CINXE.COM
Search results for: Carbon monoxide
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Carbon monoxide</title> <meta name="description" content="Search results for: Carbon monoxide"> <meta name="keywords" content="Carbon monoxide"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Carbon monoxide" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Carbon monoxide"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3103</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Carbon monoxide</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3103</span> Statistically Significant Differences of Carbon Dioxide and Carbon Monoxide Emission in Photocopying Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiurski%20S.%20Jelena">Kiurski S. Jelena</a>, <a href="https://publications.waset.org/abstracts/search?q=Keci%C4%87%20S.%20Vesna"> Kecić S. Vesna</a>, <a href="https://publications.waset.org/abstracts/search?q=Oros%20B.%20Ivana"> Oros B. Ivana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental results confirmed the temporal variation of carbon dioxide and carbon monoxide concentration during the working shift of the photocopying process in a small photocopying shop in Novi Sad, Serbia. The statistically significant differences of target gases were examined with two-way analysis of variance without replication followed by Scheffe's <em>post hoc</em> test. The existence of statistically significant differences was obtained for carbon monoxide emission which is pointed out with <em>F</em>-values (12.37 and 31.88) greater than <em>F<sub>crit</sub></em> (6.94) in contrary to carbon dioxide emission (<em>F</em>-values of 1.23 and 3.12 were less than <em>F<sub>crit</sub></em>). Scheffe's <em>post hoc</em> test indicated that sampling point A (near the photocopier machine) and second time interval contribute the most on carbon monoxide emission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis%20of%20variance" title="analysis of variance">analysis of variance</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20monoxide" title=" carbon monoxide"> carbon monoxide</a>, <a href="https://publications.waset.org/abstracts/search?q=photocopying%20indoor" title=" photocopying indoor"> photocopying indoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Scheffe%27s%20test" title=" Scheffe's test"> Scheffe's test</a> </p> <a href="https://publications.waset.org/abstracts/42549/statistically-significant-differences-of-carbon-dioxide-and-carbon-monoxide-emission-in-photocopying-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3102</span> Modeling of Carbon Monoxide Distribution under the Sky-Train Stations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suranath%20Chomcheon">Suranath Chomcheon</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathnarong%20Khajohnsaksumeth"> Nathnarong Khajohnsaksumeth</a>, <a href="https://publications.waset.org/abstracts/search?q=Benchawan%20Wiwatanapataphee"> Benchawan Wiwatanapataphee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon monoxide is one of the harmful gases which have colorless, odorless, and tasteless. Too much carbon monoxide taken into the human body causes the reduction of oxygen transportation within human body cells leading to many symptoms including headache, nausea, vomiting, loss of consciousness, and death. Carbon monoxide is considered as one of the air pollution indicators. It is mainly released as soot from the exhaust pipe of the incomplete combustion of the vehicle engine. Nowadays, the increase in vehicle usage and the slowly moving of the vehicle struck by the traffic jam has created a large amount of carbon monoxide, which accumulated in the street canyon area. In this research, we study the effect of parameters such as wind speed and aspect ratio of the height building affecting the ventilation. We consider the model of the pollutant under the Bangkok Transit System (BTS) stations in a two-dimensional geometrical domain. The convention-diffusion equation and Reynolds-averaged Navier-stokes equation is used to describe the concentration and the turbulent flow of carbon monoxide. The finite element method is applied to obtain the numerical result. The result shows that our model can describe the dispersion patterns of carbon monoxide for different wind speeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20monoxide" title=" carbon monoxide"> carbon monoxide</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=street%20canyon" title=" street canyon "> street canyon </a> </p> <a href="https://publications.waset.org/abstracts/120088/modeling-of-carbon-monoxide-distribution-under-the-sky-train-stations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3101</span> Climate Change Effects of Vehicular Carbon Monoxide Emission from Road Transportation in Part of Minna Metropolis, Niger State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Liman">H. M. Liman</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Suleiman%20%20A.%20A.%20David"> Y. M. Suleiman A. A. David </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poor air quality often considered one of the greatest environmental threats facing the world today is caused majorly by the emission of carbon monoxide into the atmosphere. The principal air pollutant is carbon monoxide. One prominent source of carbon monoxide emission is the transportation sector. Not much was known about the emission levels of carbon monoxide, the primary pollutant from the road transportation in the study area. Therefore, this study assessed the levels of carbon monoxide emission from road transportation in the Minna, Niger State. The database shows the carbon monoxide data collected. MSA Altair gas alert detector was used to take the carbon monoxide emission readings in Parts per Million for the peak and off-peak periods of vehicular movement at the road intersections. Their Global Positioning System (GPS) coordinates were recorded in the Universal Transverse Mercator (UTM). Bar chart graphs were plotted by using the emissions level of carbon dioxide as recorded on the field against the scientifically established internationally accepted safe limit of 8.7 Parts per Million of carbon monoxide in the atmosphere. Further statistical analysis was also carried out on the data recorded from the field using the Statistical Package for Social Sciences (SPSS) software and Microsoft excel to show the variance of the emission levels of each of the parameters in the study area. The results established that emissions’ level of atmospheric carbon monoxide from the road transportation in the study area exceeded the internationally accepted safe limits of 8.7 parts per million. In addition, the variations in the average emission levels of CO between the four parameters showed that morning peak is having the highest average emission level of 24.5PPM followed by evening peak with 22.84PPM while morning off peak is having 15.33 and the least is evening off peak 12.94PPM. Based on these results, recommendations made for poor air quality mitigation via carbon monoxide emissions reduction from transportation include Introduction of the urban mass transit would definitely reduce the number of traffic on the roads, hence the emissions from several vehicles that would have been on the road. This would also be a cheaper means of transportation for the masses and Encouraging the use of vehicles using alternative sources of energy like solar, electric and biofuel will also result in less emission levels as the these alternative energy sources other than fossil fuel originated diesel and petrol vehicles do not emit especially carbon monoxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20monoxide" title="carbon monoxide">carbon monoxide</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20emissions" title=" climate change emissions"> climate change emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20transportation" title=" road transportation"> road transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular" title=" vehicular"> vehicular</a> </p> <a href="https://publications.waset.org/abstracts/38061/climate-change-effects-of-vehicular-carbon-monoxide-emission-from-road-transportation-in-part-of-minna-metropolis-niger-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3100</span> Difference in the Expression of CIRBP, RBM3 and HSP70 in the Myocardium and Cerebellum after Death by Hypothermi a and Carbon Monoxide Poisoning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satoshi%20Furukawa">Satoshi Furukawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Satomu%20Morita"> Satomu Morita</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Wingenfeld"> Lisa Wingenfeld</a>, <a href="https://publications.waset.org/abstracts/search?q=Katsuji%20Nishi"> Katsuji Nishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masahito%20Hitosugi"> Masahito Hitosugi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We studied the expression of hypoxia-related antigens (e.g., cold-inducible antigens and apoptotic antigens) in the myocardium and the cerebellumthat were obtained from individuals after death by carbon monoxide or hypothermia. The immunohistochemistry results revealed that expression of cold-inducible RNA binding protein (CIRBP) and RNA-binding protein 3 (RBM3) may be