CINXE.COM

Search results for: off-shore industry

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: off-shore industry</title> <meta name="description" content="Search results for: off-shore industry"> <meta name="keywords" content="off-shore industry"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="off-shore industry" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="off-shore industry"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5567</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: off-shore industry</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5567</span> Construction Port Requirements for Floating Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alan%20Crowle">Alan Crowle</a>, <a href="https://publications.waset.org/abstracts/search?q=Philpp%20Thies"> Philpp Thies</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the floating offshore wind turbine industry continues to develop and grow, the capabilities of established port facilities need to be assessed as to their ability to support the expanding construction and installation requirements. This paper assesses current infrastructure requirements and projected changes to port facilities that may be required to support the floating offshore wind industry. Understanding the infrastructure needs of the floating offshore renewable industry will help to identify the port-related requirements. Floating Offshore Wind Turbines can be installed further out to sea and in deeper waters than traditional fixed offshore wind arrays, meaning that it can take advantage of stronger winds. Separate ports are required for substructure construction, fit-out of the turbines, moorings, subsea cables and maintenance. Large areas are required for the laydown of mooring equipment; inter-array cables, turbine blades and nacelles. The capabilities of established port facilities to support floating wind farms are assessed by evaluation of the size of substructures, the height of wind turbine with regards to the cranes for fitting of blades, distance to offshore site and offshore installation vessel characteristics. The paper will discuss the advantages and disadvantages of using large land-based cranes, inshore floating crane vessels or offshore crane vessels at the fit-out port for the installation of the turbine. Water depths requirements for import of materials and export of the completed structures will be considered. There are additional costs associated with any emerging technology. However part of the popularity of Floating Offshore Wind Turbines stems from the cost savings against permanent structures like fixed wind turbines. Floating Offshore Wind Turbine developers can benefit from lighter, more cost-effective equipment which can be assembled in port and towed to the site rather than relying on large, expensive installation vessels to transport and erect fixed bottom turbines. The ability to assemble Floating Offshore Wind Turbines equipment onshore means minimizing highly weather-dependent operations like offshore heavy lifts and assembly, saving time and costs and reducing safety risks for offshore workers. Maintenance might take place in safer onshore conditions for barges and semi-submersibles. Offshore renewables, such as floating wind, can take advantage of this wealth of experience, while oil and gas operators can deploy this experience at the same time as entering the renewables space The floating offshore wind industry is in the early stages of development and port facilities are required for substructure fabrication, turbine manufacture, turbine construction and maintenance support. The paper discusses the potential floating wind substructures as this provides a snapshot of the requirements at the present time, and potential technological developments required for commercial development. Scaling effects of demonstration-scale projects will be addressed, however, the primary focus will be on commercial-scale (30+ units) device floating wind energy farms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20wind" title="floating wind">floating wind</a>, <a href="https://publications.waset.org/abstracts/search?q=port" title=" port"> port</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20construction" title=" marine construction"> marine construction</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20renewables" title=" offshore renewables"> offshore renewables</a> </p> <a href="https://publications.waset.org/abstracts/138935/construction-port-requirements-for-floating-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5566</span> Effectiveness of Software Quality Assurance in Offshore Development Enterprises in Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malinda%20Gayan%20Sirisena">Malinda Gayan Sirisena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to evaluate the effectiveness of software quality assurance approaches of Sri Lankan offshore software development organizations, and to propose a framework which could be used across all offshore software development organizations. An empirical study was conducted using derived framework from popular software quality evaluation models. The research instrument employed was a questionnaire survey among thirty seven Sri Lankan registered offshore software development organizations. The findings demonstrate a positive view of Effectiveness of Software Quality Assurance – the stronger predictors of Stability, Installability, Correctness, Testability and Changeability. The present study’s recommendations indicate a need for much emphasis on software quality assurance for the Sri Lankan offshore software development organizations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20quality%20assurance%20%28SQA%29" title="software quality assurance (SQA)">software quality assurance (SQA)</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20software%20development" title=" offshore software development"> offshore software development</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20assurance%20evaluation%20models" title=" quality assurance evaluation models"> quality assurance evaluation models</a>, <a href="https://publications.waset.org/abstracts/search?q=effectiveness%20of%20quality%20assurance" title=" effectiveness of quality assurance"> effectiveness of quality assurance</a> </p> <a href="https://publications.waset.org/abstracts/8370/effectiveness-of-software-quality-assurance-in-offshore-development-enterprises-in-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5565</span> System Engineering Design of Offshore Oil Drilling Production Platform from Marine Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Njoku%20Paul">C. Njoku Paul </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with systems engineering applications design for offshore oil drilling production platform in the Nigerian Marine Environment. Engineering Design model of the distribution and accumulation of petroleum hydrocarbons discharged into marine environment production platform and sources of impact of an offshore is treated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20offshore%20oil%20drilling%20production%20platform" title="design of offshore oil drilling production platform">design of offshore oil drilling production platform</a>, <a href="https://publications.waset.org/abstracts/search?q=marine" title=" marine"> marine</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20hydrocarbons" title=" petroleum hydrocarbons"> petroleum hydrocarbons</a> </p> <a href="https://publications.waset.org/abstracts/26646/system-engineering-design-of-offshore-oil-drilling-production-platform-from-marine-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5564</span> Towards Automated Remanufacturing of Marine and Offshore Engineering Components </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aprilia">Aprilia</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Liang%20Keith%20Nguyen"> Wei Liang Keith Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu%20Beng%20Tor"> Shu Beng Tor</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerald%20Gim%20Lee%20Seet"> Gerald Gim Lee Seet</a>, <a href="https://publications.waset.org/abstracts/search?q=Chee%20Kai%20Chua"> Chee Kai Chua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automated remanufacturing process is of great interest in today’s marine and offshore industry. Most of the current remanufacturing processes are carried out manually and hence they are error prone, labour-intensive and costly. In this paper, a conceptual framework for automated remanufacturing is presented. This framework involves the integration of 3D