CINXE.COM
basis of a vector space in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> basis of a vector space in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> basis of a vector space </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/3544/#Item_25" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="linear_algebra">Linear algebra</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/linear+algebra">linear algebra</a></strong>, <strong><a class="existingWikiWord" href="/nlab/show/higher+linear+algebra">higher linear algebra</a></strong></p> <h2 id="ingredients">Ingredients</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra">algebra</a>, <a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homological+algebra">homological algebra</a>, <a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable homotopy theory</a></p> </li> </ul> <h2 id="basic_concepts">Basic concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/ring">ring</a>, <a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+ring">A-∞ ring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/commutative+ring">commutative ring</a>, <a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+ring">E-∞ ring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/module">module</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-module">∞-module</a>, <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29-module">(∞,n)-module</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/field">field</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-field">∞-field</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/vector+space">vector space</a>, <a class="existingWikiWord" href="/nlab/show/2-vector+space">2-vector space</a></p> <p><a class="existingWikiWord" href="/nlab/show/rational+vector+space">rational vector space</a></p> <p><a class="existingWikiWord" href="/nlab/show/real+vector+space">real vector space</a></p> <p><a class="existingWikiWord" href="/nlab/show/complex+vector+space">complex vector space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+vector+space">topological vector space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/linear+basis">linear basis</a>,</p> <p><a class="existingWikiWord" href="/nlab/show/orthogonal+basis">orthogonal basis</a>, <a class="existingWikiWord" href="/nlab/show/orthonormal+basis">orthonormal basis</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/linear+map">linear map</a>, <a class="existingWikiWord" href="/nlab/show/antilinear+map">antilinear map</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/matrix">matrix</a> (<a class="existingWikiWord" href="/nlab/show/square+matrix">square</a>, <a class="existingWikiWord" href="/nlab/show/invertible+matrix">invertible</a>, <a class="existingWikiWord" href="/nlab/show/diagonal+matrix">diagonal</a>, <a class="existingWikiWord" href="/nlab/show/hermitian+matrix">hermitian</a>, <a class="existingWikiWord" href="/nlab/show/symmetric+matrix">symmetric</a>, …)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/general+linear+group">general linear group</a>, <a class="existingWikiWord" href="/nlab/show/matrix+group">matrix group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/eigenspace">eigenspace</a>, <a class="existingWikiWord" href="/nlab/show/eigenvalue">eigenvalue</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inner+product">inner product</a>, <a class="existingWikiWord" href="/nlab/show/Hermitian+form">Hermitian form</a></p> <p><a class="existingWikiWord" href="/nlab/show/Gram-Schmidt+process">Gram-Schmidt process</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hilbert+space">Hilbert space</a></p> </li> </ul> <h2 id="theorems">Theorems</h2> <p>(…)</p> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#definition'>Definition</a></li> <li><a href='#background_definitions'>Background definitions</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="definition">Definition</h2> <p> <div class='num_defn' id='BasisOfAVectorSpace'> <h6>Definition</h6> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕂</mi></mrow><annotation encoding="application/x-tex">\mathbb{K}</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/field">field</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math> a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕂</mi></mrow><annotation encoding="application/x-tex">\mathbb{K}</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/vector+space">vector space</a>, hence a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕂</mi></mrow><annotation encoding="application/x-tex">\mathbb{K}</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/module">module</a>, a <em><a class="existingWikiWord" href="/nlab/show/linear+basis">linear basis</a></em> for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math> is</p> <ol> <li> <p>a <a class="existingWikiWord" href="/nlab/show/set">set</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math> (of <em>basis elements</em>)</p> </li> <li> <p>a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕂</mi></mrow><annotation encoding="application/x-tex">\mathbb{K}</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/linear+map">linear</a> <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><munder><mo>⊕</mo><mi>B</mi></munder><mi>𝕂</mi><mover><mo>→</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><mi>V</mi></mrow><annotation