CINXE.COM

Lebesgue covering dimension - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Lebesgue covering dimension - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"556e4614-e016-437d-a200-e973bb2e9aaa","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Lebesgue_covering_dimension","wgTitle":"Lebesgue covering dimension","wgCurRevisionId":1227162399,"wgRevisionId":1227162399,"wgArticleId":398886,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 French-language sources (fr)","Articles with short description","Short description is different from Wikidata","Articles lacking in-text citations from April 2018","All articles lacking in-text citations","Dimension theory"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Lebesgue_covering_dimension","wgRelevantArticleId":398886,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable": true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Topological_dimension","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgInternalRedirectTargetUrl":"/wiki/Lebesgue_covering_dimension","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q164262","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile", "model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP", "ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Lebesgue covering dimension - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Lebesgue_covering_dimension"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Lebesgue_covering_dimension&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Lebesgue_covering_dimension"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Lebesgue_covering_dimension rootpage-Lebesgue_covering_dimension skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Lebesgue+covering+dimension" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Lebesgue+covering+dimension" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Lebesgue+covering+dimension" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Lebesgue+covering+dimension" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Informal_discussion" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Informal_discussion"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Informal discussion</span> </div> </a> <ul id="toc-Informal_discussion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formal_definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Formal_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Formal definition</span> </div> </a> <ul id="toc-Formal_definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Properties</span> </div> </a> <ul id="toc-Properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relationships_to_other_notions_of_dimension" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relationships_to_other_notions_of_dimension"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Relationships to other notions of dimension</span> </div> </a> <ul id="toc-Relationships_to_other_notions_of_dimension-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Further reading</span> </div> </a> <button aria-controls="toc-Further_reading-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Further reading subsection</span> </button> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> <li id="toc-Historical" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Historical"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Historical</span> </div> </a> <ul id="toc-Historical-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Modern" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Modern"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>Modern</span> </div> </a> <ul id="toc-Modern-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Lebesgue covering dimension</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 14 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-14" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">14 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Topologick%C3%A1_dimenze" title="Topologická dimenze – Czech" lang="cs" hreflang="cs" data-title="Topologická dimenze" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Lebesguesche_%C3%9Cberdeckungsdimension" title="Lebesguesche Überdeckungsdimension – German" lang="de" hreflang="de" data-title="Lebesguesche Überdeckungsdimension" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Dimensi%C3%B3n_de_recubrimiento_de_Lebesgue" title="Dimensión de recubrimiento de Lebesgue – Spanish" lang="es" hreflang="es" data-title="Dimensión de recubrimiento de Lebesgue" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Dimension_topologique" title="Dimension topologique – French" lang="fr" hreflang="fr" data-title="Dimension topologique" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A5%B4%EB%B2%A0%EA%B7%B8_%EB%8D%AE%EA%B0%9C_%EC%B0%A8%EC%9B%90" title="르베그 덮개 차원 – Korean" lang="ko" hreflang="ko" data-title="르베그 덮개 차원" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Topolo%C5%A1ka_dimenzija" title="Topološka dimenzija – Croatian" lang="hr" hreflang="hr" data-title="Topološka dimenzija" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Dimensione_topologica" title="Dimensione topologica – Italian" lang="it" hreflang="it" data-title="Dimensione topologica" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Lefed%C3%A9si_dimenzi%C3%B3" title="Lefedési dimenzió – Hungarian" lang="hu" hreflang="hu" data-title="Lefedési dimenzió" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%AB%E3%83%99%E3%83%BC%E3%82%B0%E8%A2%AB%E8%A6%86%E6%AC%A1%E5%85%83" title="ルベーグ被覆次元 – Japanese" lang="ja" hreflang="ja" data-title="ルベーグ被覆次元" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Dimens%C3%A3o_topol%C3%B3gica" title="Dimensão topológica – Portuguese" lang="pt" hreflang="pt" data-title="Dimensão topológica" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B7%D0%BC%D0%B5%D1%80%D0%BD%D0%BE%D1%81%D1%82%D1%8C_%D0%9B%D0%B5%D0%B1%D0%B5%D0%B3%D0%B0" title="Размерность Лебега – Russian" lang="ru" hreflang="ru" data-title="Размерность Лебега" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Topolo%C5%A1ka_dimenzija" title="Topološka dimenzija – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Topološka dimenzija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A0%D0%BE%D0%B7%D0%BC%D1%96%D1%80%D0%BD%D1%96%D1%81%D1%82%D1%8C_%D0%9B%D0%B5%D0%B1%D0%B5%D0%B3%D0%B0" title="Розмірність Лебега – Ukrainian" lang="uk" hreflang="uk" data-title="Розмірність Лебега" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%8B%93%E6%92%B2%E7%B6%AD%E6%95%B8" title="拓撲維數 – Chinese" lang="zh" hreflang="zh" data-title="拓撲維數" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q164262#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Lebesgue_covering_dimension" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Lebesgue_covering_dimension" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Lebesgue_covering_dimension"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Lebesgue_covering_dimension"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Lebesgue_covering_dimension" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Lebesgue_covering_dimension" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;oldid=1227162399" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Lebesgue_covering_dimension&amp;id=1227162399&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLebesgue_covering_dimension"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLebesgue_covering_dimension"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Lebesgue_covering_dimension&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q164262" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Topological_dimension&amp;redirect=no" class="mw-redirect" title="Topological dimension">Topological dimension</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Topologically invariant definition of the dimension of a space</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_footnotes_needed plainlinks metadata ambox ambox-style ambox-More_footnotes_needed" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/40px-Text_document_with_red_question_mark.