-row pmc-wm desktop:margin-left-neg-6"> <!-- Main content --> <main id="main-content" class="usa-layout-docs__main usa-layout-docs grid-col-12 pmc-layout pmc-prose padding-0" > <section class="pmc-journal-banner text-center line-height-none" aria-label="Journal banner"><img src="https://cdn.ncbi.nlm.nih.gov/pmc/banners/logo-pheaaas.png" alt="AAAS - PMC COVID-19 Collection logo" usemap="#pmc-banner-imagemap" width="500" height="75"><map name="pmc-banner-imagemap"><area alt="Link to AAAS - PMC COVID-19 Collection" title="Link to AAAS - PMC COVID-19 Collection" shape="default" href="https://www.ncbi.nlm.nih.gov/pmc/about/covid-19/" target="_blank" rel="noopener noreferrer"></map></section><article lang="en"><section aria-label="Article citation and metadata"><section class="pmc-layout__citation font-secondary font-xs"><div> <div class="display-inline-block"><button type="button" class="cursor-pointer text-no-underline bg-transparent border-0 padding-0 text-left margin-0 text-normal text-primary" aria-controls="journal_context_menu">Science</button></div>. 2020 Jul 15;369(6508):eabc8511. doi: <a href="https://doi.org/10.1126/science.abc8511" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">10.1126/science.abc8511</a> </div> <nav id="journal_context_menu" hidden="hidden"><ul class="menu-list font-family-ui" role="menu"> <li role="presentation"><a href="https://www.ncbi.nlm.nih.gov/pmc/?term=%22Science%22%5Bjour%5D" class="usa-link" role="menuitem">Search in PMC</a></li> <li role="presentation"><a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Science%22%5Bjour%5D" lang="en" class="usa-link" role="menuitem">Search in PubMed</a></li> <li role="presentation"><a href="https://www.ncbi.nlm.nih.gov/nlmcatalog?term=%22Science%22%5BTitle%20Abbreviation%5D" class="usa-link" role="menuitem">View in NLM Catalog</a></li> <li role="presentation"><a href="?term=%22Science%22%5Bjour%5D" class="usa-link" role="menuitem" data-add-to-search="true">Add to search</a></li> </ul></nav></section><section class="front-matter"><div class="ameta p font-secondary font-xs"> <hgroup><h1>Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications</h1></hgroup><div class="cg p"> <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Mathew%20D%22%5BAuthor%5D" class="usa-link" aria-describedby="id1"><span class="name western">Divij Mathew</span></a><div hidden="hidden" id="id1"> <h3><span class="name western">Divij Mathew</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>2</sup>Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Mathew%20D%22%5BAuthor%5D" class="usa-link"><span class="name western">Divij Mathew</span></a> </div> </div> <sup>1,</sup><sup>2,</sup><sup>*</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Giles%20JR%22%5BAuthor%5D" class="usa-link" aria-describedby="id2"><span class="name western">Josephine R Giles</span></a><div hidden="hidden" id="id2"> <h3><span class="name western">Josephine R Giles</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>2</sup>Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>3</sup>Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Giles%20JR%22%5BAuthor%5D" class="usa-link"><span class="name western">Josephine R Giles</span></a> </div> </div> <sup>1,</sup><sup>2,</sup><sup>3,</sup><sup>*</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Baxter%20AE%22%5BAuthor%5D" class="usa-link" aria-describedby="id3"><span class="name western">Amy E Baxter</span></a><div hidden="hidden" id="id3"> <h3><span class="name western">Amy E Baxter</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>2</sup>Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Baxter%20AE%22%5BAuthor%5D" class="usa-link"><span class="name western">Amy E Baxter</span></a> </div> </div> <sup>1,</sup><sup>2,</sup><sup>*</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Oldridge%20DA%22%5BAuthor%5D" class="usa-link" aria-describedby="id4"><span class="name western">Derek A Oldridge</span></a><div hidden="hidden" id="id4"> <h3><span class="name western">Derek A Oldridge</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>4</sup>Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Oldridge%20DA%22%5BAuthor%5D" class="usa-link"><span class="name western">Derek A Oldridge</span></a> </div> </div> <sup>1,</sup><sup>4,</sup><sup>*</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Greenplate%20AR%22%5BAuthor%5D" class="usa-link" aria-describedby="id5"><span class="name western">Allison R Greenplate</span></a><div hidden="hidden" id="id5"> <h3><span class="name western">Allison R Greenplate</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>2</sup>Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Greenplate%20AR%22%5BAuthor%5D" class="usa-link"><span class="name western">Allison R Greenplate</span></a> </div> </div> <sup>1,</sup><sup>2,</sup><sup>*</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Wu%20JE%22%5BAuthor%5D" class="usa-link" aria-describedby="id6"><span class="name western">Jennifer E Wu</span></a><div hidden="hidden" id="id6"> <h3><span class="name western">Jennifer E Wu</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>2</sup>Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>3</sup>Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Wu%20JE%22%5BAuthor%5D" class="usa-link"><span class="name western">Jennifer E Wu</span></a> </div> </div> <sup>1,</sup><sup>2,</sup><sup>3,</sup><sup>*</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Alanio%20C%22%5BAuthor%5D" class="usa-link" aria-describedby="id7"><span class="name western">Cécile Alanio</span></a><div hidden="hidden" id="id7"> <h3><span class="name western">Cécile Alanio</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>2</sup>Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>3</sup>Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Alanio%20C%22%5BAuthor%5D" class="usa-link"><span class="name western">Cécile Alanio</span></a> </div> </div> <sup>1,</sup><sup>2,</sup><sup>3,</sup><sup>*</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Kuri-Cervantes%20L%22%5BAuthor%5D" class="usa-link" aria-describedby="id8"><span class="name western">Leticia Kuri-Cervantes</span></a><div hidden="hidden" id="id8"> <h3><span class="name western">Leticia Kuri-Cervantes</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>5</sup>Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Kuri-Cervantes%20L%22%5BAuthor%5D" class="usa-link"><span class="name western">Leticia Kuri-Cervantes</span></a> </div> </div> <sup>1,</sup><sup>5</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Pampena%20MB%22%5BAuthor%5D" class="usa-link" aria-describedby="id9"><span class="name western">M Betina Pampena</span></a><div hidden="hidden" id="id9"> <h3><span class="name western">M Betina Pampena</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>5</sup>Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Pampena%20MB%22%5BAuthor%5D" class="usa-link"><span class="name western">M Betina Pampena</span></a> </div> </div> <sup>1,</sup><sup>5</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22D%E2%80%99Andrea%20K%22%5BAuthor%5D" class="usa-link" aria-describedby="id10"><span class="name western">Kurt D’Andrea</span></a><div hidden="hidden" id="id10"> <h3><span class="name western">Kurt D’Andrea</span></h3> <div class="p"> <sup>6</sup>Division of Translational Medicine and Human Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22D%E2%80%99Andrea%20K%22%5BAuthor%5D" class="usa-link"><span class="name western">Kurt D’Andrea</span></a> </div> </div> <sup>6</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Manne%20S%22%5BAuthor%5D" class="usa-link" aria-describedby="id11"><span class="name western">Sasikanth Manne</span></a><div hidden="hidden" id="id11"> <h3><span class="name western">Sasikanth Manne</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>2</sup>Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Manne%20S%22%5BAuthor%5D" class="usa-link"><span class="name western">Sasikanth Manne</span></a> </div> </div> <sup>1,</sup><sup>2</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Chen%20Z%22%5BAuthor%5D" class="usa-link" aria-describedby="id12"><span class="name western">Zeyu Chen</span></a><div hidden="hidden" id="id12"> <h3><span class="name western">Zeyu Chen</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>2</sup>Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Chen%20Z%22%5BAuthor%5D" class="usa-link"><span class="name western">Zeyu Chen</span></a> </div> </div> <sup>1,</sup><sup>2</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Huang%20YJ%22%5BAuthor%5D" class="usa-link" aria-describedby="id13"><span class="name western">Yinghui Jane Huang</span></a><div hidden="hidden" id="id13"> <h3><span class="name western">Yinghui Jane Huang</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>2</sup>Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Huang%20YJ%22%5BAuthor%5D" class="usa-link"><span class="name western">Yinghui Jane Huang</span></a> </div> </div> <sup>1,</sup><sup>2</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Reilly%20JP%22%5BAuthor%5D" class="usa-link" aria-describedby="id14"><span class="name western">John P Reilly</span></a><div hidden="hidden" id="id14"> <h3><span class="name western">John P Reilly</span></h3> <div class="p"> <sup>7</sup>Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Reilly%20JP%22%5BAuthor%5D" class="usa-link"><span class="name western">John P Reilly</span></a> </div> </div> <sup>7</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Weisman%20AR%22%5BAuthor%5D" class="usa-link" aria-describedby="id15"><span class="name western">Ariel R Weisman</span></a><div hidden="hidden" id="id15"> <h3><span class="name western">Ariel R Weisman</span></h3> <div class="p"> <sup>7</sup>Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Weisman%20AR%22%5BAuthor%5D" class="usa-link"><span class="name western">Ariel R Weisman</span></a> </div> </div> <sup>7</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Ittner%20CAG%22%5BAuthor%5D" class="usa-link" aria-describedby="id16"><span class="name western">Caroline A G Ittner</span></a><div hidden="hidden" id="id16"> <h3><span class="name western">Caroline A G Ittner</span></h3> <div class="p"> <sup>7</sup>Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Ittner%20CAG%22%5BAuthor%5D" class="usa-link"><span class="name western">Caroline A G Ittner</span></a> </div> </div> <sup>7</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Kuthuru%20O%22%5BAuthor%5D" class="usa-link" aria-describedby="id17"><span class="name western">Oliva Kuthuru</span></a><div hidden="hidden" id="id17"> <h3><span class="name western">Oliva Kuthuru</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>2</sup>Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Kuthuru%20O%22%5BAuthor%5D" class="usa-link"><span class="name western">Oliva Kuthuru</span></a> </div> </div> <sup>1,</sup><sup>2</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Dougherty%20J%22%5BAuthor%5D" class="usa-link" aria-describedby="id18"><span class="name western">Jeanette Dougherty</span></a><div hidden="hidden" id="id18"> <h3><span class="name western">Jeanette Dougherty</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>2</sup>Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Dougherty%20J%22%5BAuthor%5D" class="usa-link"><span class="name western">Jeanette Dougherty</span></a> </div> </div> <sup>1,</sup><sup>2</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Nzingha%20K%22%5BAuthor%5D" class="usa-link" aria-describedby="id19"><span class="name western">Kito Nzingha</span></a><div hidden="hidden" id="id19"> <h3><span class="name western">Kito Nzingha</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>2</sup>Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Nzingha%20K%22%5BAuthor%5D" class="usa-link"><span class="name western">Kito Nzingha</span></a> </div> </div> <sup>1,</sup><sup>2</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Han%20N%22%5BAuthor%5D" class="usa-link" aria-describedby="id20"><span class="name western">Nicholas Han</span></a><div hidden="hidden" id="id20"> <h3><span class="name western">Nicholas Han</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>2</sup>Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Han%20N%22%5BAuthor%5D" class="usa-link"><span class="name western">Nicholas Han</span></a> </div> </div> <sup>1,</sup><sup>2</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Kim%20J%22%5BAuthor%5D" class="usa-link" aria-describedby="id21"><span class="name western">Justin Kim</span></a><div hidden="hidden" id="id21"> <h3><span class="name western">Justin Kim</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>2</sup>Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Kim%20J%22%5BAuthor%5D" class="usa-link"><span class="name western">Justin Kim</span></a> </div> </div> <sup>1,</sup><sup>2</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Pattekar%20A%22%5BAuthor%5D" class="usa-link" aria-describedby="id22"><span class="name western">Ajinkya Pattekar</span></a><div hidden="hidden" id="id22"> <h3><span class="name western">Ajinkya Pattekar</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>8</sup>Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Pattekar%20A%22%5BAuthor%5D" class="usa-link"><span class="name western">Ajinkya Pattekar</span></a> </div> </div> <sup>1,</sup><sup>8</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Goodwin%20EC%22%5BAuthor%5D" class="usa-link" aria-describedby="id23"><span class="name western">Eileen C Goodwin</span></a><div hidden="hidden" id="id23"> <h3><span class="name western">Eileen C Goodwin</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>5</sup>Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Goodwin%20EC%22%5BAuthor%5D" class="usa-link"><span class="name western">Eileen C Goodwin</span></a> </div> </div> <sup>1,</sup><sup>5</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Anderson%20EM%22%5BAuthor%5D" class="usa-link" aria-describedby="id24"><span class="name western">Elizabeth M Anderson</span></a><div hidden="hidden" id="id24"> <h3><span class="name western">Elizabeth M Anderson</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>5</sup>Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Anderson%20EM%22%5BAuthor%5D" class="usa-link"><span class="name western">Elizabeth M Anderson</span></a> </div> </div> <sup>1,</sup><sup>5</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Weirick%20ME%22%5BAuthor%5D" class="usa-link" aria-describedby="id25"><span class="name western">Madison E Weirick</span></a><div hidden="hidden" id="id25"> <h3><span class="name western">Madison E Weirick</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>5</sup>Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Weirick%20ME%22%5BAuthor%5D" class="usa-link"><span class="name western">Madison E Weirick</span></a> </div> </div> <sup>1,</sup><sup>5</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Gouma%20S%22%5BAuthor%5D" class="usa-link" aria-describedby="id26"><span class="name western">Sigrid Gouma</span></a><div hidden="hidden" id="id26"> <h3><span class="name western">Sigrid Gouma</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>5</sup>Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Gouma%20S%22%5BAuthor%5D" class="usa-link"><span class="name western">Sigrid Gouma</span></a> </div> </div> <sup>1,</sup><sup>5</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Arevalo%20CP%22%5BAuthor%5D" class="usa-link" aria-describedby="id27"><span class="name western">Claudia P Arevalo</span></a><div hidden="hidden" id="id27"> <h3><span class="name western">Claudia P Arevalo</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>5</sup>Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Arevalo%20CP%22%5BAuthor%5D" class="usa-link"><span class="name western">Claudia P Arevalo</span></a> </div> </div> <sup>1,</sup><sup>5</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Bolton%20MJ%22%5BAuthor%5D" class="usa-link" aria-describedby="id28"><span class="name western">Marcus J Bolton</span></a><div hidden="hidden" id="id28"> <h3><span class="name western">Marcus J Bolton</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>5</sup>Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Bolton%20MJ%22%5BAuthor%5D" class="usa-link"><span class="name western">Marcus J Bolton</span></a> </div> </div> <sup>1,</sup><sup>5</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Chen%20F%22%5BAuthor%5D" class="usa-link" aria-describedby="id29"><span class="name western">Fang Chen</span></a><div hidden="hidden" id="id29"> <h3><span class="name western">Fang Chen</span></h3> <div class="p"> <sup>9</sup>Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Chen%20F%22%5BAuthor%5D" class="usa-link"><span class="name western">Fang Chen</span></a> </div> </div> <sup>9</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Lacey%20SF%22%5BAuthor%5D" class="usa-link" aria-describedby="id30"><span class="name western">Simon F Lacey</span></a><div hidden="hidden" id="id30"> <h3><span class="name western">Simon F Lacey</span></h3> <div class="p"> <sup>4</sup>Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>9</sup>Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Lacey%20SF%22%5BAuthor%5D" class="usa-link"><span class="name western">Simon F Lacey</span></a> </div> </div> <sup>4,</sup><sup>9</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Ramage%20H%22%5BAuthor%5D" class="usa-link" aria-describedby="id31"><span class="name western">Holly Ramage</span></a><div hidden="hidden" id="id31"> <h3><span class="name western">Holly Ramage</span></h3> <div class="p"> <sup>10</sup>Department of Microbiology, Thomas Jefferson University, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Ramage%20H%22%5BAuthor%5D" class="usa-link"><span class="name western">Holly Ramage</span></a> </div> </div> <sup>10</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Cherry%20S%22%5BAuthor%5D" class="usa-link" aria-describedby="id32"><span class="name western">Sara Cherry</span></a><div hidden="hidden" id="id32"> <h3><span class="name western">Sara Cherry</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>4</sup>Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Cherry%20S%22%5BAuthor%5D" class="usa-link"><span class="name western">Sara Cherry</span></a> </div> </div> <sup>1,</sup><sup>4</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Hensley%20SE%22%5BAuthor%5D" class="usa-link" aria-describedby="id33"><span class="name western">Scott E Hensley</span></a><div hidden="hidden" id="id33"> <h3><span class="name western">Scott E Hensley</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>5</sup>Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Hensley%20SE%22%5BAuthor%5D" class="usa-link"><span class="name western">Scott E Hensley</span></a> </div> </div> <sup>1,</sup><sup>5</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Apostolidis%20SA%22%5BAuthor%5D" class="usa-link" aria-describedby="id34"><span class="name western">Sokratis A Apostolidis</span></a><div hidden="hidden" id="id34"> <h3><span class="name western">Sokratis A Apostolidis</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>11</sup>Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Apostolidis%20SA%22%5BAuthor%5D" class="usa-link"><span class="name western">Sokratis A Apostolidis</span></a> </div> </div> <sup>1,</sup><sup>11</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Huang%20AC%22%5BAuthor%5D" class="usa-link" aria-describedby="id35"><span class="name western">Alexander C Huang</span></a><div hidden="hidden" id="id35"> <h3><span class="name western">Alexander C Huang</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>3</sup>Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>12</sup>Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Huang%20AC%22%5BAuthor%5D" class="usa-link"><span class="name western">Alexander C Huang</span></a> </div> </div> <sup>1,</sup><sup>3,</sup><sup>12</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Vella%20LA%22%5BAuthor%5D" class="usa-link" aria-describedby="id36"><span class="name western">Laura A Vella</span></a><div hidden="hidden" id="id36"> <h3><span class="name western">Laura A Vella</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>13</sup>Division of Infectious Disease, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Vella%20LA%22%5BAuthor%5D" class="usa-link"><span class="name western">Laura A Vella</span></a> </div> </div> <sup>1,</sup><sup>13</sup>; <span class="collab">The UPenn COVID Processing Unit</span><sup>†</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Betts%20MR%22%5BAuthor%5D" class="usa-link" aria-describedby="id37"><span class="name western">Michael R Betts</span></a><div hidden="hidden" id="id37"> <h3><span class="name western">Michael R Betts</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>5</sup>Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Betts%20MR%22%5BAuthor%5D" class="usa-link"><span class="name western">Michael R Betts</span></a> </div> </div> <sup>1,</sup><sup>5,</sup><sup>‡</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Meyer%20NJ%22%5BAuthor%5D" class="usa-link" aria-describedby="id38"><span class="name western">Nuala J Meyer</span></a><div hidden="hidden" id="id38"> <h3><span class="name western">Nuala J Meyer</span></h3> <div class="p"> <sup>14</sup>Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Meyer%20NJ%22%5BAuthor%5D" class="usa-link"><span class="name western">Nuala J Meyer</span></a> </div> </div> <sup>14,</sup><sup>‡</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Wherry%20EJ%22%5BAuthor%5D" class="usa-link" aria-describedby="id39"><span class="name western">E John Wherry</span></a><div hidden="hidden" id="id39"> <h3><span class="name western">E John Wherry</span></h3> <div class="p"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>2</sup>Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p"> <sup>3</sup>Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Wherry%20EJ%22%5BAuthor%5D" class="usa-link"><span class="name western">E John Wherry</span></a> </div> </div> <sup>1,</sup><sup>2,</sup><sup>3,</sup><sup>‡</sup> </div> <ul class="d-buttons inline-list"> <li><button class="d-button" aria-controls="aip_a" aria-expanded="false">Author information</button></li> <li><button class="d-button" aria-controls="anp_a" aria-expanded="false">Article notes</button></li> <li><button class="d-button" aria-controls="clp_a" aria-expanded="false">Copyright and License information</button></li> </ul> <div class="d-panels font-secondary-light"> <div id="aip_a" class="d-panel p" style="display: none"> <div class="p" id="aff1"> <sup>1</sup>Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div id="aff2"> <sup>2</sup>Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div id="aff3"> <sup>3</sup>Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div id="aff4"> <sup>4</sup>Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div id="aff5"> <sup>5</sup>Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div id="aff6"> <sup>6</sup>Division of Translational Medicine and Human Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div id="aff7"> <sup>7</sup>Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Lung Biology, Lung Biology Institute, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div id="aff8"> <sup>8</sup>Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div id="aff9"> <sup>9</sup>Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div id="aff10"> <sup>10</sup>Department of Microbiology, Thomas Jefferson University, Philadelphia, PA, USA.</div> <div id="aff11"> <sup>11</sup>Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div id="aff12"> <sup>12</sup>Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div id="aff13"> <sup>13</sup>Division of Infectious Disease, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA.</div> <div id="aff14"> <sup>14</sup>Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</div> <div class="author-notes p"> <div class="fn" id="afn1"> <sup>*</sup><p class="display-inline">These authors contributed equally to this work.</p> </div> <div class="fn" id="afn2"> <sup>†</sup><p class="display-inline">The UPenn COVID Processing Unit is a unit of individuals from diverse laboratories at the University of Pennsylvania who volunteered time and effort to enable the study of COVID-19 patients during the pandemic. Members and affiliations are listed at the end of this paper.</p> </div> <div class="fn" id="cor1"> <sup>‡</sup><p class="display-inline">Corresponding author. Email: <span>nuala.meyer@pennmedicine.upenn.edu</span> (N.J.M.); <span>betts@pennmedicine.upenn.edu</span> (M.R.B.); <span>wherry@pennmedicine.upenn.edu</span> (E.J.W.)</p> </div> </div> </div> <div id="anp_a" class="d-panel p" style="display: none"><div class="notes p"><section id="historyarticle-meta1" class="history"><p>Received 2020 May 19; Accepted 2020 Jul 9; Issue date 2020 Sep 4.</p></section></div></div> <div id="clp_a" class="d-panel p" style="display: none"> <div>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</div> <p>This is an open-access article distributed under the terms of the <a href="https://creativecommons.org/licenses/by/4.0/" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Creative Commons Attribution license</a>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</p> <div class="p"><a href="/about/copyright/" class="usa-link">PMC Copyright notice</a></div> </div> </div> <div>PMCID: PMC7402624  PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/32669297/" class="usa-link">32669297</a> </div> <div class="ra xbox p" role="complementary" aria-label="Related or updated information about this article"> <div> <strong>Previous version available:</strong> This article is based on a previously available preprint posted on bioRxiv on May 23, 2020: "<a href="/articles/PMC7263500/" class="usa-link">Deep immune profiling of COVID-19 patients reveals patient heterogeneity and distinct immunotypes with implications for therapeutic interventions</a>".</div> <div>See the referenced article on page 1210.</div> </div> </div></section></section><section aria-label="Article content"><section class="body main-article-body"><section class="abstract" id="abstract1"><h2>Immune profiling of COVID-19 patients</h2> <p>Coronavirus disease 2019 (COVID-19) has affected millions of people globally, yet how the human immune system responds to and influences COVID-19 severity remains unclear. Mathew <em>et al.