associated with hpyothermic and the hypoxic conditions. The expression of CIRBP and RBM3 in the myocardium was different from their expression in the cerebellum, especially in the Purkinje cells. The results indicate that agonal duration influences antigen expression. In the hypothermic condition, the myocardium uses more ATP since the force of the excitation-contraction coupling of the myocardium increases by more than 400% when the experimental temperature is reduced from 35°C to 25°C. The results obtained in this study indicate that physicians should pay attention to the myocardium when cooling the patient’s body to protect the brain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20monoxide%20death" title="carbon monoxide death">carbon monoxide death</a>, <a href="https://publications.waset.org/abstracts/search?q=cerebellum" title=" cerebellum"> cerebellum</a>, <a href="https://publications.waset.org/abstracts/search?q=CIRBP" title=" CIRBP"> CIRBP</a>, <a href="https://publications.waset.org/abstracts/search?q=hypothermic%20death" title=" hypothermic death"> hypothermic death</a>, <a href="https://publications.waset.org/abstracts/search?q=myocardium" title=" myocardium"> myocardium</a>, <a href="https://publications.waset.org/abstracts/search?q=RBM3" title=" RBM3"> RBM3</a> </p> <a href="https://publications.waset.org/abstracts/13000/difference-in-the-expression-of-cirbp-rbm3-and-hsp70-in-the-myocardium-and-cerebellum-after-death-by-hypothermi-a-and-carbon-monoxide-poisoning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3099</span> Reduction of Nitrogen Monoxide with Carbon Monoxide from Gas Streams by 10% wt. Cu-Ce-Fe-Co/Activated Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20L.%20Pan">K. L. Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Chang"> M. B. Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen oxides (NOₓ) is regarded as one of the most important air pollutants. It not only causes adverse environmental effects but also harms human lungs and respiratory system. As a post-combustion treatment, selective catalytic reduction (SCR) possess the highest NO removal efficiency ( ≥ 85%), which is considered as the most effective technique for removing NO from gas streams. However, injection of reducing agent such as NH₃ is requested, and it is costly and may cause secondary pollution. Reduction of NO with carbon monoxide (CO) as reducing agent has been previously investigated. In this process, the key step involves the NO adsorption and dissociation. Also, the high performance mainly relies on the amounts of oxygen vacancy on catalyst surface and redox ability of catalyst, because oxygen vacancy can activate the N-O bond to promote its dissociation. Additionally, perfect redox ability can promote the adsorption of NO and oxidation of CO. Typically, noble metals such as iridium (Ir), platinum (Pt), and palladium (Pd) are used as catalyst for the reduction of NO with CO; however, high cost has limited their applications. Recently, transition metal oxides have been investigated for the reduction of NO with CO, especially CuₓOy, CoₓOy, Fe₂O₃, and MnOₓ are considered as effective catalysts. However, deactivation is inevitable as oxygen (O₂) exists in the gas streams because active sites (oxygen vacancies) of catalyst are occupied by O₂. In this study, Cu-Ce-Fe-Co is prepared and supported on activated carbon by impregnation method to form 10% wt. Cu-Ce-Fe-Co/activated carbon catalyst. Generally, addition of activated carbon on catalyst can bring several advantages: (1) NO can be effectively adsorbed by interaction between catalyst and activated carbon, resulting in the improvement of NO removal, (2) direct NO decomposition may be achieved over carbon associated with catalyst, and (3) reduction of NO could be enhanced by a reducing agent over carbon-supported catalyst. Therefore, 10% wt. Cu-Ce-Fe-Co/activated carbon may have better performance for reduction of NO with CO. Experimental results indicate that NO conversion achieved with 10% wt. Cu-Ce-Fe-Co/activated carbon reaches 83% at 150°C with 300 ppm NO and 10,000 ppm CO. As temperature is further increased to 200°C, 100% NO conversion could be achieved, implying that 10% wt. Cu-Ce-Fe-Co/activated carbon prepared has good activity for the reduction of NO with CO. In order to investigate the effect of O₂ on reduction of NO with CO, 1-5% O₂ are introduced into the system. The results indicate that NO conversions still maintain at ≥ 90% with 1-5% O₂ conditions at 200°C. It is worth noting that effect of O₂ on reduction of NO with CO could be significantly improved as carbon is used as support. It is inferred that carbon support can react with O₂ to produce CO₂ as O₂ exists in the gas streams. Overall, 10% wt. Cu-Ce-Fe-Co/activated carbon is demonstrated with good potential for reduction of NO with CO, and possible mechanisms will be elucidated in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20oxides%20%28NO%E2%82%93%29" title="nitrogen oxides (NOₓ)">nitrogen oxides (NOₓ)</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20monoxide%20%28CO%29" title=" carbon monoxide (CO)"> carbon monoxide (CO)</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction%20of%20NO%20with%20CO" title=" reduction of NO with CO"> reduction of NO with CO</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20material" title=" carbon material"> carbon material</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysis" title=" catalysis"> catalysis</a> </p> <a href="https://publications.waset.org/abstracts/82521/reduction-of-nitrogen-monoxide-with-carbon-monoxide-from-gas-streams-by-10-wt-cu-ce-fe-coactivated-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3098</span> Carbon Monoxide Poisoning in Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atitallah%20Sofien">Atitallah Sofien</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouyahia%20Olfa"> Bouyahia Olfa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadj%20Salah%20Ibrahim"> Hadj Salah Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Saleh%20Foued"> Ben Saleh Foued</a>, <a href="https://publications.waset.org/abstracts/search?q=Missaoui%20Nada"> Missaoui Nada</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Rabeh%20Rania"> Ben Rabeh Rania</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahyaoui%20Salem"> Yahyaoui Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazigh%20Sonia"> Mazigh Sonia</a>, <a href="https://publications.waset.org/abstracts/search?q=Boukthir%20Samir"> Boukthir Samir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Carbon monoxide (CO) poisoning is a common pathology responsible for high morbidity and mortality worldwide. Aim: The purpose of this study was to determine the epidemiological profile of CO poisoning as well as its clinical, paraclinical, therapeutic, and evolutionary aspects. Methods: Our study included observations of CO poisoning in children hospitalized in the pediatric department C of the Children's Hospital in Tunis over a period of 3 years. Results: We have collected 199 cases of CO poisoning in children. The average age was 5.43 years, with a sex ratio of 0.98. The source of CO was inside the home in 73.2% of cases, and it was the gas bath heater in 68.8% of cases. The intoxication was collective in 93.5% of the cases, and it occurred during the month of January in 35.8% of the cases. The clinical manifestations were headaches in 69.5% of cases. The rate of carboxyhemoglobin was pathological in 73.9% of cases. All patients received normobaric oxygen therapy, and only 3.6% of patients had a hyperbaric oxygen therapy session. We did not deplore any case of death in our study. Conclusion: CO poisoning remains a public health problem in Tunisia with high morbidity. The risk of secondary complications, particularly neuropsychiatric, requires clinical and possibly neuroradiological monitoring of these victims. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poisoning" title="poisoning">poisoning</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20monoxide" title=" carbon monoxide"> carbon monoxide</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperbaric%20oxygenation" title=" hyperbaric oxygenation"> hyperbaric oxygenation</a> </p> <a href="https://publications.waset.org/abstracts/175664/carbon-monoxide-poisoning-in-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3097</span> Carbon Supported Silver Nanostructures for Electrochemical Carbon Dioxide Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonali%20Panigrahy">Sonali Panigrahy</a>, <a href="https://publications.waset.org/abstracts/search?q=Manjunatha%20K."