encoding="application/x-tex"> \underset{B}{\oplus} \mathbb{K} \xrightarrow{\;\; \simeq \;\;} V </annotation></semantics></math></div></li> </ol> <p>to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math> from the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>-indexed <a class="existingWikiWord" href="/nlab/show/direct+sum">direct sum</a> (the <a class="existingWikiWord" href="/nlab/show/coproduct">coproduct</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕂</mi></mrow><annotation encoding="application/x-tex">\mathbb{K}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/Vect">Vect</a>) of copies of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕂</mi></mrow><annotation encoding="application/x-tex">\mathbb{K}</annotation></semantics></math> (canonically regarded as a vector space over itself), also known as the free <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕂</mi></mrow><annotation encoding="application/x-tex">\mathbb{K}</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/linear+span">linear span</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>, hence the vector space of free <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕂</mi></mrow><annotation encoding="application/x-tex">\mathbb{K}</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/linear+combinations">linear combinations</a> of elements of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>.</p> </div> </p> <p>Hence if a basis for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math> exists it means in particular that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/free+module">free module</a> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕂</mi></mrow><annotation encoding="application/x-tex">\mathbb{K}</annotation></semantics></math>.</p> <p> <div class='num_remark'> <h6>Remark</h6> <p><strong>(finiteness of linear combinations)</strong> <br /> Beware that a certain finiteness-condition is hidden in Def. <a class="maruku-ref" href="#BasisOfAVectorSpace"></a>: Since a <a class="existingWikiWord" href="/nlab/show/linear+combination">linear combination</a> is defined to be a <a class="existingWikiWord" href="/nlab/show/sum">sum</a> of <a class="existingWikiWord" href="/nlab/show/finite+set">finitely</a> many vectors, a basis of a vector space must be such that every vector in the space is the (unique) combination of <em>finitely</em> many basis elements – even if there are infinitely many elements in the basis.</p> <p>More abstractly this is to do with the appearance of the <a class="existingWikiWord" href="/nlab/show/coproduct">coproduct</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo>⨿</mo> <mi>b</mi></msub><mo>=</mo><msub><mo>⊕</mo> <mi>B</mi></msub></mrow><annotation encoding="application/x-tex">\amalg_b = \oplus_B</annotation></semantics></math> (<a class="existingWikiWord" href="/nlab/show/direct+sum">direct sum</a>) in Def. <a class="maruku-ref" href="#BasisOfAVectorSpace"></a> instead of the <a class="existingWikiWord" href="/nlab/show/product">product</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo lspace="thinmathspace" rspace="thinmathspace">∏</mo> <mi>B</mi></msub></mrow><annotation encoding="application/x-tex">\prod_B</annotation></semantics></math>. Many vector spaces in practice arise as (subspaces) of products <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo lspace="thinmathspace" rspace="thinmathspace">∏</mo> <mi>W</mi></msub><mi>𝕂</mi></mrow><annotation encoding="application/x-tex">\prod_W \mathbb{K}</annotation></semantics></math> (<a class="existingWikiWord" href="/nlab/show/function+spaces">function spaces</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>W</mi><mo>→</mo><mi>𝕂</mi></mrow><annotation encoding="application/x-tex">W \to \mathbb{K}</annotation></semantics></math>), but if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>W</mi></mrow><annotation encoding="application/x-tex">W</annotation></semantics></math> here is not a <a class="existingWikiWord" href="/nlab/show/finite+set">finite set</a> then it is not going to be a basis set.</p> <p>(On the other hand, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>W</mi></mrow><annotation encoding="application/x-tex">W</annotation></semantics></math> <em>is</em> a <a class="existingWikiWord" href="/nlab/show/finite+set">finite set</a>, then we have a <em><a class="existingWikiWord" href="/nlab/show/biproduct">biproduct</a></em> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo lspace="thinmathspace" rspace="thinmathspace">∏</mo> <mi>W</mi></msub><mspace width="thinmathspace"></mspace><mo>≃</mo><mspace width="thinmathspace"></mspace><msub><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo> <mi>W</mi></msub><mspace width="thinmathspace"></mspace><mo>≃</mo><mspace width="thinmathspace"></mspace><msub><mo>⊕</mo> <mi>W</mi></msub></mrow><annotation encoding="application/x-tex">\prod_W \,\simeq\, \coprod_W \,\simeq\, \oplus_W</annotation></semantics></math> in the <a class="existingWikiWord" href="/nlab/show/additive+category">additive category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕂</mi></mrow><annotation encoding="application/x-tex">\mathbb{K}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/Vect">Vect</a>, see <a href="additive+category#ProductsAreBiproducts">there</a>.)