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/60px-Text_document_with_red_question_mark.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/80px-Text_document_with_red_question_mark.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article includes a list of <a href="/wiki/Wikipedia:Citing_sources#General_references" title="Wikipedia:Citing sources">general references</a>, but <b>it lacks sufficient corresponding <a href="/wiki/Wikipedia:Citing_sources#Inline_citations" title="Wikipedia:Citing sources">inline citations</a></b>.<span class="hide-when-compact"> Please help to <a href="/wiki/Wikipedia:WikiProject_Reliability" title="Wikipedia:WikiProject Reliability">improve</a> this article by <a href="/wiki/Wikipedia:When_to_cite" title="Wikipedia:When to cite">introducing</a> more precise citations.</span> <span class="date-container"><i>(<span class="date">April 2018</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <b>Lebesgue covering dimension</b> or <b>topological dimension</b> of a <a href="/wiki/Topological_space" title="Topological space">topological space</a> is one of several different ways of defining the <a href="/wiki/Dimension" title="Dimension">dimension</a> of the space in a <a href="/wiki/Topological_invariant" class="mw-redirect" title="Topological invariant">topologically invariant</a> way.<sup id="cite_ref-Lebesgue_1-0" class="reference"><a href="#cite_note-Lebesgue-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Duda_2-0" class="reference"><a href="#cite_note-Duda-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Informal_discussion">Informal discussion</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;action=edit&amp;section=1" title="Edit section: Informal discussion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For ordinary <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean spaces</a>, the Lebesgue covering dimension is just the ordinary Euclidean dimension: zero for points, one for lines, two for planes, and so on. However, not all topological spaces have this kind of "obvious" <a href="/wiki/Dimension" title="Dimension">dimension</a>, and so a precise definition is needed in such cases. The definition proceeds by examining what happens when the space is covered by <a href="/wiki/Open_set" title="Open set">open sets</a>. </p><p>In general, a topological space <i>X</i> can be <a href="/wiki/Open_cover" class="mw-redirect" title="Open cover">covered by open sets</a>, in that one can find a collection of open sets such that <i>X</i> lies inside of their <a href="/wiki/Union_(set_theory)" title="Union (set theory)">union</a>. The covering dimension is the smallest number <i>n</i> such that for every cover, there is a <a href="/wiki/Refinement_(topology)" class="mw-redirect" title="Refinement (topology)">refinement</a> in which every point in <i>X</i> lies in the <a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">intersection</a> of no more than <i>n</i>&#8201;+&#8201;1 covering sets. This is the gist of the formal definition below. The goal of the definition is to provide a number (an <a href="/wiki/Integer" title="Integer">integer</a>) that describes the space, and does not change as the space is continuously deformed; that is, a number that is invariant under <a href="/wiki/Homeomorphism" title="Homeomorphism">homeomorphisms</a>. </p><p>The general idea is illustrated in the diagrams below, which show a cover and refinements of a circle and a square. </p> <table> <tbody><tr> <td><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Refinement_of_the_cover_of_a_circle.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Refinement_of_the_cover_of_a_circle.svg/220px-Refinement_of_the_cover_of_a_circle.svg.png" decoding="async" width="220" height="429" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Refinement_of_the_cover_of_a_circle.svg/330px-Refinement_of_the_cover_of_a_circle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/64/Refinement_of_the_cover_of_a_circle.svg/440px-Refinement_of_the_cover_of_a_circle.svg.png 2x" data-file-width="378" data-file-height="737" /></a><figcaption>Refinement of the cover of a circle</figcaption></figure> </td> <td>The first image shows a refinement (on the bottom) of a colored cover (on the top) of a black circular line. Note how in the refinement, no point on the circle is contained in more than two sets, and also how the sets link to one another to form a "chain". </td></tr> <tr> <td><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Refinement_on_a_planar_shape.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Refinement_on_a_planar_shape.svg/220px-Refinement_on_a_planar_shape.svg.png" decoding="async" width="220" height="429" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Refinement_on_a_planar_shape.svg/330px-Refinement_on_a_planar_shape.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Refinement_on_a_planar_shape.svg/440px-Refinement_on_a_planar_shape.svg.png 2x" data-file-width="378" data-file-height="737" /></a><figcaption>Refinement of the cover of a square</figcaption></figure> </td> <td>The top half of the second image shows a cover (colored) of a planar shape (dark), where all of the shape's points are contained in anywhere from one to all four of the cover's sets. The bottom illustrates that any attempt to refine said cover such that no point would be contained in more than <i>two</i> sets—ultimately fails at the intersection of set borders. Thus, a planar shape is not "webby": it cannot be covered with "chains", per se. Instead, it proves to be <i>thicker</i> in some sense. More rigorously put, its topological dimension must be greater than 1. </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Formal_definition">Formal definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;action=edit&amp;section=2" title="Edit section: Formal definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Radford-stretcher-bond.jpeg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Radford-stretcher-bond.jpeg/220px-Radford-stretcher-bond.jpeg" decoding="async" width="220" height="66" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/8/8a/Radford-stretcher-bond.jpeg 1.5x" data-file-width="235" data-file-height="70" /></a><figcaption><a href="/wiki/Henri_Lebesgue" title="Henri Lebesgue">Henri Lebesgue</a> used closed "bricks" to study covering dimension in 1921.