CINXE.COM
方根 - 维基百科,自由的百科全书
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="zh" dir="ltr"> <head> <meta charset="UTF-8"> <title>方根 - 维基百科,自由的百科全书</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )zhwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"zh", "wgMonthNames":["","1月","2月","3月","4月","5月","6月","7月","8月","9月","10月","11月","12月"],"wgRequestId":"65efc55f-696a-41ec-bb6f-684e7a56db0a","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"方根","wgTitle":"方根","wgCurRevisionId":84256053,"wgRevisionId":84256053,"wgArticleId":557676,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["自2018年6月带有失效链接的条目","条目有永久失效的外部链接","初等代数","数字运算"],"wgPageViewLanguage":"zh","wgPageContentLanguage":"zh","wgPageContentModel":"wikitext","wgRelevantPageName":"方根","wgRelevantArticleId":557676,"wgUserVariant":"zh","wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true, "wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"zh","pageLanguageDir":"ltr","pageVariantFallbacks":["zh-hans","zh-hant","zh-cn","zh-tw","zh-hk","zh-sg","zh-mo","zh-my"]},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":8000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q601053","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.large-font":"ready","ext.globalCssJs.user.styles": "ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.edit0","ext.gadget.WikiMiniAtlas","ext.gadget.UnihanTooltips","ext.gadget.Difflink","ext.gadget.pseudonamespace-UI","ext.gadget.SpecialWikitext","ext.gadget.switcher","ext.gadget.VariantAlly","ext.gadget.AdvancedSiteNotices","ext.gadget.hideConversionTab","ext.gadget.internalLinkHelper-altcolor","ext.gadget.noteTA","ext.gadget.NavFrame","ext.gadget.collapsibleTables","ext.gadget.scrollUpButton", "ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=zh&modules=ext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=zh&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=zh&modules=ext.gadget.large-font&only=styles&skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=zh&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/b/ba/Nuvola_mimetypes_kformula_kfo.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/b/ba/Nuvola_mimetypes_kformula_kfo.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="方根 - 维基百科,自由的百科全书"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//zh.m.wikipedia.org/wiki/%E6%96%B9%E6%A0%B9"> <link rel="alternate" type="application/x-wiki" title="编辑本页" href="/w/index.php?title=%E6%96%B9%E6%A0%B9&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (zh)"> <link rel="EditURI" type="application/rsd+xml" href="//zh.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://zh.wikipedia.org/wiki/%E6%96%B9%E6%A0%B9"> <link rel="alternate" hreflang="zh" href="https://zh.wikipedia.org/wiki/%E6%96%B9%E6%A0%B9"> <link rel="alternate" hreflang="zh-Hans" href="https://zh.wikipedia.org/zh-hans/%E6%96%B9%E6%A0%B9"> <link rel="alternate" hreflang="zh-Hans-CN" href="https://zh.wikipedia.org/zh-cn/%E6%96%B9%E6%A0%B9"> <link rel="alternate" hreflang="zh-Hans-MY" href="https://zh.wikipedia.org/zh-my/%E6%96%B9%E6%A0%B9"> <link rel="alternate" hreflang="zh-Hans-SG" href="https://zh.wikipedia.org/zh-sg/%E6%96%B9%E6%A0%B9"> <link rel="alternate" hreflang="zh-Hant" href="https://zh.wikipedia.org/zh-hant/%E6%96%B9%E6%A0%B9"> <link rel="alternate" hreflang="zh-Hant-HK" href="https://zh.wikipedia.org/zh-hk/%E6%96%B9%E6%A0%B9"> <link rel="alternate" hreflang="zh-Hant-MO" href="https://zh.wikipedia.org/zh-mo/%E6%96%B9%E6%A0%B9"> <link rel="alternate" hreflang="zh-Hant-TW" href="https://zh.wikipedia.org/zh-tw/%E6%96%B9%E6%A0%B9"> <link rel="alternate" hreflang="x-default" href="https://zh.wikipedia.org/wiki/%E6%96%B9%E6%A0%B9"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.zh"> <link rel="alternate" type="application/atom+xml" title="Wikipedia的Atom feed" href="/w/index.php?title=Special:%E6%9C%80%E8%BF%91%E6%9B%B4%E6%94%B9&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-方根 rootpage-方根 skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">跳转到内容</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="站点"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="主菜单" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">主菜单</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">主菜单</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">隐藏</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> 导航 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:%E9%A6%96%E9%A1%B5" title="访问首页[z]" accesskey="z"><span>首页</span></a></li><li id="n-indexpage" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%88%86%E7%B1%BB%E7%B4%A2%E5%BC%95" title="以分类索引搜寻中文维基百科"><span>分类索引</span></a></li><li id="n-Featured_content" class="mw-list-item"><a href="/wiki/Portal:%E7%89%B9%E8%89%B2%E5%85%A7%E5%AE%B9" title="查看中文维基百科的特色内容"><span>特色内容</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:%E6%96%B0%E8%81%9E%E5%8B%95%E6%85%8B" title="提供当前新闻事件的背景资料"><span>新闻动态</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:%E6%9C%80%E8%BF%91%E6%9B%B4%E6%94%B9" title="列出维基百科中的最近修改[r]" accesskey="r"><span>最近更改</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:%E9%9A%8F%E6%9C%BA%E9%A1%B5%E9%9D%A2" title="随机载入一个页面[x]" accesskey="x"><span>随机条目</span></a></li> </ul> </div> </div> <div id="p-help" class="vector-menu mw-portlet mw-portlet-help" > <div class="vector-menu-heading"> 帮助 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:%E7%9B%AE%E5%BD%95" title="寻求帮助"><span>帮助</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:%E7%A4%BE%E7%BE%A4%E9%A6%96%E9%A1%B5" title="关于本计划、你可以做什么、应该如何做"><span>维基社群</span></a></li><li id="n-policy" class="mw-list-item"><a href="/wiki/Wikipedia:%E6%96%B9%E9%87%9D%E8%88%87%E6%8C%87%E5%BC%95" title="查看维基百科的方针和指引"><span>方针与指引</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:%E4%BA%92%E5%8A%A9%E5%AE%A2%E6%A0%88" title="参与维基百科社群的讨论"><span>互助客栈</span></a></li><li id="n-Information_desk" class="mw-list-item"><a href="/wiki/Wikipedia:%E7%9F%A5%E8%AF%86%E9%97%AE%E7%AD%94" title="解答任何与维基百科无关的问题的地方"><span>知识问答</span></a></li><li id="n-conversion" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%AD%97%E8%AF%8D%E8%BD%AC%E6%8D%A2" title="提出字词转换请求"><span>字词转换</span></a></li><li id="n-IRC" class="mw-list-item"><a href="/wiki/Wikipedia:IRC%E8%81%8A%E5%A4%A9%E9%A2%91%E9%81%93"><span>IRC即时聊天</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:%E8%81%94%E7%BB%9C%E6%88%91%E4%BB%AC" title="如何联络维基百科"><span>联络我们</span></a></li><li id="n-about" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%85%B3%E4%BA%8E" title="查看维基百科的简介"><span>关于维基百科</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikipedia:%E9%A6%96%E9%A1%B5" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="维基百科" src="/static/images/mobile/copyright/wikipedia-wordmark-zh.svg" style="width: 6.5625em; height: 1.375em;"> <img class="mw-logo-tagline" alt="自由的百科全书" src="/static/images/mobile/copyright/wikipedia-tagline-zh.svg" width="103" height="14" style="width: 6.4375em; height: 0.875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:%E6%90%9C%E7%B4%A2" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="搜索维基百科[f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>搜索</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="搜索维基百科" aria-label="搜索维基百科" autocapitalize="sentences" title="搜索维基百科[f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:搜索"> </div> <button class="cdx-button cdx-search-input__end-button">搜索</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="个人工具"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="外观"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="更改页面字体大小、宽度和颜色的外观" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="外观" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">外观</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?utm_source=donate&utm_medium=sidebar&utm_campaign=spontaneous&uselang=zh-hans" class=""><span>资助维基百科</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%E5%88%9B%E5%BB%BA%E8%B4%A6%E6%88%B7&returnto=%E6%96%B9%E6%A0%B9" title="我们推荐您创建账号并登录,但这不是强制性的" class=""><span>创建账号</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95&returnto=%E6%96%B9%E6%A0%B9" title="建议你登录,尽管并非必须。[o]" accesskey="o" class=""><span>登录</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="更多选项" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="个人工具" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">个人工具</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="用户菜单" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?utm_source=donate&utm_medium=sidebar&utm_campaign=spontaneous&uselang=zh-hans"><span>资助维基百科</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%E5%88%9B%E5%BB%BA%E8%B4%A6%E6%88%B7&returnto=%E6%96%B9%E6%A0%B9" title="我们推荐您创建账号并登录,但这不是强制性的"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>创建账号</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95&returnto=%E6%96%B9%E6%A0%B9" title="建议你登录,尽管并非必须。[o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>登录</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> 未登录编辑者的页面 <a href="/wiki/Help:%E6%96%B0%E6%89%8B%E5%85%A5%E9%97%A8" aria-label="了解有关编辑的更多信息"><span>了解详情</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:%E6%88%91%E7%9A%84%E8%B4%A1%E7%8C%AE" title="来自此IP地址的编辑列表[y]" accesskey="y"><span>贡献</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:%E6%88%91%E7%9A%84%E8%AE%A8%E8%AE%BA%E9%A1%B5" title="对于来自此IP地址编辑的讨论[n]" accesskey="n"><span>讨论</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="站点"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="目录" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">目录</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">隐藏</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">序言</div> </a> </li> <li id="toc-符号史" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#符号史"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>符号史</span> </div> </a> <ul id="toc-符号史-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-基本运算" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#基本运算"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>基本运算</span> </div> </a> <ul id="toc-基本运算-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-不尽根数" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#不尽根数"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>不尽根数</span> </div> </a> <ul id="toc-不尽根数-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-无穷级数" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#无穷级数"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>无穷级数</span> </div> </a> <ul id="toc-无穷级数-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-找到所有的方根" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#找到所有的方根"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>找到所有的方根</span> </div> </a> <button aria-controls="toc-找到所有的方根-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关找到所有的方根子章节</span> </button> <ul id="toc-找到所有的方根-sublist" class="vector-toc-list"> <li id="toc-正实数" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#正实数"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>正实数</span> </div> </a> <ul id="toc-正实数-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-解多项式" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#解多项式"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>解多项式</span> </div> </a> <ul id="toc-解多项式-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-算法" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#算法"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>算法</span> </div> </a> <button aria-controls="toc-算法-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关算法子章节</span> </button> <ul id="toc-算法-sublist" class="vector-toc-list"> <li id="toc-從牛頓法導出" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#從牛頓法導出"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>從牛頓法導出</span> </div> </a> <ul id="toc-從牛頓法導出-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-從牛頓二項式定理導出" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#從牛頓二項式定理導出"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>從牛頓二項式定理導出</span> </div> </a> <ul id="toc-從牛頓二項式定理導出-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-参见" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#参见"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>参见</span> </div> </a> <ul id="toc-参见-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-外部链接" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#外部链接"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>外部链接</span> </div> </a> <ul id="toc-外部链接-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="目录" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="开关目录" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">开关目录</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">方根</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="前往另一种语言写成的文章。