CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–8 of 8 results for author: <span class="mathjax">Heinselman, K N</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Heinselman%2C+K+N">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Heinselman, K N"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Heinselman%2C+K+N&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Heinselman, K N"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.02233">arXiv:2306.02233</a> <span> [<a href="https://arxiv.org/pdf/2306.02233">pdf</a>, <a href="https://arxiv.org/format/2306.02233">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D3TC02059B">10.1039/D3TC02059B <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bulk and film synthesis pathways to ternary magnesium tungsten nitrides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rom%2C+C+L">Christopher L. Rom</a>, <a href="/search/cond-mat?searchtype=author&query=Smaha%2C+R+W">Rebecca W. Smaha</a>, <a href="/search/cond-mat?searchtype=author&query=Knebel%2C+C+A">Callan A. Knebel</a>, <a href="/search/cond-mat?searchtype=author&query=Heinselman%2C+K+N">Karen N. Heinselman</a>, <a href="/search/cond-mat?searchtype=author&query=Neilson%2C+J+R">James R. Neilson</a>, <a href="/search/cond-mat?searchtype=author&query=Bauers%2C+S+R">Sage R. Bauers</a>, <a href="/search/cond-mat?searchtype=author&query=Zakutayev%2C+A">Andriy Zakutayev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.02233v1-abstract-short" style="display: inline;"> Bulk solid state synthesis of nitride materials usually leads to thermodynamically stable, cation-ordered crystal structures, whereas thin film synthesis tends to favor disordered, metastable phases. This dichotomy is inconvenient both for basic materials discovery, where non-equilibrium thin film synthesis methods can be useful to overcome reaction kinetic barriers, and for practical technology a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02233v1-abstract-full').style.display = 'inline'; document.getElementById('2306.02233v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.02233v1-abstract-full" style="display: none;"> Bulk solid state synthesis of nitride materials usually leads to thermodynamically stable, cation-ordered crystal structures, whereas thin film synthesis tends to favor disordered, metastable phases. This dichotomy is inconvenient both for basic materials discovery, where non-equilibrium thin film synthesis methods can be useful to overcome reaction kinetic barriers, and for practical technology applications where stable ground state structures are sometimes required. Here, we explore the uncharted Mg-W-N chemical phase space, using rapid thermal annealing to reconcile the differences between thin film and bulk powder syntheses. Combinatorial co-sputtering synthesis from Mg and W targets in a N$_2$ environment yielded cation-disordered Mg-W-N phases in the rocksalt (0.1< Mg/(Mg+W) <0.9), and hexagonal boron nitride (0.7< Mg/(Mg+W) <0.9) structure types. In contrast, bulk synthesis produced a cation-ordered polymorph of MgWN$_2$ that consists of alternating layers of rocksalt-like [MgN$_6$] octahedra and nickeline-like [WN$_6$] trigonal prisms (denoted "rocksaline"). Thermodynamic calculations corroborate these observations, showing rocksaline MgWN$_2$ is stable while other polymorphs are metastable. We also show that rapid thermal annealing can convert disordered rocksalt films to this cation-ordered polymorph near the MgWN$_2$ stoichiometry. Electronic structure calculations suggest that this rocksalt-to-rocksaline structural transformation should also drive a metallic-to-semiconductor transformation. In addition to revealing three new phases (rocksalt MgWN$_2$ and Mg$_3$WN$_4$, hexagonal boron nitride Mg$_3$WN$_4$, and rocksaline MgWN$_2$), these findings highlight how rapid thermal annealing can control polymorphic transformations, adding a new strategy for exploration of thermodynamic stability in uncharted phase spaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02233v1-abstract-full').style.display = 'none'; document.getElementById('2306.02233v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05469">arXiv:2303.05469</a> <span> [<a href="https://arxiv.org/pdf/2303.05469">pdf</a>, <a href="https://arxiv.org/format/2303.05469">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Thin film TaAs: developing a platform for Weyl semimetal devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nelson%2C+J+N">Jocienne N. Nelson</a>, <a