CINXE.COM
Search results for: amides
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: amides</title> <meta name="description" content="Search results for: amides"> <meta name="keywords" content="amides"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="amides" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="amides"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: amides</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Eco-Benign and Highly Efficient Procedures for the Synthesis of Amides Catalyzed by Heteropolyanion-Based Ionic Liquids under Solvent-Free Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhikai%20Chena">Zhikai Chena</a>, <a href="https://publications.waset.org/abstracts/search?q=Renzhong%20Fu"> Renzhong Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen%20Chaib"> Wen Chaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Rongxin%20Yuanb"> Rongxin Yuanb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two eco-benign and highly efficient routes for the synthesis of amides have been developed by treating amines with corresponding carboxylic acids or carboxamides in the presence of heteropolyanion-based ionic liquids (HPAILs) as catalysts. These practical reactions can tolerate a wide range of substrates. Thus, various amides were obtained in good to excellent yields under solvent-free conditions at heating. Moreover, recycling studies revealed that HPAILs are easily reusable for this two procedures. These methods provide green and much improved protocols over the existing methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthesis" title="synthesis">synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=amide" title=" amide"> amide</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B1onic%20liquid" title=" ıonic liquid"> ıonic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a> </p> <a href="https://publications.waset.org/abstracts/1964/eco-benign-and-highly-efficient-procedures-for-the-synthesis-of-amides-catalyzed-by-heteropolyanion-based-ionic-liquids-under-solvent-free-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Combating Malaria: A Drug Discovery Approach Using Thiazole Derivatives Against Prolific Parasite Enzyme PfPKG</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hari%20Bezwada">Hari Bezwada</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Cheon"> Michelle Cheon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Divan"> Ryan Divan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannah%20Escritor"> Hannah Escritor</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Kagramian"> Michelle Kagramian</a>, <a href="https://publications.waset.org/abstracts/search?q=Isha%20Korgaonkar"> Isha Korgaonkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Maya%20MacAdams"> Maya MacAdams</a>, <a href="https://publications.waset.org/abstracts/search?q=Udgita%20Pamidigantam"> Udgita Pamidigantam</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Pilny"> Richard Pilny</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleanor%20Race"> Eleanor Race</a>, <a href="https://publications.waset.org/abstracts/search?q=Angadh%20Singh"> Angadh Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathan%20Zhang"> Nathan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=LeeAnn%20Nguyen"> LeeAnn Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Fina%20Liotta"> Fina Liotta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaria is a deadly disease caused by the Plasmodium parasite, which continues to develop resistance to current antimalarial drugs. In this research project, the effectiveness of numerous thiazole derivatives was explored in inhibiting the PfPKG, a crucial part of the Plasmodium life cycle. This study involved the synthesis of six thiazole-derived amides to inhibit the PfPKG pathway. Nuclear Magnetic Resonance (NMR) spectroscopy and Infrared (IR) spectroscopy were used to characterize these compounds. Furthermore, AutoDocking software was used to predict binding affinities of these thiazole-derived amides in silico. In silico, compound 6 exhibited the highest predicted binding affinity to PfPKG, while compound 5 had the lowest affinity. Compounds 1-4 displayed varying degrees of predicted binding affinity. In-vitro, it was found that compound 4 had the best percent inhibition, while compound 5 had the worst percent inhibition. Overall, all six compounds had weak inhibition (approximately 30-39% at 10 μM), but these results provide a foundation for future drug discovery experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Medicinal%20Chemistry" title="Medicinal Chemistry">Medicinal Chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaria" title=" Malaria"> Malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20discovery" title=" drug discovery"> drug discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=PfPKG" title=" PfPKG"> PfPKG</a>, <a href="https://publications.waset.org/abstracts/search?q=Thiazole" title=" Thiazole"> Thiazole</a>, <a href="https://publications.waset.org/abstracts/search?q=Plasmodium" title=" Plasmodium"> Plasmodium</a> </p> <a href="https://publications.waset.org/abstracts/174021/combating-malaria-a-drug-discovery-approach-using-thiazole-derivatives-against-prolific-parasite-enzyme-pfpkg" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Densities and Volumetric Properties of {Difurylmethane + [(C5 – C8) N-Alkane or an Amide]} Binary Systems at 293.15, 298.15 and 303.15 K: Modelling Excess Molar Volumes by Prigogine-Flory-Patterson Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belcher%20Fulele">Belcher Fulele</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20A.