69种语言可用" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-69" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">69种语言</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Wortelgetal" title="Wortelgetal – 南非荷兰语" lang="af" hreflang="af" data-title="Wortelgetal" data-language-autonym="Afrikaans" data-language-local-name="南非荷兰语" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AC%D8%B0%D8%B1_%D9%86%D9%88%D9%86%D9%8A" title="جذر نوني – 阿拉伯语" lang="ar" hreflang="ar" data-title="جذر نوني" data-language-autonym="العربية" data-language-local-name="阿拉伯语" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/K%C3%B6kalt%C4%B1" title="Kökaltı – 阿塞拜疆语" lang="az" hreflang="az" data-title="Kökaltı" data-language-autonym="Azərbaycanca" data-language-local-name="阿塞拜疆语" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Gamot_(matematika)" title="Gamot (matematika) – Central Bikol" lang="bcl" hreflang="bcl" data-title="Gamot (matematika)" data-language-autonym="Bikol Central" data-language-local-name="Central Bikol" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-be badge-Q17437798 badge-goodarticle mw-list-item" title="优良条目"><a href="https://be.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D0%B0%D0%BD%D1%8C_(%D0%BC%D0%B0%D1%82%D1%8D%D0%BC%D0%B0%D1%82%D1%8B%D0%BA%D0%B0)" title="Корань (матэматыка) – 白俄罗斯语" lang="be" hreflang="be" data-title="Корань (матэматыка)" data-language-autonym="Беларуская" data-language-local-name="白俄罗斯语" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D0%B5%D0%BD%D1%83%D0%B2%D0%B0%D0%BD%D0%B5" title="Коренуване – 保加利亚语" lang="bg" hreflang="bg" data-title="Коренуване" data-language-autonym="Български" data-language-local-name="保加利亚语" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/N-%E0%A6%A4%E0%A6%AE_%E0%A6%AE%E0%A7%82%E0%A6%B2" title="N-তম মূল – 孟加拉语" lang="bn" hreflang="bn" data-title="N-তম মূল" data-language-autonym="বাংলা" data-language-local-name="孟加拉语" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%98%D0%B7%D0%B0%D0%B3%D1%83%D1%83%D1%80_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Изагуур (математика) – Russia Buriat" lang="bxr" hreflang="bxr" data-title="Изагуур (математика)" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Arrel_en%C3%A8sima" title="Arrel enèsima – 加泰罗尼亚语" lang="ca" hreflang="ca" data-title="Arrel enèsima" data-language-autonym="Català" data-language-local-name="加泰罗尼亚语" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%95%DB%95%DA%AF%DB%8C_n%DB%95%D9%85" title="ڕەگی nەم – 中库尔德语" lang="ckb" hreflang="ckb" data-title="ڕەگی nەم" data-language-autonym="کوردی" data-language-local-name="中库尔德语" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Odmocnina" title="Odmocnina – 捷克语" lang="cs" hreflang="cs" data-title="Odmocnina" data-language-autonym="Čeština" data-language-local-name="捷克语" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A2%D1%8B%D0%BC%D0%B0%D1%80_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Тымар (математика) – 楚瓦什语" lang="cv" hreflang="cv" data-title="Тымар (математика)" data-language-autonym="Чӑвашла" data-language-local-name="楚瓦什语" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/N%27te_rod" title="N'te rod – 丹麦语" lang="da" hreflang="da" data-title="N'te rod" data-language-autonym="Dansk" data-language-local-name="丹麦语" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Wurzel_(Mathematik)" title="Wurzel (Mathematik) – 德语" lang="de" hreflang="de" data-title="Wurzel (Mathematik)" data-language-autonym="Deutsch" data-language-local-name="德语" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9D%CE%B9%CE%BF%CF%83%CF%84%CE%AE_%CF%81%CE%AF%CE%B6%CE%B1" title="Νιοστή ρίζα – 希腊语" lang="el" hreflang="el" data-title="Νιοστή ρίζα" data-language-autonym="Ελληνικά" data-language-local-name="希腊语" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Nth_root" title="Nth root – 英语" lang="en" hreflang="en" data-title="Nth root" data-language-autonym="English" data-language-local-name="英语" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Radicaci%C3%B3n" title="Radicación – 西班牙语" lang="es" hreflang="es" data-title="Radicación" data-language-autonym="Español" data-language-local-name="西班牙语" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Juur_(matemaatika)" title="Juur (matemaatika) – 爱沙尼亚语" lang="et" hreflang="et" data-title="Juur (matemaatika)" data-language-autonym="Eesti" data-language-local-name="爱沙尼亚语" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Erroketa" title="Erroketa – 巴斯克语" lang="eu" hreflang="eu" data-title="Erroketa" data-language-autonym="Euskara" data-language-local-name="巴斯克语" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B1%DB%8C%D8%B4%D9%87_%D8%B9%D8%AF%D8%AF" title="ریشه عدد – 波斯语" lang="fa" hreflang="fa" data-title="ریشه عدد" data-language-autonym="فارسی" data-language-local-name="波斯语" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Juuri_(laskutoimitus)" title="Juuri (laskutoimitus) – 芬兰语" lang="fi" hreflang="fi" data-title="Juuri (laskutoimitus)" data-language-autonym="Suomi" data-language-local-name="芬兰语" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Racine_d%27un_nombre" title="Racine d'un nombre – 法语" lang="fr" hreflang="fr" data-title="Racine d'un nombre" data-language-autonym="Français" data-language-local-name="法语" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Ra%C3%ADz_(matem%C3%A1ticas)" title="Raíz (matemáticas) – 加利西亚语" lang="gl" hreflang="gl" data-title="Raíz (matemáticas)" data-language-autonym="Galego" data-language-local-name="加利西亚语" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gv mw-list-item"><a href="https://gv.wikipedia.org/wiki/Noo_fraue" title="Noo fraue – 马恩语" lang="gv" hreflang="gv" data-title="Noo fraue" data-language-autonym="Gaelg" data-language-local-name="马恩语" class="interlanguage-link-target"><span>Gaelg</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A9%D7%95%D7%A8%D7%A9_%D7%A9%D7%9C_%D7%9E%D7%A1%D7%A4%D7%A8" title="שורש של מספר – 希伯来语" lang="he" hreflang="he" data-title="שורש של מספר" data-language-autonym="עברית" data-language-local-name="希伯来语" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AE%E0%A5%82%E0%A4%B2_(%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE_%E0%A4%95%E0%A4%BE)" title="मूल (संख्या का) – 印地语" lang="hi" hreflang="hi" data-title="मूल (संख्या का)" data-language-autonym="हिन्दी" data-language-local-name="印地语" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Korijen_(funkcija)" title="Korijen (funkcija) – 克罗地亚语" lang="hr" hreflang="hr" data-title="Korijen (funkcija)" data-language-autonym="Hrvatski" data-language-local-name="克罗地亚语" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Gy%C3%B6kvon%C3%A1s" title="Gyökvonás – 匈牙利语" lang="hu" hreflang="hu" data-title="Gyökvonás" data-language-autonym="Magyar" data-language-local-name="匈牙利语" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B1%D6%80%D5%B4%D5%A1%D5%BF_(%D5%B4%D5%A1%D5%A9%D5%A5%D5%B4%D5%A1%D5%BF%D5%AB%D5%AF%D5%A1)" title="Արմատ (մաթեմատիկա) – 亚美尼亚语" lang="hy" hreflang="hy" data-title="Արմատ (մաթեմատիկա)" data-language-autonym="Հայերեն" data-language-local-name="亚美尼亚语" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Akar_bilangan" title="Akar bilangan – 印度尼西亚语" lang="id" hreflang="id" data-title="Akar bilangan" data-language-autonym="Bahasa Indonesia" data-language-local-name="印度尼西亚语" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/R%C3%B3tarv%C3%ADsir" title="Rótarvísir – 冰岛语" lang="is" hreflang="is" data-title="Rótarvísir" data-language-autonym="Íslenska" data-language-local-name="冰岛语" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Radicale_(matematica)" title="Radicale (matematica) – 意大利语" lang="it" hreflang="it" data-title="Radicale (matematica)" data-language-autonym="Italiano" data-language-local-name="意大利语" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%86%AA%E6%A0%B9" title="冪根 – 日语" lang="ja" hreflang="ja" data-title="冪根" data-language-autonym="日本語" data-language-local-name="日语" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A4%E1%83%94%E1%83%A1%E1%83%95%E1%83%98_(%E1%83%9B%E1%83%90%E1%83%97%E1%83%94%E1%83%9B%E1%83%90%E1%83%A2%E1%83%98%E1%83%99%E1%83%90)" title="ფესვი (მათემატიკა) – 格鲁吉亚语" lang="ka" hreflang="ka" data-title="ფესვი (მათემატიკა)" data-language-autonym="ქართული" data-language-local-name="格鲁吉亚语" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A2%D2%AF%D0%B1%D1%96%D1%80_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Түбір (математика) – 哈萨克语" lang="kk" hreflang="kk" data-title="Түбір (математика)" data-language-autonym="Қазақша" data-language-local-name="哈萨克语" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%AE%E0%B3%82%E0%B2%B2" title="ಮೂಲ – 卡纳达语" lang="kn" hreflang="kn" data-title="ಮೂಲ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="卡纳达语" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B1%B0%EB%93%AD%EC%A0%9C%EA%B3%B1%EA%B7%BC" title="거듭제곱근 – 韩语" lang="ko" hreflang="ko" data-title="거듭제곱근" data-language-autonym="한국어" data-language-local-name="韩语" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%90%D1%80%D0%B8%D1%84%D0%BC%D0%B5%D1%82%D0%B8%D0%BA%D0%B0%D0%BB%D1%8B%D0%BA_%D1%82%D0%B0%D0%BC%D1%8B%D1%80" title="Арифметикалык тамыр – 柯尔克孜语" lang="ky" hreflang="ky" data-title="Арифметикалык тамыр" data-language-autonym="Кыргызча" data-language-local-name="柯尔克孜语" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Wortel_(wiskunde)" title="Wortel (wiskunde) – 林堡语" lang="li" hreflang="li" data-title="Wortel (wiskunde)" data-language-autonym="Limburgs" data-language-local-name="林堡语" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/N_%C5%A1aknis" title="N šaknis – 立陶宛语" lang="lt" hreflang="lt" data-title="N šaknis" data-language-autonym="Lietuvių" data-language-local-name="立陶宛语" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Sakne_(matem%C4%81tika)" title="Sakne (matemātika) – 拉脱维亚语" lang="lv" hreflang="lv" data-title="Sakne (matemātika)" data-language-autonym="Latviešu" data-language-local-name="拉脱维亚语" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D0%B5%D0%BD%D1%83%D0%B2%D0%B0%D1%9A%D0%B5" title="Коренување – 马其顿语" lang="mk" hreflang="mk" data-title="Коренување" data-language-autonym="Македонски" data-language-local-name="马其顿语" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/W%C3%B6rtel_(Mathematik)" title="Wörtel (Mathematik) – 低地德语" lang="nds" hreflang="nds" data-title="Wörtel (Mathematik)" data-language-autonym="Plattdüütsch" data-language-local-name="低地德语" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Wortel_(wiskunde)" title="Wortel (wiskunde) – 荷兰语" lang="nl" hreflang="nl" data-title="Wortel (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="荷兰语" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/N-te-rot" title="N-te-rot – 挪威尼诺斯克语" lang="nn" hreflang="nn" data-title="N-te-rot" data-language-autonym="Norsk nynorsk" data-language-local-name="挪威尼诺斯克语" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/N-te-rot" title="N-te-rot – 书面挪威语" lang="nb" hreflang="nb" data-title="N-te-rot" data-language-autonym="Norsk bokmål" data-language-local-name="书面挪威语" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Caaroo_N" title="Caaroo N – 奥罗莫语" lang="om" hreflang="om" data-title="Caaroo N" data-language-autonym="Oromoo" data-language-local-name="奥罗莫语" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Pierwiastkowanie" title="Pierwiastkowanie – 波兰语" lang="pl" hreflang="pl" data-title="Pierwiastkowanie" data-language-autonym="Polski" data-language-local-name="波兰语" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Radicia%C3%A7%C3%A3o" title="Radiciação – 葡萄牙语" lang="pt" hreflang="pt" data-title="Radiciação" data-language-autonym="Português" data-language-local-name="葡萄牙语" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Yupay_saphi" title="Yupay