CINXE.COM

Search results for: crane

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: crane</title> <meta name="description" content="Search results for: crane"> <meta name="keywords" content="crane"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="crane" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="crane"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 35</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: crane</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Pre- and Post-Analyses of Disruptive Quay Crane Scheduling Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20-H.%20Yang">K. -H. Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past, the quay crane operations have been well studied. There were a certain number of scheduling algorithms for quay crane operations, but without considering some nuisance factors that might disrupt the quay crane operations. For example, bad grapples make a crane unable to load or unload containers or a sudden strong breeze stops operations temporarily. Although these disruptive conditions randomly occur, they influence the efficiency of quay crane operations. The disruption is not considered in the operational procedures nor is evaluated in advance for its impacts. This study applies simulation and optimization approaches to develop structures of pre-analysis and post-analysis for the Quay Crane Scheduling Problem to deal with disruptive scenarios for quay crane operation. Numerical experiments are used for demonstrations for the validity of the developed approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disruptive%20quay%20crane%20scheduling" title="disruptive quay crane scheduling">disruptive quay crane scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-analysis" title=" pre-analysis"> pre-analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=post-analysis" title=" post-analysis"> post-analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=disruption" title=" disruption"> disruption</a> </p> <a href="https://publications.waset.org/abstracts/88036/pre-and-post-analyses-of-disruptive-quay-crane-scheduling-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Enumerative Search for Crane Schedule in Anodizing Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanate%20Pantusavase">Kanate Pantusavase</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaramporn%20Hassamontr"> Jaramporn Hassamontr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to develop an algorithm to generate a schedule of multiple cranes that will maximize load throughputs in anodizing operation. The algorithm proposed utilizes an enumerative strategy to search for constant time between successive loads and crane covering range over baths. The computer program developed is able to generate a near-optimal crane schedule within reasonable times, i.e. within 10 minutes. Its results are compared with existing solutions from an aluminum extrusion industry. The program can be used to generate crane schedules for mixed products, thus allowing mixed-model line balancing to improve overall cycle times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crane%20scheduling" title="crane scheduling">crane scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=anodizing%20operations" title=" anodizing operations"> anodizing operations</a>, <a href="https://publications.waset.org/abstracts/search?q=cycle%20time%20minimization" title=" cycle time minimization"> cycle time minimization</a> </p> <a href="https://publications.waset.org/abstracts/27130/enumerative-search-for-crane-schedule-in-anodizing-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Response of a Bridge Crane during an Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Fekak">F. Fekak</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gravouil"> A. Gravouil</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Brun"> M. Brun</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Depale"> B. Depale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During an earthquake, a bridge crane may be subjected to multiple impacts between crane wheels and rail. In order to model such phenomena, a time-history dynamic analysis with a multi-scale approach is performed. The high frequency aspect of the impacts between wheels and rails is taken into account by a Lagrange explicit event-capturing algorithm based on a velocity-impulse formulation to resolve contacts and impacts. An implicit temporal scheme is used for the rest of the structure. The numerical coupling between the implicit and the explicit schemes is achieved with a heterogeneous asynchronous time-integrator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20crane" title="bridge crane">bridge crane</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=explicit" title=" explicit"> explicit</a>, <a href="https://publications.waset.org/abstracts/search?q=implicit" title=" implicit"> implicit</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a> </p> <a href="https://publications.waset.org/abstracts/41920/response-of-a-bridge-crane-during-an-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> A 15 Minute-Based Approach for Berth Allocation and Quay Crane Assignment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoi-Lam%20Ma">Hoi-Lam Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sai-Ho%20Chung"> Sai-Ho Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In traditional integrated berth allocation with quay crane assignment models, time dimension is usually assumed in hourly based. However, nowadays, transshipment becomes the main business to many container terminals, especially in Southeast Asia (e.g. Hong Kong and Singapore). In these terminals, vessel arrivals are usually very frequent with small handling volume and very short staying time. Therefore, the traditional hourly-based modeling approach may cause significant berth and quay crane idling, and consequently cannot meet their practical needs. In this connection, a 15-minute-based modeling approach is requested by industrial practitioners. Accordingly, a Three-level Genetic Algorithm (3LGA) with Quay Crane (QC) shifting heuristics is designed to fulfill the research gap. The objective function here is to minimize the total service time. Preliminary numerical results show that the proposed 15-minute-based approach can reduce the berth and QC idling significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transshipment" title="transshipment">transshipment</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20berth%20allocation" title=" integrated berth allocation"> integrated berth allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=variable-in-time%20quay%20crane%20assignment" title=" variable-in-time quay crane assignment"> variable-in-time quay crane assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=quay%20crane%20assignment" title=" quay crane assignment"> quay crane assignment</a> </p> <a href="https://publications.waset.org/abstracts/95988/a-15-minute-based-approach-for-berth-allocation-and-quay-crane-assignment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Establishing the Optimum Location of a Single Tower Crane Using a Smart Mathematical Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Abo%20El-Magd">Yasser Abo El-Magd</a>, <a href="https://publications.waset.org/abstracts/search?q=Wael%20Fawzy%20Mohamed"> Wael Fawzy Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the great development in construction and building field, there are many projects and huge works appeared which consume many construction materials. Accordingly, that causes difficulty in handling traditional transportation means (ordinary cranes) due to their limited capacity; there is an urgent need to use high capacity cranes such as tower cranes. However, with regard to their high expense, we have to take into consideration selecting what type of cranes to be utilized which has been discussed by many researchers. In this research, a proposed technique was created to select the suitable type of crane and the best place for crane erection, in addition to minimum radius for requested crane in order to minimize cost. To fulfill that target, a computer program is designed to numerate these problems, demonstrating an example explaining how to apply program and the result donated the best place. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tower%20crane" title="tower crane">tower crane</a>, <a href="https://publications.waset.org/abstracts/search?q=jib%20length" title=" jib length"> jib length</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20time" title=" operating time"> operating time</a>, <a href="https://publications.waset.org/abstracts/search?q=location" title=" location"> location</a>, <a href="https://publications.waset.org/abstracts/search?q=feasible%20area" title=" feasible area"> feasible area</a> </p> <a href="https://publications.waset.org/abstracts/51801/establishing-the-optimum-location-of-a-single-tower-crane-using-a-smart-mathematical-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Boundary Feedback Stabilization of an Overhead Crane Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelhadi%20Elharfi">Abdelhadi Elharfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A problem of boundary feedback (exponential) stabilization of an overhead crane model represented by a PDE is considered. For any $r>0$, the exponential stability at the desired decay rate $r$ is solved in semi group setting by a collocated-type stabiliser of a target system combined with a term involving the solution of an appropriate PDE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feedback%20stabilization" title="feedback stabilization">feedback stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=semi%20group%20and%20generator" title=" semi group and generator"> semi group and generator</a>, <a href="https://publications.waset.org/abstracts/search?q=overhead%20crane%20system" title=" overhead crane system"> overhead crane system</a> </p> <a href="https://publications.waset.org/abstracts/27507/boundary-feedback-stabilization-of-an-overhead-crane-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Optimal Closed-loop Input Shaping Control Scheme for a 3D Gantry Crane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Javad%20Maghsoudi">Mohammad Javad Maghsoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Mohamed"> Z. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Husain"> A. R. Husain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Input shaping has been utilized for vibration reduction of many oscillatory systems. This paper presents an optimal closed-loop input shaping scheme for control of a three dimensional (3D) gantry crane system including. This includes a PID controller and Zero Vibration shaper which consider two control objectives concurrently. The control objectives are minimum sway of a payload and fast and accurate positioning of a trolley. A complete mathematical model of a lab-scaled 3D gantry crane is simulated in Simulink. Moreover, by utilizing PSO algorithm and a proposed scheme the controller is designed to cater both control objectives concurrently. Simulation studies on a 3D gantry crane show that the proposed optimal controller has an acceptable performance. The controller provides good position response with satisfactory payload sway in both rail and trolley responses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20gantry%20crane" title="3D gantry crane">3D gantry crane</a>, <a href="https://publications.waset.org/abstracts/search?q=input%20shaping" title=" input shaping"> input shaping</a>, <a href="https://publications.waset.org/abstracts/search?q=closed-loop%20control" title=" closed-loop control"> closed-loop control</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20scheme" title=" optimal scheme"> optimal scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=PID" title=" PID"> PID</a> </p> <a href="https://publications.waset.org/abstracts/17219/optimal-closed-loop-input-shaping-control-scheme-for-a-3d-gantry-crane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Seismic Behavior of a Jumbo Container Crane in the Low Seismicity Zone Using Time-History Analyses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huy%20Q.%20Tran">Huy Q. Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Bac%20V.%20Nguyen"> Bac V. Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Choonghyun%20Kang"> Choonghyun Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungwon%20Huh"> Jungwon Huh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jumbo container crane is an important part of port structures that needs to be designed properly, even when the port locates in low seismicity zone such as in Korea. In this paper, 30 artificial ground motions derived from the elastic response spectra of Korean Building Code (2005) are used for time history analysis. It is found that the uplift might not occur in this analysis when the crane locates in the low seismic zone. Therefore, a selection of a pinned or a gap element for base supporting has not much effect on the determination of the total base shear. The relationships between the total base shear and peak ground acceleration (PGA) and the relationships between the portal drift and the PGA are proposed in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jumbo%20container%20crane" title="jumbo container crane">jumbo container crane</a>, <a href="https://publications.waset.org/abstracts/search?q=portal%20drift" title=" portal drift"> portal drift</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20history%20analysis" title=" time history analysis"> time history analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20base%20shear" title=" total base shear"> total base shear</a> </p> <a href="https://publications.waset.org/abstracts/84382/seismic-behavior-of-a-jumbo-container-crane-in-the-low-seismicity-zone-using-time-history-analyses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Numerical Simulation of a Three-Dimensional Framework under the Action of Two-Dimensional Moving Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia-Jang%20Wu">Jia-Jang Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to develop a general technique so that one may predict the dynamic behaviour of a three-dimensional scale crane model subjected to time-dependent moving point forces by means of conventional finite element computer packages. To this end, the whole scale crane model is divided into two parts: the stationary framework and the moving substructure. In such a case, the dynamic responses of a scale crane model can be predicted from the forced vibration responses of the stationary framework due to actions of the four time-dependent moving point forces induced by the moving substructure. Since the magnitudes and positions of the moving point forces are dependent on the relative positions between the trolley, moving substructure and the stationary framework, it can be found from the numerical results that the time histories for the moving speeds of the moving substructure and the trolley are the key factors affecting the dynamic responses of the scale crane model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moving%20load" title="moving load">moving load</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20substructure" title=" moving substructure"> moving substructure</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20responses" title=" dynamic responses"> dynamic responses</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20vibration%20responses" title=" forced vibration responses"> forced vibration responses</a> </p> <a href="https://publications.waset.org/abstracts/37626/numerical-simulation-of-a-three-dimensional-framework-under-the-action-of-two-dimensional-moving-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Railway Crane Accident: A Comparative Metallographic Test on Pins Fractured during Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thiago%20Viana">Thiago Viana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eventually train accidents occur on railways and for some specific cases it is necessary to use a train rescue with a crane positioned under a platform wagon. These tumbled machines are collected and sent to the machine shop or scrap yard. In one of these cranes that were being used to rescue a wagon, occurred a fall of hoist due to fracture of two large pins. The two pins were collected and sent for failure analysis. This work investigates the main cause and the secondary causes for the initiation of the fatigue crack. All standard failure analysis procedures were applied, with careful evaluation of the characteristics of the material, fractured surfaces and, mainly, metallographic tests using an optical microscope to compare the geometry of the peaks and valleys of the thread of the pins and their respective seats. By metallographic analysis, it was concluded that