href="/search/cond-mat?searchtype=author&query=Rice%2C+A+D">Anthony D. Rice</a>, <a href="/search/cond-mat?searchtype=author&query=Kurleto%2C+R">Rafal Kurleto</a>, <a href="/search/cond-mat?searchtype=author&query=Shackelford%2C+A">Amanda Shackelford</a>, <a href="/search/cond-mat?searchtype=author&query=Sierzega%2C+Z">Zachary Sierzega</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+C">Chun-Sheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Norman%2C+A+G">Andrew G. Norman</a>, <a href="/search/cond-mat?searchtype=author&query=Holtz%2C+M+E">Megan E. Holtz</a>, <a href="/search/cond-mat?searchtype=author&query=Mangum%2C+J+S">John S. Mangum</a>, <a href="/search/cond-mat?searchtype=author&query=Leahy%2C+I+A">Ian A. Leahy</a>, <a href="/search/cond-mat?searchtype=author&query=Heinselman%2C+K+N">Karen N. Heinselman</a>, <a href="/search/cond-mat?searchtype=author&query=Ness%2C+H">Herve Ness</a>, <a href="/search/cond-mat?searchtype=author&query=Van+Schilfgaarde%2C+M">Mark Van Schilfgaarde</a>, <a href="/search/cond-mat?searchtype=author&query=Dessau%2C+D+S">Daniel S. Dessau</a>, <a href="/search/cond-mat?searchtype=author&query=Alberi%2C+K">Kirstin Alberi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05469v1-abstract-short" style="display: inline;"> MX monopnictide compounds (M=Nb,Ta, X = As,P) are prototypical three-dimensional Weyl semimetals (WSMs) that have been shown in bulk single crystal form to have potential for a wide variety of novel devices due to topologically protected band structures and high mobilities. However, very little is known about thin film synthesis, which is essential to enable device applications. We synthesize TaAs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05469v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05469v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05469v1-abstract-full" style="display: none;"> MX monopnictide compounds (M=Nb,Ta, X = As,P) are prototypical three-dimensional Weyl semimetals (WSMs) that have been shown in bulk single crystal form to have potential for a wide variety of novel devices due to topologically protected band structures and high mobilities. However, very little is known about thin film synthesis, which is essential to enable device applications. We synthesize TaAs(001) epilayers by molecular beam epitaxy on GaAs(001) and provide an experimental phase diagram illustrating conditions for single phase, single-crystal-like growth. We investigate the relationship between nanoscale defects and electronic structure, using angle-resolved photoemission spectroscopy, Kelvin probe microscopy and transmission electron microscopy. Our results provide a roadmap and platform for developing 3D WSMs for device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05469v1-abstract-full').style.display = 'none'; document.getElementById('2303.05469v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07585">arXiv:2207.07585</a> <span> [<a href="https://arxiv.org/pdf/2207.07585">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0083998">10.1063/5.0083998 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Composition dependent electrochemical properties of earth-abundant ternary nitride anodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tellekamp%2C+M+B">M Brooks Tellekamp</a>, <a href="/search/cond-mat?searchtype=author&query=Osella%2C+A">Anna Osella</a>, <a href="/search/cond-mat?searchtype=author&query=Heinselman%2C+K+N">Karen N Heinselman</a>, <a href="/search/cond-mat?searchtype=author&query=Tamboli%2C+A+C">Adele C Tamboli</a>, <a href="/search/cond-mat?searchtype=author&query=Ban%2C+C">Chunmei Ban</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07585v1-abstract-short" style="display: inline;"> Growing energy storage demands on lithium-ion batteries necessitate exploration of new electrochemical materials as next-generation battery electrode materials. In this work, we investigate the previously unexplored electrochemical properties of earth-abundant and tunable Zn1-xSn1+xN2 (x = -0.4 to x = 0.4) thin films, which show high electrical conductivity and high gravimetric capacity for Li ins… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07585v1-abstract-full').style.display = 'inline'; document.getElementById('2207.07585v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07585v1-abstract-full" style="display: none;"> Growing energy storage demands on lithium-ion batteries necessitate exploration of new electrochemical materials as next-generation battery electrode materials. In this work, we investigate the previously