<sup id="cite_ref-FOOTNOTELebesgue1921_3-0" class="reference"><a href="#cite_note-FOOTNOTELebesgue1921-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>The first formal definition of covering dimension was given by <a href="/wiki/Eduard_%C4%8Cech" title="Eduard Čech">Eduard Čech</a>, based on an earlier result of <a href="/wiki/Henri_Lebesgue" title="Henri Lebesgue">Henri Lebesgue</a>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>A modern definition is as follows. An <a href="/wiki/Open_cover" class="mw-redirect" title="Open cover">open cover</a> of a topological space <span class="texhtml mvar" style="font-style:italic;"><i>X</i></span> is a family of <a href="/wiki/Open_set" title="Open set">open sets</a> <span class="texhtml mvar" style="font-style:italic;"><i>U</i></span><sub><span class="texhtml mvar" style="font-style:italic;">α</span></sub> such that their union is the whole space, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cup _{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222A;<!-- ∪ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cup _{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54f1141599c6bb73f2a6f38c32934e9ce6fc389b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.834ex; height:2.343ex;" alt="{\displaystyle \cup _{\alpha }}"></span> <span class="texhtml mvar" style="font-style:italic;"><i>U</i></span><sub><span class="texhtml mvar" style="font-style:italic;">α</span></sub> = <span class="texhtml mvar" style="font-style:italic;"><i>X</i></span>. The <b>order</b> or <b>ply</b> of an open cover <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">A</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34aa92fbdb716183c034a2cfc30dafbaa51cfcd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.669ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {A}}}"></span> = {<span class="texhtml mvar" style="font-style:italic;"><i>U</i></span><sub><span class="texhtml mvar" style="font-style:italic;">α</span></sub>} is the smallest number <span class="texhtml mvar" style="font-style:italic;"><i>m</i></span> (if it exists) for which each point of the space belongs to at most <span class="texhtml mvar" style="font-style:italic;"><i>m</i></span> open sets in the cover: in other words <span class="texhtml mvar" style="font-style:italic;">U</span><sub><span class="texhtml mvar" style="font-style:italic;">α</span><sub>1</sub></sub> ∩ ⋅⋅⋅ ∩ <span class="texhtml mvar" style="font-style:italic;">U</span><sub><span class="texhtml mvar" style="font-style:italic;">α</span><sub><span class="texhtml mvar" style="font-style:italic;"><i>m</i></span>+1</sub></sub> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \emptyset }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2205;<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \emptyset }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6af50205f42bb2ec3c666b7b847d2c7f96e464c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.162ex; height:2.509ex;" alt="{\displaystyle \emptyset }"></span> for <span class="texhtml mvar" style="font-style:italic;">α</span><sub>1</sub>, ..., <span class="texhtml mvar" style="font-style:italic;">α</span><sub><span class="texhtml mvar" style="font-style:italic;"><i>m</i></span>+1</sub> distinct. A <a href="/wiki/Refinement_(topology)" class="mw-redirect" title="Refinement (topology)">refinement</a> of an open cover <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">A</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34aa92fbdb716183c034a2cfc30dafbaa51cfcd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.669ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {A}}}"></span> = {<span class="texhtml mvar" style="font-style:italic;"><i>U</i></span><sub><span class="texhtml mvar" style="font-style:italic;">α</span></sub>} is another open cover <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">B</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f939c87a07b7af23e09792e9edb2c7caebb18864" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.054ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {B}}}"></span> = {<span class="texhtml mvar" style="font-style:italic;"><i>V</i></span><sub><span class="texhtml mvar" style="font-style:italic;">β</span></sub>}, such that each <span class="texhtml mvar" style="font-style:italic;"><i>V</i></span><sub><span class="texhtml mvar" style="font-style:italic;">β</span></sub> is contained in some <span class="texhtml mvar" style="font-style:italic;"><i>U</i></span><sub><span class="texhtml mvar" style="font-style:italic;">α</span></sub>. The <b>covering dimension</b> of a topological space <span class="texhtml mvar" style="font-style:italic;"><i>X</i></span> is defined to be the minimum value of <span class="texhtml mvar" style="font-style:italic;"><i>n</i></span> such that every finite open cover <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">A</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34aa92fbdb716183c034a2cfc30dafbaa51cfcd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.669ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {A}}}"></span> of <i>X</i> has an open refinement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">B</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f939c87a07b7af23e09792e9edb2c7caebb18864" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.054ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {B}}}"></span> with order <span class="texhtml mvar" style="font-style:italic;"><i>n</i></span>&#8201;+&#8201;1. The refinement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">B</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f939c87a07b7af23e09792e9edb2c7caebb18864" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.054ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {B}}}"></span> can always be chosen to be finite.