> Manjunatha K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudip%20Barman"> Sudip Barman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrocatalytic reduction methods hold significant promise in addressing the urgent need to mitigate excessive greenhouse gas emissions, particularly carbon dioxide (CO₂). A highly effective catalyst is essential for achieving the conversion of CO₂ into valuable products due to the complex, multi-electron, and multi-product nature of the CO₂ reduction process. The electrochemical reduction of CO₂, driven by renewable energy sources, presents a valuable opportunity for simultaneously reducing CO₂ emissions while generating valuable chemicals and fuels, with syngas being a noteworthy product. Silver-based electrodes have been the focus of extensive research due to their low overpotential and remarkable selectivity in promoting the generation of carbon monoxide (CO) in the electrocatalytic carbon dioxide reduction reaction (CO₂RR). In this study, we delve into the synthesis of carbon-supported silver nanoparticles (Ag/C), which serve as efficient electrocatalysts for the reduction of CO₂. The as-prepared catalyst, Ag/C, is not only cost-effective but also highly proficient in facilitating the conversion of CO₂ and H₂O into syngas, which is a customizable mixture of hydrogen (H₂) and carbon monoxide (CO). The highest faradic efficiency for the production of CO on Ag/C was calculated to be 56.4% at -1.4 V vs Ag/AgCl. The maximum partial current density for the generation of CO was determined to be -9.4 mA cm-2 at a potential of -1.6 V vs Ag/AgCl. This research demonstrates the potential of Ag/C as an electrocatalyst to enable the sustainable production of syngas, contributing to the reduction of CO₂ emissions and the synthesis of valuable chemical precursors and fuels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82" title="CO₂">CO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20monooxide" title=" carbon monooxide"> carbon monooxide</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=silver" title=" silver"> silver</a> </p> <a href="https://publications.waset.org/abstracts/174856/carbon-supported-silver-nanostructures-for-electrochemical-carbon-dioxide-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3096</span> Upconversion Nanoparticle-Mediated Carbon Monoxide Prodrug Delivery System for Cancer Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaw%20Opoku-Damoah">Yaw Opoku-Damoah</a>, <a href="https://publications.waset.org/abstracts/search?q=Run%20Zhang"> Run Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hang%20Thu%20Ta"> Hang Thu Ta</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Ping%20Xu"> Zhi Ping Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas therapy is still at an early stage of research and development. Even though most gasotransmitters have proven their therapeutic potential, their handling, delivery, and controlled release have been extremely challenging. This research work employs a versatile nanosystem that is capable of delivering a gasotransmitter in the form of a photo-responsive carbon monoxide-releasing molecule (CORM) for targeted cancer therapy. The therapeutic action was mediated by upconversion nanoparticles (UCNPs) designed to transfer bio-friendly low energy near-infrared (NIR) light to ultraviolet (UV) light capable of triggering carbon monoxide (CO) from a water-soluble amphiphilic manganese carbonyl complex CORM incorporated into a carefully designed lipid drug delivery system. Herein, gaseous CO that plays a role as a gasotransmitter with cytotoxic and homeostatic properties was investigated to instigate cellular apoptosis. After successfully synthesizing the drug delivery system, the ability of the system to encapsulate and mediate the sustained release of CO after light excitation was demonstrated. CO fluorescence probe (COFP) was successfully employed to determine the in vitro drug release profile upon NIR light irradiation. The uptake of nanoparticles enhanced by folates and its receptor interaction was also studied for cellular uptake purposes. The anticancer potential of the final lipid nanoparticle Lipid/UCNPs/CORM/FA (LUCF) was also determined by cell viability assay. Intracellular CO release and a subsequent therapeutic action involving ROS production, mitochondrial damage, and CO production was also evaluated. In all, this current project aims to use in vitro studies to determine the potency and efficiency of a NIR-mediated CORM prodrug delivery system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20monoxide-releasing%20molecule" title="carbon monoxide-releasing molecule">carbon monoxide-releasing molecule</a>, <a href="https://publications.waset.org/abstracts/search?q=upconversion%20nanoparticles" title=" upconversion nanoparticles"> upconversion nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=site-specific%20delivery" title=" site-specific delivery"> site-specific delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=amphiphilic%20manganese%20carbonyl%20complex" title=" amphiphilic manganese carbonyl complex"> amphiphilic manganese carbonyl complex</a>, <a href="https://publications.waset.org/abstracts/search?q=prodrug%20delivery%20system." title=" prodrug delivery system. "> prodrug delivery system. </a> </p> <a href="https://publications.waset.org/abstracts/124308/upconversion-nanoparticle-mediated-carbon-monoxide-prodrug-delivery-system-for-cancer-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3095</span> Characterization of Fresh, Charcoal Flue Gas Treated and Boiled Beef Samples Using FTIR For Consumption Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Catherine%20W.%20Njeru">Catherine W. Njeru</a>, <a href="https://publications.waset.org/abstracts/search?q=Clarence%20Murithi%20W."> Clarence Murithi W.</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaac%20W.%20%20Mwangi"> Isaac W. Mwangi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruth%20Wanjau"> Ruth Wanjau</a>, <a href="https://publications.waset.org/abstracts/search?q=Grace%20N.%20Kiriro"> Grace N. Kiriro</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerald%20W.%20Mbugua"> Gerald W. Mbugua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flesh from animals is one of the most nutritious food materials that is rich in Vitamin B12, B3 (Niacin), B6, iron, zinc, selenium, and plenty of other vitamins and minerals and a high content of fats Meat consumption projection indicates an increase from 5.5 to 13.3 million tons by 2025 and this demand has been associated with livestock revolution. This study used charcoal flue gases sourced from the combustion of charcoal briquettes to prolong beef shelf life. The FT-IR technique is based on the specific absorption of infrared radiation by carbon monoxide and carbon dioxide molecules. The characterization of the functional groups was done using Fourier transform infrared spectroscopy (Shimadzu IR Tracer-100). The fresh, treated and boiled beef was ground with potassium bromide (KBr) into pellets and analyzed using FT-IR at a range of 400-3600 cm-1. The reaction of fresh, charcoal flue gas treated and boiled beef samples are as shown in the FT-IR spectrums. The fresh and boiled beef spectrums are similar, while the charcoal flue-treated beef samples show distinct peaks at 2100 and 2290 cm-1, which correspond to carbon monoxide and carbon dioxide, respectively. The study proposes the use of FT-IR in the determination of beef for consumption quality studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FT-IR" title="FT-IR">FT-IR</a>, <a href="https://publications.waset.org/abstracts/search?q=charcoal%20flue%20gases" title=" charcoal flue gases"> charcoal flue gases</a>, <a href="https://publications.waset.org/abstracts/search?q=beef" title=" beef"> beef</a>, <a href="https://publications.waset.org/abstracts/search?q=charcoal%20flue%20gases" title=" charcoal flue gases"> charcoal flue gases</a> </p> <a href="https://publications.waset.org/abstracts/192426/characterization-of-fresh-charcoal-flue-gas-treated-and-boiled-beef-samples-using-ftir-for-consumption-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3094</span> Environmental Analysis of Urban Communities: A Case Study of Air Pollutant Distribution in Smouha Arteries, Alexandria Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sammar%20Zain%20Allam">Sammar Zain Allam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smart Growth, intelligent cities, and healthy cities cited by WHO world health organization; they all call for clean air and minimizing air pollutants considering human health. Air quality is a thriving matter to achieve ecological cities; towards sustainable environmental development of urban fabric design. Selection criteria depends on the strategic location of our area as it is located at the entry of the city of Alexandria from its agricultural road. Besides, it represents the city center for retail, business, and educational amenities. Our study is analyzing readings of definite factors affecting air quality in a centric area in Alexandria. Our readings will be compared to standard measures of carbon dioxide, carbon monoxide, suspended particles, and air velocity or air flow. Carbon emissions are pondered in our study, in addition to suspended particles and the air velocity or air flow. Carbon dioxide and carbon monoxide crystalize the main elements to necessitate environmental and sustainable studies with the appearance of global warming and the glass house effect. Nevertheless, particulate matters are increasing causing breath issues especially to children and elder people; still threatening future generations to meet their own needs; sustainable development definition. Analysis of carbon dioxide, carbon monoxide, suspended particles together with air velocity or air flow has taken place in our area of study to manifest the relationship between these elements and the urban fabric design and land use distribution. For conclusion, dense urban