non-contact digitization, adaptive surface reconstruction, additive manufacturing and machining operation. Each operation is operated and interconnected automatically as one system. The feasibility of adaptive surface reconstruction on marine and offshore engineering components is also discussed. Several engineering components were evaluated and the results showed that this proposed system is feasible. Conclusions are drawn and further research work is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20surface%20reconstruction" title="adaptive surface reconstruction">adaptive surface reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20remanufacturing" title=" automated remanufacturing"> automated remanufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20repair" title=" automatic repair"> automatic repair</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20engineering" title=" reverse engineering"> reverse engineering</a> </p> <a href="https://publications.waset.org/abstracts/57009/towards-automated-remanufacturing-of-marine-and-offshore-engineering-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5563</span> Study for an Optimal Cable Connection within an Inner Grid of an Offshore Wind Farm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Je-Seok%20Shin">Je-Seok Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wook-Won%20Kim"> Wook-Won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-O%20Kim"> Jin-O Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The offshore wind farm needs to be designed carefully considering economics and reliability aspects. There are many decision-making problems for designing entire offshore wind farm, this paper focuses on an inner grid layout which means the connection between wind turbines as well as between wind turbines and an offshore substation. A methodology proposed in this paper determines the connections and the cable type for each connection section using K-clustering, minimum spanning tree and cable selection algorithms. And then, a cost evaluation is performed in terms of investment, power loss and reliability. Through the cost evaluation, an optimal layout of inner grid is determined so as to have the lowest total cost. In order to demonstrate the validity of the methodology, the case study is conducted on 240MW offshore wind farm, and the results show that it is helpful to design optimally offshore wind farm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind%20farm" title="offshore wind farm">offshore wind farm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20layout" title=" optimal layout"> optimal layout</a>, <a href="https://publications.waset.org/abstracts/search?q=k-clustering%20algorithm" title=" k-clustering algorithm"> k-clustering algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20spanning%20algorithm" title=" minimum spanning algorithm"> minimum spanning algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=cable%20type%20selection" title=" cable type selection"> cable type selection</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20loss%20cost" title=" power loss cost"> power loss cost</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20cost" title=" reliability cost "> reliability cost </a> </p> <a href="https://publications.waset.org/abstracts/39131/study-for-an-optimal-cable-connection-within-an-inner-grid-of-an-offshore-wind-farm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5562</span> Seismic Hazard Assessment of Offshore Platforms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20D.%20Konstandakopoulou">F. D. Konstandakopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Papagiannopoulos"> G. A. Papagiannopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20G.%20Pnevmatikos"> N. G. Pnevmatikos</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20D.%20Hatzigeorgiou"> G. D. Hatzigeorgiou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the effects of pile-soil-structure interaction on the dynamic response of offshore platforms under the action of near-fault earthquakes. Two offshore platforms models are investigated, one with completely fixed supports and one with piles which are clamped into deformable layered soil. The soil deformability for the second model is simulated using non-linear springs. These platform models are subjected to near-fault seismic ground motions. The role of fault mechanism on platforms&rsquo; response is additionally investigated, while the study also examines the effects of different angles of incidence of seismic records on the maximum response of each platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hazard%20analysis" title="hazard analysis">hazard analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20platforms" title=" offshore platforms"> offshore platforms</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquakes" title=" earthquakes"> earthquakes</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a> </p> <a href="https://publications.waset.org/abstracts/102575/seismic-hazard-assessment-of-offshore-platforms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5561</span> Advantages of Electrifying Offshore Compression System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siva%20Sankara%20Arudra">Siva Sankara Arudra</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamaruzaman%20Baharuddin"> Kamaruzaman Baharuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ir.%20Ahmed%20Fadzil%20Mustafa%20Kamal"> Ir. Ahmed Fadzil Mustafa Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ir.%20Abdul%20Latif%20Mohamed"> Ir. Abdul Latif Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advancement of electrical and electronics technologies has rewarded the oil and gas industry with great opportunities to embed more environmentally solutions into design. Most offshore oil and gas producers have their engineering and production asset goals to promote greater use of environmentally friendly compression system technologies to eliminate hazardous emissions from conventional gas compressor drivers. Therefore, this paper comprehensively elaborates the parametric study conducted in integrating the latest electrical and electronics drives technology into the existing compression system. This study was conducted in aspects of layout, reliability & availability, maintainability, emission, and cost. An existing offshore facility that utilized gas turbines as the driver for gas compression was set as Conventional Case for this study. The Electrification Case will utilize electric motor drives as the driver for the compression system. Findings from this study indicate more advantages in driver electrification compared to conventional compression systems. The findings of this paper can be set as a benchmark for future offshore driver selection for gas compression systems of similar operating parameters and power range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbomachinery" title="turbomachinery">turbomachinery</a>, <a href="https://publications.waset.org/abstracts/search?q=electrification" title=" electrification"> electrification</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20system" title=" compression system"> compression system</a> </p> <a href="https://publications.waset.org/abstracts/146076/advantages-of-electrifying-offshore-compression-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5560</span> 3-D Numerical Model for Wave-Induced Seabed Response around an Offshore Pipeline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zuodong%20Liang">Zuodong Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Sheng%20Jeng"> Dong-Sheng Jeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seabed instability around an offshore pipeline is one of key factors that need to be considered in the design of offshore infrastructures. Unlike previous investigations, a three-dimensional numerical model for the wave-induced soil response around an offshore pipeline is proposed in this paper. The numerical model was first validated with 2-D experimental data available in the literature. Then, a parametric study will be carried out to examine the effects of wave, seabed characteristics and confirmation of pipeline. Numerical examples demonstrate significant influence of wave obliquity on the wave-induced pore pressures and the resultant seabed liquefaction around the pipeline, which cannot be observed in 2-D numerical simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pore%20pressure" title="pore pressure">pore pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20wave%20model" title=" 3D wave model"> 3D wave model</a>, <a