CINXE.COM

Moebius transformation in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Moebius transformation in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Moebius transformation </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/5787/#Item_10" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="group_theory">Group Theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/group+theory">group theory</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/group">group</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></li> <li><a class="existingWikiWord" href="/nlab/show/group+object">group object</a>, <a class="existingWikiWord" href="/nlab/show/group+object+in+an+%28%E2%88%9E%2C1%29-category">group object in an (∞,1)-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/abelian+group">abelian group</a>, <a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a></li> <li><a class="existingWikiWord" href="/nlab/show/super+abelian+group">super abelian group</a></li> <li><a class="existingWikiWord" href="/nlab/show/group+action">group action</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-action">∞-action</a></li> <li><a class="existingWikiWord" href="/nlab/show/representation">representation</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-representation">∞-representation</a></li> <li><a class="existingWikiWord" href="/nlab/show/progroup">progroup</a></li> <li><a class="existingWikiWord" href="/nlab/show/homogeneous+space">homogeneous space</a></li> </ul> <p><strong>Classical groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/general+linear+group">general linear group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/unitary+group">unitary group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/special+unitary+group">special unitary group</a>. <a class="existingWikiWord" href="/nlab/show/projective+unitary+group">projective unitary group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orthogonal+group">orthogonal group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/special+orthogonal+group">special orthogonal group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+group">symplectic group</a></p> </li> </ul> <p><strong>Finite groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/finite+group">finite group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+group">symmetric group</a>, <a class="existingWikiWord" href="/nlab/show/cyclic+group">cyclic group</a>, <a class="existingWikiWord" href="/nlab/show/braid+group">braid group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classification+of+finite+simple+groups">classification of finite simple groups</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sporadic+finite+simple+groups">sporadic finite simple groups</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Monster+group">Monster group</a>, <a class="existingWikiWord" href="/nlab/show/Mathieu+group">Mathieu group</a></li> </ul> </li> </ul> <p><strong>Group schemes</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebraic+group">algebraic group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+variety">abelian variety</a></p> </li> </ul> <p><strong>Topological groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+topological+group">compact topological group</a>, <a class="existingWikiWord" href="/nlab/show/locally+compact+topological+group">locally compact topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/maximal+compact+subgroup">maximal compact subgroup</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+group">string group</a></p> </li> </ul> <p><strong>Lie groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+Lie+group">compact Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kac-Moody+group">Kac-Moody group</a></p> </li> </ul> <p><strong>Super-Lie groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/super+Lie+group">super Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/super+Euclidean+group">super Euclidean group</a></p> </li> </ul> <p><strong>Higher groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-group">2-group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/crossed+module">crossed module</a>, <a class="existingWikiWord" href="/nlab/show/strict+2-group">strict 2-group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/n-group">n-group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/simplicial+group">simplicial group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/crossed+complex">crossed complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/k-tuply+groupal+n-groupoid">k-tuply groupal n-groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/circle+n-group">circle n-group</a>, <a class="existingWikiWord" href="/nlab/show/string+2-group">string 2-group</a>, <a class="existingWikiWord" href="/nlab/show/fivebrane+Lie+6-group">fivebrane Lie 6-group</a></p> </li> </ul> <p><strong>Cohomology and Extensions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/group+cohomology">group cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+extension">group extension</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group+extension">∞-group extension</a>, <a class="existingWikiWord" href="/nlab/show/Ext-group">Ext-group</a></p> </li> </ul> <p><strong>Related concepts</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/quantum+group">quantum group</a></li> </ul> </div></div> <h4 id="complex_geometry">Complex geometry</h4> <div class="hide"><div> <p><a class="existingWikiWord" href="/nlab/show/geometry">geometry</a>, <a class="existingWikiWord" href="/nlab/show/complex+numbers">complex numbers</a>, <a class="existingWikiWord" href="/nlab/show/complex+line">complex line</a></p> <p><strong><a class="existingWikiWord" href="/nlab/show/complex+geometry">complex geometry</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/complex+manifold">complex manifold</a>, <a class="existingWikiWord" href="/nlab/show/complex+structure">complex structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/complex+analytic+space">complex analytic space</a></p> </li> </ul> <h3 id="variants">Variants</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+complex+geometry">generalized complex