CINXE.COM
Search results for: erosion modeling
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: erosion modeling</title> <meta name="description" content="Search results for: erosion modeling"> <meta name="keywords" content="erosion modeling"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="erosion modeling" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="erosion modeling"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4378</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: erosion modeling</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4378</span> Modeling of Water Erosion in the M'Goun Watershed Using OpenGIS Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khal">M. Khal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ab.%20Algouti"> Ab. Algouti</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Algouti"> A. Algouti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water erosion is the major cause of the erosion that shapes the earth's surface. Modeling water erosion requires the use of software and GIS programs, commercial or closed source. The very high prices for commercial GIS licenses, motivates users and researchers to find open source software as relevant and applicable as the proprietary GIS. The objective of this study is the modeling of water erosion and the hydrogeological and morphophysical characterization of the Oued M'Goun watershed (southern flank of the Central High Atlas) developed by free programs of GIS. The very pertinent results are obtained by executing tasks and algorithms in a simple and easy way. Thus, the various geoscientific and geostatistical analyzes of a digital elevation model (SRTM 30 m resolution) and their combination with the treatments and interpretation of satellite imagery information allowed us to characterize the region studied and to map the area most vulnerable to water erosion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20High-Atlas" title="central High-Atlas">central High-Atlas</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogeology" title=" hydrogeology"> hydrogeology</a>, <a href="https://publications.waset.org/abstracts/search?q=M%E2%80%99Goun%20watershed" title=" M’Goun watershed"> M’Goun watershed</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenGis" title=" OpenGis"> OpenGis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20erosion" title=" water erosion"> water erosion</a> </p> <a href="https://publications.waset.org/abstracts/99290/modeling-of-water-erosion-in-the-mgoun-watershed-using-opengis-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4377</span> Modeling Of The Random Impingement Erosion Due To The Impact Of The Solid Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siamack%20A.%20Shirazi">Siamack A. Shirazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzin%20Darihaki"> Farzin Darihaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid particles could be found in many multiphase flows, including transport pipelines and pipe fittings. Such particles interact with the pipe material and cause erosion which threats the integrity of the system. Therefore, predicting the erosion rate is an important factor in the design and the monitor of such systems. Mechanistic models can provide reliable predictions for many conditions while demanding only relatively low computational cost. Mechanistic models utilize a representative particle trajectory to predict the impact characteristics of the majority of the particle impacts that cause maximum erosion rate in the domain. The erosion caused by particle impacts is not only due to the direct impacts but also random impingements. In the present study, an alternative model has been introduced to describe the erosion due to random impingement of particles. The present model provides a realistic trend for erosion with changes in the particle size and particle Stokes number. The present model is examined against the experimental data and CFD simulation results and indicates better agreement with the data incomparison to the available models in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion" title="erosion">erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanistic%20modeling" title=" mechanistic modeling"> mechanistic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=particles" title=" particles"> particles</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flow" title=" multiphase flow"> multiphase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-liquid-solid" title=" gas-liquid-solid"> gas-liquid-solid</a> </p> <a href="https://publications.waset.org/abstracts/144301/modeling-of-the-random-impingement-erosion-due-to-the-impact-of-the-solid-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4376</span> Towards a Quantification of the Wind Erosion of the Gharb Shoreline Soils in Morocco by the Application of a Mathematical Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Kachtali">Mohammed Kachtali</a>, <a href="https://publications.waset.org/abstracts/search?q=Imad%20Fenjiro"> Imad Fenjiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Alkarkouri"> Jamal Alkarkouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind erosion is a serious environmental problem in arid and semi-arid regions. Indeed, wind erosion easily removes the finest particles of the soil surface, which also contribute to losing soil fertility. The siltation of infrastructures and cultivated areas and the negative impact on health are additional consequences of wind erosion. In Morocco, wind erosion constitutes the main factor of silting up in coast and Sahara. The aim of our study is to use an equation of wind erosion in order to estimate the soil loses by wind erosion in the coast of Gharb (North of Morocco). The used equation in our model includes the geographic data, climatic data of 30 years and edaphic data collected from area study which contained 11 crossing of 4 stations. Our results have shown that the values of wind erosion are higher and very different between some crossings (p < 0.001). This difference is explained by topography, soil texture, and climate. In conclusion, wind erosion is higher in Gharb coast and varies from station to another; this problem required several methods of control and mitigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gharb%20coast" title="Gharb coast">Gharb coast</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=silting" title=" silting"> silting</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20erosion" title=" wind erosion"> wind erosion</a> </p> <a href="https://publications.waset.org/abstracts/107543/towards-a-quantification-of-the-wind-erosion-of-the-gharb-shoreline-soils-in-morocco-by-the-application-of-a-mathematical-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4375</span> Backward Erosion Piping through Vertically Layered Sands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Vandenboer">K. Vandenboer</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Dolphen"> L. Dolphen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bezuijen"> A. Bezuijen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Backward erosion piping is an important failure mechanism for water-retaining structures, a phenomenon that results in the formation of shallow pipes at the interface of a sandy or silty foundation and a cohesive cover layer. This paper studies the effect of two soil types on backward erosion piping; both in case of a homogeneous sand layer, and in a vertically layered sand sample, where the pipe is forced to subsequently grow through the different layers. Two configurations with vertical sand layers are tested; they both result in wider pipes and higher critical gradients, thereby making this an interesting topic in research on measures to prevent backward erosion piping failures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=backward%20erosion%20piping" title="backward erosion piping">backward erosion piping</a>, <a href="https://publications.waset.org/abstracts/search?q=embankments" title=" embankments"> embankments</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20modeling" title=" physical modeling"> physical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a> </p> <a href="https://publications.waset.org/abstracts/62801/backward-erosion-piping-through-vertically-layered-sands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4374</span> Simulation