CINXE.COM
Finite difference - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Finite difference - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"f3821951-8d8f-46f2-8db5-449b8597b058","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Finite_difference","wgTitle":"Finite difference","wgCurRevisionId":1281487624,"wgRevisionId":1281487624,"wgArticleId":39147,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Use American English from March 2019","All Wikipedia articles written in American English","Articles with short description","Short description matches Wikidata","Use mdy dates from September 2011","All articles with unsourced statements","Articles with unsourced statements from December 2017","Articles needing additional references from July 2018","All articles needing additional references","Finite differences","Numerical differential equations","Mathematical analysis","Factorial and binomial topics","Linear operators in calculus","Numerical analysis","Non-Newtonian calculus"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Finite_difference","wgRelevantArticleId":39147,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q2068418","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGELevelingUpEnabledForUser":false}; RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.21"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Finite difference - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Finite_difference"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Finite_difference&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Finite_difference"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Finite_difference rootpage-Finite_difference skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Finite+difference" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Finite+difference" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Finite+difference" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Finite+difference" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Basic_types" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Basic_types"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Basic types</span> </div> </a> <ul id="toc-Basic_types-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relation_with_derivatives" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relation_with_derivatives"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Relation with derivatives</span> </div> </a> <ul id="toc-Relation_with_derivatives-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Higher-order_differences" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Higher-order_differences"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Higher-order differences</span> </div> </a> <ul id="toc-Higher-order_differences-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Polynomials" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Polynomials"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Polynomials</span> </div> </a> <button aria-controls="toc-Polynomials-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Polynomials subsection</span> </button> <ul id="toc-Polynomials-sublist" class="vector-toc-list"> <li id="toc-Inductive_proof" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Inductive_proof"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Inductive proof</span> </div> </a> <ul id="toc-Inductive_proof-sublist" class="vector-toc-list"> <li id="toc-Base_case" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Base_case"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.1</span> <span>Base case</span> </div> </a> <ul id="toc-Base_case-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Inductive_step" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Inductive_step"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.2</span> <span>Inductive step</span> </div> </a> <ul id="toc-Inductive_step-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Application" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Application"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Application</span> </div> </a> <ul id="toc-Application-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Arbitrarily_sized_kernels" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Arbitrarily_sized_kernels"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Arbitrarily sized kernels</span> </div> </a> <button aria-controls="toc-Arbitrarily_sized_kernels-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Arbitrarily sized kernels subsection</span> </button> <ul id="toc-Arbitrarily_sized_kernels-sublist" class="vector-toc-list"> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Properties</span> </div> </a> <ul id="toc-Properties-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-In_differential_equations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#In_differential_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>In