href="https://publications.waset.org/abstracts/search?q=seabed%20liquefaction" title=" seabed liquefaction"> seabed liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline" title=" pipeline"> pipeline</a> </p> <a href="https://publications.waset.org/abstracts/76992/3-d-numerical-model-for-wave-induced-seabed-response-around-an-offshore-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5559</span> Dynamic Analysis of Offshore 2-HUS/U Parallel Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xie%20Kefeng">Xie Kefeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20He"> Zhang He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the stability and control demand of offshore small floating platform, a 2-HUS/U parallel mechanism was presented as offshore platform. Inverse kinematics was obtained by institutional constraint equation, and the dynamic model of offshore 2-HUS/U parallel platform was derived based on rigid body&rsquo;s Lagrangian method. The equivalent moment of inertia, damping and driving force/torque variation of offshore 2-HUS/U parallel platform were analyzed. A numerical example shows that, for parallel platform of given motion, system&rsquo;s equivalent inertia changes 1.25 times maximally. During the movement of platform, they change dramatically with the system configuration and have coupling characteristics. The maximum equivalent drive torque is 800 N. At the same time, the curve of platform&rsquo;s driving force/torque is smooth and has good sine features. The control system needs to be adjusted according to kinetic equation during stability and control and it provides a basis for the optimization of control system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2-HUS%2FU%20platform" title="2-HUS/U platform">2-HUS/U platform</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrange" title=" Lagrange"> Lagrange</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20platform" title=" parallel platform"> parallel platform</a> </p> <a href="https://publications.waset.org/abstracts/54812/dynamic-analysis-of-offshore-2-husu-parallel-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5558</span> Scouring Rate Pattern/Monitoring at Coastal and Offshore Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Saifullah%20Mazlan">Ahmad Saifullah Mazlan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Basser"> Hossein Basser</a>, <a href="https://publications.waset.org/abstracts/search?q=Shatirah%20Akib"> Shatirah Akib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scouring pattern evaluation and measuring its depth around coastal and offshore structures is very essential issue to assure the safety of the structures as well as providing needed design parameters. Scouring is known as one of the important phenomena which threatens the safety of infrastructures. Several countermeasures have been developed to control scouring by protecting the structures against water flow attack directly or indirectly by changing the water flow pattern. Recently, monitoring methods for estimating water flow pattern and scour depth are studied to track the safety of structures. Since most of studies regarding scouring is related to monitoring scouring around piers in rivers therefore it is necessary to develop researches investigating scouring around piers in coastal and offshore areas. This paper describes a review of monitoring methods may be used for detecting scour depth around piers in coastal and offshore structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scour" title="scour">scour</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=pier" title=" pier"> pier</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal" title=" coastal"> coastal</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore" title=" offshore"> offshore</a> </p> <a href="https://publications.waset.org/abstracts/23145/scouring-rate-patternmonitoring-at-coastal-and-offshore-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">644</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5557</span> Offshore Power Transition Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kashmir%20Johal">Kashmir Johal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Within a wider context of improving whole-life effectiveness of gas and oil fields, we have been researching how to generate power local to the wellhead. (Provision of external power to a subsea wellhead can be prohibitively expensive and results in uneconomic fields. This has been an oil/gas industry challenge for many years.) We have been developing a possible approach to “local” power generation and have been conducting technical, environmental, (and economic) research to develop a viable approach. We sought to create a workable design for a new type of power generation system that makes use of differential pressure that can exist between the sea surface and a gas (or oil reservoir). The challenge has not just been to design a system capable of generating power from potential energy but also to design it in such a way that it anticipates and deals with the wide range of technological, environmental, and chemical constraints faced in such environments. We believe this project shows the enormous opportunity in deriving clean, economic, and zero emissions renewable energy from offshore sources. Since this technology is not currently available, a patent has been filed to protect the advancement of this technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable" title="renewable">renewable</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore" title=" offshore"> offshore</a> </p> <a href="https://publications.waset.org/abstracts/160688/offshore-power-transition-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5556</span> ‘Ethical Relativism’ in Offshore Business: A Critical Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biswanath%20Swain">Biswanath Swain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethical relativism, as an ethical perspective, holds that moral worth of a course of action is dependent on a particular space and time. Moral rightness or wrongness of a course of action varies from space to space and from time to time. In short, ethical relativism holds that morality is relative to the context. If we reflect conscientiously on the scope of this perspective, we will find that it is wide-spread amongst the marketers involved in the offshore business. However, the irony is that most of the marketers gone along with ethical relativism in their offshore business have been found to be unsuccessful in terms of loss in market-share and bankruptcy. The upshot is purely self-defeating in nature for the marketers. GSK in China and Nestle Maggi in India are some of the burning examples of that sort. The paper argues and recommends that a marketer, as an alternative, should have recourse to Kantian ethical perspective to deliberate courses of action sensitive to offshore business as Kantian ethical perspective is logically and methodologically sound in nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=business" title="business">business</a>, <a href="https://publications.waset.org/abstracts/search?q=course%20of%20action" title=" course of action"> course of action</a>, <a href="https://publications.waset.org/abstracts/search?q=Kant" title=" Kant"> Kant</a>, <a href="https://publications.waset.org/abstracts/search?q=morality" title=" morality"> morality</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore" title=" offshore"> offshore</a>, <a href="https://publications.waset.org/abstracts/search?q=relativism" title=" relativism"> relativism</a> </p> <a href="https://publications.waset.org/abstracts/56151/ethical-relativism-in-offshore-business-a-critical-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5555</span> Offshore Outsourcing: Global Data Privacy Controls and International Compliance Issues</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michelle%20J.