CINXE.COM
Search results for: ultimate load reduction
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ultimate load reduction</title> <meta name="description" content="Search results for: ultimate load reduction"> <meta name="keywords" content="ultimate load reduction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ultimate load reduction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ultimate load reduction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7721</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ultimate load reduction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7721</span> Numerical Study on the Ultimate Load of Offshore Two-Planar Tubular KK-Joints at Fire-Induced Elevated Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Ahmadi">Hamid Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Azari-Dodaran"> Neda Azari-Dodaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A total of 270 nonlinear steady-state finite element (FE) analyses were performed on 54 FE models of two-planar circular hollow section (CHS) KK-joints subjected to axial loading at five different temperatures (20 ºC, 200 ºC, 400 ºC, 550 ºC, and 700 ºC). The primary goal was to investigate the effects of temperature and geometrical characteristics on the ultimate strength, modes of failure, and initial stiffness of the KK-joints. Results indicated that on an average basis, the ultimate load of a two-planar tubular KK-joint at 200 ºC, 400 ºC, 550 ºC, and 700 ºC is 90%, 75%, 45%, and 16% of the joint’s ultimate load at ambient temperature, respectively. Outcomes of the parametric study showed that replacing the yield stress at ambient temperature with the corresponding value at elevated temperature to apply the EN 1993-1-8 equations for the calculation of the joint’s ultimate load at elevated temperatures may lead to highly unconservative results that might endanger the safety of the structure. Results of the parametric study were then used to develop a set of design formulas, through nonlinear regression analyses, to calculate the ultimate load of two-planar tubular KK-joints subjected to axial loading at elevated temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultimate%20load" title="ultimate load">ultimate load</a>, <a href="https://publications.waset.org/abstracts/search?q=two-planar%20tubular%20KK-joint" title=" two-planar tubular KK-joint"> two-planar tubular KK-joint</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20loading" title=" axial loading"> axial loading</a>, <a href="https://publications.waset.org/abstracts/search?q=elevated%20temperature" title=" elevated temperature"> elevated temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20equation" title=" parametric equation"> parametric equation</a> </p> <a href="https://publications.waset.org/abstracts/108647/numerical-study-on-the-ultimate-load-of-offshore-two-planar-tubular-kk-joints-at-fire-induced-elevated-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7720</span> Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhi-Jun%20Lu">Zhi-Jun Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Lu"> Qi Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Wu"> Meng Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20Xiang"> Qian Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Gu"> Jun Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network%20%28ANN%29" title="artificial neural network (ANN)">artificial neural network (ANN)</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method%20%28FEM%29" title=" finite element method (FEM)"> finite element method (FEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20sections" title=" perforated sections"> perforated sections</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-walled%20Steel" title=" thin-walled Steel"> thin-walled Steel</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20load" title=" ultimate load"> ultimate load</a> </p> <a href="https://publications.waset.org/abstracts/71733/comparison-of-ann-and-finite-element-model-for-the-prediction-of-ultimate-load-of-thin-walled-steel-perforated-sections-in-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7719</span> Parametric Study and Design on under Reamed Pile - An Experimental and Numerical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Chandrakaran">S. Chandrakaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Aarthy%20D."> Aarthy D.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract: Under reamed piles are piles which are of different types like bored cast in-situ pile or bored compaction concrete piles where one or more bulbs are provided. In this paper, the design procedure of under reamed pile by both experimental study and numerical study using PLAXIS 3D Foundation software was studied. The soil chosen for study was M Sand. The Single and double under reamed pile modelling was made using mild steel. The pile load test experiment was conducted in the laboratory and the ultimate compression load for 25 mm settlement on single and double under reamed pile was observed and finally the result was compared with conventional pile (pile without bulb). The parametric influence on under reamed pile was studied by varying the geometrical parameters like diameter of bulbs, spacing between bulbs, position of bulbs and number of bulbs. The results of the numerical model showed that when the diameter of bulb D u =2.5D, the ultimate compression load for an under-reamed pile with a single bulb increased by 55 % compared to a pile without a bulb. It was observed that when the spacing between the bulbs was S=6D u with three different positions of bulb from bottom of pile as D u , 2D u and 3D u , the ultimate compression load increased by 88%, 94% and 73 % respectively, compared to the ultimate compression load for 25 mm settlement on conventional pile and if spacing was more than 6D u , ultimate compression load for 25 mm settlement started to decrease. It was observed that when the bucket length was more than 2D u , the ultimate compression <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20capcity" title="load capcity">load capcity</a>, <a href="https://publications.waset.org/abstracts/search?q=under%20remed%20bulb%20.%20sand" title=" under remed bulb . sand"> under remed bulb . sand</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20study" title=" model study"> model study</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a> </p> <a href="https://publications.waset.org/abstracts/169719/parametric-study-and-design-on-under-reamed-pile-an-experimental-and-numerical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7718</span> Effect of Elastic Modulus Varieties on Helical Pile Behavior in Sand </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javad%20Shamsi%20Soosahab">Javad Shamsi Soosahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ziaie%20Moayed"> Reza Ziaie Moayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The compressive and tensile bearing capacity of helical piles in sand is investigated by means of numerical modeling. The analyses are carried out using two-dimensional finite-element software, Optum G2. The load–displacement behavior under compression and tension is compared in different relative densities for constant and various elastic modulus. The criterion used to find the ultimate axial load is the load corresponding to 5% of the helical diameter. The results show that relative density of sand plays an essential role in the response of ultimate capacities towards various condition. Increase in elastic modulus with depth is found to play a relatively more significant role to the increase in ultimate compressive load capacities, however tension bearing capacity decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helical%20piles" title="helical piles">helical piles</a>, <a href="https://publications.waset.org/abstracts/search?q=Optum%20G2" title=" Optum G2"> Optum G2</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20density" title=" relative density"> relative density</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20and%20various%20elastic%20modulus" title=" constant and various elastic modulus"> constant and various elastic modulus</a> </p> <a href="https://publications.waset.org/abstracts/126420/effect-of-elastic-modulus-varieties-on-helical-pile-behavior-in-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7717</span> A Simple Design Procedure for Calculating the Column Ultimate Load of Steel Frame Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hakim%20Chikho">Abdul Hakim