differential equations</span> </div> </a> <ul id="toc-In_differential_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Newton's_series" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Newton's_series"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Newton's series</span> </div> </a> <ul id="toc-Newton's_series-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Calculus_of_finite_differences" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Calculus_of_finite_differences"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Calculus of finite differences</span> </div> </a> <button aria-controls="toc-Calculus_of_finite_differences-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Calculus of finite differences subsection</span> </button> <ul id="toc-Calculus_of_finite_differences-sublist" class="vector-toc-list"> <li id="toc-Rules_for_calculus_of_finite_difference_operators" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rules_for_calculus_of_finite_difference_operators"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Rules for calculus of finite difference operators</span> </div> </a> <ul id="toc-Rules_for_calculus_of_finite_difference_operators-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Generalizations</span> </div> </a> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multivariate_finite_differences" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Multivariate_finite_differences"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Multivariate finite differences</span> </div> </a> <ul id="toc-Multivariate_finite_differences-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Finite difference</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 23 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-23" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">23 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%81%D8%B1%D9%82_%D9%85%D8%AD%D8%AF%D9%88%D8%AF" title="فرق محدود – Arabic" lang="ar" hreflang="ar" data-title="فرق محدود" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/F%C9%99rq_operatoru" title="Fərq operatoru – Azerbaijani" lang="az" hreflang="az" data-title="Fərq operatoru" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9A%D1%80%D0%B0%D0%B9%D0%BD%D0%B0_%D1%80%D0%B0%D0%B7%D0%BB%D0%B8%D0%BA%D0%B0" title="Крайна разлика – Bulgarian" lang="bg" hreflang="bg" data-title="Крайна разлика" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Difer%C3%A8ncia_finita" title="Diferència finita – Catalan" lang="ca" hreflang="ca" data-title="Diferència finita" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A0%CE%B5%CF%80%CE%B5%CF%81%CE%B1%CF%83%CE%BC%CE%AD%CE%BD%CE%B7_%CE%B4%CE%B9%CE%B1%CF%86%CE%BF%CF%81%CE%AC" title="Πεπερασμένη διαφορά – Greek" lang="el" hreflang="el" data-title="Πεπερασμένη διαφορά" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Diferencia_finita" title="Diferencia finita – Spanish" lang="es" hreflang="es" data-title="Diferencia finita" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D9%81%D8%A7%D8%B6%D9%84_%D9%85%D8%AD%D8%AF%D9%88%D8%AF" title="تفاضل محدود – Persian" lang="fa" hreflang="fa" data-title="تفاضل محدود" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Diff%C3%A9rence_finie" title="Différence finie – French" lang="fr" hreflang="fr" data-title="Différence finie" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9C%A0%ED%95%9C%EC%B0%A8%EB%B6%84" title="유한차분 – Korean" lang="ko" hreflang="ko" data-title="유한차분" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8E%D5%A5%D6%80%D5%BB%D5%A1%D5%BE%D5%B8%D6%80_%D5%BF%D5%A1%D6%80%D5%A2%D5%A5%D6%80%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6%D5%B6%D5%A5%D6%80%D5%AB_%D5%B0%D5%A1%D5%B7%D5%AB%D5%BE" title="Վերջավոր տարբերությունների հաշիվ – Armenian" lang="hy" hreflang="hy" data-title="Վերջավոր տարբերությունների հաշիվ" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AA%E0%A4%B0%E0%A4%BF%E0%A4%AE%E0%A4%BF%E0%A4%A4_%E0%A4%85%E0%A4%82%E0%A4%A4%E0%A4%B0" title="परिमित अंतर – Hindi" lang="hi" hreflang="hi" data-title="परिमित अंतर" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Differenza_finita" title="Differenza finita – Italian" lang="it" hreflang="it" data-title="Differenza finita" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A2%D3%A9%D0%B3%D1%81%D0%B3%D3%A9%D0%BB%D3%A9%D0%B3_%D1%8F%D0%BB%D0%B3%D0%B0%D0%B2%D0%B0%D1%80" title="Төгсгөлөг ялгавар – Mongolian" lang="mn" hreflang="mn" data-title="Төгсгөлөг ялгавар" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Eindige_differentie" title="Eindige differentie – Dutch" lang="nl" hreflang="nl" data-title="Eindige differentie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%9C%89%E9%99%90%E5%B7%AE%E5%88%86" title="有限差分 – Japanese" lang="ja" hreflang="ja" data-title="有限差分" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Rachunek_r%C3%B3%C5%BCnicowy" title="Rachunek