CINXE.COM

Search results for: differential

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: differential</title> <meta name="description" content="Search results for: differential"> <meta name="keywords" content="differential"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="differential" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="differential"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1637</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: differential</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1637</span> Noncommutative Differential Structure on Finite Groups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibtisam%20Masmali">Ibtisam Masmali</a>, <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Beggs"> Edwin Beggs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we take example of differential calculi, on the finite group A4. Then, we apply methods of non-commutative of non-commutative differential geometry to this example, and see how similar the results are to those of classical differential geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=di%EF%AC%80erential%20calculi" title="differential calculi">differential calculi</a>, <a href="https://publications.waset.org/abstracts/search?q=%EF%AC%81nite%20group%20A4" title=" finite group A4"> finite group A4</a>, <a href="https://publications.waset.org/abstracts/search?q=Christo%EF%AC%80el%20symbols" title=" Christoffel symbols"> Christoffel symbols</a>, <a href="https://publications.waset.org/abstracts/search?q=covariant%20derivative" title=" covariant derivative"> covariant derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=torsion%20compatible" title=" torsion compatible"> torsion compatible</a> </p> <a href="https://publications.waset.org/abstracts/3359/noncommutative-differential-structure-on-finite-groups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1636</span> Development of Extended Trapezoidal Method for Numerical Solution of Volterra Integro-Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuziyah%20Ishak">Fuziyah Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Norazura%20Ahmad"> Siti Norazura Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volterra integro-differential equations appear in many models for real life phenomena. Since analytical solutions for this type of differential equations are hard and at times impossible to attain, engineers and scientists resort to numerical solutions that can be made as accurately as possible. Conventionally, numerical methods for ordinary differential equations are adapted to solve Volterra integro-differential equations. In this paper, numerical solution for solving Volterra integro-differential equation using extended trapezoidal method is described. Formulae for the integral and differential parts of the equation are presented. Numerical results show that the extended method is suitable for solving first order Volterra integro-differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy" title="accuracy">accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20trapezoidal%20method" title=" extended trapezoidal method"> extended trapezoidal method</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=Volterra%20integro-differential%20equations" title=" Volterra integro-differential equations"> Volterra integro-differential equations</a> </p> <a href="https://publications.waset.org/abstracts/52856/development-of-extended-trapezoidal-method-for-numerical-solution-of-volterra-integro-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1635</span> Existence Result of Third Order Functional Random Integro-Differential Inclusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Palimkar">D. S. Palimkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The FRIGDI (functional random integrodifferential inclusion) seems to be new and includes several known random differential inclusions already studied in the literature as special cases have been discussed in the literature for various aspects of the solutions. In this paper, we prove the existence result for FIGDI under the non-convex case of multi-valued function involved in it.Using random fixed point theorem of B. C. Dhage and caratheodory condition. This result is new to the theory of differential inclusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caratheodory%20condition" title="caratheodory condition">caratheodory condition</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20differential%20inclusion" title=" random differential inclusion"> random differential inclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20solution" title=" random solution"> random solution</a>, <a href="https://publications.waset.org/abstracts/search?q=integro-differential%20inclusion" title=" integro-differential inclusion"> integro-differential inclusion</a> </p> <a href="https://publications.waset.org/abstracts/34570/existence-result-of-third-order-functional-random-integro-differential-inclusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1634</span> Integral Image-Based Differential Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kohei%20Inoue">Kohei Inoue</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenji%20Hara"> Kenji Hara</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiichi%20Urahama"> Kiichi Urahama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We describe a relationship between integral images and differential images. First, we derive a simple difference filter from conventional integral image. In the derivation, we show that an integral image and the corresponding differential image are related to each other by simultaneous linear equations, where the numbers of unknowns and equations are the same, and therefore, we can execute the integration and differentiation by solving the simultaneous equations. We applied the relationship to an image fusion problem, and experimentally verified the effectiveness of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integral%20images" title="integral images">integral images</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20images" title=" differential images"> differential images</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20filters" title=" differential