%20Ddamba"> W. A. A. Ddamba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study of solvent systems contributes to the understanding of intermolecular interactions that occur in binary mixtures. These interactions involves among others strong dipole-dipole interactions and weak van de Waals interactions which are of significant application in pharmaceuticals, solvent extractions, design of reactors and solvent handling and storage processes. Binary mixtures of solvents can thus be used as a model to interpret thermodynamic behavior that occur in a real solution mixture. Densities of pure DFM, n-alkanes (n-pentane, n-hexane, n-heptane and n-octane) and amides (N-methylformamide, N-ethylformamide, N,N-dimethylformamide and N,N-dimethylacetamide) as well as their [DFM + ((C5-C8) n-alkane or amide)] binary mixtures over the entire composition range, have been reported at temperature 293.15, 298.15 and 303.15 K and atmospheric pressure. These data has been used to derive the thermodynamic properties: the excess molar volume of solution, apparent molar volumes, excess partial molar volumes, limiting excess partial molar volumes, limiting partial molar volumes of each component of a binary mixture. The results are discussed in terms of possible intermolecular interactions and structural effects that occur in the binary mixtures. The variation of excess molar volume with DFM composition for the [DFM + (C5-C7) n-alkane] binary mixture exhibit a sigmoidal behavior while for the [DFM + n-octane] binary system, positive deviation of excess molar volume function was observed over the entire composition range. For each of the [DFM + (C5-C8) n-alkane] binary mixture, the excess molar volume exhibited a fall with increase in temperature. The excess molar volume for each of [DFM + (NMF or NEF or DMF or DMA)] binary system was negative over the entire DFM composition at each of the three temperatures investigated. The negative deviations in excess molar volume values follow the order: DMA > DMF > NEF > NMF. Increase in temperature has a greater effect on component self-association than it has on complex formation between molecules of components in [DFM + (NMF or NEF or DMF or DMA)] binary mixture which shifts complex formation equilibrium towards complex to give a drop in excess molar volume with increase in temperature. The Prigogine-Flory-Patterson model has been applied at 298.15 K and reveals that the free volume is the most important contributing term to the excess experimental molar volume data for [DFM + (n-pentane or n-octane)] binary system. For [DFM + (NMF or DMF or DMA)] binary mixture, the interactional term and characteristic pressure term contributions are the most important contributing terms in describing the sign of experimental excess molar volume. The mixture systems contributed to the understanding of interactions of polar solvents with proteins (amides) with non-polar solvents (alkanes) in biological systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkanes" title="alkanes">alkanes</a>, <a href="https://publications.waset.org/abstracts/search?q=amides" title=" amides"> amides</a>, <a href="https://publications.waset.org/abstracts/search?q=excess%20thermodynamic%20parameters" title=" excess thermodynamic parameters"> excess thermodynamic parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=Prigogine-Flory-Patterson%20model" title=" Prigogine-Flory-Patterson model"> Prigogine-Flory-Patterson model</a> </p> <a href="https://publications.waset.org/abstracts/40809/densities-and-volumetric-properties-of-difurylmethane-c5-c8-n-alkane-or-an-amide-binary-systems-at-29315-29815-and-30315-k-modelling-excess-molar-volumes-by-prigogine-flory-patterson-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Rh(III)-Catalyzed Cross-Coupling Reaction of 8-Methylquinolines with Maleimides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangil%20Han">Sangil Han</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Su%20Kim"> In Su Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transition-metal-catalyzed C–H bond activation and its subsequent functionalization has been one of the most attractive topics in organic synthesis because of its remarkable potential for atom economy and environmental sustainability. In this addition, a variety of C(sp2)–H functionalization has been developed under metal catalysis in the past decade. Recently, much attention has been moved towards the C(sp3)–H functionalization events, which continue to be a challenging issue. In this area, directing group assisted sp3 C–H functionalization has been explored by use of amides, carboxylic acids, oximes, N-heterocycles, and etc. In particular, 8-methylquinolines have been found as good substrates for sp3 C–H functionalization due to its ability to form cyclometalated complexes. Succinimides have been recognized as privileged structural cores found in a number of bioactive natural products, pharmaceuticals, and functional materials. Furthermore, the reduced derivatives such