różnicowy – Polish" lang="pl" hreflang="pl" data-title="Rachunek różnicowy" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Operador_de_diferen%C3%A7a" title="Operador de diferença – Portuguese" lang="pt" hreflang="pt" data-title="Operador de diferença" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D0%B5%D1%87%D0%BD%D1%8B%D0%B5_%D1%80%D0%B0%D0%B7%D0%BD%D0%BE%D1%81%D1%82%D0%B8" title="Конечные разности – Russian" lang="ru" hreflang="ru" data-title="Конечные разности" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D0%B0%D1%87%D0%BD%D0%B0_%D1%80%D0%B0%D0%B7%D0%BB%D0%B8%D0%BA%D0%B0" title="Коначна разлика – Serbian" lang="sr" hreflang="sr" data-title="Коначна разлика" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Differensoperator" title="Differensoperator – Swedish" lang="sv" hreflang="sv" data-title="Differensoperator" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Sonlu_fark" title="Sonlu fark – Turkish" lang="tr" hreflang="tr" data-title="Sonlu fark" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A1%D0%BA%D1%96%D0%BD%D1%87%D0%B5%D0%BD%D0%BD%D1%96_%D1%80%D1%96%D0%B7%D0%BD%D0%B8%D1%86%D1%96" title="Скінченні різниці – Ukrainian" lang="uk" hreflang="uk" data-title="Скінченні різниці" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%B7%AE%E5%88%86" title="差分 – Chinese" lang="zh" hreflang="zh" data-title="差分" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2068418#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Finite_difference" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Finite_difference" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Finite_difference"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Finite_difference&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Finite_difference&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Finite_difference"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Finite_difference&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Finite_difference&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Finite_difference" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Finite_difference" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Finite_difference&oldid=1281487624" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Finite_difference&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Finite_difference&id=1281487624&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFinite_difference"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFinite_difference"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Finite_difference&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Finite_difference&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2068418" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p class="mw-empty-elt"> </p> <div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Discrete analog of a derivative</div> <p> A <b>finite difference</b> is a mathematical expression of the form <span class="texhtml"><i>f</i>(<i>x</i> + <i>b</i>) − <i>f</i>(<i>x</i> + <i>a</i>)</span>. Finite differences (or the associated <a href="/wiki/Difference_quotient" title="Difference quotient">difference quotients</a>) are often used as approximations of derivatives, such as in <a href="/wiki/Numerical_differentiation" title="Numerical differentiation">numerical differentiation</a>. </p><p>The <a href="/wiki/Difference_operator" class="mw-redirect" title="Difference operator">difference operator</a>, commonly denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }" /></span>, is the <a href="/wiki/Operator_(mathematics)" title="Operator (mathematics)">operator</a> that maps a function <span class="texhtml mvar" style="font-style:italic;">f</span> to the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta [f]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta [f]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/978a8399050eeaf584e6c0f7a57196f57d9bdb71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.508ex; height:2.843ex;" alt="{\displaystyle \Delta [f]}" /></span> defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta [f](x)=f(x+1)-f(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta [f](x)=f(x+1)-f(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15da4d892ccab64158a6e556b809b3f365da7057" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.071ex; height:2.843ex;" alt="{\displaystyle \Delta [f](x)=f(x+1)-f(x).