saphi – 克丘亚语" lang="qu" hreflang="qu" data-title="Yupay saphi" data-language-autonym="Runa Simi" data-language-local-name="克丘亚语" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Radical_(matematic%C4%83)" title="Radical (matematică) – 罗马尼亚语" lang="ro" hreflang="ro" data-title="Radical (matematică)" data-language-autonym="Română" data-language-local-name="罗马尼亚语" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru badge-Q17437798 badge-goodarticle mw-list-item" title="优良条目"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D0%B5%D0%BD%D1%8C_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Корень (математика) – 俄语" lang="ru" hreflang="ru" data-title="Корень (математика)" data-language-autonym="Русский" data-language-local-name="俄语" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Nth_root" title="Nth root – Simple English" lang="en-simple" hreflang="en-simple" data-title="Nth root" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Odmocnina" title="Odmocnina – 斯洛伐克语" lang="sk" hreflang="sk" data-title="Odmocnina" data-language-autonym="Slovenčina" data-language-local-name="斯洛伐克语" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Korenjenje" title="Korenjenje – 斯洛文尼亚语" lang="sl" hreflang="sl" data-title="Korenjenje" data-language-autonym="Slovenščina" data-language-local-name="斯洛文尼亚语" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Mudzi_wenhamba" title="Mudzi wenhamba – 绍纳语" lang="sn" hreflang="sn" data-title="Mudzi wenhamba" data-language-autonym="ChiShona" data-language-local-name="绍纳语" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D0%B5%D0%BD%D0%BE%D0%B2%D0%B0%D1%9A%D0%B5" title="Кореновање – 塞尔维亚语" lang="sr" hreflang="sr" data-title="Кореновање" data-language-autonym="Српски / srpski" data-language-local-name="塞尔维亚语" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Rot_av_tal" title="Rot av tal – 瑞典语" lang="sv" hreflang="sv" data-title="Rot av tal" data-language-autonym="Svenska" data-language-local-name="瑞典语" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/N%E0%AE%86%E0%AE%AE%E0%AF%8D_%E0%AE%AA%E0%AE%9F%E0%AE%BF_%E0%AE%AE%E0%AF%82%E0%AE%B2%E0%AE%AE%E0%AF%8D" title="Nஆம் படி மூலம் – 泰米尔语" lang="ta" hreflang="ta" data-title="Nஆம் படி மூலம்" data-language-autonym="தமிழ்" data-language-local-name="泰米尔语" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A3%E0%B8%B2%E0%B8%81%E0%B8%97%E0%B8%B5%E0%B9%88_n" title="รากที่ n – 泰语" lang="th" hreflang="th" data-title="รากที่ n" data-language-autonym="ไทย" data-language-local-name="泰语" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Ugat_(matematika)" title="Ugat (matematika) – 他加禄语" lang="tl" hreflang="tl" data-title="Ugat (matematika)" data-language-autonym="Tagalog" data-language-local-name="他加禄语" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ug mw-list-item"><a href="https://ug.wikipedia.org/wiki/%D9%8A%D9%89%D9%84%D8%AA%D9%89%D8%B2_(%D9%85%D8%A7%D8%AA%DB%90%D9%85%D8%A7%D8%AA%D9%89%D9%83%D8%A7)" title="يىلتىز (ماتېماتىكا) – 维吾尔语" lang="ug" hreflang="ug" data-title="يىلتىز (ماتېماتىكا)" data-language-autonym="ئۇيغۇرچە / Uyghurche" data-language-local-name="维吾尔语" class="interlanguage-link-target"><span>ئۇيغۇرچە / Uyghurche</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D1%96%D0%BD%D1%8C_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Корінь (математика) – 乌克兰语" lang="uk" hreflang="uk" data-title="Корінь (математика)" data-language-autonym="Українська" data-language-local-name="乌克兰语" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%A7%D8%B5%D9%85" title="اصم – 乌尔都语" lang="ur" hreflang="ur" data-title="اصم" data-language-autonym="اردو" data-language-local-name="乌尔都语" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz badge-Q17437798 badge-goodarticle mw-list-item" title="优良条目"><a href="https://uz.wikipedia.org/wiki/Arifmetik_ildiz" title="Arifmetik ildiz – 乌兹别克语" lang="uz" hreflang="uz" data-title="Arifmetik ildiz" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="乌兹别克语" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/C%C4%83n_b%E1%BA%ADc_n" title="Căn bậc n – 越南语" lang="vi" hreflang="vi" data-title="Căn bậc n" data-language-autonym="Tiếng Việt" data-language-local-name="越南语" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Gamot_(matematika)" title="Gamot (matematika) – 瓦瑞语" lang="war" hreflang="war" data-title="Gamot (matematika)" data-language-autonym="Winaray" data-language-local-name="瓦瑞语" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E6%96%B9%E6%A0%B9" title="方根 – 吴语" lang="wuu" hreflang="wuu" data-title="方根" data-language-autonym="吴语" data-language-local-name="吴语" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%A0%B9%E5%BC%8F" title="根式 – 粤语" lang="yue" hreflang="yue" data-title="根式" data-language-autonym="粵語" data-language-local-name="粤语" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q601053#sitelinks-wikipedia" title="编辑跨语言链接" class="wbc-editpage">编辑链接</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="命名空间"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%E6%96%B9%E6%A0%B9" title="浏览条目正文[c]" accesskey="c"><span>条目</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:%E6%96%B9%E6%A0%B9" rel="discussion" title="关于此页面的讨论[t]" accesskey="t"><span>讨论</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown " > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="更改语言变体" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">不转换</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-varlang-0" class="selected ca-variants-zh mw-list-item"><a href="/zh/%E6%96%B9%E6%A0%B9" lang="zh" hreflang="zh"><span>不转换</span></a></li><li id="ca-varlang-1" class="ca-variants-zh-Hans mw-list-item"><a href="/zh-hans/%E6%96%B9%E6%A0%B9" lang="zh-Hans" hreflang="zh-Hans"><span>简体</span></a></li><li id="ca-varlang-2" class="ca-variants-zh-Hant mw-list-item"><a href="/zh-hant/%E6%96%B9%E6%A0%B9" lang="zh-Hant" hreflang="zh-Hant"><span>繁體</span></a></li><li id="ca-varlang-3" class="ca-variants-zh-Hans-CN mw-list-item"><a href="/zh-cn/%E6%96%B9%E6%A0%B9" lang="zh-Hans-CN" hreflang="zh-Hans-CN"><span>大陆简体</span></a></li><li id="ca-varlang-4" class="ca-variants-zh-Hant-HK mw-list-item"><a href="/zh-hk/%E6%96%B9%E6%A0%B9" lang="zh-Hant-HK" hreflang="zh-Hant-HK"><span>香港繁體</span></a></li><li id="ca-varlang-5" class="ca-variants-zh-Hant-MO mw-list-item"><a href="/zh-mo/%E6%96%B9%E6%A0%B9" lang="zh-Hant-MO" hreflang="zh-Hant-MO"><span>澳門繁體</span></a></li><li id="ca-varlang-6" class="ca-variants-zh-Hans-MY mw-list-item"><a href="/zh-my/%E6%96%B9%E6%A0%B9" lang="zh-Hans-MY" hreflang="zh-Hans-MY"><span>大马简体</span></a></li><li id="ca-varlang-7" class="ca-variants-zh-Hans-SG mw-list-item"><a href="/zh-sg/%E6%96%B9%E6%A0%B9" lang="zh-Hans-SG" hreflang="zh-Hans-SG"><span>新加坡简体</span></a></li><li id="ca-varlang-8" class="ca-variants-zh-Hant-TW mw-list-item"><a href="/zh-tw/%E6%96%B9%E6%A0%B9" lang="zh-Hant-TW" hreflang="zh-Hant-TW"><span>臺灣正體</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="查看"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%E6%96%B9%E6%A0%B9"><span>阅读</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E6%96%B9%E6%A0%B9&action=edit" title="编辑该页面[e]" accesskey="e"><span>编辑</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E6%96%B9%E6%A0%B9&action=history" title="本页面的早前版本。[h]" accesskey="h"><span>查看历史</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="页面工具"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="工具" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">工具</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">工具</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">隐藏</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="更多选项" > <div class="vector-menu-heading"> 操作 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/%E6%96%B9%E6%A0%B9"><span>阅读</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%E6%96%B9%E6%A0%B9&action=edit" title="编辑该页面[e]" accesskey="e"><span>编辑</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%E6%96%B9%E6%A0%B9&action=history"><span>查看历史</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> 常规 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:%E9%93%BE%E5%85%A5%E9%A1%B5%E9%9D%A2/%E6%96%B9%E6%A0%B9" title="列出所有与本页相链的页面[j]" accesskey="j"><span>链入页面</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:%E9%93%BE%E5%87%BA%E6%9B%B4%E6%94%B9/%E6%96%B9%E6%A0%B9" rel="nofollow" title="页面链出所有页面的更改[k]" accesskey="k"><span>相关更改</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Project:%E4%B8%8A%E4%BC%A0" title="上传图像或多媒体文件[u]" accesskey="u"><span>上传文件</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:%E7%89%B9%E6%AE%8A%E9%A1%B5%E9%9D%A2" title="全部特殊页面的列表[q]" accesskey="q"><span>特殊页面</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%E6%96%B9%E6%A0%B9&oldid=84256053" title="此页面该修订版本的固定链接"><span>固定链接</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%E6%96%B9%E6%A0%B9&action=info" title="关于此页面的更多信息"><span>页面信息</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:%E5%BC%95%E7%94%A8%E6%AD%A4%E9%A1%B5%E9%9D%A2&page=%E6%96%B9%E6%A0%B9&id=84256053&wpFormIdentifier=titleform" title="有关如何引用此页面的信息"><span>引用此页</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:URL%E7%BC%A9%E7%9F%AD%E7%A8%8B%E5%BA%8F&url=https%3A%2F%2Fzh.wikipedia.org%2Fwiki%2F%25E6%2596%25B9%25E6%25A0%25B9"><span>获取短链接</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fzh.wikipedia.org%2Fwiki%2F%25E6%2596%25B9%25E6%25A0%25B9"><span>下载二维码</span></a></li> </ul> </div> </div> <div id="p-electronpdfservice-sidebar-portlet-heading" class="vector-menu mw-portlet mw-portlet-electronpdfservice-sidebar-portlet-heading" > <div class="vector-menu-heading"> 打印/导出 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="electron-print_pdf" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=%E6%96%B9%E6%A0%B9&action=show-download-screen"><span>下载为PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="javascript:print();" rel="alternate" title="本页面的可打印版本[p]" accesskey="p"><span>打印页面</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> 在其他项目中 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://zh.wikiversity.org/wiki/%E5%BC%80%E6%96%B9" hreflang="zh"><span>维基学院</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q601053" title="链接到连接的数据仓库项目[g]" accesskey="g"><span>维基数据项目</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="页面工具"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="外观"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">外观</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">隐藏</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-noteTA-766c0497" class="mw-indicator"><div class="mw-parser-output"><span class="skin-invert" typeof="mw:File"><span title="本页使用了标题或全文手工转换"><img alt="本页使用了标题或全文手工转换" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/35px-Zh_conversion_icon_m.svg.png" decoding="async" width="35" height="22" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/53px-Zh_conversion_icon_m.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/70px-Zh_conversion_icon_m.svg.png 2x" data-file-width="32" data-file-height="20" /></span></span></div></div> </div> <div id="siteSub" class="noprint">维基百科,自由的百科全书</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="zh" dir="ltr"><div id="noteTA-766c0497" class="noteTA"><div class="noteTA-group"><div data-noteta-group-source="module" data-noteta-group="Math"></div><div data-noteta-group-source="module" data-noteta-group="IT"></div></div></div> <style data-mw-deduplicate="TemplateStyles:r84833064">.mw-parser-output .hatnote{font-size:small}.mw-parser-output div.hatnote{padding-left:2em;margin-bottom:0.8em;margin-top:0.8em}.mw-parser-output .hatnote-notice-img::after{content:"\202f \202f \202f \202f "}.mw-parser-output .hatnote-notice-img-small::after{content:"\202f \202f "}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}body.skin-minerva .mw-parser-output .hatnote-notice-img,body.skin-minerva .mw-parser-output .hatnote-notice-img-small{display:none}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><a href="/wiki/Wikipedia:%E6%B6%88%E6%AD%A7%E4%B9%89" title="Wikipedia:消歧义"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Disambig_gray.svg/25px-Disambig_gray.svg.png" decoding="async" width="25" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Disambig_gray.svg/38px-Disambig_gray.