Studies of Solid-Particle and Liquid-Drop Erosion of NiAl Alloy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rong%20Liu">Rong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuiying%20Chen"> Kuiying Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Chen"> Ju Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingrong%20Zhao"> Jingrong Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Liang"> Ming Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents modeling studies of NiAl alloy under solid-particle erosion and liquid-drop erosion. In the solid particle erosion simulation, attention is paid to the oxide scale thickness variation on the alloy in high-temperature erosion environments. The erosion damage is assumed to be deformation wear and cutting wear mechanisms, incorporating the influence of the oxide scale on the eroded surface; thus the instantaneous oxide thickness is the result of synergetic effect of erosion and oxidation. For liquid-drop erosion, special interest is in investigating the effects of drop velocity and drop size on the damage of the target surface. The models of impact stress wave, mean depth of penetration, and maximum depth of erosion rate (Max DER) are employed to develop various maps for NiAl alloy, including target thickness vs. drop size (diameter), rate of mean depth of penetration (MDRP) vs. drop impact velocity, and damage threshold velocity (DTV) vs. drop size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid-drop%20erosion" title="liquid-drop erosion">liquid-drop erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=NiAl%20alloy" title=" NiAl alloy"> NiAl alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide%20scale%20thickness" title=" oxide scale thickness"> oxide scale thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-particle%20erosion" title=" solid-particle erosion"> solid-particle erosion</a> </p> <a href="https://publications.waset.org/abstracts/15516/simulation-studies-of-solid-particle-and-liquid-drop-erosion-of-nial-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">575</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4373</span> Prediction of Gully Erosion with Stochastic Modeling by using Geographic Information System and Remote Sensing Data in North of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Zakerinejad">Reza Zakerinejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gully erosion is a serious problem that threading the sustainability of agricultural area and rangeland and water in a large part of Iran. This type of water erosion is the main source of sedimentation in many catchment areas in the north of Iran. Since in many national assessment approaches just qualitative models were applied the aim of this study is to predict the spatial distribution of gully erosion processes by means of detail terrain analysis and GIS -based logistic regression in the loess deposition in a case study in the Golestan Province. This study the DEM with 25 meter result ion from ASTER data has been used. The Landsat ETM data have been used to mapping of land use. The TreeNet model as a stochastic modeling was applied to prediction the susceptible area for gully erosion. In this model ROC we have set 20 % of data as learning and 20 % as learning data. Therefore, applying the GIS and satellite image analysis techniques has been used to derive the input information for these stochastic models. The result of this study showed a high accurate map of potential for gully erosion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TreeNet%20model" title="TreeNet model">TreeNet model</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain%20analysis" title=" terrain analysis"> terrain analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Golestan%20Province" title=" Golestan Province"> Golestan Province</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/27028/prediction-of-gully-erosion-with-stochastic-modeling-by-using-geographic-information-system-and-remote-sensing-data-in-north-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4372</span> Use of Two-Dimensional Hydraulics Modeling for Design of Erosion Remedy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayoub.%20El%20Bourtali">Ayoub. El Bourtali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdessamed.Najine"> Abdessamed.Najine</a>, <a href="https://publications.waset.org/abstracts/search?q=Amrou%20Moussa.%20Benmoussa"> Amrou Moussa. Benmoussa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main goals of river engineering is river training, which is defined as controlling and predicting the behavior of a river. It is taking effective measurements to eliminate all related risks and thus improve the river system. In some rivers, the riverbed continues to erode and degrade; therefore, equilibrium will never be reached. Generally, river geometric characteristics and riverbed erosion analysis are some of the most complex but critical topics in river engineering and sediment hydraulics; riverbank erosion is the second answering process in hydrodynamics, which has a major impact on the ecological chain and socio-economic process. This study aims to integrate the new computer technology that can analyze erosion and hydraulic problems through computer simulation and modeling. Choosing the right model remains a difficult and sensitive job for field engineers. This paper makes use of the 5.0.4 version of the HEC-RAS model. The river section is adopted according to the gauged station and the proximity of the adjustment. In this work, we will demonstrate how 2D hydraulic modeling helped clarify the design and cover visuals to set up depth and velocities at riverbanks and throughout advanced structures. The hydrologic engineering center's-river analysis system (HEC-RAS) 2D model was used to create a hydraulic study of the erosion model. The geometric data were generated from the 12.5-meter x 12.5-meter resolution digital elevation model. In addition to showing eroded or overturned river sections, the model output also shows patterns of riverbank changes, which can help us reduce problems caused by erosion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20hydraulics%20model" title="2D hydraulics model">2D hydraulics model</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=floodplain" title=" floodplain"> floodplain</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic" title=" hydrodynamic"> hydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS" title=" HEC-RAS"> HEC-RAS</a>, <a href="https://publications.waset.org/abstracts/search?q=riverbed%20erosion" title=" riverbed erosion"> riverbed erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20morphology" title=" river morphology"> river morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution%20digital%20data" title=" resolution digital data"> resolution digital data</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/139919/use-of-two-dimensional-hydraulics-modeling-for-design-of-erosion-remedy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4371</span> Modeling of Erosion and Sedimentation Impacts from off-Road Vehicles in Arid Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abigail%20Rosenberg">Abigail Rosenberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Duan"> Jennifer Duan</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20%20Poteuck"> Michael Poteuck</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunshui%20Yu"> Chunshui Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Barry M. Goldwater Range, West in southwestern Arizona encompasses 2,808 square kilometers of Sonoran Desert. The hyper-arid range has an annual rainfall of less than 10 cm with an average high temperature of 41 degrees Celsius in July to an average low of 4 degrees Celsius in January. The range shares approximately 60 kilometers of the international border with Mexico. A majority of the range is open for recreational use, primarily off-highway vehicles. Because of its proximity to Mexico, the range is also heavily patrolled by U.S. Customs and Border Protection seeking to intercept and apprehend inadmissible people and illicit goods. Decades of off-roading and Border Patrol activities have negatively impacted this sensitive desert ecosystem. To assist the range program managers, this study is developing a model to identify erosion prone areas and