</p> </div> </p> <p>Related to this are the following phenomena:</p> <p> <div class='num_remark'> <h6>Remark</h6> <p><strong>(basis and dimension of finitely-generated spaces)</strong> <br /> For every <em>finitely generated</em> vector space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math> (Def. <a class="maruku-ref" href="#GeneratedVectorSpace"></a>) it is straightforward to <em><a class="existingWikiWord" href="/nlab/show/constructive+mathematics">construct</a></em> a linear basis, and to see that the <a class="existingWikiWord" href="/nlab/show/cardinality">cardinality</a> of all bases is the same finite <a class="existingWikiWord" href="/nlab/show/natural+number">natural number</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>dim</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">dim(V) \in \mathbb{N}</annotation></semantics></math>, called the <em><a class="existingWikiWord" href="/nlab/show/dimension+of+a+vector+space">dimension</a></em> of the vector space (whence a <em><a class="existingWikiWord" href="/nlab/show/finite-dimensional+vector+space">finite-dimensional vector space</a></em>).</p> </div> </p> <p>On the other hand:</p> <p> <div class='num_remark'> <h6>Remark</h6> <p><strong>(Hamel-bases of infinite-dimensional vector spaces)</strong> <br /> While the definition <a class="maruku-ref" href="#BasisOfAVectorSpace"></a> applies also to not-necessarily finitely generated vector spaces – such as for instance the space of (<a class="existingWikiWord" href="/nlab/show/continuous+function">continuous</a>) <a class="existingWikiWord" href="/nlab/show/functions">functions</a> from a non-finite (<a class="existingWikiWord" href="/nlab/show/topological+space">topological</a>) <a class="existingWikiWord" href="/nlab/show/space">space</a> to the (<a class="existingWikiWord" href="/nlab/show/topological+field">topological</a>) <a class="existingWikiWord" href="/nlab/show/ground+field">ground field</a> – it turns out to be subtle and somewhat ill-behaved in this generality.</p> <p>In fact, in practice infinite-dimensional vector spaces tend to appear and to be understood with <a class="existingWikiWord" href="/nlab/show/extra+structure">extra structure</a> (typically that of <a class="existingWikiWord" href="/nlab/show/topological+vector+spaces">topological vector spaces</a> such as <a class="existingWikiWord" href="/nlab/show/Banach+spaces">Banach spaces</a> or <a class="existingWikiWord" href="/nlab/show/Hilbert+spaces">Hilbert spaces</a>) in which cases there are more appropriate notions of linear bases for them (such as that of <a class="existingWikiWord" href="/nlab/show/Schauder+bases">Schauder bases</a>, which allow infinite-<a class="existingWikiWord" href="/nlab/show/linear+combinations">linear combinations</a> subject to a condition of <a class="existingWikiWord" href="/nlab/show/convergence+of+a+sequence">convergence of a sequence</a>).</p> <p>In order to distinguish the plain notion of basis (Def. <a class="maruku-ref" href="#BasisOfAVectorSpace"></a>) from these more refined notions, one also speaks of <em>Hamel bases</em> here.</p> <p>(This is in honor of <a href="#Hamel1905">Hamel 1905 pp. 460</a> who considered this notion for the special case of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi><mo>=</mo><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">V = \mathbb{R}</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/real+numbers">real numbers</a> regarded as a <a class="existingWikiWord" href="/nlab/show/rational+vector+space">rational vector space</a>, hence over the <a class="existingWikiWord" href="/nlab/show/ground+field">ground field</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕂</mi><mo>=</mo><mi>ℚ</mi></mrow><annotation encoding="application/x-tex">\mathbb{K} = \mathbb{Q}</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/rational+numbers">rational numbers</a>).</p> <p>Hence, in principle, also a linear basis of a finitely generated vector space is thus a <em>Hamel basis</em>, but rarely called this way unless in the context of infinite-dimensional vector spaces.</p> </div> </p> <p> <div class='num_remark'> <h6>Remark</h6> <p><strong>(basis theorem and dimension)</strong> <br /> For an infinitely-generated vector space it is <em>not</em> in general possible to <em><a class="existingWikiWord" href="/nlab/show/constructive+mathematics">construct</a></em> a (Hamel-)basis, but the <em>existence</em> of such a basis is nevertheless implied, in <a class="existingWikiWord" href="/nlab/show/classical+mathematics">classical mathematics</a>, by <a class="existingWikiWord" href="/nlab/show/Zorn%27s+lemma">Zorn's lemma</a> (essentially a form of the <a class="existingWikiWord" href="/nlab/show/axiom+of+choice">axiom of choice</a>): This is the content of the <em><a class="existingWikiWord" href="/nlab/show/basis+theorem">basis theorem</a></em>.