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Disambig_gray.svg/50px-Disambig_gray.svg.png 2x" data-file-width="220" data-file-height="168" /></a></span><style data-mw-deduplicate="TemplateStyles:r74069148">body:not(.skin-minerva) .mw-parser-output .ifmobile>.mobile{display:none}body.skin-minerva .mw-parser-output .ifmobile>.nomobile{display:inherit;display:initial}</style><span class="ifmobile"><span class="nomobile">  </span><span class="mobile"></span></span>「<b>开方</b>」重定向至此。关于古代人物,请见「<b><a href="/wiki/%E8%A1%9B%E9%96%8B%E6%96%B9" class="mw-redirect" title="衛開方">衛開方</a></b>」。</div><style data-mw-deduplicate="TemplateStyles:r84265675">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:" :"}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist-pipe dd::after,.mw-parser-output .hlist-pipe li::after{content:" | ";font-weight:normal}.mw-parser-output .hlist-hyphen dd::after,.mw-parser-output .hlist-hyphen li::after{content:" - ";font-weight:normal}.mw-parser-output .hlist-comma dd::after,.mw-parser-output .hlist-comma li::after{content:"、";font-weight:normal}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:"("counter(listitem)"\a0 "}.mw-parser-output ul.cslist,.mw-parser-output ul.sslist{margin:0;padding:0;display:inline-block;list-style:none}.mw-parser-output .cslist li,.mw-parser-output .sslist li{margin:0;display:inline-block}.mw-parser-output .cslist li::after{content:","}.mw-parser-output .sslist li::after{content:";"}.mw-parser-output .cslist li:last-child::after,.mw-parser-output .sslist li:last-child::after{content:none}</style><style data-mw-deduplicate="TemplateStyles:r84913072">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:100%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-subgroup,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-pretitle,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-heading,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-above,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-below{background:inherit!important;color:inherit!important;border-color:#54595d!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar a:not(.new):not(.mw-selflink):link{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-subgroup,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-pretitle,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-heading,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-above,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-below{background:inherit!important;color:inherit!important;border-color:#54595d!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar a:not(.new):not(.mw-selflink):link{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84265675"><style data-mw-deduplicate="TemplateStyles:r84244141">.mw-parser-output .navbar{display:inline;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:110%;margin:0 8em}.mw-parser-output .navbar-ct-mini{font-size:110%;margin:0 5em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r83732082">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}body.skin-minerva .mw-parser-output .infobox-header,body.skin-minerva .mw-parser-output .infobox-subheader,body.skin-minerva .mw-parser-output .infobox-above,body.skin-minerva .mw-parser-output .infobox-title,body.skin-minerva .mw-parser-output .infobox-image,body.skin-minerva .mw-parser-output .infobox-full-data,body.skin-minerva .mw-parser-output .infobox-below{text-align:center}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}html.skin-theme-clientpref-night .mw-parser-output .infobox td div:not(.notheme)[style]{background:transparent!important;color:var(--color-base,#202122)}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox td div:not(.notheme)[style]{background:transparent!important;color:var(--color-base,#202122)}}html.skin-theme-clientpref-night .mw-parser-output .infobox td div.NavHead:not(.notheme)[style]{background:transparent!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox td div.NavHead:not(.notheme)[style]{background:transparent!important}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><table class="sidebar nomobile nowraplinks"><tbody><tr><td class="sidebar-above" style="background:#efefef;"> <span style="font-size:112%;"><a href="/wiki/%E7%AE%97%E6%9C%AF" title="算术">算术运算</a></span><div class="navbar plainlinks hlist navbar-mini" style="float:right"><ul><li class="nv-view"><a href="/wiki/Template:%E7%AE%97%E6%9C%AF%E8%BF%90%E7%AE%97" title="Template:算术运算"><abbr title="查看该模板">查</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:%E7%AE%97%E6%9C%AF%E8%BF%90%E7%AE%97" title="Template talk:算术运算"><abbr title="讨论该模板">论</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:%E7%BC%96%E8%BE%91%E9%A1%B5%E9%9D%A2/Template:%E7%AE%97%E6%9C%AF%E8%BF%90%E7%AE%97" title="Special:编辑页面/Template:算术运算"><abbr title="编辑该模板">编</abbr></a></li></ul></div></td></tr><tr><td class="sidebar-content" style="font-size:108%;"> <table class="infobox-subbox infobox-3cols-child infobox-table"><tbody><tr><th colspan="4" class="infobox-header" style=""><a href="/wiki/%E5%8A%A0%E6%B3%95" title="加法">加法</a> (+)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{项 }}\,+\,{\text{项}}\\\scriptstyle {\text{加 数 }}\,+\,{\text{加 数}}\\\scriptstyle {\text{被 加 数 }}\,+\,{\text{加 数}}\end{matrix}}\right\}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>项 </mtext> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>项</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>加 数 </mtext> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>加 数</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>被 加 数 </mtext> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>加 数</mtext> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{项 }}\,+\,{\text{项}}\\\scriptstyle {\text{加 数 }}\,+\,{\text{加 数}}\\\scriptstyle {\text{被 加 数 }}\,+\,{\text{加 数}}\end{matrix}}\right\}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d361920fc9807d8e7c09ea9fb5af519e7df8a42e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.7ex; margin-bottom: -0.304ex; width:13.649ex; height:8.843ex;" alt="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{项 }}\,+\,{\text{项}}\\\scriptstyle {\text{加 数 }}\,+\,{\text{加 数}}\\\scriptstyle {\text{被 加 数 }}\,+\,{\text{加 数}}\end{matrix}}\right\}\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{和 }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>和 </mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{和 }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da1b782d1169e35427cca1c598864830dbb1c5e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.582ex; height:2.676ex;" alt="{\displaystyle \scriptstyle {\text{和 }}}"></span></td></tr><tr><th colspan="4" class="infobox-header" style=""><a href="/wiki/%E6%B8%9B%E6%B3%95" title="減法">減法</a> (−)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{项 }}\,-\,{\text{项}}\\\scriptstyle {\text{被 减 数 }}\,-\,{\text{减 数 }}\end{matrix}}\right\}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>项 </mtext> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>项</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>被 减 数 </mtext> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>减 数 </mtext> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{项 }}\,-\,{\text{项}}\\\scriptstyle {\text{被 减 数 }}\,-\,{\text{减 数 }}\end{matrix}}\right\}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1da4fe9f4ba71629e9a4006b9c562d2c4d0a37b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:14.093ex; height:5.676ex;" alt="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{项 }}\,-\,{\text{项}}\\\scriptstyle {\text{被 减 数 }}\,-\,{\text{减 数 }}\end{matrix}}\right\}\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{差 }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>差 </mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{差 }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/280f5f69d9ceb3ab159fa89745a40a635fd7f926" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.582ex; height:2.676ex;" alt="{\displaystyle \scriptstyle {\text{差 }}}"></span></td></tr><tr><th colspan="4" class="infobox-header" style=""><a href="/wiki/%E4%B9%98%E6%B3%95" title="乘法">乘法</a> (×)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{因 数 }}\,\times \,{\text{因 数 }}\\\scriptstyle {\text{被 乘 数 }}\,\times \,{\text{乘 数 }}\\\scriptstyle {\text{( 英 文 中 ) }}{\text{乘 数 }}\,\times \,{\text{被 乘 数 }}\end{matrix}}\right\}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>因 数 </mtext> </mrow> <mspace width="thinmathspace" /> <mo>×<!-- × --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>因 数 </mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>被 乘 数 </mtext> </mrow> <mspace width="thinmathspace" /> <mo>×<!-- × --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>乘 数 </mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>( 英 文 中 ) </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>乘 数 </mtext> </mrow> <mspace width="thinmathspace" /> <mo>×<!-- × --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>被 乘 数 </mtext> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{因 数 }}\,\times \,{\text{因 数 }}\\\scriptstyle {\text{被 乘 数 }}\,\times \,{\text{乘 数 }}\\\scriptstyle {\text{( 英 文 中 ) }}{\text{乘 数 }}\,\times \,{\text{被 乘 数 }}\end{matrix}}\right\}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae06bdc935866bc4cd710f6279045b4a3f5904ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.7ex; margin-bottom: -0.304ex; width:22.142ex; height:8.843ex;" alt="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{因 数 }}\,\times \,{\text{因 数 }}\\\scriptstyle {\text{被 乘 数 }}\,\times \,{\text{乘 数 }}\\\scriptstyle {\text{( 英 文 中 ) }}{\text{乘 数 }}\,\times \,{\text{被 乘 数 }}\end{matrix}}\right\}\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;;"> <a href="/wiki/%E7%A7%AF" title="积"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{积 }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>积 </mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{积 }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc5da1eab951b00183e07828f70b7895e3cc7bd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.582ex; height:2.676ex;" alt="{\displaystyle \scriptstyle {\text{积 }}}"></span></a></td></tr><tr><th colspan="4" class="infobox-header" style=""><a href="/wiki/%E9%99%A4%E6%B3%95" title="除法">除法</a> (÷)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\frac {\scriptstyle {\text{被 除 数 }}}{\scriptstyle {\text{除 数 }}}}\\\scriptstyle {\text{ }}\\\scriptstyle {\frac {\scriptstyle {\text{分 子 }}}{\scriptstyle {\text{分 母 }}}}\end{matrix}}\right\}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>被 除 数 </mtext> </mrow> </mstyle> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>除 数 </mtext> </mrow> </mstyle> </mfrac> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext> </mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>分 子 </mtext> </mrow> </mstyle> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>分 母 </mtext> </mrow> </mstyle> </mfrac> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\frac {\scriptstyle {\text{被 除 数 }}}{\scriptstyle {\text{除 数 }}}}\\\scriptstyle {\text{ }}\\\scriptstyle {\frac {\scriptstyle {\text{分 子 }}}{\scriptstyle {\text{分 母 }}}}\end{matrix}}\right\}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffcdf3d748da25a1322dc4f98c18577415e825ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:9.848ex; height:14.176ex;" alt="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\frac {\scriptstyle {\text{被 除 数 }}}{\scriptstyle {\text{除 数 }}}}\\\scriptstyle {\text{ }}\\\scriptstyle {\frac {\scriptstyle {\text{分 子 }}}{\scriptstyle {\text{分 母 }}}}\end{matrix}}\right\}\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;;"> <a href="/wiki/%E5%95%86%E6%95%B8" title="商數"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}\scriptstyle {\text{商 }}\\\scriptstyle {\text{比 值 }}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>商 </mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>比 值 </mtext> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}\scriptstyle {\text{商 }}\\\scriptstyle {\text{比 值 }}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6782bba4aacc19b46da5a3fc3ad1c952ef3ed600" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:3.916ex; height:6.509ex;" alt="{\displaystyle {\begin{matrix}\scriptstyle {\text{商 }}\\\scriptstyle {\text{比 值 }}\end{matrix}}}"></span></a></td></tr><tr><th colspan="4" class="infobox-header" style=""><a href="/wiki/%E6%A8%A1%E9%99%A4" title="模除">模除</a> (mod)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{被 除 数 }}\,mod\,{\text{除 数}}\,\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>被 除 数 </mtext> </mrow> <mspace width="thinmathspace" /> <mi>m</mi> <mi>o</mi> <mi>d</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>除 数</mtext> </mrow> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{被 除 数 }}\,mod\,{\text{除 数}}\,\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e96263e7e4333debcce657f36071672297afaaf9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.645ex; height:2.676ex;" alt="{\displaystyle \scriptstyle {\text{被 除 数 }}\,mod\,{\text{除 数}}\,\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{余 数 }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>余 数 </mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{余 数 }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ac86ca5f38cee7ddaa353bcae09e4cae90b004e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.165ex; height:2.676ex;" alt="{\displaystyle \scriptstyle {\text{余 数 }}}"></span></td></tr><tr><th colspan="4" class="infobox-header" style=""><a href="/wiki/%E5%86%AA" title="冪">乘方</a> (^)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{底 数 }}^{\text{指 数 }}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>底 数 </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>指 数 </mtext> </mrow> </msup> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{底 数 }}^{\text{指 数 }}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/074053045b743a38f0b121e72947ae4047fa51b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.17ex; height:3.343ex;" alt="{\displaystyle \scriptstyle {\text{底 数 }}^{\text{指 数 }}\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{幂 }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>幂 </mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{幂 }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a68105faaac32cb2f4f0bf71a4af1de8d0a4392" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.582ex; height:2.676ex;" alt="{\displaystyle \scriptstyle {\text{幂 }}}"></span></td></tr><tr><th colspan="4" class="infobox-header" style=""><a class="mw-selflink selflink"><i>n</i> 次方根</a> (√)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\sqrt[{\text{根 指 数 }}]{\scriptstyle {\text{被 开 方 数 }}}}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>被 开 方 数 </mtext> </mrow> </mstyle> <mrow class="MJX-TeXAtom-ORD"> <mtext>根 指 数 </mtext> </mrow> </mroot> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\sqrt[{\text{根 指 数 }}]{\scriptstyle {\text{被 开 方 数 }}}}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/129356d757065c14aa96f75e3c93198f2e4fba94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:12.558ex; height:3.676ex;" alt="{\displaystyle \scriptstyle {\sqrt[{\text{根 指 数 }}]{\scriptstyle {\text{被 开 方 数 }}}}\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{根 }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>根 </mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{根 }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83ceafd8f3f39c0ee6232a0d300c34a1ba810a46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.582ex; height:2.676ex;" alt="{\displaystyle \scriptstyle {\text{根 }}}"></span></td></tr><tr><th colspan="4" class="infobox-header" style=""><a href="/wiki/%E5%AF%B9%E6%95%B0" title="对数">对数</a> (log)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \log _{\text{底 }}({\text{真 数 }})\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>底 </mtext> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>真 数 </mtext> </mrow> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \log _{\text{底 }}({\text{真 数 }})\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54ac3a27e34072224c2ecfae1c69fab033394c8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:10.156ex; height:3.009ex;" alt="{\displaystyle \scriptstyle \log _{\text{底 }}({\text{真 数 }})\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{对 数 }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>对 数 </mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{对 数 }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3181aa26d7fceaa0e8f3ac4d9a1c372e7e746ac5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.165ex; height:2.676ex;" alt="{\displaystyle \scriptstyle {\text{对 数 }}}"></span></td></tr></tbody></table></td> </tr><tr><td class="sidebar-navbar" style="line-height:1.6"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84265675"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84244141"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:%E7%AE%97%E6%9C%AF%E8%BF%90%E7%AE%97" title="Template:算术运算"><abbr title="查看该模板">查</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:%E7%AE%97%E6%9C%AF%E8%BF%90%E7%AE%97" title="Template talk:算术运算"><abbr title="讨论该模板">论</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:%E7%BC%96%E8%BE%91%E9%A1%B5%E9%9D%A2/Template:%E7%AE%97%E6%9C%AF%E8%BF%90%E7%AE%97" title="Special:编辑页面/Template:算术运算"><abbr title="编辑该模板">编</abbr></a></li></ul></div></td></tr></tbody></table> <figure class="mw-halign-right" typeof="mw:File"><a href="/wiki/File:Nuvola_mimetypes_kformula_kfo.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Nuvola_mimetypes_kformula_kfo.png/120px-Nuvola_mimetypes_kformula_kfo.png" decoding="async" width="120" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/b/ba/Nuvola_mimetypes_kformula_kfo.png 1.5x" data-file-width="128" data-file-height="128" /></a><figcaption></figcaption></figure> <p>在<a href="/wiki/%E6%95%B0%E5%AD%A6" title="数学">数学</a>中,一數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>為<a href="/wiki/%E6%95%B0" title="数">数</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>的<b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>次方根</b>,則<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{n}=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{n}=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac985eb2c832100255a52f9f170e5c34c1b08fdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.544ex; height:2.343ex;" alt="{\displaystyle b^{n}=a}"></span>。在提及<a href="/wiki/%E5%AE%9E%E6%95%B0" title="实数">实数</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>次方根的时候,若指的是此数的<b>主<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>次方根</b>,則可以用<b><a href="/wiki/%E6%A0%B9%E5%8F%B7" title="根号">根号</a></b>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\color {white}t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mstyle mathcolor="white"> <mi>t</mi> </mstyle> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\color {white}t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da934e002649b62b70584223ab0c4f91f8080725" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.775ex; height:3.009ex;" alt="{\displaystyle {\sqrt {\color {white}t}}}"></span>)表示成<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7873203eb76042fcd24056c553de8c86054a2df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.166ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{a}}}"></span>。例如:1024的主10次方根为2,就可以记作<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{10}]{1024}}=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>1024</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </mroot> </mrow> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{10}]{1024}}=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e87b1a8b8e4e885f3b5757e7ecb790f9d15e1aa0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.87ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{10}]{1024}}=2}"></span>。當<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a02c8bd752d2cc859747ca1f3a508281bdbc3b34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=2}"></span>時,則<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>可以省略。定义实数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>的主<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>次方根为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>次方根,且具有与<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>相同的正负号的唯一实数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>。在<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>是<a href="/wiki/%E5%81%B6%E6%95%B0" class="mw-redirect" title="偶数">偶数</a>時,<a href="/wiki/%E8%B4%9F%E6%95%B0" title="负数">负数</a>没有主<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>次方根。习惯上,将2次方根叫做<a href="/wiki/%E5%B9%B3%E6%96%B9%E6%A0%B9" title="平方根">平方根</a>,将3次方根叫做<a href="/wiki/%E7%AB%8B%E6%96%B9%E6%A0%B9" title="立方根">立方根</a>。 </p><p>方根也是<a href="/wiki/%E5%B9%82" class="mw-redirect" title="幂">幂</a>的分数指数,即數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>為<a href="/wiki/%E6%95%B0" title="数">数</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf0aefecf48d43fdedd71e318ae6129bd67be252" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:2.231ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{n}}}"></span>次方: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b={\sqrt[{n}]{a}}=a^{\frac {1}{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b={\sqrt[{n}]{a}}=a^{\frac {1}{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19cba550de4bc98864d27d841e706c860a5f0134" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.459ex; height:4.009ex;" alt="{\displaystyle b={\sqrt[{n}]{a}}=a^{\frac {1}{n}}}"></span></dd></dl> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="符号史"><span id=".E7.AC.A6.E5.8F.B7.E5.8F.B2"></span>符号史</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%96%B9%E6%A0%B9&action=edit&section=1" title="编辑章节:符号史"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84833064"><div role="note" class="hatnote navigation-not-searchable">主条目:<a href="/wiki/%E6%A0%B9%E5%8F%B7" title="根号">根号</a></div> <p>最早的根号“√”源于字母「r」的变形(出自拉丁语latus的首字母,表示“边长”),没有<a href="/w/index.php?title=%E7%BA%BF%E6%8B%AC%E5%8F%B7&action=edit&redlink=1" class="new" title="线括号(页面不存在)">线括号</a>(即<a href="/w/index.php?title=%E8%A2%AB%E5%BC%80%E6%96%B9%E6%95%B0&action=edit&redlink=1" class="new" title="被开方数(页面不存在)">被开方数</a>上的横线),后来数学家<a href="/wiki/%E7%AC%9B%E5%8D%A1%E5%B0%94" class="mw-redirect" title="笛卡尔">笛卡尔</a>给其加上线括号,但与前面的方根符号是分开的,因此在复杂的式子显得很乱。直至18世纪中叶,数学家卢贝将前面的方根符号与线括号一笔写成,并将<a href="/w/index.php?title=%E6%A0%B9%E6%8C%87%E6%95%B0&action=edit&redlink=1" class="new" title="根指数(页面不存在)">根指数</a>写在<a href="/wiki/%E6%A0%B9%E5%8F%B7" title="根号">根号</a>的左上角,以表示高次方根(当根指数为2时,省略不写。)。形成了现在所熟悉的开方<a href="/wiki/%E6%95%B8%E5%AD%B8%E7%AC%A6%E8%99%9F" title="數學符號">运算符号</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\color {white}x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mstyle mathcolor="white"> <mi>x</mi> </mstyle> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\color {white}x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a372f79551061d18ca2013cfb674057e0e83721" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.266ex; height:3.009ex;" alt="{\displaystyle {\sqrt {\color {white}x}}}"></span>。 </p><p>考慮在<a href="/wiki/%E7%94%B5%E5%AD%90%E8%AE%A1%E7%AE%97%E6%9C%BA" title="电子计算机">计算机</a>中的输入问题,有时也可以使用sqrt(a,b)来表示a的b次方根。 </p> <div class="mw-heading mw-heading2"><h2 id="基本运算"><span id=".E5.9F.BA.E6.9C.AC.E8.BF.90.E7.AE.97"></span>基本运算</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%96%B9%E6%A0%B9&action=edit&section=2" title="编辑章节:基本运算"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>带有根号的运算可由如下<a href="/wiki/%E5%85%AC%E5%BC%8F" title="公式">公式</a>推導而得: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{ab}}={\sqrt[{n}]{a}}{\sqrt[{n}]{b}}\qquad a\geq 0,b\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mspace width="2em" /> <mi>a</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> <mo>,</mo> <mi>b</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{ab}}={\sqrt[{n}]{a}}{\sqrt[{n}]{b}}\qquad a\geq 0,b\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42115473722e787897c604bed704f3e90a259505" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:29.789ex; height:3.343ex;" alt="{\displaystyle {\sqrt[{n}]{ab}}={\sqrt[{n}]{a}}{\sqrt[{n}]{b}}\qquad a\geq 0,b\geq 0}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{\frac {a}{b}}}={\frac {\sqrt[{n}]{a}}{\sqrt[{n}]{b}}}\qquad a\geq 0,b>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mfrac> <mi>a</mi> <mi>b</mi> </mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mroot> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> <mroot> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mfrac> </mrow> <mspace width="2em" /> <mi>a</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> <mo>,</mo> <mi>b</mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{\frac {a}{b}}}={\frac {\sqrt[{n}]{a}}{\sqrt[{n}]{b}}}\qquad a\geq 0,b>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ee57799587b579cf8415b960cda2937d540e845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:27.918ex; height:6.843ex;" alt="{\displaystyle {\sqrt[{n}]{\frac {a}{b}}}={\frac {\sqrt[{n}]{a}}{\sqrt[{n}]{b}}}\qquad a\geq 0,b>0}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{a^{m}}}=\left({\sqrt[{n}]{a}}\right)^{m}=\left(a^{\frac {1}{n}}\right)^{m}=a^{\frac {m}{n}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <mi>n</mi> </mfrac> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{a^{m}}}=\left({\sqrt[{n}]{a}}\right)^{m}=\left(a^{\frac {1}{n}}\right)^{m}=a^{\frac {m}{n}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc11ef71f42b5d04e3b2d8874c4ccdcb9e35d5ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:32.452ex; height:4.843ex;" alt="{\displaystyle {\sqrt[{n}]{a^{m}}}=\left({\sqrt[{n}]{a}}\right)^{m}=\left(a^{\frac {1}{n}}\right)^{m}=a^{\frac {m}{n}},}"></span></dd></dl> <p>这裡的<i>a</i>和<i>b</i>是<a href="/wiki/%E6%AD%A3%E6%95%B0" class="mw-redirect" title="正数">正数</a>。 </p><p>对于所有的<a href="/wiki/%E9%9B%B6%E5%90%91%E9%87%8F" title="零向量">非零</a><a href="/wiki/%E5%A4%8D%E6%95%B0_(%E6%95%B0%E5%AD%A6)" title="复数 (数学)">复数</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>,有<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>个不同的复数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>使得<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{n}=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{n}=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac985eb2c832100255a52f9f170e5c34c1b08fdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.544ex; height:2.343ex;" alt="{\displaystyle b^{n}=a}"></span>,所以符号<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7873203eb76042fcd24056c553de8c86054a2df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.166ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{a}}}"></span>就會出現歧义(通常這樣寫是取<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>個值當中<a href="/wiki/%E4%B8%BB%E5%B9%85%E8%A7%92" class="mw-redirect" title="主幅角">主幅角</a>最小的)。<i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span></i>次<a href="/wiki/%E5%8D%95%E4%BD%8D%E6%A0%B9" title="单位根">单位根</a>是特别重要的。 </p><p>当一个数从根号形式变换到<a href="/wiki/%E5%B9%82" class="mw-redirect" title="幂">幂</a>形式,幂的规则仍适用(即使对<a href="/wiki/%E5%88%86%E6%95%B0" class="mw-redirect" title="分数">分数</a>幂),也就是 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{m}a^{n}=a^{m+n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{m}a^{n}=a^{m+n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bf438628772ad772c4938461795811a9db28bd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.621ex; height:2.509ex;" alt="{\displaystyle a^{m}a^{n}=a^{m+n}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {a}{b}}\right)^{m}={\frac {a^{m}}{b^{m}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mi>b</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {a}{b}}\right)^{m}={\frac {a^{m}}{b^{m}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9233d0188657506368092970f038ef63ae03f23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:13.356ex; height:5.343ex;" alt="{\displaystyle \left({\frac {a}{b}}\right)^{m}={\frac {a^{m}}{b^{m}}}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(a^{m}\right)^{n}=a^{mn}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(a^{m}\right)^{n}=a^{mn}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/333533d4020699d24324fed24a40cc027f726843" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.922ex; height:3.009ex;" alt="{\displaystyle \left(a^{m}\right)^{n}=a^{mn}}"></span></dd></dl> <p>例如: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{3}]{a^{5}}}{\sqrt[{5}]{a^{4}}}=a^{\frac {5}{3}}a^{\frac {4}{5}}=a^{{\frac {5}{3}}+{\frac {4}{5}}}=a^{\frac {37}{15}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mroot> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </mroot> </mrow> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>5</mn> <mn>3</mn> </mfrac> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>5</mn> </mfrac> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>5</mn> <mn>3</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>5</mn> </mfrac> </mrow> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>37</mn> <mn>15</mn> </mfrac> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{3}]{a^{5}}}{\sqrt[{5}]{a^{4}}}=a^{\frac {5}{3}}a^{\frac {4}{5}}=a^{{\frac {5}{3}}+{\frac {4}{5}}}=a^{\frac {37}{15}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/892d38375869d6b442afca1b64b8945b797a6344" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:33.822ex; height:4.009ex;" alt="{\displaystyle {\sqrt[{3}]{a^{5}}}{\sqrt[{5}]{a^{4}}}=a^{\frac {5}{3}}a^{\frac {4}{5}}=a^{{\frac {5}{3}}+{\frac {4}{5}}}=a^{\frac {37}{15}}}"></span></dd></dl> <p>若要做<a href="/wiki/%E5%8A%A0%E6%B3%95" title="加法">加法</a>或<a href="/wiki/%E5%87%8F%E6%B3%95" class="mw-redirect" title="减法">减法</a>,需考慮下列的概念。 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{3}]{a^{5}}}={\sqrt[{3}]{aaaaa}}={\sqrt[{3}]{a^{3}a^{2}}}=a{\sqrt[{3}]{a^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mi>a</mi> <mi>a</mi> <mi>a</mi> <mi>a</mi> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mo>=</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mroot> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{3}]{a^{5}}}={\sqrt[{3}]{aaaaa}}={\sqrt[{3}]{a^{3}a^{2}}}=a{\sqrt[{3}]{a^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4659d635deec0af59a8b22f140dedce969541f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:34.718ex; height:3.676ex;" alt="{\displaystyle {\sqrt[{3}]{a^{5}}}={\sqrt[{3}]{aaaaa}}={\sqrt[{3}]{a^{3}a^{2}}}=a{\sqrt[{3}]{a^{2}}}}"></span></dd></dl> <p>若已可以简化根式表示式,则加法和减法就只是<a href="/wiki/%E7%BE%A4" title="群">群</a>的“同类项”问题。 </p><p>例如 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{3}]{a^{5}}}+{\sqrt[{3}]{a^{8}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{3}]{a^{5}}}+{\sqrt[{3}]{a^{8}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5be258ffaf6be8b6ad28ae3eda5ebcf7560a747b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.056ex; height:3.343ex;" alt="{\displaystyle {\sqrt[{3}]{a^{5}}}+{\sqrt[{3}]{a^{8}}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\sqrt[{3}]{a^{3}a^{2}}}+{\sqrt[{3}]{a^{6}a^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\sqrt[{3}]{a^{3}a^{2}}}+{\sqrt[{3}]{a^{6}a^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f2be132eb543f356f4d32c4d396d37cb4e63c72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.077ex; height:3.343ex;" alt="{\displaystyle ={\sqrt[{3}]{a^{3}a^{2}}}+{\sqrt[{3}]{a^{6}a^{2}}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =a{\sqrt[{3}]{a^{2}}}+a^{2}{\sqrt[{3}]{a^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mroot> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mo>+</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mroot> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =a{\sqrt[{3}]{a^{2}}}+a^{2}{\sqrt[{3}]{a^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b94ad48474e6d8add3f10e2d1f044b28e1f3fa13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.023ex; height:3.343ex;" alt="{\displaystyle =a{\sqrt[{3}]{a^{2}}}+a^{2}{\sqrt[{3}]{a^{2}}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =({a+a^{2}}){\sqrt[{3}]{a^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>+</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =({a+a^{2}}){\sqrt[{3}]{a^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9eb0d86b9cdf15d58dd225575188df89b60943aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.225ex; height:3.509ex;" alt="{\displaystyle =({a+a^{2}}){\sqrt[{3}]{a^{2}}}}"></span></dd></dl> <p><br /> </p> <div class="mw-heading mw-heading2"><h2 id="不尽根数"><span id=".E4.B8.8D.E5.B0.BD.E6.A0.B9.E6.95.B0"></span>不尽根数</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%96%B9%E6%A0%B9&action=edit&section=3" title="编辑章节:不尽根数"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>未經化簡的根數,一般叫做“不尽根数”(surd),可以处理为更简单的形式。 </p><p>如下<a href="/wiki/%E6%81%92%E7%AD%89%E5%BC%8F" title="恒等式">恒等式</a>是處理不尽根数的基本技巧: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {a^{2}b}}=abs(a){\sqrt {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>b</mi> </msqrt> </mrow> <mo>=</mo> <mi>a</mi> <mi>b</mi> <mi>s</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>b</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {a^{2}b}}=abs(a){\sqrt {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/568fd24018d0c7b94e56631a0bf38648474b38c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.994ex; height:3.509ex;" alt="{\displaystyle {\sqrt {a^{2}b}}=abs(a){\sqrt {b}}}"></span></li></ul> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{a^{m}b}}=a^{\frac {m}{n}}{\sqrt[{n}]{b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <mi>n</mi> </mfrac> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{a^{m}b}}=a^{\frac {m}{n}}{\sqrt[{n}]{b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1be205444236d9285236312c82e0cc3e93c49deb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.34ex; height:3.343ex;" alt="{\displaystyle {\sqrt[{n}]{a^{m}b}}=a^{\frac {m}{n}}{\sqrt[{n}]{b}}}"></span></li></ul> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {a}}{\sqrt {b}}={\sqrt {ab}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>a</mi> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>b</mi> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>a</mi> <mi>b</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {a}}{\sqrt {b}}={\sqrt {ab}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43a6fe99883dd2ee2bda43eab716e18d9bece3a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.361ex; height:3.343ex;" alt="{\displaystyle {\sqrt {a}}{\sqrt {b}}={\sqrt {ab}}}"></span></li></ul> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\sqrt {a}}+{\sqrt {b}}\right)^{-1}={\frac {1}{({\sqrt {a}}+{\sqrt {b}})}}={\frac {{\sqrt {a}}-{\sqrt {b}}}{({\sqrt {a}}+{\sqrt {b}})({\sqrt {a}}-{\sqrt {b}})}}={\frac {{\sqrt {a}}-{\sqrt {b}}}{a-b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>a</mi> </msqrt> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>b</mi> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>a</mi> </msqrt> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>b</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>a</mi> </msqrt> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>b</mi> </msqrt> </mrow> </mrow> <mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>a</mi> </msqrt> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>b</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>a</mi> </msqrt> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>b</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>a</mi> </msqrt> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>b</mi> </msqrt> </mrow> </mrow> <mrow> <mi>a</mi> <mo>−<!-- − --></mo> <mi>b</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\sqrt {a}}+{\sqrt {b}}\right)^{-1}={\frac {1}{({\sqrt {a}}+{\sqrt {b}})}}={\frac {{\sqrt {a}}-{\sqrt {b}}}{({\sqrt {a}}+{\sqrt {b}})({\sqrt {a}}-{\sqrt {b}})}}={\frac {{\sqrt {a}}-{\sqrt {b}}}{a-b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a899046e5eb292877ba4ecdf12da6c8dd9c8fbe4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:66.392ex; height:7.176ex;" alt="{\displaystyle \left({\sqrt {a}}+{\sqrt {b}}\right)^{-1}={\frac {1}{({\sqrt {a}}+{\sqrt {b}})}}={\frac {{\sqrt {a}}-{\sqrt {b}}}{({\sqrt {a}}+{\sqrt {b}})({\sqrt {a}}-{\sqrt {b}})}}={\frac {{\sqrt {a}}-{\sqrt {b}}}{a-b}}}"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="无穷级数"><span id=".E6.97.A0.E7.A9.B7.E7.BA.A7.E6.95.B0"></span>无穷级数</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%96%B9%E6%A0%B9&action=edit&section=4" title="编辑章节:无穷级数"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>方根可以<a href="/wiki/%E7%BE%A4%E8%A1%A8%E7%A4%BA" class="mw-redirect" title="群表示">表示</a>为无穷级数: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&(1+x)^{\frac {s}{t}}=\sum _{n=0}^{\infty }{\frac {\displaystyle \prod _{k=0}^{n}(s+t-kt)}{(s+t)n!t^{n}}}x^{n}\\&(|x|<1)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mi>t</mi> </mfrac> </mrow> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> <mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo>+</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>n</mi> <mo>!