geometry</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/complex+supermanifold">complex supermanifold</a></p> </li> </ul> <h3 id="structures">Structures</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Dolbeault+complex">Dolbeault complex</a>, <a class="existingWikiWord" href="/nlab/show/holomorphic+de+Rham+complex">holomorphic de Rham complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge+structure">Hodge structure</a>, <a class="existingWikiWord" href="/nlab/show/Hodge+filtration">Hodge filtration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge-filtered+differential+cohomology">Hodge-filtered differential cohomology</a></p> </li> </ul> <h3 id="examples">Examples</h3> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>dim</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">dim = 1</annotation></semantics></math>: <a class="existingWikiWord" href="/nlab/show/Riemann+surface">Riemann surface</a>, <a class="existingWikiWord" href="/nlab/show/super+Riemann+surface">super Riemann surface</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Calabi-Yau+manifold">Calabi-Yau manifold</a></p> <ul> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>dim</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">dim = 2</annotation></semantics></math>: <a class="existingWikiWord" href="/nlab/show/K3+surface">K3 surface</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+Calabi-Yau+manifold">generalized Calabi-Yau manifold</a></p> </li> </ul> </div></div> <h4 id="elliptic_cohomology">Elliptic cohomology</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/elliptic+cohomology">elliptic cohomology</a>, <a class="existingWikiWord" href="/nlab/show/tmf">tmf</a>, <a class="existingWikiWord" href="/nlab/show/string+theory">string theory</a></strong></p> <p><a class="existingWikiWord" href="/nlab/show/complex+oriented+cohomology+theory">complex oriented</a><a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a> of <a class="existingWikiWord" href="/nlab/show/chromatic+level">chromatic level</a> 2</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/elliptic+curve">elliptic curve</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/supersingular+elliptic+curve">supersingular elliptic curve</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+elliptic+curve">derived elliptic curve</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/moduli+stack+of+elliptic+curves">moduli stack of elliptic curves</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/modular+form">modular form</a>, <a class="existingWikiWord" href="/nlab/show/Jacobi+form">Jacobi form</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Eisenstein+series">Eisenstein series</a>, <a class="existingWikiWord" href="/nlab/show/j-invariant">j-invariant</a>, <a class="existingWikiWord" href="/nlab/show/Weierstrass+sigma-function">Weierstrass sigma-function</a>, <a class="existingWikiWord" href="/nlab/show/Dedekind+eta+function">Dedekind eta function</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/elliptic+genus">elliptic genus</a>, <a class="existingWikiWord" href="/nlab/show/Witten+genus">Witten genus</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+modular+form">topological modular form</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/string+orientation+of+tmf">string orientation of tmf</a></li> </ul> </li> </ul></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#crossratios'>Cross-ratios</a></li> <li><a href='#action_on_hyperbolic_space'>Action on hyperbolic space</a></li> </ul> <li><a href='#ModularGroup'>Modular group</a></li> <ul> <li><a href='#abstract_structure_of_modular_group'>Abstract structure of modular group</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/field">field</a>, and let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℙ</mi> <mn>1</mn></msup><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbb{P}^1(k)</annotation></semantics></math> be the <a class="existingWikiWord" href="/nlab/show/projective+line">projective line</a> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>. A <em>Möbius transformation</em> (also called a <em>homography</em>, a <em>linear fractional transformation</em>, or a <em>fractional linear transformation</em>) is a <a class="existingWikiWord" href="/nlab/show/function">function</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><msup><mi>ℙ</mi> <mn>1</mn></msup><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo>→</mo><msup><mi>ℙ</mi> <mn>1</mn></msup><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f: \mathbb{P}^1(k) \to \mathbb{P}^1(k)</annotation></semantics></math> defined by the rule</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></mrow><mrow><mi>c</mi><mi>x</mi><mo>+</mo><mi>d</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex"> f(x) = \frac{a x + b}{c x + d} </annotation></semantics></math></div> <p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>∈</mo><mi>k</mi></mrow><annotation encoding="application/x-tex">a, b, c, d \in k</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mi>d</mi><mo>−</mo><mi>b</mi><mi>c</mi><mo>∈</mo><msup><mi>k</mi> <mo>×</mo></msup></mrow><annotation encoding="application/x-tex">a d - b c \in k^\times</annotation></semantics></math> (the <a class="existingWikiWord" href="/nlab/show/group+of+units">group of units</a>). Möbius transformations form a <a class="existingWikiWord" href="/nlab/show/group">group</a> under <a class="existingWikiWord" href="/nlab/show/composition">composition</a>, <a class="existingWikiWord" href="/nlab/show/isomorphic">isomorphic</a> to the <a class="existingWikiWord" href="/nlab/show/projective+linear+group">projective linear group</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>PGL</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo>≔</mo><msub><mi>GL</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mo stretchy="false">{</mo><mi>λ</mi><mi>I</mi><mo>:</mo><mi>λ</mi><mo>∈</mo><msup><mi>k</mi> <mo>×</mo></msup><mo stretchy="false">}</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> PGL_2(k) \coloneqq GL_2(k)/\{\lambda I: \lambda \in k^\times\} \,. </annotation></semantics></math></div> <p>If, as in the case <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi><mo>=</mo><mi>ℂ</mi></mrow><annotation encoding="application/x-tex">k = \mathbb{C}</annotation></semantics></math> (<a class="existingWikiWord" href="/nlab/show/complex+numbers">complex numbers</a>), each element of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>k</mi> <mo>×</mo></msup></mrow><annotation encoding="application/x-tex">k^\times</annotation></semantics></math> has a <a class="existingWikiWord" href="/nlab/show/square+root">square root</a>, then this group is identified with the <a class="existingWikiWord" href="/nlab/show/projective+special+linear+group">projective special linear group</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>PSL</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo>≔</mo><msub><mi>SL</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mo>±</mo><mi>I</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> PSL_2(k) \coloneqq SL_2(k)/\pm I \,. </annotation></semantics></math></div> <p>Alternatively, a fractional linear transformation can be considered as synonymous with an <a class="existingWikiWord" href="/nlab/show/automorphism">automorphism</a> of the <a class="existingWikiWord" href="/nlab/show/field">field</a> of <a class="existingWikiWord" href="/nlab/show/rational+functions">rational functions</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">k(x)</annotation></semantics></math> as a field over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/transcendence+degree">transcendence degree</a> 1.</p> <p>In <a class="existingWikiWord" href="/nlab/show/complex+analysis">complex analysis</a> (which is the usual context when one speaks of Möbius transformations; otherwise one usually calls them by some combination of “linear” and “fractional”), Möbius transformations are precisely the <a class="existingWikiWord" href="/nlab/show/biholomorphisms">biholomorphisms</a> of the <a class="existingWikiWord" href="/nlab/show/Riemann+sphere">Riemann sphere</a>, hence exactly its <a class="existingWikiWord" href="/nlab/show/bijection">bijective</a> <a class="existingWikiWord" href="/nlab/show/conformal+transformations">conformal transformations</a>.</p> <p>Often, and particularly when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math> is the the <a class="existingWikiWord" href="/nlab/show/commutative+ring">commutative ring</a> of <a class="existingWikiWord" href="/nlab/show/integers">integers</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℤ</mi></mrow><annotation encoding="application/x-tex">\mathbb{Z}</annotation></semantics></math>, one considers a <em><a class="existingWikiWord" href="/nlab/show/modular+group">modular group</a></em> where the coefficients <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi></mrow><annotation encoding="application/x-tex">a, b, c, d</annotation></semantics></math> are assumed to lie in an <a class="existingWikiWord" href="/nlab/show/integral+domain">integral domain</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mi>d</mi><mo>−</mo><mi>b</mi><mi>c</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">a d - b c = 1</annotation></semantics></math>. (The <a class="existingWikiWord" href="/nlab/show/homotopy+quotient">homotopy quotient</a> of the <a class="existingWikiWord" href="/nlab/show/upper+half-plane">upper half-plane</a> by the group <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>PGL</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>ℤ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">PGL_2(\mathbb{Z})</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/moduli+stack+of+elliptic+curves">moduli stack of elliptic curves</a> over the <a class="existingWikiWord" href="/nlab/show/complex+numbers">complex numbers</a>.)</p> <h2 id="properties">Properties</h2> <h3 id="crossratios">Cross-ratios</h3> <div class="num_prop"> <h6 id="proposition">Proposition</h6> <p>The action <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>PGL</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo>×</mo><msup><mi>ℙ</mi> <mn>1</mn></msup><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo>→</mo><msup><mi>ℙ</mi> <mn>1</mn></msup><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">PGL_2(k) \times \mathbb{P}^1(k) \to \mathbb{P}^1(k)</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/transitive+action">3-transitive</a>, i.e., any triplet of distinct points <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a, b, c)</annotation></semantics></math> may be mapped to any other triplet of distinct points <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>′</mo><mo>,</mo><mi>b</mi><mo>′</mo><mo>,</mo><mi>c</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a', b', c')</annotation></semantics></math> by applying a group element.</p> </div> <div class="proof"> <h6 id="proof">Proof</h6> <p>It suffices to consider <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>′</mo><mo>=</mo><mn>0</mn><mo>,</mo><mi>b</mi><mo>′</mo><mo>=</mo><mn>1</mn><mo>,</mo><mi>c</mi><mo>′</mo><mo>=</mo><mn>∞</mn></mrow><annotation encoding="application/x-tex">a' = 0, b' = 1, c' = \infty</annotation></semantics></math> where one applies the transformation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>↦</mo><mfrac><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>b</mi><mo>−</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>−</mo><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>b</mi><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo></mrow></mfrac></mrow><annotation encoding="application/x-tex">x \mapsto \frac{(x-a)(b-c)}{(x-c)(b-a)}</annotation></semantics></math>.</p> </div> <p>This motivates the following definition: given a 4-tuple <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a, b, c, d)</annotation></semantics></math> of distinct points in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℙ</mi> <mn>1</mn></msup><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbb{P}^1(k)</annotation></semantics></math>, its <em>cross-ratio</em> is</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>γ</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mrow><mo stretchy="false">(</mo><mi>d</mi><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>b</mi><mo>−</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><mrow><mo stretchy="false">(</mo><mi>d</mi><mo>−</mo><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>b</mi><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo></mrow></mfrac><mo>.