}" /></span> A <a href="/wiki/Difference_equation" class="mw-redirect" title="Difference equation">difference equation</a> is a <a href="/wiki/Functional_equation" title="Functional equation">functional equation</a> that involves the finite difference operator in the same way as a <a href="/wiki/Differential_equation" title="Differential equation">differential equation</a> involves <a href="/wiki/Derivative" title="Derivative">derivatives</a>. There are many similarities between difference equations and differential equations. Certain <a href="/wiki/Recurrence_relation#Relationship_to_difference_equations_narrowly_defined" title="Recurrence relation">recurrence relations</a> can be written as difference equations by replacing iteration notation with finite differences. </p><p>In <a href="/wiki/Numerical_analysis" title="Numerical analysis">numerical analysis</a>, finite differences are widely used for <a href="#Relation_with_derivatives">approximating derivatives</a>, and the term "finite difference" is often used as an abbreviation of "finite difference approximation of derivatives".<sup id="cite_ref-WilmottHowison1995_1-0" class="reference"><a href="#cite_note-WilmottHowison1995-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Olver2013_2-0" class="reference"><a href="#cite_note-Olver2013-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Chaudhry2007_3-0" class="reference"><a href="#cite_note-Chaudhry2007-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>Finite differences were introduced by <a href="/wiki/Brook_Taylor" title="Brook Taylor">Brook Taylor</a> in 1715 and have also been studied as abstract self-standing mathematical objects in works by <a href="/wiki/George_Boole" title="George Boole">George Boole</a> (1860), <a href="/wiki/L._M._Milne-Thomson" title="L. M. Milne-Thomson">L. M. Milne-Thomson</a> (1933), and <a href="/w/index.php?title=K%C3%A1roly_Jordan&action=edit&redlink=1" class="new" title="Károly Jordan (page does not exist)">Károly Jordan</a><span class="noprint" style="font-size:85%; font-style: normal;"> [<a href="https://de.wikipedia.org/wiki/K%C3%A1roly_Jordan" class="extiw" title="de:Károly Jordan">de</a>]</span> (1939). Finite differences trace their origins back to one of <a href="/wiki/Jost_B%C3%BCrgi" title="Jost Bürgi">Jost Bürgi</a>'s algorithms (<abbr title="circa">c.</abbr><span style="white-space:nowrap;"> 1592</span>) and work by others including <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a>. The formal calculus of finite differences can be viewed as an alternative to the <a href="/wiki/Calculus" title="Calculus">calculus</a> of <a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimals</a>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Basic_types">Basic types</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=1" title="Edit section: Basic types"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Finite_difference_method.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/90/Finite_difference_method.svg/330px-Finite_difference_method.svg.png" decoding="async" width="307" height="207" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/90/Finite_difference_method.svg/461px-Finite_difference_method.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/90/Finite_difference_method.svg/614px-Finite_difference_method.svg.png 2x" data-file-width="496" data-file-height="334" /></a><figcaption>The three types of the finite differences. The central difference about <i>x</i> gives the best approximation of the derivative of the function at <i>x</i>.</figcaption></figure> <p>Three basic types are commonly considered: <i>forward</i>, <i>backward</i>, and <i>central</i> finite differences.<sup id="cite_ref-WilmottHowison1995_1-1" class="reference"><a href="#cite_note-WilmottHowison1995-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Olver2013_2-1" class="reference"><a href="#cite_note-Olver2013-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Chaudhry2007_3-1" class="reference"><a href="#cite_note-Chaudhry2007-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>A <b><style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="forward_difference"></span><span class="vanchor-text">forward difference</span></span></b>, denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{h}[f],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{h}[f],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df1b2280f8d8410699154ebec9166fc24f713e55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.334ex; height:2.843ex;" alt="{\displaystyle \Delta _{h}[f],}" /></span> of a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> <span class="texhtml mvar" style="font-style:italic;">f</span> is a function defined as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{h}[f](x)=f(x+h)-f(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{h}[f](x)=f(x+h)-f(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b4b1b463ac6a532d0089dad4ef7f7ec1a91acb9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.426ex; height:2.843ex;" alt="{\displaystyle \Delta _{h}[f](x)=f(x+h)-f(x).