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> Thus, if <span class="texhtml mvar" style="font-style:italic;"><i>n</i></span> is finite, <span class="texhtml mvar" style="font-style:italic;">V</span><sub><span class="texhtml mvar" style="font-style:italic;">β</span><sub>1</sub></sub> ∩ ⋅⋅⋅ ∩ <span class="texhtml mvar" style="font-style:italic;">V</span><sub><span class="texhtml mvar" style="font-style:italic;">β</span><sub><span class="texhtml mvar" style="font-style:italic;"><i>n</i></span>+2</sub></sub> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \emptyset }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2205;<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \emptyset }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6af50205f42bb2ec3c666b7b847d2c7f96e464c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.162ex; height:2.509ex;" alt="{\displaystyle \emptyset }"></span> for <span class="texhtml mvar" style="font-style:italic;">β</span><sub>1</sub>, ..., <span class="texhtml mvar" style="font-style:italic;">β</span><sub><span class="texhtml mvar" style="font-style:italic;"><i>n</i></span>+2</sub> distinct. If no such minimal <span class="texhtml mvar" style="font-style:italic;"><i>n</i></span> exists, the space is said to have infinite covering dimension. </p><p>As a special case, a non-empty topological space is <a href="/wiki/Zero-dimensional_space" title="Zero-dimensional space">zero-dimensional</a> with respect to the covering dimension if every open cover of the space has a refinement consisting of <a href="/wiki/Disjoint_set" class="mw-redirect" title="Disjoint set">disjoint</a> open sets, meaning any point in the space is contained in exactly one open set of this refinement. </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;action=edit&amp;section=3" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The empty set has covering dimension -1: for any open cover of the empty set, each point of the empty set is not contained in any element of the cover, so the order of any open cover is 0. </p><p>Any given open cover of the <a href="/wiki/Unit_circle" title="Unit circle">unit circle</a> will have a refinement consisting of a collection of <a href="/wiki/Open_(topology)" class="mw-redirect" title="Open (topology)">open</a> arcs. The circle has dimension one, by this definition, because any such cover can be further refined to the stage where a given point <i>x</i> of the circle is contained in <i>at most</i> two open arcs. That is, whatever collection of arcs we begin with, some can be discarded or shrunk, such that the remainder still covers the circle but with simple overlaps. </p><p>Similarly, any open cover of the <a href="/wiki/Unit_disk" title="Unit disk">unit disk</a> in the two-dimensional <a href="/wiki/Plane_(mathematics)" title="Plane (mathematics)">plane</a> can be refined so that any point of the disk is contained in no more than three open sets, while two are in general not sufficient. The covering dimension of the disk is thus two. </p><p>More generally, the <i>n</i>-dimensional <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {E} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {E} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e8fa8586d428ff5706c6d0a00a7939950fad89b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.769ex; height:2.343ex;" alt="{\displaystyle \mathbb {E} ^{n}}"></span> has covering dimension <i>n</i>. </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;action=edit&amp;section=4" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Homeomorphic" class="mw-redirect" title="Homeomorphic">Homeomorphic</a> spaces have the same covering dimension. That is, the covering dimension is a <a href="/wiki/Topological_invariant" class="mw-redirect" title="Topological invariant">topological invariant</a>.</li> <li>The covering dimension of a normal space <i>X</i> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leq n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leq n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61fbd99c9375a5553cc47f02b7da90cb8becd4ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.848ex; height:2.176ex;" alt="{\displaystyle \leq n}"></span> if and only if for any <a href="/wiki/Closed_subset" class="mw-redirect" title="Closed subset">closed subset</a> <i>A</i> of <i>X</i>, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:A\rightarrow S^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:A\rightarrow S^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49019e8db765c799c637da709ad79270723747ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.313ex; height:2.676ex;" alt="{\displaystyle f:A\rightarrow S^{n}}"></span> is continuous, then there is an extension of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g:X\rightarrow S^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g:X\rightarrow S^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/faad65f06630bb6b2dd570accc64fb6110dde801" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.387ex; height:2.676ex;" alt="{\displaystyle g:X\rightarrow S^{n}}"></span>. Here, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee006452a59bf1eb29983b4412348b66517a2d23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.74ex; height:2.343ex;" alt="{\displaystyle S^{n}}"></span> is the <a href="/wiki/N-sphere" title="N-sphere"><i>n</i>-dimensional sphere</a>.</li> <li><b>Ostrand's theorem on colored dimension.</b> If <span class="texhtml mvar" style="font-style:italic;">X</span> is a normal topological space and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">A</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34aa92fbdb716183c034a2cfc30dafbaa51cfcd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.669ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {A}}}"></span> = {<span class="texhtml mvar" style="font-style:italic;"><i>U</i></span><sub><span class="texhtml mvar" style="font-style:italic;">α</span></sub>} is a locally finite cover of <span class="texhtml mvar" style="font-style:italic;"><i>X</i></span> of order ≤ <span class="texhtml mvar" style="font-style:italic;"><i>n</i></span> + 1, then, for each 1 ≤ <span class="texhtml mvar" style="font-style:italic;"><i>i</i></span> ≤ <span class="texhtml mvar" style="font-style:italic;"><i>n</i></span> + 1, there exists a family of pairwise disjoint open sets <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">B</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f939c87a07b7af23e09792e9edb2c7caebb18864" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.054ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {B}}}"></span><sub><span class="texhtml mvar" style="font-style:italic;"><i>i</i></span></sub> = {<span class="texhtml mvar" style="font-style:italic;"><i>V</i></span><sub><span class="texhtml mvar" style="font-style:italic;"><i>i</i></span>,<span class="texhtml mvar" style="font-style:italic;">α</span></sub>} shrinking <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">A</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34aa92fbdb716183c034a2cfc30dafbaa51cfcd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.669ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {A}}}"></span>, i.e. <span class="texhtml mvar" style="font-style:italic;"><i>V</i></span><sub><span class="texhtml mvar" style="font-style:italic;"><i>i</i></span>,<span class="texhtml mvar" style="font-style:italic;">α</span></sub> ⊆ <span class="texhtml mvar" style="font-style:italic;"><i>U</i></span><sub><span class="texhtml mvar" style="font-style:italic;">α</span></sub>, and together covering <span class="texhtml mvar" style="font-style:italic;"><i>X</i></span>.