as pyrrolidines and γ-lactams have been also found in a large number of pharmaceutical relevant molecules, thus making them one of the most important and promising compounds. We herein describe the first C(sp3)–H activation of 8-methylquinolines and subsequent functionalization with maleimides to afford various succinimide derivatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C%28sp3%29%E2%80%93H%20activation" title="C(sp3)–H activation">C(sp3)–H activation</a>, <a href="https://publications.waset.org/abstracts/search?q=8-methylquinolines" title=" 8-methylquinolines"> 8-methylquinolines</a>, <a href="https://publications.waset.org/abstracts/search?q=maleimides" title=" maleimides"> maleimides</a>, <a href="https://publications.waset.org/abstracts/search?q=succinimides" title=" succinimides"> succinimides</a> </p> <a href="https://publications.waset.org/abstracts/58548/rhiii-catalyzed-cross-coupling-reaction-of-8-methylquinolines-with-maleimides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Biosynthesis of Titanium Dioxide Nanoparticles and Their Antibacterial Property</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prachi%20Singh">Prachi Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a low-cost, eco-friendly and reproducible microbe mediated biosynthesis of TiO<sub>2</sub> nanoparticles. TiO<sub>2</sub> nanoparticles synthesized using the bacterium, <em>Bacillus subtilis</em>, from titanium as a precursor, were confirmed by TEM analysis. The morphological characteristics state spherical shape, with the size of individual or aggregate nanoparticles, around 30-40 nm. Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. Here, the antibacterial effect of TiO<sub>2</sub> nanoparticles on <em>Escherichia coli</em> was investigated, which was confirmed by CFU (Colony-forming unit). Further, growth curve study of <em>E. coli</em> Hb101 in the presence and absence of TiO<sub>2</sub> nanoparticles was done. Optical density decrease was observed with the increase in the concentration of TiO<sub>2</sub>. It could be attributed to the inactivation of cellular enzymes and DNA by binding to electron-donating groups such as carboxylates, amides, indoles, hydroxyls, thiols, etc. which cause little pores in bacterial cell walls, leading to increased permeability and cell death. This justifies that TiO<sub>2</sub> nanoparticles have efficient antibacterial effect and have potential to be used as an antibacterial agent for different purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20effect" title="antibacterial effect">antibacterial effect</a>, <a href="https://publications.waset.org/abstracts/search?q=CFU" title=" CFU"> CFU</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20Hb101" title=" Escherichia coli Hb101"> Escherichia coli Hb101</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20curve" title=" growth curve"> growth curve</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticle" title=" TiO2 nanoparticle"> TiO2 nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=Toxicity" title=" Toxicity"> Toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-Vis" title=" UV-Vis"> UV-Vis</a> </p> <a href="https://publications.waset.org/abstracts/42377/biosynthesis-of-titanium-dioxide-nanoparticles-and-their-antibacterial-property" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Theoretical Study of Acetylation of P-Methylaniline Catalyzed by Cu²⁺ Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silvana%20Caglieri">Silvana Caglieri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Theoretical study of acetylation of p-methylaniline catalyzed by Cu2+ ions from the analysis of intermediate of the reaction was carried out. The study of acetylation of amines is of great interest by the utility of its products of reaction and is one of the most frequently used transformations in organic synthesis as it provides an efficient and inexpensive means for protecting amino groups in a multistep synthetic process. Acetylation of amine is a nucleophilic substitution reaction. This reaction can be catalyzed by Lewis acid, metallic ion. In reaction mechanism, the metallic ion formed a complex with the oxygen of the acetic anhydride carbonyl, facilitating the polarization of the same and the successive addition of amine at the position to form a tetrahedral intermediate, determining step of the rate of the reaction. Experimental work agreed that this reaction takes place with the formation of a tetrahedral intermediate. In the present theoretical work were investigated the structure and energy of the tetrahedral intermediate of the reaction catalyzed by Cu2+ ions. Geometries of all species involved in the acetylation were made and identified. All of the geometry optimizations were performed by the method at the DFT/B3LYP level of theory and the method MP2. Were adopted the 6-31+G* basis sets. Energies were calculated using the Mechanics-UFF method. Following the same procedure it was identified the geometric parameters and energy of reaction intermediate. The calculations show 61.35 kcal/mol of energy for the tetrahedral intermediate and the energy of activation for the reaction was 15.55 kcal/mol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amides" title="amides">amides</a>, <a