unexplored electrochemical properties of earth-abundant and tunable Zn1-xSn1+xN2 (x = -0.4 to x = 0.4) thin films, which show high electrical conductivity and high gravimetric capacity for Li insertion. Enhanced cycling performance is achieved compared to previously published end-members Zn3N2 and Sn3N4, showing decreased irreversible loss and increased total capacity and cycle stability. The average reversible capacity observed is > 1050 mAh/g for all compositions and 1220 mAh/g for Zn-poor (x = 0.2) films. Extremely Zn-rich films (x = -0.4) show improved adhesion; however, Zn-rich films undergo a phase transformation on the first cycle. Zn-poor and stoichiometric films do not exhibit significant phase transformations which often plague nitride materials and show no required overpotential at the 0.5 V plateau. Cation composition x is explored as a mechanism for tuning relevant mechanical and electrochemical properties, such as capacity, overpotential, phase transformation, electrical conductivity, and adhesion. The lithiation/delithiation experiments confirm the reversible electrochemical reactions. Without any binding additives, the as-deposited electrodes delaminate resulting in fast capacity degradation. We demonstrate the mechanical nature of this degradation through decreased electrode thinning, resulting in cells with improved cycling stability due to increased mechanical stability. Combining composition and electrochemical analysis, this work demonstrates for the first time composition dependent electrochemical properties for the ternary Zn1-xSn1+xN2 and proposes earth-abundant ternary nitride anodes for increased reversible capacity and cycling stability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07585v1-abstract-full').style.display = 'none'; document.getElementById('2207.07585v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> APL Materials 10, 041109 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.03594">arXiv:2206.03594</a> <span> [<a href="https://arxiv.org/pdf/2206.03594">pdf</a>, <a href="https://arxiv.org/format/2206.03594">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.chemmater.2c03826">10.1021/acs.chemmater.2c03826 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Combinatorial synthesis of cation-disordered manganese tin nitride MnSnN$_2$ thin films with magnetic and semiconducting properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rom%2C+C+L">Christopher L. Rom</a>, <a href="/search/cond-mat?searchtype=author&query=Smaha%2C+R+W">Rebecca W. Smaha</a>, <a href="/search/cond-mat?searchtype=author&query=Melamed%2C+C+L">Celeste L. Melamed</a>, <a href="/search/cond-mat?searchtype=author&query=Schnepf%2C+R+R">Rekha R. Schnepf</a>, <a href="/search/cond-mat?searchtype=author&query=Heinselman%2C+K+N">Karen N. Heinselman</a>, <a href="/search/cond-mat?searchtype=author&query=Mangum%2C+J+S">John S. Mangum</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+S">Sang-Jun Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Lany%2C+S">Stephan Lany</a>, <a href="/search/cond-mat?searchtype=author&query=Schelhas%2C+L+T">Laura T. Schelhas</a>, <a href="/search/cond-mat?searchtype=author&query=Greenaway%2C+A+L">Ann L. Greenaway</a>, <a href="/search/cond-mat?searchtype=author&query=Neilson%2C+J+R">James R. Neilson</a>, <a href="/search/cond-mat?searchtype=author&query=Bauers%2C+S+R">Sage R. Bauers</a>, <a href="/search/cond-mat?searchtype=author&query=Andrew%2C+J+S">Jennifer S. Andrew</a>, <a href="/search/cond-mat?searchtype=author&query=Tamboli%2C+A+C">Adele C. Tamboli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.03594v2-abstract-short" style="display: inline;"> Magnetic semiconductors may soon improve the energy efficiency of computers, but materials exhibiting these dual properties remain underexplored. Here, we report the computational prediction and realization of a new magnetic and semiconducting material, MnSnN$_2$, via combinatorial sputtering of thin films. Grazing incidence wide angle X-ray scattering and laboratory X-ray diffraction studies show… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.03594v2-abstract-full').style.display = 'inline'; document.getElementById('2206.03594v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.03594v2-abstract-full" style="display: none;"> Magnetic semiconductors may soon improve the energy efficiency of computers, but materials exhibiting these dual properties remain underexplored. Here, we report the computational prediction and realization of a new magnetic and semiconducting