</em> present a comprehensive atlas of immune modulation associated with COVID-19. They performed high-dimensional flow cytometry of hospitalized COVID-19 patients and found three prominent and distinct immunotypes that are related to disease severity and clinical parameters. Arunachalam <em>et al.</em> report a systems biology approach to assess the immune system of COVID-19 patients with mild-to-severe disease. These studies provide a compendium of immune cell information and roadmaps for potential therapeutic interventions.</p> <p><em>Science</em>, this issue p. eabc8511, p. 1210</p></section><section class="abstract" id="abstract2"><hr class="headless"> <p>Immune responses of COVID-19 patients are cataloged and compared with those of healthy individuals.</p></section><section class="abstract" id="abstract3"><hr class="headless"> <section id="sec1"><h3 class="pmc_sec_title">INTRODUCTION</h3> <p>Many patients with coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, present with severe respiratory disease requiring hospitalization and mechanical ventilation. Although most patients recover, disease is complex and case fatality can be as high as 10%. How human immune responses control or exacerbate COVID-19 is currently poorly understood, and defining the nature of immune responses during acute COVID-19 could help identify therapeutics and effective vaccines.</p></section><section id="sec2"><h3 class="pmc_sec_title">RATIONALE</h3> <p>Immune dysregulation during SARS-CoV-2 infection has been implicated in pathogenesis, but currently available data remain limited. We used high-dimensional cytometry to analyze COVID-19 patients and compare them with recovered and healthy individuals and performed integrated analysis of ~200 immune features. These data were combined with ~50 clinical features to understand how the immunology of SARS-CoV-2 infection may be related to clinical patterns, disease severity, and progression.</p></section><section id="sec3"><h3 class="pmc_sec_title">RESULTS</h3> <p>Analysis of 125 hospitalized COVID-19 patients revealed that although CD4 and CD8 T cells were activated in some patients, T cell responses were limited in others. In many patients, CD4 and CD8 T cell proliferation (measured by KI67 increase) and activation (detected by CD38 and HLA-DR coexpression) were consistent with antiviral responses observed in other infections. Plasmablast (PB) responses were present in many patients, reaching &gt;30% of total B cells, and most patients made SARS-CoV-2–specific antibodies. However, ~20% of patients had little T cell activation or PB response compared with controls. In some patients, responses declined over time, resembling typical kinetics of antiviral responses; in others, however, robust T cell and PB responses remained stable or increased over time. These temporal patterns were associated with specific clinical features. With an unbiased uniform manifold approximation and projection (UMAP) approach, we distilled ~200 immune parameters into two major immune response components and a third pattern lacking robust adaptive immune responses, thus revealing immunotypes of COVID-19: (i) Immunotype 1 was associated with disease severity and showed robust activated CD4 T cells, a paucity of circulating follicular helper cells, activated CD8 “EMRAs,” hyperactivated or exhausted CD8 T cells, and PBs. (ii) Immunotype 2 was characterized by less CD4 T cell activation, Tbet<sup>+</sup> effector CD4 and CD8 T cells, and proliferating memory B cells and was not associated with disease severity. (iii) Immunotype 3, which negatively correlated with disease severity and lacked obvious activated T and B cell responses, was also identified. Mortality occurred for patients with all three immunotypes, illustrating a complex relationship between immune response and COVID-19.</p></section><section id="sec4"><h3 class="pmc_sec_title">CONCLUSION</h3> <p>Three immunotypes revealing different patterns of lymphocyte responses were identified in hospitalized COVID-19 patients. These three major patterns may each represent a different suboptimal response associated with hospitalization and disease. Our findings may have implications for treatments focused on activating versus inhibiting the immune response.</p> <figure class="fig xbox font-sm" id="Fa"><h4 class="obj_head">High-dimensional immune response analysis of COVID-19 patients identifies three immunotypes.</h4> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=7402624_369_abc8511_Fa.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8d9/7402624/18c8f4cabbaf/369_abc8511_Fa.jpg" loading="lazy" height="537" width="791" alt="High-dimensional immune response analysis of COVID-19 patients identifies three immunotypes."></a></p> <div class="p text-right font-secondary"><a href="figure/Fa/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>Peripheral blood mononuclear cell immune profiling and clinical data were collected from 60 healthy donors (HDs), 36 recovered donors (RDs), and 125 hospitalized COVID-19 patients. High-dimensional flow cytometry and longitudinal analysis highlighted stability and fluctuations in the response. UMAP visualization distilled ~200 immune features into two dimensions and identified three immunotypes associated with clinical outcomes. cTfh, circulating T follicular helper cells; EMRA, a subset of effector memory T cells reexpressing CD45RA; d0, day 0.</p></figcaption></figure></section></section><section class="abstract" id="abstract4"><h2>Abstract</h2> <p>Coronavirus disease 2019 (COVID-19) is currently a global pandemic, but human immune responses to the virus remain poorly understood. We used high-dimensional cytometry to analyze 125 COVID-19 patients and compare them with recovered and healthy individuals. Integrated analysis of ~200 immune and ~50 clinical features revealed activation of T cell and B cell subsets in a proportion of patients. A subgroup of patients had T cell activation characteristic of acute viral infection and plasmablast responses reaching &gt;30% of circulating B cells. However, another subgroup had lymphocyte activation comparable with that in uninfected individuals. Stable versus dynamic immunological signatures were identified and linked to trajectories of disease severity change. Our analyses identified three immunotypes associated with poor clinical trajectories versus improving health. These immunotypes may have implications for the design of therapeutics and vaccines for COVID-19.</p></section><hr class="headless"> <p>The coronavirus disease 2019 (COVID-19) pandemic has, to date, caused &gt;23 million infections resulting in more than 800,000 deaths. After infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), COVID-19 patients can experience mild or even asymptomatic disease or can present with severe disease requiring hospitalization and mechanical ventilation. The case fatality rate can be as high as ~10% (<a href="#R1" class="usa-link" aria-describedby="R1"><em>1</em></a>). Some severe COVID-19 patients display acute respiratory distress syndrome (ARDS), which reflects severe respiratory damage. In acute respiratory viral infections, pathology can be mediated by the virus directly, by an overaggressive immune response, or both (<a href="#R2" class="usa-link" aria-describedby="R2"><em>2</em></a>–<a href="#R4" class="usa-link" aria-describedby="R4"><em>4</em></a>). However, in severe COVID-19, the characteristics and role of the immune response, as well as how these responses relate to clinical disease features, remain poorly understood.</p> <p>SARS-CoV-2 antigen-specific T cells have been identified in the central memory (CM), effector memory (EM), and CD45RA<sup>+</sup> effector memory (EMRA) compartments (<a href="#R5" class="usa-link" aria-describedby="R5"><em>5</em></a>), but the characteristics of these cells and their role in infection or pathogenesis remain unclear. Recovered individuals more often have evidence of virus-specific CD4 T cell responses than virus-specific CD8 T cell responses, though preexisting CD4 T cell responses to other coronaviruses also are found in a subset of people in the absence of SARS-CoV-2 exposure (<a href="#R6" class="usa-link" aria-describedby="R6"><em>6</em></a>). Inflammatory responses—such as increases in interleukin-6 (IL-6)–producing or granulocyte-macrophage colony-stimulating factor (GM-CSF)–producing CD4 T cells in the blood (<a href="#R7" class="usa-link" aria-describedby="R7"><em>7</em></a>) or decreases in immunoregulatory subsets such as regulatory T cells (T<sub>reg</sub>) or γδ T cells (<a href="#R8" class="usa-link" aria-describedby="R8"><em>8</em></a>–<a href="#R11" class="usa-link" aria-describedby="R11"><em>11</em></a>)—have been reported. T cell exhaustion (<a href="#R12" class="usa-link" aria-describedby="R12"><em>12</em></a>, <a href="#R13" class="usa-link" aria-describedby="R13"><em>13</em></a>) and increased inhibitory receptor expression on peripheral T cells have also been reported (<a href="#R7" class="usa-link" aria-describedby="R7"><em>7</em></a>, <a href="#R14" class="usa-link" aria-describedby="R14"><em>14</em></a>), though these inhibitory receptors are also increased after T cell activation (<a href="#R15" class="usa-link" aria-describedby="R15"><em>15</em></a>). Although there is evidence of T cell activation in COVID-19 patients (<a href="#R16" class="usa-link" aria-describedby="R16"><em>16</em></a>), some studies have found decreases in polyfunctionality (<a href="#R12" class="usa-link" aria-describedby="R12"><em>12</em></a>, <a href="#R17" class="usa-link" aria-describedby="R17"><em>17</em></a>) or cytotoxicity (<a href="#R12" class="usa-link" aria-describedby="R12"><em>12</em></a>), but these changes have not been observed in other studies (<a href="#R13" class="usa-link" aria-describedby="R13"><em>13</em></a>). How this activation should be viewed in the context of COVID-19 lymphopenia (<a href="#R18" class="usa-link" aria-describedby="R18"><em>18</em></a>–<a href="#R20" class="usa-link" aria-describedby="R20"><em>20</em></a>) remains unclear.</p> <p>Most patients seroconvert within 7 to 14 days of infection, and increased plasmablasts (PBs) have been reported (<a href="#R16" class="usa-link" aria-describedby="R16"><em>16</em></a>, <a href="#R21" class="usa-link" aria-describedby="R21"><em>21</em></a>–<a href="#R23" class="usa-link" aria-describedby="R23"><em>23</em></a>). However, the role of humoral responses in the pathogenesis of COVID-19 is still unclear. Whereas immunoglobulin G (IgG) levels reportedly drop slightly ~8 weeks after symptom onset (<a href="#R24" class="usa-link" aria-describedby="R24"><em>24</em></a>, <a href="#R25" class="usa-link" aria-describedby="R25"><em>25</em></a>), recovered patients maintain high spike protein–specific IgG titers (<a href="#R6" class="usa-link" aria-describedby="R6"><em>6</em></a>, <a href="#R26" class="usa-link" aria-describedby="R26"><em>26</em></a>). IgA levels also can remain high and may correlate with disease severity (<a href="#R25" class="usa-link" aria-describedby="R25"><em>25</em></a>, <a href="#R27" class="usa-link" aria-describedby="R27"><em>27</em></a>). Furthermore, neutralizing antibodies can control SARS-CoV-2 infection in vitro and in vivo (<a href="#R4" class="usa-link" aria-describedby="R4"><em>4</em></a>, <a href="#R28" class="usa-link" aria-describedby="R28"><em>28</em></a>, <a href="#R29" class="usa-link" aria-describedby="R29"><em>29</em></a>). Indeed, convalescent plasma that contains neutralizing antibodies can improve clinical symptoms (<a href="#R30" class="usa-link" aria-describedby="R30"><em>30</em></a>). However, not all patients that recover from COVID-19 have detectable neutralizing antibodies (<a href="#R6" class="usa-link" aria-describedby="R6"><em>6</em></a>, <a href="#R26" class="usa-link" aria-describedby="R26"><em>26</em></a>), which suggests a complex relationship between humoral and cellular response in COVID-19 pathogenesis.</p> <p>Taken together, this previous work provokes questions about the potential diversity of immune responses to SARS-CoV-2 and the relationship of this diversity to clinical disease. However, many studies describe small cohorts or even single patients, thus limiting a comprehensive investigation of this diversity. The relationship of different immune response features to clinical parameters, as well as the changes in immune responses and clinical disease over time, remains poorly understood. Because potential therapeutics for COVID-19 patients include approaches to inhibit, activate, or otherwise modulate immune function, it is essential to define the immune response characteristics related to disease features in well-defined patient cohorts.</p> <section id="sec5"><h2 class="pmc_sec_title">Acute SARS-CoV-2 infection in humans results in broad changes in circulating immune cell populations</h2> <p>We conducted an observational study of hospitalized patients with COVID-19 at the University of Pennsylvania (UPenn IRB 808542) that included 149 adults with confirmed SARS-CoV-2 infection (i.e., COVID-19 patients) (<a href="#F1" class="usa-link">Fig. 1A</a>). Blood was collected at enrollment (typically ~24 to 72 hours after admission). Additional samples were obtained from patients who remained hospitalized on day 7 (D7). Blood was also collected from nonhospitalized patients who had recovered from documented SARS-CoV-2 infection [recovered donors (RDs); <em>n</em> = 46], as well as from healthy donors (HDs; <em>n</em> = 70) (UPenn IRB 834263) (<a href="#F1" class="usa-link">Fig. 1A</a>). Clinical metadata are available from the COVID-19 patients over the course of disease (table S1). Flow cytometry data from peripheral blood mononuclear cells (PBMCs), as well as clinical metadata, were collected from a subset of patients and donors: COVID-19 patients (<em>n</em> = 125), RDs (<em>n</em> = 36), and HDs (<em>n</em> = 60) (<a href="#F1" class="usa-link">Fig. 1A</a> and tables S2 to S4).</p> <figure class="fig xbox font-sm" id="F1"><h3 class="obj_head">Fig. 1. Clinical characterization of patient cohorts, inflammatory markers, and quantification of major immune subsets.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=7402624_369_abc8511_F1.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8d9/7402624/025637f82be7/369_abc8511_F1.jpg" loading="lazy" height="1004" width="749" alt="Fig. 1"></a></p> <div class="p text-right font-secondary"><a href="figure/F1/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>(<strong>A</strong>) Overview of patient cohorts in our study, including HDs, RDs, and COVID-19 patients. (<strong>B</strong>) Quantification of key clinical parameters in COVID-19 patients. Each dot represents a COVID-19 patient; HD ranges are indicated in green. THO, ×1000. (<strong>C</strong>) Spearman correlation and hierarchical clustering of indicated features for COVID-19 patients. (<strong>D</strong>) Representative flow cytometry plots and (<strong>E</strong>) frequencies of major immune subsets. (<strong>F</strong>) Ratio of CD4 to CD8 T cells. (<strong>G</strong>) Spearman correlation of CD4:CD8 ratio and clinical lymphocyte count per patient. Dark and light gray shaded regions represent the clinical normal range and normal range based on study HDs, respectively. The vertical dashed line indicates the clinical threshold for lymphopenia. (<strong>H</strong>) Spearman correlations of indicated subsets with various clinical features. (E and F) Each dot represents an individual HDs (green), RDs (blue), or COVID-19 patient (red). Significance was determined by unpaired Wilcoxon test with Benjamini-Hochberg (BH) correction: *<em>P</em> &lt; 0.05, **<em>P</em> &lt; 0.01, ***<em>P</em> &lt; 0.001, and ****<em>P</em> &lt; 0.0001.</p></figcaption></figure><p>COVID-19 patients had a median age of 60 and were significantly older than HDs and RDs (median ages of 41 and 29, respectively), though the age distributions for all three cohorts overlapped (<a href="#F1" class="usa-link">Fig. 1A</a> and fig. S1A). For COVID-19 patients, median body mass index was 29 (range: 16 to 78), and 68% of these patients were African American (table S2). Comorbidities in COVID-19 patients were dominated by cardiovascular risk factors (83% of the cohort). Nearly 20% of patients suffered from chronic kidney disease, and 18% had a previous thromboembolic event. A subset of patients (18%) were immunosuppressed, and 7 and 6% of patients were known to have a diagnosis of cancer or a preexisting pulmonary condition, respectively. Forty-five percent of the patients were treated with hydroxychloroquine (HCQ), 31% with steroids, and 29% with remdesivir. Eighteen individuals died during their hospital stay or within 30 days of admission. The majority of the patients were symptomatic at diagnosis and were enrolled ~9 days after initiation of symptoms. Approximately 30% of patients required mechanical ventilation at presentation, with additional extracorporeal membrane oxygenation in four cases.</p> <p>As has been reported for other COVID-19 patients (<a href="#R31" class="usa-link" aria-describedby="R31"><em>31</em></a>), this COVID-19 cohort presented with a clinical inflammatory syndrome. C-reactive protein (CRP) was elevated in more than 90% of individuals and lactate dehydrogenase and D-dimer were increased in the majority, whereas ferritin was above normal in ~75% of COVID-19 patients (<a href="#F1" class="usa-link">Fig. 1B</a> and fig. S1B). Similarly, troponin and NT-proBNP were increased in some patients (fig. S1B). IL-6 levels, measured in a subset of patients, were normal in 5 patients, moderately elevated in 5 patients (6 to 20 pg/ml), and high in 31 patients (21 to 738 pg/ml) (fig. S1B). Although white blood cell (WBC) counts were mostly normal, individual leukocyte populations were altered in COVID-19 patients (<a href="#F1" class="usa-link">Fig. 1B</a>). A subset of patients had high polymorphonuclear leukocyte (PMN) counts (fig. S1B), as described previously (<a href="#R8" class="usa-link" aria-describedby="R8"><em>8</em></a>, <a href="#R32" class="usa-link" aria-describedby="R32"><em>32</em></a>) and in a companion study (<a href="#R33" class="usa-link" aria-describedby="R33"><em>33</em></a>). Furthermore, approximately half of the COVID-19 patients were clinically lymphopenic (absolute lymphocyte count &lt;1000/μl; <a href="#F1" class="usa-link">Fig. 1B</a>). By contrast, monocyte, eosinophil, and basophil counts were mostly normal (<a href="#F1" class="usa-link">Fig. 1B</a> and fig. S1B).</p> <p>To examine potential associations between these clinical features, we performed correlation analysis (<a href="#F1" class="usa-link">Fig. 1C</a> and fig. S1C). This analysis revealed correlations between different COVID-19 severity metrics, as well as clinical features or interventions associated with more-severe disease (e.g., D-dimer, vasoactive medication) (<a href="#F1" class="usa-link">Fig. 1C</a> and fig. S1C). WBCs and PMNs also correlated with metrics of disease severity (e.g., APACHE III) as well as with IL-6 levels (<a href="#F1" class="usa-link">Fig. 1C</a> and fig. S1C). Other relationships were also apparent, including correlations between age or mortality and metrics of disease severity and many other correlations between clinical measures of disease, inflammation, and comorbidities (<a href="#F1" class="usa-link">Fig. 1C</a> and fig. S1C). Thus, COVID-19 patients presented with varied preexisting comorbidities, complex clinical phenotypes, evidence of inflammation in many patients, and clinically altered leukocyte counts.</p> <p>To begin to investigate immune responses to acute SARS-CoV-2 infection, we compared PBMCs of COVID-19 patients, RDs, and HDs by using high-dimensional flow cytometry. We first focused on the major lymphocyte populations. B cell and CD3 T cell frequencies were decreased in COVID-19 patients compared with HDs or RDs, reflecting clinical lymphopenia, whereas the relative frequency of non-B and non-T cells was correspondingly elevated (<a href="#F1" class="usa-link">Fig. 1, D and E</a>). Although a numerical expansion of a non-B, non-T cell type is possible, loss of lymphocytes likely results in an increase in the relative frequency of this population. This non-B, non-T cell population is also probed in more detail in the companion study (<a href="#R33" class="usa-link" aria-describedby="R33"><em>33</em></a>). Examining only CD3 T cells revealed preferential loss of CD8 T cells compared with CD4 T cells (<a href="#F1" class="usa-link">Fig. 1, F and G</a>, and fig. S1D); this pattern was reflected in absolute numbers estimated from the clinical data, where both CD4 and CD8 T cell counts in COVID-19 patients were lower than the clinical reference range, though the effect was more prominent for CD8 T cells (49 of 61 individuals with below-normal levels) than for CD4 T cells (38 of 61 individuals with below-normal levels) (fig. S1E). These findings are consistent with previous reports of lymphopenia during COVID-19 (<a href="#R17" class="usa-link" aria-describedby="R17"><em>17</em></a>–<a href="#R20" class="usa-link" aria-describedby="R20"><em>20</em></a>) but highlight a preferential impact on CD8 T cells.</p> <p>We next asked whether the changes in these lymphocyte populations were related to clinical metrics (<a href="#F1" class="usa-link">Fig. 1H</a>). Lower WBC counts were associated preferentially with lower frequencies of CD4 and CD8 T cells and increased non-T, non-B cells, but not with B cells (<a href="#F1" class="usa-link">Fig. 1H</a>). These lower T cell counts were associated with clinical markers of inflammation, including ferritin, D-dimer, and high-sensitivity CRP (hsCRP) (<a href="#F1" class="usa-link">Fig. 1H</a>), whereas altered B cell frequencies were not. Thus, hospitalized COVID-19 patients present with a complex constellation of clinical features that may be associated with altered lymphocyte populations.</p></section><section id="sec6"><h2 class="pmc_sec_title">SARS-CoV-2 infection is associated with CD8 T cell activation in a subset of patients</h2> <p>We next applied high-dimensional flow cytometric analysis to further investigate lymphocyte activation and differentiation during COVID-19. We first used principal components analysis (PCA) to examine the general distribution of immune profiles from COVID-19 patients (<em>n</em> = 118), RDs (<em>n</em> = 60), and HDs (<em>n</em> = 36) using 193 immune parameters identified by high-dimensional flow cytometry (tables S5 and S6). COVID-19 patients were clearly separated from RDs and HDs in PCA space, whereas RDs and HDs largely overlapped (<a href="#F2" class="usa-link">Fig. 2A</a>). We investigated the immune features that drive this COVID-19 immune signature. Given the role of CD8 T cells in response to viral infection, we focused on this cell type. Six major CD8 T cell populations were examined by using the combination of CD45RA, CD27, CCR7, and CD95 cell surface markers to define naïve (CD45RA<sup>+</sup>CD27<sup>+</sup>CCR7<sup>+</sup>CD95<sup>−</sup>), central memory [CD45RA<sup>−</sup>CD27<sup>+</sup>CCR7<sup>+</sup> (CM)], effector memory [CD45RA<sup>−</sup>CD27<sup>+</sup>CCR7<sup>−</sup> (EM1), CD45RA<sup>−</sup>CD27<sup>−</sup>CCR7<sup>+</sup> (EM2), CD45RA<sup>−</sup>CD27<sup>−</sup>CCR7<sup>−</sup> (EM3)], and EMRA (CD45RA<sup>+</sup>CD27<sup>−</sup>CCR7<sup>−</sup>) (<a href="#F2" class="usa-link">Fig. 2B</a>) CD8 T cells. Among the CD8 T cell populations, there was an increase in the EM2 and EMRA populations and a decrease in EM1 (<a href="#F2" class="usa-link">Fig. 2C</a>). Furthermore, the frequency of CD39<sup>+</sup> cells was increased in COVID-19 patients compared with HDs (<a href="#F2" class="usa-link">Fig. 2D</a>). Although the frequency of PD-1<sup>+</sup> cells was not different in the total CD8 population (<a href="#F2" class="usa-link">Fig. 2D</a>), it was increased for both CM and EM1 (fig. S2A). Finally, all major CD8 T cell naïve and memory populations in RDs were comparable to those in HDs (<a href="#F2" class="usa-link">Fig. 2, C and D</a>, and fig. S2A).</p> <figure class="fig xbox font-sm" id="F2"><h3 class="obj_head">Fig. 2. CD8 T cell subset skewing and activation patterns in COVID-19 patients and potential links to T cell–driven cytokines.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=7402624_369_abc8511_F2.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8d9/7402624/9a830e82156c/369_abc8511_F2.jpg" loading="lazy" height="1009" width="790" alt="Fig. 2"></a></p> <div class="p text-right font-secondary"><a href="figure/F2/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>(<strong>A</strong>) PCA of aggregated flow cytometry data. (<strong>B</strong>) Representative flow cytometry plots of the gating strategy for CD8 T cell subsets. (<strong>C</strong>) Frequencies of CD8 T cell subsets as indicated. (<strong>D</strong>) Frequencies of PD-1<sup>+</sup> and CD39<sup>+</sup> cells. Frequencies of (<strong>E</strong>) KI67<sup>+</sup> and (<strong>F</strong>) HLA-DR<sup>+</sup>CD38<sup>+</sup> cells and representative flow cytometry plots. The green line in the left panels denotes the upper decile of HDs. (<strong>G</strong>) (Top) Global viSNE projection of non-naïve CD8 T cells for all participants pooled, with non-naïve CD8 T cells from HDs, RDs, and COVID-19 patients concatenated and overlaid. (Bottom) viSNE projections of expression of the indicated proteins. (<strong>H</strong>) viSNE projection of non-naïve CD8 T cell clusters identified by FlowSOM clustering. (<strong>I</strong>) Mean fluorescence intensity (MFI) as indicated (column-scaled <em>z</em>-scores). (<strong>J</strong>) Percentage of non-naïve CD8 T cells from each cohort in each FlowSOM cluster. Boxes represent interquartile ranges (IQRs). (C, D, E, F, and J) Each dot represents an individual HDs (green), RDs (blue), or COVID-19 patient (red). Significance was determined by unpaired Wilcoxon test with BH correction: *<em>P</em> &lt; 0.05, **<em>P</em> &lt; 0.01, ***<em>P</em> &lt; 0.001, and ****<em>P</em> &lt; 0.0001.