filters"> differential filters</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20fusion" title=" image fusion"> image fusion</a> </p> <a href="https://publications.waset.org/abstracts/8531/integral-image-based-differential-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1633</span> On the Relation between λ-Symmetries and μ-Symmetries of Partial Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teoman%20Ozer">Teoman Ozer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozlem%20Orhan"> Ozlem Orhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study deals with symmetry group properties and conservation laws of partial differential equations. We give a geometrical interpretation of notion of μ-prolongations of vector fields and of the related concept of μ-symmetry for partial differential equations. We show that these are in providing symmetry reduction of partial differential equations and systems and invariant solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-symmetry" title="λ-symmetry">λ-symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BC-symmetry" title=" μ-symmetry"> μ-symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=invariant%20solution" title=" invariant solution"> invariant solution</a> </p> <a href="https://publications.waset.org/abstracts/59662/on-the-relation-between-l-symmetries-and-m-symmetries-of-partial-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1632</span> Reduced Differential Transform Methods for Solving the Fractional Diffusion Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yildiray%20Keskin">Yildiray Keskin</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Acan"> Omer Acan</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Akkus"> Murat Akkus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the solution of fractional diffusion equations is presented by means of the reduced differential transform method. Fractional partial differential equations have special importance in engineering and sciences. Application of reduced differential transform method to this problem shows the rapid convergence of the sequence constructed by this method to the exact solution. The numerical results show that the approach is easy to implement and accurate when applied to fractional diffusion equations. The method introduces a promising tool for solving many fractional partial differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20diffusion%20equations" title="fractional diffusion equations">fractional diffusion equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Caputo%20fractional%20derivative" title=" Caputo fractional derivative"> Caputo fractional derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20differential%20transform%20method" title=" reduced differential transform method"> reduced differential transform method</a>, <a href="https://publications.waset.org/abstracts/search?q=partial" title=" partial"> partial</a> </p> <a href="https://publications.waset.org/abstracts/17526/reduced-differential-transform-methods-for-solving-the-fractional-diffusion-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1631</span> Nonhomogeneous Linear Second Order Differential Equations and Resonance through Geogebra Program</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Maass">F. Maass</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Martin"> P. Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Olivares"> J. Olivares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is the application of the program GeoGebra in teaching the study of nonhomogeneous linear second order differential equations with constant coefficients. Different kind of functions or forces will be considered in the right hand side of the differential equations, in particular, the emphasis will be placed in the case of trigonometrical functions producing the resonance phenomena. In order to obtain this, the frequencies of the trigonometrical functions will be changed. Once the resonances appear, these have to be correlationated with the roots of the second order algebraic equation determined by the coefficients of the differential equation. In this way, the physics and engineering students will understand resonance effects and its consequences in the simplest way. A large variety of examples will be shown, using different kind of functions for the nonhomogeneous part of the differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=education" title="education">education</a>, <a href="https://publications.waset.org/abstracts/search?q=geogebra" title=" geogebra"> geogebra</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20differential%20equations" title=" ordinary differential equations"> ordinary differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance" title=" resonance"> resonance</a> </p> <a href="https://publications.waset.org/abstracts/90040/nonhomogeneous-linear-second-order-differential-equations-and-resonance-through-geogebra-program" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1630</span> Weak Solutions Of Stochastic Fractional Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lev%20Idels">Lev Idels</a>, <a href="https://publications.waset.org/abstracts/search?q=Arcady%20Ponosov"> Arcady Ponosov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stochastic fractional differential equations have recently attracted considerable attention, as they have been used to model real-world processes, which are subject to natural memory effects and measurement uncertainties. Compared to conventional hereditary differential equations, one of the advantages of fractional differential equations is related to more realistic geometric properties of their trajectories that do not intersect in the phase space. In this report, a Peano-like existence theorem for nonlinear stochastic fractional differential equations is proven under very general hypotheses. Several specific classes of equations are checked to satisfy these hypotheses, including delay equations driven by the fractional Brownian motion, stochastic fractional neutral equations and many others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay%20equations" title="delay equations">delay equations</a>, <a href="https://publications.waset.org/abstracts/search?q=operator%20methods" title=" operator methods"> operator methods</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20noise" title=" stochastic noise"> stochastic noise</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20solutions" title=" weak solutions"> weak solutions</a> </p> <a href="https://publications.waset.org/abstracts/146592/weak-solutions-of-stochastic-fractional-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1629</span> Generalization of Tau Approximant and Error Estimate of Integral Form of Tau Methods for Some Class of Ordinary Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Ma%E2%80%99ali">A. I. Ma’ali</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Adeniyi"> R. B. Adeniyi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Y.