}" /></span> </p><p>Depending on the application, the spacing <span class="texhtml mvar" style="font-style:italic;">h</span> may be variable or constant. When omitted, <span class="texhtml mvar" style="font-style:italic;">h</span> is taken to be 1; that is, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta [f](x)=\Delta _{1}[f](x)=f(x+1)-f(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta [f](x)=\Delta _{1}[f](x)=f(x+1)-f(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c34fb96bcb57be4378a378d93aa636c18f9bda94" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.871ex; height:2.843ex;" alt="{\displaystyle \Delta [f](x)=\Delta _{1}[f](x)=f(x+1)-f(x).}" /></span> </p><p>A <b><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509" /><span class="vanchor"><span id="backward_difference"></span><span class="vanchor-text">backward difference</span></span></b> uses the function values at <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml"><i>x</i> − <i>h</i></span>, instead of the values at <span class="texhtml"><i>x</i> + <i>h</i></span> and <span class="texhtml mvar" style="font-style:italic;">x</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla _{h}[f](x)=f(x)-f(x-h)=\Delta _{h}[f](x-h).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla _{h}[f](x)=f(x)-f(x-h)=\Delta _{h}[f](x-h).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a100757e5e1977e4c05a91e35bacf18bc054954c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:44.53ex; height:2.843ex;" alt="{\displaystyle \nabla _{h}[f](x)=f(x)-f(x-h)=\Delta _{h}[f](x-h).}" /></span> </p><p>Finally, the <b><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509" /><span class="vanchor"><span id="central_difference"></span><span class="vanchor-text">central difference</span></span></b> is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{h}[f](x)=f(x+{\tfrac {h}{2}})-f(x-{\tfrac {h}{2}})=\Delta _{h/2}[f](x)+\nabla _{h/2}[f](x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>h</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>h</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msub> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msub> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{h}[f](x)=f(x+{\tfrac {h}{2}})-f(x-{\tfrac {h}{2}})=\Delta _{h/2}[f](x)+\nabla _{h/2}[f](x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2499836d521433992592446e489e3f7f5ff77de" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:59.469ex; height:3.676ex;" alt="{\displaystyle \delta _{h}[f](x)=f(x+{\tfrac {h}{2}})-f(x-{\tfrac {h}{2}})=\Delta _{h/2}[f](x)+\nabla _{h/2}[f](x).}" /></span> </p> <div class="mw-heading mw-heading2"><h2 id="Relation_with_derivatives">Relation with derivatives</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=2" title="Edit section: Relation with derivatives"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Difference_quotient" title="Difference quotient">difference quotient</a></div> <p><span class="anchor" id="finite_difference_approximation"></span> The approximation of <a href="/wiki/Derivative" title="Derivative">derivatives</a> by finite differences plays a central role in <a href="/wiki/Finite_difference_method" title="Finite difference method">finite difference methods</a> for the <a href="/wiki/Numerical_analysis" title="Numerical analysis">numerical</a> solution of <a href="/wiki/Differential_equation" title="Differential equation">differential equations</a>, especially <a href="/wiki/Boundary_value_problem" title="Boundary value problem">boundary value problems</a>. </p><p>The <a href="/wiki/Derivative" title="Derivative">derivative</a> of a function <span class="texhtml mvar" style="font-style:italic;">f</span> at a point <span class="texhtml mvar" style="font-style:italic;">x</span> is defined by the <a href="/wiki/Limit_of_a_function" title="Limit of a function">limit</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)=\lim _{h\to 0}{\frac {f(x+h)-f(x)}{h}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)=\lim _{h\to 0}{\frac {f(x+h)-f(x)}{h}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f07ddc190e96e17d5d7e1ab262e8e5baf865949" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:29.38ex; height:5.843ex;" alt="{\displaystyle f'(x)=\lim _{h\to 0}{\frac {f(x+h)-f(x)}{h}}.}" /></span> </p><p>If <span class="texhtml mvar" style="font-style:italic;">h</span> has a fixed (non-zero) value instead of approaching zero, then the right-hand side of the above equation would be written <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {f(x+h)-f(x)}{h}}={\frac {\Delta _{h}[f](x)}{h}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {f(x+h)-f(x)}{h}}={\frac {\Delta _{h}[f](x)}{h}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/123e4ca301fc04c05f9129394da0feb303394251" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:30.099ex; height:5.843ex;" alt="{\displaystyle {\frac {f(x+h)-f(x)}{h}}={\frac {\Delta _{h}[f](x)}{h}}.