</p></figcaption></figure><p>Most acute viral infections induce proliferation and activation of CD8 T cells detectable by increases in KI67 or coexpression of CD38 and HLA-DR (<a href="#R34" class="usa-link" aria-describedby="R34"><em>34</em></a>, <a href="#R35" class="usa-link" aria-describedby="R35"><em>35</em></a>). There was a significant increase in KI67<sup>+</sup> and also HLA-DR<sup>+</sup>CD38<sup>+</sup> non-naïve CD8 T cells in COVID-19 patients relative to HDs or RDs (<a href="#F2" class="usa-link">Fig. 2, E and F</a>). In COVID-19 patients compared with HDs and RDs, KI67<sup>+</sup> CD8 T cells were increased across all subsets of non-naïve CD8 T cells, including CM and EM1 populations (fig. S2B). These data indicate broad T cell activation, potentially driven by bystander activation and/or homeostatic proliferation in addition to antigen-driven activation of virus-specific CD8 T cells. This activation phenotype was confirmed by HLA-DR and CD38 coexpression that was significantly increased for all non-naïve CD8 T cell subsets (<a href="#F2" class="usa-link">Fig. 2F</a> and fig. S2C). However, the magnitude of the KI67<sup>+</sup> or CD38<sup>+</sup>HLA-DR<sup>+</sup> CD8 T cells varied widely in this cohort. The frequency of KI67<sup>+</sup> CD8 T cells correlated with the frequency of CD38<sup>+</sup>HLA-DR<sup>+</sup> CD8 T cells (fig. S2D). However, the frequency of CD38<sup>+</sup>HLA-DR<sup>+</sup> T cells, but not KI67<sup>+</sup> CD8 T cells, was elevated in COVID-19 patients who had concomitant infection with another microbe but was not affected by preexisting immunosuppression or treatment with steroids (fig. S2E). Moreover, these changes in CD8 T cell subsets in COVID-19 patients did not show clear correlations with individual metrics of clinical disease such as hsCRP or D-dimer (fig. S2E), although the frequency of KI67<sup>+</sup> CD8 T cells was associated with elevated IL-6 and ferritin levels. Although CD8 T cell activation was common, ~20% of patients had no increase in KI67<sup>+</sup> or CD38<sup>+</sup>HLA-DR<sup>+</sup> CD8 T cells above the level found in HDs (<a href="#F2" class="usa-link">Fig. 2, E and F</a>). Thus, although robust CD8 T cell activation was a clear characteristic of many hospitalized COVID-19 patients, a substantial fraction of patients had little evidence of CD8 T cell activation in the blood compared with controls.</p> <p>To gain more insights, we applied global high-dimensional mapping of the 27-parameter flow cytometry data. A t-distributed stochastic neighbor embedding (tSNE) representation of the data highlighted key regions of non-naïve CD8 T cells found preferentially in COVID-19 patients (<a href="#F2" class="usa-link">Fig. 2G</a>). A major region of this tSNE map present in COVID-19 patients, but not HDs or RDs, encompasses CD8 T cells enriched for expression of CD38, HLA-DR, KI67, CD39, and PD-1 (<a href="#F2" class="usa-link">Fig. 2G</a>), highlighting the coexpression of these activation markers with other features, including CD95 (i.e., FAS). Notably, although non-naïve CD8 T cells from RDs were highly similar to those from HDs, subtle differences existed, including in the lower region highlighted by T-bet and CX3CR1 (<a href="#F2" class="usa-link">Fig. 2G</a>). To further define and quantify these differences between COVID-19 patients and controls, we performed FlowSOM clustering (<a href="#F2" class="usa-link">Fig. 2H</a>) and compared expression of 14 CD8 T cell markers to identify each cluster (<a href="#F2" class="usa-link">Fig. 2I</a>). This approach identified an increase in cells in several clusters, including clusters 1, 2, and 5 in COVID-19 patients, reflecting CD45RA<sup>+</sup>CD27<sup>−</sup>CCR7<sup>−</sup> EMRA-like populations that expressed CX3CR1 and varying levels of T-bet (<a href="#F2" class="usa-link">Fig. 2, I and J</a>) (“EMRA” denotes a subset of effector memory T cells reexpressing CD45RA). Clusters 12 and 14 contained CD27<sup>+</sup>HLA-DR<sup>+</sup>CD38<sup>+</sup>KI67<sup>+</sup>PD-1<sup>+</sup> activated, proliferating cells and were more prevalent in COVID-19 patients (<a href="#F2" class="usa-link">Fig. 2, I and J</a>, and fig. S2F). By contrast, the central Eomes<sup>+</sup>CD45RA<sup>−</sup>CD27<sup>+</sup>CCR7<sup>−</sup> EM1-like cluster 6 and T-bet<sup>hi</sup>CX3CR1<sup>+</sup> cluster 11 were decreased in COVID-19 patients compared with HDs (<a href="#F2" class="usa-link">Fig. 2, I and J</a>, and fig. S2F). Thus, CD8 T cell responses in COVID-19 patients were characterized by populations of activated, proliferating CD8 T cells in a subgroup of patients.</p></section><section id="sec7"><h2 class="pmc_sec_title">SARS-CoV-2 infection is associated with heterogeneous CD4 T cell responses and activation of CD4 T cell subsets</h2> <p>We next examined six well-defined CD4 T cell subsets as above for the CD8 T cells, including naïve; EM1, -2, and -3; CM; and EMRA (<a href="#F3" class="usa-link">Fig. 3A</a>). Given the potential role of antibodies in the response to SARS-CoV-2 (<a href="#R27" class="usa-link" aria-describedby="R27"><em>27</em></a>, <a href="#R29" class="usa-link" aria-describedby="R29"><em>29</em></a>), we also analyzed circulating T follicular helper (T<sub>FH</sub>) cells [CD45RA<sup>−</sup>PD-1<sup>+</sup>CXCR5<sup>+</sup> (cT<sub>FH</sub>) (<a href="#R36" class="usa-link" aria-describedby="R36"><em>36</em></a>)] and activated circulating T<sub>FH</sub> cells [CD38<sup>+</sup>ICOS<sup>+</sup> (activated cT<sub>FH</sub>)], the latter of which may be more reflective of recent antigen encounter and emigration from the germinal center (<a href="#R37" class="usa-link" aria-describedby="R37"><em>37</em></a>, <a href="#R38" class="usa-link" aria-describedby="R38"><em>38</em></a>) (<a href="#F3" class="usa-link">Fig. 3A</a>). These analyses revealed a relative loss of naïve CD4 T cells compared with controls, but increased EM2 and EMRA (<a href="#F3" class="usa-link">Fig. 3B</a>). The frequency of activated but not total cT<sub>FH</sub> cells was statistically increased in COVID-19 patients compared with HDs, though this effect appeared to be driven by a subgroup of patients (<a href="#F3" class="usa-link">Fig. 3B</a>). Notably, activated cT<sub>FH</sub> frequencies were also higher in RDs than in HDs (<a href="#F3" class="usa-link">Fig. 3B</a>), perhaps reflecting residual COVID-19 responses in that group. Frequencies of KI67<sup>+</sup> or CD38<sup>+</sup>HLA-DR<sup>+</sup> non-naïve CD4 T cells were increased in COVID-19 patients (<a href="#F3" class="usa-link">Fig. 3, C and E</a>); however, this change was not equivalent across all CD4 T cell subsets. The most substantial increases in both KI67<sup>+</sup> and CD38<sup>+</sup>HLA-DR<sup>+</sup> cells were found in the effector memory populations (EM1, EM2, EM3) and in cT<sub>FH</sub> cells (fig. S3, A and B). Although some individuals had increased activation of EMRA, this response was less pronounced. By contrast, PD-1 expression was increased in all other non-naïve populations compared with HDs or RDs (fig. S3C). Coexpression of CD38 and HLA-DR by non-naïve CD4 T cells correlated with the frequency of KI67<sup>+</sup> non-naïve CD4 T cells (fig. S3D). Moreover, the frequency of total non-naïve CD4 T cells that were CD38<sup>+</sup>HLA-DR<sup>+</sup> correlated with the frequency of activated cT<sub>FH</sub> cells (fig. S3E). In general, the activation of CD4 T cells was correlated with the activation of CD8 T cells (<a href="#F3" class="usa-link">Fig. 3, D and F</a>). However, whereas about two-thirds of COVID-19 patients had KI67<sup>+</sup> non-naïve CD4 or CD8 T cell frequencies above controls, about one-third had no increase in frequency of KI67<sup>+</sup> CD4 or CD8 T cells above that observed in HDs (<a href="#F3" class="usa-link">Fig. 3, D and F</a>). Moreover, although most patients had similar proportions of activated CD4 and CD8 T cells, a subgroup of patients had disproportionate activation of CD4 T cells relative to CD8 T cells (<a href="#F3" class="usa-link">Fig. 3, D and F</a>). KI67<sup>+</sup> and CD38<sup>+</sup>HLA-DR<sup>+</sup> non-naïve CD4 T cell frequencies correlated with ferritin and with APACHE III score (fig. S3F), suggesting a relationship between CD4 T cell activation and disease severity. Immunosuppression did not affect CD4 T cell activation; however, early steroid administration was weakly associated with CD4 T cell KI67 expression (fig. S3F). Together, these data indicate that T cell activation in COVID-19 patients is similar to what has been observed in other acute infections or vaccinations (<a href="#R37" class="usa-link" aria-describedby="R37"><em>37</em></a>, <a href="#R39" class="usa-link" aria-describedby="R39"><em>39</em></a>, <a href="#R40" class="usa-link" aria-describedby="R40"><em>40</em></a>) and identify patients with high, low, or essentially no T cell response on the basis of KI67<sup>+</sup> or CD38<sup>+</sup>HLA-DR<sup>+</sup> expression compared with control individuals.</p> <figure class="fig xbox font-sm" id="F3"><h3 class="obj_head">Fig. 3. CD4 T cell activation in a subset of COVID-19 patients is associated with distinct CD4 T cell subsets.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=7402624_369_abc8511_F3.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8d9/7402624/cb51d49aa589/369_abc8511_F3.jpg" loading="lazy" height="1004" width="737" alt="Fig. 3"></a></p> <div class="p text-right font-secondary"><a href="figure/F3/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>(<strong>A</strong>) Representative flow cytometry plots of the gating strategy for CD4 T cell subsets. (<strong>B</strong>) Frequencies of CD4 T cell subsets, as indicated. (<strong>C</strong>) Frequencies of KI67<sup>+</sup> cells. The green line in the left panel denotes the upper decile of HDs. Representative flow cytometry plots are shown at right. (<strong>D</strong>) KI67<sup>+</sup> cells from non-naïve CD4 T cells versus non-naïve CD8 T cells. Spearman correlation of COVID-19 patients is shown. (<strong>E</strong>) Frequencies of HLA-DR<sup>+</sup>CD38<sup>+</sup> cells. The green line in the left panel denotes the upper decile of HDs. Representative flow cytometry plots are shown at right. (<strong>F</strong>) HLA-DR<sup>+</sup>CD38<sup>+</sup> cells from non-naïve CD4 versus non-naïve CD8 T cells, Spearman correlation of COVID-19 patients is shown. (<strong>G</strong>) (Top) Global viSNE projection of non-naïve CD4 T cells for all participants pooled, with non-naïve CD4 T cells from HDs, RDs, and COVID-19 patients concatenated and overlaid. (Bottom) viSNE projections of indicated protein expression. (<strong>H</strong>) viSNE projection of non-naïve CD4 T cell clusters identified by FlowSOM clustering. (<strong>I</strong>) MFI as indicated (column-scaled <em>z</em>-scores). (<strong>J</strong>) Percentage of non-naïve CD4 T cells from each cohort in each FlowSOM cluster. Boxes represent IQRs. (B, C, E, and J) Each dot represents an individual HDs (green), RDs (blue), or COVID-19 patient (red). Significance was determined by unpaired Wilcoxon test with BH correction: *<em>P</em> &lt; 0.05, **<em>P</em> &lt; 0.01, ***<em>P</em> &lt; 0.001, and ****<em>P</em> &lt; 0.0001.</p></figcaption></figure><p>Projecting the global CD4 T cell differentiation patterns into the high-dimensional tSNE space again identified major alterations in the CD4 T cell response in COVID-19 patients compared with HDs and RDs (<a href="#F3" class="usa-link">Fig. 3G</a>). In COVID-19 infection, there was a notable increase in density in tSNE regions that mapped to expression of CD38, HLA-DR, PD1, CD39, KI67, and CD95 (<a href="#F3" class="usa-link">Fig. 3G</a>), similar to CD8 T cells. To gain more insight into these CD4 T cell changes, we again used a FlowSOM clustering approach (<a href="#F3" class="usa-link">Fig. 3, H and I</a>). This analysis identified an increase in clusters 13 and 14 (representing populations that express HLA-DR, CD38, PD1, KI67 and CD95) as well as cluster 15 (containing Tbet<sup>+</sup>CX3CR1<sup>+</sup> effector-like CD4 T cells) in COVID-19 patients compared with HDs and RDs (<a href="#F3" class="usa-link">Fig. 3, I and J</a>, and fig. S3G). By contrast, this clustering approach identified reduction in CXCR5<sup>+</sup> cT<sub>FH</sub>-like cells (clusters 2 and 3) in COVID-19 participants compared with HDs (<a href="#F3" class="usa-link">Fig. 3, I and H</a>). Collectively, the results of this multidimensional analysis reveal distinct populations of activated and proliferating CD4 T cells that were enriched in COVID-19 patients.</p> <p>A key feature of COVID-19 is thought to be an inflammatory response that, at least in some patients, is linked to clinical disease manifestation (<a href="#R2" class="usa-link" aria-describedby="R2"><em>2</em></a>, <a href="#R4" class="usa-link" aria-describedby="R4"><em>4</em></a>) and high levels of chemokines and cytokines, including IL-1RA, IL-6, IL-8, IL-10, and CXCL10 (<a href="#R11" class="usa-link" aria-describedby="R11"><em>11</em></a>, <a href="#R41" class="usa-link" aria-describedby="R41"><em>41</em></a>). To investigate the potential connection of inflammatory pathways to T cell responses, we performed 31-plex Luminex analysis on paired plasma and culture supernatants of αCD3- and αCD28-stimulated PBMCs from a subset of COVID-19 patients and HD controls. Owing to biosafety restrictions, we were able to study only eight COVID-19 patient blood samples that were confirmed negative for SARS-CoV-2 RNA by polymerase chain reaction (PCR) (fig. S4A). Half of these COVID-19 patients had plasma CXCL10 concentrations that were ~15 times as high as those of HD controls, whereas the remainder showed only a limited increase (fig. S4B). CXCL9, CCL2, and IL-1RA were also significantly increased. By contrast, chemokines involved in the recruitment of eosinophils (eotaxin) or activated T cells (CCL5) were decreased. IL-6 was not elevated in this group of patients, in contrast to the subset of individuals tested clinically (fig. S1B), potentially because IL-6 was measured in the hospital setting, often when systemic inflammation was suspected. After stimulation in vitro, PBMCs from COVID-19 patients produced more CCL2, CXCL10, eotaxin, and IL-1RA than those from HDs (fig. S4, C and D), and concentrations of CXCL10 and CCL2 correlated between the matched supernatant from stimulated PBMCs and plasma samples (fig. S4E). Finally, we investigated whether CD8 T cells from COVID-19 patients were capable of producing interferon-γ (IFNγ) after polyclonal stimulation. After stimulation with αCD3 and αCD28, similar proportions of CD8 T cells from COVID-19 patients and HD controls produced IFNγ, which suggests that PBMCs from COVID-19 patients were responsive to T cell receptor cross-linking (fig. S4, F to H). The ability of T cells to produce IFNγ after stimulation occurred in patients with increases in KI67 as well as patients with low KI67 (fig. S4, F to H). Taken together, these data support the notion that a subgroup of COVID-19 patients has elevated systemic cytokines and chemokines, including myeloid-recruiting chemokines.</p></section><section id="sec8"><h2 class="pmc_sec_title">COVID-19 infection is associated with increased frequencies of PBs and proliferation of memory B cell subsets</h2> <p>B cell subpopulations were also altered in people with COVID-19. Whereas naïve B cell frequencies were similar in COVID-19 patients and RDs or HDs, the frequencies of class-switched (IgD<sup>−</sup>CD27<sup>+</sup>) and not–class-switched (IgD<sup>+</sup>CD27<sup>+</sup>) memory B cells were significantly reduced (<a href="#F4" class="usa-link">Fig. 4A</a>). Conversely, frequencies of CD27<sup>−</sup>IgD<sup>−</sup> B cells and CD27<sup>+</sup>CD38<sup>+</sup> PBs were often markedly increased (<a href="#F4" class="usa-link">Fig. 4, A and B</a>). In some cases, PBs represented &gt;30% of circulating B cells, similar to levels observed in acute Ebola or dengue virus infections (<a href="#R42" class="usa-link" aria-describedby="R42"><em>42</em></a>, <a href="#R43" class="usa-link" aria-describedby="R43"><em>43</em></a>). However, these PB responses were observed in only about two-thirds of patients, with the remaining patients displaying PB frequencies similar to those in HDs and RDs (<a href="#F4" class="usa-link">Fig. 4B</a>). KI67 expression was markedly elevated in all B cell subpopulations in COVID-19 patients compared with either control group (<a href="#F4" class="usa-link">Fig. 4C</a>). This observation suggests a role for an antigen-driven response to infection- and/or lymphopenia-driven proliferation. Higher KI67 levels in PBs may reflect recent generation in COVID-19 patients relative to HDs or RDs. CXCR5 expression was also reduced on all major B cell subsets in COVID-19 patients (<a href="#F4" class="usa-link">Fig. 4D</a>). Loss of CXCR5 was not specific to B cells, however, as expression was also decreased on non-naïve CD4 T cells (<a href="#F4" class="usa-link">Fig. 4E</a>). Changes in the B cell subsets were not associated with coinfection, immune suppression, or treatment with steroids or other clinical features, though a possible negative association of IL-6 and PBs was revealed (fig. S5A). These observations suggest that the B cell response phenotype of COVID-19 was not simply due to systemic inflammation.</p> <figure class="fig xbox font-sm" id="F4"><h3 class="obj_head">Fig. 4. Deep profiling of COVID-19 patient B cell populations reveals robust PB populations and other B cell alterations.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=7402624_369_abc8511_F4.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8d9/7402624/2bcbc527d5ce/369_abc8511_F4.jpg" loading="lazy" height="1005" width="743" alt="Fig. 4"></a></p> <div class="p text-right font-secondary"><a href="figure/F4/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>(<strong>A</strong>) Gating strategy and frequencies of non-PB B cell subsets. (<strong>B</strong>) Representative flow cytometry plots and frequencies of PBs. The green line in the right panel denotes the upper decile of HDs. (<strong>C</strong>) Representative flow cytometry plots and frequencies of KI67<sup>+</sup> B cells. (<strong>D</strong>) (Left) Representative histograms of CXCR5 expression; (right) CXCR5 geometric MFI (GMFI) of B cell subsets. (<strong>E</strong>) CXCR5 GMFI of non-naïve CD4 T cells and cT<sub>FH</sub> cells. (<strong>F</strong>) Spearman correlation between PBs and activated cT<sub>FH</sub> cells. (<strong>G</strong>) Spearman correlation between PBs and anti–SARS-CoV-2 IgG. (<strong>H</strong> and <strong>I</strong>) Spearman correlation between activated cT<sub>FH</sub> cells and anti–SARS-CoV-2 (H) IgM and (I) IgG. (<strong>J</strong>) (Top) Global viSNE projection of B cells for all participants pooled, with B cell populations of each cohort concatenated and overlaid. (Bottom) viSNE projections of expression of the indicated proteins. (<strong>K</strong>) Hierarchical clustering of EMD using Pearson correlation, calculated pairwise for B cell populations for all participants (row-scaled <em>z</em>-scores). (<strong>L</strong>) Percentage of cohort in each EMD group. (<strong>M</strong>) Global viSNE projection of B cells for all participants pooled, with EMD groups 1 to 3 concatenated and overlaid. (<strong>N</strong>) B cell clusters identified by FlowSOM clustering. (<strong>O</strong>) MFI as indicated (column-scaled <em>z</em>-scores). (<strong>P</strong>) Percentage of B cells from each cohort in each FlowSOM cluster. Boxes represent IQRs. (A to F and P) Dots represent individual HDs (green), RDs (blue), or COVID-19 (red) participants. (A to E and P) Significance was determined by unpaired Wilcoxon test with BH correction: *<em>P</em> &lt; 0.05, **<em>P</em> &lt; 0.01, ***<em>P</em> &lt; 0.001, and ****<em>P</em> &lt; 0.0001. (G to I) The black horizontal line represents the positive threshold.</p></figcaption></figure><p>During acute viral infections or vaccination, PB responses are transiently detectable in the blood and correlate with cT<sub>FH</sub> responses (<a href="#R40" class="usa-link" aria-describedby="R40"><em>40</em></a>). Comparing the frequency of PBs to the frequency of total cT<sub>FH</sub> cells or activated cT<sub>FH</sub> cells, however, revealed a weak correlation only with activated cT<sub>FH</sub> cells (<a href="#F4" class="usa-link">Fig. 4F</a> and fig. S5, B and C). Furthermore, some patients had robust activated cT<sub>FH</sub> responses but PB frequencies similar to those of controls, whereas other patients with robust PB responses had relatively low frequencies of activated cT<sub>FH</sub> cells (<a href="#F4" class="usa-link">Fig. 4F</a> and fig. S5, B and C). There was also an association between PB frequency and CD38<sup>+</sup>HLA-DR<sup>+</sup> or KI67<sup>+</sup> CD4 T cells that might reflect a role for non-CXCR5<sup>+</sup> CD4 T cell help (fig. S5D), but such a relationship did not exist for the equivalent CD8 T cell populations (fig. S5E). Although ~70% of the COVID-19 patients analyzed in our study made antibodies against SARS-CoV-2 spike protein [79 of 111 IgG; 77 of 115 IgM (<a href="#R44" class="usa-link" aria-describedby="R44"><em>44</em></a>)], antibody levels did not correlate with PB frequencies (<a href="#F4" class="usa-link">Fig. 4G</a> and fig. S5F). The occasional lack of antibody did not appear to be related to immunosuppression in a small number of patients (fig. S5G). The lack of PB correlation with antibody suggests that a proportion of these large PB responses were: (i) generated against SARS-CoV-2 antigens other than the spike protein or (ii) inflammation driven and perhaps nonspecific or low affinity. Notably, anti–SARS-CoV-2 IgG and IgM levels correlated with the activated, but not total, cT<sub>FH</sub> response, which suggests that at least a proportion of cT<sub>FH</sub> cells were providing SARS-CoV-2–specific help to B cells (<a href="#F4" class="usa-link">Fig. 4, H and I</a>, and fig. S5, H and I). Although defining the precise specificity of the robust PB populations will require future studies, these data suggest that at least some of the PB response is specific for SARS-CoV-2.</p> <p>Projecting the flow cytometry data for B cells from HDs, RDs, and COVID-19 patients in tSNE space revealed a distinct picture of B cell populations in COVID-19 patients compared with controls, whereas populations in RDs and HDs were similar (<a href="#F4" class="usa-link">Fig. 4J</a> and fig. S5J). The COVID-19 patient B cell phenotype was dominated by the loss of CXCR5 and IgD compared with B cells from HDs and RDs (<a href="#F4" class="usa-link">Fig. 4J</a>). Moreover, the robust PB response was apparent in the upper right section, highlighted by CD27, CD38, CD138, and KI67 (<a href="#F4" class="usa-link">Fig. 4J</a>). The expression of KI67 and CD95 in these CD27<sup>+</sup>CD38<sup>+</sup>CD138<sup>+</sup> PBs (<a href="#F4" class="usa-link">Fig. 4J</a>) may suggest recent generation and/or emigration from germinal centers. We next asked whether there were different groups of COVID-19 patients (or HDs and RDs) with global differences in the B cell response. We used the Earth mover’s distance (EMD) metric (<a href="#R45" class="usa-link" aria-describedby="R45"><em>45</em></a>) to calculate similarities between the probability distributions within the tSNE map (<a href="#F4" class="usa-link">Fig. 4J</a>) and clustered data so that individuals with the most-similar distributions grouped together (<a href="#F4" class="usa-link">Fig. 4K</a>). The majority of COVID-19 patients fell into two distinct groups (EMD groups 1 and 3; <a href="#F4" class="usa-link">Fig. 4L</a>), suggesting two major immunotypes of the B cell response. The remainder of the COVID-19 patients (~25%) clustered with the majority of the HD and all of the RD controls, supporting the observation that some individuals had limited evidence of response to infection in their B cell compartment. To identify the population differences between HDs, RDs, and COVID-19 patients, we performed FlowSOM clustering on the tSNE map and overlaid each individual EMD group onto this same tSNE map (<a href="#F4" class="usa-link">Fig. 4, M and N</a>). EMD group 2, containing mostly HDs and RDs, was enriched for naïve B cells (IgD<sup>+</sup>CD27<sup>−</sup>, cluster 10) and CXCR5<sup>+</sup>IgD<sup>−</sup>CD27<sup>+</sup> switched memory cells (cluster 2), and indeed, clusters 2 and 10 were statistically reduced in COVID-19 patients (<a href="#F4" class="usa-link">Fig. 4P</a>). EMD groups 1 and 3 displayed distinct patterns across the FlowSOM clusters. B cells from individuals in EMD group 1 were enriched for FlowSOM clusters 1, 5, and 6, all of which were increased in COVID-19 patients (<a href="#F4" class="usa-link">Fig. 4P</a>). FlowSOM clusters 1 and 6 captured T-bet<sup>+</sup> memory B cells, whereas FlowSOM cluster 5 contained the CD27<sup>+</sup>CD38<sup>+</sup>CD138<sup>+</sup>KI67<sup>+</sup> PBs, all of which were enriched in COVID-19 patients relative to controls (<a href="#F4" class="usa-link">Fig. 4, O and P</a>, and fig. S5K). By contrast, B cells from COVID-19 patients in EMD group 3 also showed enrichment for the PB FlowSOM cluster 5, though less prominent than for EMD group 1, but the T-bet<sup>+</sup> memory B cell cluster 1 was substantially reduced in EMD group 3. Thus, B cell responses—most often characterized by elevated PBs, decreases in memory B cell subsets, enrichment in a T-bet<sup>+</sup> B cell subset, and loss of CXCR5 expression—were evident in many hospitalized COVID-19 patients. Whether all of these changes in the B cell compartment were due to direct antiviral responses is unclear. Although there was heterogeneity in the B cell responses, COVID-19 patients fell into two distinct patterns containing activated B cell responses and a third group of patients with little evidence of an active B cell response.</p></section><section id="sec9"><h2 class="pmc_sec_title">Temporal changes in immune cell populations occur during COVID-19</h2> <p>A key question for hospitalized COVID-19 patients is how immune responses change over time. Thus, we used the global tSNE projections of overall CD8 T cell, CD4 T cell, and B cell differentiation states to investigate temporal changes in these populations between D0 and D7 of hospitalization (<a href="#F5" class="usa-link">Fig. 5A</a>). Combining data for all patients revealed considerable stability of the tSNE distributions between D0 and D7 in CD8 T cell, CD4 T cell, and B cell populations, particularly for the key regions of interest discussed above. For example, for CD8 T cells, the region of the tSNE map containing KI67<sup>+</sup> and CD38<sup>+</sup>HLA-DR<sup>+</sup> CD8 T cell populations that was enriched in COVID-19 patients at D0 (<a href="#F2" class="usa-link">Fig. 2</a>) was preserved at D7 (<a href="#F5" class="usa-link">Fig. 5A</a>). A similar temporal stability of CD4 T cell and B cell activation was also observed (<a href="#F5" class="usa-link">Fig. 5A</a>).</p> <figure class="fig xbox font-sm" id="F5"><h3 class="obj_head">Fig. 5. Temporal relationships between immune responses and disease manifestation.