%20Badeggi"> A. Y. Badeggi</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Mohammed"> U. Mohammed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> An error estimation of the integrated formulation of the Lanczos tau method for some class of ordinary differential equations was reported. This paper is concern with the generalization of tau approximants and their corresponding error estimates for some class of ordinary differential equations (ODEs) characterized by m + s =3 (i.e for m =1, s=2; m=2, s=1; and m=3, s=0) where m and s are the order of differential equations and number of overdetermination, respectively. The general result obtained were validated with some numerical examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximant" title="approximant">approximant</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20estimate" title=" error estimate"> error estimate</a>, <a href="https://publications.waset.org/abstracts/search?q=tau%20method" title=" tau method"> tau method</a>, <a href="https://publications.waset.org/abstracts/search?q=overdetermination" title=" overdetermination"> overdetermination</a> </p> <a href="https://publications.waset.org/abstracts/16442/generalization-of-tau-approximant-and-error-estimate-of-integral-form-of-tau-methods-for-some-class-of-ordinary-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1628</span> Closed Form Exact Solution for Second Order Linear Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Otarod">Saeed Otarod</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a different simple and straight forward analysis a closed-form integral solution is found for nonhomogeneous second order linear ordinary differential equations, in terms of a particular solution of their corresponding homogeneous part. To find the particular solution of the homogeneous part, the equation is transformed into a simple Riccati equation from which the general solution of non-homogeneouecond order differential equation, in the form of a closed integral equation is inferred. The method works well in manyimportant cases, such as Schrödinger equation for hydrogen-like atoms. A non-homogenous second order linear differential equation has been solved as an extra example <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=explicit" title="explicit">explicit</a>, <a href="https://publications.waset.org/abstracts/search?q=linear" title=" linear"> linear</a>, <a href="https://publications.waset.org/abstracts/search?q=differential" title=" differential"> differential</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20form" title=" closed form"> closed form</a> </p> <a href="https://publications.waset.org/abstracts/185365/closed-form-exact-solution-for-second-order-linear-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1627</span> An Equivalence between a Harmonic Form and a Closed Co-Closed Differential Form in L^Q and Non-L^Q Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lina%20Wu">Lina Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%20Li"> Ye Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An equivalent relation between a harmonic form and a closed co-closed form is established on a complete non-compact manifold. This equivalence has been generalized for a differential k-form ω from Lq spaces to non-Lq spaces when q=2 in the context of p-balanced growth where p=2. Especially for a simple differential k-form on a complete non-compact manifold, the equivalent relation has been verified with the extended scope of q for from finite q-energy in Lq spaces to infinite q-energy in non-Lq spaces when with 2-balanced growth. Generalized Hadamard Theorem, Cauchy-Schwarz Inequality, and Calculus skills including Integration by Parts as well as Convergent Series have been applied as estimation techniques to evaluate growth rates for a differential form. In particular, energy growth rates as indicated by an appropriate power range in a selected test function lead to a balance between a harmonic differential form and a closed co-closed differential form. Research ideas and computational methods in this paper could provide an innovative way in the study of broadening Lq spaces to non-Lq spaces with a wide variety of infinite energy growth for a differential form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=closed%20forms" title="closed forms">closed forms</a>, <a href="https://publications.waset.org/abstracts/search?q=co-closed%20forms" title=" co-closed forms"> co-closed forms</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20forms" title=" harmonic forms"> harmonic forms</a>, <a href="https://publications.waset.org/abstracts/search?q=L%5Eq%20spaces" title=" L^q spaces"> L^q spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=p-balanced%20growth" title=" p-balanced growth"> p-balanced growth</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20differential%20k-forms" title=" simple differential k-forms"> simple differential k-forms</a> </p> <a href="https://publications.waset.org/abstracts/75417/an-equivalence-between-a-harmonic-form-and-a-closed-co-closed-differential-form-in-lq-and-non-lq-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1626</span> Strict Stability of Fuzzy Differential Equations by Lyapunov Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Bayram%20G%C3%BCcen">Mustafa Bayram Gücen</a>, <a href="https://publications.waset.org/abstracts/search?q=Co%C5%9Fkun%20Yakar"> Coşkun Yakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov&rsquo;s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20systems" title="fuzzy systems">fuzzy systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20differential%20equations" title=" fuzzy differential equations"> fuzzy differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20stability" title=" fuzzy stability"> fuzzy stability</a>, <a href="https://publications.waset.org/abstracts/search?q=strict%20stability" title=" strict stability"> strict stability</a> </p> <a href="https://publications.waset.org/abstracts/94432/strict-stability-of-fuzzy-differential-equations-by-lyapunov-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1625</span> Step Method for Solving Nonlinear Two Delays Differential Equation in Parkinson’s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20N.