<sup id="cite_ref-FOOTNOTEOstrand1971_6-0" class="reference"><a href="#cite_note-FOOTNOTEOstrand1971-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Relationships_to_other_notions_of_dimension">Relationships to other notions of dimension</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;action=edit&amp;section=5" title="Edit section: Relationships to other notions of dimension"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>For a paracompact space <span class="texhtml mvar" style="font-style:italic;"><i>X</i></span>, the covering dimension can be equivalently defined as the minimum value of <span class="texhtml mvar" style="font-style:italic;"><i>n</i></span>, such that every open cover <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">A</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34aa92fbdb716183c034a2cfc30dafbaa51cfcd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.669ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {A}}}"></span> of <span class="texhtml mvar" style="font-style:italic;"><i>X</i></span> (of any size) has an open refinement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">B</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f939c87a07b7af23e09792e9edb2c7caebb18864" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.054ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {B}}}"></span> with order <span class="texhtml mvar" style="font-style:italic;"><i>n</i></span>&#8201;+&#8201;1.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> In particular, this holds for all metric spaces.</li> <li><b>Lebesgue covering theorem.</b> The Lebesgue covering dimension coincides with the <a href="/w/index.php?title=Affine_dimension&amp;action=edit&amp;redlink=1" class="new" title="Affine dimension (page does not exist)">affine dimension</a> of a finite <a href="/wiki/Simplicial_complex" title="Simplicial complex">simplicial complex</a>.</li> <li>The covering dimension of a <a href="/wiki/Normal_space" title="Normal space">normal space</a> is less than or equal to the large <a href="/wiki/Inductive_dimension" title="Inductive dimension">inductive dimension</a>.</li> <li>The covering dimension of a <a href="/wiki/Paracompact_space" title="Paracompact space">paracompact</a> <a href="/wiki/Hausdorff_space" title="Hausdorff space">Hausdorff</a> space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is greater or equal to its <a href="/wiki/Cohomological_dimension" title="Cohomological dimension">cohomological dimension</a> (in the sense of <a href="/wiki/Sheaf_(mathematics)" title="Sheaf (mathematics)">sheaves</a>),<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> that is, one has <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H^{i}(X,A)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H^{i}(X,A)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42a3701cb782aad7b912502bd1478f849bab38bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.73ex; height:3.176ex;" alt="{\displaystyle H^{i}(X,A)=0}"></span> for every sheaf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> of abelian groups on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> larger than the covering dimension of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>.</li> <li>In a <a href="/wiki/Metric_space" title="Metric space">metric space</a>, one can strengthen the notion of the multiplicity of a cover: a cover has <i><span class="texhtml mvar" style="font-style:italic;">r</span>-multiplicity</i> <span class="texhtml"><i>n</i> + 1</span> if every <span class="texhtml mvar" style="font-style:italic;">r</span>-ball intersects with at most <span class="texhtml mvar" style="font-style:italic;"><i>n</i> + 1</span> sets in the cover. This idea leads to the definitions of the <a href="/wiki/Asymptotic_dimension" title="Asymptotic dimension">asymptotic dimension</a> and <a href="/wiki/Assouad%E2%80%93Nagata_dimension" title="Assouad–Nagata dimension">Assouad–Nagata dimension</a> of a space: a space with asymptotic dimension <span class="texhtml mvar" style="font-style:italic;">n</span> is <span class="texhtml mvar" style="font-style:italic;">n</span>-dimensional "at large scales", and a space with Assouad–Nagata dimension <span class="texhtml mvar" style="font-style:italic;">n</span> is <span class="texhtml mvar" style="font-style:italic;">n</span>-dimensional "at every scale".</li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;action=edit&amp;section=6" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Carath%C3%A9odory%27s_extension_theorem" title="Carathéodory&#39;s extension theorem">Carathéodory's extension theorem</a></li> <li><a href="/wiki/Geometric_set_cover_problem" title="Geometric set cover problem">Geometric set cover problem</a></li> <li><a href="/wiki/Dimension_theory" class="mw-redirect" title="Dimension theory">Dimension theory</a></li> <li><a href="/wiki/Metacompact_space" title="Metacompact space">Metacompact space</a></li> <li><a href="/wiki/Point-finite_collection" title="Point-finite collection">Point-finite collection</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;action=edit&amp;section=7" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-Lebesgue-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lebesgue_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFLebesgue1921" class="citation journal cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Henri_Lebesgue" title="Henri Lebesgue">Lebesgue, Henri</a> (1921). <a rel="nofollow" class="external text" href="http://matwbn.icm.edu.pl/ksiazki/fm/fm2/fm2130.pdf">"Sur les correspondances entre les points de deux espaces"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Fundamenta_Mathematicae" title="Fundamenta Mathematicae">Fundamenta Mathematicae</a></i> (in French). <b>2</b>: 256–285. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-2-1-256-285">10.4064/fm-2-1-256-285</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fundamenta+Mathematicae&amp;rft.atitle=Sur+les+correspondances+entre+les+points+de+deux+espaces&amp;rft.volume=2&amp;rft.pages=256-285&amp;rft.date=1921&amp;rft_id=info%3Adoi%2F10.4064%2Ffm-2-1-256-285&amp;rft.aulast=Lebesgue&amp;rft.aufirst=Henri&amp;rft_id=http%3A%2F%2Fmatwbn.icm.edu.pl%2Fksiazki%2Ffm%2Ffm2%2Ffm2130.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALebesgue+covering+dimension" class="Z3988"></span></span> </li> <li id="cite_note-Duda-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-Duda_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDuda1979" class="citation journal cs1">Duda, R. (1979). <a rel="nofollow" class="external text" href="https://www.impan.pl/en/publishing-house/journals-and-series/colloquium-mathematicum/all/42/1/102445/the-origins-of-the-concept-of-dimension">"The origins of the concept of dimension"</a>. <i>Colloquium Mathematicum</i>. <b>42</b>: 95–110. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Fcm-42-1-95-110">10.4064/cm-42-1-95-110</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0567548">0567548</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Colloquium+Mathematicum&amp;rft.atitle=The+origins+of+the+concept+of+dimension&amp;rft.volume=42&amp;rft.pages=95-110&amp;rft.date=1979&amp;rft_id=info%3Adoi%2F10.4064%2Fcm-42-1-95-110&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0567548%23id-name%3DMR&amp;rft.aulast=Duda&amp;rft.aufirst=R.