the fatigue cracks were started from a notch (stress concentration) in the valley of the threads of the pin applied to the right side of the crane (pin 1). In this, it was verified that the peaks of the threads of the pin seat did not have proper geometry, with sharp edges being present that caused such notches. The visual analysis showed that fracture of the pin on the left side of the crane (pin 2) was brittle type, being a consequence of the fracture of the first one. Recommendations for this and other railway cranes have been made, such as nondestructive testing, stress calculation, design review, quality control and suitability of the mechanical forming process of the seat threads and pin threads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crane" title="crane">crane</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=pin" title=" pin"> pin</a>, <a href="https://publications.waset.org/abstracts/search?q=railway" title=" railway"> railway</a> </p> <a href="https://publications.waset.org/abstracts/104967/railway-crane-accident-a-comparative-metallographic-test-on-pins-fractured-during-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> The Collapse of a Crane on Site: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Teruzzi">T. Teruzzi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Antonietti"> S. Antonietti</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Mosca"> C. Mosca</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Paglia"> C. Paglia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the causes of the structural failure in a tower crane. The structural collapse occurred at the upper joints of the extension element used to increase the height of the crane. The extension element consists of a steel lattice structure made with angular profiles and plates joined to the tower element by arc welding. Macroscopic inspection of the sections showed that the break was always observed on the angular profiles at the weld bead edge. The case study shows how, using mechanical characterization, chemical analysis of the steel and macroscopic and microscopic metallographic examinations, it was possible to obtain significant evidence that identified the mechanism causing the breakage. The analyses identified the causes of the structural failure as the use of materials that were not suitable for welding and poor performance in the welding joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure" title="failure">failure</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=weld" title=" weld"> weld</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/123226/the-collapse-of-a-crane-on-site-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Enhancing Tower Crane Safety: A UAV-based Intelligent Inspection Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xin%20Jiao">Xin Jiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Zhang"> Xin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Fan"> Jian Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenwei%20Cai"> Zhenwei Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiming%20Xu"> Yiming Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tower cranes play a crucial role in the construction industry, facilitating the vertical and horizontal movement of materials and aiding in building construction, especially for high-rise structures. However, tower crane accidents can lead to severe consequences, highlighting the importance of effective safety management and inspection. This paper presents an innovative approach to tower crane inspection utilizing Unmanned Aerial Vehicles (UAVs) and an Intelligent Inspection APP System. The system leverages UAVs equipped with high-definition cameras to conduct efficient and comprehensive inspections, reducing manual labor, inspection time, and risk. By integrating advanced technologies such as Real-Time Kinematic (RTK) positioning and digital image processing, the system enables precise route planning and collection of safety hazards images. A case study conducted on a construction site demonstrates the practicality and effectiveness of the proposed method, showcasing its potential to enhance tower crane safety. On-site testing of UAV intelligent inspections reveals key findings: efficient tower crane hazard inspection within 30 minutes, with a full-identification capability coverage rates of 76.3%, 64.8%, and 76.2% for major, significant, and general hazards respectively and a preliminary-identification capability coverage rates of 18.5%, 27.2%, and 19%, respectively. Notably, UAVs effectively identify various tower crane hazards, except for those requiring auditory detection. The limitations of this study primarily involve two aspects: Firstly, during the initial inspection, manual drone piloting is required for marking tower crane points, followed by automated flight inspections and reuse based on the marked route. Secondly, images captured by the drone necessitate manual identification and review, which can be time-consuming for equipment management personnel, particularly when dealing with a large volume of images. Subsequent research efforts will focus on AI training and recognition of safety hazard images, as well as the automatic generation of inspection reports and corrective management based on recognition results. The ongoing development in this area is currently in progress, and outcomes will be released at an appropriate time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tower%20crane" title="tower crane">tower crane</a>, <a href="https://publications.waset.org/abstracts/search?q=inspection" title=" inspection"> inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle%20%28UAV%29" title=" unmanned aerial vehicle (UAV)"> unmanned aerial vehicle (UAV)</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20inspection%20app%20system" title=" intelligent inspection app system"> intelligent inspection app system</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20management" title=" safety management"> safety management</a> </p> <a href="https://publications.waset.org/abstracts/182303/enhancing-tower-crane-safety-a-uav-based-intelligent-inspection-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Weight Estimation Using the K-Means Method in Steelmaking’s Overhead Cranes in Order to Reduce Swing Error</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedamir%20Makinejadsanij">Seyedamir Makinejadsanij</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important factors in the production of quality steel is to know the exact weight of steel in the steelmaking area. In this study, a calculation method is presented to estimate the exact weight of the melt as well as the objects transported by the overhead crane. Iran Alloy Steel Company's steelmaking area has three 90-ton cranes, which are responsible for transferring the ladles and ladle caps between 34 areas in the melt shop. Each crane is equipped with a Disomat Tersus weighing system that calculates and displays real-time weight. The moving object has a variable weight due to swinging, and the weighing system has an error of about +-5%. This means that when the object is moving by a crane, which weighs about 80 tons, the device (Disomat Tersus system) calculates about 4 tons more or 4 tons less, and this is the biggest problem in calculating a real weight. The k-means algorithm is an unsupervised clustering method that was used here. The best result was obtained by considering 3 centers. Compared to the normal average(one) or two, four, five, and six centers, the best answer is with 3 centers, which is logically due to the elimination of noise above and below the real weight. Every day, the standard weight is moved with working cranes to test and calibrate cranes. The results are shown that the accuracy is about 40 kilos per 60 tons (standard weight). As a result, with this method, the accuracy of moving weight is calculated as 99.95%. K-means is used to calculate the exact mean of objects. The stopping criterion of the algorithm is also the number of 1000 repetitions or not moving the points between the clusters. As a result of the implementation of this system, the crane operator does not stop while moving objects and continues his activity regardless of weight calculations. Also, production speed increased, and human error decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=k-means" title="k-means">k-means</a>, <a href="https://publications.waset.org/abstracts/search?q=overhead%20crane" title=" overhead