href="https://publications.waset.org/abstracts/search?q=amines" title=" amines"> amines</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=MP2" title=" MP2"> MP2</a> </p> <a href="https://publications.waset.org/abstracts/56510/theoretical-study-of-acetylation-of-p-methylaniline-catalyzed-by-cu2-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Recovery and Εncapsulation of Μarine Derived Antifouling Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marina%20Stramarkou">Marina Stramarkou</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Papadaki"> Sofia Papadaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Kaloupi"> Maria Kaloupi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Batzakas"> Ioannis Batzakas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biofouling is a complex problem of the aquaculture industry, as it reduces the efficiency of the equipment and causes significant losses of cultured organisms. Nowadays, the current antifouling methods are proved to be labor intensive, have limited lifetime and use toxic substances that result in fish mortality. Several species of marine algae produce a wide variety of biogenic compounds with antibacterial and antifouling properties, which are effective in the prevention and control of biofouling and can be incorporated in antifouling coatings. In the present work, Fucus spiralis, a species of macro algae, and Chlorella vulgaris, a well-known species of microalgae, were used for the isolation and recovery of bioactive compounds, belonging to groups of fatty acids, lipopeptides and amides. The recovery of the compounds was achieved through the application of the ultrasound- assisted extraction, an environmentally friendly method, using green, non-toxic solvents. Moreover, the coating of the antifouling agents was done by innovative encapsulation and coating methods, such as electro-hydrodynamic process. For the encapsulation of the bioactive compounds natural matrices were used, such as polysaccharides and proteins. Water extracts that were incorporated in protein matrices were considered the most efficient antifouling coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound-assisted%20extraction" title=" ultrasound-assisted extraction"> ultrasound-assisted extraction</a> </p> <a href="https://publications.waset.org/abstracts/69052/recovery-and-encapsulation-of-marine-derived-antifouling-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Synthesis of (S)-Naproxen Based Amide Bond Forming Chiral Reagent and Application for Liquid Chromatographic Resolution of (RS)-Salbutamol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Poonam%20Malik">Poonam Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Bhushan"> Ravi Bhushan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work describes a very efficient approach for synthesis of activated ester of (S)-naproxen which was characterized by UV, IR, ¹HNMR, elemental analysis and polarimetric studies. It was used as a C-N bond forming chiral derivatizing reagent for further synthesis of diastereomeric amides of (RS)-salbutamol (a β₂ agonist that belongs to the group β-adrenolytic and is marketed as racamate) under microwave irradiation. The diastereomeric pair was separated by achiral phase HPLC, using mobile phase in gradient mode containing methanol and aqueous triethylaminephosphate (TEAP); separation conditions were optimized with respect to pH, flow rate, and buffer concentration and the method of separation was validated as per International Council for Harmonisation (ICH) guidelines. The reagent proved to be very effective for on-line sensitive detection of the diastereomers with very low limit of detection (LOD) values of 0.69 and 0.57 ng mL⁻¹ for diastereomeric derivatives of (S)- and (R)-salbutamol, respectively. The retention times were greatly reduced (2.7 min) with less consumption of organic solvents and large (α) as compared to literature reports. Besides, the diastereomeric derivatives were separated and isolated by preparative HPLC; these were characterized and were used as standard reference samples for recording ¹HNMR and IR spectra for determining absolute configuration and elution order; it ensured the success of diastereomeric synthesis and established the reliability of enantioseparation and eliminated the requirement of pure enantiomer of the analyte which is generally not available. The newly developed reagent can suitably be applied to several other amino group containing compounds either from organic syntheses or pharmaceutical industries because the presence of (S)-Npx as a strong chromophore would allow sensitive detection.This work is significant not only in the area of enantioseparation and determination of absolute configuration of diastereomeric derivatives but also in the area of developing new chiral derivatizing reagents (CDRs). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chiral%20derivatizing%20reagent" title="chiral derivatizing reagent">chiral derivatizing reagent</a>, <a href="https://publications.waset.org/abstracts/search?q=naproxen" title=" naproxen"> naproxen</a>, <a href="https://publications.waset.org/abstracts/search?q=salbutamol" title=" salbutamol"> salbutamol</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/85586/synthesis-of-s-naproxen-based-amide-bond-forming-chiral-reagent-and-application-for-liquid-chromatographic-resolution-of-rs-salbutamol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fumihiro%20Ima">Fumihiro Ima</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Watanabe"> Shinichi Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Shingo%20Maeda"> Shingo Maeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Haruna%20Imai"> Haruna Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroki%20Niimi"> Hiroki Niimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is important to know growth rate of brain tumors before surgery because it influences treatment planning including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without administration of contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients and WHO grade 4 in 2 patients), meningioma WHO grade1 in 2 patients and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW-signals than that in low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW-signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amides" title="amides">amides</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20tumors" title=" brain tumors"> brain tumors</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20proliferation" title=" cell proliferation"> cell proliferation</a> </p> <a href="https://publications.waset.org/abstracts/157244/clinical-applications-of-amide-proton-transfer-magnetic-resonance-imaging-detection-of-brain-tumor-proliferative-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fumihiro%20Imai">Fumihiro Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Watanabe"> Shinichi Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Shingo%20Maeda"> Shingo Maeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Haruna%20Imai"> Haruna Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroki%20Niimi"> Hiroki Niimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is important to know the growth rate of brain tumors before surgery because it influences treatment planning, including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without the administration of a contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after a clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients, and WHO grade 4 in 2 patients), meningioma WHO grade 1 in 2 patients, and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW signals than that low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amides" title="amides">amides</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20tumors" title=" brain tumors"> brain tumors</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20proliferation" title=" cell proliferation"> cell proliferation</a> </p> <a href="https://publications.waset.org/abstracts/164452/clinical-applications-of-amide-proton-transfer-magnetic-resonance-imaging-detection-of-brain-tumor-proliferative-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Sustainable Production of Algae through Nutrient Recovery in the Biofuel Conversion Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bagnoud-Vel%C3%A1squez%20Mariluz">Bagnoud-Velásquez Mariluz</a>, <a href="https://publications.waset.org/abstracts/search?q=Damergi%20Eya"> Damergi Eya</a>, <a href="https://publications.waset.org/abstracts/search?q=Grandjean%20Dominique"> Grandjean Dominique</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9ric%20Vogel"> Frédéric Vogel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludwig%20Christian"> Ludwig Christian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sustainability of algae to biofuel processes is seriously affected by the energy intensive production of fertilizers. Large amounts of nitrogen and phosphorus are required for a large-scale production resulting in many cases in a negative impact of the limited mineral resources. In order to meet the algal bioenergy opportunity it appears crucial the promotion of processes applying a nutrient recovery and/or making use of renewable sources including waste. Hydrothermal (HT) conversion is a promising and suitable technology for microalgae to generate biofuels. Besides the fact that water is used as a “green” reactant and solvent and that no biomass drying is required, the technology offers a great potential for nutrient recycling. This study evaluated the possibility to treat the water HT effluent by the growth of microalgae while producing renewable algal biomass. As already demonstrated in previous works by the authors, the HT aqueous product besides having N, P and other important nutrients, presents a small fraction of organic compounds rarely studied. Therefore, extracted heteroaromatic compounds in the HT effluent were the target of the present research; they were profiled using GC-MS and LC-MS-MS. The results indicate the presence of cyclic amides, piperazinediones, amines and their derivatives. The most prominent nitrogenous organic compounds (NOC’s) in the extracts were carefully examined by their effect on microalgae, namely 2-pyrrolidinone and β-phenylethylamine (β-PEA). These two substances were prepared at three different concentrations (10, 50 and 150 ppm). This toxicity bioassay used three different microalgae strains: Phaeodactylum tricornutum, Chlorella sorokiniana and Scenedesmus vacuolatus. The confirmed IC50 was for all cases ca. 75ppm. Experimental conditions were set up for the growth of microalgae in the aqueous phase by adjusting the nitrogen concentration (the key nutrient