</mo></mrow><annotation encoding="application/x-tex">\gamma(a, b, c, d) = \frac{(d-a)(b-c)}{(d-c)(b-a)}.</annotation></semantics></math></div> <p>It is not hard to see that the group action preserves the cross-ratio, i.e., <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>γ</mi><mo stretchy="false">(</mo><mi>g</mi><mo>⋅</mo><mi>a</mi><mo>,</mo><mi>g</mi><mo>⋅</mo><mi>b</mi><mo>,</mo><mi>g</mi><mo>⋅</mo><mi>c</mi><mo>,</mo><mi>g</mi><mo>⋅</mo><mi>d</mi><mo stretchy="false">)</mo><mo>=</mo><mi>γ</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\gamma(g \cdot a, g \cdot b, g \cdot c, g \cdot d) = \gamma(a, b, c, d)</annotation></semantics></math>. Moreover, the group action is transitive on each cross-ratio-equivalence class of 4-tuples.</p> <p>In the case <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi><mo>=</mo><mi>ℂ</mi></mrow><annotation encoding="application/x-tex">k = \mathbb{C}</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℙ</mi> <mn>1</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{P}^1</annotation></semantics></math> is interpreted as the Riemann sphere, it turns out that the cross-ratio of a 4-tuple is a <a class="existingWikiWord" href="/nlab/show/real+number">real number</a> if and only if the four points lie on a <a class="existingWikiWord" href="/nlab/show/circle">circle</a> (or a line which is a circle passing through <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>). Hence Möbius = conformal transformations take circles to circles.</p> <h3 id="action_on_hyperbolic_space">Action on hyperbolic space</h3> <p>As explained at <a class="existingWikiWord" href="/nlab/show/Poincare+group">Poincare group</a>, the group <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>PSL</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>ℂ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">PSL_2(\mathbb{C})</annotation></semantics></math> can be identified with those <a class="existingWikiWord" href="/nlab/show/linear+transformations">linear transformations</a> of Minkowski space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^4</annotation></semantics></math> that preserve the Minkowski <a class="existingWikiWord" href="/nlab/show/quadratic+form">form</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Q</mi></mrow><annotation encoding="application/x-tex">Q</annotation></semantics></math>, are <a class="existingWikiWord" href="/nlab/show/orientation">orientation</a>-preserving, and take the forward <a class="existingWikiWord" href="/nlab/show/light+cone">light cone</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><mi>v</mi><mo>=</mo><mo stretchy="false">(</mo><mover><mi>x</mi><mo stretchy="false">→</mo></mover><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>:</mo><mi>Q</mi><mo stretchy="false">(</mo><mi>v</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{v = (\vec{x}, t): Q(v) = 0, t \gt 0\}</annotation></semantics></math> to itself. It follows that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>PSL</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>ℂ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">PSL_2(\mathbb{C})</annotation></semantics></math> acts on the hyperboloid sheet</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mn>3</mn></msup><mo>=</mo><mo stretchy="false">{</mo><mi>v</mi><mo>=</mo><mo stretchy="false">(</mo><mover><mi>x</mi><mo stretchy="false">→</mo></mover><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>:</mo><mi>Q</mi><mo stretchy="false">(</mo><mi>v</mi><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">H^3 = \{v = (\vec{x}, t): Q(v) = 1, t \gt 0\}</annotation></semantics></math></div> <p>which is naturally identified with hyperbolic 3-space. There is a Poincaré disk model for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mn>3</mn></msup></mrow><annotation encoding="application/x-tex">H^3</annotation></semantics></math>; consider the disk <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>D</mi> <mn>3</mn></msup></mrow><annotation encoding="application/x-tex">D^3</annotation></semantics></math> that is the intersection of the <a class="existingWikiWord" href="/nlab/show/future+cone">future cone</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><mi>v</mi><mo>=</mo><mo stretchy="false">(</mo><mover><mi>x</mi><mo stretchy="false">→</mo></mover><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>:</mo><mi>Q</mi><mo stretchy="false">(</mo><mi>v</mi><mo stretchy="false">)</mo><mo>≥</mo><mn>0</mn><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{v = (\vec{x}, t): Q(v) \geq 0, t \gt 0\}</annotation></semantics></math> with the hyperplane <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">t = 1</annotation></semantics></math>. Its interior is an open 3-disk <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>int</mi><mo stretchy="false">(</mo><msup><mi>D</mi> <mn>3</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">int(D^3)</annotation></semantics></math> which can be placed in perspective with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mn>3</mn></msup></mrow><annotation encoding="application/x-tex">H^3</annotation></semantics></math> by considering lines through the origin in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^4</annotation></semantics></math>: each line that passes through a unique point in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mn>3</mn></msup></mrow><annotation encoding="application/x-tex">H^3</annotation></semantics></math> passes through a unique point of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>int</mi><mo stretchy="false">(</mo><msup><mi>D</mi> <mn>3</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">int(D^3)</annotation></semantics></math>. In this way, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>D</mi> <mn>3</mn></msup></mrow><annotation encoding="application/x-tex">D^3</annotation></semantics></math> is viewed as a natural