%20Miller">Michelle J. Miller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent year, there has been a rise of two emerging issues that impact the global employment and business market that the legal community must review closer: offshore outsourcing and data privacy. These two issues intersect because employment opportunities are shifting due to offshore outsourcing and some States, like the United States, anti-outsourcing legislation has been passed or presented to retain jobs within the country. In addition, the legal requirements to retain the privacy of data as a global employer extends to employees and third party service provides, including services outsourced to offshore locations. For this reason, this paper will review the intersection of these two issues with a specific focus on data privacy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=outsourcing" title="outsourcing">outsourcing</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20privacy" title=" data privacy"> data privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20compliance" title=" international compliance"> international compliance</a>, <a href="https://publications.waset.org/abstracts/search?q=multinational%20corporations" title=" multinational corporations"> multinational corporations</a> </p> <a href="https://publications.waset.org/abstracts/35220/offshore-outsourcing-global-data-privacy-controls-and-international-compliance-issues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5554</span> Necessity for a Standardized Occupational Health and Safety Management System: An Exploratory Study from the Danish Offshore Wind Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dewan%20Ahsan">Dewan Ahsan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Denmark is well ahead in generating electricity from renewable sources. The offshore wind sector is playing the pivotal role to achieve this target. Though there is a rapid growth of offshore wind sector in Denmark, still there is a dearth of synchronization in OHS (occupational health and safety) regulation and standards. Therefore, this paper attempts to ascertain: i) what are the major challenges of the company specific OHS standards? ii) why does the offshore wind industry need a standardized OHS management system? and iii) who can play the key role in this process? To achieve these objectives, this research applies the interview and survey techniques. This study has identified several key challenges in OHS management system which are; gaps in coordination and communication among the stakeholders, gaps in incident reporting systems, absence of a harmonized OHS standard and blame culture. Furthermore, this research has identified eleven key stakeholders who are actively involve with the offshore wind business in Denmark. As noticed, the relationships among these stakeholders are very complex specially between operators and sub-contractors. The respondent technicians are concerned with the compliance of various third-party OHS standards (e.g. ISO 31000, ISO 29400, Good practice guidelines by G+) which are applying by various offshore companies. On top of these standards, operators also impose their own OHS standards. From the technicians point of angle, many of these standards are not even specific for the offshore wind sector. So, it is a big challenge for the technicians and sub-contractors to comply with different company specific standards which also elevate the price of their services offer to the operators. For instance, when a sub-contractor is competing for a bidding, it must fulfill a number of OHS requirements (which demands many extra documantions) set by the individual operator and/the turbine supplier. According to sub-contractors’ point of view these extra works consume too much time to prepare the bidding documents and they also need to train their employees to pass the specific OHS certification courses to accomplish the demand for individual clients and individual project. The sub-contractors argued that in many cases these extra documentations and OHS certificates are inessential to ensure the quality service. So, a standardized OHS management procedure (which could be applicable for all the clients) can easily solve this problem. In conclusion, this study highlights that i) development of a harmonized OHS standard applicable for all the operators and turbine suppliers, ii) encouragement of technicians’ active participation in the OHS management, iii) development of a good safety leadership, and, iv) sharing of experiences among the stakeholders (specially operators-operators-sub contractors) are the most vital strategies to overcome the existing challenges and to achieve the goal of 'zero accident/harm' in the offshore wind industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title="green energy">green energy</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore" title=" offshore"> offshore</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=Denmark" title=" Denmark"> Denmark</a> </p> <a href="https://publications.waset.org/abstracts/90665/necessity-for-a-standardized-occupational-health-and-safety-management-system-an-exploratory-study-from-the-danish-offshore-wind-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5553</span> Studying Roughness Effects on Flow Regimes in Offshore Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Sadegh%20Narges">Mohammad Sadegh Narges</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Ghadampour"> Zahra Ghadampour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the specific condition, offshore pipelines are given careful consideration and care in both design and operation. Most of the offshore pipeline flows are multi-phase. Multi-phase flows construct different pattern or flow regimes (in simultaneous gas-liquid flow, flow regimes like slug flow, wave and …) under different circumstances. One of the influencing factors on the flow regime is the pipeline roughness value. So far, roughness value influences and the sensitivity of the present models to this parameter have not been taken into consideration. Therefore, roughness value influences on the flow regimes in offshore pipelines are discussed in this paper. Results showed that geometry, absolute pipeline roughness value (materials that the pipeline is made of) and flow phases prevailing the system are of the influential parameters on the flow regimes prevailing multi-phase pipelines in a way that a change in any of these parameters results in a change in flow regimes in all or part of the pipeline system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absolute%20roughness" title="absolute roughness">absolute roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20regime" title=" flow regime"> flow regime</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-phase%20flow" title=" multi-phase flow"> multi-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20pipelines" title=" offshore pipelines"> offshore pipelines</a> </p> <a href="https://publications.waset.org/abstracts/63642/studying-roughness-effects-on-flow-regimes-in-offshore-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5552</span> Using High Performance Concrete in Finite Element Modeling of Grouted Connections for Offshore Wind Turbine Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Aboubakr">A. Aboubakr</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Fehling"> E. Fehling</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Mourad"> S. A. Mourad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Omar"> M. Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind energy is one of the most effective renewable sources especially offshore wind energy although offshore wind technology is more costly to produce. It is well known that offshore wind energy can potentially be very cheap once infrastructure and researches improve. Laterally, the trend is to construct offshore wind energy to generate the electricity form wind. This leads to intensive research in order to improve the infrastructures. Offshore wind energy is the construction of wind farms in bodies of water to generate electricity from wind. The most important part in offshore wind turbine structure is the foundation and its connection with the wind tower. This is the main difference between onshore and offshore structures. Grouted connection between the foundation and the wind tower is the most important part of the building process when constructing wind offshore turbines. Most attention should be paid to the actual grout connection as this transfers the loads safely from tower to foundations and the soil also. In this paper, finite element analyses have been carried out for studying the behaviour of offshore grouted connection for wind turbine structures. ATENA program have been used for non-linear analysis simulation of the real structural behavior thus demonstrating the crushing, cracking, contact between the two materials and steel yielding. A calibration of the material used in the simulation has been carried out assuring an accurate model of the used material by ATENA program. This calibration was performed by comparing the results from the ATENA program with experimental results to validate the material properties used in ATENA program. Three simple patch test models with different properties have been performed. The research is concluded