}" /></span> </p><p>Hence, the forward difference divided by <span class="texhtml mvar" style="font-style:italic;">h</span> approximates the derivative when <span class="texhtml mvar" style="font-style:italic;">h</span> is small. The error in this approximation can be derived from <a href="/wiki/Taylor%27s_theorem" title="Taylor's theorem">Taylor's theorem</a>. Assuming that <span class="texhtml mvar" style="font-style:italic;">f</span> is twice differentiable, we have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\Delta _{h}[f](x)}{h}}-f'(x)=o(h)\to 0\quad {\text{as }}h\to 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mtext>as </mtext> </mrow> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\Delta _{h}[f](x)}{h}}-f'(x)=o(h)\to 0\quad {\text{as }}h\to 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5f5875b9160e0ba4a348d43bf66e303847c76d8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:41.542ex; height:5.843ex;" alt="{\displaystyle {\frac {\Delta _{h}[f](x)}{h}}-f'(x)=o(h)\to 0\quad {\text{as }}h\to 0.}" /></span> </p><p>The same formula holds for the backward difference: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\nabla _{h}[f](x)}{h}}-f'(x)=o(h)\to 0\quad {\text{as }}h\to 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mtext>as </mtext> </mrow> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\nabla _{h}[f](x)}{h}}-f'(x)=o(h)\to 0\quad {\text{as }}h\to 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce60536b1d454af6d06ae1c823f4c304ad3f8605" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:41.542ex; height:5.843ex;" alt="{\displaystyle {\frac {\nabla _{h}[f](x)}{h}}-f'(x)=o(h)\to 0\quad {\text{as }}h\to 0.}" /></span> </p><p>However, the central (also called centered) difference yields a more accurate approximation. If <span class="texhtml mvar" style="font-style:italic;">f</span> is three times differentiable, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\delta _{h}[f](x)}{h}}-f'(x)=o\left(h^{2}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>o</mi> <mrow> <mo>(</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\delta _{h}[f](x)}{h}}-f'(x)=o\left(h^{2}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96e009427707a4ee9bb06e51bf683b1a505dd929" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:26.914ex; height:5.843ex;" alt="{\displaystyle {\frac {\delta _{h}[f](x)}{h}}-f'(x)=o\left(h^{2}\right).}" /></span> </p><p>The main problem<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (December 2017)">citation needed</span></a></i>]</sup> with the central difference method, however, is that oscillating functions can yield zero derivative. If <span class="texhtml"><i>f</i>(<i>nh</i>) = 1</span> for <span class="texhtml mvar" style="font-style:italic;">n</span> odd, and <span class="texhtml"><i>f</i>(<i>nh</i>) = 2</span> for <span class="texhtml mvar" style="font-style:italic;">n</span> even, then <span class="texhtml"><i>f</i>′(<i>nh</i>) = 0</span> if it is calculated with the <a href="/wiki/Central_difference_scheme" class="mw-redirect" title="Central difference scheme">central difference scheme</a>. This is particularly troublesome if the domain of <span class="texhtml mvar" style="font-style:italic;">f</span> is discrete. See also <a href="/wiki/Symmetric_derivative" title="Symmetric derivative">Symmetric derivative</a>. </p><p>Authors for whom finite differences mean finite difference approximations define the forward/backward/central differences as the quotients given in this section (instead of employing the definitions given in the previous section).<sup id="cite_ref-WilmottHowison1995_1-2" class="reference"><a href="#cite_note-WilmottHowison1995-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Olver2013_2-2" class="reference"><a href="#cite_note-Olver2013-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Chaudhry2007_3-2" class="reference"><a href="#cite_note-Chaudhry2007-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Higher-order_differences">Higher-order differences</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=3" title="Edit section: Higher-order differences"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Finite_difference" title="Special:EditPage/Finite difference">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a> in this section. Unsourced material may be challenged and removed.