</p> <p>With this classical context understood, it follows that every vector vector space admits a linear basis (even if non-constructible in general) and that each basis is of the same <a class="existingWikiWord" href="/nlab/show/cardinality">cardinality</a>, then called the <a class="existingWikiWord" href="/nlab/show/dimension+of+a+vector+space">dimension</a> of the vector space.</p> </div> </p> <h2 id="background_definitions">Background definitions</h2> <p> <div class='num_defn' id='GeneratedVectorSpace'> <h6>Definition</h6> <p><strong>(generated vector space)</strong> <br /> For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math> a vector space, a <a class="existingWikiWord" href="/nlab/show/subset">subset</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>⊂</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">G \subset V</annotation></semantics></math> of its <a class="existingWikiWord" href="/nlab/show/underlying">underlying</a> set is called a <em>generating set</em> or <em>spanning set</em> if every element of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math> can be expressed as a <a class="existingWikiWord" href="/nlab/show/linear+combination">linear combination</a> of elements of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>, hence if the <a class="existingWikiWord" href="/nlab/show/linear+span">linear span</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> inside <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math> is all of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>.</p> <p>The vector space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math> is called <em>finitely generated</em> if it admits a generating set (spanning set) which is a <a class="existingWikiWord" href="/nlab/show/finite+set">finite set</a>.</p> </div> </p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/orthogonal+basis">orthogonal basis</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/basis+in+functional+analysis">basis in functional analysis</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Schauder+basis">Schauder basis</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dual+basis">dual basis</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/basis">basis</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mutually+unbiased+bases">mutually unbiased bases</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gelfand-Tsetlin+basis">Gelfand-Tsetlin basis</a> (in <a class="existingWikiWord" href="/nlab/show/representation+theory">representation theory</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/seminormal+basis">seminormal basis</a> (in <a class="existingWikiWord" href="/nlab/show/representation+theory+of+the+symmetric+group">representation theory of the symmetric group</a>)</p> </li> </ul> <h2 id="references">References</h2> <p>Lecture notes with much conceptual exposition:</p> <ul> <li>Karen E Smith, <em>Bases for infinite-dimensional vector spaces</em> [<a href="https://dept.math.lsa.umich.edu/~kesmith/infinite.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/Smith-InfiniteDimBases.pdf" title="pdf">pdf</a>]</li> </ul> <p>Lecture notes with the proofs concisely spelled out:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Christoph+Schweigert">Christoph Schweigert</a>, <em>Basis und Dimension</em>, §2.4 in: <em>Lineare Algebra</em>, lecture notes, Hamburg (2022) [<a href="https://www.math.uni-hamburg.de/home/schweigert/skripten/laskript.pdf">pdf</a>]</li> </ul> <p>See also:</p> <ul> <li>Wikipedia, <em><a href="https://en.wikipedia.org/wiki/Basis_(linear_algebra)">Basis (linear algebra)</a></em></li> </ul> <p>The original discussion (for <a class="existingWikiWord" href="/nlab/show/real+numbers"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <mi>ℝ</mi> </mrow> <annotation encoding="application/x-tex">\mathbb{R}</annotation> </semantics> </math></a> regarded as a <a class="existingWikiWord" href="/nlab/show/rational+vector+space">rational vector space</a>) after which <em>Hamel bases</em> are named:</p> <ul> <li id="Hamel1905"><a class="existingWikiWord" href="/nlab/show/Georg+Hamel">Georg Hamel</a>, pp. 460 of: <em>Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo stretchy="false">)</mo><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>f</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(x + y) = f(x) + f(y)</annotation></semantics></math></em>, Mathematische Annalen <strong>60</strong> (1905) 459–462 [<a href="https://doi.org/10.1007/BF01457624">doi:10.1007/BF01457624</a>]</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on August 26, 2023 at 17:24:41. See the <a href="/nlab/history/basis+of+a+vector+space" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/basis+of+a+vector+space" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/3544/#Item_25">Discuss</a><span class="backintime"><a href="/nlab/revision/basis+of+a+vector+space/8" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/basis+of+a+vector+space" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/basis+of+a+vector+space" accesskey="S" class="navlink" id="history" rel="nofollow">History (8 revisions)</a> <a href="/nlab/show/basis+of+a+vector+space/cite" style="color: black">Cite</a> <a href="/nlab/print/basis+of+a+vector+space" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/basis+of+a+vector+space" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>