calibrate the model’s parameters using the Automated Geospatial Watershed Assessment modeling tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arid%20lands" title="arid lands">arid lands</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20geospatial%20watershed%20assessment" title=" automated geospatial watershed assessment"> automated geospatial watershed assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion%20modeling" title=" erosion modeling"> erosion modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation%20modeling" title=" sedimentation modeling"> sedimentation modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed%20modeling" title=" watershed modeling"> watershed modeling</a> </p> <a href="https://publications.waset.org/abstracts/59846/modeling-of-erosion-and-sedimentation-impacts-from-off-road-vehicles-in-arid-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4370</span> A 'Four Method Framework' for Fighting Software Architecture Erosion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sundus%20Ayyaz">Sundus Ayyaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Rehman"> Saad Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Qamar"> Usman Qamar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software Architecture is the basic structure of software that states the development and advancement of a software system. Software architecture is also considered as a significant tool for the construction of high quality software systems. A clean design leads to the control, value and beauty of software resulting in its longer life while a bad design is the cause of architectural erosion where a software evolution completely fails. This paper discusses the occurrence of software architecture erosion and presents a set of methods for the detection, declaration and prevention of architecture erosion. The causes and symptoms of architecture erosion are observed with the examples of prescriptive and descriptive architectures and the practices used to stop this erosion are also discussed by considering different types of software erosion and their affects. Consequently finding and devising the most suitable approach for fighting software architecture erosion and in some way reducing its affect is evaluated and tested on different scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20architecture" title="software architecture">software architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture%20erosion" title=" architecture erosion"> architecture erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=prescriptive%20architecture" title=" prescriptive architecture"> prescriptive architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=descriptive%20architecture" title=" descriptive architecture"> descriptive architecture</a> </p> <a href="https://publications.waset.org/abstracts/19650/a-four-method-framework-for-fighting-software-architecture-erosion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4369</span> Investigating the Impacts of Climate Change on Soil Erosion: A Case Study of Kasilian Watershed, Northern Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zare">Mohammad Zare</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahbubeh%20Sheikh"> Mahbubeh Sheikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many of the impact of climate change will material through change in soil erosion which were rarely addressed in Iran. This paper presents an investigation of the impacts of climate change soil erosin for the Kasilian basin. LARS-WG5 was used to downscale the IPCM4 and GFCM21 predictions of the A2 scenarios for the projected periods of 1985-2030 and 2080-2099. This analysis was carried out by means of the dataset the International Centre for Theoretical Physics (ICTP) of Trieste. Soil loss modeling using Revised Universal Soil Loss Equation (RUSLE). Results indicate that soil erosion increase or decrease, depending on which climate scenarios are considered. The potential for climate change to increase soil loss rate, soil erosion in future periods was established, whereas considerable decreases in erosion are projected when land use is increased from baseline periods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kasilian%20watershed" title="Kasilian watershed">Kasilian watershed</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20change" title=" climatic change"> climatic change</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=LARS-WG5%20Model" title=" LARS-WG5 Model"> LARS-WG5 Model</a>, <a href="https://publications.waset.org/abstracts/search?q=RUSLE" title=" RUSLE"> RUSLE</a> </p> <a href="https://publications.waset.org/abstracts/14384/investigating-the-impacts-of-climate-change-on-soil-erosion-a-case-study-of-kasilian-watershed-northern-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4368</span> Numerical Erosion Investigation of Standalone Screen (Wire-Wrapped) Due to the Impact of Sand Particles Entrained in a Single-Phase Flow (Water Flow)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Alghurabi">Ahmed Alghurabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mysara%20Mohyaldinn"> Mysara Mohyaldinn</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiferaw%20Jufar"> Shiferaw Jufar</a>, <a href="https://publications.waset.org/abstracts/search?q=Obai%20Younis"> Obai Younis</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Abduljabbar"> Abdullah Abduljabbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Erosion modeling equations were typically acquired from regulated experimental trials for solid particles entrained in single-phase or multi-phase flows. Evidently, those equations were later employed to predict the erosion damage caused by the continuous impacts of solid particles entrained in streamflow. It is also well-known that the particle impact angle and velocity do not change drastically in gas-sand flow erosion prediction; hence an accurate prediction of erosion can be projected. On the contrary, high-density fluid flows, such as water flow, through complex geometries, such as sand screens, greatly affect the sand particles’ trajectories/tracks and consequently impact the erosion rate predictions. Particle tracking models and erosion equations are frequently applied simultaneously as a method to improve erosion visualization and estimation. In the present work, computational fluid dynamic (CFD)-based erosion modeling was performed using a commercially available software; ANSYS Fluent. The continuous phase (water flow) behavior was simulated using the realizable K-epsilon model, and the secondary phase (solid particles), having a 5% flow concentration, was tracked with the help of the discrete phase model (DPM). To accomplish a successful erosion modeling, three erosion equations from the literature were utilized and introduced to the ANSYS Fluent software to predict the screen wire-slot velocity surge and estimate the maximum erosion rates on the screen surface. Results of turbulent kinetic energy, turbulence intensity, dissipation rate, the total pressure on the screen, screen wall shear stress, and flow velocity vectors were presented and discussed. Moreover, the particle tracks and path-lines were also demonstrated based on their residence time, velocity magnitude, and flow turbulence. On one hand, results from the utilized erosion equations have shown similarities in screen erosion patterns, locations, and DPM concentrations. On the other hand, the model equations estimated slightly different values of maximum erosion rates of the wire-wrapped screen. This is solely based on the fact that the utilized erosion equations were developed with some assumptions that are controlled by the experimental lab conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20simulation" title="CFD simulation">CFD simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion%20rate%20prediction" title=" erosion rate prediction"> erosion rate prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20loss%20due%20to%20erosion" title=" material loss due to erosion"> material loss due to erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=water-sand%20flow" title=" water-sand flow"> water-sand flow</a> </p> <a href="https://publications.waset.org/abstracts/132857/numerical-erosion-investigation-of-standalone-screen-wire-wrapped-due-to-the-impact-of-sand-particles-entrained-in-a-single-phase-flow-water-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4367</span> Solid