%20Agiza">H. N. Agiza</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Sohaly"> M. A. Sohaly</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Elfouly"> M. A. Elfouly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parkinson&#39;s disease (PD) is a heterogeneous disorder with common&nbsp;age&nbsp;of&nbsp;onset,&nbsp;symptoms,&nbsp;and progression levels. In this paper we will solve analytically the PD model as a non-linear delay differential equation using the steps method. The step method transforms a system of delay differential equations (DDEs) into systems of ordinary differential equations (ODEs). On some numerical examples, the analytical solution will be difficult. So we will approximate the analytical solution using Picard method and Taylor method to ODEs<em>.</em> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parkinson%27s%20disease" title="Parkinson&#039;s disease">Parkinson&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=step%20method" title=" step method"> step method</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20differential%20equation" title=" delay differential equation"> delay differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20delays" title=" two delays"> two delays</a> </p> <a href="https://publications.waset.org/abstracts/131976/step-method-for-solving-nonlinear-two-delays-differential-equation-in-parkinsons-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1624</span> Existence of positive periodic solutions for certain delay differential equations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farid%20Nouioua">Farid Nouioua</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelouaheb%20Ardjouni"> Abdelouaheb Ardjouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we study the existence of positive periodic solutions of certain delay differential equations. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ Krasnoselskii's fixed point theorem to obtain sufficient conditions for the existence of a positive periodic solution of the differential equation. The obtained results improve and extend the results in the literature. Finally, an example is given to illustrate our results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay%20differential%20equations" title="delay differential equations">delay differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20periodic%20solutions" title=" positive periodic solutions"> positive periodic solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20equations" title=" integral equations"> integral equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasnoselskii%20fixed%20point%20theorem" title=" Krasnoselskii fixed point theorem"> Krasnoselskii fixed point theorem</a> </p> <a href="https://publications.waset.org/abstracts/40904/existence-of-positive-periodic-solutions-for-certain-delay-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1623</span> Periodicity of Solutions of a Nonlinear Impulsive Differential Equation with Piecewise Constant Arguments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehtap%20Lafc%C4%B1">Mehtap Lafcı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, oscillation, periodicity and convergence of solutions of linear differential equations with piecewise constant arguments have been significantly considered but there are only a few papers for impulsive differential equations with piecewise constant arguments. In this paper, a first order nonlinear impulsive differential equation with piecewise constant arguments is studied and the existence of solutions and periodic solutions of this equation are investigated by using Carvalho’s method. Finally, an example is given to illustrate these results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carvalho%27s%20method" title="Carvalho&#039;s method">Carvalho&#039;s method</a>, <a href="https://publications.waset.org/abstracts/search?q=impulsive%20differential%20equation" title=" impulsive differential equation"> impulsive differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20solution" title=" periodic solution"> periodic solution</a>, <a href="https://publications.waset.org/abstracts/search?q=piecewise%20constant%20arguments" title=" piecewise constant arguments"> piecewise constant arguments</a> </p> <a href="https://publications.waset.org/abstracts/33745/periodicity-of-solutions-of-a-nonlinear-impulsive-differential-equation-with-piecewise-constant-arguments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1622</span> Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Sagir">A. M. Sagir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Discrete linear multistep block method of uniform order for the solution of first order Initial Value Problems (IVPs) in Ordinary Differential Equations (ODEs) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20method" title="block method">block method</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20order%20ordinary%20differential%20equations" title=" first order ordinary differential equations"> first order ordinary differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=self-starting" title=" self-starting "> self-starting </a> </p> <a href="https://publications.waset.org/abstracts/3426/numerical-treatment-of-block-method-for-the-solution-of-ordinary-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1621</span> Sufficient Conditions for Exponential Stability of Stochastic Differential Equations with Non