&amp;rft_id=https%3A%2F%2Fwww.impan.pl%2Fen%2Fpublishing-house%2Fjournals-and-series%2Fcolloquium-mathematicum%2Fall%2F42%2F1%2F102445%2Fthe-origins-of-the-concept-of-dimension&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALebesgue+covering+dimension" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTELebesgue1921-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELebesgue1921_3-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLebesgue1921">Lebesgue 1921</a>.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKuperberg1995" class="citation cs2"><a href="/wiki/Krystyna_Kuperberg" title="Krystyna Kuperberg">Kuperberg, Krystyna</a>, ed. (1995), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6EICfJrepKQC&amp;pg=PR23"><i>Collected Works of Witold Hurewicz</i></a>, American Mathematical Society, Collected works series, vol.&#160;4, American Mathematical Society, p.&#160;xxiii, footnote&#160;3, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780821800119" title="Special:BookSources/9780821800119"><bdi>9780821800119</bdi></a>, <q>Lebesgue's discovery led later to the introduction by E. Čech of the covering dimension</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Collected+Works+of+Witold+Hurewicz&amp;rft.series=American+Mathematical+Society%2C+Collected+works+series&amp;rft.pages=p.-xxiii%2C+footnote-3&amp;rft.pub=American+Mathematical+Society&amp;rft.date=1995&amp;rft.isbn=9780821800119&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6EICfJrepKQC%26pg%3DPR23&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALebesgue+covering+dimension" class="Z3988"></span>.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">Proposition 1.6.9 of <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEngelking1978" class="citation book cs1">Engelking, Ryszard (1978). <a rel="nofollow" class="external text" href="https://www.maths.ed.ac.uk/~v1ranick/papers/engelking.pdf"><i>Dimension theory</i></a> <span class="cs1-format">(PDF)</span>. North-Holland Mathematical Library. Vol.&#160;19. Amsterdam-Oxford-New York: North-Holland. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-444-85176-3" title="Special:BookSources/0-444-85176-3"><bdi>0-444-85176-3</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0482697">0482697</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Dimension+theory&amp;rft.place=Amsterdam-Oxford-New+York&amp;rft.series=North-Holland+Mathematical+Library&amp;rft.pub=North-Holland&amp;rft.date=1978&amp;rft.isbn=0-444-85176-3&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0482697%23id-name%3DMR&amp;rft.aulast=Engelking&amp;rft.aufirst=Ryszard&amp;rft_id=https%3A%2F%2Fwww.maths.ed.ac.uk%2F~v1ranick%2Fpapers%2Fengelking.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALebesgue+covering+dimension" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEOstrand1971-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEOstrand1971_6-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFOstrand1971">Ostrand 1971</a>.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">Proposition 3.2.2 of <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEngelking1978" class="citation book cs1">Engelking, Ryszard (1978). <a rel="nofollow" class="external text" href="https://www.maths.ed.ac.uk/~v1ranick/papers/engelking.pdf"><i>Dimension theory</i></a> <span class="cs1-format">(PDF)</span>. North-Holland Mathematical Library. Vol.&#160;19. Amsterdam-Oxford-New York: North-Holland. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-444-85176-3" title="Special:BookSources/0-444-85176-3"><bdi>0-444-85176-3</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0482697">0482697</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Dimension+theory&amp;rft.place=Amsterdam-Oxford-New+York&amp;rft.series=North-Holland+Mathematical+Library&amp;rft.pub=North-Holland&amp;rft.date=1978&amp;rft.isbn=0-444-85176-3&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0482697%23id-name%3DMR&amp;rft.aulast=Engelking&amp;rft.aufirst=Ryszard&amp;rft_id=https%3A%2F%2Fwww.maths.ed.ac.uk%2F~v1ranick%2Fpapers%2Fengelking.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALebesgue+covering+dimension" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">Godement 1973, II.5.12, p. 236</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;action=edit&amp;section=8" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEdgar2008" class="citation book cs1">Edgar, Gerald A. (2008). "Topological Dimension". <i>Measure, topology, and fractal geometry</i>. Undergraduate Texts in Mathematics (Second&#160;ed.). <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>. pp.&#160;85–114. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-74748-4" title="Special:BookSources/978-0-387-74748-4"><bdi>978-0-387-74748-4</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2356043">2356043</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Topological+Dimension&amp;rft.btitle=Measure%2C+topology%2C+and+fractal+geometry&amp;rft.series=Undergraduate+Texts+in+Mathematics&amp;rft.pages=85-114&amp;rft.edition=Second&amp;rft.pub=Springer-Verlag&amp;rft.date=2008&amp;rft.isbn=978-0-387-74748-4&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2356043%23id-name%3DMR&amp;rft.aulast=Edgar&amp;rft.aufirst=Gerald+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALebesgue+covering+dimension" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEngelking1978" class="citation book cs1">Engelking, Ryszard (1978). <a rel="nofollow" class="external text" href="https://www.maths.ed.ac.uk/~v1ranick/papers/engelking.pdf"><i>Dimension theory</i></a> <span class="cs1-format">(PDF)</span>. North-Holland Mathematical Library. Vol.&#160;19. Amsterdam-Oxford-New York: North-Holland. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-444-85176-3" title="Special:BookSources/0-444-85176-3"><bdi>0-444-85176-3</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0482697">0482697</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Dimension+theory&amp;rft.place=Amsterdam-Oxford-New+York&amp;rft.series=North-Holland+Mathematical+Library&amp;rft.pub=North-Holland&amp;rft.date=1978&amp;rft.isbn=0-444-85176-3&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0482697%23id-name%3DMR&amp;rft.aulast=Engelking&amp;rft.aufirst=Ryszard&amp;rft_id=https%3A%2F%2Fwww.maths.ed.ac.uk%2F~v1ranick%2Fpapers%2Fengelking.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALebesgue+covering+dimension" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGodement1958" class="citation book cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Roger_Godement" title="Roger Godement">Godement, Roger</a> (1958). <i>Topologie algébrique et théorie des faisceaux</i>. Publications de l'Institut de Mathématique de l'Université de Strasbourg (in French). Vol.&#160;III. Paris: Hermann. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0102797">0102797</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topologie+alg%C3%A9brique+et+th%C3%A9orie+des+faisceaux&amp;rft.place=Paris&amp;rft.series=Publications+de+l%27Institut+de+Math%C3%A9matique+de+l%27Universit%C3%A9+de+Strasbourg&amp;rft.pub=Hermann&amp;rft.date=1958&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0102797%23id-name%3DMR&amp;rft.aulast=Godement&amp;rft.aufirst=Roger&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALebesgue+covering+dimension" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHurewiczWallman1941" class="citation book cs1">Hurewicz, Witold; Wallman, Henry (1941). <i>Dimension Theory</i>. Princeton Mathematical Series. Vol.