fabric affecting air flow, and thus result in the concentration of air pollutants in certain zones. The appearance of open space with green areas allow the fading of air pollutants and help in their absorption. Along with dense urban fabric, high rise buildings trap air carriers which contribute to high readings of our elements. Also, street design may facilitate the circulation of air which helps carrying these pollutant away and distribute it to a wider space which decreases its harms and effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions" title="carbon emissions">carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20quality%20measurements" title=" air quality measurements"> air quality measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=arteries%20air%20quality" title=" arteries air quality"> arteries air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=airflow%20or%20air%20velocity" title=" airflow or air velocity"> airflow or air velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20air" title=" clean air"> clean air</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20density" title=" urban density"> urban density</a> </p> <a href="https://publications.waset.org/abstracts/23776/environmental-analysis-of-urban-communities-a-case-study-of-air-pollutant-distribution-in-smouha-arteries-alexandria-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3093</span> Producing Carbon Nanoparticles from Agricultural and Municipal Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanik%20Sharma">Kanik Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the year of 2011, the global production of carbon nano-materials (CNMs) was around 3,500 tons, and it is projected to expand at a compound annual growth rate of 30.6%. Expanding markets for applications of CNMs, such as carbon nano-tubes (CNTs) and carbon nano-fibers (CNFs), place ever-increasing demands on lowering their production costs. Current technologies for CNM generation require intensive premium feedstock consumption and employ costly catalysts; they also require input of external energy. Industrial-scale CNM production is conventionally achieved through chemical vapor deposition (CVD) methods which consume a variety of expensive premium chemical feedstocks such as ethylene, carbon monoxide (CO) and hydrogen (H2); or by flame synthesis techniques, which also consume premium feedstock fuels. Additionally, CVD methods are energy-intensive. Renewable and replenishable feedstocks, such as those found in municipal, industrial, agricultural recycling streams have a more judicious reason for usage, in the light of current emerging needs for sustainability. Agricultural sugarcane bagasse and corn residues, scrap tire chips as well as post-consumer polyethylene (PE) and polyethylene terephthalate (PET) bottle shreddings when either thermally treated by sole pyrolysis or by sequential pyrolysis and partial oxidation result in the formation of gaseous carbon-bearing effluents which when channeled into a heated reactor, produce CNMs, including carbon nano-tubes, catalytically synthesized therein on stainless steel meshes. The structure of the nano-material synthesized depends on the type of feedstock available for pyrolysis, and can be determined by analysing the feedstock. These feedstocks could supersede the use of costly and often toxic or highly-flammable chemicals such as hydrocarbon gases, carbon monoxide and hydrogen, which are commonly used as feedstocks in current nano-manufacturing process for CNMs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title="nanomaterials">nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20plastics" title=" waste plastics"> waste plastics</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20bagasse" title=" sugarcane bagasse"> sugarcane bagasse</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a> </p> <a href="https://publications.waset.org/abstracts/23633/producing-carbon-nanoparticles-from-agricultural-and-municipal-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3092</span> Ethanol in Carbon Monoxide Intoxication: Focus on Delayed Neuropsychological Sequelae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyuk-Hoon%20Kim">Hyuk-Hoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Gi%20Min"> Young Gi Min</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: In carbon monoxide (CO) intoxication, the pathophysiology of delayed neurological sequelae (DNS) is very complex and remains poorly understood. And predicting whether patients who exhibit resolved acute symptoms have escaped or will experience DNS represents a very important clinical issue. Brain magnetic resonance (MR) imaging has been conducted to assess the severity of brain damage as an objective method to predict prognosis. And co-ingestion of a second poison in patients with intentional CO poisoning occurs in almost one-half of patients. Among patients with co-ingestions, 66% ingested ethanol. We assessed the effects of ethanol on neurologic sequelae prevalence in acute CO intoxication by means of abnormal lesion in brain MR. Method: This study was conducted retrospectively by collecting data for patients who visited an emergency medical center during a period of 5 years. The enrollment criteria were diagnosis of acute CO poisoning and the measurement of the serum ethanol level and history of taking a brain MR during admission period. Official readout data by radiologist are used to decide whether abnormal lesion is existed or not. The enrolled patients were divided into two groups: patients with abnormal lesion and without abnormal lesion in Brain MR. A standardized extraction using medical record was performed; Mann Whitney U test and logistic regression analysis were performed. Result: A total of 112 patients were enrolled, and 68 patients presented abnormal brain lesion on MR. The abnormal brain lesion group had lower serum ethanol level (mean, 20.14 vs 46.71 mg/dL) (p-value<0.001). In addition, univariate logistic regression analysis showed the serum ethanol level (OR, 0.99; 95% CI, 0.98 -1.00) was independently associated with the development of abnormal lesion in brain MR. Conclusion: Ethanol could have neuroprotective effect in acute CO intoxication by sedative effect in stressful situation and mitigative effect in neuro-inflammatory reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20monoxide" title="carbon monoxide">carbon monoxide</a>, <a href="https://publications.waset.org/abstracts/search?q=delayed%20neuropsychological%20sequelae" title=" delayed neuropsychological sequelae"> delayed neuropsychological sequelae</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=intoxication" title=" intoxication"> intoxication</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance" title=" magnetic resonance"> magnetic resonance</a> </p> <a href="https://publications.waset.org/abstracts/59368/ethanol-in-carbon-monoxide-intoxication-focus-on-delayed-neuropsychological-sequelae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3091</span> Assessment of Air Quality Status Using Pollution Indicators in Industrial Zone of Brega City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tawfig%20Falani">Tawfig Falani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulalaziz%20Saleh"> Abdulalaziz Saleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air pollution has become a major environmental issue with definitive repercussions on human health. Global concerns have been raised about the health effects of deteriorating air quality due mainly to widespread industrialization and urbanization. To assess the quality of air in Brega, air quality indicators were calculated using the U.S. Environmental Protection Agency procedure. Air quality was monitored from 01/10/2019 to 28/02/2021 with a daily average measuring six pollutants of particulate matter <2.5µm (PM2.5), and <10µm (PM₁₀), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), ozone (O₃), and carbon monoxide (CO). The result indicated that air pollution at general air quality monitoring sites for sulphur dioxide, carbon monoxide, PM₁₀ and PM2.5 and nitrogen dioxide are always within the permissible limit. Referring to a monthly average of Pollutants in the Brega Industrial area, all months were out of AQG limit for NO₂, and the same with O₃ except for two months. For PM2.5 and PM₁₀ 7, 5 out of 17 months were out of limits, respectively. Relative AQI for ozone is found in the range of moderate category of general air pollution, and the worst month was Nov. 2020, which was marked as Very Unhealthy category, then the next two months (Dec. 2020 and Jan. 2021 ) were Unhealthy categories. It's the first time that we have used the AQI in SOC, and not usually used in Libya to identify the quality of air pollution. So, I think it will be useful if AQI is used as guidance for specified air pollution. That dictate putting monitoring stations beside any industrial activity that has emissions of the six major air pollutants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20quality" title="air quality">air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20pollutants" title=" air pollutants"> air pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20quality%20index%20%28AQI%29" title=" air quality index (AQI)"> air quality index (AQI)</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a> </p> <a href="https://publications.waset.org/abstracts/185436/assessment-of-air-quality-status-using-pollution-indicators-in-industrial-zone-of-brega-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3090</span> Energy Conversion for Sewage Sludge by Microwave Heating Pyrolysis and Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Nam%20Chun">Young Nam Chun</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Hyuk%20Yun"> Soo Hyuk Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeo%20Ri%20Jeong"> Byeo Ri Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent gradual increase in the energy demand is mostly met by fossil fuel, but the research on and development of new alternative energy sources is drawing much attention due to the limited fossil fuel supply and the greenhouse gas problem. Biomass is an eco-friendly renewable energy that can achieve carbon neutrality. The conversion of the biomass sludge wastes discharged from a wastewater treatment plant to clean energy is an important green energy technology in an eco-friendly way. In this NRF study, a new type of microwave thermal treatment was developed to apply the biomass-CCS technology to sludge wastes. For this, the microwave dielectric heating characteristics were examined to investigate the energy conversion mechanism for the combined drying-pyrolysis/gasification of the dewatered wet sludge. The carbon dioxide gasification was tested using the CO2 captured from the pre-combustion capture process. In addition, the results of the pyrolysis and gasification test with the wet sludge were analyzed to compare the microwave energy conversion results with the results of the use of the conventional heating method. Gas was the largest component of the product of both pyrolysis and gasification, followed by sludge char and tar. In pyrolysis, the main components of the producer gas were hydrogen and carbon monoxide, and there were some methane and hydrocarbons. In gasification, however, the amount of carbon monoxide was greater than that of hydrogen. In microwave gasification, a large amount of heavy tar was produced. The largest amount of benzene among light tar was produced in both pyrolysis and gasification. NH3 and HCN which are the precursors of NOx, generated as well. In microwave heating, the sludge char had a smooth surface, like that of glass, and in the conventional heating method with an electric furnace, deep cracks were observed in the sludge char. This indicates that the gas obtained from the microwave pyrolysis and gasification of wet sewage sludge can be used as fuel, but the heavy tar and NOx precursors in the gas must be treated. Sludge char can be used as solid fuel or as a tar reduction adsorbent in the process if necessary. This work supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1R1A2A2A03003044). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20heating" title="microwave heating">microwave heating</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis%20gasification" title=" pyrolysis gasification"> pyrolysis gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=precombustion%20CCS" title=" precombustion CCS"> precombustion CCS</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20energy" title=" biomass energy"> biomass energy</a> </p> <a href="https://publications.waset.org/abstracts/56659/energy-conversion-for-sewage-sludge-by-microwave-heating-pyrolysis-and-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3089</span> Correlation between Indoor and Outdoor Air</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamal%20A.%20Radaideh">Jamal A. Radaideh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziad%20N.%20Shatnawi"> Ziad N. Shatnawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both indoor and outdoor air quality is investigated throughout residential areas of Al Hofuf city/ Eastern province of Saudi Arabia through a multi‐week multiple sites measurement and sampling survey. Concentration levels of five criteria air pollutants, including carbon dioxide (CO2), carbon monoxide (CO), nitrous dioxide (NO2), sulfur dioxide (SO2) and total volatile organic compounds (TVOC) were measured and analyzed during the study period from January to May 2014. For this survey paper, three different sites, roadside RS, urban UR, and rural RU were selected. Within each site type, six locations were assigned to carryout air quality measurements and to study varying indoor/outdoor air quality for each pollutant. Results indicate that a strong correlation between indoor and outdoor air exists. The I/O ratios for the considered criteria pollutants show that the strongest relationship between indoor and outdoor air is found by analyzing of carbon dioxide, CO2 (0.88), while the lowest is found by both NO2 and SO2 (0.7). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=criteria%20air%20pollutants" title="criteria air pollutants">criteria air pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%2Foutdoor%20air%20pollution" title=" indoor/outdoor air pollution"> indoor/outdoor air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%2Foutdoor%20ratio" title=" indoor/outdoor ratio"> indoor/outdoor ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a> </p> <a href="https://publications.waset.org/abstracts/21435/correlation-between-indoor-and-outdoor-air" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3088</span> On the Effect of Carbon on the Efficiency of Titanium as a Hydrogen Storage Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazi%20R.%20Reda%20%20Mahmoud%20Reda">Ghazi R. Reda Mahmoud Reda </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the metal that forms hydride´s, Mg and Ti are known as the most lightweight materials; however, they are covered with a passive layer of oxides and hydroxides and require activation treatment under high temperature ( > 300 C ) and hydrogen pressure ( > 3 MPa) before being used for storage and transport applications. It is well known that small graphite addition to Ti or Mg, lead to a dramatic change in the kinetics of mechanically induced hydrogen sorption ( uptake) and significantly stimulate the Ti-Hydrogen interaction. Many explanations were given by different authors to explain the effect of graphite addition on the performance of Ti as material for hydrogen storage. Not only graphite but also the addition of a polycyclic aromatic compound will also improve the hydrogen absorption kinetics. It will be shown that the function of carbon addition is two-fold. First carbon acts as a vacuum cleaner, which scavenges out all the interstitial oxygen that can poison or slow down hydrogen absorption. It is also important to note that oxygen favors the chemisorption of hydrogen, which is not desirable for hydrogen storage. Second, during scavenging of the interstitial oxygen, the carbon reacts with oxygen in the nano and microchannel through a highly exothermic reaction to produce carbon dioxide and monoxide which provide the necessary heat for activation and thus in the presence of carbon lower heat of activation for hydrogen absorption which is observed experimentally. Furthermore, the product of the reaction of hydrogen with the carbon oxide will produce water which due to ball milling hydrolyze to produce the linear H5O2 + this will reconstruct the primary structure of the nanocarbon to form secondary structure, where the primary structure (a sheet of carbon) are connected through hydrogen bonding. It is the space between these sheets where physisorption or defect mediated sorption occurs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20forming%20hydrides" title="metal forming hydrides">metal forming hydrides</a>, <a href="https://publications.waset.org/abstracts/search?q=polar%20molecule%20impurities" title=" polar molecule impurities"> polar molecule impurities</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20diagram" title=" phase diagram"> phase diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20absorption" title=" hydrogen absorption"> hydrogen absorption</a> </p> <a href="https://publications.waset.org/abstracts/33527/on-the-effect-of-carbon-on-the-efficiency-of-titanium-as-a-hydrogen-storage-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3087</span> Production of Hydrogen and Carbon Monoxide Fuel Gas From Pine Needles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Despina%20Vamvuka">Despina Vamvuka</a>, <a href="https://publications.waset.org/abstracts/search?q=Despina%20Pentari"> Despina Pentari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forestry wastes are readily available in large quantities around the world. Based on European Green Deal for the deployment of renewable and decarbonized energy by 2050, as well as global energy crisis, energy recovery from such wastes reducing greenhouse gas emissions is very attractive. Gasification has superior environmental performance to combustion, producing a clean fuel gas utilized in internal combustion engines, gas turbines, solid oxide fuel cells, or for synthesis of liquid bio-fuels and value-added chemicals. In this work, pine needles, which are abundantly found in Mediterranean countries, were gasified by either steam or carbon dioxide via a two-step process to improve reactivity and eliminate tar, employing