Particle Erosion of Heat Treated TNB-V4 at Ambient and Elevated Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naveed">Muhammad Naveed</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Stechow"> Richard Stechow</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Bolz"> Sebastian Bolz</a>, <a href="https://publications.waset.org/abstracts/search?q=Katharina%20Hobusch"> Katharina Hobusch</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabine%20Wei%C3%9F"> Sabine Weiß</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid particle erosion has been identified as a critical wear phenomenon which takes place during operation of aeroengines in dusty environment. The present work discusses the erosion behavior of Ti-44.5Al-6.25Nb-0.8Mo-0.1B alloy (TNB-V4) which finds its application in low pressure gas turbines and can be used for high pressure compressors too. Prior to the erosion tests, the alloy was heat treated to improve the mechanical properties. Afterwards, specimens were eroded at impact angles of 30° and 90° at room and high temperatures (100 °C-400 °C). Volume loss and erosion behavior are studied through gravimetric analysis, whereas erosion mechanisms are characterized through scanning electron microscopy. The results indicate a clear difference in the erosion mechanism for different impact angles. The influence of the test temperature on the erosion behavior of the alloy is also discussed in the present contribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20particle%20erosion" title="solid particle erosion">solid particle erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20TiAl" title=" gamma TiAl"> gamma TiAl</a>, <a href="https://publications.waset.org/abstracts/search?q=TNB-V4" title=" TNB-V4"> TNB-V4</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20erosion" title=" high temperature erosion"> high temperature erosion</a> </p> <a href="https://publications.waset.org/abstracts/49747/solid-particle-erosion-of-heat-treated-tnb-v4-at-ambient-and-elevated-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4366</span> Effect of Sand Particle Distribution in Oil and Gas Pipeline Erosion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Deekia%20Nwimae">Christopher Deekia Nwimae</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigel%20Simms"> Nigel Simms</a>, <a href="https://publications.waset.org/abstracts/search?q=Liyun%20Lao"> Liyun Lao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Erosion in pipe bends caused by particles is a major obstacle in the oil and gas fields and might cause the breakdown of production equipment. This work studied the effects imposed by flow velocity and impact of solid particles diameter in an elbow; erosion rate was verified with experimental data using the computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model was employed to calculate the air/solid particle flow in an elbow. One erosion model and three-particle rebound models were used to predict the erosion rate on the 90° elbows. The generic erosion model was used in the CFD-based erosion model, and after comparing it with experimental data, results showed agreement with the CFD-based predictions as observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion" title="erosion">erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=elbow" title=" elbow"> elbow</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/147246/effect-of-sand-particle-distribution-in-oil-and-gas-pipeline-erosion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4365</span> NaCl Erosion-Corrosion of Mild Steel under Submerged Impingement Jet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sadique">M. Sadique</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ainane"> S. Ainane</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20F.%20Yap"> Y. F. Yap</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rostron"> P. Rostron</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Al%20Hajri"> E. Al Hajri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of sand in production lines in the oil and gas industries causes material degradation due to erosion-corrosion. The material degradation caused by erosion-corrosion in pipelines can result in a high cost of monitoring and maintenance and in major accidents. The process of erosion-corrosion consists of erosion, corrosion, and their interactions. Investigating and understanding how the erosion-corrosion process affects the degradation process in certain materials will allow for a reduction in economic loss and help prevent accidents. In this study, material loss due to erosion-corrosion of mild steel under impingement of sand-laden water at 90˚ impingement angle is investigated using a submerged impingement jet (SIJ) test. In particular, effects of jet velocity and sand loading on TWL due to erosion-corrosion, weight loss due to pure erosion and erosion-corrosion interactions, at a temperature of 29-33 °C in sea water environment (3.5% NaCl), are analyzed. The results show that the velocity and sand loading have a great influence on the removal of materials, and erosion is more dominant under all conditions studied. Changes in the surface characteristics of the specimen after impingement test are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion-corrosion" title="erosion-corrosion">erosion-corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20velocity" title=" flow velocity"> flow velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20impingement" title=" jet impingement"> jet impingement</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20loading" title=" sand loading"> sand loading</a> </p> <a href="https://publications.waset.org/abstracts/56516/nacl-erosion-corrosion-of-mild-steel-under-submerged-impingement-jet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4364</span> Slurry Erosion Behaviour of Cryotreated SS316L Impeller Steel Used for Irrigation Pumps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jagtar%20Singh">Jagtar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kulwinder%20Singh"> Kulwinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Slurry erosion is a type of erosion wherein material is removed from the target surface due to impingement of solid particles entrained in liquid medium. Slurry erosion performance of deep cryogenic treatment on impeller steel SS 316 L has been investigated. Slurry collected from an actual irrigation pump used as the abrasive media in an erosion test rig. An attempt has been made to study the effect of velocity of fluid and impingement angle by constant concentration (ppm) on the slurry erosion behavior of these cryotreated steels under different experimental conditions. The slurry erosion wear analysis of cryotreated and untreated steels was done. The slurry erosion performance of cryotreated SS 316L impeller steel has been found to superior to that of untreated steel. Metallurgical investigation, hardness as well as %age of carbide in both types of steel was also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20cryogenic%20treatment" title="deep cryogenic treatment">deep cryogenic treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=impeller" title=" impeller"> impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=Irrigation%20pumps%20SS316L" title=" Irrigation pumps SS316L"> Irrigation pumps SS316L</a>, <a href="https://publications.waset.org/abstracts/search?q=slurry%20erosion" title=" slurry erosion"> slurry erosion</a> </p> <a href="https://publications.waset.org/abstracts/33629/slurry-erosion-behaviour-of-cryotreated-ss316l-impeller-steel-used-for-irrigation-pumps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4363</span> Evaluating the Terrace Benefits of Erosion in a Terraced-Agricultural Watershed for Sustainable Soil and Water Conservation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sitarrine%20Thongpussawal">Sitarrine Thongpussawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Shao"> Hui Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Clark%20Gantzer"> Clark Gantzer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Terracing is a conservation practice to reduce erosion and widely used for soil and water conservation throughout the world but is relatively expensive. A modification of the Soil and Water Assessment Tool (called SWAT-Terrace or SWAT-T) explicitly aims to improve the simulation of the hydrological process of erosion from the terraces. SWAT-T simulates erosion from the terraces by separating terraces into three segments instead of evaluating the entire terrace. The objective of this work is to evaluate the terrace benefits on erosion from the Goodwater Creek Experimental Watershed (GCEW) at watershed and Hydrologic Response Unit (HRU) scales using SWAT-T. The HRU is the smallest spatial unit of the model, which lumps all similar land uses, soils, and slopes within a sub-basin. The SWAT-T model was parameterized for slope length, steepness and the empirical Universal Soil Erosion Equation support practice factor for three terrace segments. Data from 1993-2010 measured at the watershed outlet were used to evaluate the models for calibration and validation. Results of SWAT-T calibration showed good performance between measured and simulated erosion for the monthly time step, but poor performance for SWAT-T validation. This is probably because of large storms in spring 2002 that prevented planting, causing poorly simulated scheduling of actual field operations. To estimate terrace benefits on erosion, models were compared with and without terraces. Results showed that SWAT-T showed significant ~3% reduction in erosion (Pr <0.01) at the watershed scale and ~12% reduction in erosion at the HRU scale. Studies using the SWAT-T model indicated that the terraces have advantages to reduce erosion from terraced-agricultural watersheds. SWAT-T can be used in the evaluation of erosion to sustainably conserve the soil and water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erosion" title="Erosion">Erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=Modeling" title=" Modeling"> Modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=Terraces" title=" Terraces"> Terraces</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT" title=" SWAT"> SWAT</a> </p> <a href="https://publications.waset.org/abstracts/104704/evaluating-the-terrace-benefits-of-erosion-in-a-terraced-agricultural-watershed-for-sustainable-soil-and-water-conservation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4362</span> River Bank Erosion Studies: A Review on Investigation Approaches and Governing Factors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azlinda%20Saadon">Azlinda Saadon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides detail review on river bank erosion studies with respect to their processes, methods of measurements and factors governing river bank erosion. Bank erosion processes are commonly associated with river changes initiation and development, through width adjustment and planform evolution. It consists of two main types of erosion processes; basal erosion due to fluvial hydraulic force and bank failure under the influence of gravity. Most studies had only focused on one factor rather than integrating both factors. Evidences of previous works have shown integration between both processes of fluvial hydraulic force and bank failure. Bank failure is often treated as probabilistic phenomenon without having physical characteristics and the geotechnical aspects of the bank. This review summarizes the findings of previous investigators with respect to measurement techniques and prediction rates of river bank erosion through field investigation, physical model and numerical model approaches. Factors governing river bank erosion considering physical characteristics of fluvial erosion are defined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=river%20bank%20erosion" title="river bank erosion">river bank erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=bank%20erosion" title=" bank erosion"> bank erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20analysis" title=" dimensional analysis"> dimensional analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20aspects" title=" geotechnical aspects"> geotechnical aspects</a> </p> <a href="https://publications.waset.org/abstracts/14836/river-bank-erosion-studies-a-review-on-investigation-approaches-and-governing-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4361</span> Effects of Soil Erosion on Vegetation Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josephine%20Wanja%20Nyatia">Josephine Wanja Nyatia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relationship between vegetation and soil erosion deserves attention due to its scientific importance and practical applications. A great deal of information is available about the mechanisms and benefits of vegetation in the control of soil erosion, but the effects of soil erosion on vegetation development and succession is poorly documented. Research shows that soil erosion is the most important driving force for the degradation of upland and mountain ecosystems. Soil erosion interferes with the process of plant community development and vegetation succession, commencing with seed formation and impacting throughout the whole growth phase and affecting seed availability, dispersal, germination and establishment, plant community structure and spatial distribution. There have been almost no studies on the effects of soil erosion on seed development and availability, of surface flows on seed movement and redistribution, and their influences on soil seed bank and on vegetation establishment and distribution. However, these effects may be the main cause of low vegetation cover in regions of high soil erosion activity, and these issues need to be investigated. Moreover, soil erosion is not only a negative influence on vegetation succession and restoration but also a driving force of plant adaptation and evolution. Consequently, we need to study the effects of soil erosion on ecological processes and on development and regulation of vegetation succession from the points of view of pedology and vegetation, plant and seed ecology, and to establish an integrated theory and technology for deriving practical solutions to soil erosion problems <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title="soil erosion">soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation" title=" vegetation"> vegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20availability" title=" seed availability"> seed availability</a> </p> <a href="https://publications.waset.org/abstracts/167892/effects-of-soil-erosion-on-vegetation-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4360</span> The Automated Soil Erosion Monitoring System (ASEMS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20N.%20Zaimes">George N. Zaimes</a>, <a href="https://publications.waset.org/abstracts/search?q=Valasia%20Iakovoglou"> Valasia Iakovoglou</a>, <a href="https://publications.waset.org/abstracts/search?q=Paschalis%20Koutalakis"> Paschalis Koutalakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Ioannou"> Konstantinos Ioannou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Kosmadakis"> Ioannis Kosmadakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Tsardaklis"> Panagiotis Tsardaklis</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodoros%20Laopoulos"> Theodoros Laopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advancements in technology allow the development of a new system that can continuously measure surface soil erosion. Continuous soil erosion measurements are required in order to comprehend the erosional processes and propose effective and efficient conservation measures to mitigate surface erosion. Mitigating soil erosion, especially in Mediterranean countries such as Greece, is essential in order to maintain environmental and agricultural sustainability. In this paper, we present the Automated Soil Erosion Monitoring System (ASEMS) that measures surface soil erosion along with other factors that impact erosional process. Specifically, this system measures ground level changes (surface soil erosion), rainfall, air temperature, soil temperature and soil moisture. Another important innovation is that the data will be collected by remote communication. In addition, stakeholder’s awareness is a key factor to help reduce any environmental problem. The different dissemination activities that were utilized are described. The overall outcomes were the development of an innovative system that can measure erosion very accurately. These data from the system help study the process of erosion and find the best possible methods to reduce erosion. The dissemination activities enhance the stakeholder's and public's awareness on surface soil erosion problems and will lead to the adoption of more effective soil erosion conservation practices in Greece. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20management" title="soil management">soil management</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20technologies" title=" new technologies"> new technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation%20practices" title=" conservation practices"> conservation practices</a> </p> <a href="https://publications.waset.org/abstracts/38394/the-automated-soil-erosion-monitoring-system-asems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4359</span> Assessments of Internal Erosion in a Landfill Due to Changes in the Groundwater Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siamak%20Feizi">Siamak Feizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunvor%20Baardvik"> Gunvor Baardvik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil erosion has special consequences for landfills that are more serious than those found at conventional construction sites. Different potential heads between two sides of a landfill and the subsequent movement of water through pores within the soil body could trigger the soil erosion and construction instability. Such a condition was encountered in a landfill project in the southern part of Norway. To check the risk of internal erosion due to changes in the groundwater level (because of seasonal flooding in the river), a series of numerical simulations by means of Geo-Seep software was conducted. Output of this study provides a total picture of the landfill stability, possibilities of erosions, and necessary measures to prevent or reduce the risk for the landfill operator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion" title="erosion">erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=seepage" title=" seepage"> seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill" title=" landfill"> landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/134955/assessments-of-internal-erosion-in-a-landfill-due-to-changes-in-the-groundwater-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4358</span> A Study of Erosion and Sedimentation Rates Based on Two Different Seasons Using CS-137 As A Tracer in the Sembrong Catchment, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jalal%20Sharib%40Sarip">Jalal Sharib@Sarip</a>, <a href="https://publications.waset.org/abstracts/search?q=Dainee%20nor%20Fardzila%20Ahmad%20Tugi">Dainee nor Fardzila Ahmad Tugi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Tarmizi%20Ishak">Mohd Tarmizi Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Izwan%20Abdul%20Adziz">Mohd Izwan Abdul Adziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper aims to determine the rate of soil erosion and sedimentation by using Cesium-137,137Cs as a medium-term tracer in the Sembrong catchment, Malaysia, over two different study seasons. The results of the analysis show that rates of soil erosion and sedimentation for both seasons were variable. This can be clearly seen where the dry season only gives the value of the rate of soil erosion. Meanwhile, the wet season has given both soil erosion and sedimentation rate values. The dry season had rates of soil erosion between 5.09 t/ha/y to 51.03 t/ha/y. The wet season had soil erosion and sedimentation rates between 8.02 t/ha/y to 39.78 t/ha/y and -4.81 t/ha/y to - 50.81 t/ha/y, each, respectively. rubber and oil palm plantations referring to Station 17 and station 4/6, located near Semberong Lake and Sembrong River, had the highest rates of soil erosion and sedimentation at 51.03 t/ha/y and -50.81 t/ha/y, respectively. Various factors must also be taken into account, such as soil types, the total volume of rainfall received for both seasons, as well as differences in land use at the study stations. In conclusion, 137Cs as a medium-term tracer was successfully used to determine rates of soil erosion and sedimentation in two different seasons for the Sembrong catchment area. The data on soil erosion and sedimentation rates for this study will be very useful for present, and future land and water management in the Sembrong catchment area and may be compared with other similar catchments in Malaysia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title="soil erosion">soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title=" sedimentation"> sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=cesium-137" title=" cesium-137"> cesium-137</a>, <a href="https://publications.waset.org/abstracts/search?q=catchment%20management" title=" catchment management"> catchment management</a> </p> <a href="https://publications.waset.org/abstracts/153757/a-study-of-erosion-and-sedimentation-rates-based-on-two-different-seasons-using-cs-137-as-a-tracer-in-the-sembrong-catchment-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4357</span> Modeling Soil Erosion and Sediment Yield in Geba Catchment, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gebremedhin%20Kiros">Gebremedhin Kiros</a>, <a href="https://publications.waset.org/abstracts/search?q=Amba%20Shetty"> Amba Shetty</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakshman%20Nandagiri"> Lakshman Nandagiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil erosion is a major threat to the sustainability of land and water resources in the catchment and there is a need to identify critical areas of erosion so that suitable conservation measures may be adopted. The present study was taken up to understand the temporal and spatial distribution of soil erosion and daily sediment yield in Geba catchment (5137 km2) located in the Northern Highlands of Ethiopia. Soil and Water Assessment Tool (SWAT) was applied to the Geba catchment using data pertaining to rainfall, climate, soils, topography and land use/land cover (LU/LC) for the historical period 2000-2013. LU/LC distribution in the catchment was characterized using LANDSAT satellite imagery and the GIS-based ArcSWAT version of the model. The model was calibrated and validated using sediment concentration measurements made at the catchment outlet. The catchment was divided into 13 sub-basins and based on estimated soil erosion, these were prioritized on the basis of susceptibility to soil erosion. Model results indicated that the average sediment yield estimated of the catchment was 12.23 tons/ha/yr. The generated soil loss map indicated that a large portion of the catchment has high erosion rates resulting in significantly large sediment yield at the outlet. Steep and unstable terrain, the occurrence of highly erodible soils and low vegetation cover appeared to favor high soil erosion. Results obtained from this study prove useful in adopting in targeted soil and water conservation measures and promote sustainable management of natural resources in the Geba and similar catchments in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ethiopia" title="Ethiopia">Ethiopia</a>, <a href="https://publications.waset.org/abstracts/search?q=Geba%20catchment" title=" Geba catchment"> Geba catchment</a>, <a href="https://publications.waset.org/abstracts/search?q=MUSLE" title=" MUSLE"> MUSLE</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title=" sediment yield"> sediment yield</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT%20Model" title=" SWAT Model"> SWAT Model</a> </p> <a href="https://publications.waset.org/abstracts/62392/modeling-soil-erosion-and-sediment-yield-in-geba-catchment-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4356</span> Artificial Neural Networks and Geographic Information Systems for Coastal Erosion Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angeliki%20Peponi">Angeliki Peponi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Morgado"> Paulo Morgado</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Trindade"> Jorge Trindade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial Neural Networks (ANNs) and Geographic Information Systems (GIS) are applied as a robust tool for modeling and forecasting the erosion changes in Costa Caparica, Lisbon, Portugal, for 2021. ANNs present noteworthy advantages compared with other methods used for prediction and decision making in urban coastal areas. Multilayer perceptron