Trivial Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fakhreddin%20Abedi">Fakhreddin Abedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wah%20June%20Leong"> Wah June Leong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exponential stability of stochastic differential equations with non trivial solutions is provided in terms of Lyapunov functions. The main result of this paper establishes that, under certain hypotheses for the dynamics f(.) and g(.), practical exponential stability in probability at the small neighborhood of the origin is equivalent to the existence of an appropriate Lyapunov function. Indeed, we establish exponential stability of stochastic differential equation when almost all the state trajectories are bounded and approach a sufficiently small neighborhood of the origin. We derive sufficient conditions for exponential stability of stochastic differential equations. Finally, we give a numerical example illustrating our results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exponential%20stability%20in%20probability" title="exponential stability in probability">exponential stability in probability</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20differential%20equations" title=" stochastic differential equations"> stochastic differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20technique" title=" Lyapunov technique"> Lyapunov technique</a>, <a href="https://publications.waset.org/abstracts/search?q=Ito%27s%20formula" title=" Ito&#039;s formula"> Ito&#039;s formula</a> </p> <a href="https://publications.waset.org/abstracts/184321/sufficient-conditions-for-exponential-stability-of-stochastic-differential-equations-with-non-trivial-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1620</span> Series Solutions to Boundary Value Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armin%20Ardekani">Armin Ardekani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Akbari"> Mohammad Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a method of generating series solutions to large classes of nonlinear differential equations. The method is well suited to be adapted in mathematical software and unlike the available commercial solvers, we are capable of generating solutions to boundary value ODEs and PDEs. Many of the generated solutions converge to closed form solutions. Our method can also be applied to systems of ODEs or PDEs, providing all the solutions efficiently. As examples, we present results to many difficult differential equations in engineering fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20mathematics" title="computational mathematics">computational mathematics</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20equations" title=" differential equations"> differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering" title=" engineering"> engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=series" title=" series"> series</a> </p> <a href="https://publications.waset.org/abstracts/54764/series-solutions-to-boundary-value-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1619</span> 11-Round Impossible Differential Attack on Midori64</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhan%20Chen">Zhan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenquan%20Bi"> Wenquan Bi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on examining the strength of Midori against impossible differential attack. The Midori family of light weight block cipher orienting to energy-efficiency is proposed in ASIACRYPT2015. Using a 6-round property, the authors implement an 11-round impossible differential attack on Midori64 by extending two rounds on the top and three rounds on the bottom. There is enough key space to consider pre-whitening keys in this attack. An impossible differential path that minimises the key bits involved is used to reduce computational complexity. Several additional observations such as partial abort technique are used to further reduce data and time complexities. This attack has data complexity of 2 ⁶⁹·² chosen plaintexts, requires 2 ¹⁴·⁵⁸ blocks of memory and 2 ⁹⁴·⁷ 11- round Midori64 encryptions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryptanalysis" title="cryptanalysis">cryptanalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=impossible%20differential" title=" impossible differential"> impossible differential</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20weight%20block%20cipher" title=" light weight block cipher"> light weight block cipher</a>, <a href="https://publications.waset.org/abstracts/search?q=Midori" title=" Midori"> Midori</a> </p> <a href="https://publications.waset.org/abstracts/67242/11-round-impossible-differential-attack-on-midori64" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1618</span> Differential Transform Method: Some Important Examples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Jamil%20Amir">M. Jamil Amir</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabia%20Iqbal"> Rabia Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Yaseen"> M. Yaseen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we solve some differential equations analytically by using differential transform method. For this purpose, we consider four models of Laplace equation with two Dirichlet and two Neumann boundary conditions and K(2,2) equation and obtain the corresponding exact solutions. The obtained results show the simplicity of the method and massive reduction in calculations when one compares it with other iterative methods, available in literature. It is worth mentioning that here only a few number of iterations are required to reach the closed form solutions as series expansions of some known functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20transform%20method" title="differential transform method">differential transform method</a>, <a href="https://publications.waset.org/abstracts/search?q=laplace%20equation" title=" laplace equation"> laplace equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirichlet%20boundary%20conditions" title=" Dirichlet boundary conditions"> Dirichlet boundary conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=Neumann%20boundary%20conditions" title=" Neumann boundary conditions"> Neumann boundary conditions</a> </p> <a href="https://publications.waset.org/abstracts/18605/differential-transform-method-some-important-examples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1617</span> Solution of Singularly Perturbed Differential Difference Equations Using Liouville Green Transformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20N.