a fixed bed unit and a thermal analysis system. Solid, liquid and gaseous products from the whole process were characterized and their energy potential was determined. Thermal behaviour, reactivity, conversion and energy recovery were examined. The gasification process took place above 650°C. At 950°C conversion and energy recovery were 77% dry and 2 under a flow of steam and 85% dry and 2.9 under a flow of carbon dioxide, respectively. Organic matter was almost completely converted to syngas, the yield of which varied between 89% and 99%. The higher heating values of biochar, bio-oil and pyrolysis gas were 27.8 MJ/kg, 33.5 MJ/kg and 13.6 MJ/m3. Upon steam or carbon dioxide gasification, the higher heating value of syngas produced was 11.5 MJ/m3 and 12.7 MJ/m3, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gasification" title="gasification">gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=steam" title=" steam"> steam</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a> </p> <a href="https://publications.waset.org/abstracts/154105/production-of-hydrogen-and-carbon-monoxide-fuel-gas-from-pine-needles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3086</span> NOx Emission and Computational Analysis of Jatropha Curcus Fuel and Crude Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipan%20Kumar%20Sohpal">Vipan Kumar Sohpal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20K%20Sharma"> Rajesh K Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diminishing of conventional fuels and hysterical vehicles emission leads to deterioration of the environment, which emphasize the research to work on biofuels. Biofuels from different sources attract the attention of research due to low emission and biodegradability. Emission of carbon monoxide, carbon dioxide and H-C reduced drastically using Biofuels (B-20) combustion. Contrary to the conventional fuel, engine emission results indicated that nitrous oxide emission is higher in Biofuels. So this paper examines and compares the nitrogen oxide emission of Jatropha Curcus (JCO) B-20% blends with the vegetable oil. In addition to that computational analysis of crude non edible oil performed to assess the impact of composition on emission quality. In conclusion, JCO have the potential feedstock for the biodiesel production after the genetic modification in the plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jatropha%20curcus" title="jatropha curcus">jatropha curcus</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20analysis" title=" computational analysis"> computational analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx%20biofuels" title=" NOx biofuels"> NOx biofuels</a> </p> <a href="https://publications.waset.org/abstracts/48173/nox-emission-and-computational-analysis-of-jatropha-curcus-fuel-and-crude-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">586</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3085</span> Carbon Sequestration in Spatio-Temporal Vegetation Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nothando%20Gwazani">Nothando Gwazani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20Marembo"> K. R. Marembo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An increase in the atmospheric concentration of carbon dioxide (CO₂) from fossil fuel and land use change necessitates identification of strategies for mitigating threats associated with global warming. Oceans are insufficient to offset the accelerating rate of carbon emission. However, the challenges of oceans as a source of reducing carbon footprint can be effectively overcome by the storage of carbon in terrestrial carbon sinks. The gases with special optical properties that are responsible for climate warming include carbon dioxide (CO₂), water vapors, methane (CH₄), nitrous oxide (N₂O), nitrogen oxides (NOₓ), stratospheric ozone (O₃), carbon monoxide (CO) and chlorofluorocarbons (CFC’s). Amongst these, CO₂ plays a crucial role as it contributes to 50% of the total greenhouse effect and has been linked to climate change. Because plants act as carbon sinks, interest in terrestrial carbon sequestration has increased in an effort to explore opportunities for climate change mitigation. Removal of carbon from the atmosphere is a topical issue that addresses one important aspect of an overall strategy for carbon management namely to help mitigate the increasing emissions of CO₂. Thus, terrestrial ecosystems have gained importance for their potential to sequester carbon and reduce carbon sink in oceans, which have a substantial impact on the ocean species. Field data and electromagnetic spectrum bands were analyzed using ArcGIS 10.2, QGIS 2.8 and ERDAS IMAGINE 2015 to examine the vegetation distribution. Satellite remote sensing data coupled with Normalized Difference Vegetation Index (NDVI) was employed to assess future potential changes in vegetation distributions in Eastern Cape Province of South Africa. The observed 5-year interval analysis examines the amount of carbon absorbed using vegetation distribution. In 2015, the numerical results showed low vegetation distribution, therefore increased the acidity of the oceans and gravely affected fish species and corals. The outcomes suggest that the study area could be effectively utilized for carbon sequestration so as to mitigate ocean acidification. The vegetation changes measured through this investigation suggest an environmental shift and reduced vegetation carbon sink, and that threatens biodiversity and ecosystem. In order to sustain the amount of carbon in the terrestrial ecosystems, the identified ecological factors should be enhanced through the application of good land and forest management practices. This will increase the carbon stock of terrestrial ecosystems thereby reducing direct loss to the atmosphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation%20dynamics" title=" vegetation dynamics"> vegetation dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20sequestration" title=" carbon sequestration"> carbon sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20carbon%20sink" title=" terrestrial carbon sink"> terrestrial carbon sink</a> </p> <a href="https://publications.waset.org/abstracts/84332/carbon-sequestration-in-spatio-temporal-vegetation-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3084</span> Carbon Credits in Voluntary Carbon Markets: A Proposal for Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Mohammadirad">Saeed Mohammadirad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the first commitment period of the Kyoto Protocol, many developed countries were forced to restrict carbon emissions. Although Iran was one of the countries of Kyoto protocol, due to some special conditions, it was not required to restrict its carbon emissions. Flexible mechanisms were developed to assist countries responsible for reducing their carbon emissions, and regulated carbon markets were introduced. Carbon credits which are provided by organizations in countries with no responsibility to restrict their carbon emissions are traded in voluntary markets. This study focuses on how to measure and report the carbon allowances and carbon credits from accounting view point under both regulated and voluntary markets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20credits" title="carbon credits">carbon credits</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20markets" title=" carbon markets"> carbon markets</a>, <a href="https://publications.waset.org/abstracts/search?q=accounting" title=" accounting"> accounting</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20mechanisms" title=" flexible mechanisms"> flexible mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/29797/carbon-credits-in-voluntary-carbon-markets-a-proposal-for-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3083</span> Carbon Nanotubes and Novel Applications for Textile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezgi%20Ismar">Ezgi Ismar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotubes (CNTs) are different from other allotropes of carbon, such as graphite, diamond and fullerene. Replacement of metals in flexible textiles has an advantage. Particularly in the last decade, both their electrical and mechanical properties have become an area of interest for Li-ion battery applications where the conductivity has a major importance. While carbon nanotubes are conductive, they are also less in weight compared to convectional conductive materials. Carbon nanotubes can be used inside the fiber so they can offer to create 3-D structures. In this review, you can find some examples of how carbon nanotubes adapted to textile products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20textiles" title=" conductive textiles"> conductive textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotextiles" title=" nanotextiles"> nanotextiles</a> </p> <a href="https://publications.waset.org/abstracts/33980/carbon-nanotubes-and-novel-applications-for-textile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3082</span> Research on Carbon Fiber Tow Spreading Technique with Multi-Rolls </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soon%20Ok%20Jo">Soon Ok Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Kyu%20Jeung"> Han Kyu Jeung</a>, <a