crane"> overhead crane</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20weight" title=" melt weight"> melt weight</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20estimation" title=" weight estimation"> weight estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=swing%20problem" title=" swing problem"> swing problem</a> </p> <a href="https://publications.waset.org/abstracts/164444/weight-estimation-using-the-k-means-method-in-steelmakings-overhead-cranes-in-order-to-reduce-swing-error" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Lumped Parameter Models for Numerical Simulation of The Dynamic Response of Hoisting Appliances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Candida%20Petrogalli">Candida Petrogalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Incerti"> Giovanni Incerti</a>, <a href="https://publications.waset.org/abstracts/search?q=Luigi%20Solazzi"> Luigi Solazzi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes three lumped parameters models for the study of the dynamic behaviour of a boom crane. The models proposed here allow evaluating the fluctuations of the load arising from the rope and structure elasticity and from the type of the motion command imposed by the winch. A calculation software was developed in order to determine the actual acceleration of the lifted mass and the dynamic overload during the lifting phase. Some application examples are presented, with the aim of showing the correlation between the magnitude of the stress and the type of the employed motion command. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crane" title="crane">crane</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model" title=" dynamic model"> dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=overloading%20condition" title=" overloading condition"> overloading condition</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a> </p> <a href="https://publications.waset.org/abstracts/36125/lumped-parameter-models-for-numerical-simulation-of-the-dynamic-response-of-hoisting-appliances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">575</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Periodic Topology and Size Optimization Design of Tower Crane Boom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wu%20Qinglong">Wu Qinglong</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhou%20Qicai"> Zhou Qicai</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiong%20Xiaolei"> Xiong Xiaolei</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Richeng"> Zhang Richeng </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to achieve the layout and size optimization of the web members of tower crane boom, a truss topology and cross section size optimization method based on continuum is proposed considering three typical working conditions. Firstly, the optimization model is established by replacing web members with web plates. And the web plates are divided into several sub-domains so that periodic soft kill option (SKO) method can be carried out for topology optimization of the slender boom. After getting the optimized topology of web plates, the optimized layout of web members is formed through extracting the principal stress distribution. Finally, using the web member radius as design variable, the boom compliance as objective and the material volume of the boom as constraint, the cross section size optimization mathematical model is established. The size optimization criterion is deduced from the mathematical model by Lagrange multiplier method and Kuhn-Tucker condition. By comparing the original boom with the optimal boom, it is identified that this optimization method can effectively lighten the boom and improve its performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tower%20crane%20boom" title="tower crane boom">tower crane boom</a>, <a href="https://publications.waset.org/abstracts/search?q=topology%20optimization" title=" topology optimization"> topology optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=size%20optimization" title=" size optimization"> size optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic" title=" periodic"> periodic</a>, <a href="https://publications.waset.org/abstracts/search?q=SKO" title=" SKO"> SKO</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20criterion" title=" optimization criterion"> optimization criterion</a> </p> <a href="https://publications.waset.org/abstracts/74618/periodic-topology-and-size-optimization-design-of-tower-crane-boom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Validation of a Reloading Vehicle Design by Finite Element Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tu%C4%9Frul%20Aksoy">Tuğrul Aksoy</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%BCseyin%20Karab%C4%B1y%C4%B1k"> Hüseyin Karabıyık</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reloading vehicles are the vehicles which are generally equipped with a crane and used to carry a stowage from a point and locate onto the vehicle or vice versa. In this study, structural analysis of a reloading vehicle was performed under the loads which are predicted to be exposed under operating conditions via the finite element method. Among the finite element analysis results, the stress and displacement distributions of the vehicle and the contact pressure distributions of the guide rings within the stabilization legs were examined. Vehicle design was improved by strengthening certain parts according to the analysis results. The analyses performed for the final design were verified by the experiments involving strain gauge measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title="structural analysis">structural analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reloading%20vehicle" title=" reloading vehicle"> reloading vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=crane" title=" crane"> crane</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20gauge" title=" strain gauge"> strain gauge</a> </p> <a href="https://publications.waset.org/abstracts/176626/validation-of-a-reloading-vehicle-design-by-finite-element-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Tower Crane Selection and Positioning on Construction Sites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dirk%20Briskorn">Dirk Briskorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Dienstknecht"> Michael Dienstknecht</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cranes are a key element in construction projects as they are the primary lifting equipment and among the most expensive construction equipment. Thus, selecting cranes and locating them on-site is an important factor for a project's profitability. We focus on a site with supply and demand areas that have to be connected by tower cranes. There are several types of tower cranes differing in certain specifications such as costs or operating radius. The objective is to select cranes and determine their locations such that each demand area is connected to its supply area at minimum cost. We detail the problem setting and show how to obtain a discrete set of candidate locations for each crane type without losing optimality. This discretization allows us to reduce our problem to the classic set cover problem. Despite its NP-hardness, we achieve good results employing a standard solver and a greedy heuristic, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=positioning" title="positioning">positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=selection" title=" selection"> selection</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20solver" title=" standard solver"> standard solver</a>, <a href="https://publications.waset.org/abstracts/search?q=tower%20cranes" title=" tower cranes"> tower cranes</a> </p> <a href="https://publications.waset.org/abstracts/84445/tower-crane-selection-and-positioning-on-construction-sites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Non-Chronological Approach in Crane Girder and Composite Steel Beam Installation: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Govindaraj%20Ramanathan">Govindaraj Ramanathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The time delay and the structural stability are major issues in big size projects due to several factors. Improper planning and poor coordination lead to delay in construction, which sometimes result in reworking or rebuilding. This definitely increases the cost and time of project. This