%20Reddy">Y. N. Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The class of differential-difference equations which have characteristics of both classes, i.e., delay/advance and singularly perturbed behaviour is known as singularly perturbed differential-difference equations. The expression ‘positive shift’ and ‘negative shift’ are also used for ‘advance’ and ‘delay’ respectively. In general, an ordinary differential equation in which the highest order derivative is multiplied by a small positive parameter and containing at least one delay/advance is known as singularly perturbed differential-difference equation. Singularly perturbed differential-difference equations arise in the modelling of various practical phenomena in bioscience, engineering, control theory, specifically in variational problems, in describing the human pupil-light reflex, in a variety of models for physiological processes or diseases and first exit time problems in the modelling of the determination of expected time for the generation of action potential in nerve cells by random synaptic inputs in dendrites. In this paper, we envisage the use of Liouville Green Transformation to find the solution of singularly perturbed differential difference equations. First, using Taylor series, the given singularly perturbed differential difference equation is approximated by an asymptotically equivalent singularly perturbation problem. Then the Liouville Green Transformation is applied to get the solution. Several model examples are solved, and the results are compared with other methods. It is observed that the present method gives better approximate solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=difference%20equations" title="difference equations">difference equations</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20equations" title=" differential equations"> differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20perturbations" title=" singular perturbations"> singular perturbations</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a> </p> <a href="https://publications.waset.org/abstracts/86176/solution-of-singularly-perturbed-differential-difference-equations-using-liouville-green-transformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1616</span> A Study on the Solutions of the 2-Dimensional and Forth-Order Partial Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Acan">O. Acan</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Keskin"> Y. Keskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we will carry out a comparative study between the reduced differential transform method, the adomian decomposition method, the variational iteration method and the homotopy analysis method. These methods are used in many fields of engineering. This is been achieved by handling a kind of 2-Dimensional and forth-order partial differential equations called the Kuramoto–Sivashinsky equations. Three numerical examples have also been carried out to validate and demonstrate efficiency of the four methods. Furthermost, it is shown that the reduced differential transform method has advantage over other methods. This method is very effective and simple and could be applied for nonlinear problems which used in engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reduced%20differential%20transform%20method" title="reduced differential transform method">reduced differential transform method</a>, <a href="https://publications.waset.org/abstracts/search?q=adomian%20decomposition%20method" title=" adomian decomposition method"> adomian decomposition method</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method" title=" variational iteration method"> variational iteration method</a>, <a href="https://publications.waset.org/abstracts/search?q=homotopy%20analysis%20method" title=" homotopy analysis method"> homotopy analysis method</a> </p> <a href="https://publications.waset.org/abstracts/17555/a-study-on-the-solutions-of-the-2-dimensional-and-forth-order-partial-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1615</span> Optimal Price Points in Differential Pricing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katerina%20Kormusheva">Katerina Kormusheva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pricing plays a pivotal role in the marketing discipline as it directly influences consumer perceptions, purchase decisions, and overall market positioning of a product or service. This paper seeks to expand current knowledge in the area of discriminatory and differential pricing, a main area of marketing research. The methodology includes developing a framework and a model for determining how many price points to implement in differential pricing. We focus on choosing the levels of differentiation, derive a function form of the model framework proposed, and lastly, test it empirically with data from a large-scale marketing pricing experiment of services in telecommunications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marketing" title="marketing">marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20pricing" title=" differential pricing"> differential pricing</a>, <a href="https://publications.waset.org/abstracts/search?q=price%20points" title=" price points"> price points</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/169535/optimal-price-points-in-differential-pricing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1614</span> Numerical Solution for Integro-Differential Equations by Using Quartic B-Spline Wavelet and Operational Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khosrow%20Maleknejad">Khosrow Maleknejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Rostami"> Yaser Rostami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, semi-orthogonal B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of integro-differential equations.The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this function are presented to reduce