with a result that the calibration showing a good agreement between the ATENA program material behaviors and the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grouted%20connection" title="grouted connection">grouted connection</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20modeling" title=" 3D modeling"> 3D modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind%20energy%20turbines" title=" offshore wind energy turbines"> offshore wind energy turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=stresses" title=" stresses "> stresses </a> </p> <a href="https://publications.waset.org/abstracts/14882/using-high-performance-concrete-in-finite-element-modeling-of-grouted-connections-for-offshore-wind-turbine-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5551</span> Sustainability of Offshore Petroleum Resources Extraction and Management of Bangladesh: International and Regional Frameworks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Farhad%20Hosen">Muhammad Farhad Hosen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article examines the sustainability of offshore petroleum resource extraction and management in Bangladesh, focusing on international and regional frameworks. The analysis includes international conventions such as UNCLOS, IMO regulations, and SDGs, as well as regional cooperation through organizations like BIMSTEC and SAARC. The objective is to highlight the impact of these frameworks on sustainable extraction practices, address challenges, and offer recommendations for enhancing Bangladesh's legal and regulatory approaches to offshore resource management. The article underscores the need for harmonizing national laws with international standards, enhancing enforcement mechanisms, and promoting regional cooperation to ensure sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title="Bangladesh">Bangladesh</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20frameworks" title=" international frameworks"> international frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20petroleum" title=" offshore petroleum"> offshore petroleum</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20framework" title=" regional framework"> regional framework</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/191015/sustainability-of-offshore-petroleum-resources-extraction-and-management-of-bangladesh-international-and-regional-frameworks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5550</span> Subsea Control Module (SCM) - A Vital Factor for Well Integrity and Production Performance in Deep Water Oil and Gas Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okoro%20Ikechukwu%20Ralph">Okoro Ikechukwu Ralph</a>, <a href="https://publications.waset.org/abstracts/search?q=Fuat%20Kara"> Fuat Kara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discoveries of hydrocarbon reserves has clearly drifted offshore, and in deeper waters - areas where the industry still has limited knowledge; and that were hitherto, regarded as being out of reach. This shift presents significant and increased challenges in technology requirements needed to guarantee safety of personnel, environment and equipment; ensure high reliability of installed equipment; and provide high level of confidence in security of investment and company reputation. Nowhere are these challenges more apparent than on subsea well integrity and production performance. The past two decades has witnessed enormous rise in deep and ultra-deep water offshore field developments for the recovery of hydrocarbons. Subsea installed equipment at the seabed has been the technology of choice for these developments. This paper discusses the role of Subsea Control module (SCM) as a vital factor for deep-water well integrity and production performance. A case study for Deep-water well integrity and production performance is analysed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20reliability" title="offshore reliability">offshore reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20performance" title=" production performance"> production performance</a>, <a href="https://publications.waset.org/abstracts/search?q=subsea%20control%20module" title=" subsea control module"> subsea control module</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20integrity" title=" well integrity"> well integrity</a> </p> <a href="https://publications.waset.org/abstracts/29562/subsea-control-module-scm-a-vital-factor-for-well-integrity-and-production-performance-in-deep-water-oil-and-gas-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5549</span> Reliability-based Condition Assessment of Offshore Wind Turbines using SHM data </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caglayan%20Hizal">Caglayan Hizal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Emre%20Demirci"> Hasan Emre Demirci</a>, <a href="https://publications.waset.org/abstracts/search?q=Engin%20Aktas"> Engin Aktas</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20Sezer"> Alper Sezer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Offshore wind turbines consist of a long slender tower with a heavy fixed mass on the top of the tower (nacelle), together with a heavy rotating mass (blades and hub). They are always subjected to environmental loads including wind and wave loads in their service life. This study presents a three-stage methodology for reliability-based condition assessment of offshore wind-turbines against the seismic, wave and wind induced effects considering the soil-structure interaction. In this context, failure criterions are considered as serviceability limits of a monopile supporting an Offshore Wind Turbine: (a) allowable horizontal displacement at pile head should not exceed 0.2 m, (b) rotations at pile head should not exceed 0.5°. A Bayesian system identification framework is adapted to the classical reliability analysis procedure. Using this framework, a reliability assessment can be directly implemented to the updated finite element model without performing time-consuming methods. For numerical verification, simulation data of the finite model of a real offshore wind-turbine structure is investigated using the three-stage methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Offshore%20wind%20turbines" title="Offshore wind turbines">Offshore wind turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=SHM" title=" SHM"> SHM</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20assessment" title=" reliability assessment"> reliability assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a> </p> <a href="https://publications.waset.org/abstracts/135552/reliability-based-condition-assessment-of-offshore-wind-turbines-using-shm-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5548</span> The Effect of Damping Treatment for Noise Control on Offshore Platforms Using Statistical Energy Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Xi">Ji Xi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Song%20Chin"> Cheng Song Chin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Mesbahi"> Ehsan Mesbahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structure-borne noise is an important aspect of offshore platform sound field. It can be generated either directly by vibrating machineries induced mechanical force, indirectly by the excitation of structure or excitation by incident airborne noise. Therefore, limiting of the transmission of vibration energy throughout the offshore platform is the key to control the structure-borne noise. This is usually done by introducing damping treatment to the steel structures. Two types of damping treatment using on-board are presented. By conducting a statistical energy analysis (SEA) simulation on a jack-up rig, the noise level in the source room, the neighboring rooms, and remote living quarter cabins are compared before and after the damping treatments been applied. The results demonstrated that, in the source neighboring room and living quarter area, there is a significant noise reduction with the damping treatment applied, whereas in the source room where air-borne sound predominates that of structure-borne sound, the impact is not obvious. The subsequent optimization design of damping treatment in the offshore platform can be made which enable acoustic professionals to implement noise control during the design stage for offshore crews’ hearing protection and habitant comfortability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=statistical%20energy%20analysis" title="statistical energy analysis">statistical energy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20treatment" title=" damping