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=7402624_369_abc8511_F5.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8d9/7402624/a491c1111c1b/369_abc8511_F5.jpg" loading="lazy" height="989" width="762" alt="Fig. 5"></a></p> <div class="p text-right font-secondary"><a href="figure/F5/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>(<strong>A</strong>) Global viSNE projection of non-naïve CD8 T cells, non-naïve CD4 T cells, and B cells for all participants pooled, with cells from COVID-19 patients at D0 and D7 concatenated and overlaid. Frequencies of (<strong>B</strong>) KI67<sup>+</sup> and HLA-DR<sup>+</sup>CD38<sup>+</sup> CD4 T cells, (<strong>C</strong>) KI67<sup>+</sup> and HLA-DR<sup>+</sup>CD38<sup>+</sup> CD8 T cells, or (<strong>D</strong>) PBs as indicated for HDs (green), RDs (blue), or COVID-19 patients (red), with paired samples at D0 and D7 indicated by connecting lines. Significance was determined by paired Wilcoxon test: *<em>P</em> &lt; 0.05, **<em>P</em> &lt; 0.01, ***<em>P</em> &lt; 0.001, and ****<em>P</em> &lt; 0.0001. Longitudinal patterns (see Materials and methods) of (<strong>E</strong>) HLA-DR<sup>+</sup>CD38<sup>+</sup> CD4 T cells or (<strong>F</strong>) PBs in COVID-19 patients shown as frequency and representative flow cytometry plots. (<strong>G</strong>) Spearman correlations of clinical parameters with longitudinal fold changes in immune populations.</p></figcaption></figure><p>Given this apparent stability between D0 and D7, we next investigated temporal changes in lymphocyte subpopulations of interest. Although there were no obvious temporal changes in major phenotypically defined CD4 and CD8 T cell or B cell subsets, including PBs (<a href="#F5" class="usa-link">Fig. 5D</a>), the frequencies of HLA-DR<sup>+</sup>CD38<sup>+</sup> and KI67<sup>+</sup> non-naïve CD4 (<a href="#F5" class="usa-link">Fig. 5B</a>) and KI67<sup>+</sup> non-naïve CD8 T cells were statistically increased at D7 compared with D0 (<a href="#F5" class="usa-link">Fig. 5C</a>).</p> <p>However, in all cases, these temporal patterns were complex, with frequencies of subpopulations in individual patients appearing to increase, decrease, or stay the same over time. To quantify these interpatient changes, we used a previously described dataset (<a href="#R46" class="usa-link" aria-describedby="R46"><em>46</em></a>) to define the stability of populations of interest in healthy individuals over time. We then used the range of this variation over time to identify COVID-19 patients with changes in immune cell subpopulations beyond that expected in healthy people (see Materials and methods section). With this approach, ~50% of patients had an increase in HLA-DR<sup>+</sup>CD38<sup>+</sup> non-naïve CD4 T cells over time, whereas these cells were stable in ~30% of patients and decreased in the remaining ~20% (<a href="#F5" class="usa-link">Fig. 5E</a>). For KI67<sup>+</sup> non-naïve CD8 T cells, there were no individuals in whom the response decreased. Instead, this proliferative CD8 T cell response stayed stable (~70%) or increased (~30%) (fig. S6A). Notably, for patients in the stable category, the median frequency of KI67<sup>+</sup> non-naïve CD8 T cells was ~10%, almost 10 times as high as the ~1% detected for HDs and RDs (<a href="#F5" class="usa-link">Figs. 5C</a> and <a href="#F2" class="usa-link">2E</a>), suggesting a sustained CD8 T cell proliferative response to infection. A similar pattern was observed for HLA-DR<sup>+</sup>CD38<sup>+</sup> non-naïve CD8 cells (fig. S6B): Only ~10% of patients had a decrease in this population, whereas ~65% were stable and ~25% had an increase over time. The high and even increasing activated or proliferating CD8 and CD4 T cell responses over ~1 week during acute viral infection contrasted with the sharp peak of KI67 in CD8 and CD4 T cells during acute viral infections, including smallpox vaccination with live vaccinia virus (<a href="#R47" class="usa-link" aria-describedby="R47"><em>47</em></a>), live attenuated yellow fever vaccine YFV-17D (<a href="#R48" class="usa-link" aria-describedby="R48"><em>48</em></a>), acute influenza virus infection (<a href="#R49" class="usa-link" aria-describedby="R49"><em>49</em></a>), and acute HIV infection (<a href="#R35" class="usa-link" aria-describedby="R35"><em>35</em></a>). Approximately 42% of patients had sustained PB responses, at high levels (&gt;10% of B cells) in many cases (<a href="#F5" class="usa-link">Fig. 5F</a>). Thus, some patients displayed dynamic changes in T cell or B cell activation over 1 week in the hospital, but other patients remained stable. In the latter case, some patients remained stable without clear activation of key immune populations, whereas others had stable T and/or B cell activation or numerical perturbation (fig. S6C).</p> <p>We next asked whether these T and B cell dynamics are related to clinical measures of COVID-19. To do this, we correlated changes in immune features from D0 to D7 with clinical information (<a href="#F5" class="usa-link">Fig. 5G</a>). These analyses revealed distinctive correlations. Decreases in all populations of responding CD4 and CD8 T cells (HLA-DR<sup>+</sup>CD38<sup>+</sup>, KI67<sup>+</sup>, and activated cT<sub>FH</sub>) between D0 and D7 were positively correlated with PMN and WBC counts, suggesting a relationship between T cell activation and lymphopenia. Furthermore, decreases in CD4 and CD8 HLA-DR<sup>+</sup>CD38<sup>+</sup> T cells positively correlated with APACHE III score. However, stable HLA-DR<sup>+</sup>CD38<sup>+</sup> CD4 T cell responses correlated with coagulation complications and ferritin levels. Whereas decreasing activated cT<sub>FH</sub> cells over time was related to coinfection, the opposite pattern was observed for PBs. Increases in proliferating KI67<sup>+</sup> CD4 and CD8 T cells over time were positively correlated to increasing anti–SARS-CoV-2 antibody from D0 to D7, suggesting that some individuals might have been hospitalized during the expansion phase of the antiviral immune response (<a href="#F5" class="usa-link">Fig. 5G</a>). Finally, neither remdesivir nor HCQ treatment correlated with any of these immune features (<a href="#F5" class="usa-link">Fig. 5G</a>). When we examined categorical rather than continuous clinical data, we found that 80% of patients with decreasing PBs over time had hyperlipidemia, whereas only 20% of patients with increasing PBs over time had this comorbidity (fig. S6D). All patients who had decreasing CD38<sup>+</sup>HLA-DR<sup>+</sup> CD8 T cells from D0 to D7 were treated with early vasoactive medication or inhaled nitric oxide, whereas these treatments were less common for patients with stable or increasing CD38<sup>+</sup>HLA-DR<sup>+</sup> CD8 T cells (fig. S6E). By contrast, vasoactive medication, inhaled nitric oxide, and early steroid treatment were equally common in patients with increasing or decreasing PBs (fig. S6D). Similar patterns were apparent for other T cell populations and these categorical clinical data (fig. S6F). Thus, the trajectory of change in the T and B cell response in COVID-19 patients was strongly connected to clinical metrics of disease.</p></section><section id="sec10"><h2 class="pmc_sec_title">Identifying immunotypes and relationships between circulating B and T cell responses with disease severity in COVID-19 patients</h2> <p>To further investigate the relationship between immune responses and COVID-19 trajectory, we stratified the COVID-19 patients (<em>n</em> = 125) into eight different categories, according to the NIH Ordinal Severity Scale, ranging from COVID 1 (death) and COVID 2 (requiring maximal clinical intervention) to COVID 8 (at home with no required care) (<a href="#F6" class="usa-link">Fig. 6A</a>). We then asked how changes in T and B cell populations defined above on D0 were related to disease severity. More severe disease was associated with lower frequencies of CD8 and CD4 T cells, with a greater effect on CD8 T cells in less severe disease (<a href="#F6" class="usa-link">Fig. 6B</a>). Taking all patients together, there were no statistically significant changes in the major T cell and B cell subsets related to disease severity, though some trends were present (fig. S7, A to C). By contrast, HLA-DR<sup>+</sup>CD38<sup>+</sup> CD8 T cells as well as both KI67<sup>+</sup> and HLA-DR<sup>+</sup>CD38<sup>+</sup> CD4 T cells were increased in patients with more severe disease (fig. S7, D and E).</p> <figure class="fig xbox font-sm" id="F6"><h3 class="obj_head">Fig. 6. High-dimensional analysis of immune phenotypes with clinical data reveals distinct COVID-19 patient immunotypes.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=7402624_369_abc8511_F6.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8d9/7402624/c3b041241572/369_abc8511_F6.jpg" loading="lazy" height="1004" width="760" alt="Fig. 6"></a></p> <div class="p text-right font-secondary"><a href="figure/F6/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>(<strong>A</strong>) NIH ordinal scale for COVID-19 clinical severity. (<strong>B</strong>) Frequencies of major immune subsets. Significance was determined by unpaired Wilcoxon test with BH correction: *<em>P</em> &lt; 0.05, **<em>P</em> &lt; 0.01, ***<em>P</em> &lt; 0.001, and ****<em>P</em> &lt; 0.0001. (<strong>C</strong>) Heatmap of indicated immune parameters by row; donor type, disease severity, and mortality are indicated across the top. (<strong>D</strong>) UMAP projection of aggregated flow cytometry data. (<strong>E</strong>) Transformed UMAP projection. Density contours were drawn separately for HDs, RDs, and COVID-19 patients (see Materials and methods). (<strong>F</strong>) Bars represent mean of UMAP component 1. Dots represent individual participants; bars are color-coded by participant group and/or severity score. (<strong>G</strong>) Density contour plots indicating variation of specified immune features across UMAP component coordinates. Relative expression (according to heat scale) is shown for both individual patients (points) and overall density (contours). Spearman’s rank correlation coefficient (ρ) and <em>P</em> value for each feature versus component 1 (C1) and component 2 (C2) are shown. (<strong>H</strong>) (Left) Spearman correlation between UMAP components 1 and 2 and FlowSOM clusters. (Right) Select FlowSOM clusters and their protein expression. (<strong>I</strong>) Spearman correlation between UMAP components 1 and 2 and clinical metadata. (<strong>J</strong>) Heatmap of immune parameters used to define immunotype 3 indicated by row; disease severity and mortality are indicated across the top. (<strong>K</strong>) (Left) Transformed UMAP projection; patient status for immunotype 3 indicated by color. (Right) Spearman correlation between immunotype 3 and disease severity, mortality, and UMAP components.</p></figcaption></figure><p>There were two challenges with extracting meaning from these data. First, there was considerable interpatient heterogeneity for each of these immune features related to disease severity score. Second, these binary comparisons (e.g., one immune subset versus one clinical feature) do not make full use of the high-dimensional information in this dataset. Thus, we next visualized major T and B cell subpopulation data as related to clinical disease severity score (<a href="#F6" class="usa-link">Fig. 6C</a>). Data were clustered according to immune features and then overlaid with the disease severity score over time for each patient. This analysis revealed groups of patients with similar composite immune signatures of T and B cell populations (<a href="#F6" class="usa-link">Fig. 6C</a>). When individual CD8 T cell, CD4 T cell, or B cell populations were examined, a similar concept of patient subgroups emerged (fig. S7, F, G, and H). These data suggested the idea of immunotypes of COVID-19 patients on the basis of integrated responses of T and B cells, though some individual cell types and/or phenotypes separated patients more clearly than others.</p> <p>These approaches provided insight into potential immune phenotypes associated with patients with severe disease but were hindered by the small number of manually selected T or B cell subsets or phenotypes. We therefore next employed uniform manifold approximation and projection (UMAP) to distill the ~200 flow cytometry features (tables S5 and S6) representing the immune landscape of COVID-19 in two-dimensional space, creating compact meta-features (or components) that could then be correlated with clinical outcomes. This analysis revealed a clear trajectory from HDs to COVID-19 patients (<a href="#F6" class="usa-link">Fig. 6D</a>), which we centered and aligned with the horizontal axis (component 1) to facilitate downstream analysis (<a href="#F6" class="usa-link">Fig. 6E</a>). An orthogonal vertical axis coordinate (component 2) captured nonoverlapping aspects of the immune landscape. We next calculated the mean of component 1 for each patient group, with COVID-19 patients separated by severity score (<a href="#F6" class="usa-link">Fig. 6E</a>). The contribution of component 1 clearly increased in a stepwise manner with increasing disease severity (<a href="#F6" class="usa-link">Fig. 6F</a>). Notably, RDs were subtly positioned between HDs and COVID-19 patients. Component 1 remained an independent predictor of disease severity (<em>P</em> = 5.5 × 10<sup>−5</sup>) even after adjusting for the confounding demographic factors of age, sex, and race.</p> <p>We next investigated how the UMAP components were associated with individual immune features (tables S5 and S6). UMAP component 1 captured immune features, including the relative loss of CD4 and CD8 T cells and increase in the ratio of non-B and non-T cells to T and B cells (<a href="#F6" class="usa-link">Fig. 6G</a>). PBs also associated with component 1 (<a href="#F6" class="usa-link">Fig. 6G</a>). Other individual B cell features were differentially captured by UMAP components 1 and 2. Component 1 contained a signal for T-bet<sup>+</sup> PB populations (table S5), whereas component 2 was enriched for T-bet<sup>+</sup> memory B cells and CD138<sup>+</sup> PB populations (table S6). Activated HLA-DR<sup>+</sup>CD38<sup>+</sup> and KI67<sup>+</sup> CD4 and CD8 T cells had contributions to both components, with these features residing in the upper right corner of the UMAP plot (<a href="#F6" class="usa-link">Fig. 6, G and H</a>, and fig. S8, A to D). By contrast, T-bet<sup>+</sup> non-naïve CD8 T cells were strongly associated with component 2, whereas T-bet<sup>+</sup> non-naïve CD4 T cells were linked to component 1 (<a href="#F6" class="usa-link">Fig. 6G</a> and tables S5 and S6). Eomes<sup>+</sup> CD8 or CD4 T cells were both associated with component 2 and negatively associated with component 1 (<a href="#F6" class="usa-link">Fig. 6G</a> and tables S5 and S6).</p> <p>We next took advantage of the FlowSOM clustering in <a href="#F2" class="usa-link">Figs. 2</a> to <a href="#F4" class="usa-link">4</a> that identified individual immune cell types most perturbed in COVID-19 patients and linked these FlowSOM clusters to UMAP components (<a href="#F6" class="usa-link">Fig. 6H</a>). For non-naïve CD8 T cells, FlowSOM cluster 11, which contained T-bet<sup>+</sup>CX3CR1<sup>+</sup> but nonproliferating effector-like cells, was positively correlated with UMAP component 2 and negatively correlated with component 1 (<a href="#F6" class="usa-link">Fig. 6H</a>). By contrast, FlowSOM cluster 14, which contained activated, proliferating PD-1<sup>+</sup>CD39<sup>+</sup> cells that might reflect either recently generated effector or exhausted CD8 T cells (<a href="#R50" class="usa-link" aria-describedby="R50"><em>50</em></a>), was strongly associated with UMAP component 1 (<a href="#F6" class="usa-link">Fig. 6H</a>). For CD4 T cells, FlowSOM cluster 14, containing activated, proliferating CD4 T cells, was captured by both UMAP components, whereas a second activated CD4 T cell population that also expressed CD95 (FlowSOM cluster 13) was captured by only UMAP component 1 (<a href="#F6" class="usa-link">Fig. 6H</a>). In addition, component 1 was negatively correlated with CD4 T cell FlowSOM clusters 2 and 3 that contained cT<sub>FH</sub> cells (<a href="#F6" class="usa-link">Fig. 6H</a>). Finally, for B cells, the FlowSOM cluster of T-bet<sup>+</sup>CD138<sup>+</sup> PBs (cluster 5) was positively correlated with component 1, whereas the T-bet<sup>−</sup>CD138<sup>+</sup> cluster 3 was negatively correlated with this same component (<a href="#F6" class="usa-link">Fig. 6H</a>). Locations in the UMAP immune landscape were dynamic, changing from D0 to D7 for both components, consistent with the data in <a href="#F5" class="usa-link">Fig. 5</a> and fig. S9, A to F. The most dynamic changes in component 1 were associated with the largest increases in IgM antibody levels (fig. S9G).</p> <p>Given the association of UMAP component 1 with disease severity, we next examined the connections between UMAP components and individual clinical features. UMAP component 1 correlated with several clinical measurements of inflammation (e.g., ferritin, hsCRP, IL-6), coinfection, organ failure (APACHE III), and acute kidney disease and renal insufficiency (<a href="#F6" class="usa-link">Fig. 6I</a>). However, although D-dimer level was elevated, this feature did not correlate with UMAP component 1, whereas coagulation complication did (<a href="#F6" class="usa-link">Fig. 6I</a>). Several antibody features also correlated with component 1, consistent with some of the immune features discussed above. By contrast, component 2 lacked positive correlation to many of these clinical features of disease and was negatively correlated to eosinophil count, nonsteroidal anti-inflammatory drug (NSAID) use, and subsequent treatment with remdesivir (<a href="#F6" class="usa-link">Fig. 6I</a>). UMAP component 1, not component 2, also correlated with mortality, although there were clearly patients with high component 2 but low component 1 who died from COVID-19 (<a href="#F6" class="usa-link">Fig. 6E</a>). These data indicate that the immune features captured by UMAP component 1 have a strong relationship to many features of disease severity, whereas other features of immune dynamics during COVID-19 captured by UMAP component 2 have a distinct relationship with clinical disease presentation.</p> <p>More-positive values in UMAP components 1 or 2 captured mainly signals of change or differences in individual immune features in COVID-19 patients compared with HDs and RDs. UMAP component 1 captured an immunotype (immunotype 1) characterized by effector or highly activated CD4 T cells, low cT<sub>FH</sub> cells, some CD8 EMRA-like activation, possibly hyperactivated CD8 T cells, and Tbet<sup>+</sup> PBs, whereas component 2 (immunotype 2) captured Tbet<sup>bright</sup> effector-like CD8 T cells, had less robust CD4 T cell activation, and had some features of proliferating B cells (<a href="#F6" class="usa-link">Fig. 6G</a> and fig. S8). However, the data presented in <a href="#F1" class="usa-link">Figs. 1</a> to <a href="#F5" class="usa-link">5</a> also suggested a subset of patients with minimal activation of T and B cell responses. To investigate this immune signature, we identified 20 patients who had responses more similar to those of HDs and RDs for five activated or responding B and T cell populations (<a href="#F6" class="usa-link">Fig. 6J</a>, middle, and fig. S10). If UMAP components 1 and 2 captured two distinct immunotypes of patient responses to SARS-CoV-2 infection, this group of 20 patients represents a third immunotype. Immunotype 3 was negatively associated with UMAP components 1 and 2 and negatively associated with disease severity, which suggests that a less robust immune response during COVID-19 was associated with less severe pathology (<a href="#F6" class="usa-link">Fig. 6K</a> and fig. S10), despite the fact that these patients were hospitalized with COVID-19. These data further emphasize the different ways in which patients can present with and possibly die from COVID-19. These patterns may be related to preexisting conditions in combination with immune response characteristics. It is likely that additional immune features, such as comprehensive serum cytokine measurements, will improve this model. Nevertheless, the current computational approach integrating deep immune profiling with disease severity trajectory and other clinical information revealed distinct patient immunotypes linked to distinct clinical outcomes (fig. S11).</p></section><section id="sec11"><h2 class="pmc_sec_title">Discussion</h2> <p>The T and B cell response to SARS-CoV-2 infection remains poorly understood. Some studies suggest that an overaggressive immune response leads to immunopathology (<a href="#R51" class="usa-link" aria-describedby="R51"><em>51</em></a>), whereas others suggest that the mechanism is T cell exhaustion or dysfunction (<a href="#R12" class="usa-link" aria-describedby="R12"><em>12</em></a>–<a href="#R14" class="usa-link" aria-describedby="R14"><em>14</em></a>). Autopsies revealed high virus levels in the respiratory tract and other tissues (<a href="#R52" class="usa-link" aria-describedby="R52"><em>52</em></a>), suggesting ineffective immune responses. Nevertheless, nonhospitalized individuals who recovered from COVID-19 had evidence of virus-specific T cell memory (<a href="#R53" class="usa-link" aria-describedby="R53"><em>53</em></a>). SARS-CoV-2–specific antibodies are also found in convalescent individuals, and patients are currently being treated with convalescent plasma therapy (<a href="#R30" class="usa-link" aria-describedby="R30"><em>30</em></a>, <a href="#R54" class="usa-link" aria-describedby="R54"><em>54</em></a>). However, COVID-19 patients in intensive care units (ICUs) have SARS-CoV-2–specific antibodies (<a href="#R30" class="usa-link" aria-describedby="R30"><em>30</em></a>), raising the question of why patients with these antibody responses are not controlling disease. In general, these previous studies have reported on single patients or small cohorts and thus do not achieve comprehensive deep immune profiling of larger numbers of hospitalized COVID-19 patients. Such knowledge would address the critical question of whether there is a common profile of immune dysfunction in critically ill patients. Such data would also help guide testing of therapeutics to enhance, inhibit, or otherwise tailor the immune response in COVID-19 patients.</p> <p>To elucidate the immune response patterns of hospitalized patients with COVID-19, we studied a cohort of ~125 patients. We used high-dimensional flow cytometry to perform deep immune profiling of individual B and T cell populations, with temporal analysis of immune changes during infection, and combined this profiling with extensive clinical data to understand the relationships between immune responses to SARS-CoV-2 and disease severity. This approach led us to several key findings. First, a defining feature of COVID-19 in hospitalized patients is heterogeneity of the immune response. Many COVID-19 patients displayed robust CD8 T cell and/or CD4 T cell activation and proliferation and PB responses, though a substantial subgroup of patients (~20%) had minimal detectable responses compared with controls. Furthermore, even within those patients who mounted detectable B and T cell responses during COVID-19, the immune characteristics of the responses were heterogeneous. With the use of deep immune profiling, we identified three immunotypes in hospitalized COVID-19 patients: (i) robust activation and proliferation of CD4 T cells, relative lack of cT<sub>FH</sub> cells, modest activation of EMRA-like cells, highly activated or exhausted CD8 T cells, and a signature of T-bet<sup>+</sup> PBs (immunotype 1); (ii) Tbet<sup>bright</sup> effector-like CD8 T cell responses, less robust CD4 T cell responses, and Ki67<sup>+</sup> PBs and memory B cells (immunotype 2); and (iii) an immunotype largely lacking detectable lymphocyte response to infection, which suggests a failure of immune activation (immunotype 3). UMAP embedding further resolved the T cell–activation immunotype, suggesting a link between CD4 T cell activation, immunotype 1, and increased severity score. Although differences in age and race existed between the cohorts and could affect some immune variables, the major UMAP relationships were preserved even after correcting for these variables. Thus, these immunotypes may reflect fundamental differences in the ways in which patients respond to SARS-CoV-2 infection.</p> <p>A second key observation from these studies was the robust PB response. Some patients had PB frequencies rivaling those found in acute Ebola or dengue infection (<a href="#R34" class="usa-link" aria-describedby="R34"><em>34</em></a>, <a href="#R42" class="usa-link" aria-describedby="R42"><em>42</em></a>, <a href="#R43" class="usa-link" aria-describedby="R43"><em>43</em></a>, <a href="#R55" class="usa-link" aria-describedby="R55"><em>55</em></a>). Furthermore, blood PB frequencies are typically correlated with blood-activated cT<sub>FH</sub> responses (<a href="#R40" class="usa-link" aria-describedby="R40"><em>40</em></a>). However, in COVID-19 patients, this relationship between PBs and activated cT<sub>FH</sub> cells was weak. The lack of relationship between these two cell types in this disease could be due to T cell–independent B cell responses, lack of activated cT<sub>FH</sub> cells in peripheral blood at the time point analyzed, or lower CXCR5 expression observed across lymphocyte populations, making it more difficult to identify cT<sub>FH</sub> cells. Activated (CD38<sup>+</sup>HLA-DR<sup>+</sup>) CD4 T cells could play a role in providing B cell help, perhaps as part of an extrafollicular response, but such a connection was not robust in the current data. Most ICU patients made SARS-CoV-2–specific antibodies, suggesting that at least part of the PB response was antigen specific. Indeed, the cT<sub>FH</sub> response did correlate with antibodies, which indicates that at least some of the humoral response is targeted against the virus. Future studies will be needed to address the antigen specificity, ontogeny, and role in pathogenesis for these robust PB responses.