&#160;4. <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0006493">0006493</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Dimension+Theory&amp;rft.series=Princeton+Mathematical+Series&amp;rft.pub=Princeton+University+Press&amp;rft.date=1941&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0006493%23id-name%3DMR&amp;rft.aulast=Hurewicz&amp;rft.aufirst=Witold&amp;rft.au=Wallman%2C+Henry&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALebesgue+covering+dimension" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMunkres2000" class="citation book cs1"><a href="/wiki/James_Munkres" title="James Munkres">Munkres, James R.</a> (2000). <i>Topology</i> (2nd&#160;ed.). Prentice-Hall. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-13-181629-2" title="Special:BookSources/0-13-181629-2"><bdi>0-13-181629-2</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3728284">3728284</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topology&amp;rft.edition=2nd&amp;rft.pub=Prentice-Hall&amp;rft.date=2000&amp;rft.isbn=0-13-181629-2&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3728284%23id-name%3DMR&amp;rft.aulast=Munkres&amp;rft.aufirst=James+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALebesgue+covering+dimension" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOstrand1971" class="citation journal cs1">Ostrand, Phillip A. (1971). "Covering dimension in general spaces". <i>General Topology and Appl</i>. <b>1</b> (3): 209–221. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0288741">0288741</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=General+Topology+and+Appl.&amp;rft.atitle=Covering+dimension+in+general+spaces&amp;rft.volume=1&amp;rft.issue=3&amp;rft.pages=209-221&amp;rft.date=1971&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0288741%23id-name%3DMR&amp;rft.aulast=Ostrand&amp;rft.aufirst=Phillip+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALebesgue+covering+dimension" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;action=edit&amp;section=9" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Historical">Historical</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;action=edit&amp;section=10" title="Edit section: Historical"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Karl_Menger" title="Karl Menger">Karl Menger</a>, <i>General Spaces and Cartesian Spaces</i>, (1926) Communications to the Amsterdam Academy of Sciences. English translation reprinted in <i>Classics on Fractals</i>, Gerald A.Edgar, editor, Addison-Wesley (1993) <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-201-58701-7" title="Special:BookSources/0-201-58701-7">0-201-58701-7</a></li> <li><a href="/wiki/Karl_Menger" title="Karl Menger">Karl Menger</a>, <i>Dimensionstheorie</i>, (1928) B.G Teubner Publishers, Leipzig.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Modern">Modern</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;action=edit&amp;section=11" title="Edit section: Modern"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPears1975" class="citation book cs1">Pears, Alan R. (1975). <a rel="nofollow" class="external text" href="https://archive.org/details/dimensiontheoryo0000pear"><i>Dimension Theory of General Spaces</i></a>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-521-20515-8" title="Special:BookSources/0-521-20515-8"><bdi>0-521-20515-8</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0394604">0394604</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Dimension+Theory+of+General+Spaces&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1975&amp;rft.isbn=0-521-20515-8&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0394604%23id-name%3DMR&amp;rft.aulast=Pears&amp;rft.aufirst=Alan+R.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fdimensiontheoryo0000pear&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALebesgue+covering+dimension" class="Z3988"></span></li> <li>V. V. Fedorchuk, <i>The Fundamentals of Dimension Theory</i>, appearing in <i>Encyclopaedia of Mathematical Sciences, Volume 17, General Topology I</i>, (1993) A. V. Arkhangel'skii and <a href="/wiki/L._S._Pontryagin" class="mw-redirect" title="L. S. Pontryagin">L. S. Pontryagin</a> (Eds.), Springer-Verlag, Berlin <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-540-18178-4" title="Special:BookSources/3-540-18178-4">3-540-18178-4</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lebesgue_covering_dimension&amp;action=edit&amp;section=12" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Lebesgue_dimension">"Lebesgue dimension"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Lebesgue+dimension&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DLebesgue_dimension&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALebesgue+covering+dimension" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Dimension" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Dimension_topics" title="Template:Dimension topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Dimension_topics" title="Template talk:Dimension topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Dimension_topics" title="Special:EditPage/Template:Dimension topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Dimension" style="font-size:114%;margin:0 4em"><a href="/wiki/Dimension" title="Dimension">Dimension</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Dimensional spaces</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dimension_(vector_space)" title="Dimension (vector space)">Vector space</a></li> <li><a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a></li> <li><a href="/wiki/Affine_space" title="Affine space">Affine space</a></li> <li><a href="/wiki/Projective_space" title="Projective space">Projective space</a></li> <li><a href="/wiki/Free_module" title="Free module">Free module</a></li> <li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Dimension_of_an_algebraic_variety" title="Dimension of an algebraic variety">Algebraic variety</a></li> <li><a href="/wiki/Spacetime" title="Spacetime">Spacetime</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="6" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:Tesseract.gif" class="mw-file-description" title="Animated tesseract"><img alt="Animated tesseract" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Tesseract.gif/75px-Tesseract.gif" decoding="async" width="75" height="75" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Tesseract.gif/113px-Tesseract.