Chikho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calculating the ultimate load of a column in a sway framed structure involves, in the currently used design method, the calculation of the column effective length and utilizing the interaction formulas or tables. Therefore, no allowance is usually made for the effects of the presence of semi rigid connections or the presence of infill panels. In this paper, a new and simple design procedure is recommend to calculate the ultimate load of a framed Column allowing for the presence of rotational end restraints, semi rigid connections, the column end moments resulted from the applied vertical and horizontal loading and infill panels in real steel structure. In order to verify the accuracy of the recommended method to predict good and safe estimations of framed column ultimate loads, several examples have been solved utilizing the recommended procedure, and the results were compared to those obtained using a second order computer program, and good correlation had been obtained. Therefore, the accuracy of the proposed method to predict the Behaviour of practical steel columns in framed structures has been verified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=column%20ultimate%20load" title="column ultimate load">column ultimate load</a>, <a href="https://publications.waset.org/abstracts/search?q=semi%20rigid%20connections" title=" semi rigid connections"> semi rigid connections</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20%20column" title=" steel column"> steel column</a>, <a href="https://publications.waset.org/abstracts/search?q=infill%20panel" title=" infill panel"> infill panel</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structure" title=" steel structure"> steel structure</a> </p> <a href="https://publications.waset.org/abstracts/140264/a-simple-design-procedure-for-calculating-the-column-ultimate-load-of-steel-frame-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7716</span> A Study of Cracking Behavior in Concrete Beams Reinforced With Two Different Grades of Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nihal%20Abdel%20Hamid%20Taha">Nihal Abdel Hamid Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crack evaluation of flexure reinforced concrete (RC) member is considered an important step in the design process, since the formation of concrete cracks depends on the possibility of exposure to various conditions(pollution, humidity,..etc.). Because of the disparity between different grades of steel in the service load stresses, this affects the cracking behavior. This paper is concerned with the crack pattern and cracking load for concrete beams with T-section reinforced with two different grades of steel at the service load levels stages up to ultimate load. A practical program has been put up to investigate the difference between reinforced steel bars with yield strength 420 N/mm2 and 500 N/mm2 through six T-section reinforced beams. The beams were tested under static- monotonic two– point service loading up to ultimate failure under flexural stresses. The influence of parameters such as clear concrete cover and concrete compressive strength are considered for each of the two grades of steel used. Cracking load, spacing and width were determined. The experimental results demonstrated that increasing the concrete strength results in both of cracking and ultimate load increase, while no significant difference in yield load for the two steel grades used. It has also become obvious, that the number of cracks was more for the lower steel strength, which is followed by decrease in crack width and spacing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RC%20beams" title="RC beams">RC beams</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking%20behavior" title=" cracking behavior"> cracking behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20stress" title=" steel stress"> steel stress</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width" title=" crack width"> crack width</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20spacing" title=" crack spacing"> crack spacing</a> </p> <a href="https://publications.waset.org/abstracts/182397/a-study-of-cracking-behavior-in-concrete-beams-reinforced-with-two-different-grades-of-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7715</span> Effects of Geometrical Parameters on Static Strength of Tubular KT-Joints at Fire Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Ahmadi">Hamid Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Azari%20Dodaran"> Neda Azari Dodaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to study the structural behavior of tubular KT-joints subjected to axial loading at fire induced elevated temperatures. At first, a finite element (FE) model was developed and validated against the data available from experimental tests. Then, a set of 810 FE analyses were performed to study the influence of temperature and dimensionless geometrical parameters (β, γ, θ, and τ) on the ultimate strength and initial stiffness. The joints were analyzed under two types of axial loading and five different temperatures (20 ºC, 200 ºC, 400 ºC, 550 ºC, and 700 ºC). Results show that the ultimate strength and initial stiffness of KT-joints decrease considerably by increasing the temperature. In the joints having bigger values of the β, the temperature elevation leads to less reduction in ultimate strength; while in the joints with bigger values of the γ, the temperature elevation results in more reduction in ultimate strength. The influence of the θ on the ultimate strength is independent from the temperature. To our knowledge, there is no design formula available for determining the ultimate strength of KT-joints at elevated temperatures. Hence, after parametric study, two equations were developed through nonlinear regression, for calculating the ultimate strength of KT-joints at elevated temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20loads" title="axial loads">axial loads</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20condition" title=" fire condition"> fire condition</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20formula" title=" parametric formula"> parametric formula</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20strength" title=" static strength"> static strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tubular%20KT-joint" title=" tubular KT-joint"> tubular KT-joint</a> </p> <a href="https://publications.waset.org/abstracts/90190/effects-of-geometrical-parameters-on-static-strength-of-tubular-kt-joints-at-fire-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7714</span> Studying the Structural Behaviour of RC Beams with Circular Openings of Different Sizes and Locations Using FE Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Shubbar">Ali Shubbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasanain%20Alwan"> Hasanain Alwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ee%20Yu%20Phur"> Ee Yu Phur</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20McLoughlin"> John McLoughlin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameer%20Al-khaykan"> Ameer Al-khaykan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to investigate the structural behaviour of RC beams with circular openings of different sizes and locations modelled using ABAQUS FEM software. Seven RC beams with the dimensions of 1200 mm×150 mm×150 mm were tested under three-point loading. Group A consists of three RC beams incorporating circular openings with diameters of 40 mm, 55 mm and 65 mm in the shear zone. However, Group B consists of three RC beams incorporating circular openings with diameters of 40 mm, 55 mm and 65 mm in the flexural zone. The final RC beam did not have any openings, to provide a control beam for comparison. The results show that increasing the diameter of the openings increases the maximum deflection and the ultimate failure load decreases relative to the control beam. In the shear zone, the presence of the openings caused an increase in the maximum deflection ranging between 4% and 22% and a decrease in the ultimate failure load of between 26% and 36% compared to the control beam. However, the presence of the openings in the flexural zone caused an increase in the maximum deflection of between 1.5% and 19.7% and a decrease in the ultimate failure load of between 6% and 13% relative to the control beam. In this study, the optimum location for placing circular openings was found to be in the flexural zone of the beam with a diameter of less than 30% of the depth of the beam.