</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo><</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&(1+x)^{\frac {s}{t}}=\sum _{n=0}^{\infty }{\frac {\displaystyle \prod _{k=0}^{n}(s+t-kt)}{(s+t)n!t^{n}}}x^{n}\\&(|x|<1)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cc3530383862afc3effd32b23ca55c1243d892e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:34.253ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}&(1+x)^{\frac {s}{t}}=\sum _{n=0}^{\infty }{\frac {\displaystyle \prod _{k=0}^{n}(s+t-kt)}{(s+t)n!t^{n}}}x^{n}\\&(|x|<1)\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="找到所有的方根"><span id=".E6.89.BE.E5.88.B0.E6.89.80.E6.9C.89.E7.9A.84.E6.96.B9.E6.A0.B9"></span>找到所有的方根</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%96%B9%E6%A0%B9&action=edit&section=5" title="编辑章节:找到所有的方根"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>任何数的所有的根,实数或复数的,可以通过简单的<a href="/wiki/%E7%AE%97%E6%B3%95" title="算法">算法</a>找到。这个数应当首先被写为如下形式<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ae^{i\varphi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>φ<!-- φ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ae^{i\varphi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43f8d85161e3776eb100cffe0b20f095d0fdecab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.188ex; height:2.676ex;" alt="{\displaystyle ae^{i\varphi }}"></span>(参见<a href="/wiki/%E6%AC%A7%E6%8B%89%E5%85%AC%E5%BC%8F" title="欧拉公式">欧拉公式</a>)。接着所有的<i>n</i>次方根给出为: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{({\frac {\varphi +2k\pi }{n}})i}\times {\sqrt[{n}]{a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>φ<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mi>π<!-- π --></mi> </mrow> <mi>n</mi> </mfrac> </mrow> <mo stretchy="false">)</mo> <mi>i</mi> </mrow> </msup> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{({\frac {\varphi +2k\pi }{n}})i}\times {\sqrt[{n}]{a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b85a6077d8b3c1b3c98317eecb0ce47a926a4549" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.043ex; height:4.343ex;" alt="{\displaystyle e^{({\frac {\varphi +2k\pi }{n}})i}\times {\sqrt[{n}]{a}}}"></span></dd></dl> <p>对于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=0,1,2,\ldots ,n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=0,1,2,\ldots ,n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36fd103867d2b8407db3fa90a3b2e009370793fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.441ex; height:2.509ex;" alt="{\displaystyle k=0,1,2,\ldots ,n-1}"></span>,这裡的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7873203eb76042fcd24056c553de8c86054a2df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.166ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{a}}}"></span>表示<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>的主<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>次方根。 </p> <div class="mw-heading mw-heading3"><h3 id="正实数"><span id=".E6.AD.A3.E5.AE.9E.E6.95.B0"></span>正实数</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%96%B9%E6%A0%B9&action=edit&section=6" title="编辑章节:正实数"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>所有<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{n}=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{n}=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4f72f2b21e69fe32e9d348b1768bb5bd017fa1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.876ex; height:2.343ex;" alt="{\displaystyle x^{n}=a}"></span>或<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>次方根,这裡的<i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span></i>是正实数,的复数解由如下简单等式给出: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{2\pi i{\frac {k}{n}}}\times {\sqrt[{n}]{a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>n</mi> </mfrac> </mrow> </mrow> </msup> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{2\pi i{\frac {k}{n}}}\times {\sqrt[{n}]{a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7bbf0ec4a058a408d016bc4c013aeabd2d80008" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.29ex; height:4.009ex;" alt="{\displaystyle e^{2\pi i{\frac {k}{n}}}\times {\sqrt[{n}]{a}}}"></span></dd></dl> <p>对于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=0,1,2,\ldots ,n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=0,1,2,\ldots ,n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36fd103867d2b8407db3fa90a3b2e009370793fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.441ex; height:2.509ex;" alt="{\displaystyle k=0,1,2,\ldots ,n-1}"></span>,这裡的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7873203eb76042fcd24056c553de8c86054a2df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.166ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{a}}}"></span>表示<i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span></i>的主<i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span></i>次方根。 </p> <div class="mw-heading mw-heading2"><h2 id="解多项式"><span id=".E8.A7.A3.E5.A4.9A.E9.A1.B9.E5.BC.8F"></span>解多项式</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%96%B9%E6%A0%B9&action=edit&section=7" title="编辑章节:解多项式"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>曾经有數學<a href="/wiki/%E7%8C%9C%E6%83%B3" title="猜想">猜想</a>,認為<a href="/wiki/%E5%A4%9A%E9%A1%B9%E5%BC%8F" class="mw-redirect" title="多项式">多项式</a>的所有根可以用根号和<a href="/wiki/%E5%9B%9B%E5%88%99%E8%BF%90%E7%AE%97" title="四则运算">四則运算</a>来表达;但是<a href="/wiki/%E9%98%BF%E8%B4%9D%E5%B0%94-%E9%B2%81%E8%8F%B2%E5%B0%BC%E5%AE%9A%E7%90%86" title="阿贝尔-鲁菲尼定理">阿贝尔-鲁菲尼定理</a>断言了这不是普遍为真的。例如,方程 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ x^{5}=x+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ x^{5}=x+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a816236f9ce5328fa12fe8dc79c10a35e4030dbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.396ex; height:2.843ex;" alt="{\displaystyle \ x^{5}=x+1}"></span></dd></dl> <p>的解不能用根号表达。 </p><p>要解任何<i>n</i>次方程,参见<a href="/wiki/%E6%B1%82%E6%A0%B9%E7%AE%97%E6%B3%95" title="求根算法">求根算法</a>。 </p> <div class="mw-heading mw-heading2"><h2 id="算法"><span id=".E7.AE.97.E6.B3.95"></span>算法</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%96%B9%E6%A0%B9&action=edit&section=8" title="编辑章节:算法"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>對於正數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>,可以通過以下算法求得<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28c619f2e28fc8407c3489c1b78f2348f129a712" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.679ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{A}}}"></span>的值: </p> <ol><li>猜一個<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28c619f2e28fc8407c3489c1b78f2348f129a712" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.679ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{A}}}"></span>的近似值,將其作為初始值<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span></li> <li>設 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{k+1}={\frac {1}{n}}\left[{(n-1)x_{k}+{\frac {A}{x_{k}^{n-1}}}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>A</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{k+1}={\frac {1}{n}}\left[{(n-1)x_{k}+{\frac {A}{x_{k}^{n-1}}}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a04ab474a1b0d5803206757164ad075abc43707" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:30.896ex; height:7.509ex;" alt="{\displaystyle x_{k+1}={\frac {1}{n}}\left[{(n-1)x_{k}+{\frac {A}{x_{k}^{n-1}}}}\right]}"></span>。記誤差為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x_{k}={\frac {1}{n}}\left[{\frac {A}{x_{k}^{n-1}}}-x_{k}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>A</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mfrac> </mrow> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x_{k}={\frac {1}{n}}\left[{\frac {A}{x_{k}^{n-1}}}-x_{k}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f2f9f2a4772d734239540e569f42c3d00ca3c54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:23.525ex; height:7.509ex;" alt="{\displaystyle \Delta x_{k}={\frac {1}{n}}\left[{\frac {A}{x_{k}^{n-1}}}-x_{k}\right]}"></span>,即<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{k+1}=x_{k}+\Delta x_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{k+1}=x_{k}+\Delta x_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11f8f1a1f504263cd8360b3e7a68f0c7981eb5c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.23ex; height:2.509ex;" alt="{\displaystyle x_{k+1}=x_{k}+\Delta x_{k}}"></span>。</li> <li>重複步驟2,直至絕對誤差足夠小,即:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\Delta x_{k}|<\epsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo><</mo> <mi>ϵ<!-- ϵ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\Delta x_{k}|<\epsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7ae62bf1650cab4677497c75801b91874273e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.691ex; height:2.843ex;" alt="{\displaystyle |\Delta x_{k}|<\epsilon }"></span>。</li></ol> <div class="mw-heading mw-heading3"><h3 id="從牛頓法導出"><span id=".E5.BE.9E.E7.89.9B.E9.A0.93.E6.B3.95.E5.B0.8E.E5.87.BA"></span>從牛頓法導出</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%96%B9%E6%A0%B9&action=edit&section=9" title="编辑章节:從牛頓法導出"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>求<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28c619f2e28fc8407c3489c1b78f2348f129a712" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.679ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{A}}}"></span>之值,亦即求方程<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{n}-A=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mi>A</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{n}-A=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e14f6da8d5be89b43d1473b2da2de7b21ee3a081" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.393ex; height:2.509ex;" alt="{\displaystyle x^{n}-A=0}"></span>的根。 </p><p>設<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=x^{n}-A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=x^{n}-A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef19c9c8a3d3f221ca9363fb394c69818d681041" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.648ex; height:2.843ex;" alt="{\displaystyle f(x)=x^{n}-A}"></span>,其<a href="/wiki/%E5%AF%BC%E5%87%BD%E6%95%B0" class="mw-redirect" title="导函数">導函數</a>即<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)=nx^{n-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)=nx^{n-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5058542ce5d581ded98c669807ab7ba87495d23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.286ex; height:3.176ex;" alt="{\displaystyle f'(x)=nx^{n-1}}"></span>。 </p><p>以<a href="/wiki/%E7%89%9B%E9%A1%BF%E6%B3%95" title="牛顿法">牛頓法</a>作迭代,便得 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{k+1}=x_{k}-{\frac {f(x_{k})}{f'(x_{k})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{k+1}=x_{k}-{\frac {f(x_{k})}{f'(x_{k})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30ea5aa9e4b0a39382df25ae50dd18549802007a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:19.945ex; height:6.509ex;" alt="{\displaystyle x_{k+1}=x_{k}-{\frac {f(x_{k})}{f'(x_{k})}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =x_{k}-{\frac {x_{k}^{n}-A}{nx_{k}^{n-1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo>−<!