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/55/Tesseract.gif/150px-Tesseract.gif 2x" data-file-width="256" data-file-height="256" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other dimensions</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Krull_dimension" title="Krull dimension">Krull</a></li> <li><a class="mw-selflink selflink">Lebesgue covering</a></li> <li><a href="/wiki/Inductive_dimension" title="Inductive dimension">Inductive</a></li> <li><a href="/wiki/Hausdorff_dimension" title="Hausdorff dimension">Hausdorff</a></li> <li><a href="/wiki/Minkowski%E2%80%93Bouligand_dimension" title="Minkowski–Bouligand dimension">Minkowski</a></li> <li><a href="/wiki/Fractal_dimension" title="Fractal dimension">Fractal</a></li> <li><a href="/wiki/Degrees_of_freedom" title="Degrees of freedom">Degrees of freedom</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Polytope" title="Polytope">Polytopes</a> and <a href="/wiki/Shape" title="Shape">shapes</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hyperplane" title="Hyperplane">Hyperplane</a></li> <li><a href="/wiki/Hypersurface" title="Hypersurface">Hypersurface</a></li> <li><a href="/wiki/Hypercube" title="Hypercube">Hypercube</a></li> <li><a href="/wiki/Hyperrectangle" title="Hyperrectangle">Hyperrectangle</a></li> <li><a href="/wiki/Demihypercube" title="Demihypercube">Demihypercube</a></li> <li><a href="/wiki/N-sphere" title="N-sphere">Hypersphere</a></li> <li><a href="/wiki/Cross-polytope" title="Cross-polytope">Cross-polytope</a></li> <li><a href="/wiki/Simplex" title="Simplex">Simplex</a></li> <li><a href="/wiki/Hyperpyramid" title="Hyperpyramid">Hyperpyramid</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Number systems</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hypercomplex_number" title="Hypercomplex number">Hypercomplex numbers</a></li> <li><a href="/wiki/Cayley%E2%80%93Dickson_construction" title="Cayley–Dickson construction">Cayley–Dickson construction</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Dimensions by number</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Zero-dimensional_space" title="Zero-dimensional space">Zero</a></li> <li><a href="/wiki/One-dimensional_space" title="One-dimensional space">One</a></li> <li><a href="/wiki/Two-dimensional_space" title="Two-dimensional space">Two</a></li> <li><a href="/wiki/Three-dimensional_space" title="Three-dimensional space">Three</a></li> <li><a href="/wiki/Four-dimensional_space" title="Four-dimensional space">Four</a></li> <li><a href="/wiki/Five-dimensional_space" title="Five-dimensional space">Five</a></li> <li><a href="/wiki/Six-dimensional_space" title="Six-dimensional space">Six</a></li> <li><a href="/wiki/Seven-dimensional_space" title="Seven-dimensional space">Seven</a></li> <li><a href="/wiki/Eight-dimensional_space" title="Eight-dimensional space">Eight</a></li> <li><a href="/wiki/Dimension" title="Dimension"><i>n</i>-dimensions</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">See also</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hyperspace" title="Hyperspace">Hyperspace</a></li> <li><a href="/wiki/Codimension" title="Codimension">Codimension</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div><b><a href="/wiki/Category:Dimension" title="Category:Dimension">Category</a></b></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐wxnm6 Cached time: 20241122141523 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.425 seconds Real time usage: 0.657 seconds Preprocessor visited node count: 2332/1000000 Post‐expand include size: 50098/2097152 bytes Template argument size: 1747/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 2/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 53848/5000000 bytes Lua time usage: 0.261/10.000 seconds Lua memory usage: 6978510/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 498.282 1 -total 23.82% 118.667 1 Template:Short_description 22.74% 113.313 1 Template:Reflist 17.28% 86.113 1 Template:Dimension_topics 17.03% 84.847 3 Template:Cite_journal 16.00% 79.712 1 Template:Navbox 13.23% 65.910 10 Template:Main_other 12.51% 62.356 1 Template:SDcat 11.14% 55.517 1 Template:More_footnotes 9.55% 47.569 1 Template:Ambox --> <!-- Saved in parser cache with key enwiki:pcache:idhash:398886-0!canonical and timestamp 20241122141523 and revision id 1227162399. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Lebesgue_covering_dimension&amp;oldid=1227162399">https://en.wikipedia.org/w/index.php?title=Lebesgue_covering_dimension&amp;oldid=1227162399</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Dimension_theory" title="Category:Dimension theory">Dimension theory</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_lacking_in-text_citations_from_April_2018" title="Category:Articles lacking in-text citations from April 2018">Articles lacking in-text citations from April 2018</a></li><li><a href="/wiki/Category:All_articles_lacking_in-text_citations" title="Category:All articles lacking in-text citations">All articles lacking in-text citations</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 4 June 2024, at 02:52<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Lebesgue_covering_dimension&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-prwmm","wgBackendResponseTime":157,"wgPageParseReport":{"limitreport":{"cputime":"0.425","walltime":"0.657","ppvisitednodes":{"value":2332,"limit":1000000},"postexpandincludesize":{"value":50098,"limit":2097152},"templateargumentsize":{"value":1747,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":53848,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 498.282 1 -total"," 23.82% 118.667 1 Template:Short_description"," 22.74% 113.313 1 Template:Reflist"," 17.28% 86.113 1 Template:Dimension_topics"," 17.03% 84.847 3 Template:Cite_journal"," 16.00% 79.712 1 Template:Navbox"," 13.23% 65.910 10 Template:Main_other"," 12.51% 62.356 1 Template:SDcat"," 11.14% 55.517 1 Template:More_footnotes"," 9.55% 47.569 1 Template:Ambox"]},"scribunto":{"limitreport-timeusage":{"value":"0.261","limit":"10.000"},"limitreport-memusage":{"value":6978510,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFDuda1979\"] = 1,\n [\"CITEREFEdgar2008\"] = 1,\n [\"CITEREFEngelking1978\"] = 3,\n [\"CITEREFGodement1958\"] = 1,\n [\"CITEREFHurewiczWallman1941\"] = 1,\n [\"CITEREFKuperberg1995\"] = 1,\n [\"CITEREFLebesgue1921\"] = 1,\n [\"CITEREFMunkres2000\"] = 1,\n [\"CITEREFOstrand1971\"] = 1,\n [\"CITEREFPears1975\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Citation\"] = 1,\n [\"Cite book\"] = 8,\n [\"Cite journal\"] = 3,\n [\"Dimension topics\"] = 1,\n [\"Isbn\"] = 2,\n [\"Math\"] = 1,\n [\"More footnotes\"] = 1,\n [\"Mvar\"] = 62,\n [\"Reflist\"] = 1,\n [\"Sfn\"] = 2,\n [\"Short description\"] = 1,\n [\"Springer\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-wxnm6","timestamp":"20241122141523","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Lebesgue covering dimension","url":"https:\/\/en.wikipedia.org\/wiki\/Lebesgue_covering_dimension","sameAs":"http:\/\/www.wikidata.org\/entity\/Q164262","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q164262","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-12-12T17:59:14Z","dateModified":"2024-06-04T02:52:12Z","headline":"invariant associated to a topological space; the smallest integer \ud835\udc5b such that, for every cover, there is a refinement in which every point lies in the intersection of at most \ud835\udc5b+1 covering sets"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10