the solution of integro-differential equations to the solution of algebraic equations. Here we compute B-spline scaling functions of degree 4 and their dual, then we will show that by using them we have better approximation results for the solution of integro-differential equations in comparison with less degrees of scaling functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C4%B1ntegro-differential%20equations" title="ıntegro-differential equations">ıntegro-differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=quartic%20B-spline%20wavelet" title=" quartic B-spline wavelet"> quartic B-spline wavelet</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20matrices" title=" operational matrices"> operational matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20functions" title=" dual functions"> dual functions</a> </p> <a href="https://publications.waset.org/abstracts/5002/numerical-solution-for-integro-differential-equations-by-using-quartic-b-spline-wavelet-and-operational-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1613</span> Inverse Polynomial Numerical Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ogunrinde%20Roseline%20Bosede">Ogunrinde Roseline Bosede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development, analysis and implementation of an inverse polynomial numerical method which is well suitable for solving initial value problems in first order ordinary differential equations with applications to sample problems. We also present some basic concepts and fundamental theories which are vital to the analysis of the scheme. We analyzed the consistency, convergence, and stability properties of the scheme. Numerical experiments were carried out and the results compared with the theoretical or exact solution and the algorithm was later coded using MATLAB programming language. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20equations" title="differential equations">differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a>, <a href="https://publications.waset.org/abstracts/search?q=polynomial" title=" polynomial"> polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20value%20problem" title=" initial value problem"> initial value problem</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20equation" title=" differential equation"> differential equation</a> </p> <a href="https://publications.waset.org/abstracts/23505/inverse-polynomial-numerical-scheme-for-the-solution-of-initial-value-problems-in-ordinary-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1612</span> Engineering Optimization Using Two-Stage Differential Evolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Y.%20Tseng">K. Y. Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Y.%20Wu"> C. Y. Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper employs a heuristic algorithm to solve engineering problems including truss structure optimization and optimal chiller loading (OCL) problems. Two different type algorithms, real-valued differential evolution (DE) and modified binary differential evolution (MBDE), are successfully integrated and then can obtain better performance in solving engineering problems. In order to demonstrate the performance of the proposed algorithm, this study adopts each one testing case of truss structure optimization and OCL problems to compare the results of other heuristic optimization methods. The result indicates that the proposed algorithm can obtain similar or better solution in comparing with previous studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20evolution" title="differential evolution">differential evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=Truss%20structure%20optimization" title=" Truss structure optimization"> Truss structure optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20chiller%20loading" title=" optimal chiller loading"> optimal chiller loading</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20binary%20differential%20evolution" title=" modified binary differential evolution"> modified binary differential evolution</a> </p> <a href="https://publications.waset.org/abstracts/109896/engineering-optimization-using-two-stage-differential-evolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1611</span> The Analysis of Differential Item and Test Functioning between Sexes by Studying on the Scholastic Aptitude Test 2013</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Panwasn%20Mahalawalert">Panwasn Mahalawalert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purposes of this research were analyzed differential item functioning and differential test functioning of SWUSAT aptitude test classification by sex variable. The data used in this research is the secondary data from Srinakharinwirot University Scholastic Aptitude Test 2013 (SWUSAT). SWUSAT test consists of four subjects. There are verbal ability test, number ability test, reasoning ability test and spatial ability test. The data analysis was analyzed in 2 steps. The first step was analyzing descriptive statistics. In the second step were analyzed differential item functioning (DIF) and differential test functioning (DTF) by using the DIFAS program. The research results were as follows: The results of DIF and DTF analysis for all 10 tests in year 2013. Gender was the characteristic that found DIF all 10 tests. The percentage of item number that found DIF is between 6.67% - 60%. There are 5 tests that most of items favors female group and 2 tests that most of items favors male group. There are 3 tests that the number of items favors female group equal favors male group. For Differential test functioning (DTF), there are 8 tests that have small level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aptitude%20test" title="aptitude test">aptitude test</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20item%20functioning" title=" differential item functioning"> differential item functioning</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20test%20functioning" title=" differential test functioning"> differential test functioning</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20measurement" title=" educational measurement"> educational measurement</a> </p> <a