href="https://publications.waset.org/abstracts/search?q=Si%20Woo%20Park"> Si Woo Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the process of consistent expansion of carbon fiber in width (Carbon Fiber Tow Spreading Technique), it can be expected that such process can enhance the production of carbon fiber reinforced composite material and quality of the product. In this research, the method of mechanically expanding carbon fiber and increasing its width was investigated by using various geometric rolls. In addition, experimental type of carbon fiber expansion device was developed and tested using 12K carbon fiber. As a result, the effects of expansion of such fiber under optimized operating conditions and geometric structure of an elliptical roll, were analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title="carbon fiber">carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=tow%20spreading%20fiber" title=" tow spreading fiber"> tow spreading fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-preg" title=" pre-preg"> pre-preg</a>, <a href="https://publications.waset.org/abstracts/search?q=roll%20structure" title=" roll structure"> roll structure</a> </p> <a href="https://publications.waset.org/abstracts/51684/research-on-carbon-fiber-tow-spreading-technique-with-multi-rolls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3081</span> The Effect of the Proportion of Carbon on the Corrosion Rate of Carbon-Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmagid%20A.%20Khattabi">Abdulmagid A. Khattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Hablous"> Ahmed A. Hablous</a>, <a href="https://publications.waset.org/abstracts/search?q=Mofied%20M.%20Elnemry"> Mofied M. Elnemry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The carbon steel is of one of the most common mineral materials used in engineering and industrial applications in order to have access to the required mechanical properties, especially after the change of carbon ratio, but this may lead to stimulate corrosion. It has been used in models of solids with different carbon ratios such as 0.05% C, 0.2% C, 0.35% C, 0.5% C, and 0.65% C and have been studied using three testing durations which are 4 weeks, 6 weeks, and 8 weeks and among different corrosion environments such as atmosphere, fresh water, and salt water. This research is for the purpose of finding the effect of the carbon content on the corrosion resistance of steels in different corrosion medium by using the weight loss technique as a function of the corrosion resistance. The results that have been obtained through this research shows that a correlation can be made between corrosion rates and steel's carbon content, and the corrosion resistance decreases with the increase in carbon content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proportion%20of%20carbon%20in%20the%20steel" title="proportion of carbon in the steel">proportion of carbon in the steel</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20rate" title=" corrosion rate"> corrosion rate</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance%20in%20carbon-steel" title=" corrosion resistance in carbon-steel"> corrosion resistance in carbon-steel</a> </p> <a href="https://publications.waset.org/abstracts/26940/the-effect-of-the-proportion-of-carbon-on-the-corrosion-rate-of-carbon-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3080</span> Electrochemical Reduction of Carbon-dioxide Using Metal Nano-particles Supported on Nano-Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mulatu%20Kassie%20Birhanu">Mulatu Kassie Birhanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrochemical reduction of CO₂ is an emerging and current issue for its conversion in to valuable product upon minimization of its atmospheric level for contribution of maintaining within the range of permissible limit. Among plenty of electro-catalysts gold and copper are efficient and effective catalysts, which are synthesized and applicable for this research work. The two metal catalysts were prepared in inert environment with different compositions through co-reduction process from their corresponding precursors and then by adding multi-walled carbon nano-tube as a supporter and enhanced the conductivity. The catalytic performance of CO₂ reduction for each composition was performed and resulted an outstanding catalytic activity with generation of high current density (70 mA/cm² at 0.91V vs. RHE) and relatively small onset potential. The catalytic performance, compositions, morphologies, structure and geometric arrangements were evaluated by electrochemical analysis (LSV, impedance, chronoamperometry & tafel plot), EDS, SEM and XAS respectively. The composite metals showed better selectivity of products and faradaic efficiencies due to the synergetic effects of the combined nano-particles in addition to the impact of grain size in reduction of CO₂. Carbon monoxide, hydrogen, formate and ethanol are the reduction products, which are detected and quantifiable by chromatographic techniques considering their physical state of each product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbondioxide" title="carbondioxide">carbondioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=faradaic%20efficiency" title=" faradaic efficiency"> faradaic efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalyst" title=" electrocatalyst"> electrocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20density" title=" current density"> current density</a> </p> <a href="https://publications.waset.org/abstracts/184733/electrochemical-reduction-of-carbon-dioxide-using-metal-nano-particles-supported-on-nano-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3079</span> Framework Development of Carbon Management Software Tool in Sustainable Supply Chain Management of Indian Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarbjit%20Singh">Sarbjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This framework development explored the status of GSCM in manufacturing SMEs and concluded that there was a significant gap w.r.t carbon emissions measurement in the supply chain activities. The measurement of carbon emissions within supply chains is important green initiative toward its reduction. The majority of the SMEs were facing the problem to quantify the green house gas emissions in its supply chain & to make it a low carbon supply chain or GSCM. Thus, the carbon management initiatives were amalgamated with the supply chain activities in order to measure and reduce the carbon emissions, confirming the GHG protocol scopes. Henceforth, it covers the development of carbon management software (CMS) tool to quantify carbon emissions for effective carbon management. This tool is cheap and easy to use for the industries for the management of their carbon emissions within the supply chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=w.r.t%20carbon%20emissions" title="w.r.t carbon emissions">w.r.t carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20management%20software" title=" carbon management software"> carbon management software</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=Indian%20Industry" title=" Indian Industry"> Indian Industry</a> </p> <a href="https://publications.waset.org/abstracts/3784/framework-development-of-carbon-management-software-tool-in-sustainable-supply-chain-management-of-indian-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3078</span> Modification of Carbon-Based Gas Sensors for Boosting Selectivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Zhao">D. Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Wang"> Y. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Chen"> G. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas sensors that utilize carbonaceous materials as sensing media offer numerous advantages, making them the preferred choice for constructing chemical sensors over those using other sensing materials. Carbonaceous materials, particularly nano-sized ones like carbon nanotubes (CNTs), provide these sensors with high sensitivity. Additionally, carbon-based sensors possess other advantageous properties that enhance their performance, including high stability, low power consumption for operation, and cost-effectiveness in their construction. These properties make carbon-based sensors ideal for a wide range of applications, especially in miniaturized devices created through MEMS or NEMS technologies. To capitalize on these properties, a group of chemoresistance-type carbon-based gas sensors was developed and tested against various volatile organic compounds (VOCs) and volatile inorganic compounds (VICs). The results demonstrated exceptional sensitivity to both VOCs and VICs, along with the sensor’s long-term stability. However, this broad sensitivity also led to poor selectivity towards specific gases. This project aims at addressing the selectivity issue by modifying the carbon-based sensing materials and enhancing the sensor's specificity to individual gas. Multiple groups of sensors were manufactured and modified using proprietary techniques. To assess their performance, we conducted experiments on representative sensors from each group to detect a range of VOCs and VICs. The VOCs tested included acetone, dimethyl ether, ethanol, formaldehyde, methane, and