for algae) to fit that one established for a known commercial medium. The values of specific NOC’s were lowered at concentrations of 8.5 mg/L 2-pyrrolidinone; 1mg/L δ-valerolactam and 0.5 mg/L β-PEA. The growth with the diluted HT solution was kept constant with no inhibition evidence. An additional ongoing test is addressing the possibility to apply an integrated water cleanup step making use of the existent hydrothermal catalytic facility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20process" title="hydrothermal process">hydrothermal process</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogenous%20organic%20compounds" title=" nitrogenous organic compounds"> nitrogenous organic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20recovery" title=" nutrient recovery"> nutrient recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20biomass" title=" renewable biomass"> renewable biomass</a> </p> <a href="https://publications.waset.org/abstracts/23561/sustainable-production-of-algae-through-nutrient-recovery-in-the-biofuel-conversion-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Thermosensitive Hydrogel Development for Its Possible Application in Cardiac Cell Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lina%20Paola%20Orozco%20Marin">Lina Paola Orozco Marin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuliet%20Montoya%20Osorio"> Yuliet Montoya Osorio</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Bustamante%20Osorno"> John Bustamante Osorno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ischemic events can culminate in acute myocardial infarction by irreversible cardiac lesions that cannot be restored due to the limited regenerative capacity of the heart. Cell therapy seeks to replace these injured or necrotic cells by transplanting healthy and functional cells. The therapeutic alternatives proposed by tissue engineering and cardiovascular regenerative medicine are the use of biomaterials to mimic the native extracellular medium, which is full of proteins, proteoglycans, and glycoproteins. The selected biomaterials must provide structural support to the encapsulated cells to avoid their migration and death in the host tissue. In this context, the present research work focused on developing a natural thermosensitive hydrogel, its physical and chemical characterization, and the determination of its biocompatibility in vitro. The hydrogel was developed by mixing hydrolyzed bovine and porcine collagen at 2% w/v, chitosan at 2.5% w/v, and beta-glycerolphosphate at 8.5% w/w and 10.5% w/w in magnetic stirring at 4°C. Once obtained, the thermosensitivity and gelation time were determined, incubating the samples at 37°C and evaluating them through the inverted tube method. The morphological characterization of the hydrogels was carried out through scanning electron microscopy. Chemical characterization was carried out employing infrared spectroscopy. The biocompatibility was determined using the MTT cytotoxicity test according to the ISO 10993-5 standard for the hydrogel’s precursors using the fetal human ventricular cardiomyocytes cell line RL-14. The RL-14 cells were also seeded on the top of the hydrogels, and the supernatants were subculture at different periods to their observation under a bright field microscope. Four types of thermosensitive hydrogels were obtained, which differ in their composition and concentration, called A1 (chitosan/bovine collagen/beta-glycerolphosphate 8.5%w/w), A2 (chitosan/porcine collagen/beta-glycerolphosphate 8.5%), B1 (chitosan/bovine collagen/beta-glycerolphosphate 10.5%) and B2 (chitosan/porcine collagen/beta-glycerolphosphate 10.5%). A1 and A2 had a gelation time of 40 minutes, and B1 and B2 had a gelation time of 30 minutes at 37°C. Electron micrographs revealed a three-dimensional internal structure with interconnected pores for the four types of hydrogels. This facilitates the exchange of nutrients, oxygen, and the exit of metabolites, allowing to preserve a microenvironment suitable for cell proliferation. In the infrared spectra, it was possible to observe the interaction that occurs between the amides of polymeric compounds with the phosphate groups of beta-glycerolphosphate. Finally, the biocompatibility tests indicated that cells in contact with the hydrogel or with each of its precursors are not affected in their proliferation capacity for a period of 16 days. These results show the potential of the hydrogel to increase the cell survival rate in the cardiac cell therapies under investigation. Moreover, the results lay the foundations for its characterization and biological evaluation in both in vitro and in vivo models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiac%20cell%20therapy" title="cardiac cell therapy">cardiac cell therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiac%20ischemia" title=" cardiac ischemia"> cardiac ischemia</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20polymers" title=" natural polymers"> natural polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=thermosensitive%20hydrogel" title=" thermosensitive hydrogel"> thermosensitive hydrogel</a> </p> <a href="https://publications.waset.org/abstracts/138689/thermosensitive-hydrogel-development-for-its-possible-application-in-cardiac-cell-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>