<o:p></o:p></span> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultimate%20failure%20load" title="ultimate failure load">ultimate failure load</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20deflection" title=" maximum deflection"> maximum deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20zone%20and%20flexural%20zone" title=" shear zone and flexural zone"> shear zone and flexural zone</a> </p> <a href="https://publications.waset.org/abstracts/76164/studying-the-structural-behaviour-of-rc-beams-with-circular-openings-of-different-sizes-and-locations-using-fe-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7713</span> Effect of Twin Cavities on the Axially Loaded Pile in Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20A.%20Al-Jazaairry">Ali A. Al-Jazaairry</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahsin%20T.%20Sabbagh"> Tahsin T. Sabbagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Presence of cavities in soil predictably induces ground deformation and changes in soil stress, which might influence adjacent existing pile foundations, though the effect of twin cavities on a nearby pile needs to be understood. This research is an attempt to identify the behaviour of piles subjected to axial load and embedded in cavitied clayey soil. A series of finite element modelling were conducted to investigate the performance of piled foundation located in such soils. The validity of the numerical simulation was evaluated by comparing it with available field test and alternative analytical model. The study involved many parameters such as twin cavities size, depth, spacing between cavities, and eccentricity of cavities from the pile axis on the pile performance subjected to axial load. The study involved many cases; in each case, a critical value has been found in which cavities’ presence has shown minimum impact on the behaviour of pile. Load-displacement relationships of the affecting parameters on the pile behaviour were presented to provide helpful information for designing piled foundation situated near twin underground cavities. It was concluded that the presence of the cavities within the soil mass reduces the ultimate capacity of pile. This reduction differs according to the size and location of the cavity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20load" title="axial load">axial load</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=pile" title=" pile"> pile</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20cavities" title=" twin cavities"> twin cavities</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20capacity" title=" ultimate capacity"> ultimate capacity</a> </p> <a href="https://publications.waset.org/abstracts/62643/effect-of-twin-cavities-on-the-axially-loaded-pile-in-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7712</span> Numerical Study of Modulus of Subgrade Reaction in Eccentrically Loaded Circular Footing Resting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhasan%20Naeini">Seyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Zade"> Mohammad Hossein Zade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is an attempt to present a numerically study of the behaviour of an eccentrically loaded circular footing resting on sand to determine ‎its ultimate bearing capacity. A surface circular footing of diameter 12 cm (D) was used as ‎shallow foundation. For this purpose, three dimensional models consist of foundation, and medium sandy soil was modelled by ABAQUS software. Bearing capacity of footing was evaluated and the ‎effects of the load eccentricity on bearing capacity, its settlement, and modulus of subgrade reaction were studied. Three different values of load eccentricity with equal space from inside the core on the core boundary and outside the core boundary, which were respectively e=0.75, 1.5, and 2.25 cm, were considered. The results show that by increasing the load eccentricity, the ultimate load and the ‎modulus of subgrade reaction decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20foundation" title="circular foundation">circular foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=eccentric%20loading" title=" eccentric loading"> eccentric loading</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20subgrade%20reaction" title=" modulus of subgrade reaction"> modulus of subgrade reaction</a> </p> <a href="https://publications.waset.org/abstracts/55883/numerical-study-of-modulus-of-subgrade-reaction-in-eccentrically-loaded-circular-footing-resting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7711</span> Effect of Fire Exposure on the Ultimate Strength of Loaded Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Hamdy%20Ghieth">Hatem Hamdy Ghieth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent time many fires happened in many skeleton buildings. The fire may be continues for a long time. This fire may cause a collapse of the building. This collapse may be happened due to the time of exposure to fire as well as the rate of the loading to the carrying elements. In this research a laboratory study for reinforced concrete columns under effect of fire with temperature reaches (650 ْ C) on the behavior of columns which loaded with axial load and with exposing to fire temperature only from all sides of columns. the main parameters of this study are level of load applying to the column, and the temperature applied to the fire, this temperatures was 500oC and 650oc. Nine concrete columns with dimensions 20x20x100 cms were casted one of these columns was tested to determine the ultimate load while the least were fired according to the experimental schedule. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=columns" title="columns">columns</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20duration" title=" fire duration"> fire duration</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20strength" title=" concrete strength"> concrete strength</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20of%20loading" title=" level of loading"> level of loading</a> </p> <a href="https://publications.waset.org/abstracts/19444/effect-of-fire-exposure-on-the-ultimate-strength-of-loaded-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7710</span> Axial Load Capacity of Drilled Shafts from In-Situ Test Data at Semani Site, in Albania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neritan%20Shkodrani">Neritan Shkodrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Klearta%20Rrushi"> Klearta Rrushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Anxhela%20Shaha"> Anxhela Shaha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, the design of axial load capacity of deep foundations is based on the data provided from field tests, such as SPT (Standard Penetration Test) and CPT (Cone Penetration Test) tests. This paper reports the results of axial load capacity analysis of drilled shafts at a construction site at Semani, in Fier county, Fier prefecture in Albania. In this case, the axial load capacity analyses are based on the data of 416 SPT tests and 12 CPTU tests, which are carried out in this site construction using 12 boreholes (10 borings of a depth 30.0 m and 2 borings of a depth of 80.0m). The considered foundation widths range from 0.5m to 2.5 m and foundation embedment lengths is fixed at a value of 25m. SPT – based analytical methods from the Japanese practice of design (Building Standard Law of Japan) and CPT – based analytical Eslami and Fellenius methods are used for obtaining axial ultimate load capacity of drilled shafts. The considered drilled shaft (25m long and 0.5m - 2.5m in diameter) is analyzed for the soil conditions of each borehole. The values obtained from sets of calculations are shown in different charts. Then the reported axial load capacity values acquired from SPT and CPTU data are compared and some conclusions are found related to the mentioned methods of calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20foundations" title="deep foundations">deep foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=drilled%20shafts" title=" drilled shafts"> drilled shafts</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20load%20capacity" title=" axial load capacity"> axial load capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20load%20capacity" title=" ultimate load capacity"> ultimate load capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=allowable%20load%20capacity" title=" allowable load capacity"> allowable load capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=SPT%20test" title=" SPT test"> SPT test</a>, <a href="https://publications.waset.org/abstracts/search?q=CPTU%20test" title=" CPTU test"> CPTU test</a> </p> <a href="https://publications.waset.org/abstracts/150822/axial-load-capacity-of-drilled-shafts-from-in-situ-test-data-at-semani-site-in-albania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7709</span> Behavior of Helical Piles as Foundation of Photovoltaic Panels in Tropical Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrea%20J.