CINXE.COM
Search results for: K. Matjaz
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: K. Matjaz</title> <meta name="description" content="Search results for: K. Matjaz"> <meta name="keywords" content="K. Matjaz"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="K. Matjaz" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="K. Matjaz"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: K. Matjaz</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Video-Based System for Support of Robot-Enhanced Gait Rehabilitation of Stroke Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matja%C5%BE%20Divjak">Matjaž Divjak</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Zeli%C4%8D"> Simon Zelič</a>, <a href="https://publications.waset.org/abstracts/search?q=Ale%C5%A1%20Holobar"> Aleš Holobar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a dedicated video-based monitoring system for quantification of patient’s attention to visual feedback during robot assisted gait rehabilitation. Two different approaches for eye gaze and head pose tracking are tested and compared. Several metrics for assessment of patient’s attention are also presented. Experimental results with healthy volunteers demonstrate that unobtrusive video-based gaze tracking during the robot-assisted gait rehabilitation is possible and is sufficiently robust for quantification of patient’s attention and assessment of compliance with the rehabilitation therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video-based%20attention%20monitoring" title="video-based attention monitoring">video-based attention monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=gaze%20estimation" title=" gaze estimation"> gaze estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke%20rehabilitation" title=" stroke rehabilitation"> stroke rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20compliance" title=" user compliance"> user compliance</a> </p> <a href="https://publications.waset.org/abstracts/11930/video-based-system-for-support-of-robot-enhanced-gait-rehabilitation-of-stroke-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Key Factors Influencing the Purchasing Decisions of Low Emission Cars: A Comparative Study between Egypt and Slovenia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Alaa">O. Alaa</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ahmed"> D. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Baher"> R. Baher</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Matjaz"> K. Matjaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides a study of the factors influencing the purchasing of low emission vehicles. In order to achieve the objectives of the paper, and in the light of the pool of literature and availability of data, the authors relied on qualitative methods to offers a comparison between Egypt as a developing country and Slovenia as a developed country, through analysing a survey that involves an Egyptian sample and Slovenian samples, it also studies the effect of different push and pull methods on different buyers in order to help the governments as well as the manufacturers to understand the most significant factors that affect the purchasing behaviour of LEV in the future. The results of this paper show the important vehicle performance factors, financial considerations, and environmental considerations along with the gender and age of the consumer show that consumers are more interested in the total price of the car than in different taxes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20emission%20vehicles" title="low emission vehicles">low emission vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=purchasing%20behavior" title=" purchasing behavior"> purchasing behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=developed%20countries" title=" developed countries"> developed countries</a>, <a href="https://publications.waset.org/abstracts/search?q=developing%20countries" title=" developing countries"> developing countries</a> </p> <a href="https://publications.waset.org/abstracts/129054/key-factors-influencing-the-purchasing-decisions-of-low-emission-cars-a-comparative-study-between-egypt-and-slovenia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Slovenia Rider/Driver Gaze Behavior Comparative Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toma%C5%BE%20Tollazzi">Tomaž Tollazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Matja%C5%BE%20%C5%A0raml"> Matjaž Šraml</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiara%20Gruden"> Chiara Gruden</a>, <a href="https://publications.waset.org/abstracts/search?q=Marko%20Ren%C4%8Delj"> Marko Renčelj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motorcycle riders are an increasing group of road users. The intrinsic characteristics of powered two-wheelers (PTW) allow them to be particularly flexible, both in urban and extra-urban environments. Nevertheless, crash statistics indicate that riders involved in road accidents are highly likely to suffer severe injuries, underlining the vulnerability of this group of road users. An element that can greatly affect the safety of PTW users is road design, as roads are usually designed for two-track vehicles (cars, buses, and lorries) and usually do not consider the needs of PTWs. Additionally, handling a motorcycle is quite different from driving a car; thus, the behavior of riders is different from that of drivers. The aim of this research was to compare how different road designs are perceived by riders and drivers and to preliminarily assess if riders’ behavior and attention allocation are related. For this research, an eye-tracking experiment was developed outdoors. Both drivers and riders travelled along a route comprising four different road designs and various road