-- − --></mo> <mi>A</mi> </mrow> <mrow> <mi>n</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =x_{k}-{\frac {x_{k}^{n}-A}{nx_{k}^{n-1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a27defaa8b07f41954fbf554ea83266f8066ad5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:15.68ex; height:7.009ex;" alt="{\displaystyle =x_{k}-{\frac {x_{k}^{n}-A}{nx_{k}^{n-1}}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =x_{k}-{\frac {x_{k}}{n}}+{\frac {A}{nx_{k}^{n-1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mi>n</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>A</mi> <mrow> <mi>n</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =x_{k}-{\frac {x_{k}}{n}}+{\frac {A}{nx_{k}^{n-1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a52a515602f4eb054244c39f1cda5a1980ab5dcc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:20.687ex; height:6.676ex;" alt="{\displaystyle =x_{k}-{\frac {x_{k}}{n}}+{\frac {A}{nx_{k}^{n-1}}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {1}{n}}\left[{(n-1)x_{k}+{\frac {A}{x_{k}^{n-1}}}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>A</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {1}{n}}\left[{(n-1)x_{k}+{\frac {A}{x_{k}^{n-1}}}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e77213fc47f1c355946993ee6eca67b05f76b594" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:25.732ex; height:7.509ex;" alt="{\displaystyle ={\frac {1}{n}}\left[{(n-1)x_{k}+{\frac {A}{x_{k}^{n-1}}}}\right]}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="從牛頓二項式定理導出"><span id=".E5.BE.9E.E7.89.9B.E9.A0.93.E4.BA.8C.E9.A0.85.E5.BC.8F.E5.AE.9A.E7.90.86.E5.B0.8E.E5.87.BA"></span>從牛頓二項式定理導出</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%96%B9%E6%A0%B9&action=edit&section=10" title="编辑章节:從牛頓二項式定理導出"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>設<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d2b88c64c76a03611549fb9b4cf4ed060b56002" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.418ex; height:2.009ex;" alt="{\displaystyle x_{k}}"></span>為迭代值,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>為誤差值。 </p><p>令<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=(x_{k}-y)^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>y</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=(x_{k}-y)^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20dd4008c0499e9547272681c524be51c0ec0a27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.284ex; height:2.843ex;" alt="{\displaystyle A=(x_{k}-y)^{n}}"></span>(*),作<a href="/wiki/%E4%BA%8C%E9%A1%B9%E5%BC%8F%E5%AE%9A%E7%90%86" title="二项式定理">牛頓二項式展開</a>,取首兩項:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\approx x_{k}^{n}-nx_{k}^{n-1}y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>≈<!-- ≈ --></mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo>−<!-- − --></mo> <mi>n</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\approx x_{k}^{n}-nx_{k}^{n-1}y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/213c9ffc59265988d3c319a3dcec78fe8d1c9071" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.429ex; height:3.343ex;" alt="{\displaystyle A\approx x_{k}^{n}-nx_{k}^{n-1}y}"></span> </p><p>調項得<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\approx {\frac {x_{k}^{n}-A}{nx_{k}^{n-1}}}={\frac {1}{n}}\left(x_{k}-{\frac {A}{x_{k}^{n-1}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo>−<!-- − --></mo> <mi>A</mi> </mrow> <mrow> <mi>n</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>A</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\approx {\frac {x_{k}^{n}-A}{nx_{k}^{n-1}}}={\frac {1}{n}}\left(x_{k}-{\frac {A}{x_{k}^{n-1}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26e5107a98391b1a5dd56bec011711b891f2c6e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:32.363ex; height:7.509ex;" alt="{\displaystyle y\approx {\frac {x_{k}^{n}-A}{nx_{k}^{n-1}}}={\frac {1}{n}}\left(x_{k}-{\frac {A}{x_{k}^{n-1}}}\right)}"></span> </p><p>將以上結果代回(*),得遞歸公式<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{k+1}=x_{k}-y={\frac {1}{n}}\left[{(n-1)x_{k}+{\frac {A}{x_{k}^{n-1}}}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>y</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>A</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{k+1}=x_{k}-y={\frac {1}{n}}\left[{(n-1)x_{k}+{\frac {A}{x_{k}^{n-1}}}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa63af56f327cdf59c6ed94a1f6796830b7171a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:40.409ex; height:7.509ex;" alt="{\displaystyle x_{k+1}=x_{k}-y={\frac {1}{n}}\left[{(n-1)x_{k}+{\frac {A}{x_{k}^{n-1}}}}\right]}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="参见"><span id=".E5.8F.82.E8.A7.81"></span>参见</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%96%B9%E6%A0%B9&action=edit&section=11" title="编辑章节:参见"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/%E5%A2%9E%E4%B9%98%E5%BC%80%E5%B9%B3%E6%96%B9%E6%B3%95" title="增乘开平方法">增乘开平方法</a></li> <li><a href="/wiki/%E5%B9%82" class="mw-redirect" title="幂">幂</a></li> <li><a href="/wiki/%E6%97%A0%E7%90%86%E6%95%B0" class="mw-redirect" title="无理数">无理数</a></li> <li><a href="/wiki/%E5%88%86%E6%AF%8D%E6%9C%89%E7%90%86%E5%8C%96" title="分母有理化">分母有理化</a></li> <li><a href="/wiki/%E5%8F%8C%E9%87%8D%E6%A0%B9%E5%8F%B7" title="双重根号">双重根号</a></li> <li><a href="/wiki/2%E7%9A%8412%E6%AC%A1%E6%96%B9%E6%A0%B9" title="2的12次方根">2的12次方根</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="外部链接"><span id=".E5.A4.96.E9.83.A8.E9.93.BE.E6.8E.A5"></span>外部链接</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%96%B9%E6%A0%B9&action=edit&section=12" title="编辑章节:外部链接"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div role="navigation" aria-label="Portals" class="noprint portal plainlist tright" style="margin:0.5em 0 0.5em 1em;border:solid #aaa 1px"> <ul style="display:table;box-sizing:border-box;padding:0.1em;max-width:175px;background:var(--background-color-base,#f9f9f9);font-size:85%;line-height:110%;font-weight:bold"> <li style="display:table-row"><span style="display:table-cell;padding:0.2em;vertical-align:middle;text-align:center"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span style="display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle"><a href="/wiki/Portal:%E6%95%B0%E5%AD%A6" title="Portal:数学">数学主题</a></span></li></ul></div> <ul><li><a rel="nofollow" class="external text" href="http://4rdp.blogspot.com/2008/04/blog-post_9406.html">高階根號求解</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20200930001954/http://4rdp.blogspot.com/2008/04/blog-post_9406.html">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>)。此法亦可求任意正實數指數值</li> <li><a rel="nofollow" class="external text" href="http://tw.wrs.yahoo.com/_ylt=A3eg86wvOvhLV0kB09Fr1gt.;_ylu=X3oDMTByMHM4NXRxBHNlYwNzcgRwb3MDMwRjb2xvA3R3MQR2dGlkAw--/SIG=12d0b3rkb/EXP=1274645423/**http%3a//www.math.ccu.edu.tw/chinese/95sutdy/PDF/A1_cub.pdf">立方根與高次方根</a><sup class="noprint Inline-Template"><span style="white-space: nowrap;">[<a href="/wiki/Wikipedia:%E5%A4%B1%E6%95%88%E9%93%BE%E6%8E%A5" title="Wikipedia:失效链接"><span title="自2018年6月失效">永久失效連結</span></a>]</span></sup></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20100816045352/http://www.90house.cn/gaozhongshuxuejiaoan/977.html">指數-高中數學教案</a></li> <li><a rel="nofollow" class="external text" href="http://tech.sina.com.cn/d/2007-12-12/10121907975.shtml">法国心算天才70.2秒算出200位数13次方根(图)</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20200612005422/http://tech.sina.com.cn/d/2007-12-12/10121907975.shtml">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>)</li></ul> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐849f99967d‐clx47 Cached time: 20241124085424 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.493 seconds Real time usage: 0.690 seconds Preprocessor visited node count: 1498/1000000 Post‐expand include size: 269387/2097152 bytes Template argument size: 1013/2097152 bytes Highest expansion depth: 28/100 Expensive parser function count: 3/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 21480/5000000 bytes Lua time usage: 0.202/10.000 seconds Lua memory usage: 5997921/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 330.911 1 -total 45.56% 150.769 1 Template:算术运算 44.90% 148.582 1 Template:Sidebar 22.36% 74.007 1 Template:NoteTA 14.56% 48.193 1 Template:Infobox3cols 13.80% 45.682 1 Template:Navbar 13.49% 44.644 1 Template:Dead_link 12.17% 40.272 1 Template:Fix 12.06% 39.899 1 Template:Redirect 11.42% 37.806 2 Template:Category_handler --> <!-- Saved in parser cache with key zhwiki:pcache:idhash:557676-0!canonical!zh and timestamp 20241124085424 and revision id 84256053. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">检索自“<a dir="ltr" href="https://zh.wikipedia.org/w/index.php?title=方根&oldid=84256053">https://zh.wikipedia.org/w/index.php?title=方根&oldid=84256053</a>”</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Special:%E9%A1%B5%E9%9D%A2%E5%88%86%E7%B1%BB" title="Special:页面分类">分类</a>:<ul><li><a href="/wiki/Category:%E5%88%9D%E7%AD%89%E4%BB%A3%E6%95%B0" title="Category:初等代数">初等代数</a></li><li><a href="/wiki/Category:%E6%95%B0%E5%AD%97%E8%BF%90%E7%AE%97" title="Category:数字运算">数字运算</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">隐藏分类:<ul><li><a href="/wiki/Category:%E8%87%AA2018%E5%B9%B46%E6%9C%88%E5%B8%A6%E6%9C%89%E5%A4%B1%E6%95%88%E9%93%BE%E6%8E%A5%E7%9A%84%E6%9D%A1%E7%9B%AE" title="Category:自2018年6月带有失效链接的条目">自2018年6月带有失效链接的条目</a></li><li><a href="/wiki/Category:%E6%9D%A1%E7%9B%AE%E6%9C%89%E6%B0%B8%E4%B9%85%E5%A4%B1%E6%95%88%E7%9A%84%E5%A4%96%E9%83%A8%E9%93%BE%E6%8E%A5" title="Category:条目有永久失效的外部链接">条目有永久失效的外部链接</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> 本页面最后修订于2024年9月18日 (星期三) 11:58。</li> <li id="footer-info-copyright">本站的全部文字在<a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.zh">知识共享 署名-相同方式共享 4.0协议</a>之条款下提供,附加条款亦可能应用。(请参阅<a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">使用条款</a>)<br /> Wikipedia®和维基百科标志是<a rel="nofollow" class="external text" href="https://wikimediafoundation.org/zh">维基媒体基金会</a>的注册商标;维基™是维基媒体基金会的商标。<br /> 维基媒体基金会是按美国国內稅收法501(c)(3)登记的<a class="external text" href="https://donate.wikimedia.org/wiki/Special:MyLanguage/Tax_deductibility">非营利慈善机构</a>。<br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">隐私政策</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%E5%85%B3%E4%BA%8E">关于维基百科</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:%E5%85%8D%E8%B4%A3%E5%A3%B0%E6%98%8E">免责声明</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">行为准则</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">开发者</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/zh.wikipedia.org">统计</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie声明</a></li> <li id="footer-places-mobileview"><a href="//zh.m.wikipedia.org/w/index.php?title=%E6%96%B9%E6%A0%B9&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">手机版视图</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-gflb9","wgBackendResponseTime":174,"wgPageParseReport":{"limitreport":{"cputime":"0.493","walltime":"0.690","ppvisitednodes":{"value":1498,"limit":1000000},"postexpandincludesize":{"value":269387,"limit":2097152},"templateargumentsize":{"value":1013,"limit":2097152},"expansiondepth":{"value":28,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":21480,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 330.911 1 -total"," 45.56% 150.769 1 Template:算术运算"," 44.90% 148.582 1 Template:Sidebar"," 22.36% 74.007 1 Template:NoteTA"," 14.56% 48.193 1 Template:Infobox3cols"," 13.80% 45.682 1 Template:Navbar"," 13.49% 44.644 1 Template:Dead_link"," 12.17% 40.272 1 Template:Fix"," 12.06% 39.899 1 Template:Redirect"," 11.42% 37.806 2 Template:Category_handler"]},"scribunto":{"limitreport-timeusage":{"value":"0.202","limit":"10.000"},"limitreport-memusage":{"value":5997921,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-849f99967d-clx47","timestamp":"20241124085424","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u65b9\u6839","url":"https:\/\/zh.wikipedia.org\/wiki\/%E6%96%B9%E6%A0%B9","sameAs":"http:\/\/www.wikidata.org\/entity\/Q601053","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q601053","author":{"@type":"Organization","name":"\u7ef4\u57fa\u5a92\u4f53\u9879\u76ee\u8d21\u732e\u8005"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2007-06-06T14:43:53Z","dateModified":"2024-09-18T11:58:44Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/b\/ba\/Nuvola_mimetypes_kformula_kfo.png","headline":"\u4e58\u65b9\u7684\u9006\u8fd0\u7b97"}</script> </body> </html>