compactification of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mn>3</mn></msup></mrow><annotation encoding="application/x-tex">H^3</annotation></semantics></math>, and the action of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>PSL</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>ℂ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">PSL_2(\mathbb{C})</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mn>3</mn></msup></mrow><annotation encoding="application/x-tex">H^3</annotation></semantics></math> induces an action of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>PSL</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>ℂ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">PSL_2(\mathbb{C})</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>D</mi> <mn>3</mn></msup></mrow><annotation encoding="application/x-tex">D^3</annotation></semantics></math>. The restriction of this action to the boundary <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>2</mn></msup><mo>=</mo><mo>∂</mo><msup><mi>D</mi> <mn>3</mn></msup></mrow><annotation encoding="application/x-tex">S^2 = \partial D^3</annotation></semantics></math> (“the heavenly sphere”) coincides with the action on the Riemann sphere <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>2</mn></msup><mo>=</mo><msup><mi>ℙ</mi> <mn>1</mn></msup><mo stretchy="false">(</mo><mi>ℂ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">S^2 = \mathbb{P}^1(\mathbb{C})</annotation></semantics></math>.</p> <h2 id="ModularGroup">Modular group</h2> <p>The <em><a class="existingWikiWord" href="/nlab/show/modular+group">modular group</a></em> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Γ</mi></mrow><annotation encoding="application/x-tex">\Gamma</annotation></semantics></math> is the subgroup <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>PSL</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>ℤ</mi><mo stretchy="false">)</mo><mo>↪</mo><msub><mi>PSL</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>ℂ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">PSL_2(\mathbb{Z}) \hookrightarrow PSL_2(\mathbb{C})</annotation></semantics></math> consisting of Möbius transformations with <a class="existingWikiWord" href="/nlab/show/integer">integer</a> <a class="existingWikiWord" href="/nlab/show/coefficients">coefficients</a>, hence maps <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>z</mi><mo>↦</mo><mfrac><mrow><mi>a</mi><mi>z</mi><mo>+</mo><mi>b</mi></mrow><mrow><mi>c</mi><mi>z</mi><mo>+</mo><mi>d</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">z \mapsto \frac{a z + b}{c z + d}</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>∈</mo><mi>ℤ</mi></mrow><annotation encoding="application/x-tex">a, b, c, d \in \mathbb{Z}</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mi>d</mi><mo>−</mo><mi>b</mi><mi>c</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">a d - b c = 1</annotation></semantics></math>.</p> <p>The group <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>PSL</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>ℝ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">PSL_2(\mathbb{R})</annotation></semantics></math> acts on the <a class="existingWikiWord" href="/nlab/show/upper+half-plane">upper half-plane</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>H</mi><mo>=</mo><mo stretchy="false">{</mo><mi>z</mi><mo>∈</mo><mi>ℂ</mi><mo>:</mo><mi>Im</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo><mo>≥</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">H = \{z \in \mathbb{C}: Im(z) \geq 0\}</annotation></semantics></math> (or rather <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>H</mi><mo>∪</mo><mo stretchy="false">{</mo><mn>∞</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">H \cup \{\infty\}</annotation></semantics></math> as a <a class="existingWikiWord" href="/nlab/show/subspace">subspace</a> of the <a class="existingWikiWord" href="/nlab/show/Riemann+sphere">Riemann sphere</a>), by restriction of the action of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>PSL</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>ℂ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">PSL_2(\mathbb{C})</annotation></semantics></math> on the Riemann sphere. Indeed, the action of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>PSL</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>ℝ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">PSL_2(\mathbb{R})</annotation></semantics></math> takes the real line <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℝ</mi><mo>∪</mo><mo stretchy="false">{</mo><mn>∞</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\mathbb{R} \cup \{\infty\}</annotation></semantics></math> to itself, and any element <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mrow><mi>a</mi><mi>z</mi><mo>+</mo><mi>b</mi></mrow><mrow><mi>c</mi><mi>z</mi><mo>+</mo><mi>d</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">f(z) = \frac{a z + b}{c z + d}</annotation></semantics></math> takes <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>b</mi><mo>+</mo><mi>a</mi><mi>i</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>d</mi><mo>−</mo><mi>c</mi><mi>i</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mo stretchy="false">(</mo><msup><mi>c</mi> <mn>2</mn></msup><mo>+</mo><msup><mi>d</mi> <mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(b + a i)(d - c i)/(c^2 + d^2)</annotation></semantics></math>, whose imaginary part <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>ad</mi><mo>−</mo><mi>b</mi><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mo stretchy="false">(</mo><msup><mi>c</mi> <mn>2</mn></msup><mo>+</mo><msup><mi>d</mi> <mn>2</mn></msup><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn><mo stretchy="false">/</mo><mo stretchy="false">(</mo><msup><mi>c</mi> <mn>2</mn></msup><mo>+</mo><msup><mi>d</mi> <mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(ad - b c)/(c^2 + d^2) = 1/(c^2 + d^2)</annotation></semantics></math> is positive. By continuity it follows that the action preserves the sign of the imaginary part, hence takes the upper-half plane <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>H</mi></mrow><annotation encoding="application/x-tex">H</annotation></semantics></math> to itself.