%20Alarc%C3%B3n">Andrea J. Alarcón</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxime%20Daulat"> Maxime Daulat</a>, <a href="https://publications.waset.org/abstracts/search?q=Raydel%20Lorenzo"> Raydel Lorenzo</a>, <a href="https://publications.waset.org/abstracts/search?q=Renato%20P.%20Da%20Cunha"> Renato P. Da Cunha</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Breul"> Pierre Breul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brazil has increased the use of renewable energy during the last years. Due to its sunshine and large surface area, photovoltaic panels founded in helical piles have been used to produce solar energy. Since Brazilian territory is mainly cover by highly porous structured tropical soils, when the helical piles are installed this structure is broken and its soil properties are modified. Considering the special characteristics of these soils, helical foundations behavior must be extensively studied. The first objective of this work is to determine the most suitable method to estimate the tensile capacity of helical piles in tropical soils. The second objective is to simulate the behavior of these piles in tropical soil. To obtain the rupture to assess load-displacement curves and the ultimate load, also a numerical modelling using Plaxis software was conducted. Lastly, the ultimate load and the load-displacements curves are compared with experimental values to validate the implemented model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=helical%20piles" title=" helical piles"> helical piles</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20soil" title=" tropical soil"> tropical soil</a>, <a href="https://publications.waset.org/abstracts/search?q=uplift%20capacity" title=" uplift capacity"> uplift capacity</a> </p> <a href="https://publications.waset.org/abstracts/123444/behavior-of-helical-piles-as-foundation-of-photovoltaic-panels-in-tropical-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7708</span> Behavior of Composite Construction Precast Reactive Powder RC Girder and Ordinary RC Deck Slab </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nameer%20A.%20Alwash">Nameer A. Alwash</a>, <a href="https://publications.waset.org/abstracts/search?q=Dunia%20A.%20Abd%20AlRadha"> Dunia A. Abd AlRadha</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshed%20M.%20Aljanaby"> Arshed M. Aljanaby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study present an experimental investigation of composite behavior for hybrid reinforced concrete slab on girder from locale material in Iraq, ordinary concrete, NC, in slab and reactive powder concrete in girder ,RPC, with steel fibers of different types(straight, hook, and mix between its), tested as simply supported span subjected under two point loading, also study effects on overall behavior such as the ultimate load, crack width and deflection. The result shows that the most suitable for production girder from RPC by using 2% micro straight steel fiber, in terms of ultimate strength and min crack width. Also the results shows that using RPC in girder of composite section increased ultimate load by 79% when compared with same section made of NC, and increased the shear strength which erased the effect of changing reinforcement in shear, and using RPC in girder and epoxy (in shear transfer between composite section) (meaning no stirrups) equivalent presence of shear reinforcement by 90% when compared with same section using Φ8@100 as shear reinforcement. And the result shows that changing the cross section girder shape of the composite section to inverted T, with same section area, increased the ultimate load by 5% when compared with same section of rectangular shape girder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reactive%20powder%20concrete" title="reactive powder concrete">reactive powder concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=RPC" title=" RPC"> RPC</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20concrete" title=" hybrid concrete"> hybrid concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20section" title=" composite section"> composite section</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20girder" title=" RC girder"> RC girder</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20slab" title=" RC slab"> RC slab</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20connecters" title=" shear connecters"> shear connecters</a>, <a href="https://publications.waset.org/abstracts/search?q=inverted%20T%20section" title=" inverted T section"> inverted T section</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20reinforcment" title=" shear reinforcment"> shear reinforcment</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20span%20over%20effective%20depth" title=" shear span over effective depth"> shear span over effective depth</a> </p> <a href="https://publications.waset.org/abstracts/23769/behavior-of-composite-construction-precast-reactive-powder-rc-girder-and-ordinary-rc-deck-slab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7707</span> Pull-Out Analysis of Composite Loops Embedded in Steel Reinforced Concrete Retaining Wall Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pierre%20van%20Tonder">Pierre van Tonder</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoff%20Kruger"> Christoff Kruger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modular concrete elements are used for retaining walls to provide lateral support. Depending on the retaining wall layout, these precast panels may be interlocking and may be tied into the soil backfill via geosynthetic strips. This study investigates the ultimate pull-out load increase, which is possible by adding varied diameter supplementary reinforcement through embedded anchor loops within concrete retaining wall panels. Full-scale panels used in practice have four embedded anchor points. However, only one anchor loop was embedded in the center of the experimental panels. The experimental panels had the same thickness but a smaller footprint (600mm x 600mm x 140mm) area than the full-sized panels to accommodate the space limitations of the laboratory and experimental setup. The experimental panels were also cast without any bending reinforcement as would typically be obtained in the full-scale panels. The exclusion of these reinforcements was purposefully neglected to evaluate the impact of a single bar reinforcement through the center of the anchor loops. The reinforcement bars had of 8 mm, 10 mm, 12 mm, and 12 mm. 30 samples of concrete panels with embedded anchor loops were tested. The panels were supported on the edges and the anchor loops were subjected to an increasing tensile force using an Instron piston. Failures that occurred were loop failures and panel failures and a mixture thereof. There was an increase in ultimate load vs. increasing diameter as expected, but this relationship persisted until the reinforcement diameter exceeded 10 mm. For diameters larger than 10 mm, the ultimate failure load starts to decrease due to the dependency of the reinforcement bond strength to the concrete matrix. Overall, the reinforced panels showed a 14 to 23% increase in the factor of safety. Using anchor loops of 66kN ultimate load together with Y10 steel reinforcement with bent ends had shown the most promising results in reducing concrete panel pull-out failure. The Y10 reinforcement had shown, on average, a 24% increase in ultimate load achieved. Previous research has investigated supplementary reinforcement around the anchor loops. This paper extends this investigation by evaluating supplementary reinforcement placed through the panel anchor loops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supplementary%20reinforcement" title="supplementary reinforcement">supplementary reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=anchor%20loops" title=" anchor loops"> anchor loops</a>, <a href="https://publications.waset.org/abstracts/search?q=retaining%20panels" title=" retaining panels"> retaining panels</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out%20failure" title=" pull-out failure"> pull-out