material, MnSnN$_2$, via combinatorial sputtering of thin films. Grazing incidence wide angle X-ray scattering and laboratory X-ray diffraction studies show a wide composition tolerance for this wurtzite-like MnSnN$_2$, ranging from $20\% <$ Mn/(Mn+Sn) $< 65$\% with cation disorder across this composition space. Magnetic susceptibility measurements reveal a low-temperature transition ($T^{\mathrm{*}} \approx 10$ K) for MnSnN$_2$ and strong antiferromagnetic correlations, although the ordering below this transition may be complex. This finding contrasts with bulk MnSiN$_2$ and MnGeN$_2$, which exhibited antiferromagnetic ordering above 400 K in previous studies. Spectroscopic ellipsometry identifies an optical absorption onset of 1 eV for the experimentally-synthesized phase exhibiting cation disorder, consistent with the computationally-predicted 1.2 eV bandgap for the cation-ordered structure. Electronic conductivity measurements confirm the semiconducting nature of this new phase by showing increasing conductivity with increasing temperature. This work adds to the set of known semiconductors that are paramagnetic at room temperature and will help guide future work targeted at controlling the structure and properties of semiconducting materials that exhibit magnetic behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.03594v2-abstract-full').style.display = 'none'; document.getElementById('2206.03594v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chemistry of Materials 2023, 35, 7, 2936-2946 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00112">arXiv:2204.00112</a> <span> [<a href="https://arxiv.org/pdf/2204.00112">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Gallium Oxide Heterojunction Diodes for Improved High-Temperature Performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sohel%2C+S+H">Shahadat H. Sohel</a>, <a href="/search/cond-mat?searchtype=author&query=Kotecha%2C+R">Ramchandra Kotecha</a>, <a href="/search/cond-mat?searchtype=author&query=Khan%2C+I+S">Imran S Khan</a>, <a href="/search/cond-mat?searchtype=author&query=Heinselman%2C+K+N">Karen N. Heinselman</a>, <a href="/search/cond-mat?searchtype=author&query=Narumanchi%2C+S">Sreekant Narumanchi</a>, <a href="/search/cond-mat?searchtype=author&query=Tellekamp%2C+M+B">M Brooks Tellekamp</a>, <a href="/search/cond-mat?searchtype=author&query=Zakutayev%2C+A">Andriy Zakutayev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00112v1-abstract-short" style="display: inline;"> $尾$-Ga${_2}$O${_3}… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00112v1-abstract-full').style.display = 'inline'; document.getElementById('2204.00112v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00112v1-abstract-full" style="display: none;"> $尾$-Ga${_2}$O${_3}$ based semiconductor devices are expected to have significantly improved high-power and high-temperature performance due to its ultra-wide bandgap of close to 5 eV. However, the high-temperature operation of these ultra-wide-bandgap devices is usually limited by the relatively low 1-2 eV built-in potential at the Schottky barrier with most high-work-function metals. Here, we report heterojunction p-NiO/n-$尾$-Ga${_2}$O${_3}$ diodes fabrication and optimization for high-temperature device applications, demonstrating a current rectification ratio of more than 10${^6}$ at 410掳C. The NiO heterojunction diode can achieve higher turn-on voltage and lower reverse leakage current compared to the Ni-based Schottky diode fabricated on the same single crystal $尾$-Ga${_2}$O${_3}$ substrate, despite charge transport dominated by interfacial recombination. Electrical characterization and device modeling show that these advantages are due to a higher built-in potential and additional band offset. These results suggest that heterojunction p-n diodes based on $尾$-Ga${_2}$O${_3}$ can significantly improve high-temperature electronic device and sensor performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00112v1-abstract-full').style.display = 'none'; document.getElementById('2204.00112v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.12455">arXiv:2012.12455</a> <span> [<a href="https://arxiv.org/pdf/2012.12455">pdf</a>, <a href="https://arxiv.org/format/2012.12455">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> The role of disorder in the synthesis of metastable zinc zirconium nitrides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Woods-Robinson%2C+R">Rachel Woods-Robinson</a>, <a href="/search/cond-mat?searchtype=author&query=Stevanovi%C4%87%2C+V">Vladan