</p> <p>It is illuminating to think of complex numbers <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>τ</mi></mrow><annotation encoding="application/x-tex">\tau</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Im</mi><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">Im(\tau) \gt 0</annotation></semantics></math> as representing <a class="existingWikiWord" href="/nlab/show/elliptic+curves">elliptic curves</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math>. Indeed, the <a class="existingWikiWord" href="/nlab/show/field">field</a> of <a class="existingWikiWord" href="/nlab/show/meromorphic+functions">meromorphic functions</a> on an elliptic curve (i.e., a complex projective curve <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/genus">genus</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math>, or a <a class="existingWikiWord" href="/nlab/show/torus">torus</a> equipped with a structure of complex analytic 1-manifold) can be identified with a field of doubly periodic <a class="existingWikiWord" href="/nlab/show/holomorphic+functions">holomorphic functions</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℂ</mi><mo stretchy="false">/</mo><mi>L</mi><mo>→</mo><msup><mi>ℙ</mi> <mn>1</mn></msup><mo stretchy="false">(</mo><mi>ℂ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbb{C}/L \to \mathbb{P}^1(\mathbb{C})</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi><mo>=</mo><mo stretchy="false">⟨</mo><msub><mi>ω</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>ω</mi> <mn>2</mn></msub><mo stretchy="false">⟩</mo></mrow><annotation encoding="application/x-tex">L = \langle \omega_1, \omega_2\rangle</annotation></semantics></math> is a fundamental lattice (a discrete cocompact subgroup of the additive <a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℂ</mi></mrow><annotation encoding="application/x-tex">\mathbb{C}</annotation></semantics></math>) attached to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math>. In essence, this field is generated by <a class="existingWikiWord" href="/nlab/show/Weierstrass+elliptic+functions">Weierstrass elliptic functions</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>℘</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo><mo>,</mo><mi>℘</mi><mo>′</mo><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo><mo>:</mo><mi>ℂ</mi><mo stretchy="false">/</mo><mi>L</mi><mo>→</mo><msup><mi>ℙ</mi> <mn>1</mn></msup><mo stretchy="false">(</mo><mi>ℂ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\wp(z), \wp'(z): \mathbb{C}/L \to \mathbb{P}^1(\mathbb{C})</annotation></semantics></math> (here <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>℘</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">\wp'</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/derivative">derivative</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>℘</mi></mrow><annotation encoding="application/x-tex">\wp</annotation></semantics></math>) which satisfy a <a class="existingWikiWord" href="/nlab/show/cubic+curve">cubic algebraic relation</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>℘</mi><mo>′</mo><msup><mo stretchy="false">)</mo> <mn>2</mn></msup><mo>=</mo><mn>4</mn><msup><mi>℘</mi> <mn>3</mn></msup><mo>−</mo><msub><mi>g</mi> <mn>2</mn></msub><mi>℘</mi><mo>−</mo><msub><mi>g</mi> <mn>3</mn></msub></mrow><annotation encoding="application/x-tex">(\wp')^2 = 4\wp^3 - g_2\wp - g_3</annotation></semantics></math></div> <p>where the constants <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>g</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>g</mi> <mn>3</mn></msub></mrow><annotation encoding="application/x-tex">g_2, g_3</annotation></semantics></math> are expressed as certain <a class="existingWikiWord" href="/nlab/show/Eisenstein+series">Eisenstein series</a> in the fundamental periods <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ω</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>ω</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">\omega_1, \omega_2</annotation></semantics></math>. The <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℤ</mi></mrow><annotation encoding="application/x-tex">\mathbb{Z}</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/linear+basis">linear basis</a> elements <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ω</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>ω</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">\omega_1, \omega_2</annotation></semantics></math> of the <a class="existingWikiWord" href="/nlab/show/lattice">lattice</a> may be arranged so that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>τ</mi><mo>=</mo><msub><mi>ω</mi> <mn>2</mn></msub><mo stretchy="false">/</mo><msub><mi>ω</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">\tau = \omega_2/\omega_1</annotation></semantics></math> has positive imaginary part. Of course, if there is a <a class="existingWikiWord" href="/nlab/show/homothety">homothety</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>z</mi><mo>↦</mo><mi>λ</mi><mi>z</mi></mrow><annotation encoding="application/x-tex">z \mapsto \lambda z</annotation></semantics></math> that takes a lattice <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> to a lattice <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">L'</annotation></semantics></math>, then the elliptic curves <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi><mo>=</mo><mi>ℂ</mi><mo stretchy="false">/</mo><mi>L</mi></mrow><annotation encoding="application/x-tex">E = \mathbb{C}/L</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi><mo>′</mo><mo>=</mo><mi>ℂ</mi><mo stretchy="false">/</mo><mi>L</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">E' = \mathbb{C}/L'</annotation></semantics></math> are analytically isomorphic, so the map</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>τ</mi><mo>↦</mo><mi>ℂ</mi><mo stretchy="false">/</mo><mo stretchy="false">⟨</mo><mn>1</mn><mo>,</mo><mi>τ</mi><mo stretchy="false">⟩</mo></mrow><annotation encoding="application/x-tex">\tau \mapsto \mathbb{C}/\langle 1, \tau\rangle</annotation></semantics></math></div> <p>gives a surjection from complex numbers with positive imaginary part to isomorphism classes of smooth elliptic curves. Thus we may restrict attention to lattices of the form <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi><mo>=</mo><mo stretchy="false">⟨</mo><mn>1</mn><mo>,</mo><mi>τ</mi><mo stretchy="false">⟩</mo></mrow><annotation encoding="application/x-tex">L = \langle 1, \tau \rangle</annotation></semantics></math>.