treatment"> damping treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20control" title=" noise control"> noise control</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20platform" title=" offshore platform"> offshore platform</a> </p> <a href="https://publications.waset.org/abstracts/33178/the-effect-of-damping-treatment-for-noise-control-on-offshore-platforms-using-statistical-energy-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5547</span> Analysis and Design of Offshore Triceratops under Ultra-Deep Waters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srinivasan%20Chandrasekaran">Srinivasan Chandrasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Nagavinothini"> R. Nagavinothini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Offshore platforms for ultra-deep waters are form-dominant by design; hybrid systems with large flexibility in horizontal plane and high rigidity in vertical plane are preferred due to functional complexities. Offshore triceratops is relatively a new-generation offshore platform, whose deck is partially isolated from the supporting buoyant legs by ball joints. They allow transfer of partial displacements of buoyant legs to the deck but restrain transfer of rotational response. Buoyant legs are in turn taut-moored to the sea bed using pre-tension tethers. Present study will discuss detailed dynamic analysis and preliminary design of the chosen geometric, which is necessary as a proof of validation for such design applications. A detailed numeric analysis of triceratops at 2400 m water depth under random waves is presented. Preliminary design confirms member-level design requirements under various modes of failure. Tether configuration, proposed in the study confirms no pull-out of tethers as stress variation is comparatively lesser than the yield value. Presented study shall aid offshore engineers and contractors to understand suitability of triceratops, in terms of design and dynamic response behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20structures" title="offshore structures">offshore structures</a>, <a href="https://publications.waset.org/abstracts/search?q=triceratops" title=" triceratops"> triceratops</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20waves" title=" random waves"> random waves</a>, <a href="https://publications.waset.org/abstracts/search?q=buoyant%20legs" title=" buoyant legs"> buoyant legs</a>, <a href="https://publications.waset.org/abstracts/search?q=preliminary%20design" title=" preliminary design"> preliminary design</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a> </p> <a href="https://publications.waset.org/abstracts/78953/analysis-and-design-of-offshore-triceratops-under-ultra-deep-waters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5546</span> Assessment of the Effect of Wind Turbulence on the Aero-Hydrodynamic Behavior of Offshore Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Dezvareh">Reza Dezvareh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to investigate the amount of wind turbulence on the aero hydrodynamic behavior of offshore wind turbines with a monopile holder platform. Since in the sea, the wind turbine structures are under water and structures interactions, the dynamic analysis has been conducted under combined wind and wave loading. The offshore wind turbines have been investigated undertow models of normal and severe wind turbulence, and the results of this study show that the amplitude of fluctuation of dynamic response of structures including thrust force and base shear force of structures is increased with increasing the amount of wind turbulence, and this increase is not necessarily observed in the mean values of responses. Therefore, conducting the dynamic analysis is inevitable in order to observe the effect of wind turbulence on the structures' response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind%20turbine" title="offshore wind turbine">offshore wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbulence" title=" wind turbulence"> wind turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20vibration" title=" structural vibration"> structural vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=aero-hydro%20dynamic" title=" aero-hydro dynamic"> aero-hydro dynamic</a> </p> <a href="https://publications.waset.org/abstracts/82641/assessment-of-the-effect-of-wind-turbulence-on-the-aero-hydrodynamic-behavior-of-offshore-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5545</span> Developing Offshore Energy Grids in Norway as Capability Platforms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vidar%20Heps%C3%B8">Vidar Hepsø</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The energy and oil companies on the Norwegian Continental shelf come from a situation where each asset control and manage their energy supply (island mode) and move towards a situation where the assets need to collaborate and coordinate energy use with others due to increased cost and scarcity of electric energy sharing the energy that is provided. Currently, several areas are electrified either with an onshore grid cable or are receiving intermittent energy from offshore wind-parks. While the onshore grid in Norway is well regulated, the offshore grid is still in the making, with several oil and gas electrification projects and offshore wind development just started. The paper will describe the shift in the mindset that comes with operating this new offshore grid. This transition process heralds an increase in collaboration across boundaries and integration of energy management across companies, businesses, technical disciplines, and engagement with stakeholders in the larger society. This transition will be described as a function of the new challenges with increased complexity of the energy mix (wind, oil/gas, hydrogen and others) coupled with increased technical and organization complexity in energy management. Organizational complexity denotes an increasing integration across boundaries, whether these boundaries are company, vendors, professional disciplines, regulatory regimes/bodies, businesses, and across numerous societal stakeholders. New practices must be developed, made legitimate and institutionalized across these boundaries. Only parts of this complexity can be mitigated technically, e.g.: by use of batteries, mixing energy systems and simulation/ forecasting tools. Many challenges must be mitigated with legitimated societal and institutionalized governance practices on many levels. Offshore electrification supports Norway’s 2030 climate targets but is also controversial since it is exploiting the larger society’s energy resources. This means that new systems and practices must also be transparent, not only for the industry and the authorities, but must also be acceptable and just for the larger society. The paper report from ongoing work in Norway, participant observation and interviews in projects and people working with offshore grid development in Norway. One case presented is the development of an offshore floating windfarm connected to two offshore installations and the second case is an offshore grid development initiative providing six installations electric energy via an onshore cable. The development of the offshore grid is analyzed using a capability platform framework, that describes the technical, competence, work process and governance capabilities that are under development in Norway. A capability platform is a ‘stack’ with the following layers: intelligent infrastructure, information and collaboration, knowledge sharing & analytics and finally business operations. The need for better collaboration and energy forecasting tools/capabilities in this stack will be given a special attention in the two use cases that are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capability%20platform" title="capability platform">capability platform</a>, <a href="https://publications.waset.org/abstracts/search?q=electrification" title=" electrification"> electrification</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20footprint" title=" carbon footprint"> carbon footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20rooms" title=" control rooms"> control rooms</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20forecsting" title=" energy forecsting"> energy forecsting</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20model" title=" operational model"> operational model</a> </p> <a href="https://publications.waset.org/abstracts/171838/developing-offshore-energy-grids-in-norway-as-capability-platforms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5544</span> Optimized Techniques for Reducing the Reactive Power Generation in Offshore Wind Farms in India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pardhasaradhi%20Gudla">Pardhasaradhi Gudla</a>, <a href="https://publications.waset.org/abstracts/search?q=Imanual%20A."