layouts, and the output was analyzed both qualitatively and quantitatively. Although it was not possible to carry out a statistical analysis due to the limited number of participants, the results demonstrate that there is a difference in the gaze behavior of drivers and riders, with the latter being far more focused on the left-hand side of the road and concentrating on defined elements of road design. Furthermore, the experiment demonstrated that a higher number of fixations is related to lower speeds. Finally, it was noted that both kinds of road users focus well on the carriageway, leading to the conclusion that the indications given through road markings may be much more effective than vertical signalization, which has rarely been observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=road%20safety" title="road safety">road safety</a>, <a href="https://publications.waset.org/abstracts/search?q=powered%20two-wheelers" title=" powered two-wheelers"> powered two-wheelers</a>, <a href="https://publications.waset.org/abstracts/search?q=eye-tracking" title=" eye-tracking"> eye-tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=gaze%20behavior" title=" gaze behavior"> gaze behavior</a> </p> <a href="https://publications.waset.org/abstracts/162504/slovenia-riderdriver-gaze-behavior-comparative-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Numerical Modelling of Skin Tumor Diagnostics through Dynamic Thermography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luiz%20Carlos%20Wrobel">Luiz Carlos Wrobel</a>, <a href="https://publications.waset.org/abstracts/search?q=Matjaz%20Hribersek"> Matjaz Hribersek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jure%20Marn"> Jure Marn</a>, <a href="https://publications.waset.org/abstracts/search?q=Jurij%20Iljaz"> Jurij Iljaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic thermography has been clinically proven to be a valuable diagnostic technique for skin tumor detection as well as for other medical applications such as breast cancer diagnostics, diagnostics of vascular diseases, fever screening, dermatological and other applications. Thermography for medical screening can be done in two different ways, observing the temperature response under steady-state conditions (passive or static thermography), and by inducing thermal stresses by cooling or heating the observed tissue and measuring the thermal response during the recovery phase (active or dynamic thermography). The numerical modelling of heat transfer phenomena in biological tissue during dynamic thermography can aid the technique by improving process parameters or by estimating unknown tissue parameters based on measured data. This paper presents a nonlinear numerical model of multilayer skin tissue containing a skin tumor, together with the thermoregulation response of the tissue during the cooling-rewarming processes of dynamic thermography. The model is based on the Pennes bioheat equation and solved numerically by using a subdomain boundary element method which treats the problem as axisymmetric. The paper includes computational tests and numerical results for Clark II and Clark IV tumors, comparing the models using constant and temperature-dependent thermophysical properties, which showed noticeable differences and highlighted the importance of using a local thermoregulation model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20element%20method" title="boundary element method">boundary element method</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20thermography" title=" dynamic thermography"> dynamic thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20thermography" title=" static thermography"> static thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20tumor%20diagnostic" title=" skin tumor diagnostic"> skin tumor diagnostic</a> </p> <a href="https://publications.waset.org/abstracts/158809/numerical-modelling-of-skin-tumor-diagnostics-through-dynamic-thermography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Numerical Simulation of a Combined Impact of Cooling and Ventilation on the Indoor Environmental Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matjaz%20Prek">Matjaz Prek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Impact of three different combinations of cooling and ventilation systems on the indoor environmental quality (IEQ) has been studied. Comparison of chilled ceiling cooling in combination with displacement ventilation, cooling with fan coil unit and cooling with flat wall displacement outlets was performed. All three combinations were evaluated from the standpoint of whole-body and local thermal comfort criteria as well as from the standpoint of ventilation effectiveness. The comparison was made on the basis of numerical simulation with DesignBuilder and Fluent. Numerical simulations were carried out in two steps. Firstly the DesignBuilder software environment was used to model the buildings thermal performance and evaluation of the interaction between the environment and the building. Heat gains of the building and of the individual space, as well as the heat loss on the boundary surfaces in the room, were calculated. In the second step Fluent software environment was used to simulate the response of the indoor environment, evaluating the interaction between building and human, using the simulation results obtained in the first step. Among the systems presented, the ceiling cooling system in combination with displacement ventilation was found to be the most suitable as it offers a high level of thermal comfort with adequate ventilation efficiency. Fan coil cooling has proved inadequate from the standpoint of thermal comfort whereas flat wall displacement outlets were inadequate from the standpoint of ventilation effectiveness. The