type of ANNs was used. Sensitivity analysis was conducted on natural and social forces and dynamic relations in the dune-beach system of the study area. Variations in network’s parameters were performed in order to select the optimum topology of the network. The developed methodology appears fitted to reality; however further steps would make it better suited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=backpropagation" title=" backpropagation"> backpropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20urban%20zones" title=" coastal urban zones"> coastal urban zones</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion%20prediction" title=" erosion prediction"> erosion prediction</a> </p> <a href="https://publications.waset.org/abstracts/84741/artificial-neural-networks-and-geographic-information-systems-for-coastal-erosion-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4355</span> Estimation of Soil Erosion and Sediment Yield for ONG River Using GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar%20Behera">Sanjay Kumar Behera</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanhu%20Charan%20Patra"> Kanhu Charan Patra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A GIS-based method has been applied for the determination of soil erosion and sediment yield in a small watershed in Ong River basin, Odisha, India. The method involves spatial disintegration of the catchment into homogenous grid cells to capture the catchment heterogeneity. The gross soil erosion in each cell was calculated using Universal Soil Loss Equation (USLE) by carefully determining its various parameters. The concept of sediment delivery ratio is used to route surface erosion from each of the discretized cells to the catchment outlet. The process of sediment delivery from grid cells to the catchment outlet is represented by the topographical characteristics of the cells. The effect of DEM resolution on sediment yield is analyzed using two different resolutions of DEM. The spatial discretization of the catchment and derivation of the physical parameters related to erosion in the cell are performed through GIS techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEM" title="DEM">DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20delivery%20ratio" title=" sediment delivery ratio"> sediment delivery ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title=" sediment yield"> sediment yield</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a> </p> <a href="https://publications.waset.org/abstracts/21590/estimation-of-soil-erosion-and-sediment-yield-for-ong-river-using-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4354</span> Analysis of Erosion Quantity on Application of Conservation Techniques in Ci Liwung Hulu Watershed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaenal%20Mutaqin">Zaenal Mutaqin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The level of erosion that occurs in the upsteam watersheed will lead to limited infiltrattion, land degradation and river trivialisation and estuaries in the body. One of the watesheed that has been degraded caused by using land is the DA Ci Liwung Upstream. The high degradation that occurs in the DA Ci Liwung upstream is indicated by the hugher rate of erosion on the region, especially in the area of agriculture. In this case, agriculture cultivation intent to the agricultural land that has been applied conservation techniques. This study is applied to determine the quantity of erosion by reviewing Hidrologic Response Unit (HRU) in agricuktural cultivation land which is contained in DA Ci Liwung upstream by using the Soil and Water Assessmen Tool (SWAT). Conservation techniques applied are terracing, agroforestry and gulud terrace. It was concluded that agroforestry conservation techniques show the best value of erosion (lowest) compared with other conservation techniques with the contribution of erosion of 25.22 tonnes/ha/year. The results of the calibration between the discharge flow models with the observation that R²=0.9014 and NS=0.79 indicates that this model is acceptable and feasible applied to the Ci Liwung Hulu watershed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation" title="conservation">conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT%20analysis" title=" SWAT analysis"> SWAT analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=watersheed" title=" watersheed"> watersheed</a> </p> <a href="https://publications.waset.org/abstracts/59021/analysis-of-erosion-quantity-on-application-of-conservation-techniques-in-ci-liwung-hulu-watershed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4353</span> Coastal Erosion Control Alternatives with Geosynthetics: Study Case of Ponta Negra Beach, Natal, Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Medeiros">M. A. Medeiros</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20N.%20Dantas"> A. A. N. Dantas</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20N.%20Fran%C3%A7a"> F. A. N. França</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20F.%20Amaral"> R. F. Amaral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several alternatives of coastal erosion control with geosynthetics. As an important stage of any Civil Engineering project, literature review is necessary in order to evaluate these alternatives and to guide the decisions. Ponta Negra beachfront has a very intensive urban pressure. In addition, a very short sand area induces high intensity erosion processes. Different attempts of solving the problem were already built. However, erosion issues are still an important concern since these structures collapsed. Geosynthetics present a great potential to be applied in this area. In order to study coastal erosion control alternatives with the use of geosynthetics, this paper presents a literature review about this subject. Several studies were collected in which beach conditions are similar to those found in Ponta Negra beach. It was possible to evaluate the alternatives that might be used in the area. Further studies include the application of such techniques in pilot areas and the evaluation of the erosion process. Finally, the best alternative for futures studies on Ponta Negra beach is geocontainers of geotextiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geosynthetics" title="geosynthetics">geosynthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20erosion%20control" title=" coastal erosion control"> coastal erosion control</a>, <a href="https://publications.waset.org/abstracts/search?q=alternatives" title=" alternatives"> alternatives</a>, <a href="https://publications.waset.org/abstracts/search?q=Ponta%20Negra%20beach" title=" Ponta Negra beach"> Ponta Negra beach</a> </p> <a href="https://publications.waset.org/abstracts/99716/coastal-erosion-control-alternatives-with-geosynthetics-study-case-of-ponta-negra-beach-natal-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4352</span> Reviewing Soil Erosion in Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paschalis%20Koutalakis">Paschalis Koutalakis</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20N.%20Zaimes"> George N. Zaimes</a>, <a href="https://publications.waset.org/abstracts/search?q=Valasia%20Iakovoglou"> Valasia Iakovoglou</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Ioannou"> Konstantinos Ioannou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mitigating soil erosion, especially in Mediterranean countries such as Greece, is essential in order to maintain environmental and agricultural sustainability. In this paper, scientific publications related to soil erosion studies in Greece were reviewed and categorized. To accomplish this, the online search engine of Scopus was used. The key words were “soil”, “erosion” and “Greece.” An analysis of the published articles was conducted at three levels: i) type of publication, ii) chronologic and iii) thematic. A hundred and ten publications published in scientific journals were reviewed. The results showed that the awareness regarding the soil erosion in Greece has increased only in the last decades. The publications covered a wide range of thematic categories such as the type of studied areas, the physical phenomena that trigger and influence the soil erosion, the negative anthropogenic impacts on them, the assessment tools that were used in order to examine the threat and the proper