> Imanual A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generated electrical power in offshore needs to be transmitted to grid which is located in onshore by using subsea cables. Long subsea cables produce reactive power, which should be compensated in order to limit transmission losses, to optimize the transmission capacity, and to keep the grid voltage within the safe operational limits. Installation cost of wind farm includes the structure design cost and electrical system cost. India has targeted to achieve 175GW of renewable energy capacity by 2022 including offshore wind power generation. Due to sea depth is more in India, the installation cost will be further high when compared to European countries where offshore wind energy is already generating successfully. So innovations are required to reduce the offshore wind power project cost. This paper presents the optimized techniques to reduce the installation cost of offshore wind firm with respect to electrical transmission systems. This technical paper provides the techniques for increasing the current carrying capacity of subsea cable by decreasing the reactive power generation (capacitance effect) of the subsea cable. There are many methods for reactive power compensation in wind power plants so far in execution. The main reason for the need of reactive power compensation is capacitance effect of subsea cable. So if we diminish the cable capacitance of cable then the requirement of the reactive power compensation will be reduced or optimized by avoiding the intermediate substation at midpoint of the transmission network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind%20power" title="offshore wind power">offshore wind power</a>, <a href="https://publications.waset.org/abstracts/search?q=optimized%20techniques" title=" optimized techniques"> optimized techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system" title=" power system"> power system</a>, <a href="https://publications.waset.org/abstracts/search?q=sub%20sea%20cable" title=" sub sea cable"> sub sea cable</a> </p> <a href="https://publications.waset.org/abstracts/91131/optimized-techniques-for-reducing-the-reactive-power-generation-in-offshore-wind-farms-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5543</span> Partner Selection for Innovation Projects Related to New Product Concept Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Odd%20Jarl%20Borch">Odd Jarl Borch</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Z.%20Solesvik"> Marina Z. Solesvik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper analyses partner selection approaches related to large scale R&D-based innovation projects at the different stages of development. We emphasize innovation projects in the maritime value chain and how partners are selected to improve quality according to high spec customer demands, and to reduce investment costs on new production technology such as advanced offshore service vessels. We elaborate on the differences in innovation approach and especially the role that purposive inflows and outflows of knowledge from external partners may be used to accelerate internal innovation. We present three cases related to different projects in terms of specificity and scope. We explore how the partner selection criteria change over time when the goals move from wide scope to a very specific R&D tasks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=partner%20selection" title="partner selection">partner selection</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20industry" title=" offshore industry"> offshore industry</a>, <a href="https://publications.waset.org/abstracts/search?q=concept%20design" title=" concept design"> concept design</a> </p> <a href="https://publications.waset.org/abstracts/12171/partner-selection-for-innovation-projects-related-to-new-product-concept-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5542</span> Optimization of Technical and Technological Solutions for the Development of Offshore Hydrocarbon Fields in the Kaliningrad Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Shcherban">Pavel Shcherban</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktoria%20Ivanova"> Viktoria Ivanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Neprokin"> Alexander Neprokin</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladislav%20Golovanov"> Vladislav Golovanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, LLC &laquo;Lukoil-Kaliningradmorneft&raquo; is implementing a comprehensive program for the development of offshore fields of the Kaliningrad region. This is largely associated with the depletion of the resource base of land in the region, as well as the positive results of geological investigation surrounding the Baltic Sea area and the data on the volume of hydrocarbon recovery from a single offshore field are working on the Kaliningrad region &ndash; D-6 &laquo;Kravtsovskoye&raquo;.The article analyzes the main stages of the LLC &laquo;Lukoil-Kaliningradmorneft&raquo;&rsquo;s development program for the development of the hydrocarbon resources of the region&#39;s shelf and suggests an optimization algorithm that allows managing a multi-criteria process of development of shelf deposits. The algorithm is formed on the basis of the problem of sequential decision making, which is a section of dynamic programming. Application of the algorithm during the consolidation of the initial data, the elaboration of project documentation, the further exploration and development of offshore fields will allow to optimize the complex of technical and technological solutions and increase the economic efficiency of the field development project implemented by LLC &laquo;Lukoil-Kaliningradmorneft&raquo;. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20fields%20of%20hydrocarbons%20of%20the%20Baltic%20Sea" title="offshore fields of hydrocarbons of the Baltic Sea">offshore fields of hydrocarbons of the Baltic Sea</a>, <a href="https://publications.waset.org/abstracts/search?q=development%20of%20offshore%20oil%20and%20gas%20fields" title=" development of offshore oil and gas fields"> development of offshore oil and gas fields</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20of%20the%20field%20development%20scheme" title=" optimization of the field development scheme"> optimization of the field development scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=solution%20of%20multicriteria%20tasks%20in%20oil%20and%20gas%20complex" title=" solution of multicriteria tasks in oil and gas complex"> solution of multicriteria tasks in oil and gas complex</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20management%20in%20oil%20and%20gas%20complex" title=" quality management in oil and gas complex"> quality management in oil and gas complex</a> </p> <a href="https://publications.waset.org/abstracts/95275/optimization-of-technical-and-technological-solutions-for-the-development-of-offshore-hydrocarbon-fields-in-the-kaliningrad-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5541</span> Economic Evaluation Offshore Wind Project under Uncertainly and Risk Circumstances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Amir%20Hamzeh%20Mirkheshti">Sayed Amir Hamzeh Mirkheshti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Offshore wind energy as a strategic renewable energy, has been growing rapidly due to availability, abundance and clean nature of it. On the other hand, budget of this project is incredibly higher in comparison with other renewable energies and it takes more duration. Accordingly, precise estimation of time and cost is needed in order to promote awareness in the developers and society and to convince them to develop this kind of energy despite its difficulties. Occurrence risks during on project would cause its duration and cost constantly changed. Therefore, to develop offshore wind power, it is critical to consider all potential risks which impacted project and to simulate their impact. Hence, knowing about these risks could be useful for the selection of most influencing strategies such as avoidance, transition, and act in order to decrease their probability and impact. This paper presents an evaluation of the feasibility of 500 MV offshore wind project in the Persian Gulf and compares its situation with uncertainty resources and risk. The purpose of this study is