Stevanovi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Lany%2C+S">Stephan Lany</a>, <a href="/search/cond-mat?searchtype=author&query=Heinselman%2C+K+N">Karen N. Heinselman</a>, <a href="/search/cond-mat?searchtype=author&query=Horton%2C+M+K">Matthew K. Horton</a>, <a href="/search/cond-mat?searchtype=author&query=Persson%2C+K+A">Kristin A. Persson</a>, <a href="/search/cond-mat?searchtype=author&query=Zakutayev%2C+A">Andriy Zakutayev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.12455v3-abstract-short" style="display: inline;"> In materials science, it is often assumed that ground state crystal structures predicted by density functional theory are the easiest polymorphs to synthesize. Ternary nitride materials, with many possible metastable polymorphs, provide a rich materials space to study what influences thermodynamic stability and polymorph synthesizability. For example, ZnZrN2 is theoretically predicted at zero Kelv… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12455v3-abstract-full').style.display = 'inline'; document.getElementById('2012.12455v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.12455v3-abstract-full" style="display: none;"> In materials science, it is often assumed that ground state crystal structures predicted by density functional theory are the easiest polymorphs to synthesize. Ternary nitride materials, with many possible metastable polymorphs, provide a rich materials space to study what influences thermodynamic stability and polymorph synthesizability. For example, ZnZrN2 is theoretically predicted at zero Kelvin to have an unusual layered "wurtsalt" ground state crystal structure with compelling optoelectronic properties, but it is unknown whether this structure can be realized experimentally under practical synthesis conditions. Here, we use combinatorial sputtering to synthesize hundreds of ZnxZr1-xNy thin film samples, and find metastable rocksalt-derived or boron-nitride-derived structures rather than the predicted wurtsalt structure. Using a statistical polymorph sampler approach, it is demonstrated that although rocksalt is the least stable polymorph at zero Kelvin, it becomes the most stable polymorph at high effective temperatures similar to those achieved using this sputter deposition method, and thus corroborates experimental results. Additional calculations show that this destabilization of the wurtsalt polymorph is due to configurational entropic and enthalpic effects, and that vibrational contributions are negligible. Specifically, rocksalt- and boron-nitride-derived structures become the most stable polymorphs in the presence of disorder because of higher tolerances to cation cross-substitution and off-stoichiometry than the wurtsalt structure. This understanding of the role of disorder tolerance in the synthesis of competing polymorphs can enable more accurate predictions of synthesizable crystal structures and their achievable material properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12455v3-abstract-full').style.display = 'none'; document.getElementById('2012.12455v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.08470">arXiv:2004.08470</a> <span> [<a href="https://arxiv.org/pdf/2004.08470">pdf</a>, <a href="https://arxiv.org/format/2004.08470">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6463/aba6b8">10.1088/1361-6463/aba6b8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Growth and Characterization of Homoepitaxial $尾$-Ga$_2$O$_3$ Layers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tellekamp%2C+M+B">M. Brooks Tellekamp</a>, <a href="/search/cond-mat?searchtype=author&query=Heinselman%2C+K+N">Karen N. Heinselman</a>, <a href="/search/cond-mat?searchtype=author&query=Harvey%2C+S">Steve Harvey</a>, <a href="/search/cond-mat?searchtype=author&query=Khan%2C+I">Imran Khan</a>, <a href="/search/cond-mat?searchtype=author&query=Zakutayev%2C+A">Andriy Zakutayev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.08470v2-abstract-short" style="display: inline;"> $尾$-Ga$_2$O$_3$ is a next-generation ultra wide bandgap semiconductor (E$_g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.08470v2-abstract-full').style.display = 'inline'; document.getElementById('2004.08470v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.08470v2-abstract-full" style="display: none;"> $尾$-Ga$_2$O$_3$ is a next-generation ultra wide bandgap semiconductor (E$_g$ = 4.8 eV to 4.9 eV) that can be homoepitaxially grown on commercial substrates, enabling next-generation power electronic devices among other