propane. The VICs comprised carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2), nitric oxide (NO), and nitrogen dioxide (NO2). The concentrations of the sample gases were all set at 50 parts per million (ppm). Nitrogen (N2) was used as the carrier gas throughout the experiments. The results of the gas sensing experiments are as follows. In Group 1, the sensors exhibited selectivity toward CO2, acetone, NO, and NO2, with NO2 showing the highest response. Group 2 primarily responded to NO2. Group 3 displayed responses to nitrogen oxides, i.e., both NO and NO2, with NO2 slightly surpassing NO in sensitivity. Group 4 demonstrated the highest sensitivity among all the groups toward NO and NO2, with NO2 being more sensitive than NO. In conclusion, by incorporating several modifications using carbon nanotubes (CNTs), sensors can be designed to respond well to NOx gases with great selectivity and without interference from other gases. Because the response levels to NO and NO2 from each group are different, the individual concentration of NO and NO2 can be deduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20sensors" title="gas sensors">gas sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=CNT" title=" CNT"> CNT</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%2FNEMS" title=" MEMS/NEMS"> MEMS/NEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=VOC" title=" VOC"> VOC</a>, <a href="https://publications.waset.org/abstracts/search?q=VIC" title=" VIC"> VIC</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20selectivity" title=" high selectivity"> high selectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=modification%20of%20sensing%20materials" title=" modification of sensing materials"> modification of sensing materials</a> </p> <a href="https://publications.waset.org/abstracts/167468/modification-of-carbon-based-gas-sensors-for-boosting-selectivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3077</span> Influence of Non-Carcinogenic Risk on Public Health </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulmira%20Umarova">Gulmira Umarova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The data on the assessment of the influence of environmental risk to the health of the population of Uralsk in the West region of Kazakhstan were presented. Calculation of non-carcinogenic risks was performed for such air pollutants as sulfur dioxide, nitrogen oxides, hydrogen sulfide, carbon monoxide. Here with the critical organs and systems, which are affected by the above-mentioned substances were taken into account. As well as indicators of primary and general morbidity by classes of diseases among the population were considered. The quantitative risk of the influence of substances on organs and systems is established by results of the calculation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment" title="environment">environment</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a>, <a href="https://publications.waset.org/abstracts/search?q=morbidity" title=" morbidity"> morbidity</a>, <a href="https://publications.waset.org/abstracts/search?q=non-carcinogenic%20risk" title=" non-carcinogenic risk"> non-carcinogenic risk</a> </p> <a href="https://publications.waset.org/abstracts/106673/influence-of-non-carcinogenic-risk-on-public-health" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3076</span> Performance and Emission Characteristics of Diesel Engine Fuelled with Palm Biodiesel Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jalpit%20B.%20Prajapati">Jalpit B. Prajapati</a>, <a href="https://publications.waset.org/abstracts/search?q=Ketankumar%20G.%20Patel"> Ketankumar G. Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Palm oil may be employed in diesel engine as an alternative fuel. Biofuel has so far been backed by government policies in the quest for low carbon fuel in the near future and promises to ensure energy security through partially replacing fossil fuels. This paper presents an experimental investigation of performance and emission characteristics by using palm oil in diesel engine. The properties of palm oil can be compared favorably with the characteristics required for internal combustion engine fuels especially diesel engine. Experiments will be performed for fixed compression ratio i.e. 18 using biodiesel-diesel blends i.e. B0, B10, B20, B30, B40, B50 with load variation from no load to full load and compared with base cases i.e. engine using diesel as a fuel. The parameters studied in performance characteristics are brake power, brake specific fuel consumption and brake thermal efficiency, in emission characteristics are carbon monoxide, unburnt hydrocarbons and nitrogen oxide. After experimental results B20 (20% palm oil and 80% diesel) is best in performance, but NOx formation is little higher in B20. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20biodiesel" title="palm biodiesel">palm biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel-biodiesel%20blend" title=" diesel-biodiesel blend"> diesel-biodiesel blend</a> </p> <a href="https://publications.waset.org/abstracts/49917/performance-and-emission-characteristics-of-diesel-engine-fuelled-with-palm-biodiesel-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3075</span> The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Zhiyuan">Liu Zhiyuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Zongdi"> Sun Zongdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carbon%20trading%20price" title="Carbon trading price">Carbon trading price</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20trading%20volume" title=" carbon trading volume"> carbon trading volume</a>, <a href="https://publications.waset.org/abstracts/search?q=BP%20neural%20network%20model" title=" BP neural network model"> BP neural network model</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanghai%20City" title=" Shanghai City"> Shanghai City</a> </p> <a href="https://publications.waset.org/abstracts/69753/the-carbon-trading-price-and-trading-volume-forecast-in-shanghai-city-by-bp-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3074</span> Molecular Simulation Study on the Catalytic Role of Silicon-Doped Graphene in Carbon Dioxide Hydrogenation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wilmer%20Esteban%20Vallejo%20Narv%C3%A1ez">Wilmer Esteban Vallejo Narváez</a>, <a href="https://publications.waset.org/abstracts/search?q=Serguei%20Fomine"> Serguei Fomine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The theoretical investigation of Si-doped graphene nanoflakes (NFs) was conducted to understand their catalytic impact on CO₂ reduction using molecular hydrogen at the Density Functional Theory (DFT) level. The introduction of silicon by substituting carbon induces defects in the NF structure, resulting in a polyradical ground state. This silicon defect significantly boosts reactivity towards substrates, making Si-doped graphene NFs more catalytically active in CO₂ reduction to formic acid compared to silicene. Notably, Si-doped graphene demonstrates a preference for formic acid over carbon monoxide, mirroring the behavior of silicene. Furthermore, investigations into formic acid-to-formaldehyde and formaldehyde-to-methanol conversions reveal instances where Si-doped graphene outperforms silicene in terms of efficacy. In the final reduction step, the methanol-to-methane reaction unfolds in four stages, with the rate-determining step involving hydrogen transfer from silicon to methyl. Notably, the activation energy for this step is lower in Si-doped graphene compared to silicene. Consequently, Si-doped graphene NFs emerge as superior catalysts with lower activation energies overall. Remarkably, throughout these catalytic processes, Si-doped graphene maintains environmental stability, further highlighting its enhanced catalytic activity without compromising graphene's inherent stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silicon-doped%20graphene" title="silicon-doped graphene">silicon-doped graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20reduction" title=" CO₂ reduction"> CO₂ reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysis" title=" catalysis"> catalysis</a> </p> <a href="https://publications.waset.org/abstracts/181620/molecular-simulation-study-on-the-catalytic-role-of-silicon-doped-graphene-in-carbon-dioxide-hydrogenation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Carbon%20monoxide&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Carbon%20monoxide&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Carbon%20monoxide&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Carbon%20monoxide&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Carbon%20monoxide&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Carbon%20monoxide&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Carbon%20monoxide&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Carbon%20monoxide&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Carbon%20monoxide&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Carbon%20monoxide&page=103">103</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Carbon%20monoxide&page=104">104</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Carbon%20monoxide&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>