situation stresses the structural engineers to plan out of the limits of contemporary technology utilizing non-chronological approach with creative ideas. One of the strategies to solve this issue is through structural integrity solutions in a cost-effective way. We have faced several problems in a project worth 470 million USD, and one such issue is crane girder installation with composite steel beams. We have applied structural integrity approach with the proper and revised planning schedule to solve the problem efficiently with minimal expenses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20management" title="construction management">construction management</a>, <a href="https://publications.waset.org/abstracts/search?q=delay" title=" delay"> delay</a>, <a href="https://publications.waset.org/abstracts/search?q=non-chronological%20approach" title=" non-chronological approach"> non-chronological approach</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20beam" title=" composite beam"> composite beam</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity" title=" structural integrity"> structural integrity</a> </p> <a href="https://publications.waset.org/abstracts/57704/non-chronological-approach-in-crane-girder-and-composite-steel-beam-installation-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Failure of Cable Reel Flat Spring of Crane: Beyond Fatigue Life Use</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Urbi%20Pal">Urbi Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Piyas%20Palit"> Piyas Palit</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Mathur"> Jitendra Mathur</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhay%20Chaturvedi"> Abhay Chaturvedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20Bhattacharya"> Sandip Bhattacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hot rolled slab lifting crane cable reel drum (CRD) failed due to failure of cable reel flat spring which are inside the cassette of CRD. CRD is used for the movement of tong cable. Stereoscopic observation revealed beach marks and Scanning Electron Microscopy showed striations confirming fatigue mode of failure. Chemical composition should be spring steel (Cr-Mo-V) as per IS 3431:1982 instead of C-Mn steel. To find out the reason of fatigue failure, the theoretical fatigue life of flat spiral spring has been calculated. The calculation of number of fatigue cycles included bending moment, maximum stress on the spring, ultimate tensile strength and alternative stress. The bending moment determination has been taken account with various parameters like Young’s Modulus, width, thickness, outer diameter, arbor diameter, pay out the length and angular deflection in rotations. With all the required data, the calculated fatigue life turned to be 10000 cycles, but the spring served 15000 cycles which clearly indicated beyond fatigue life usage. Different UTS values have been plotted with respect to the number of fatigue cycles and clearly showed that the increase in UTS by 40% increases fatigue life by 50%. The significance of higher UTS lied here, and higher UTS depends on modified chemistry with proper tempered martensite microstructure. This kind of failure can be easily avoided by changing the crane spring maintenance schedule from 2 years to 1.5 years considering 600 cycles per month. The plant has changed changing the schedule of cable reel spring and procured new flat reel spring made of 50CrV2 steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cable%20reel%20spring" title="cable reel spring">cable reel spring</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life"> fatigue life</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=spring%20steel" title=" spring steel"> spring steel</a> </p> <a href="https://publications.waset.org/abstracts/108278/failure-of-cable-reel-flat-spring-of-crane-beyond-fatigue-life-use" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> An Industrial Scada System Remote Control Using Mobile Phones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmidah%20Elgali">Ahmidah Elgali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SCADA is the abbreviation for "Administrative Control And Data Acquisition." SCADA frameworks are generally utilized in industry for administrative control and information securing of modern cycles. Regular SCADA frameworks use PC, journal, slim client, and PDA as a client. In this paper, a Java-empowered cell phone has been utilized as a client in an example SCADA application to show and regulate the place of an example model crane. The paper presents a genuine execution of the online controlling of the model crane through a cell phone. The remote correspondence between the cell phone and the SCADA server is performed through a base station by means of general parcel radio assistance GPRS and remote application convention WAP. This application can be used in industrial sites in areas that are likely to be exposed to a security emergency (like terrorist attacks) which causes the sudden exit of the operators; however, no time to perform the shutdown procedures for the plant. Hence this application allows shutting down units and equipment remotely by mobile and so avoids damage and losses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control" title="control">control</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial" title=" industrial"> industrial</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile" title=" mobile"> mobile</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a>, <a href="https://publications.waset.org/abstracts/search?q=remote" title=" remote"> remote</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a> </p> <a href="https://publications.waset.org/abstracts/150682/an-industrial-scada-system-remote-control-using-mobile-phones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Measuring the Biomechanical Effects of Worker Skill Level and Joystick Crane Speed on Forestry Harvesting Performance Using a Simulator </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victoria%20L.%20Chester">Victoria L. Chester</a>, <a href="https://publications.waset.org/abstracts/search?q=Usha%20Kuruganti"> Usha Kuruganti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The forest industry is a major economic sector of Canada and also one of the most dangerous industries for workers. The use of mechanized mobile forestry harvesting machines has successfully reduced the incidence of injuries in forest workers related to manual labor. However, these machines have also created additional concerns, including a high machine operation learning curve, increased the length of the workday, repetitive strain injury, cognitive load, physical and mental fatigue, and increased postural loads due to sitting in a confined space. It is critical to obtain objective performance data for employers to develop appropriate work practices for this industry, however ergonomic field studies of this industry are lacking mainly due to the difficulties in obtaining comprehensive data while operators are cutting trees in the woods. The purpose of this study was to establish a measurement and experimental protocol to examine the effects of worker skill level and movement training speed (joystick crane speed) on harvesting performance using a forestry simulator. A custom wrist angle measurement device was developed as part of the study to monitor Euler angles during operation of the simulator. The device of the system consisted of two accelerometers, a Bluetooth module, three 3V coin cells, a microcontroller, a voltage regulator and an application software. Harvesting performance and crane data was provided by the simulator software and included tree to frame collisions, crane to tree collisions, boom tip distance, number of trees cut, etc. A pilot study of 3 operators with various skill levels was tested to identify factors that distinguish highly skilled operators from novice or intermediate operators. Dependent variables such as reaction time, math skill, past work experience, training movement speed (e.g. joystick control speeds), harvesting experience level, muscle activity, and wrist biomechanics were measured and analyzed. A 10-channel wireless surface EMG system was used to monitor the amplitude and mean frequency of 10 upper extremity muscles during pre and postperformance on the forestry harvest stimulator. The results of the pilot study showed inconsistent changes in median frequency pre-and postoperation, but there was the increase in the activity of the flexor carpi radialis, anterior deltoid and upper trapezius of both arms. The wrist sensor results indicated that wrist supination and pronation occurred more than flexion and extension with radial-ulnar rotation demonstrating the least movement. Overall, wrist angular motion increased as the crane speed increased from slow to fast. Further data collection is needed and will help industry partners determine those factors that separate skill levels of operators, identify optimal training speeds, and determine the length of training required to bring new operators to an efficient skill level effectively. In addition to effective and employment training programs, results of this work will be used for selective employee recruitment strategies to improve employee retention after training. Further, improved training procedures and knowledge of the physical and mental demands on workers will lead to highly trained and efficient personnel, reduced risk of injury, and optimal work protocols. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMG" title="EMG">EMG</a>, <a href="https://publications.waset.org/abstracts/search?q=forestry" title=" forestry"> forestry</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20factors" title=" human factors"> human factors</a>, <a href="https://publications.waset.org/abstracts/search?q=wrist%20biomechanics" title=" wrist biomechanics"> wrist biomechanics</a> </p> <a href="https://publications.waset.org/abstracts/87853/measuring-the-biomechanical-effects-of-worker-skill-level-and-joystick-crane-speed-on-forestry-harvesting-performance-using-a-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Mathematical Model and Algorithm for the Berth and Yard Resource Allocation at Seaports</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming%20Liu">Ming Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhihui%20Sun"> Zhihui Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoning%20Zhang"> Xiaoning Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies a deterministic container transportation problem, jointly optimizing the berth allocation, quay crane assignment and yard storage allocation at container ports. The problem is formulated as an integer program to coordinate the decisions. Because of the large scale, it is then transformed into a set partitioning formulation, and a framework of branchand- price algorithm is provided to solve it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=branch-and-price" title="branch-and-price">branch-and-price</a>, <a href="https://publications.waset.org/abstracts/search?q=container%20terminal" title=" container terminal"> container terminal</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20scheduling" title=" joint scheduling"> joint scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=maritime%20logistics" title=" maritime logistics"> maritime logistics</a> </p> <a href="https://publications.waset.org/abstracts/69918/mathematical-model-and-algorithm-for-the-berth-and-yard-resource-allocation-at-seaports" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Remote Sensing Reversion of Water Depths and Water Management for Waterbird Habitats: A Case Study on the Stopover Site of Siberian Cranes at Momoge, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chunyue%20Liu">Chunyue Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongxing%20Jiang"> Hongxing Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional water depth survey of wetland habitats used by waterbirds needs intensive labor, time and money. The optical remote sensing image relies on passive multispectral scanner data has been widely employed to study estimate water depth. This paper presents an innovative method for developing the water depth model based on the characteristics of visible and thermal infrared spectra of Landsat ETM+ image, combing with 441 field water depth data at Etoupao shallow wetland. The wetland is located at Momoge National Nature Reserve of Northeast China, where the largest stopover habitat along the eastern flyway of globally, critically-endangered Siberian Cranes are. The cranes mainly feed on the tubers of emergent aquatic plants such as Scirpus planiculmis and S. nipponicus. The effective water control is a critical step for maintaining the production of tubers and food availability for this crane. The model employing multi-band approach can effectively simulate water depth for this shallow wetland. The model parameters of NDVI and GREEN indicated the vegetation growth and coverage affecting the reflectance from water column change are uneven. Combining with the field-observed water level at the same date of image acquisition, the digital elevation model (DEM) for the underwater terrain was generated. The wetland area and water volume of different water levels were then calculated from the DEM using the function of Area and Volume Statistics under the 3D Analyst of ArcGIS 10.0. The findings provide good references to effectively monitor changes in water level and water demand, develop practical plan for water level regulation and water management, and to create best foraging habitats for the cranes. The methods here can be adopted for the bottom topography simulation and water management in waterbirds’ habitats, especially in the shallow wetlands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20depth%20reversion" title=" water depth reversion"> water depth reversion</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20wetland%20habitat%20management" title=" shallow wetland habitat management"> shallow wetland habitat management</a>, <a href="https://publications.waset.org/abstracts/search?q=siberian%20crane" title=" siberian crane"> siberian crane</a> </p> <a href="https://publications.waset.org/abstracts/71696/remote-sensing-reversion-of-water-depths-and-water-management-for-waterbird-habitats-a-case-study-on-the-stopover-site-of-siberian-cranes-at-momoge-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Preliminary Study of Standardization and Validation of Micronuclei Technique to Assess the DNA Damages Cause for the X-Rays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20J.%20D%C3%ADaz">L. J. Díaz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hern%C3%A1ndez"> M. A. Hernández</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Molina"> A. K. Molina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Berm%C3%BAdez"> A. Bermúdez</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Crane"> C. Crane</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20M.%20Pab%C3%B3n"> V. M. Pabón</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important biological indicators that show the exposure to the radiation is the micronuclei (MN). This technique is using to determinate the radiation effects in blood cultures as a biological control and a complement to the physics dosimetry. In Colombia the necessity to apply this analysis has emerged due to the current biological indicator most used is the chromosomal aberrations (CA), that is why it is essential the MN technique’s standardization and validation to have enough tools to improve the radioprotection topic in the country. Besides, this technique will be applied on the construction of a dose-response curve, that allow measure an approximately dose to irradiated people according to MN frequency found. Inside the steps that carried out to accomplish the standardization and validation is the statistic analysis from the lectures of “in vitro” peripheral blood cultures with different analysts, also it was determinate the best culture medium and conditions for the MN can be detected easily. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micronuclei" title="micronuclei">micronuclei</a>, <a href="https://publications.waset.org/abstracts/search?q=radioprotection" title=" radioprotection"> radioprotection</a>, <a href="https://publications.waset.org/abstracts/search?q=standardization" title=" standardization"> standardization</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a> </p> <a href="https://publications.waset.org/abstracts/16835/preliminary-study-of-standardization-and-validation-of-micronuclei-technique-to-assess-the-dna-damages-cause-for-the-x-rays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Comparison of Various Response Spectrum of Nuclear Power Plant at Chashma Site</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Iqbal">J. Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shah"> A. Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zeeshan"> M. Zeeshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> UBC-97, USNRC, chines origin code GB50011-2011 and site response spectrum was used to make comparison between them for Chashma site and most conservative one was selected and the USNRC was the most conservative one. The dynamic analysis of CHASNUPP-2 containment building was performed using SAP-2000 for dead load, live load (crane), pre stressed loads, wind load, temperature load, accidental pressure during LOCA, earthquake loads and the conservative response spectrum. After applying selected response spectrum on model, detail comparison was made against area of steal calculated from the analysis and the actually provided. Then prepared curve of area of steal vs. g value which shows that if the particular site was design on that spectrum that much steel needed for structural integrity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=response%20spectrum" title="response spectrum">response spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=USNRC" title=" USNRC"> USNRC</a>, <a href="https://publications.waset.org/abstracts/search?q=LOCA" title=" LOCA"> LOCA</a>, <a href="https://publications.waset.org/abstracts/search?q=area%20of%20steel" title=" area of steel"> area of steel</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20integrity" title=" structure integrity "> structure integrity </a> </p> <a href="https://publications.waset.org/abstracts/20573/comparison-of-various-response-spectrum-of-nuclear-power-plant-at-chashma-site" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">679</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Investigations on the Fatigue Behavior of Welded Details with Imperfections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helen%20Bartsch">Helen Bartsch</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Feldmann"> Markus Feldmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dimensioning of steel structures subject to fatigue loads, such as wind turbines, bridges, masts and towers, crane runways and weirs or components in crane construction, is often dominated by fatigue verification. The fatigue details defined by the welded connections, such as butt or cruciform joints, longitudinal welds, welded-on or welded-in stiffeners, etc., are decisive. In Europe, the verification is usually carried out according to EN 1993-1-9 on a nominal stress basis. The basis is the detailed catalog, which specifies the fatigue strength of the various weld and construction details according to fatigue classes. Until now, a relation between fatigue classes and weld imperfection sizes is not included. Quality levels for imperfections in fusion-welded joints in steel, nickel, titanium and their alloys are regulated in EN ISO 5817, which, however, doesn’t contain direct correlations to fatigue resistances. The question arises whether some imperfections might be tolerable to a certain extent since they may be present in the test data used for detail classifications dating back decades ago. Although current standardization requires proof of satisfying limits of imperfection sizes, it would also be possible to tolerate welds with certain irregularities if these can be reliably quantified by non-destructive testing. Fabricators would be prepared to undertake carefully and sustained weld inspection in view of the significant economic consequences of such unfavorable fatigue classes. This paper presents investigations on the fatigue behavior of common welded details containing imperfections. In contrast to the common nominal stress concept, local fatigue concepts were used to consider the true stress increase, i.e., local stresses at the weld toe and root. The actual shape of a weld comprising imperfections, e.g., gaps or undercuts, can be incorporated into the fatigue evaluation, usually on a numerical basis. With the help of the effective notch stress concept, the fatigue resistance of detailed local weld shapes is assessed. Validated numerical models serve to investigate notch factors of fatigue details with different geometries. By utilizing parametrized ABAQUS routines, detailed numerical studies have been performed. Depending on the shape and size of different weld irregularities, fatigue classes can be defined. As well load-carrying welded details, such as the cruciform joint, as non-load carrying welded details, e.g., welded-on or welded-in stiffeners, are regarded. The investigated imperfections include, among others, undercuts, excessive convexity, incorrect weld toe, excessive asymmetry and insufficient or excessive throat thickness. Comparisons of the impact of different imperfections on the different types of fatigue details are made. Moreover, the influence of a combination of crucial weld imperfections on the fatigue resistance is analyzed. With regard to the trend of increasing efficiency in steel construction, the overall aim of the investigations is to include a more economical differentiation of fatigue details with regard to tolerance sizes. In the long term, the harmonization of design standards, execution standards and regulations of weld imperfections is intended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20notch%20stress" title="effective notch stress">effective notch stress</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20design" title=" fatigue design"> fatigue design</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20imperfections" title=" weld imperfections"> weld imperfections</a> </p> <a href="https://publications.waset.org/abstracts/139537/investigations-on-the-fatigue-behavior-of-welded-details-with-imperfections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Construction Port Requirements for Floating Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alan%20Crowle">Alan Crowle</a>, <a href="https://publications.waset.org/abstracts/search?q=Philpp%20Thies"> Philpp Thies</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the floating offshore wind turbine industry continues to develop and grow, the capabilities of established port facilities need to be assessed as to their ability to support the expanding construction and installation requirements. This paper assesses current infrastructure requirements and projected changes to port facilities that may be required to support the floating offshore wind industry. Understanding the infrastructure needs of the floating offshore renewable industry will help to identify the port-related requirements. Floating Offshore Wind Turbines can be installed further out to sea and in deeper waters than traditional fixed offshore wind arrays, meaning that it can take advantage of stronger winds. Separate ports are required for substructure construction, fit-out of the turbines, moorings, subsea cables and maintenance. Large areas are required for the laydown of mooring equipment; inter-array cables, turbine blades and nacelles. The capabilities of established port facilities to support floating wind farms are assessed by evaluation of the size of substructures, the height of wind turbine with regards to the cranes for fitting of blades, distance to offshore site and offshore installation vessel characteristics. The paper will discuss the advantages and disadvantages of using large land-based cranes, inshore floating crane vessels or offshore crane vessels at the fit-out port for the installation of the turbine. Water depths requirements for import of materials and export of the completed structures will be considered. There are additional costs associated with any emerging technology. However part of the popularity of Floating Offshore Wind Turbines stems from the cost savings against permanent structures like fixed wind turbines. Floating Offshore Wind Turbine developers can benefit from lighter, more cost-effective equipment which can be assembled in port and towed to the site rather than relying on large, expensive installation vessels to transport and erect fixed bottom turbines. The ability to assemble Floating Offshore Wind Turbines equipment onshore means minimizing highly weather-dependent operations like offshore heavy lifts and assembly, saving time and costs and reducing safety risks for offshore workers. Maintenance might take place in safer onshore conditions for barges and semi-submersibles. Offshore renewables, such as floating wind, can take advantage of