</p> <p>A notable feature of some patients with strong T and B cell activation and proliferation was the durability of the PB response. This T and B cell activation was interesting considering the clinical lymphopenia in many patients. However, this lymphopenia was preferential for CD8 T cells. It may be notable that such focal lymphopenia preferentially affecting CD8 T cells is also a feature of acute Ebola infection of macaques and is associated with CD95 expression and severe disease (<a href="#R55" class="usa-link" aria-describedby="R55"><em>55</em></a>). Indeed, CD95 was associated with activated T cell clusters in COVID-19. Nevertheless, the frequency of the KI67<sup>+</sup> or CD38<sup>+</sup>HLA-DR<sup>+</sup> CD8 and CD4 T cell responses in COVID-19 patients was similar in magnitude to those of other acute viral infections or live attenuated vaccines in humans (<a href="#R47" class="usa-link" aria-describedby="R47"><em>47</em></a>–<a href="#R49" class="usa-link" aria-describedby="R49"><em>49</em></a>). However, during many acute viral infections, the period for peak CD8 or CD4 T cell responses and the window for PB detection in peripheral blood are relatively short (<a href="#R43" class="usa-link" aria-describedby="R43"><em>43</em></a>, <a href="#R56" class="usa-link" aria-describedby="R56"><em>56</em></a>, <a href="#R57" class="usa-link" aria-describedby="R57"><em>57</em></a>). The stability of CD8 and CD4 T cell activation and PB responses during COVID-19 suggests a prolonged period of peak immune responses at the time of hospitalization or perhaps a failure to appropriately down-regulate responses in some patients. These ideas would fit with an overaggressive immune response and/or “cytokine storm” (<a href="#R2" class="usa-link" aria-describedby="R2"><em>2</em></a>) in this subset of patients. Indeed, in some patients, we found elevated serum cytokines and that stimulation of T cells in vitro provoked cytokines and chemokines capable of activating and recruiting myeloid cells. A key question will be how to identify these patients for selected immune-regulatory treatment while avoiding treating patients with already weak T and B cell responses.</p> <p>An additional major finding was the ability to connect immune features to disease severity at the time of sampling as well as to the trajectory of disease severity change over time. Using correlative analyses, we observed relationships between features of the different immunotypes, patient comorbidities, and clinical features of COVID-19. By integrating ~200 immune features with extensive clinical data, disease severity scores, and temporal changes, we built an integrated computational model that connected patient immune response phenotype to disease severity. This UMAP embedding approach allowed us to connect these integrated immune signatures to specific clinically measurable features of disease. The integrated immune signatures captured by components 1 and 2 in this UMAP model provided support for the concept of immunotypes 1 and 2. These analyses suggested that immunotype 1—composed of robust CD4 T cell activation, paucity of cT<sub>FH</sub> cells with proliferating effector or exhausted CD8 T cells, and T-bet<sup>+</sup> PB involvement—was connected to more-severe disease, whereas immunotype 2—characterized by more traditional effector CD8 T cells subsets, less CD4 T cell activation, and proliferating PBs and memory B cells—was better captured by UMAP component 2. Immunotype 3, in which minimal lymphocyte activation response was observed, may represent ~20% of COVID-19 patients and is a potentially important scenario to consider for patients who may have failed to mount a robust antiviral T and B cell response. This UMAP integrated modeling approach could be improved in the future with additional data on other immune cell types and/or comprehensive data for circulating inflammatory mediators for all patients. Nevertheless, these findings provoke the idea of tailoring clinical treatments or future immune-based clinical trials to patients whose immunotype suggests greater potential benefit.</p> <p>Respiratory viral infections can cause pathology as a result of an immune response that is too weak, resulting in virus-induced pathology, or too strong, leading to immunopathology (<a href="#R58" class="usa-link" aria-describedby="R58"><em>58</em></a>). Our data suggest that the immune response of hospitalized COVID-19 patients may fall across this spectrum of immune response patterns, presenting as distinct immunotypes linked to clinical features, disease severity, and temporal changes in response and pathogenesis. This study provides a compendium of immune response data and an integrated framework to connect immune features to disease. By localizing patients on an immune topology map built on this dataset, we can begin to infer which types of therapeutic interventions may be most useful in specific patients.</p></section><section id="sec12"><h2 class="pmc_sec_title">Materials and methods</h2> <section id="sec13"><h3 class="pmc_sec_title">Patients, participants, and clinical data collection</h3> <p>Patients admitted to the Hospital of the University of Pennsylvania with a positive SARS-CoV-2 PCR test were screened and approached for informed consent within 3 days of hospitalization. Healthy donors (HDs) were adults with no prior diagnosis of or recent symptoms consistent with COVID-19. Normal reference ranges for HDs were the University of Pennsylvania clinical laboratory values shaded in green in <a href="#F1" class="usa-link">Fig. 1B</a>. Recovered donors (RDs) were adults with a prior positive COVID-19 PCR test by self-report who met the definition of recovery by the Centers for Disease Control and Prevention. HDs and RDs were recruited initially by word of mouth and subsequently through a centralized University of Pennsylvania resource website for COVID-19–related studies. Peripheral blood was collected from all participants. For inpatients, clinical data were abstracted from the electronic medical record into standardized case report forms. ARDS was categorized in accordance with the Berlin Definition, reflecting each individual’s worst oxygenation level and with physician adjudication of chest radiographs. APACHE III scoring was based on data collected in the first 24 hours of ICU admission or the first 24 hours of hospital admission for participants admitted to general inpatient units. Clinical laboratory data were abstracted from the date closest to that of research blood collection. HDs and RDs completed a survey about symptoms. After enrollment, the clinical team determined three patients to be COVID-negative and/or PCR false-positive. Two of these patients were classified as immunotype 3. In keeping with inclusion criteria, these individuals were maintained in the analysis. The statistical significance reported in <a href="#F6" class="usa-link">Fig. 6K</a> did not change when analysis was repeated without these three patients. All participants or their surrogates provided informed consent in accordance with protocols approved by the regional ethical research boards and the Declaration of Helsinki.</p></section><section id="sec14"><h3 class="pmc_sec_title">Sample processing</h3> <p>Peripheral blood was collected into sodium heparin tubes (BD, catalog no. 367874). Tubes were spun [15 min, 3000 rpm, room temperature (RT)], and plasma was removed and banked. Remaining whole blood was diluted 1:1 with 1% RPMI (table S7) and layered into a SEPMATE tube (STEMCELL Technologies, catalog no. 85450) preloaded with lymphoprep (STEMCELL Technologies, catalog no. 1114547). SEPMATE tubes were spun (10 min, 1200×<em>g</em>, RT), and the PBMC layer was collected, washed with 1% RPMI (10 min, 1600 rpm, RT), and treated with ACK lysis buffer (5 min, ThermoFisher, catalog no. A1049201). Samples were filtered with a 70-μm filter, counted, and aliquoted for staining.</p></section><section id="sec15"><h3 class="pmc_sec_title">Antibody panels and staining</h3> <p>Approximately 1 × 10<sup>6</sup> to 5 × 10<sup>6</sup> freshly isolated PBMCs were used per patient per stain. See table S7 for buffer information and table S8 for antibody panel information. PBMCs were stained with live/dead mix (100 μl, 10 min, RT), washed with fluorescence-activated cell sorting (FACS) buffer, and spun down (1500 rpm, 5 min, RT). PBMCs were incubated with 100 μl of Fc block (RT, 10 min) before a second wash (FACS buffer, 1500 rpm, 5 min, RT). Pellet was resuspended in 25 μl of chemokine receptor staining mix and incubated at 37°C for 20 min. After incubation, 25 μl of surface receptor staining mix was directly added, and the PBMCs were incubated at RT for a further 45 min. PBMCs were washed (FACS buffer, 1500 rpm, 5 min, RT) and stained with 50 μl of secondary antibody mix for 20 min at RT and then washed again (FACS buffer, 1500 rpm, 5 min, RT). Samples were fixed and permeabilized by incubating in 100 μl of Fix/Perm buffer (RT, 30 min) and washing in Perm Buffer (1800 rpm, 5 min, RT). PBMCs were stained with 50 μl of intracellular mix overnight at 4°C. The following morning, samples were washed (Perm Buffer, 1800 rpm, 5 min, RT) and further fixed in 50 μl of 4% paraformaldehyde (PFA). Before acquisition, samples were diluted to 1% PFA, and 10,000 counting beads were added per sample (BD, catalog no. 335925). Live/dead mix was prepared in phosphate-buffered saline (PBS). For the surface receptor and chemokine staining mix, antibodies were diluted in FACS buffer with 50% BD Brilliant Buffer (BD, catalog no. 566349). Intracellular mix was diluted in Perm Buffer.</p></section><section id="sec16"><h3 class="pmc_sec_title">Flow cytometry</h3> <p>Samples were acquired on a five-laser BD FACS Symphony A5. Standardized SPHERO rainbow beads (Spherotech, catalog no. RFP-30-5A) were used to track and adjust photomultiplier tubes over time. UltraComp eBeads (ThermoFisher, catalog no. 01-2222-42) were used for compensation. Up to 2 × 10<sup>6</sup> live PBMCs were acquired per sample.</p></section><section id="sec17"><h3 class="pmc_sec_title">Luminex</h3> <p>PBMCs from patients were thawed and rested overnight at 37°C in complete RPMI (table S7). Flat-bottom plates with 96 wells were coated with 1 μg/ml of anti-CD3 (UCHT1, no. BE0231, BioXell) in PBS at 4°C overnight. The next day, cells were collected and plated at 1 × 10<sup>5</sup> per well in 100 μl in duplicate. Anti-human CD28/CD49d (2 μg/ml) was added to the wells containing plate-bound anti-CD3 (Clone L293, 347690, BD). PBMCs were stimulated or left unstimulated for 16 hours and spun down (1200 rpm, 10 min), and supernatant (85 μl per well) was collected. Plasma from matched individuals was thawed on ice and spun (3000 rpm, 1 min) to remove debris, and 85 μl were collected in duplicate. Luminex assay was run according to manufacturer’s instructions, using a custom human cytokine 31-plex panel (EMD Millipore Corporation, SPRCUS707). The panel included EGF, FGF-2, eotaxin, sIL-2Ra, G-CSF, GM-CSF, IFN-α2, IFN-γ, IL-10, IL-12P40, IL-12P70, IL-13, IL-15, IL-17A, IL-1Ra, HGF, IL-1β, CXCL9/MIG, IL-2, IL-4, IL-5, IL-6, IL-7, CXCL8/IL-8, CXCL10/IP-10, CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, RANTES, TNF-α, and VEGF. Assay plates were measured using a Luminex FlexMAP 3D instrument (ThermoFisher, catalog no. APX1342).</p> <p>Data acquisition and analysis were performed using xPONENT software (<a href="http://www.luminexcorp.com/xponent/" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">www.luminexcorp.com/xponent/</a>). Data quality was examined on the basis of the following criteria: The standard curve for each analyte has a five-parameter <em>R</em><sup>2</sup> value &gt; 0.95 with or without minor fitting using xPONENT software. To pass assay technical quality control, the results for two controls in the kit needed to be within the 95% confidence interval provided by the vendor for &gt;25 of the tested analytes. No further tests were done on samples with results categorized as out-of-range low (&lt;OOR). Samples with results that were out-of-range high (&gt;OOR) or greater than the standard curve maximum value (SC max) were not tested at higher dilutions without further request.</p></section><section id="sec18"><h3 class="pmc_sec_title">Intracellular stain after CD3/CD28 stimulation</h3> <p>Flat-bottom plates (96 wells) were coated with 1 μg/ml of anti-CD3 (UCHT1, no. BE0231, BioXell) in PBS at 4°C overnight. The next day, cells were collected and plated at 1 × 10<sup>5</sup> per well in 100 μl with 1/1000 of GolgiPlug (BD, no. 555029). Anti-human CD28/CD49d (2 μg/ml) was added to the wells containing plate-bound anti-CD3 (Clone L293, 347690, BD). GolgiPlug-treated PBMCs were stimulated or left unstimulated for 16 hours, spun down (1200 rpm, 10 min), and stained for intracellular IFNγ.</p></section><section id="sec19"><h3 class="pmc_sec_title">Longitudinal analysis D0 to D7 and patient grouping</h3> <p>To identify participants in which the frequency of specific immune cell populations increased, decreased, or stayed stable over time (D0 to D7), we used a previously published dataset (where data were available) to establish a standard range of fold change over time in a healthy cohort (<a href="#R44" class="usa-link" aria-describedby="R44"><em>44</em></a>). A fold change greater than the mean fold change ± 2 standard deviations was considered an increase, less than this range was considered a decrease, and within this range was considered stable. Where these data were not available, a fold change from D0 to D7 of between 0.5 and 1.5 was considered stable. A fold change &lt;0.5 was considered a decrease, and &gt;1.5 was considered an increase. To eliminate redundant tests and maximize statistical power, the pairwise statistical tests shown in <a href="#F5" class="usa-link">Fig. 5G</a> were performed using fold change as a continuous metric, irrespective of the discrete up, stable, or down classification described above. Similarly, as shown in fig. S9G, pairwise association tests between changes in UMAP component coordinates and clinical data were performed using each difference value as a continuous metric, irrespective of the up, stable, or down classification.</p></section><section id="sec20"><h3 class="pmc_sec_title">Correlation plots and heatmap visualization</h3> <p>Pairwise correlations between variables were calculated and visualized as a correlogram using R function <em>corrplot</em>. Spearman’s rank correlation coefficient (ρ) was indicated by square size and heat scale; significance was indicated by *<em>P</em> &lt; 0.05, **<em>P</em> &lt; 0.01, and ***<em>P</em> &lt; 0.001; and a black box indicates a false-discovery rate (FDR) &lt; 0.05. Heatmaps were created to visualize variable values using R function <em>pheatmap</em> or <em>complexheatmap</em>.</p></section><section id="sec21"><h3 class="pmc_sec_title">Statistics</h3> <p>Owing to the heterogeneity of clinical and flow cytometric data, nonparametric tests of association were preferentially used throughout this study unless otherwise specified. Correlation coefficients between ordered features (including discrete ordinal, continuous scale, or a mixture of the two) were quantified by the Spearman rank correlation coefficient, and significance was assessed by the corresponding nonparametric methods (null hypothesis: ρ = 0). Tests of association between mixed continuous versus nonordered categorical variables were performed by unpaired Wilcoxon test (for <em>n</em> = 2 categories) or Kruskal-Wallis test (for <em>n</em> &gt; 2 categories). Association between categorical variables was assessed by Fisher’s exact test. For association testing illustrated in heatmaps, categorical variables with more than two categories (e.g., ABO blood type) were transformed into binary “dummy” variables for each category versus the rest. All tests were performed in a two-sided manner, using a nominal significance threshold of <em>P</em> &lt; 0.05 unless otherwise specified. When appropriate to adjust for multiple hypothesis testing, FDR correction was performed using the Benjamini-Hochberg procedure at the FDR &lt; 0.05 significance threshold. Joint statistical modeling to adjust for confounding of demographic factors (age, sex, and race) when testing for association of UMAP components 1 and 2 with the NIH Ordinal Severity Scale was performed using ordinal logistic regression provided by the <em>polr</em> function of the R package <em>MASS</em>. Statistical analysis of flow cytometry data was performed using the R package <em>rstatix</em>. Other details, if any, for each experiment are provided within the relevant figure legends.</p></section><section id="sec22"><h3 class="pmc_sec_title">High-dimensional data analysis of flow cytometry data</h3> <p>viSNE and FlowSOM analyses were performed on Cytobank (<a href="https://cytobank.org" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">https://cytobank.org</a>). B cells, non-naïve CD4 T cells, and non-naïve CD8 T cells were analyzed separately. viSNE analysis was performed using equal sampling of 1000 cells from each FCS file, with 5000 iterations, a perplexity of 30, and a theta of 0.5. For B cells, the following markers were used to generate the viSNE maps: CD45RA, IgD, CXCR5, CD138, Eomes, TCF-1, CD38, CD95, CCR7, CD21, KI67, CD27, CX3CR1, CD39, T-bet, HLA-DR, CD16, CD19 and CD20. For non-naïve CD4 and CD8 T cells, the following markers were used: CD45RA, PD-1, CXCR5, TCF-1, CD38, CD95, Eomes, CCR7, KI67, CD16, CD27, CX3CR1, CD39, CD20, T-bet, and HLA-DR. Resulting viSNE maps were fed into the FlowSOM clustering algorithm (<a href="#R59" class="usa-link" aria-describedby="R59"><em>59</em></a>). For each cell subset, a new self-organizing map (SOM) was generated using hierarchical consensus clustering on the tSNE axes. For each SOM, 225 clusters and 10 or 15 metaclusters were identified for B cells and T cells, respectively.</p> <p>To group individuals on the basis of B cell landscape, pairwise EMD values were calculated on the B cell tSNE axes for all COVID-19 D0 patients, HDs, and RDs using the <em>emdist</em> package in R, as previously described (<a href="#R60" class="usa-link" aria-describedby="R60"><em>60</em></a>). Resulting scores were hierarchically clustered using the <em>hclust</em> package in R.</p></section><section id="sec23"><h3 class="pmc_sec_title">Batch correction</h3> <p>During the sample-acquisition period, the flow panel was changed to remove one antibody. Batch correction was performed for samples acquired before and after this change to remove potential bias from downstream analysis. Because the primary flow features were expressed as a fraction of the parent population (falling in the 0-to-1 interval), a variance stabilizing transform (logit) was first applied to each data value prior to recentering the second panel to have the same mean as the first. After mean-centering, data were transformed back to the original fraction of parent scale by inverse transform. This procedure was applied separately to all 553 flow features annotated in the main text and supplemental data. Notably, this procedure avoids any batch-corrected feature values artificially falling outside of the original 0-to-1 range. After batch correction, neither UMAP component 1 nor component 2 had a statistically significant difference between panels by unpaired Wilcoxon test.</p></section><section id="sec24"><h3 class="pmc_sec_title">Visualizing variation of flow cytometric features across the UMAP embedding space</h3> <p>A feature-weighted kernel density was computed across all COVID-19 patients and was displayed as a contour plot (<a href="#F6" class="usa-link">Fig. 6G</a> and fig. S8, A to D). Whereas traditional kernel density methods apply the same base kernel function to every point to visualize point density, in this case the base kernel function centered at each individual COVID-19 patient sample was instead weighted (multiplied) by the Z-transform (mean-centered and standard deviation–scaled) of the log-transformed input feature prior to computing the overall kernel density. This weighting procedure facilitated visualization of the overall feature gradients (from relatively low to high expression) across UMAP coordinates. independent of the different range of each input feature. A radially symmetric two-dimensional Gaussian was used as the base kernel function with a variance parameter of one-half, which was tuned to be sufficiently broad in order to smooth out local discontinuities and best visualize feature gradients.</p></section><section id="sec25"><h3 class="pmc_sec_title">Definition of immunotype 3</h3> <p>To define COVID-19 patients with low or absent immune responses, classified as immunotype 3, the intersection of the bottom 50% of five different flow parameters was used: PB as percentage of B cells, KI67<sup>+</sup> as percentage of non-naïve CD4 T cells, KI67<sup>+</sup> as percentage of non-naïve CD8 T cells, HLA-DR<sup>+</sup>CD38<sup>+</sup> as percentage of non-naïve CD4 T cells, and HLA-DR<sup>+</sup>CD38<sup>+</sup> as percentage of non-naïve CD8 T cells. See fig. S10.</p></section></section><section id="ack1" class="ack"><h2 class="pmc_sec_title">Acknowledgments</h2> <p>We thank the patients and blood donors, their families and surrogates, and medical personnel. We also thank L. Bershaw for recruitment of HDs and RDs, S. Ngiow for essential infrastructure support, C. Ash for donation of computational equipment and design of schematic figures, and the Wherry lab for discussions and critical reading of the manuscript. <strong>Funding:</strong> This work was supported by the University of Pennsylvania Institute for Immunology Glick COVID-19 research award (M.R.B.), NIH grants AI105343 and AI082630 and the Allen Institute for Immunology (E.J.W.), and NIH grants HL137006 and H137915 (N.J.M.). A.C.H. was funded by grant CA230157 from the NIH. D.M. and J.R.G. were funded by NIH grant T32 CA009140. Z.C. was funded by NIH grant CA234842. D.A.O. was funded by NHLBI StARR: 1R38HL143613. N.J.M. reports funding to her institution from Athersys, Inc., Biomarck, Inc., and the Marcus Foundation for Research. J.R.G. is a Cancer Research Institute–Mark Foundation Fellow. J.R.G., J.E.W., C.A., A.C.H., and E.J.W. are supported by the Parker Institute for Cancer Immunotherapy, which supports the Cancer Immunology program at the University of Pennsylvania. <strong>Author contributions:</strong> D.M., N.J.M., M.J.B., and E.J.W. conceived the project. D.M., J.R.G., A.E.B., and E.J.W. designed the experiments. N.J.M. conceived the clinical cohort, obtained clinical samples and metadata from COVID-19 patients, and provided clinical input. O.K. and J.D. provided clinical samples from HDs and RDs. A.E.B. and K.D. coordinated clinical sample procurement and processing. D.M., A.R.G., L.K.-C., M.B.P., N.H., J.K., A.P., F.C., and S.F.L. processed patient samples. D.M., Z.C., and Y.J.H. stained and J.E.W. acquired flow cytometry samples. J.R.G., A.E.B., and K.N. performed downstream flow cytometry analysis. H.R. and S.C. performed quantitative reverse transcription PCR of PBMCs. D.M., S.F.L., and F.C. performed Luminex experiments. E.C.G., E.M.A., M.E.W., S.G., C.P.A., M.J.B., and S.E.H. analyzed COVID-19 patient plasma and provided antibody data. A.C.H. and L.A.V. provided additional clinical data. C.A. compiled and J.R.G., D.A.O., and C.A. analyzed clinical metadata, with input from A.C.H. and L.A.V. J.R.G., D.A.O., S.M., and E.J.W. designed data analysis, and J.R.G., A.R.G., C.A., D.A.O., and S.M. performed computational and statistical analyses. D.M., J.R.G., A.R.G., C.A., and D.A.O. compiled the figures. L.K.-C., M.B.P., S.A.A., A.C.H., L.A.V., N.J.M., and M.R.B. provided intellectual input. D.M., A.E.B., A.R.G., J.E.W., and E.J.W. wrote the manuscript, and all authors reviewed the manuscript. <strong>Competing interests:</strong> E.J.W. has consulting agreements with and/or is on the scientific advisory board for Merck, Roche, Pieris, Elstar, and Surface Oncology. E.J.W. is a founder of Surface Oncology and Arsenal Biosciences. E.J.W. has a patent licensing agreement on the PD-1 pathway with Roche/Genentech. E.J.W. is an inventor on a patent (U.S. patent number 10,370,446) submitted by Emory University that covers the use of PD-1 blockade to treat infections and cancer. <strong>Data and materials availability:</strong> Flow cytometry data collected in this study were deposited to the Human Pancreas Analysis Program (HPAP-RRID:SCR_016202) Database and Cytobank (<a href="#R61" class="usa-link" aria-describedby="R61"><em>61</em></a>) (<a href="https://hpap.pmacs.upenn.edu" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">https://hpap.pmacs.upenn.edu</a>): B cell data (<a href="https://premium.cytobank.org/cytobank/experiments/308353" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">https://premium.cytobank.org/cytobank/experiments/308353</a>), non-naïve CD4 T cells (<a href="https://premium.cytobank.org/cytobank/experiments/308354" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">https://premium.cytobank.org/cytobank/experiments/308354</a>), and non-naïve CD8 T cells (<a href="https://premium.cytobank.org/cytobank/experiments/308357" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">https://premium.cytobank.org/cytobank/experiments/308357</a>). This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To view a copy of this license, visit <a href="https://creativecommons.org/licenses/by/4.0/" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">https://creativecommons.org/licenses/by/4.0/</a>. This license does not apply to figures/photos/artwork or other content included in the article that is credited to a third party; obtain authorization from the rights holder before using such material.</p></section><section id="app" class="app"><h2 class="pmc_sec_title">The UPenn COVID Processing Unit</h2> <p>Zahidul Alam, Mary M. Addison, Katelyn T. Byrne, Aditi Chandra, Hélène C. Descamps, Yaroslav Kaminskiy, Jacob T. Hamilton, Julia Han Noll, Dalia K. Omran, Eric Perkey, Elizabeth M. Prager, Dana Pueschl, Jennifer B. Shah, Jake S. Shilan, Ashley N. Vanderbeck</p> <p>University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.</p></section><section id="app2" class="app"><h2 class="pmc_sec_title">Supplementary Materials</h2> <section class="sm xbox font-sm" id="supplementary-material1"><div class="caption p"> <p><a href="https://science.sciencemag.org/content/369/6508/eabc8511/suppl/DC1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">science.sciencemag.org/content/369/6508/eabc8511/suppl/DC1</a></p> <p>Figs. S1 to S11</p> <p>Table S1 to S8</p> </div></section></section><section id="app3" class="app"><p><a href="https://en.bio-protocol.org/cjrap.aspx?eid=10.1126/science.abc8511" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">View/request a protocol for this paper from <em>Bio-protocol</em></a>.