</p> <p>Of course, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> admits more than one such basis <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(1, \tau)</annotation></semantics></math>, but for any other <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mi>τ</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(1, \tau')</annotation></semantics></math> there is a <a class="existingWikiWord" href="/nlab/show/linear+transformation">linear transformation</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>γ</mi><mo>∈</mo><mi>Γ</mi><mo>≔</mo><msub><mi>PSL</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>ℤ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\gamma \in \Gamma \coloneqq PSL_2(\mathbb{Z})</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>γ</mi><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo><mo>=</mo><mi>τ</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">\gamma(\tau) = \tau'</annotation></semantics></math>. In summary, the <a class="existingWikiWord" href="/nlab/show/orbit+space">orbit space</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><mi>τ</mi><mo>∈</mo><mi>ℂ</mi><mo>:</mo><mi>Im</mi><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo><mo>&gt;</mo><mn>0</mn><mo stretchy="false">}</mo><mo stretchy="false">/</mo><mi>Γ</mi></mrow><annotation encoding="application/x-tex">\{\tau \in \mathbb{C}: Im(\tau) \gt 0\}/\Gamma</annotation></semantics></math></div> <p>is a coarse <a class="existingWikiWord" href="/nlab/show/moduli+space">moduli space</a> for elliptic curves. In this context, one often says that elliptic curves are paramatrized by the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>j</mi></mrow><annotation encoding="application/x-tex">j</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/j-invariant">invariant</a>, a certain <a class="existingWikiWord" href="/nlab/show/modular+form">modular form</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>j</mi><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">j(\tau)</annotation></semantics></math> defined on the upper half-plane such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>j</mi><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo><mo>=</mo><mi>j</mi><mo stretchy="false">(</mo><mi>τ</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">j(\tau) = j(\tau')</annotation></semantics></math> if and only if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>τ</mi><mo>′</mo><mo>=</mo><mi>γ</mi><mo>⋅</mo><mi>τ</mi></mrow><annotation encoding="application/x-tex">\tau' = \gamma \cdot \tau</annotation></semantics></math> for some <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>γ</mi><mo>∈</mo><mi>Γ</mi></mrow><annotation encoding="application/x-tex">\gamma \in \Gamma</annotation></semantics></math>.</p> <p>Of course, in some cases there may be more than one <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>γ</mi><mo>∈</mo><mi>Γ</mi></mrow><annotation encoding="application/x-tex">\gamma \in \Gamma</annotation></semantics></math> that fixes a given <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>τ</mi></mrow><annotation encoding="application/x-tex">\tau</annotation></semantics></math>; this is notably the case when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>τ</mi></mrow><annotation encoding="application/x-tex">\tau</annotation></semantics></math> is a fourth root of unity or a sixth root of unity. A more refined approach then is to consider, instead of the coarse orbit space, the (compactified) <a class="existingWikiWord" href="/nlab/show/moduli+stack">moduli stack</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>H</mi><mo>∪</mo><mo stretchy="false">{</mo><mn>∞</mn><mo stretchy="false">}</mo><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mo stretchy="false">/</mo><mi>Γ</mi></mrow><annotation encoding="application/x-tex">(H \cup \{\infty\})//\Gamma</annotation></semantics></math> for elliptic curves, as a central geometric object of interest.</p> <h3 id="abstract_structure_of_modular_group">Abstract structure of modular group</h3> <p>As an abstract <a class="existingWikiWord" href="/nlab/show/group">group</a>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Γ</mi><mo>=</mo><msub><mi>PSL</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>ℤ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Gamma = PSL_2(\mathbb{Z})</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/free+product">free product</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℤ</mi><mo stretchy="false">/</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>*</mo><mi>ℤ</mi><mo stretchy="false">/</mo><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbb{Z}/(2) \ast \mathbb{Z}/(3)</annotation></semantics></math>; explicitly, we may take the generator of order <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn></mrow><annotation encoding="application/x-tex">2</annotation></semantics></math> to be given by the Moebius transformation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>z</mi><mo>↦</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn><mo stretchy="false">/</mo><mi>z</mi></mrow><annotation encoding="application/x-tex">z \mapsto -1/z</annotation></semantics></math>, and the generator of order <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>3</mn></mrow><annotation encoding="application/x-tex">3</annotation></semantics></math> to be given by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>z</mi><mo>↦</mo><mo stretchy="false">(</mo><mi>z</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mi>z</mi></mrow><annotation encoding="application/x-tex">z \mapsto (z-1)/z</annotation></semantics></math>.