important applications. Analyzing the quality of deposited homoepitaxial layers used in such devices is challenging, in part due to the large probing depth in traditional x-ray diffraction (XRD) and also due to the surface-sensitive nature of atomic force microscopy (AFM). Here, a combination of evanescent grazing-incidence skew asymmetric XRD and AFM are investigated as an approach to effectively characterize the quality of homoepitaxial $尾$-Ga$_2$O$_3$ layers grown by molecular beam epitaxy at a variety of Ga/O flux ratios. Accounting for both structure and morphology, optimal films are achieved at a Ga/O ratio of $\sim$1.15, a conclusion that would not be possible to achieve by either XRD or AFM methods alone. Finally, fabricated Schottky barrier diodes with thicker homoepitaxial layers are characterized by $J-V$ and $C-V$ measurements, revealing an unintentional doping density of 4.3 $\times$ 10$^{16}$ cm$^{-3}$ - 2 $\times$ 10$^{17}$ cm$^{-3}$ in the epilayer. These results demonstrate the importance of complementary measurement methods for improving the quality of the $尾$-Ga$_2$O$_3$ homoepitaxial layers used in power electronic and other devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.08470v2-abstract-full').style.display = 'none'; document.getElementById('2004.08470v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.10426">arXiv:1905.10426</a> <span> [<a href="https://arxiv.org/pdf/1905.10426">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Thin film synthesis of semiconductors in the Mg-Sb-N materials system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Heinselman%2C+K+N">Karen N. Heinselman</a>, <a href="/search/cond-mat?searchtype=author&query=Lany%2C+S">Stephan Lany</a>, <a href="/search/cond-mat?searchtype=author&query=Perkins%2C+J+D">John D. Perkins</a>, <a href="/search/cond-mat?searchtype=author&query=Talley%2C+K+R">Kevin R. Talley</a>, <a href="/search/cond-mat?searchtype=author&query=Zakutayev%2C+A">Andriy Zakutayev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.10426v2-abstract-short" style="display: inline;"> Nitrides feature many interesting properties, such as a wide range of bandgaps suitable for optoelectronic devices including light-emitting diodes (LEDs), and piezoelectric response used in microelectromechanical systems (MEMS). Nitrides are also significantly underexplored compared to oxides and other chemistries, with many being thermochemically metastable, sparking interest from a basic science… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.10426v2-abstract-full').style.display = 'inline'; document.getElementById('1905.10426v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.10426v2-abstract-full" style="display: none;"> Nitrides feature many interesting properties, such as a wide range of bandgaps suitable for optoelectronic devices including light-emitting diodes (LEDs), and piezoelectric response used in microelectromechanical systems (MEMS). Nitrides are also significantly underexplored compared to oxides and other chemistries, with many being thermochemically metastable, sparking interest from a basic science point of view. This paper reports on experimental and computational exploration of the Mg-Sb-N material system, featuring both metastable materials and interesting semiconducting properties. Using sputter deposition, we discovered a new Mg2SbN3 nitride with a wurtzite-derived crystal structure and synthesized the antimonide-nitride Mg3SbN with an antiperovskite crystal structure for the first time in thin film form. Theoretical calculations indicate that Mg2SbN3 is metastable and has properties relevant to LEDs and MEMS, whereas Mg3SbN has a large dielectric constant (28蔚_0) and low hole effective masses (0.9m_0), of interest for photovoltaic solar cell absorbers. The experimental solar-matched 1.3 eV optical absorption onset of the Mg3SbN antiperovskite agrees with the theoretical prediction (1.3 eV direct, 1.1 eV indirect), and with the measurements of room-temperature near-bandgap photoluminescence. These results make an important contribution towards understanding semiconductor properties and chemical trends in the Mg-Sb-N materials system, paving the way to future practical applications of these novel materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.10426v2-abstract-full').style.display = 'none'; document.getElementById('1905.10426v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 page paper (double spaced) with 8 figures, 33 pages with SI</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>