</p></section><section id="_ci93_" lang="en" class="contrib-info"><h2 class="pmc_sec_title">Contributor Information</h2> <p>Collaborators: <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Alam%20Z%22%5BAuthor%5D" class="usa-link">Zahidul Alam</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Addison%20MM%22%5BAuthor%5D" class="usa-link">Mary M. Addison</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Byrne%20KT%22%5BAuthor%5D" class="usa-link">Katelyn T. Byrne</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Chandra%20A%22%5BAuthor%5D" class="usa-link">Aditi Chandra</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Descamps%20HC%22%5BAuthor%5D" class="usa-link">Hélène C. Descamps</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Kaminskiy%20Y%22%5BAuthor%5D" class="usa-link">Yaroslav Kaminskiy</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Hamilton%20JT%22%5BAuthor%5D" class="usa-link">Jacob T. Hamilton</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Noll%20JH%22%5BAuthor%5D" class="usa-link">Julia Han Noll</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Omran%20DK%22%5BAuthor%5D" class="usa-link">Dalia K. Omran</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Perkey%20E%22%5BAuthor%5D" class="usa-link">Eric Perkey</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Prager%20EM%22%5BAuthor%5D" class="usa-link">Elizabeth M. Prager</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Pueschl%20D%22%5BAuthor%5D" class="usa-link">Dana Pueschl</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Shah%20JB%22%5BAuthor%5D" class="usa-link">Jennifer B. Shah</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Shilan%20JS%22%5BAuthor%5D" class="usa-link">Jake S. Shilan</a>, and <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Vanderbeck%20AN%22%5BAuthor%5D" class="usa-link">Ashley N. Vanderbeck</a></p></section><section id="ref-list1" class="ref-list"><h2 class="pmc_sec_title">References and Notes</h2> <section id="ref-list1_sec2"><ul class="ref-list font-sm" style="list-style-type:none"> <li id="R1"> <span class="label">1.</span><cite>E. Iype, S. Gulati, Understanding the asymmetric spread and case fatality rate (CFR) for COVID-19 among countries. medRxiv 20073791 [Preprint]. 26 April 2020. 10.1101/2020.04.21.20073791</cite> [<a href="https://doi.org/10.1101/2020.04.21.20073791" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>]</li> <li id="R2"> <span class="label">2.</span><cite>Moore J. B., June C. H., Cytokine release syndrome in severe COVID-19. Science 368, 473–474 (2020). 10.1126/science.abb8925</cite> [<a href="https://doi.org/10.1126/science.abb8925" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32303591/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Science&amp;title=Cytokine%20release%20syndrome%20in%20severe%20COVID-19&amp;volume=368&amp;publication_year=2020&amp;pages=473-474&amp;pmid=32303591&amp;doi=10.1126/science.abb8925&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R3"> <span class="label">3.</span><cite>Shi Y., Wang Y., Shao C., Huang J., Gan J., Huang X., Bucci E., Piacentini M., Ippolito G., Melino G., COVID-19 infection: The perspectives on immune responses. Cell Death Differ. 27, 1451–1454 (2020). 10.1038/s41418-020-0530-3</cite> [<a href="https://doi.org/10.1038/s41418-020-0530-3" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7091918/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32205856/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell%20Death%20Differ.&amp;title=COVID-19%20infection:%20The%20perspectives%20on%20immune%20responses&amp;volume=27&amp;publication_year=2020&amp;pages=1451-1454&amp;pmid=32205856&amp;doi=10.1038/s41418-020-0530-3&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R4"> <span class="label">4.</span><cite>Vabret N., Britton G. J., Gruber C., Hegde S., Kim J., Kuksin M., Levantovsky R., Malle L., Moreira A., Park M. D., Pia L., Risson E., Saffern M., Salomé B., Esai Selvan M., Spindler M. P., Tan J., van der Heide V., Gregory J. K., Alexandropoulos K., Bhardwaj N., Brown B. D., Greenbaum B., Gümüş Z. H., Homann D., Horowitz A., Kamphorst A. O., Curotto de Lafaille M. A., Mehandru S., Merad M., Samstein R. M.; Sinai Immunology Review Project , Immunology of COVID-19: Current state of the science. Immunity 52, 910–941 (2020). 10.1016/j.immuni.2020.05.002</cite> [<a href="https://doi.org/10.1016/j.immuni.2020.05.002" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7200337/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32505227/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Immunity&amp;title=Immunology%20of%20COVID-19:%20Current%20state%20of%20the%20science&amp;volume=52&amp;publication_year=2020&amp;pages=910-941&amp;pmid=32505227&amp;doi=10.1016/j.immuni.2020.05.002&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R5"> <span class="label">5.</span><cite>D. Weiskopf, K. S. Schmitz, M. P. Raadsen, A. Grifoni, N. M. A. Okba, H. Endeman, J. P. C. van den Akker, R. Molenkamp, M. P. G. Koopmans, E. C. M. van Gorp, B. L. Haagmans, R. L. de Swart, A. Sette, R. D. de Vries, Phenotype of SARS-CoV-2-specific T-cells in COVID-19 patients with acute respiratory distress syndrome. medRxiv 20062349 [Preprint]. 29 May 2020. 10.1101/2020.04.11.20062349</cite> [<a href="https://doi.org/10.1101/2020.04.11.20062349" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7319493/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32591408/" class="usa-link">PubMed</a>]</li> <li id="R6"> <span class="label">6.</span><cite>Grifoni A., Weiskopf D., Ramirez S. I., Mateus J., Dan J. M., Moderbacher C. R., Rawlings S. A., Sutherland A., Premkumar L., Jadi R. S., Marrama D., de Silva A. M., Frazier A., Carlin A. F., Greenbaum J. A., Peters B., Krammer F., Smith D. M., Crotty S., Sette A., Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181, 1489–1501.e15 (2020). 10.1016/j.cell.2020.05.015</cite> [<a href="https://doi.org/10.1016/j.cell.2020.05.015" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7237901/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32473127/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell&amp;title=Targets%20of%20T%20cell%20responses%20to%20SARS-CoV-2%20coronavirus%20in%20humans%20with%20COVID-19%20disease%20and%20unexposed%20individuals&amp;volume=181&amp;publication_year=2020&amp;pages=1489-1501.e15&amp;pmid=32473127&amp;doi=10.1016/j.cell.2020.05.015&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R7"> <span class="label">7.</span><cite>Y. Zhou, B. Fu, X. Zheng, D. Wang, C. Zhao, Y. Qi, R. Sun, Z. Tian, X. Xu, H. Wei, Aberrant pathogenic GM-CSF+ T cells and inflammatory CD14+ CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. bioRxiv 945576 [Preprint]. 20 February 2020. 10.1101/2020.02.12.945576</cite> [<a href="https://doi.org/10.1101/2020.02.12.945576" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>]</li> <li id="R8"> <span class="label">8.</span><cite>Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y., Xie C., Ma K., Shang K., Wang W., Tian D.-S., Dysregulation of immune response in patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 71, 762–768 (2020). 10.1093/cid/ciaa248</cite> [<a href="https://doi.org/10.1093/cid/ciaa248" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7108125/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32161940/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Clin.%20Infect.%20Dis.&amp;title=Dysregulation%20of%20immune%20response%20in%20patients%20with%20Coronavirus%202019%20(COVID-19)%20in%20Wuhan,%20China&amp;volume=71&amp;publication_year=2020&amp;pages=762-768&amp;pmid=32161940&amp;doi=10.1093/cid/ciaa248&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R9"> <span class="label">9.</span><cite>Chen J., Zhang Z.-Z., Chen Y.-K., Long Q.-X., Tian W.-G., Deng H.-J., Hu J.-L., Zhang X.-X., Pu-Liao J.-L., Xiang J. L., Wang D. X., Hu P., Zhou F. C., Li Z. J., Xu H. M., Cai X. F., Wang D. Q., Hu Y., Tang N., Liu B. Z., Wu G. C., Huang A. L., The clinical and immunological features of pediatric COVID-19 patients in China. Genes Dis. 10.1016/j.gendis.2020.03.008 (2020). 10.1016/j.gendis.2020.03.008</cite> [<a href="https://doi.org/10.1016/j.gendis.2020.03.008" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7194810/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32363222/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Genes%20Dis.&amp;title=The%20clinical%20and%20immunological%20features%20of%20pediatric%20COVID-19%20patients%20in%20China&amp;publication_year=2020&amp;pmid=32363222&amp;doi=10.1016/j.gendis.2020.03.008&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R10"> <span class="label">10.</span><cite>Lei S., Jiang F., Su W., Chen C., Chen J., Mei W., Zhan L.-Y., Jia Y., Zhang L., Liu D., Xia Z.-Y., Xia Z., Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. EClinicalMedicine 21, 100331 (2020). 10.1016/j.eclinm.2020.100331</cite> [<a href="https://doi.org/10.1016/j.eclinm.2020.100331" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7128617/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32292899/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=EClinicalMedicine&amp;title=Clinical%20characteristics%20and%20outcomes%20of%20patients%20undergoing%20surgeries%20during%20the%20incubation%20period%20of%20COVID-19%20infection&amp;volume=21&amp;publication_year=2020&amp;pages=100331&amp;pmid=32292899&amp;doi=10.1016/j.eclinm.2020.100331&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R11"> <span class="label">11.</span><cite>A. G. Laing, A. Lorenc, I. D. M. Del Barrio, A. Das, M. Fish, L. Monin, M. Munoz-Ruiz, D. Mckenzie, T. Hayday, I. F. Quijorna, S. Kamdar, M. Joseph, D. Davies, R. Davis, A. Jennings, I. Zlatareva, P. Vantourout, Y. Wu, V. Sofra, F. Cano, M. Greco, E. Theodoridis, J. Freedman, S. Gee, J. N. E. Chan, S. Ryan, E. B. Blanco, P. Peterson, K. Kisand, L. Haljasmagi, L. Martinez, B. Merrick, K. Bisnauthsing, K. Brooks, M. Ibrahim, J. Mason, F. L. Gomez, K. Babalola, S. Abdul-Jawad, J. Cason, C. Mant, K. Doores, J. Seow, C. Graham, F. di Rosa, J. Edgeworth, M. S. Hari, A. Hayday, A consensus Covid-19 immune signature combines immuno-protection with discrete sepsis-like traits associated with poor prognosis. medRxiv 20125112 [Preprint]. 9 June 2020. 10.1101/2020.06.08.20125112</cite> [<a href="https://doi.org/10.1101/2020.06.08.20125112" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>]</li> <li id="R12"> <span class="label">12.</span><cite>Zheng M., Gao Y., Wang G., Song G., Liu S., Sun D., Xu Y., Tian Z., Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol. 17, 533–535 (2020). 10.1038/s41423-020-0402-2</cite> [<a href="https://doi.org/10.1038/s41423-020-0402-2" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7091858/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32203188/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell.%20Mol.%20Immunol.&amp;title=Functional%20exhaustion%20of%20antiviral%20lymphocytes%20in%20COVID-19%20patients&amp;volume=17&amp;publication_year=2020&amp;pages=533-535&amp;pmid=32203188&amp;doi=10.1038/s41423-020-0402-2&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R13"> <span class="label">13.</span><cite>Zheng H.-Y., Zhang M., Yang C.-X., Zhang N., Wang X.-C., Yang X.-P., Dong X.-Q., Zheng Y.-T., Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell. Mol. Immunol. 17, 541–543 (2020). 10.1038/s41423-020-0401-3</cite> [<a href="https://doi.org/10.1038/s41423-020-0401-3" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7091621/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32203186/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell.%20Mol.%20Immunol.&amp;title=Elevated%20exhaustion%20levels%20and%20reduced%20functional%20diversity%20of%20T%20cells%20in%20peripheral%20blood%20may%20predict%20severe%20progression%20in%20COVID-19%20patients&amp;volume=17&amp;publication_year=2020&amp;pages=541-543&amp;pmid=32203186&amp;doi=10.1038/s41423-020-0401-3&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R14"> <span class="label">14.</span><cite>Diao B., Wang C., Tan Y., Chen X., Liu Y., Ning L., Chen L., Li M., Liu Y., Wang G., Yuan Z., Feng Z., Zhang Y., Wu Y., Chen Y., Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front. Immunol. 11, 827 (2020). 10.3389/fimmu.2020.00827</cite> [<a href="https://doi.org/10.3389/fimmu.2020.00827" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7205903/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32425950/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front.%20Immunol.&amp;title=Reduction%20and%20Functional%20Exhaustion%20of%20T%20Cells%20in%20Patients%20With%20Coronavirus%20Disease%202019%20(COVID-19)&amp;volume=11&amp;publication_year=2020&amp;pages=827&amp;pmid=32425950&amp;doi=10.3389/fimmu.2020.00827&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R15"> <span class="label">15.</span><cite>McLane L. M., Abdel-Hakeem M. S., Wherry E. J., CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annu. Rev. Immunol. 37, 457–495 (2019). 10.1146/annurev-immunol-041015-055318</cite> [<a href="https://doi.org/10.1146/annurev-immunol-041015-055318" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30676822/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Annu.%20Rev.%20Immunol.&amp;title=CD8%20T%20Cell%20Exhaustion%20During%20Chronic%20Viral%20Infection%20and%20Cancer&amp;volume=37&amp;publication_year=2019&amp;pages=457-495&amp;pmid=30676822&amp;doi=10.1146/annurev-immunol-041015-055318&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R16"> <span class="label">16.</span><cite>Thevarajan I., Nguyen T. H. O., Koutsakos M., Druce J., Caly L., van de Sandt C. E., Jia X., Nicholson S., Catton M., Cowie B., Tong S. Y. C., Lewin S. R., Kedzierska K., Breadth of concomitant immune responses prior to patient recovery: A case report of non-severe COVID-19. Nat. Med. 26, 453–455 (2020). 10.1038/s41591-020-0819-2</cite> [<a href="https://doi.org/10.1038/s41591-020-0819-2" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7095036/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32284614/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Med.&amp;title=Breadth%20of%20concomitant%20immune%20responses%20prior%20to%20patient%20recovery:%20A%20case%20report%20of%20non-severe%20COVID-19&amp;volume=26&amp;publication_year=2020&amp;pages=453-455&amp;pmid=32284614&amp;doi=10.1038/s41591-020-0819-2&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R17"> <span class="label">17.</span><cite>Chen G., Wu D., Guo W., Cao Y., Huang D., Wang H., Wang T., Zhang X., Chen H., Yu H., Zhang X., Zhang M., Wu S., Song J., Chen T., Han M., Li S., Luo X., Zhao J., Ning Q., Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 130, 2620–2629 (2020). 10.1172/JCI137244</cite> [<a href="https://doi.org/10.1172/JCI137244" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7190990/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32217835/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Clin.%20Invest.&amp;title=Clinical%20and%20immunological%20features%20of%20severe%20and%20moderate%20coronavirus%20disease%202019&amp;volume=130&amp;publication_year=2020&amp;pages=2620-2629&amp;pmid=32217835&amp;doi=10.1172/JCI137244&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R18"> <span class="label">18.</span><cite>Zhao Q., Meng M., Kumar R., Wu Y., Huang J., Deng Y., Weng Z., Yang L., Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis. Int. J. Infect. Dis. 96, 131–135 (2020). 10.1016/j.ijid.2020.04.086</cite> [<a href="https://doi.org/10.1016/j.ijid.2020.04.086" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7196544/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32376308/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Infect.%20Dis.&amp;title=Lymphopenia%20is%20associated%20with%20severe%20coronavirus%20disease%202019%20(COVID-19)%20infections:%20A%20systemic%20review%20and%20meta-analysis&amp;volume=96&amp;publication_year=2020&amp;pages=131-135&amp;pmid=32376308&amp;doi=10.1016/j.ijid.2020.04.086&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R19"> <span class="label">19.</span><cite>Tan L., Wang Q., Zhang D., Ding J., Huang Q., Tang Y.-Q., Wang Q., Miao H., Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal Transduct. Target. Ther. 5, 33 (2020). 10.1038/s41392-020-0148-4</cite> [<a href="https://doi.org/10.1038/s41392-020-0148-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7100419/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32296069/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Signal%20Transduct.%20Target.%20Ther.&amp;title=Lymphopenia%20predicts%20disease%20severity%20of%20COVID-19:%20A%20descriptive%20and%20predictive%20study&amp;volume=5&amp;publication_year=2020&amp;pages=33&amp;pmid=32296069&amp;doi=10.1038/s41392-020-0148-4&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R20"> <span class="label">20.</span><cite>Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020). 10.1016/S0140-6736(20)30183-5</cite> [<a href="https://doi.org/10.1016/S0140-6736(20)30183-5" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7159299/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31986264/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Lancet&amp;title=Clinical%20features%20of%20patients%20infected%20with%202019%20novel%20coronavirus%20in%20Wuhan,%20China&amp;volume=395&amp;publication_year=2020&amp;pages=497-506&amp;pmid=31986264&amp;doi=10.1016/S0140-6736(20)30183-5&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R21"> <span class="label">21.</span><cite>Guo C., Li B., Ma H., Wang X., Cai P., Yu Q., Zhu L., Jin L., Jiang C., Fang J., Liu Q., Zong D., Zhang W., Lu, K. Li Y., Gao X., Fu B., Liu L., Ma X., Weng J., Wei H., Jin T., Lin J., Qu K., Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm. Nat. Commun. 11, 3924 (2020). 10.1038/s41467-020-17834-w</cite> [<a href="https://doi.org/10.1038/s41467-020-17834-w" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7413381/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32764665/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Commun.&amp;title=Single-cell%20analysis%20of%20two%20severe%20COVID-19%20patients%20reveals%20a%20monocyte-associated%20and%20tocilizumab-responding%20cytokine%20storm&amp;volume=11&amp;publication_year=2020&amp;pages=3924&amp;pmid=32764665&amp;doi=10.1038/s41467-020-17834-w&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R22"> <span class="label">22.</span><cite>Liao M., Liu Y., Yuan J., Wen Y., Xu G., Zhao J., Cheng L., Li J., Wang X., Wang F., Liu L., Amit I., Zhang S., Zhang Z., Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 842–844 (2020). 10.1038/s41591-020-0901-9</cite> [<a href="https://doi.org/10.1038/s41591-020-0901-9" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32398875/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Med.&amp;title=Single-cell%20landscape%20of%20bronchoalveolar%20immune%20cells%20in%20patients%20with%20COVID-19&amp;volume=26&amp;publication_year=2020&amp;pages=842-844&amp;pmid=32398875&amp;doi=10.1038/s41591-020-0901-9&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R23"> <span class="label">23.</span><cite>Wen W., Su W., Tang H., Le W., Zhang X., Zheng Y., Liu X., Xie L., Li J., Ye J., Dong L., Cui X., Miao Y., Wang D., Dong J., Xiao C., Chen W., Wang H., Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. 6, 31 (2020). 10.1038/s41421-020-0168-9</cite> [<a href="https://doi.org/10.1038/s41421-020-0168-9" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7197635/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32377375/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell%20Discov.&amp;title=Immune%20cell%20profiling%20of%20COVID-19%20patients%20in%20the%20recovery%20stage%20by%20single-cell%20sequencing&amp;volume=6&amp;publication_year=2020&amp;pages=31&amp;pmid=32377375&amp;doi=10.1038/s41421-020-0168-9&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R24"> <span class="label">24.</span><cite>E. R. Adams, R. Anand, M. I. Andersson, K. Auckland, J. K. Baillie, E. Barnes, J. Bell, T. Berry, S. Bibi, M. Carroll, S. Chinnakannan, E. Clutterbuck, R. J. Cornall, D. W. Crook, T. De Silva, W. Dejnirattisai, K. E. Dingle, C. Dold, D. W. Eyre, H. Farmer, S. J. Hoosdally, A. Hunter, K. Jeffrey, P. Klenerman, J. Knight, C. Knowles, A. J. Kwok, U. Leuschner, C. Liu, C. Lopez-Camacho, P. C. Matthews, H. McGivern, A. J. Mentzer, J. Milton, J. Mongkolsapaya, S. C. Moore, M. S. Oliveira, F. Pereira, T. Peto, R. J. Ploeg, A. Pollard, T. Prince, D. J. Roberts, J. K. Rudkin, G. R. Screaton, M. G. Semple, D. T. Skelly, E. N. Smith, J. Staves, D. Stuart, P. Supasa, T. Surik, P. Tsang, L. Turtle, A. S. Walker, B. Wang, C. Washington, N. Watkins, J. Whitehouse, S. Beer, R. Levin, A. Espinosa, D. Georgiou, J. C. Martinez Garrido, H. Thraves, E. Perez Lopez, M. del Rocio Fernandez Mendoza, A. J. Sobrino Diaz, V. Sanchez, Evaluation of antibody testing for SARS-Cov-2 using ELISA and lateral flow immunoassays. medRxiv 20066407 [Preprint]. 20 April 2020. 10.1101/2020.04.15.20066407</cite> [<a href="https://doi.org/10.1101/2020.04.15.20066407" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>]</li> <li id="R25"> <span class="label">25.</span><cite>H. Ma, W. Zeng, H. He, D. Zhao, Y. Yang, D. Jiang, P. Zhou, Y. Qi, W. He, C. Zhao, R. Yi, X. Wang, B. Wang, Y. Xu, Y. Yang, A. J. K. Kombe, C. Ding, J. Xie, Y. Gao, L. Cheng, Y. Li, X. Ma, T. Jin, COVID-19 diagnosis and study of serum SARS-CoV-2 specific IgA, IgM and IgG by chemiluminescence immunoanalysis. medRxiv 20064907 [Preprint]. 30 April 2020. 10.1101/2020.04.17.20064907</cite> [<a href="https://doi.org/10.1101/2020.04.17.20064907" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>]</li> <li id="R26"> <span class="label">26.</span><cite>F. Wu, A. Wang, M. Liu, Q. Wang, J. Chen, S. Xia, Y. Ling, Y. Zhang, J. Xun, L. Lu, S. Jiang, H. Lu, Y. Wen, J. Huang, Neutralizing Antibody Responses to SARS-CoV-2 in a COVID-19 Recovered Patient Cohort and Their Implications. SSRN (2020). 10.2139/ssrn.3566211</cite> [<a href="https://doi.org/10.2139/ssrn.3566211" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>]</li> <li id="R27"> <span class="label">27.</span><cite>Okba N. M. A., Müller M. A., Li W., Wang C., GeurtsvanKessel C. H., Corman V. M., Lamers M. M., Sikkema R. S., de Bruin E., Chandler F. D., Yazdanpanah Y., Le Hingrat Q., Descamps D., Houhou-Fidouh N., Reusken C. B. E. M., Bosch B.-J., Drosten C., Koopmans M. P. G., Haagmans B. L., Severe Acute Respiratory Syndrome Coronavirus 2−Specific Antibody Responses in Coronavirus Disease 2019 Patients. Emerg. Infect. Dis. 26, 1478–1488 (2020). 10.3201/eid2607.200841</cite> [<a href="https://doi.org/10.3201/eid2607.200841" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7323511/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32267220/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Emerg.%20Infect.%20Dis.&amp;title=Severe%20Acute%20Respiratory%20Syndrome%20Coronavirus%202%E2%88%92Specific%20Antibody%20Responses%20in%20Coronavirus%20Disease%202019%20Patients&amp;volume=26&amp;publication_year=2020&amp;pages=1478-1488&amp;pmid=32267220&amp;doi=10.3201/eid2607.200841&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R28"> <span class="label">28.</span><cite>Jiang S., Hillyer C., Du L., Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses. Trends Immunol. 41, 355–359 (2020). 10.1016/j.it.2020.03.007</cite> [<a href="https://doi.org/10.1016/j.it.2020.03.007" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7129017/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32249063/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Trends%20Immunol.&amp;title=Neutralizing%20Antibodies%20against%20SARS-CoV-2%20and%20Other%20Human%20Coronaviruses&amp;volume=41&amp;publication_year=2020&amp;pages=355-359&amp;pmid=32249063&amp;doi=10.1016/j.it.2020.03.007&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R29"> <span class="label">29.</span><cite>Ni L., Ye F., Cheng M.-L., Feng Y., Deng Y.-Q., Zhao H., Wei P., Ge J., Gou M., Li X., Sun L., Cao T., Wang P., Zhou C., Zhang R., Liang P., Guo H., Wang X., Qin C.-F., Chen F., Dong C., Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity 52, 971–977.e3 (2020). 10.1016/j.immuni.2020.04.023</cite> [<a href="https://doi.org/10.1016/j.immuni.2020.04.023" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7196424/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32413330/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Immunity&amp;title=Detection%20of%20SARS-CoV-2-Specific%20Humoral%20and%20Cellular%20Immunity%20in%20COVID-19%20Convalescent%20Individuals&amp;volume=52&amp;publication_year=2020&amp;pages=971-977.e3&amp;pmid=32413330&amp;doi=10.1016/j.immuni.2020.04.023&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R30"> <span class="label">30.</span><cite>Shen C., Wang Z., Zhao F., Yang Y., Li J., Yuan J., Wang F., Li D., Yang M., Xing L., Wei J., Xiao H., Yang Y., Qu J., Qing L., Chen L., Xu Z., Peng L., Li Y., Zheng H., Chen F., Huang K., Jiang Y., Liu D., Zhang Z., Liu Y., Liu L., Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA 323, 1582 (2020). 10.1001/jama.2020.4783</cite> [<a href="https://doi.org/10.1001/jama.2020.4783" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7101507/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32219428/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=JAMA&amp;title=Treatment%20of%205%20Critically%20Ill%20Patients%20With%20COVID-19%20With%20Convalescent%20Plasma&amp;volume=323&amp;publication_year=2020&amp;pages=1582&amp;pmid=32219428&amp;doi=10.1001/jama.2020.4783&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R31"> <span class="label">31.</span><cite>Tay M. Z., Poh C. M., Rénia L., MacAry P. A., Ng L. F. P., The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 20, 363–374 (2020). 10.1038/s41577-020-0311-8</cite> [<a href="https://doi.org/10.1038/s41577-020-0311-8" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7187672/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32346093/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Rev.%20Immunol.&amp;title=The%20trinity%20of%20COVID-19:%20Immunity,%20inflammation%20and%20intervention&amp;volume=20&amp;publication_year=2020&amp;pages=363-374&amp;pmid=32346093&amp;doi=10.1038/s41577-020-0311-8&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R32"> <span class="label">32.</span><cite>Lagunas-Rangel F. A., Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. J. Med. Virol. 10.1002/jmv.25819 (2020). 