this wealth of experience, while oil and gas operators can deploy this experience at the same time as entering the renewables space The floating offshore wind industry is in the early stages of development and port facilities are required for substructure fabrication, turbine manufacture, turbine construction and maintenance support. The paper discusses the potential floating wind substructures as this provides a snapshot of the requirements at the present time, and potential technological developments required for commercial development. Scaling effects of demonstration-scale projects will be addressed, however, the primary focus will be on commercial-scale (30+ units) device floating wind energy farms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20wind" title="floating wind">floating wind</a>, <a href="https://publications.waset.org/abstracts/search?q=port" title=" port"> port</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20construction" title=" marine construction"> marine construction</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20renewables" title=" offshore renewables"> offshore renewables</a> </p> <a href="https://publications.waset.org/abstracts/138935/construction-port-requirements-for-floating-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> A Novel Integration of Berth Allocation, Quay Cranes and Trucks Scheduling Problems in Container Terminals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Moharami%20Gargari">M. Moharami Gargari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Javdani%20Zamani"> S. Javdani Zamani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohammadnejad"> A. Mohammadnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Abuali"> S. Abuali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As maritime container transport is developing fast, the need arises for efficient operations at container terminals. One of the most important determinants of container handling efficiency is the productivity of quay cranes and internal transportation vehicles, which are responsible transporting of containers for unloading and loading operations for container vessels. For this reason, this paper presents an integrated mathematical model formulation for discrete berths with quay cranes and internal transportations vehicles. The problems have received increasing attention in the literature and the present paper deals with the integration of these interrelated problems. A new mixed integer linear formulation is developed for the Berth Allocation Problem (BAP), Quay Crane Assignment and Scheduling Problem (QCASP) and Internal Transportation Scheduling (ITS), which accounts for cranes and trucks positioning conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20berths" title="discrete berths">discrete berths</a>, <a href="https://publications.waset.org/abstracts/search?q=container%20terminal" title=" container terminal"> container terminal</a>, <a href="https://publications.waset.org/abstracts/search?q=truck%20scheduling" title=" truck scheduling"> truck scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20vessel%20arrival" title=" dynamic vessel arrival "> dynamic vessel arrival </a> </p> <a href="https://publications.waset.org/abstracts/30174/a-novel-integration-of-berth-allocation-quay-cranes-and-trucks-scheduling-problems-in-container-terminals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> A New Approach to the Boom Welding Technique by Determining Seam Profile Tracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muciz%20%C3%96zcan">Muciz Özcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Sacid%20Endiz"> Mustafa Sacid Endiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Veysel%20Alver"> Veysel Alver</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we present a new approach to the boom welding related to the mobile cranes manufacturing, implementing a new method in order to get homogeneous welding quality and reduced energy usage during booms production. We aim to get the realization of the same welding quality carried out on the boom in every region during the manufacturing process and to detect the possible welding errors whether they could be eliminated using laser sensors. We determine the position of the welding region directly through our system and with the help of the welding oscillator we are able to perform a proper boom welding. Errors that may occur in the welding process can be observed by monitoring and eliminated by means of an operator. The major modification in the production of the crane booms will be their form of the booms. Although conventionally, more than one welding is required to perform this process, with the suggested concept, only one particular welding is sufficient, which will be more energy and environment-friendly. Consequently, as only one welding is needed for the manufacturing of the boom, the particular welding quality becomes more essential. As a way to satisfy the welding quality, a welding manipulator was made and fabricated. By using this welding manipulator, the risks of involving dangerous gases formed during the welding process for the operator and the surroundings are diminished as much as possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boom%20welding" title="boom welding">boom welding</a>, <a href="https://publications.waset.org/abstracts/search?q=seam%20tracking" title=" seam tracking"> seam tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a> </p> <a href="https://publications.waset.org/abstracts/30866/a-new-approach-to-the-boom-welding-technique-by-determining-seam-profile-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Identifying and Ranking Environmental Risks of Oil and Gas Projects Using the VIKOR Method for Multi-Criteria Decision Making</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sasan%20Aryaee">Sasan Aryaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Ravanshadnia"> Mahdi Ravanshadnia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Naturally, any activity is associated with risk, and humans have understood this concept from very long times ago and seek to identify its factors and sources. On the one hand, proper risk management can cause problems such as delays and unforeseen costs in the development projects, temporary or permanent loss of services, getting lost or information theft, complexity and limitations in processes, unreliable information caused by rework, holes in the systems and many such problems. In the present study, a model has been presented to rank the environmental risks of oil and gas projects. The statistical population of the study consists of all executives active in the oil and gas fields, that the statistical sample is selected randomly. In the framework of the proposed method, environmental risks of oil and gas projects were first extracted, then a questionnaire based on these indicators was designed based on Likert scale and distributed among the statistical sample. After assessing the validity and reliability of the questionnaire, environmental risks of oil and gas projects were ranked using the VIKOR method of multiple-criteria decision-making. The results showed that the best options for HSE planning of oil and gas projects that caused the reduction of risks and personal injury and casualties and less than other options is costly for the project and it will add less time to the duration of implementing the project is the entering of dye to the environment when painting the generator pond and the presence of the rigger near the crane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ranking" title="ranking">ranking</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-criteria%20decision%20making" title=" multi-criteria decision making"> multi-criteria decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20and%20gas%20projects" title=" oil and gas projects"> oil and gas projects</a>, <a href="https://publications.waset.org/abstracts/search?q=HSEmanagement" title=" HSEmanagement"> HSEmanagement</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20risks" title=" environmental risks"> environmental risks</a> </p> <a href="https://publications.waset.org/abstracts/132273/identifying-and-ranking-environmental-risks-of-oil-and-gas-projects-using-the-vikor-method-for-multi-criteria-decision-making" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crane&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crane&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10