failure</a> </p> <a href="https://publications.waset.org/abstracts/143106/pull-out-analysis-of-composite-loops-embedded-in-steel-reinforced-concrete-retaining-wall-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7706</span> Comparative Study of Numerical and Analytical Buckling Analysis of a Steel Column with Various Slenderness Ratios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lahlou%20Dahmani">Lahlou Dahmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Warda%20Mekiri"> Warda Mekiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Boudjemia"> Ahmed Boudjemia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This scientific paper explores the comparison between the ultimate buckling load obtained through the Eurocode 3 methodology and the ultimate buckling load obtained through finite element simulations for steel columns under compression. The study aims to provide insights into the adequacy of the design rules proposed in Eurocode 3 for different slenderness ratios. The finite element simulations with the Ansys commercial program involve a geometrical and material non-linear analysis of the columns with imperfections. The loss of equilibrium is generally caused by the geometrically nonlinear effects where the column begins to buckle and lose its stability when the load reaches a certain critical value. The linear buckling analysis predicts the theoretical buckling strength of an elastic structure but the nonlinear one is more accurate with taking into account the initial imperfection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ansys" title="Ansys">Ansys</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20buckling" title=" linear buckling"> linear buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=eigen%20value" title=" eigen value"> eigen value</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20buckling" title=" nonlinear buckling"> nonlinear buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=slenderness%20ratio" title=" slenderness ratio"> slenderness ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode%203" title=" Eurocode 3"> Eurocode 3</a> </p> <a href="https://publications.waset.org/abstracts/192964/comparative-study-of-numerical-and-analytical-buckling-analysis-of-a-steel-column-with-various-slenderness-ratios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7705</span> Influence of Flexural Reinforcement on the Shear Strength of RC Beams Without Stirrups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guray%20Arslan">Guray Arslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Riza%20Secer%20Orkun%20Keskin"> Riza Secer Orkun Keskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical investigations were conducted to study the influence of flexural reinforcement ratio on the diagonal cracking strength and ultimate shear strength of reinforced concrete (RC) beams without stirrups. Three-dimensional nonlinear finite element analyses (FEAs) of the beams with flexural reinforcement ratios ranging from 0.58% to 2.20% subjected to a mid-span concentrated load were carried out. It is observed that the load-deflection and load-strain curves obtained from the numerical analyses agree with those obtained from the experiments. It is concluded that flexural reinforcement ratio has a significant effect on the shear strength and deflection capacity of RC beams without stirrups. The predictions of the diagonal cracking strength and ultimate shear strength of beams obtained by using the equations defined by a number of codes and researchers are compared with each other and with the experimental values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20reinforcement" title=" flexural reinforcement"> flexural reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20beam" title=" reinforced concrete beam"> reinforced concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a> </p> <a href="https://publications.waset.org/abstracts/25278/influence-of-flexural-reinforcement-on-the-shear-strength-of-rc-beams-without-stirrups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7704</span> Numerical Simulation of Axially Loaded to Failure Large Diameter Bored Pile </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ezzat">M. Ezzat</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zaghloul"> Y. Zaghloul</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Sorour"> T. Sorour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hefny"> A. Hefny</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Eid"> M. Eid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultimate capacity of large diameter bored piles is usually determined from pile loading tests as recommended by several international codes and foundation design standards. However, loading of this type of piles till achieving apparent failure is practically seldom. In this paper, numerical analyses are carried out to simulate load test of a large diameter bored pile performed at the location of Alzey highway bridge project (Germany). Test results of pile load settlement relationship till failure as well as results of the base and shaft resistances are available. Apparent failure was indicated in this test by the significant increase of the induced settlement during the last load increment applied on the pile head. Measurements of this pile load test are used to assess the quality of the numerical models investigated. Three different material soil models are implemented in the analyses: Mohr coulomb (MC), Soft soil (SS), and Modified Mohr coulomb (MMC). Very good agreement is obtained between the field measured settlement and the calculated settlement using the MMC model. Results of analysis showed also that the MMC constitutive model is superior to MC, and SS models in predicting the ultimate base and shaft resistances of the large diameter bored pile. After calibrating the numerical model, behavior of large diameter bored piles under axial loads is discussed and the formation of the plastic zone around the pile is explored. Results obtained showed that the plastic zone below the base of the pile at failure extended laterally to about four times the pile diameter and vertically to about three times the pile diameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultimate%20capacity" title="ultimate capacity">ultimate capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20diameter%20bored%20piles" title=" large diameter bored piles"> large diameter bored piles</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20zone" title=" plastic zone"> plastic zone</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20load%20test" title=" pile load test"> pile load test</a> </p> <a href="https://publications.waset.org/abstracts/108010/numerical-simulation-of-axially-loaded-to-failure-large-diameter-bored-pile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7703</span> Structural Performance Evaluation of Electronic Road Sign Panels Reflecting Damage Scenarios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junwon%20Seo">Junwon Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Bipin%20Adhikari"> Bipin Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Euiseok%20Jeong"> Euiseok Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is intended to evaluate the structural performance of welded electronic road signs under various damage scenarios (DSs) using a finite element (FE) model calibrated with full-scale ultimate load testing results. The tested electronic road sign specimen was built with a back skin made of 5052 aluminum and two channels and a frame made of 6061 aluminum, where the back skin was connected to the frame by welding. The size of the tested specimen was 1.52 m long, 1.43 m wide, and 0.28 m deep. An actuator applied vertical loads at the center of the back skin of the specimen, resulting in a displacement of 158.7 mm and an ultimate load of 153.46 kN. Using these testing data, generation and calibration of a FE model of the tested specimen were executed in ABAQUS, indicating that the difference in the ultimate load between the calibrated model simulation and full-scale testing was only 3.32%. Then, six different DSs were simulated where the areas of the welded connection in the calibrated model were diminished for the DSs. It was found that the corners at the back skin-frame joint were prone to connection failure for all the DSs, and failure of the back skin-frame connection occurred remarkably from the distant edges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20analysis" title="computational analysis">computational analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20scenarios" title=" damage scenarios"> damage scenarios</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20road%20signs" title=" electronic road signs"> electronic road signs</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=welded%20connections" title=" welded connections"> welded connections</a> </p> <a href="https://publications.waset.org/abstracts/143046/structural-performance-evaluation-of-electronic-road-sign-panels-reflecting-damage-scenarios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7702</span> Mechanical Behavior of Corroded RC Beams Strengthened by NSM CFRP Rods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belal%20Almassri">Belal Almassri</a>, <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Kreit"> Amjad Kreit</a>, <a href="https://publications.waset.org/abstracts/search?q=Firas%20Al%20Mahmoud"> Firas Al Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Raoul%20Fran%C3%A7ois"> Raoul François</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion of steel in reinforced concrete leads to several major defects. Firstly, a reduction in the crosssectional area of the reinforcement and in its ductility results in premature bar failure. Secondly, the expansion of the corrosion products causes concrete cracking and steel–concrete bond deterioration and also affects the bending stiffness of the reinforced concrete members, causing a reduction in the overall load-bearing capacity of the reinforced concrete beams. This paper investigates the validity of a repair technique using Near Surface Mounted (NSM) carbon-fibre-reinforced polymer (CFRP) rods to restore the mechanical performance of corrosion-damaged RC beams. In the NSM technique, the CFRP rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. Experimental results were obtained on two beams: a corroded beam that had been exposed to natural corrosion for 25 years and a control beam, (both are 3 m long) repaired in bending only. Each beam was repaired with one 6-mm-diameter NSM CFRP rod. The beams were tested in a three-point bending test up to failure. Overall stiffness and crack maps were studied before and after the repair. Ultimate capacity, ductility and failure mode were also reviewed. Finally some comparisons were made between repaired and non-repaired beams in order to assess the effectiveness of the NSM technique. The experimental results showed that the NSM technique improved the overall characteristics (ultimate load capacity and stiffness) of the control and corroded beams and allowed sufficient ductility to be restored to the repaired corroded elements, thus restoring the safety margin, despite the non-classical mode of failure that occurred in the corroded beam, with the separation of the concrete cover due to corrosion products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fibre" title="carbon fibre">carbon fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20testing" title=" mechanical testing"> mechanical testing</a> </p> <a href="https://publications.waset.org/abstracts/25194/mechanical-behavior-of-corroded-rc-beams-strengthened-by-nsm-cfrp-rods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7701</span> Lessons from Vernacular Architecture for Lightweight Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Taghdiri">Alireza Taghdiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Ghanbarzade%20Ghomi"> Sara Ghanbarzade Ghomi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the gravity load reduction in the structural and non-structural components, the lightweight construction will be achieved as well as the improvement of efficiency and functional specifications. The advantages of lightweight construction can be examined in two levels. The first is the mass reduction of load bearing structure which results in increasing internal useful space and the other one is the mass reduction of building which decreases the effects of seismic load as a result. In order to achieve this goal, the essential building materials specifications and also optimum load bearing geometry of structural systems and elements have to be considered, so lightweight materials selection particularly with lightweight aggregate for building components will be the first step of lightweight construction. In the next step, in addition to selecting the prominent samples of Iran's traditional architecture, the process of these works improvement is analyzed through the viewpoints of structural efficiency and lightweighting and also the practical methods of lightweight construction have been extracted. The optimum design of load bearing geometry of structural system has to be considered not only in the structural system elements, but also in their composition and the selection of dimensions, proportions, forms and optimum orientations, can lead to get a maximum materials efficiency for loads and stresses bearing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravity%20load" title="gravity load">gravity load</a>, <a href="https://publications.waset.org/abstracts/search?q=light-weighting%20structural%20system" title=" light-weighting structural system"> light-weighting structural system</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20bearing%20geometry" title=" load bearing geometry"> load bearing geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20behavior" title=" seismic behavior"> seismic behavior</a> </p> <a href="https://publications.waset.org/abstracts/19932/lessons-from-vernacular-architecture-for-lightweight-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7700</span> Applied Methods for Lightweighting Structural Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Taghdiri">Alireza Taghdiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Ghanbarzade%20Ghomi"> Sara Ghanbarzade Ghomi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With gravity load reduction in the structural and non-structural components, the lightweight construction will be achieved as well as the improvement of efficiency and functional specifications. The advantages of lightweight construction can be examined in two levels. The first is the mass reduction of load bearing structure which results in increasing internal useful space and the other one is the mass reduction of building which decreases the effects of seismic load as a result. In order to achieve this goal, the essential building materials specifications and also optimum load bearing geometry of structural systems and elements have to be considered, so lightweight materials selection particularly with lightweight aggregate for building components will be the first step of lightweight construction. In the next step, in addition to selecting the prominent samples of Iran's traditional architecture, the process of these works improvement is analyzed through the viewpoints of structural efficiency and lightweighting and also the practical methods of lightweight construction have been extracted. The optimum design of load bearing geometry of structural system has to be considered not only in the structural system elements, but also in their composition and the selection of dimensions, proportions, forms and optimum orientations, can lead to get a maximum materials efficiency for loads and stresses bearing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravity%20load" title="gravity load">gravity load</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweighting%20structural%20system" title=" lightweighting structural system"> lightweighting structural system</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20bearing%20geometry" title=" load bearing geometry"> load bearing geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20behavior" title=" seismic behavior"> seismic behavior</a> </p> <a href="https://publications.waset.org/abstracts/18158/applied-methods-for-lightweighting-structural-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7699</span> Load Management Using Multiple Sequential Load Shaping Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20M.%20Attia">Amira M. Attia</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20H.%20Youssef"> Karim H. Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20H.