10.1002/jmv.25819</cite> [<a href="https://doi.org/10.1002/jmv.25819" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7228336/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32242950/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Med.%20Virol.&amp;title=Neutrophil-to-lymphocyte%20ratio%20and%20lymphocyte-to-C-reactive%20protein%20ratio%20in%20patients%20with%20severe%20coronavirus%20disease%202019%20(COVID-19):%20A%20meta-analysis&amp;publication_year=2020&amp;pmid=32242950&amp;doi=10.1002/jmv.25819&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R33"> <span class="label">33.</span><cite>Kuri-Cevantes L., Pampena M. B., Meng W., Rosenfeld A. M., Ittner C. A. G., Weisman A. R., Agyekum R. S., Mathew D., Baxter A. E., Vella L. A., Kuthuru O., Apostolidis S. A., Bershaw L., Dougherty J., Greenplate A. R., Pattekar A., Kim J., Han N., Gouma S., Weirick M. E., Arevalo C. P., Bolton M. J., Goodwin E. C., Anderson E. M., Hensley S., Jones T. K., Mangalmurti N. S., Luning Prak E. T., Wherry E. J., Meyer N. J., Betts M. R., Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci. Immunol. 5, eabd7114 (2020). 10.1126/sciimmunol.abd7114</cite> [<a href="https://doi.org/10.1126/sciimmunol.abd7114" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7402634/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32669287/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci.%20Immunol.&amp;title=Comprehensive%20mapping%20of%20immune%20perturbations%20associated%20with%20severe%20COVID-19&amp;volume=5&amp;publication_year=2020&amp;pages=eabd7114&amp;pmid=32669287&amp;doi=10.1126/sciimmunol.abd7114&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R34"> <span class="label">34.</span><cite>Agrati C., Castilletti C., Casetti R., Sacchi A., Falasca L., Turchi F., Tumino N., Bordoni V., Cimini E., Viola D., Lalle E., Bordi L., Lanini S., Martini F., Nicastri E., Petrosillo N., Puro V., Piacentini M., Di Caro A., Kobinger G. P., Zumla A., Ippolito G., Capobianchi M. R., Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection. Cell Death Dis. 7, e2164 (2016). 10.1038/cddis.2016.55</cite> [<a href="https://doi.org/10.1038/cddis.2016.55" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4823956/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27031961/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell%20Death%20Dis.&amp;title=Longitudinal%20characterization%20of%20dysfunctional%20T%20cell-activation%20during%20human%20acute%20Ebola%20infection&amp;volume=7&amp;publication_year=2016&amp;pages=e2164&amp;pmid=27031961&amp;doi=10.1038/cddis.2016.55&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R35"> <span class="label">35.</span><cite>Ndhlovu Z. M., Kamya P., Mewalal N., Kløverpris H. N., Nkosi T., Pretorius K., Laher F., Ogunshola F., Chopera D., Shekhar K., Ghebremichael M., Ismail N., Moodley A., Malik A., Leslie A., Goulder P. J. R., Buus S., Chakraborty A., Dong K., Ndung’u T., Walker B. D., Magnitude and Kinetics of CD8+ T Cell Activation during Hyperacute HIV Infection Impact Viral Set Point. Immunity 43, 591–604 (2015). 10.1016/j.immuni.2015.08.012</cite> [<a href="https://doi.org/10.1016/j.immuni.2015.08.012" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4575777/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26362266/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Immunity&amp;title=Magnitude%20and%20Kinetics%20of%20CD8+%20T%20Cell%20Activation%20during%20Hyperacute%20HIV%20Infection%20Impact%20Viral%20Set%20Point&amp;volume=43&amp;publication_year=2015&amp;pages=591-604&amp;pmid=26362266&amp;doi=10.1016/j.immuni.2015.08.012&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R36"> <span class="label">36.</span><cite>Crotty S., T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity 50, 1132–1148 (2019). 10.1016/j.immuni.2019.04.011</cite> [<a href="https://doi.org/10.1016/j.immuni.2019.04.011" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6532429/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31117010/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Immunity&amp;title=T%20Follicular%20Helper%20Cell%20Biology:%20A%20Decade%20of%20Discovery%20and%20Diseases&amp;volume=50&amp;publication_year=2019&amp;pages=1132-1148&amp;pmid=31117010&amp;doi=10.1016/j.immuni.2019.04.011&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R37"> <span class="label">37.</span><cite>R. S. Herati, L. V. Silva, L. A. Vella, A. Muselman, C. Alanio, B. Bengsch, R. K. Kurupati, S. Kannan, S. Manne, A. V. Kossenkov, D. H. Canaday, S. A. Doyle, H. C. J. Ertl, K. E. Schmader, E. J. Wherry, Vaccine-induced ICOS+CD38+ cTfh are sensitive biosensors of age-related changes in inflammatory pathways. bioRxiv 711911 [Preprint]. 24 July 2019. 10.1101/711911</cite> [<a href="https://doi.org/10.1101/711911" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>]</li> <li id="R38"> <span class="label">38.</span><cite>Herati R. S., Reuter M. A., Dolfi D. V., Mansfield K. D., Aung H., Badwan O. Z., Kurupati R. K., Kannan S., Ertl H., Schmader K. E., Betts M. R., Canaday D. H., Wherry E. J., Circulating CXCR5+PD-1+ response predicts influenza vaccine antibody responses in young adults but not elderly adults. J. Immunol. 193, 3528–3537 (2014). 10.4049/jimmunol.1302503</cite> [<a href="https://doi.org/10.4049/jimmunol.1302503" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4170011/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25172499/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Immunol.&amp;title=Circulating%20CXCR5+PD-1+%20response%20predicts%20influenza%20vaccine%20antibody%20responses%20in%20young%20adults%20but%20not%20elderly%20adults&amp;volume=193&amp;publication_year=2014&amp;pages=3528-3537&amp;pmid=25172499&amp;doi=10.4049/jimmunol.1302503&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R39"> <span class="label">39.</span><cite>Giamarellos-Bourboulis E. J., Netea M. G., Rovina N., Akinosoglou K., Antoniadou A., Antonakos N., Damoraki G., Gkavogianni T., Adami M.-E., Katsaounou P., Ntaganou M., Kyriakopoulou M., Dimopoulos G., Koutsodimitropoulos I., Velissaris D., Koufargyris P., Karageorgos A., Katrini K., Lekakis V., Lupse M., Kotsaki A., Renieris G., Theodoulou D., Panou V., Koukaki E., Koulouris N., Gogos C., Koutsoukou A., Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe 27, 992–1000.e3 (2020). 10.1016/j.chom.2020.04.009</cite> [<a href="https://doi.org/10.1016/j.chom.2020.04.009" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7172841/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32320677/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell%20Host%20Microbe&amp;title=Complex%20Immune%20Dysregulation%20in%20COVID-19%20Patients%20with%20Severe%20Respiratory%20Failure&amp;volume=27&amp;publication_year=2020&amp;pages=992-1000.e3&amp;pmid=32320677&amp;doi=10.1016/j.chom.2020.04.009&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R40"> <span class="label">40.</span><cite>Herati R. S., Muselman A., Vella L., Bengsch B., Parkhouse K., Del Alcazar D., Kotzin J., Doyle S. A., Tebas P., Hensley S. E., Su L. F., Schmader K. E., Wherry E. J., Successive annual influenza vaccination induces a recurrent oligoclonotypic memory response in circulating T follicular helper cells. Sci. Immunol. 2, eaag2152 (2017). 10.1126/sciimmunol.aag2152</cite> [<a href="https://doi.org/10.1126/sciimmunol.aag2152" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5469419/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28620653/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci.%20Immunol.&amp;title=Successive%20annual%20influenza%20vaccination%20induces%20a%20recurrent%20oligoclonotypic%20memory%20response%20in%20circulating%20T%20follicular%20helper%20cells&amp;volume=2&amp;publication_year=2017&amp;pages=eaag2152&amp;pmid=28620653&amp;doi=10.1126/sciimmunol.aag2152&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R41"> <span class="label">41.</span><cite>Y. Yang, C. Shen, J. Li, J. Yuan, M. Yang, F. Wang, G. Li, Y. Li, L. Xing, L. Peng, J. Wei, M. Cao, H. Zheng, W. Wu, R. Zou, D. Li, Z. Xu, H. Wang, M. Zhang, Z. Zhang, L. Liu, Y. Liu, Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. medRxiv 20029975 [Preprint]. 6 March 2020. 10.1101/2020.03.02.20029975</cite> [<a href="https://doi.org/10.1101/2020.03.02.20029975" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>]</li> <li id="R42"> <span class="label">42.</span><cite>McElroy A. K., Akondy R. S., Davis C. W., Ellebedy A. H., Mehta A. K., Kraft C. S., Lyon G. M., Ribner B. S., Varkey J., Sidney J., Sette A., Campbell S., Ströher U., Damon I., Nichol S. T., Spiropoulou C. F., Ahmed R., Human Ebola virus infection results in substantial immune activation. Proc. Natl. Acad. Sci. U.S.A. 112, 4719–4724 (2015). 10.1073/pnas.1502619112</cite> [<a href="https://doi.org/10.1073/pnas.1502619112" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4403189/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25775592/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Proc.%20Natl.%20Acad.%20Sci.%20U.S.A.&amp;title=Human%20Ebola%20virus%20infection%20results%20in%20substantial%20immune%20activation&amp;volume=112&amp;publication_year=2015&amp;pages=4719-4724&amp;pmid=25775592&amp;doi=10.1073/pnas.1502619112&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R43"> <span class="label">43.</span><cite>Wrammert J., Onlamoon N., Akondy R. S., Perng G. C., Polsrila K., Chandele A., Kwissa M., Pulendran B., Wilson P. C., Wittawatmongkol O., Yoksan S., Angkasekwinai N., Pattanapanyasat K., Chokephaibulkit K., Ahmed R., Rapid and massive virus-specific plasmablast responses during acute dengue virus infection in humans. J. Virol. 86, 2911–2918 (2012). 10.1128/JVI.06075-11</cite> [<a href="https://doi.org/10.1128/JVI.06075-11" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3302324/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22238318/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Virol.&amp;title=Rapid%20and%20massive%20virus-specific%20plasmablast%20responses%20during%20acute%20dengue%20virus%20infection%20in%20humans&amp;volume=86&amp;publication_year=2012&amp;pages=2911-2918&amp;pmid=22238318&amp;doi=10.1128/JVI.06075-11&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R44"> <span class="label">44.</span><cite>D. D. Flannery, S. Gouma, M. B. Dhudasia, S. Mukhopadhyay, M. R. Pfeifer, E. C. Woodford, J. S. Gerber, C. P. Arevalo, M. J. Bolton, M. E. Weirick, E. C. Goodwin, E. M. Anderson, A. R. Greenplate, J. Kim, N. Han, A. Pattekar, J. Dougherty, O. Kuthuru, D. Mathew, A. E. Baxter, L. A. Vella, J. Weaver, A. Verma, R. Leite, J. S. Morris, D. J. Rader, M. A. Elovitz, E. J. Wherry, K. M. Puopolo, S. E. Hensley, SARS-CoV-2 Seroprevalence Among Parturient Women. Research Square [Preprint]. 9 May 2020. 10.21203/rs.3.rs-27402/v1</cite> [<a href="https://doi.org/10.21203/rs.3.rs-27402/v1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>]</li> <li id="R45"> <span class="label">45.</span><cite>Orlova D. Y., Zimmerman N., Meehan S., Meehan C., Waters J., Ghosn E. E. B., Filatenkov A., Kolyagin G. A., Gernez Y., Tsuda S., Moore W., Moss R. B., Herzenberg L. A., Walther G., Earth Mover’s Distance (EMD): A True Metric for Comparing Biomarker Expression Levels in Cell Populations. PLOS ONE 11, e0151859 (2016). 10.1371/journal.pone.0151859</cite> [<a href="https://doi.org/10.1371/journal.pone.0151859" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4805242/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27008164/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=PLOS%20ONE&amp;title=Earth%20Mover%E2%80%99s%20Distance%20(EMD):%20A%20True%20Metric%20for%20Comparing%20Biomarker%20Expression%20Levels%20in%20Cell%20Populations&amp;volume=11&amp;publication_year=2016&amp;pages=e0151859&amp;pmid=27008164&amp;doi=10.1371/journal.pone.0151859&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R46"> <span class="label">46.</span><cite>Huang A. C., Postow M. A., Orlowski R. J., Mick R., Bengsch B., Manne S., Xu W., Harmon S., Giles J. R., Wenz B., Adamow M., Kuk D., Panageas K. S., Carrera C., Wong P., Quagliarello F., Wubbenhorst B., D’Andrea K., Pauken K. E., Herati R. S., Staupe R. P., Schenkel J. M., McGettigan S., Kothari S., George S. M., Vonderheide R. H., Amaravadi R. K., Karakousis G. C., Schuchter L. M., Xu X., Nathanson K. L., Wolchok J. D., Gangadhar T. C., Wherry E. J., T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017). 10.1038/nature22079</cite> [<a href="https://doi.org/10.1038/nature22079" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5554367/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28397821/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature&amp;title=T-cell%20invigoration%20to%20tumour%20burden%20ratio%20associated%20with%20anti-PD-1%20response&amp;volume=545&amp;publication_year=2017&amp;pages=60-65&amp;pmid=28397821&amp;doi=10.1038/nature22079&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R47"> <span class="label">47.</span><cite>Miller J. D., van der Most R. G., Akondy R. S., Glidewell J. T., Albott S., Masopust D., Murali-Krishna K., Mahar P. L., Edupuganti S., Lalor S., Germon S., Del Rio C., Mulligan M. J., Staprans S. I., Altman J. D., Feinberg M. B., Ahmed R., Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 28, 710–722 (2008). 10.1016/j.immuni.2008.02.020</cite> [<a href="https://doi.org/10.1016/j.immuni.2008.02.020" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18468462/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Immunity&amp;title=Human%20effector%20and%20memory%20CD8+%20T%20cell%20responses%20to%20smallpox%20and%20yellow%20fever%20vaccines&amp;volume=28&amp;publication_year=2008&amp;pages=710-722&amp;pmid=18468462&amp;doi=10.1016/j.immuni.2008.02.020&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R48"> <span class="label">48.</span><cite>Akondy R. S., Fitch M., Edupuganti S., Yang S., Kissick H. T., Li K. W., Youngblood B. A., Abdelsamed H. A., McGuire D. J., Cohen K. W., Alexe G., Nagar S., McCausland M. M., Gupta S., Tata P., Haining W. N., McElrath M. J., Zhang D., Hu B., Greenleaf W. J., Goronzy J. J., Mulligan M. J., Hellerstein M., Ahmed R., Origin and differentiation of human memory CD8 T cells after vaccination. Nature 552, 362–367 (2017). 10.1038/nature24633</cite> [<a href="https://doi.org/10.1038/nature24633" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6037316/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29236685/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature&amp;title=Origin%20and%20differentiation%20of%20human%20memory%20CD8%20T%20cells%20after%20vaccination&amp;volume=552&amp;publication_year=2017&amp;pages=362-367&amp;pmid=29236685&amp;doi=10.1038/nature24633&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R49"> <span class="label">49.</span><cite>Wilkinson T. M., Li C. K. F., Chui C. S. C., Huang A. K. Y., Perkins M., Liebner J. C., Lambkin-Williams R., Gilbert A., Oxford J., Nicholas B., Staples K. J., Dong T., Douek D. C., McMichael A. J., Xu X.-N., Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 18, 274–280 (2012). 10.1038/nm.2612</cite> [<a href="https://doi.org/10.1038/nm.2612" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22286307/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Med.&amp;title=Preexisting%20influenza-specific%20CD4+%20T%20cells%20correlate%20with%20disease%20protection%20against%20influenza%20challenge%20in%20humans&amp;volume=18&amp;publication_year=2012&amp;pages=274-280&amp;pmid=22286307&amp;doi=10.1038/nm.2612&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R50"> <span class="label">50.</span><cite>Gupta P. K., Godec J., Wolski D., Adland E., Yates K., Pauken K. E., Cosgrove C., Ledderose C., Junger W. G., Robson S. C., Wherry E. J., Alter G., Goulder P. J. R., Klenerman P., Sharpe A. H., Lauer G. M., Haining W. N., CD39 Expression Identifies Terminally Exhausted CD8+ T Cells. PLOS Pathog. 11, e1005177 (2015). 10.1371/journal.ppat.1005177</cite> [<a href="https://doi.org/10.1371/journal.ppat.1005177" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4618999/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26485519/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=PLOS%20Pathog.&amp;title=CD39%20Expression%20Identifies%20Terminally%20Exhausted%20CD8+%20T%20Cells&amp;volume=11&amp;publication_year=2015&amp;pages=e1005177&amp;pmid=26485519&amp;doi=10.1371/journal.ppat.1005177&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R51"> <span class="label">51.</span><cite>B. Zhang, X. Zhou, Y. Qiu, F. Feng, J. Feng, Y. Jia, H. Zhu, K. Hu, J. Liu, Z. Liu, S. Wang, Y. Gong, C. Zhou, T. Zhu, Y. Cheng, Z. Liu, H. Deng, F. Tao, Y. Ren, B. Cheng, L. Gao, X. Wu, L. Yu, Z. Huang, Z. Mao, Q. Song, B. Zhu, View ORCID ProfileJun Wang, Clinical characteristics of 82 death cases with COVID-19. medRxiv 20028191 [Preprint]. 27 February 2020. 10.1101/2020.02.26.20028191</cite> [<a href="https://doi.org/10.1101/2020.02.26.20028191" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>]</li> <li id="R52"> <span class="label">52.</span><cite>Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., Tai Y., Bai C., Gao T., Song J., Xia P., Dong J., Zhao J., Wang F.-S., Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8, 420–422 (2020). 10.1016/S2213-2600(20)30076-X</cite> [<a href="https://doi.org/10.1016/S2213-2600(20)30076-X" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7164771/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32085846/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Lancet%20Respir.%20Med.&amp;title=Pathological%20findings%20of%20COVID-19%20associated%20with%20acute%20respiratory%20distress%20syndrome&amp;volume=8&amp;publication_year=2020&amp;pages=420-422&amp;pmid=32085846&amp;doi=10.1016/S2213-2600(20)30076-X&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R53"> <span class="label">53.</span><cite>J. Braun, L. Loyal, M. Frentsch, D. Wendisch, P. Georg, F. Kurth, S. Hippenstiel, M. Dingeldey, B. Kruse, F. Fauchere, E. Baysal, M. Mangold, L. Henze, R. Lauster, M. Mall, K. Beyer, J. Roehmel, J. Schmitz, S. Miltenyi, M. A. Mueller, M. Witzenrath, N. Suttorp, F. Kern, U. Reimer, H. Wenschuh, C. Drosten, V. M. Corman, C. Giesecke-Thiel, L.-E. Sander, A. Thiel, Presence of SARS-CoV-2 reactive T cells in COVID-19 patients and healthy donors. medRxiv 20061440 [Preprint]. 22 April 2020. 10.1101/2020.04.17.20061440</cite> [<a href="https://doi.org/10.1101/2020.04.17.20061440" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>]</li> <li id="R54"> <span class="label">54.</span><cite>Chen L., Xiong J., Bao L., Shi Y., Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis. 20, 398–400 (2020). 10.1016/S1473-3099(20)30141-9</cite> [<a href="https://doi.org/10.1016/S1473-3099(20)30141-9" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7128218/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32113510/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Lancet%20Infect.%20Dis.&amp;title=Convalescent%20plasma%20as%20a%20potential%20therapy%20for%20COVID-19&amp;volume=20&amp;publication_year=2020&amp;pages=398-400&amp;pmid=32113510&amp;doi=10.1016/S1473-3099(20)30141-9&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R55"> <span class="label">55.</span><cite>Reed D. S., Hensley L. E., Geisbert J. B., Jahrling P. B., Geisbert T. W., Depletion of peripheral blood T lymphocytes and NK cells during the course of ebola hemorrhagic Fever in cynomolgus macaques. Viral Immunol. 17, 390–400 (2004). 10.1089/vim.2004.17.390</cite> [<a href="https://doi.org/10.1089/vim.2004.17.390" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15357905/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Viral%20Immunol.&amp;title=Depletion%20of%20peripheral%20blood%20T%20lymphocytes%20and%20NK%20cells%20during%20the%20course%20of%20ebola%20hemorrhagic%20Fever%20in%20cynomolgus%20macaques&amp;volume=17&amp;publication_year=2004&amp;pages=390-400&amp;pmid=15357905&amp;doi=10.1089/vim.2004.17.390&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R56"> <span class="label">56.</span><cite>Lee F. E.-H., Halliley J. L., Walsh E. E., Moscatiello A. P., Kmush B. L., Falsey A. R., Randall T. D., Kaminiski D. A., Miller R. K., Sanz I., Circulating human antibody-secreting cells during vaccinations and respiratory viral infections are characterized by high specificity and lack of bystander effect. J. Immunol. 186, 5514–5521 (2011). 10.4049/jimmunol.1002932</cite> [<a href="https://doi.org/10.4049/jimmunol.1002932" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3726212/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21441455/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Immunol.&amp;title=Circulating%20human%20antibody-secreting%20cells%20during%20vaccinations%20and%20respiratory%20viral%20infections%20are%20characterized%20by%20high%20specificity%20and%20lack%20of%20bystander%20effect&amp;volume=186&amp;publication_year=2011&amp;pages=5514-5521&amp;pmid=21441455&amp;doi=10.4049/jimmunol.1002932&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R57"> <span class="label">57.</span><cite>Blanchard-Rohner G., Pulickal A. S., Jol-van der Zijde C. M., Snape M. D., Pollard A. J., Appearance of peripheral blood plasma cells and memory B cells in a primary and secondary immune response in humans. Blood 114, 4998–5002 (2009). 10.1182/blood-2009-03-211052</cite> [<a href="https://doi.org/10.1182/blood-2009-03-211052" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2788974/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19843885/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Blood&amp;title=Appearance%20of%20peripheral%20blood%20plasma%20cells%20and%20memory%20B%20cells%20in%20a%20primary%20and%20secondary%20immune%20response%20in%20humans&amp;volume=114&amp;publication_year=2009&amp;pages=4998-5002&amp;pmid=19843885&amp;doi=10.1182/blood-2009-03-211052&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R58"> <span class="label">58.</span><cite>Blanco-Melo D., Nilsson-Payant B. E., Liu W.-C., Uhl S., Hoagland D., Møller R., Jordan T. X., Oishi K., Panis M., Sachs D., Wang T. T., Schwartz R. E., Lim J. K., Albrecht R. A., tenOever B. R., Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 181, 1036–1045.e9 (2020). 10.1016/j.cell.2020.04.026</cite> [<a href="https://doi.org/10.1016/j.cell.2020.04.026" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7227586/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32416070/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell&amp;title=Imbalanced%20Host%20Response%20to%20SARS-CoV-2%20Drives%20Development%20of%20COVID-19&amp;volume=181&amp;publication_year=2020&amp;pages=1036-1045.e9&amp;pmid=32416070&amp;doi=10.1016/j.cell.2020.04.026&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R59"> <span class="label">59.</span><cite>Van Gassen S., Callebaut B., Van Helden M. J., Lambrecht B. N., Demeester P., Dhaene T., Saeys Y., FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87, 636–645 (2015). 10.1002/cyto.a.22625</cite> [<a href="https://doi.org/10.1002/cyto.a.22625" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25573116/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cytometry%20A&amp;title=FlowSOM:%20Using%20self-organizing%20maps%20for%20visualization%20and%20interpretation%20of%20cytometry%20data&amp;volume=87&amp;publication_year=2015&amp;pages=636-645&amp;pmid=25573116&amp;doi=10.1002/cyto.a.22625&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R60"> <span class="label">60.</span><cite>Greenplate A. R., McClanahan D. D., Oberholtzer B. K., Doxie D. B., Roe C. E., Diggins K. E., Leelatian N., Rasmussen M. L., Kelley M. C., Gama V., Siska P. J., Rathmell J. C., Ferrell P. B., Johnson D. B., Irish J. M., Computational Immune Monitoring Reveals Abnormal Double-Negative T Cells Present across Human Tumor Types. Cancer Immunol. Res. 7, 86–99 (2019). 10.1158/2326-6066.CIR-17-0692</cite> [<a href="https://doi.org/10.1158/2326-6066.CIR-17-0692" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6318034/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30413431/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cancer%20Immunol.%20Res.&amp;title=Computational%20Immune%20Monitoring%20Reveals%20Abnormal%20Double-Negative%20T%20Cells%20Present%20across%20Human%20Tumor%20Types&amp;volume=7&amp;publication_year=2019&amp;pages=86-99&amp;pmid=30413431&amp;doi=10.1158/2326-6066.CIR-17-0692&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="R61"> <span class="label">61.</span><cite>Kotecha N., Krutzik P. O., Irish J. M., Web-based analysis and publication of flow cytometry experiments. Curr. Protoc. Cytom. 53, 10.17.1–10.17.24 (2010). 10.1002/0471142956.cy1017s53</cite> [<a href="https://doi.org/10.1002/0471142956.cy1017s53" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4208272/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20578106/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Curr.%20Protoc.%20Cytom.&amp;title=Web-based%20analysis%20and%20publication%20of%20flow%20cytometry%20experiments&amp;volume=53&amp;publication_year=2010&amp;pages=10.17.1-10.17.24&amp;pmid=20578106&amp;doi=10.1002/0471142956.cy1017s53&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> </ul></section></section><section id="_ad93_" lang="en" class="associated-data"><h2 class="pmc_sec_title">Associated Data</h2> <p class="font-secondary"><em>This section collects any data citations, data availability statements, or supplementary materials included in this article.</em></p> <section id="_adsm93_" lang="en" class="supplementary-materials"><h3 class="pmc_sec_title">Supplementary Materials</h3> <section class="sm xbox font-sm" id="db_ds_supplementary-material1_reqid_"><div class="caption p"> <p><a href="https://science.sciencemag.org/content/369/6508/eabc8511/suppl/DC1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">science.sciencemag.org/content/369/6508/eabc8511/suppl/DC1</a></p> <p>Figs. S1 to S11</p> <p>Table S1 to S8</p> </div></section></section></section></section><footer class="p courtesy-note font-secondary font-sm text-center"><hr class="headless"> <p>Articles from Science (New York, N.y.) are provided here courtesy of <strong>American Association for the Advancement of Science</strong></p></footer></section></article> </main> </div> </div> </div> <!