management. The analysis of these articles was significant and necessary in order to find the scientific gaps of soil erosion studies in Greece and help enhance the sustainability of soil management in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20sustainability" title=" agricultural sustainability"> agricultural sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20sustainability" title=" environmental sustainability"> environmental sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20management" title=" soil management"> soil management</a> </p> <a href="https://publications.waset.org/abstracts/30601/reviewing-soil-erosion-in-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4351</span> Comparative Assessment of a Distributed Model and a Lumped Model for Estimating of Sediments Yielding in Small Urban Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.Zambrano%20N%C3%A1jera">J.Zambrano Nájera</a>, <a href="https://publications.waset.org/abstracts/search?q=M.G%C3%B3mez%20Valent%C3%ADn"> M.Gómez Valentín</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increases in urbanization during XX century, have brought as one major problem the increased of sediment production. Hydraulic erosion is one of the major causes of increasing of sediments in small urban catchments. Such increments in sediment yielding in header urban catchments can caused obstruction of drainage systems, making impossible to capture urban runoff, increasing runoff volumes and thus exacerbating problems of urban flooding. For these reasons, it is more and more important to study of sediment production in urban watershed for properly analyze and solve problems associated to sediments. The study of sediments production has improved with the use of mathematical modeling. For that reason, it is proposed a new physically based model applicable to small header urban watersheds that includes the advantages of distributed physically base models, but with more realistic data requirements. Additionally, in this paper the model proposed is compared with a lumped model, reviewing the results, the advantages and disadvantages between the both of them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion" title="erosion">erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrologic%20modeling" title=" hydrologic modeling"> hydrologic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20runoff" title=" urban runoff"> urban runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20modeling" title=" sediment modeling"> sediment modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20yielding" title=" sediment yielding"> sediment yielding</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a> </p> <a href="https://publications.waset.org/abstracts/29771/comparative-assessment-of-a-distributed-model-and-a-lumped-model-for-estimating-of-sediments-yielding-in-small-urban-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4350</span> Erosion Influencing Factors Analysis: Case of Isser Watershed (North-West Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chahrazed%20Salhi">Chahrazed Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayoub%20Zeroual"> Ayoub Zeroual</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmina%20Hamitouche"> Yasmina Hamitouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil water erosion poses a significant threat to the watersheds in Algeria today. The degradation of storage capacity in large dams over the past two decades, primarily due to erosion, necessitates a comprehensive understanding of the factors that contribute to soil erosion. The Isser watershed, located in the Northwestern region of Algeria, faces additional challenges such as recurrent droughts and the presence of delicate marl and clay outcrops, which amplify its susceptibility to water erosion. This study aims to employ advanced techniques such as Geographic Information Systems (GIS) and Remote Sensing (RS), in conjunction with the Canonical Correlation Analysis (CCA) method and Soil Water Assessment Tool (SWAT) model, to predict specific erosion patterns and analyze the key factors influencing erosion in the Isser basin. To accomplish this, an array of data sources including rainfall, climatic, hydrometric, land use, soil, digital elevation, and satellite data were utilized. The application of the SWAT model to the Isser basin yielded an average annual soil loss of approximately 16 t/ha/year. Particularly high erosion rates, exceeding 12 T/ha/year, were observed in the central and southern parts of the basin, encompassing 41% of the total basin area. Through Canonical Correlation Analysis, it was determined that vegetation cover and topography exerted the most substantial influence on erosion. Consequently, the study identified significant and spatially heterogeneous erosion throughout the study area. The impact of land topography on soil loss was found to be directly proportional, while vegetation cover exhibited an inverse proportional relationship. Modeling specific erosion for the Ladrat dam sub-basin estimated a rate of around 39 T/ha/year, thus accounting for the recorded capacity loss of 17.80% compared to the bathymetric survey conducted in 2019. The findings of this research provide valuable decision-support tools for soil conservation managers, empowering them to make informed decisions regarding soil conservation measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isser%20watershed" title="Isser watershed">Isser watershed</a>, <a href="https://publications.waset.org/abstracts/search?q=RS" title=" RS"> RS</a>, <a href="https://publications.waset.org/abstracts/search?q=CCA" title=" CCA"> CCA</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT" title=" SWAT"> SWAT</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation%20cover" title=" vegetation cover"> vegetation cover</a>, <a href="https://publications.waset.org/abstracts/search?q=topography" title=" topography"> topography</a> </p> <a href="https://publications.waset.org/abstracts/173177/erosion-influencing-factors-analysis-case-of-isser-watershed-north-west-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4349</span> Inhibiting Effects of Zwitterionic Surfactant on the Erosion-Corrosion of API X52 Steel in Oil Sands Slurry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Deyab">M. A. Deyab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of zwitterionic surfactant (ZS) on erosion-corrosion of API X52 steel in oil sands slurry was studied using Tafel polarization and anodic polarization measurements. The surface morphology of API X52 steel was examined with scanning electron microscopy (SEM) and atomic force microscopy (AFM). ZS inhibited the erosion-corrosion of API X52 steel in oil sands' slurry, and the inhibition efficiency increased with increasing ZS concentration but decreased with increasing temperature. Polarization curves indicate that ZS act as a mixed type of inhibitor. Inhibition efficiencies of ZS in the dynamic condition are not as effective as that obtained in the static condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20sands%20slurry" title=" oil sands slurry"> oil sands slurry</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion-corrosion" title=" erosion-corrosion"> erosion-corrosion</a> </p> <a href="https://publications.waset.org/abstracts/83418/inhibiting-effects-of-zwitterionic-surfactant-on-the-erosion-corrosion-of-api-x52-steel-in-oil-sands-slurry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=erosion%20modeling&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=erosion%20modeling&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=erosion%20modeling&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=erosion%20modeling&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=erosion%20modeling&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=erosion%20modeling&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=erosion%20modeling&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=erosion%20modeling&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=erosion%20modeling&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=erosion%20modeling&page=145">145</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=erosion%20modeling&page=146">146</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=erosion%20modeling&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>