</p> <p>This <a class="existingWikiWord" href="/nlab/show/concrete+group">concrete group</a> and certain of its subgroups, such as <a class="existingWikiWord" href="/nlab/show/congruence+subgroups">congruence subgroups</a>, are fairly ubiquitous; for example the modular group appears in the theory of <a href="http://ncatlab.org/nlab/show/continued+fraction#rational_tangles">rational tangles</a> and of <a class="existingWikiWord" href="/nlab/show/combinatorial+map">trivalent maps</a>, and these groups frequently crop up in the theory of buildings (stuff on hyperbolic buildings to be filled in).</p> <p>It is also worth pointing out that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Γ</mi></mrow><annotation encoding="application/x-tex">\Gamma</annotation></semantics></math> is a quotient of the <a class="existingWikiWord" href="/nlab/show/braid+group">braid group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>B</mi> <mn>3</mn></msub></mrow><annotation encoding="application/x-tex">B_3</annotation></semantics></math>. Consider the standard Artin presentation of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>B</mi> <mn>3</mn></msub></mrow><annotation encoding="application/x-tex">B_3</annotation></semantics></math>, with two generators <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>σ</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">\sigma_1</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>σ</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">\sigma_2</annotation></semantics></math> subject to the relation</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>σ</mi> <mn>1</mn></msub><msub><mi>σ</mi> <mn>2</mn></msub><msub><mi>σ</mi> <mn>1</mn></msub><mo>=</mo><msub><mi>σ</mi> <mn>2</mn></msub><msub><mi>σ</mi> <mn>1</mn></msub><msub><mi>σ</mi> <mn>2</mn></msub><mo>.</mo></mrow><annotation encoding="application/x-tex">\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2.</annotation></semantics></math></div> <p>Then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>z</mi><mo>≔</mo><mo stretchy="false">(</mo><msub><mi>σ</mi> <mn>1</mn></msub><msub><mi>σ</mi> <mn>2</mn></msub><msup><mo stretchy="false">)</mo> <mn>3</mn></msup></mrow><annotation encoding="application/x-tex">z \coloneqq (\sigma_1 \sigma_2)^3</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/center">central element</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>B</mi> <mn>3</mn></msub></mrow><annotation encoding="application/x-tex">B_3</annotation></semantics></math>, and there is a central extension</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mn>1</mn><mo>→</mo><mi>ℤ</mi><mover><mo>→</mo><mrow><mn>1</mn><mo>↦</mo><mi>z</mi></mrow></mover><msub><mi>B</mi> <mn>3</mn></msub><mover><mo>→</mo><mi>q</mi></mover><mi>Γ</mi><mo>→</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">1 \to \mathbb{Z} \stackrel{1 \mapsto z}{\to} B_3 \stackrel{q}{\to} \Gamma \to 1</annotation></semantics></math></div> <p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi></mrow><annotation encoding="application/x-tex">q</annotation></semantics></math> is the unique homomorphism mapping <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>σ</mi> <mn>1</mn></msub><msub><mi>σ</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">\sigma_1\sigma_2</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi><mi>z</mi><mo>.</mo><mo stretchy="false">(</mo><mi>z</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mi>z</mi></mrow><annotation encoding="application/x-tex">\lambda z. (z-1)/z</annotation></semantics></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>σ</mi> <mn>1</mn></msub><msub><mi>σ</mi> <mn>2</mn></msub><msub><mi>σ</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">\sigma_1\sigma_2\sigma_1</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi><mi>z</mi><mo>.</mo><mfrac><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow><mi>z</mi></mfrac></mrow><annotation encoding="application/x-tex">\lambda z. \frac{-1}{z}</annotation></semantics></math>.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/SL%282%2CZ%29">SL(2,Z)</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/conformal+group">conformal group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kleinian+group">Kleinian group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/elliptic+fibration">elliptic fibration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/congruence+subgroup">congruence subgroup</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/level+n+subgroup">level n subgroup</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/modular+equivariant+elliptic+cohomology">modular equivariant elliptic cohomology</a></p> </li> </ul> <h2 id="references">References</h2> <p>Named after <em><a class="existingWikiWord" href="/nlab/show/August+M%C3%B6bius">August Möbius</a></em>.</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Jean-Pierre+Serre">Jean-Pierre Serre</a>, §VII.1 of: <em>A Course in Arithmetic</em>, Graduate Texts in Mathematics <strong>7</strong>, Springer (1973) &lbrack;<a href="https://doi.org/10.1007/978-1-4684-9884-4">doi:10.1007/978-1-4684-9884-4</a>, <a href="https://www.math.purdue.edu/~jlipman/MA598/Serre-Course%20in%20Arithmetic.pdf">pdf</a>&rbrack;</li> </ul> <p>See also:</p> <ul> <li>Wikipedia, <em><a href="https://en.m.wikipedia.org/wiki/Projective_linear_group">Projective linear group</a></em></li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on March 13, 2025 at 14:01:23. See the <a href="/nlab/history/Moebius+transformation" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Moebius+transformation" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/5787/#Item_10">Discuss</a><span class="backintime"><a href="/nlab/revision/Moebius+transformation/21" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/Moebius+transformation" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/Moebius+transformation" accesskey="S" class="navlink" id="history" rel="nofollow">History (21 revisions)</a> <a href="/nlab/show/Moebius+transformation/cite" style="color: black">Cite</a> <a href="/nlab/print/Moebius+transformation" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Moebius+transformation" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10