-- Secondary navigation placeholder --> <div class="pmc-sidenav desktop:grid-col-4 display-flex"> <section class="pmc-sidenav__container" aria-label="Article resources and navigation"> <button type="button" class="usa-button pmc-sidenav__container__close usa-button--unstyled"> <img src="/static/img/usa-icons/close.svg" role="img" alt="Close" /> </button> <div class="display-none desktop:display-block"> <section class="margin-top-4 desktop:margin-top-0"> <h2 class="margin-top-0">ACTIONS</h2> <ul class="usa-list usa-list--unstyled usa-list--actions"> <li> <a href="https://doi.org/10.1126/science.abc8511" class="usa-button usa-button--outline width-24 font-xs usa-link--external padding-left-0 padding-right-0" target="_blank" rel="noreferrer noopener" data-ga-category="actions" data-ga-action="click" data-ga-label="publisher_link_desktop" > <span class="height-3 display-inline-flex flex-align-center">View on publisher site</span> </a> </li> <li> <a href="pdf/369_abc8511.pdf" class="usa-button usa-button--outline width-24 display-inline-flex flex-align-center flex-justify-start padding-left-1" data-ga-category="actions" data-ga-action="click" data-ga-label="pdf_download_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1">PDF (7.1 MB)</span> </a> </li> <li> <button role="button" class="usa-button width-24 citation-dialog-trigger display-inline-flex flex-align-center flex-justify-start padding-left-1" aria-label="Open dialog with citation text in different styles" data-ga-category="actions" data-ga-action="open" data-ga-label="cite_desktop" data-all-citations-url="/resources/citations/7402624/" data-citation-style="nlm" data-download-format-link="/resources/citations/7402624/export/" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#format_quote"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 button-label">Cite</span> </button> </li> <li> <button class="usa-button width-24 collections-dialog-trigger collections-button display-inline-flex flex-align-center flex-justify-start padding-left-1 collections-button-empty" aria-label="Save article in MyNCBI collections." data-ga-category="actions" data-ga-action="click" data-ga-label="collections_button_desktop" data-collections-open-dialog-enabled="false" data-collections-open-dialog-url="https://account.ncbi.nlm.nih.gov/?back_url=https%3A%2F%2Fpmc.ncbi.nlm.nih.gov%2Farticles%2FPMC7402624%2F%23open-collections-dialog" data-in-collections="false"> <svg class="usa-icon width-3 height-3 usa-icon--bookmark-full" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-full.svg#icon"></use> </svg> <svg class="usa-icon width-3 height-3 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-empty.svg#icon"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1">Collections</span> </button> </li> <li class="pmc-permalink"> <button type="button" class="usa-button usa-button--outline width-24 display-inline-flex flex-align-center flex-justify padding-left-1 shadow-none" aria-label="Show article permalink" aria-expanded="false" aria-haspopup="true" data-ga-category="actions" data-ga-action="open" data-ga-label="permalink_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#share"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 button-label">Permalink</span> </button> <div class="pmc-permalink__dropdown" hidden> <div class="pmc-permalink__dropdown__container"> <h2 class="usa-modal__heading margin-top-0 margin-bottom-2">PERMALINK</h2> <div class="pmc-permalink__dropdown__content"> <input type="text" class="usa-input" value="https://pmc.ncbi.nlm.nih.gov/articles/PMC7402624/" aria-label="Article permalink"> <button class="usa-button display-inline-flex pmc-permalink__dropdown__copy__btn margin-right-0" title="Copy article permalink" data-ga-category="save_share" data-ga-action="link" data-ga-label="copy_link"> <svg class="usa-icon" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span class="margin-left-1">Copy</span> </button> </div> </div> </div> </li> </ul> </section> </div> <section class="pmc-resources margin-top-6 desktop:margin-top-4" data-page-path="/articles/PMC7402624/"> <h2 class="margin-top-0">RESOURCES</h2> <div class="usa-accordion usa-accordion--multiselectable" data-allow-multiple> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-similar-articles" data-ga-category="resources_accordion" data-ga-action="open_similar_articles" data-ga-label="/articles/PMC7402624/" data-action-open="open_similar_articles" data-action-close="close_similar_articles" > Similar articles </button> </h3> <div id="resources-similar-articles" class="usa-accordion__content usa-prose" data-source-url="/resources/similar-article-links/32669297/" > </div> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-cited-by-other-articles" data-ga-category="resources_accordion" data-ga-action="open_cited_by" data-ga-label="/articles/PMC7402624/" data-action-open="open_cited_by" data-action-close="close_cited_by" > Cited by other articles </button> </h3> <div id="resources-cited-by-other-articles" class="usa-accordion__content usa-prose" data-source-url="/resources/cited-by-links/32669297/" > </div> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-links-to-ncbi-databases" data-ga-category="resources_accordion" data-ga-action="open_NCBI_links" data-ga-label="/articles/PMC7402624/" data-action-open="open_NCBI_links" data-action-close="close_NCBI_link" > Links to NCBI Databases </button> </h3> <div id="resources-links-to-ncbi-databases" class="usa-accordion__content usa-prose" data-source-url="/resources/db-links/7402624/" > </div> </div> </section> <section class="usa-in-page-nav usa-in-page-nav--wide margin-top-6 desktop:margin-top-4" data-title-text="On this page" data-title-heading-level="h2" data-scroll-offset="0" data-root-margin="-10% 0px -80% 0px" data-main-content-selector="main" data-threshold="1" hidden ></section> </section> </div> <div class="overlay" role="dialog" aria-label="Citation Dialog" hidden> <div class="dialog citation-dialog" aria-hidden="true"> <div class="display-inline-flex flex-align-center flex-justify width-full margin-bottom-2"> <h2 class="usa-modal__heading margin-0">Cite</h2> <button type="button" class="usa-button usa-button--unstyled close-overlay text-black width-auto" tabindex="1"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#close"></use> </svg> </button> </div> <div class="citation-text-block"> <div class="citation-text margin-bottom-2"></div> <ul class="usa-list usa-list--unstyled display-inline-flex flex-justify width-full flex-align-center"> <li> <button class="usa-button usa-button--unstyled text-no-underline display-flex flex-align-center copy-button dialog-focus" data-ga-category="save_share" data-ga-action="cite" data-ga-label="copy" tabindex="2"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span>Copy</span> </button> </li> <li> <a href="#" role="button" class="usa-button usa-button--unstyled text-no-underline display-flex flex-align-center export-button" data-ga-category="save_share" data-ga-action="cite" data-ga-label="download" title="Download a file for external citation management software" tabindex="3"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> <span class="display-none mobile-lg:display-inline">Download .nbib</span> <span class="display-inline mobile-lg:display-none">.nbib</span> </a> </li> <li> <div class="display-inline-flex flex-align-center"> <label class="usa-label margin-top-0">Format:</label> <select aria-label="Format" class="usa-select citation-style-selector padding-1 margin-top-0 border-0 padding-right-4" tabindex="4" > <option data-style-url-name="ama" value="AMA" > AMA </option> <option data-style-url-name="apa" value="APA" > APA </option> <option data-style-url-name="mla" value="MLA" > MLA </option> <option data-style-url-name="nlm" value="NLM" selected="selected"> NLM </option> </select> </div> </li> </ul> </div> </div> </div> <div class="overlay" role="dialog" hidden> <div id="collections-action-dialog" class="dialog collections-dialog" aria-hidden="true"> <div class="display-inline-flex flex-align-center flex-justify width-full margin-bottom-2"> <h2 class="usa-modal__heading margin-0">Add to Collections</h2> </div> <div class="collections-action-panel action-panel"> <form id="collections-action-dialog-form" class="usa-form maxw-full collections-action-panel-form action-panel-content action-form action-panel-smaller-selectors" data-existing-collections-url="/list-existing-collections/" data-add-to-existing-collection-url="/add-to-existing-collection/" data-create-and-add-to-new-collection-url="/create-and-add-to-new-collection/" data-myncbi-max-collection-name-length="100" data-collections-root-url="https://www.ncbi.nlm.nih.gov/myncbi/collections/"> <input type="hidden" name="csrfmiddlewaretoken" value="mxEiYiNPAhwbfCNtGEAnHuI60gTHm4Ven8U7fhOQMQ1ED5UFYHUtr8h6lz5hXJ3a"> <fieldset class="usa-fieldset margin-bottom-2"> <div class="usa-radio"> <input type="radio" id="collections-action-dialog-new" class="usa-radio__input usa-radio__input--tile collections-new margin-top-0" name="collections" value="new" data-ga-category="collections_button" data-ga-action="click" data-ga-label="collections_radio_new" /> <label class="usa-radio__label" for="collections-action-dialog-new">Create a new collection</label> </div> <div class="usa-radio"> <input type="radio" id="collections-action-dialog-existing" class="usa-radio__input usa-radio__input--tile collections-existing" name="collections" value="existing" checked="true" data-ga-category="collections_button" data-ga-action="click" data-ga-label="collections_radio_existing" /> <label class="usa-radio__label" for="collections-action-dialog-existing">Add to an existing collection</label> </div> </fieldset> <fieldset class="usa-fieldset margin-bottom-2"> <div class="action-panel-control-wrap new-collections-controls"> <label for="collections-action-dialog-add-to-new" class="usa-label margin-top-0"> Name your collection <abbr title="required" class="usa-hint usa-hint--required text-no-underline">*</abbr> </label> <input type="text" name="add-to-new-collection" id="collections-action-dialog-add-to-new" class="usa-input collections-action-add-to-new" pattern="[^&quot;&amp;=&lt;&gt;/]*" title="The following characters are not allowed in the Name field: &quot;&amp;=&lt;&gt;/" maxlength="" data-ga-category="collections_button" data-ga-action="create_collection" data-ga-label="non_favorties_collection" required /> </div> <div class="action-panel-control-wrap existing-collections-controls"> <label for="collections-action-dialog-add-to-existing" class="usa-label margin-top-0"> Choose a collection </label> <select id="collections-action-dialog-add-to-existing" class="usa-select collections-action-add-to-existing" data-ga-category="collections_button" data-ga-action="select_collection" data-ga-label="($('.collections-action-add-to-existing').val() === 'Favorites') ? 'Favorites' : 'non_favorites_collection'"> </select> <div class="collections-retry-load-on-error usa-input-error-message selection-validation-message"> Unable to load your collection due to an error<br> <a href="#">Please try again</a> </div> </div> </fieldset> <div class="display-inline-flex"> <button class="usa-button margin-top-0 action-panel-submit" type="submit" data-loading-label="Adding..." data-pinger-ignore data-ga-category="collections_button" data-ga-action="click" data-ga-label="add"> Add </button> <button class="usa-button usa-button--outline margin-top-0 action-panel-cancel" aria-label="Close 'Add to Collections' panel" ref="linksrc=close_collections_panel" data-ga-category="collections_button" data-ga-action="click" data-ga-label="cancel"> Cancel </button> </div> </form> </div> </div> </div> </div> </div> </div> <footer class="ncbi-footer ncbi-dark-background " > <div class="ncbi-footer__icon-section"> <div class="ncbi-footer__social-header"> Follow NCBI </div> <div class="grid-container ncbi-footer__ncbi-social-icons-container"> <a href="https://twitter.com/ncbi" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="40" height="40" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="m6.067 8 10.81 13.9L6 33.2h4.2l8.4-9.1 7.068 9.1H34L22.8 18.5 31.9 8h-3.5l-7.7 8.4L14.401 8H6.067Zm3.6 1.734h3.266l16.8 21.732H26.57L9.668 9.734Z"> </path> </svg> <span class="usa-sr-only">NCBI on X (formerly known as Twitter)</span> </a> <a href="https://www.facebook.com/ncbi.nlm" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="16" height="29" focusable="false" aria-hidden="true" viewBox="0 0 16 29" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M3.8809 21.4002C3.8809 19.0932 3.8809 16.7876 3.8809 14.478C3.8809 14.2117 3.80103 14.1452 3.54278 14.1492C2.53372 14.1638 1.52334 14.1492 0.514288 14.1598C0.302626 14.1598 0.248047 14.0972 0.248047 13.8936C0.256034 12.4585 0.256034 11.0239 0.248047 9.58978C0.248047 9.37013 0.302626 9.30224 0.528931 9.3049C1.53798 9.31688 2.54837 9.3049 3.55742 9.31555C3.80103 9.31555 3.8809 9.26097 3.87957 9.00272C3.87158 8.00565 3.85428 7.00592 3.90753 6.00884C3.97142 4.83339 4.31487 3.73115 5.04437 2.78467C5.93095 1.63318 7.15699 1.09005 8.56141 0.967577C10.5582 0.79319 12.555 0.982221 14.5518 0.927641C14.7102 0.927641 14.7462 0.99287 14.7449 1.13664C14.7449 2.581 14.7449 4.02668 14.7449 5.47104C14.7449 5.67604 14.6517 5.68669 14.4946 5.68669C13.4523 5.68669 12.4113 5.68669 11.3703 5.68669C10.3506 5.68669 9.92057 6.10868 9.90593 7.13904C9.89661 7.7647 9.91525 8.39303 9.89794 9.01869C9.88995 9.26364 9.96583 9.31822 10.2015 9.31688C11.7204 9.30623 13.2393 9.31688 14.7595 9.3049C15.0257 9.3049 15.0723 9.3728 15.0444 9.62439C14.89 10.9849 14.7515 12.3467 14.6144 13.7085C14.5691 14.1571 14.5785 14.1585 14.1458 14.1585C12.8386 14.1585 11.5313 14.1665 10.2254 14.1518C9.95119 14.1518 9.89794 14.2317 9.89794 14.4899C9.90593 19.0799 9.89794 23.6752 9.91125 28.2612C9.91125 28.5674 9.8407 28.646 9.53186 28.6433C7.77866 28.6273 6.02414 28.6366 4.27094 28.634C3.82499 28.634 3.87158 28.6992 3.87158 28.22C3.87602 25.9472 3.87913 23.6739 3.8809 21.4002Z"> </path> </svg> <span class="usa-sr-only">NCBI on Facebook</span> </a> <a href="https://www.linkedin.com/company/ncbinlm" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="25" height="23" viewBox="0 0 26 24" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M14.6983 9.98423C15.6302 9.24808 16.5926 8.74754 17.6762 8.51991C19.673 8.09126 21.554 8.30824 23.1262 9.7526C24.2351 10.7723 24.7529 12.1115 25.0165 13.5612C25.1486 14.3363 25.2105 15.1218 25.2015 15.9081C25.2015 18.3043 25.2015 20.6898 25.2082 23.0806C25.2082 23.3468 25.1549 23.444 24.8621 23.4414C23.1297 23.4272 21.3992 23.4272 19.6704 23.4414C19.4041 23.4414 19.3429 23.3588 19.3442 23.1019C19.3535 20.5194 19.3442 17.9368 19.3442 15.3543C19.3442 14.0005 18.3258 12.9448 17.0266 12.9488C15.7273 12.9528 14.6983 14.0071 14.6983 15.361C14.6983 17.9328 14.6917 20.5047 14.6983 23.0753C14.6983 23.3708 14.6198 23.444 14.3296 23.4427C12.6185 23.4294 10.9079 23.4294 9.19779 23.4427C8.93155 23.4427 8.86099 23.3735 8.86232 23.1086C8.8783 19.7619 8.88628 16.4144 8.88628 13.066C8.88628 11.5688 8.87874 10.0708 8.86365 8.57182C8.86365 8.3575 8.90758 8.27896 9.14054 8.28029C10.9048 8.29094 12.6687 8.29094 14.4321 8.28029C14.6464 8.28029 14.6983 8.34818 14.6983 8.54653C14.6903 9.00047 14.6983 9.45441 14.6983 9.98423Z"> </path> <path d="M6.55316 15.8443C6.55316 18.2564 6.55316 20.6699 6.55316 23.082C6.55316 23.3629 6.48127 23.4388 6.19906 23.4374C4.47737 23.4241 2.75568 23.4241 1.03399 23.4374C0.767751 23.4374 0.69986 23.3629 0.701191 23.1006C0.709178 18.2648 0.709178 13.4281 0.701191 8.59053C0.701191 8.34026 0.765089 8.27237 1.01669 8.2737C2.74991 8.28435 4.48048 8.28435 6.20838 8.2737C6.47462 8.2737 6.5465 8.33627 6.54517 8.6065C6.54783 11.0186 6.55316 13.4308 6.55316 15.8443Z"> </path> <path d="M3.65878 0.243898C5.36804 0.243898 6.58743 1.45529 6.58743 3.1406C6.58743 4.75801 5.32145 5.95742 3.60819 5.96807C3.22177 5.97614 2.83768 5.90639 2.47877 5.76299C2.11985 5.61959 1.79344 5.40546 1.51897 5.13334C1.24449 4.86123 1.02755 4.53668 0.881058 4.17902C0.734563 3.82136 0.661505 3.43788 0.666231 3.05141C0.67555 1.42601 1.9362 0.242566 3.65878 0.243898Z"> </path> </svg> <span class="usa-sr-only">NCBI on LinkedIn</span> </a> <a href="https://github.com/ncbi" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="28" height="27" viewBox="0 0 28 28" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M16.7228 20.6334C17.5057 20.5527 18.2786 20.3944 19.0301 20.1608C21.3108 19.4193 22.5822 17.8259 22.963 15.4909C23.1228 14.5112 23.1814 13.5287 22.9883 12.5437C22.8106 11.6423 22.4013 10.8028 21.8007 10.1076C21.7526 10.0605 21.7197 10 21.7064 9.934C21.6931 9.86799 21.7 9.79952 21.7262 9.73748C22.0856 8.6206 21.9711 7.51969 21.601 6.42677C21.582 6.3497 21.5345 6.2827 21.468 6.23923C21.4016 6.19577 21.3211 6.17906 21.2429 6.19248C20.7329 6.21649 20.2313 6.33051 19.7611 6.52928C19.1103 6.7908 18.4899 7.12198 17.9104 7.51703C17.84 7.56996 17.7581 7.60551 17.6713 7.62078C17.5846 7.63605 17.4954 7.6306 17.4112 7.60489C15.2596 7.05882 13.0054 7.06203 10.8554 7.61421C10.7806 7.63586 10.7018 7.63967 10.6253 7.62534C10.5487 7.611 10.4766 7.57892 10.4148 7.53167C9.64788 7.03247 8.85171 6.58918 7.96368 6.33359C7.65781 6.24338 7.34123 6.19458 7.02239 6.18849C6.94879 6.17986 6.87462 6.19893 6.81432 6.242C6.75402 6.28507 6.71191 6.34904 6.69621 6.42145C6.32342 7.51437 6.2209 8.61527 6.56307 9.73348C6.59635 9.84264 6.64694 9.93316 6.54177 10.0516C5.47666 11.2604 5.09988 12.6834 5.19574 14.2676C5.2663 15.4244 5.46201 16.5466 6.01454 17.5769C6.84399 19.1171 8.21664 19.9119 9.85158 20.3352C10.3938 20.4706 10.9444 20.5698 11.4998 20.632C11.5384 20.7492 11.4506 20.7798 11.408 20.8291C11.1734 21.1179 10.9894 21.4441 10.8634 21.7942C10.7622 22.0458 10.8315 22.4039 10.6065 22.5516C10.263 22.7766 9.83827 22.8485 9.42421 22.8871C8.17936 23.0056 7.26471 22.4877 6.6283 21.4348C6.25552 20.8184 5.76956 20.3325 5.08523 20.0663C4.76981 19.9325 4.42139 19.8967 4.08537 19.9638C3.7898 20.029 3.73788 20.1901 3.93891 20.4111C4.03639 20.5234 4.14989 20.6207 4.27575 20.6999C4.9796 21.1318 5.51717 21.7884 5.80152 22.5636C6.37002 23.9973 7.48039 24.5697 8.93825 24.6323C9.43741 24.6575 9.93768 24.615 10.4254 24.5058C10.5892 24.4672 10.6531 24.4872 10.6517 24.6762C10.6451 25.4936 10.6637 26.3123 10.6517 27.131C10.6517 27.6635 10.1684 27.9297 9.58663 27.7393C8.17396 27.2671 6.84977 26.5631 5.66838 25.656C2.59555 23.2891 0.720966 20.1861 0.217704 16.3376C-0.357453 11.9127 0.911353 8.00824 3.98551 4.73881C6.11909 2.42656 8.99932 0.939975 12.1203 0.540191C16.5351 -0.0601815 20.4347 1.14323 23.7232 4.16373C26.2449 6.47869 27.724 9.37672 28.1048 12.7726C28.5828 17.0325 27.3686 20.7945 24.4768 23.9827C22.9762 25.6323 21.0956 26.8908 18.9982 27.6488C18.8783 27.6927 18.7585 27.738 18.636 27.7726C18.0356 27.9404 17.6189 27.6395 17.6189 27.0098C17.6189 25.7452 17.6308 24.4806 17.6295 23.2159C17.6329 22.9506 17.6128 22.6856 17.5696 22.4238C17.4325 21.6664 17.3419 21.484 16.7228 20.6334Z"> </path> </svg> <span class="usa-sr-only">NCBI on GitHub</span> </a> <a href="https://ncbiinsights.ncbi.nlm.nih.gov/" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="26" height="26" viewBox="0 0 27 27" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M23.7778 26.4574C23.1354 26.3913 22.0856 26.8024 21.636 26.3087C21.212 25.8444 21.4359 24.8111 21.324 24.0347C19.9933 14.8323 14.8727 8.80132 6.09057 5.85008C4.37689 5.28406 2.58381 4.99533 0.779072 4.99481C0.202773 4.99481 -0.0229751 4.83146 0.00455514 4.21479C0.0660406 3.08627 0.0660406 1.95525 0.00455514 0.826734C-0.0413285 0.0815827 0.259669 -0.0193618 0.896534 0.00266238C6.96236 0.222904 12.3693 2.24179 16.9889 6.16209C22.9794 11.2478 26.1271 17.7688 26.4372 25.648C26.4629 26.294 26.3179 26.5271 25.6609 26.4684C25.0827 26.417 24.4991 26.4574 23.7778 26.4574Z"> </path> <path d="M14.8265 26.441C14.0924 26.441 13.2371 26.6795 12.6626 26.3786C12.0092 26.0372 12.3781 25.0644 12.246 24.378C11.1154 18.5324 6.6849 14.5497 0.74755 14.1001C0.217135 14.0615 -0.0104482 13.9422 0.0134113 13.3659C0.0519536 12.1454 0.0482829 10.9213 0.0134113 9.69524C-0.00127145 9.14464 0.196946 9.03268 0.703502 9.04736C9.21217 9.27128 16.5994 16.2511 17.2804 24.7231C17.418 26.4446 17.418 26.4446 15.6579 26.4446H14.832L14.8265 26.441Z"> </path> <path d="M3.58928 26.4555C2.64447 26.4618 1.73584 26.0925 1.06329 25.4289C0.39073 24.7653 0.00933763 23.8617 0.0030097 22.9169C-0.00331824 21.9721 0.365937 21.0635 1.02954 20.3909C1.69315 19.7184 2.59675 19.337 3.54156 19.3306C4.48637 19.3243 5.39499 19.6936 6.06755 20.3572C6.7401 21.0208 7.1215 21.9244 7.12782 22.8692C7.13415 23.814 6.7649 24.7226 6.10129 25.3952C5.43768 26.0677 4.53409 26.4491 3.58928 26.4555Z"> </path> </svg> <span class="usa-sr-only">NCBI RSS feed</span> </a> </div> </div> <div data-testid="gridContainer" class="grid-container ncbi-footer__container"> <div class="grid-row ncbi-footer__main-content-container" data-testid="grid"> <div class="ncbi-footer__column"> <p class="ncbi-footer__circled-icons-heading"> Connect with NLM </p> <div class="ncbi-footer__circled-icons-list"> <a href=https://twitter.com/nlm_nih class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="32" height="32" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="m6.067 8 10.81 13.9L6 33.2h4.2l8.4-9.1 7.068 9.1H34L22.8 18.5 31.9 8h-3.5l-7.7 8.4L14.401 8H6.067Zm3.6 1.734h3.266l16.8 21.732H26.57L9.668 9.734Z"> </path> </svg> <span class="usa-sr-only">NLM on X (formerly known as Twitter)</span> </a> <a href=https://www.facebook.com/nationallibraryofmedicine class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="13" height="24" viewBox="0 0 13 24" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M4.11371 23.1369C4.11371 23.082 4.11371 23.0294 4.11371 22.9745V12.9411H0.817305C0.6709 12.9411 0.670898 12.9411 0.670898 12.8016C0.670898 11.564 0.670898 10.3287 0.670898 9.09341C0.670898 8.97903 0.705213 8.95158 0.815017 8.95158C1.8673 8.95158 2.91959 8.95158 3.97417 8.95158H4.12057V8.83263C4.12057 7.8055 4.12057 6.7738 4.12057 5.74897C4.1264 4.92595 4.31387 4.11437 4.66959 3.37217C5.12916 2.38246 5.94651 1.60353 6.95717 1.1921C7.64827 0.905008 8.3913 0.764035 9.13953 0.778051C10.0019 0.791777 10.8644 0.830666 11.7268 0.860404C11.8869 0.860404 12.047 0.894717 12.2072 0.90158C12.2964 0.90158 12.3261 0.940469 12.3261 1.02968C12.3261 1.5421 12.3261 2.05452 12.3261 2.56465C12.3261 3.16857 12.3261 3.7725 12.3261 4.37642C12.3261 4.48165 12.2964 4.51367 12.1912 4.51138C11.5369 4.51138 10.8804 4.51138 10.2261 4.51138C9.92772 4.51814 9.63058 4.5526 9.33855 4.61433C9.08125 4.6617 8.84537 4.78881 8.66431 4.97766C8.48326 5.16652 8.3662 5.40755 8.32972 5.66661C8.28476 5.89271 8.26027 6.1224 8.25652 6.35289C8.25652 7.19014 8.25652 8.02969 8.25652 8.86923C8.25652 8.89439 8.25652 8.91955 8.25652 8.95615H12.0219C12.1797 8.95615 12.182 8.95616 12.1614 9.10714C12.0768 9.76596 11.9876 10.4248 11.9029 11.0813C11.8312 11.6319 11.7626 12.1824 11.697 12.733C11.6719 12.9434 11.6787 12.9434 11.4683 12.9434H8.26338V22.899C8.26338 22.979 8.26338 23.0591 8.26338 23.1392L4.11371 23.1369Z"> </path> </svg> <span class="usa-sr-only">NLM on Facebook</span> </a> <a href=https://www.youtube.com/user/NLMNIH class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="21" height="15" viewBox="0 0 21 15" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M19.2561 1.47914C18.9016 1.15888 18.5699 0.957569 17.2271 0.834039C15.5503 0.678484 13.2787 0.655608 11.563 0.65332H9.43556C7.71987 0.65332 5.4483 0.678484 3.77151 0.834039C2.43098 0.957569 2.097 1.15888 1.74242 1.47914C0.813665 2.32097 0.619221 4.62685 0.598633 6.89384C0.598633 7.31781 0.598633 7.74101 0.598633 8.16345C0.626084 10.4121 0.827391 12.686 1.74242 13.521C2.097 13.8412 2.4287 14.0425 3.77151 14.1661C5.4483 14.3216 7.71987 14.3445 9.43556 14.3468H11.563C13.2787 14.3468 15.5503 14.3216 17.2271 14.1661C18.5676 14.0425 18.9016 13.8412 19.2561 13.521C20.1712 12.6929 20.3725 10.451 20.3999 8.22064C20.3999 7.74025 20.3999 7.25986 20.3999 6.77946C20.3725 4.54907 20.1689 2.30724 19.2561 1.47914ZM8.55942 10.5311V4.65201L13.5601 7.50005L8.55942 10.5311Z" fill="white" /> </svg> <span class="usa-sr-only">NLM on YouTube</span> </a> </div> </div> <address class="ncbi-footer__address ncbi-footer__column"> <p> <a class="usa-link usa-link--external" href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/%4038.9959508, -77.101021,17z/data%3D!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb%3A0x19156f88b27635b8!8m2!3d38.9959508! 4d-77.0988323" rel="noopener noreferrer" target="_blank">National Library of Medicine <br/> 8600 Rockville Pike<br/> Bethesda, MD 20894</a> </p> </address> <ul class="usa-list usa-list--unstyled ncbi-footer__vertical-list ncbi-footer__column"> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/web_policies.html" class="usa-link usa-link--alt ncbi-footer__link" > Web Policies </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="usa-link usa-link--alt ncbi-footer__link" > FOIA </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > HHS Vulnerability Disclosure </a> </li> </ul> <ul class="usa-list usa-list--unstyled ncbi-footer__vertical-list ncbi-footer__column"> <li class="ncbi-footer__vertical-list-item"> <a href="https://support.nlm.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > Help </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/accessibility.html" class="usa-link usa-link--alt ncbi-footer__link" > Accessibility </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/careers/careers.html" class="usa-link usa-link--alt ncbi-footer__link" > Careers </a> </li> </ul> </div> <div class="grid-row grid-col-12" data-testid="grid"> <ul class="ncbi-footer__bottom-links-list"> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.nlm.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > NLM </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > NIH </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.hhs.gov/" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > HHS </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.usa.gov/" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > USA.gov </a> </li> </ul> </div> </div> </footer> <script type="text/javascript" src="https://cdn.ncbi.nlm.nih.gov/core/pinger/pinger.js"> </script> <button class="back-to-top" data-ga-category="pagination" data-ga-action="back_to_top"> <label>Back to Top</label> <svg class="usa-icon order-0" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#arrow_upward"></use> </svg> </button> <script src="https://code.jquery.com/jquery-3.5.0.min.js" integrity="sha256-xNzN2a4ltkB44Mc/Jz3pT4iU1cmeR0FkXs4pru/JxaQ=" crossorigin="anonymous"> </script> <script type="text/javascript">var exports = {};</script> <script src="/static/CACHE/js/output.13b077bc3ffd.js"></script> <script type="application/javascript"> window.ncbi = window.ncbi || {}; window.ncbi.pmc = window.ncbi.pmc || {}; window.ncbi.pmc.options = { logLevel: 'INFO', staticEndpoint: '/static/', citeCookieName: 'pmc-cf', }; </script> <script type="module" crossorigin="" src="/static/assets/base-9bea7450.js"></script> <script type="module" crossorigin="" src="/static/assets/article-722d91a2.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10