to evaluate time and cost of offshore wind project under risk circumstances and uncertain resources by using Monte Carlo simulation. We analyzed each risk and activity along with their distribution function and their effect on the project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20energy%20project" title="wind energy project">wind energy project</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertain%20resources" title=" uncertain resources"> uncertain resources</a>, <a href="https://publications.waset.org/abstracts/search?q=risks" title=" risks"> risks</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/82233/economic-evaluation-offshore-wind-project-under-uncertainly-and-risk-circumstances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5540</span> Techno-Economic Analysis of Offshore Hybrid Energy Systems with Hydrogen Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Crivellari">Anna Crivellari</a>, <a href="https://publications.waset.org/abstracts/search?q=Valerio%20Cozzani"> Valerio Cozzani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even though most of the electricity produced in the entire world still comes from fossil fuels, new policies are being implemented in order to promote a more sustainable use of energy sources. Offshore renewable resources have become increasingly attractive thanks to the huge entity of power potentially obtained. However, the intermittent nature of renewables often limits the capacity of the systems and creates mismatches between supply and demand. Hydrogen is foreseen to be a promising vector to store and transport large amounts of excess renewable power by using existing oil and gas infrastructure. In this work, an offshore hybrid energy system integrating wind energy conversion with hydrogen production was conceptually defined and applied to offshore gas platforms. A techno-economic analysis was performed by considering two different locations for the installation of the innovative power system, i.e., the North Sea and the Adriatic Sea. The water depth, the distance of the platform from the onshore gas grid, the hydrogen selling price and the green financial incentive were some of the main factors taken into account in the comparison. The results indicated that the use of well-defined indicators allows to capture specifically different cost and revenue features of the analyzed systems, as well as to evaluate their competitiveness in the actual and future energy market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost%20analysis" title="cost analysis">cost analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency%20assessment" title=" energy efficiency assessment"> energy efficiency assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title=" hydrogen production"> hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind%20energy" title=" offshore wind energy"> offshore wind energy</a> </p> <a href="https://publications.waset.org/abstracts/100183/techno-economic-analysis-of-offshore-hybrid-energy-systems-with-hydrogen-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5539</span> Windstorm Risk Assessment for Offshore Wind Farms in the North Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Buchana">Paul Buchana</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20E.%20Mc%20Sharry"> Patrick E. Mc Sharry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2017 there will be about 38 wind farms in the North Sea belonging to 5 different countries. The North Sea is ideal for offshore wind power generation and is thus attractive to offshore wind energy developers and investors. With concerns about the potential for offshore wind turbines to sustain substantial damage as a result of extreme weather conditions, particularly windstorms, this poses a unique challenge to insurers and reinsurers as to adequately quantify the risk and offer appropriate insurance cover for these assets. The need to manage this risk also concerns regulators, who provide the oversight needed to ensure that if a windstorm or a series of storms occur in this area over a one-year time frame, the insurers of these assets in the EU remain solvent even after meeting consequent damage costs. In this paper, using available European windstorm data for the past 33 years and actual wind farm locations together with information pertaining to each of the wind farms (number of turbines, total capacity and financial value), we present a Monte Carlo simulation approach to assess the number of turbines that would be buckled in each of the wind farms using maximum wind speeds reaching each of them. These wind speeds are drawn from historical windstorm data. From the number of turbines buckled, associated financial loss and output capacity can be deduced. The results presented in this paper are targeted towards offshore wind energy developers, insurance and reinsurance companies and regulators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catastrophe%20modeling" title="catastrophe modeling">catastrophe modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20Sea%20wind%20farms" title=" North Sea wind farms"> North Sea wind farms</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind%20power" title=" offshore wind power"> offshore wind power</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20analysis" title=" risk analysis"> risk analysis</a> </p> <a href="https://publications.waset.org/abstracts/66197/windstorm-risk-assessment-for-offshore-wind-farms-in-the-north-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5538</span> Degree of Bending in Axially Loaded Tubular KT-Joints of Offshore Structures: Parametric Study and Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Ahmadi">Hamid Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shadi%20Asoodeh"> Shadi Asoodeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fatigue life of tubular joints commonly found in offshore industry is not only dependent on the value of hot-spot stress (HSS), but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The determination of DoB values in a tubular joint is essential for improving the accuracy of fatigue life estimation using the stress-life (S–N) method and particularly for predicting the fatigue crack growth based on the fracture mechanics (FM) approach. In the present paper, data extracted from finite element (FE) analyses of tubular KT-joints, verified against experimental data and parametric equations, was used to investigate the effects of geometrical parameters on DoB values at the crown 0˚, saddle, and crown 180˚ positions along the weld toe of central brace in tubular KT-joints subjected to axial loading. Parametric study was followed by a set of nonlinear regression analyses to derive DoB parametric formulas for the fatigue analysis of KT-joints under axial loads. The tubular KT-joint is a quite common joint type found in steel offshore structures. However, despite the crucial role of the DoB in evaluating the fatigue performance of tubular joints, this paper is the first attempt to study and formulate the DoB values in KT-joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tubular%20KT-joint" title="tubular KT-joint">tubular KT-joint</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20bending%0D%0A%28DoB%29" title=" degree of bending (DoB)"> degree of bending (DoB)</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20loading" title=" axial loading"> axial loading</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20formula" title=" parametric formula "> parametric formula </a> </p> <a href="https://publications.waset.org/abstracts/26817/degree-of-bending-in-axially-loaded-tubular-kt-joints-of-offshore-structures-parametric-study-and-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-shore%20industry&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-shore%20industry&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-shore%20industry&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-shore%20industry&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-shore%20industry&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-shore%20industry&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-shore%20industry&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-shore%20industry&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-shore%20industry&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-shore%20industry&amp;page=185">185</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-shore%20industry&amp;page=186">186</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-shore%20industry&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10