study showed the need in evaluating indoor environment not solely from the energy use point of view, but from the point of view of indoor environmental quality as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling" title="cooling">cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation%20effectiveness" title=" ventilation effectiveness"> ventilation effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20environmental%20quality" title=" indoor environmental quality"> indoor environmental quality</a>, <a href="https://publications.waset.org/abstracts/search?q=IEQ" title=" IEQ"> IEQ</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/97567/numerical-simulation-of-a-combined-impact-of-cooling-and-ventilation-on-the-indoor-environmental-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Synthesis and Optimization of Bio Metal-Organic Framework with Permanent Porosity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tia%20Kristian%20Tajn%C5%A1ek">Tia Kristian Tajnšek</a>, <a href="https://publications.waset.org/abstracts/search?q=Matja%C5%BE%20Mazaj"> Matjaž Mazaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Nata%C5%A1a%20Zabukovec%20Logar"> Nataša Zabukovec Logar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-organic frameworks (MOFs) with their specific properties and the possibility of tuning the structure represent excellent candidates for use in the biomedical field. Their advantage lies in large pore surfaces and volumes, as well as the possibility of using bio-friendly or bioactive constituents. So-called bioMOFs are representatives of MOFs, which are constructed from at least one biomolecule (metal, a small bioactive molecule in metal clusters and/or linker) and are intended for bio-application (usually in the field of medicine; most commonly drug delivery). When designing a bioMOF for biomedical applications, we should adhere to some guidelines for an improved toxicological profile of the material. Such as (i) choosing an endogenous/nontoxic metal, (ii) GRAS (generally recognized as safe) linker, and (iii) nontoxic solvents. Design and synthesis of bioNICS-1 (bioMOF of National Institute of Chemistry Slovenia – 1) consider all these guidelines. Zinc (Zn) was chosen as an endogenous metal with an agreeable recommended daily intake (RDI) and LD50 value, and ascorbic acid (Vitamin C) was chosen as a GRAS and active linker. With these building blocks, we have synthesized a bioNICS-1 material. The synthesis was done in ethanol using a solvothermal method. The synthesis protocol was further optimized in three separate ways. Optimization of (i) synthesis parameters to improve the yield of the synthesis, (ii) input reactant ratio and addition of specific modulators for production of larger crystals, and (iii) differing of the heating source (conventional, microwave and ultrasound) to produce nano-crystals. With optimization strategies, the synthesis yield was increased. Larger crystals were prepared for structural analysis with the use of a proper species and amount of modulator. Synthesis protocol was adjusted to different heating sources, resulting in the production of nano-crystals of bioNICS-1 material. BioNICS-1 was further activated in ethanol and structurally characterized, resolving the crystal structure of new material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ascorbic%20acid" title="ascorbic acid">ascorbic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=bioMOF" title=" bioMOF"> bioMOF</a>, <a href="https://publications.waset.org/abstracts/search?q=MOF" title=" MOF"> MOF</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20ascorbate" title=" zinc ascorbate"> zinc ascorbate</a> </p> <a href="https://publications.waset.org/abstracts/131631/synthesis-and-optimization-of-bio-metal-organic-framework-with-permanent-porosity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Safety Tolerance Zone for Driver-Vehicle-Environment Interactions under Challenging Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matja%C5%BE%20%C5%A0raml">Matjaž Šraml</a>, <a href="https://publications.waset.org/abstracts/search?q=Marko%20Ren%C4%8Delj"> Marko Renčelj</a>, <a href="https://publications.waset.org/abstracts/search?q=Toma%C5%BE%20Tollazzi"> Tomaž Tollazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiara%20Gruden"> Chiara Gruden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Road safety is a worldwide issue with numerous and heterogeneous factors influencing it. On the side, driver state – comprising distraction/inattention, fatigue, drowsiness, extreme emotions, and socio-cultural factors highly affect road safety. On the other side, the vehicle state has an important role in mitigating (or not) the road risk. Finally, the road environment is still one of the main determinants of road safety, defining driving task complexity. At the same time, thanks to technological development, a lot of detailed data is easily available, creating opportunities for the detection of driver state, vehicle characteristics and road conditions and, consequently, for the design of ad hoc interventions aimed at improving driver performance, increase awareness and mitigate road risks. This is the challenge faced by the i-DREAMS project. i-DREAMS, which stands for a smart Driver and Road Environment Assessment and Monitoring System, is a 3-year project funded by the European Union’s Horizon 2020 research and innovation program. It aims to set up a platform to define, develop, test and validate a ‘Safety Tolerance Zone’ to prevent drivers from getting too close to the boundaries of unsafe operation by mitigating risks in real-time and after the trip. After the definition and development of the Safety Tolerance Zone concept and the concretization of the same in an Advanced driver-assistance system (ADAS) platform, the system was tested firstly for 2 months in a driving simulator environment in 5 different countries. After that, naturalistic driving studies started for a 10-month period (comprising a 1-month pilot study, 3-month baseline study and 6 months study implementing interventions). Currently, the project team has approved a common evaluation approach, and it is developing the assessment of the usage and outcomes of the i-DREAMS system, which is turning positive insights. The i-DREAMS consortium consists of 13 partners, 7 engineering universities and research groups, 4 industry partners and 2 partners (European Transport Safety Council - ETSC - and POLIS cities and regions for transport innovation) closely linked to transport safety stakeholders, covering 8 different countries altogether. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20driver%20assistant%20systems" title="advanced driver assistant systems">advanced driver assistant systems</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20simulator" title=" driving simulator"> driving simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20tolerance%20zone" title=" safety tolerance zone"> safety tolerance zone</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20safety" title=" traffic safety"> traffic safety</a> </p> <a href="https://publications.waset.org/abstracts/162481/safety-tolerance-zone-for-driver-vehicle-environment-interactions-under-challenging-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Li2S Nanoparticles Impact on the First Charge of Li-ion/Sulfur Batteries: An Operando XAS/XES Coupled With XRD Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alice%20Robba">Alice Robba</a>, <a href="https://publications.waset.org/abstracts/search?q=Renaud%20Bouchet"> Renaud Bouchet</a>, <a href="https://publications.waset.org/abstracts/search?q=Celine%20Barchasz"> Celine Barchasz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Francois%20Colin"> Jean-Francois Colin</a>, <a href="https://publications.waset.org/abstracts/search?q=Erik%20Elkaim"> Erik Elkaim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristina%20Kvashnina"> Kristina Kvashnina</a>, <a href="https://publications.waset.org/abstracts/search?q=Gavin%20Vaughan"> Gavin Vaughan</a>, <a href="https://publications.waset.org/abstracts/search?q=Matjaz%20Kavcic"> Matjaz Kavcic</a>, <a href="https://publications.waset.org/abstracts/search?q=Fannie%20Alloin"> Fannie Alloin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With their high theoretical energy density (~2600 Wh.kg-1), lithium/sulfur (Li/S) batteries are highly promising, but these systems are still poorly understood due to the complex mechanisms/equilibria involved. Replacing S8 by Li2S as the active material allows the use of safer negative electrodes, like silicon, instead of lithium metal. S8 and Li2S have different conductivity and solubility properties, resulting in a profoundly changed activation process during the first cycle. Particularly, during the first charge a high polarization and a lack of reproducibility between tests are observed. Differences observed between raw Li2S material (micron-sized) and that electrochemically produced in a battery (nano-sized) may indicate that the electrochemical process depends on the particle size. Then the major focus of the presented work is to deepen the understanding of the Li2S material charge mechanism, and more precisely to characterize the effect of the initial Li2S particle size both on the mechanism and the electrode preparation process. To do so, Li2S nanoparticles were synthetized according to two ways: a liquid path synthesis and a dissolution in ethanol, allowing Li2S nanoparticles/carbon composites to be made. Preliminary chemical and electrochemical tests show that starting with Li2S nanoparticles could effectively suppress the high initial polarization but also influence the electrode slurry preparation. Indeed, it has been shown that classical formulation process - a slurry composed of Polyvinylidone Fluoride polymer dissolved in N-methyle-2-pyrrolidone - cannot be used with Li2S nanoparticles. This reveals a complete different Li2S material behavior regarding polymers and organic solvents when going at the nanometric scale. Then the coupling between two operando characterizations such as X-Ray Diffraction (XRD) and X-Ray Absorption and Emission Spectroscopy (XAS/XES) have been carried out in order to interpret the poorly understood first charge. This study discloses that initial particle size of the active material has a great impact on the working mechanism and particularly on the different equilibria involved during the first charge of the Li2S based Li-ion batteries. These results explain the electrochemical differences and particularly the polarization differences observed during the first charge between micrometric and nanometric Li2S-based electrodes. Finally, this work could lead to a better active material design and so to more efficient Li2S-based batteries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li-ion%2FSulfur%20batteries" title="Li-ion/Sulfur batteries">Li-ion/Sulfur batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=Li2S%20nanoparticles%20effect" title=" Li2S nanoparticles effect"> Li2S nanoparticles effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Operando%20characterizations" title=" Operando characterizations"> Operando characterizations</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20mechanism" title=" working mechanism"> working mechanism</a> </p> <a href="https://publications.waset.org/abstracts/57906/li2s-nanoparticles-impact-on-the-first-charge-of-li-ionsulfur-batteries-an-operando-xasxes-coupled-with-xrd-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>