href="https://publications.waset.org/abstracts/43030/the-analysis-of-differential-item-and-test-functioning-between-sexes-by-studying-on-the-scholastic-aptitude-test-2013" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1610</span> An Investigation of Differential Item and Test Functioning of Scholastic Aptitude Test 2011 (SWUSAT 2011)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruangdech%20Sirikit">Ruangdech Sirikit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purposes of this study were analyzed differential item functioning and differential test functioning of SWUSAT aptitude test classification by sex variable. The data used in this research is the secondary data from Srinakharinwirot University Scholastic Aptitude Test 2011 (SWUSAT 2011) SWUSAT test consists of four subjects. There are verbal ability test, number ability test, reasoning ability test and spatial ability test. The data analysis was carried out in 2 steps. The first step was analyzing descriptive statistics. In the second step were analyzed differential item functioning (DIF) and differential test functioning (DTF) by using the DIFAS program. The research results were as follows: The results of data analysis for all 10 tests in year 2011. Sex was the characteristic that found DIF all 10 tests. The percentage of item number that found DIF was between 10% - 46.67%. There are 4 tests that most of items favors female group. There are 3 tests that most of items favors male group and there are 3 tests that the number of items favors female group equal favors male group. For Differential test functioning (DTF), there are 8 tests that have small DIF effect variance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20item%20functioning" title="differential item functioning">differential item functioning</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20test%20functioning" title=" differential test functioning"> differential test functioning</a>, <a href="https://publications.waset.org/abstracts/search?q=SWUSAT" title=" SWUSAT"> SWUSAT</a>, <a href="https://publications.waset.org/abstracts/search?q=aptitude%20test" title=" aptitude test"> aptitude test</a> </p> <a href="https://publications.waset.org/abstracts/37499/an-investigation-of-differential-item-and-test-functioning-of-scholastic-aptitude-test-2011-swusat-2011" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">611</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1609</span> On the Approximate Solution of Continuous Coefficients for Solving Third Order Ordinary Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Sagir">A. M. Sagir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper derived four newly schemes which are combined in order to form an accurate and efficient block method for parallel or sequential solution of third order ordinary differential equations of the form y^'''= f(x,y,y^',y^'' ), y(α)=y_0,〖y〗^' (α)=β,y^('' ) (α)=μ with associated initial or boundary conditions. The implementation strategies of the derived method have shown that the block method is found to be consistent, zero stable and hence convergent. The derived schemes were tested on stiff and non-stiff ordinary differential equations, and the numerical results obtained compared favorably with the exact solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20method" title="block method">block method</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20multistep" title=" linear multistep"> linear multistep</a>, <a href="https://publications.waset.org/abstracts/search?q=self-starting" title=" self-starting"> self-starting</a>, <a href="https://publications.waset.org/abstracts/search?q=third%20order%20ordinary%20differential%20equations" title=" third order ordinary differential equations"> third order ordinary differential equations</a> </p> <a href="https://publications.waset.org/abstracts/3659/on-the-approximate-solution-of-continuous-coefficients-for-solving-third-order-ordinary-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1608</span> Algorithms Utilizing Wavelet to Solve Various Partial Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20Mredula">K. P. Mredula</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20C.%20Vakaskar"> D. C. Vakaskar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article traces developments and evolution of various algorithms developed for solving partial differential equations using the significant combination of wavelet with few already explored solution procedures. The approach depicts a study over a decade of traces and remarks on the modifications in implementing multi-resolution of wavelet, finite difference approach, finite element method and finite volume in dealing with a variety of partial differential equations in the areas like plasma physics, astrophysics, shallow water models, modified Burger equations used in optical fibers, biology, fluid dynamics, chemical kinetics etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-resolution" title="multi-resolution">multi-resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=Haar%20Wavelet" title=" Haar Wavelet"> Haar Wavelet</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equation" title=" partial differential equation"> partial differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a> </p> <a href="https://publications.waset.org/abstracts/59280/algorithms-utilizing-wavelet-to-solve-various-partial-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=differential&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=differential&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=differential&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=differential&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=differential&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=differential&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=differential&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=differential&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=differential&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=differential&amp;page=54">54</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=differential&amp;page=55">55</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=differential&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10