%20Abbasi"> Nabil H. Abbasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Demand Side Management (DSM) is an essential characteristic of current and future smart grid systems. As one of DSM functions, load management aims to control customers’ total electric consumption and utility’s load factor by using various load shaping techniques. However, applying load shaping techniques such as load shifting, peak clipping, or strategic conservation individually does not provide the desired level of improvement for load factor increment and/or customer’s bill reduction. In this paper, two load shaping techniques will be simulated as constrained optimization problems. The purpose is to reflect the application of combined load shifting and strategic conservation model together at the same time, and the application of combined load shifting and peak clipping model as well. The problem will be formulated and solved by using disciplined convex programming (CVX) based MATLAB® R2013b. Simulation results will be evaluated and compared for studying the most impactful multi-techniques model in improving load curve. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convex%20programing" title="convex programing">convex programing</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20side%20management" title=" demand side management"> demand side management</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20shaping" title=" load shaping"> load shaping</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple" title=" multiple"> multiple</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20optimization" title=" building energy optimization"> building energy optimization</a> </p> <a href="https://publications.waset.org/abstracts/91746/load-management-using-multiple-sequential-load-shaping-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7698</span> Influence of Concrete Cracking in the Tensile Strength of Cast-in Headed Anchors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Nataniel">W. Nataniel</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Lima"> B. Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Manoel"> J. Manoel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Filho"> M. P. Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Marcos"> H. Marcos</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliveira%20Mauricio"> Oliveira Mauricio</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Ferreira"> P. Ferreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Headed reinforcement bars are increasingly used for anchorage in concrete structures. Applications include connections in composite steel-concrete structures, such as beam-column joints, in several strengthening situations as well as in more traditional uses in cast-in-place and precast structural systems. This paper investigates the reduction in the ultimate tensile capacity of embedded cast-in headed anchors due to concrete cracking. A series of nine laboratory tests are carried out to evaluate the influence of cracking on the concrete breakout strength in tension. The experimental results show that cracking affects both the resistance and load-slip response of the headed bar anchors. The strengths measured in these tests are compared to theoretical resistances calculated following the recommendations presented by fib Bulletin no. 58 (2011), ETAG 001 (2010) and ACI 318 (2014). The influences of parameters such as the effective embedment depth (<em>h<sub>ef</sub></em>), bar diameter (<em>d<sub>s</sub></em>), and the concrete compressive strength (<em>f<sub>c</sub></em>) are analysed and discussed. The theoretical recommendations are shown to be over-conservative for both embedment depths and were, in general, inaccurate in comparison to the experimental trends. The ACI 318 (2014) was the design code which presented the best performance regarding to the predictions of the ultimate load, with an average of 1.42 for the ratio between the experimental and estimated strengths, standard deviation of 0.36, and coefficient of variation equal to 0.25. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cast-in%20headed%20anchors" title="cast-in headed anchors">cast-in headed anchors</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20cone%20failure" title=" concrete cone failure"> concrete cone failure</a>, <a href="https://publications.waset.org/abstracts/search?q=uncracked%20concrete" title=" uncracked concrete"> uncracked concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cracked%20concrete" title=" cracked concrete"> cracked concrete</a> </p> <a href="https://publications.waset.org/abstracts/108458/influence-of-concrete-cracking-in-the-tensile-strength-of-cast-in-headed-anchors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7697</span> Performance of Axially Loaded Single Pile Embedded in Cohesive Soil with Cavities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20A.%20Al-Jazaairry">Ali A. Al-Jazaairry</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahsin%20T.%20Sabbagh"> Tahsin T. Sabbagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stability of a single model pile located adjacent to a continuous cavity was studied. This paper is an attempt to understand the behaviour of axially loaded single pile embedded in clayey soil with the presences of cavities. The performance of piles located in such soils was studied analytically. A verification analysis was carried out on available studies to assess the ability of analytical model to correctly interpret the system behaviour. The study was adopted by finite element program (PLAXIS). The study included many cases; in each case, there is a critical value in which the presence of cavities has shown minimum effect on the pile performance. Figures including the load carrying capacity of pile with the affecting factors are presented. These figures provide beneficial information for pile design constructed close to underground cavities. It was concluded that the load carrying capacity of the pile is reduced by the presence of the cavity within the soil mass. This reduction varies according to the size and location of cavity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20load" title="axial load">axial load</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity" title=" cavity"> cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=pile" title=" pile"> pile</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20capacity" title=" ultimate capacity"> ultimate capacity</a> </p> <a href="https://publications.waset.org/abstracts/61176/performance-of-axially-loaded-single-pile-embedded-in-cohesive-soil-with-cavities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7696</span> Experimental Work to Estimate the Strength of Ferrocement Slabs Incorporating Silica Fume and Steel Fibre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Mashrei">Mohammed Mashrei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ferrocement is a type of thin reinforced concrete made of cement-sand matrix with closely spaced relatively small diameter wire meshes, with or without steel bars of small diameter called skeletal steel. This work concerns on the behavior of square ferrocement slabs of dimensions (500) mm x (500) mm and 30 mm subjected to a central load. This study includes testing thirteen ferrocement slabs. The main variables considered in the experimental work are the number of wire mesh layers, percentage of silica fume and the presence of steel fiber. The effects of these variables on the behavior and load carrying capacity of tested slabs under central load were investigated. From the experimental results, it is found that by increasing the percentage of silica fume from (0 to 1.5, 3, 4.5 and 6) of weight of cement the ultimate loads are affected. Also From this study, it is observed that the load carrying capacity increases with the presence of steel fiber reinforcement, the ductility is high in the case of steel fibers. The increasing wire mesh layer from six to ten layers increased the load capacity by 76%. Also, a reduction in width of crack with increasing in number of cracks in the samples that content on steel fibers comparing with samples without steel fibers was observed from the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrocement" title="ferrocement">ferrocement</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre" title=" fibre"> fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a>, <a href="https://publications.waset.org/abstracts/search?q=slab" title=" slab"> slab</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/68236/experimental-work-to-estimate-the-strength-of-ferrocement-slabs-incorporating-silica-fume-and-steel-fibre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7695</span> Nonlinear Response of Infinite Beams on a Multilayer Tensionless Extensible Geosynthetic – Reinforced Earth Bed under Moving Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Karuppasamy">K. Karuppasamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper analysis of an infinite beam resting on multilayer tensionless extensible geosynthetic reinforced granular fill - poor soil system overlying soft soil strata under moving the load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear Winkler springs representing the underlying the very poor soil. The multilayer tensionless extensible geosynthetic layer has been assumed to deform such that at the interface the geosynthetic and the soil have some deformation. Nonlinear behavior of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Governing differential equations of the soil foundation system have been obtained and solved with the help of appropriate boundary conditions. The solution has been obtained by employing finite difference method by means of Gauss-Siedel iterative scheme. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil – foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. These parameters include the magnitude of applied load, the velocity of the load, damping, the ultimate resistance of the poor soil and granular fill layer. The range of values of parameters has been considered as per Indian Railways conditions. This study clearly observed that the comparisons of multilayer tensionless extensible geosynthetic reinforcement with poor foundation soil and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil – foundation system. However, for the considered range of velocity, the response has been found to be insensitive towards velocity. The ultimate resistance of granular fill layer has also been found to have no significant influence on the response of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infinite%20beams" title="infinite beams">infinite beams</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20tensionless%20extensible%20geosynthetic" title=" multilayer tensionless extensible geosynthetic"> multilayer tensionless extensible geosynthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20layer" title=" granular layer"> granular layer</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20load%20and%20nonlinear%20behavior%20of%20poor%20soil" title=" moving load and nonlinear behavior of poor soil"> moving load and nonlinear behavior of poor soil</a> </p> <a href="https://publications.waset.org/abstracts/30763/nonlinear-response-of-infinite-beams-on-a-multilayer-tensionless-extensible-geosynthetic-reinforced-earth-bed-under-moving-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7694</span> Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferinar%20Moaidi">Ferinar Moaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Moaidi"> Mahdi Moaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title="distributed generation">distributed generation</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrid" title=" microgrid"> microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20modelling" title=" load modelling"> load modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20reduction" title=" loss reduction"> loss reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20improvement" title=" voltage improvement"> voltage improvement</a> </p> <a href="https://publications.waset.org/abstracts/102530/optimal-placement-and-sizing-of-distributed-generation-in-microgrid-for-power-loss-reduction-and-voltage-profile-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7693</span> A Numerical Study on the Seismic Performance of Built-Up Battened Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sophia%20C.%20Alih">Sophia C. Alih</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Vafaei"> Mohammadreza Vafaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Farnoud%20Rahimi%20Mansour"> Farnoud Rahimi Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Hajarul%20Falahi%20Abdul%20Halim"> Nur Hajarul Falahi Abdul Halim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Built-up columns have been widely employed by practice engineers in the design and construction of buildings and bridges. However, failures have been observed in this type of columns in previous seismic events. This study analyses the performance of built-up columns with different configurations of battens when it is subjected to seismic loads. Four columns with different size of battens were simulated and subjected to three different intensities of axial load along with a lateral cyclic load. Results indicate that the size of battens influences significantly the seismic behavior of columns. Lower shear capacity of battens results in higher ultimate strength and ductility for built-up columns. It is observed that intensity of axial load has a significant effect on the ultimate strength of columns, but it is less influential on the yield strength. For a given drift value, the stress level in the centroid of smaller size battens is significantly more than that of larger size battens signifying damage concentration in battens rather than chords. It is concluded that design of battens for shear demand lower than code specified values only slightly reduces initial stiffness of columns; however, it improves seismic performance of battened columns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battened%20column" title="battened column">battened column</a>, <a href="https://publications.waset.org/abstracts/search?q=built-up%20column" title=" built-up column"> built-up column</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20behavior" title=" cyclic behavior"> cyclic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title=" seismic design"> seismic design</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20column" title=" steel column"> steel column</a> </p> <a href="https://publications.waset.org/abstracts/71139/a-numerical-study-on-the-seismic-performance-of-built-up-battened-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7692</span> The Overload Behaviour of Reinforced Concrete Flexural Members</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angelo%20Thurairajah">Angelo Thurairajah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sufficient ultimate deformation is necessary to demonstrate the member ductility, which is dependent on the section and the material ductility. The concrete cracking phase of softening prior to the plastic hinge formation is an essential feature as well. The nature of the overload behaviour is studied using the order of the ultimate deflection. The ultimate deflection is primarily dependent on the slenderness (span to depth ratio), the ductility of the reinforcing steel, the degree of moment redistribution, the type of loading, and the support conditions. The ultimate deflection and the degree of moment redistribution from the analytical study are in good agreement with the experimental results and the moment redistribution provisions of the Australian Standards AS3600 Concrete Structures Code. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductility" title="ductility">ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=softening" title=" softening"> softening</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20deflection" title=" ultimate deflection"> ultimate deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=overload%20behaviour" title=" overload behaviour"> overload behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20redistribution" title=" moment redistribution"> moment redistribution</a> </p> <a href="https://publications.waset.org/abstracts/140709/the-overload-behaviour-of-reinforced-concrete-flexural-members" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultimate%20load%20reduction&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultimate%20load%20reduction&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultimate%20load%20reduction&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultimate%20load%20reduction&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultimate%20load%20reduction&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultimate%20load%20reduction&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultimate%20load%20reduction&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultimate%20load%20reduction&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultimate%20load%20reduction&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultimate%20load%20reduction&page=257">257</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultimate%20load%20reduction&page=258">258</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultimate%20load%20reduction&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>