<br /><small><span class="plainlinks"><i>Find sources:</i> <a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&q=%22Finite+difference%22">"Finite difference"</a> – <a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&q=%22Finite+difference%22+-wikipedia&tbs=ar:1">news</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&q=%22Finite+difference%22&tbs=bkt:s&tbm=bks">newspapers</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&q=%22Finite+difference%22+-wikipedia">books</a> <b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Finite+difference%22">scholar</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Finite+difference%22&acc=on&wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">July 2018</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for <span class="texhtml"><i>f</i>′(<i>x</i> + <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">⁠<span class="tion"><span class="num"><i>h</i></span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span>)</span> and <span class="texhtml"><i>f</i>′(<i>x</i> − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035" /><span class="sfrac">⁠<span class="tion"><span class="num"><i>h</i></span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span>)</span> and applying a central difference formula for the derivative of <span class="texhtml"><i>f</i>′</span> at <span class="texhtml mvar" style="font-style:italic;">x</span>, we obtain the central difference approximation of the second derivative of <span class="texhtml mvar" style="font-style:italic;">f</span>: </p> <dl><dt>Second-order central</dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f''(x)\approx {\frac {\delta _{h}^{2}[f](x)}{h^{2}}}={\frac {{\frac {f(x+h)-f(x)}{h}}-{\frac {f(x)-f(x-h)}{h}}}{h}}={\frac {f(x+h)-2f(x)+f(x-h)}{h^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> </mrow> <mi>h</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f''(x)\approx {\frac {\delta _{h}^{2}[f](x)}{h^{2}}}={\frac {{\frac {f(x+h)-f(x)}{h}}-{\frac {f(x)-f(x-h)}{h}}}{h}}={\frac {f(x+h)-2f(x)+f(x-h)}{h^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e2aa8bf4fbaf676294b73c0f8028b86e675f0e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:78.44ex; height:7.343ex;" alt="{\displaystyle f''(x)\approx {\frac {\delta _{h}^{2}[f](x)}{h^{2}}}={\frac {{\frac {f(x+h)-f(x)}{h}}-{\frac {f(x)-f(x-h)}{h}}}{h}}={\frac {f(x+h)-2f(x)+f(x-h)}{h^{2}}}.}" /></span></dd></dl> <p>Similarly we can apply other differencing formulas in a recursive manner. </p> <dl><dt>Second order forward</dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f''(x)\approx {\frac {\Delta _{h}^{2}[f](x)}{h^{2}}}={\frac {{\frac {f(x+2h)-f(x+h)}{h}}-{\frac {f(x+h)-f(x)}{h}}}{h}}={\frac {f(x+2h)-2f(x+h)+f(x)}{h^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> </mrow> <mi>h</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f''(x)\approx {\frac {\Delta _{h}^{2}[f](x)}{h^{2}}}={\frac {{\frac {f(x+2h)-f(x+h)}{h}}-{\frac {f(x+h)-f(x)}{h}}}{h}}={\frac {f(x+2h)-2f(x+h)+f(x)}{h^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76c1f08384bb48e0365b40faeac78f83b7b2e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:83.553ex; height:7.343ex;" alt="{\displaystyle f''(x)\approx {\frac {\Delta _{h}^{2}[f](x)}{h^{2}}}={\frac {{\frac {f(x+2h)-f(x+h)}{h}}-{\frac {f(x+h)-f(x)}{h}}}{h}}={\frac {f(x+2h)-2f(x+h)+f(x)}{h^{2}}}.}" /></span></dd> <dt>Second order backward</dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f''(x)\approx {\frac {\nabla _{h}^{2}[f](x)}{h^{2}}}={\frac {{\frac {f(x)-f(x-h)}{h}}-{\frac {f(x-h)-f(x-2h)}{h}}}{h}}={\frac {f(x)-2f(x-h)+f(x-2h)}{h^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> </mrow> <mi>h</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f''(x)\approx {\frac {\nabla _{h}^{2}[f](x)}{h^{2}}}={\frac {{\frac {f(x)-f(x-h)}{h}}-{\frac {f(x-h)-f(x-2h)}{h}}}{h}}={\frac {f(x)-2f(x-h)+f(x-2h)}{h^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84b0f013627aae29797cf6a175b1cb810b2e84ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:83.553ex; height:7.343ex;" alt="{\displaystyle f''(x)\approx {\frac {\nabla _{h}^{2}[f](x)}{h^{2}}}={\frac {{\frac {f(x)-f(x-h)}{h}}-{\frac {f(x-h)-f(x-2h)}{h}}}{h}}={\frac {f(x)-2f(x-h)+f(x-2h)}{h^{2}}}.}" /></span></dd></dl> <p>More generally, the <b><span class="texhtml mvar" style="font-style:italic;">n</span>-th order forward, backward, and central</b> differences are given by, respectively, </p> <dl><dt>Forward</dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{h}^{n}[f](x)=\sum _{i=0}^{n}(-1)^{n-i}{\binom {n}{i}}f{\bigl (}x+ih{\bigr )},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>i</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>i</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{h}^{n}[f](x)=\sum _{i=0}^{n}(-1)^{n-i}{\binom {n}{i}}f{\bigl (}x+ih{\bigr )},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b169fd39e2dc70b58dcb348f61a0ea08d04f82a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:38.346ex; height:6.843ex;" alt="{\displaystyle \Delta _{h}^{n}[f](x)=\sum _{i=0}^{n}(-1)^{n-i}{\binom {n}{i}}f{\bigl (}x+ih{\bigr )},}" /></span></dd> <dt>Backward</dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla _{h}^{n}[f](x)=\sum _{i=0}^{n}(-1)^{i}{\binom {n}{i}}f(x-ih),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>i</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>i</mi> <mi>h</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla _{h}^{n}[f](x)=\sum _{i=0}^{n}(-1)^{i}{\binom {n}{i}}f(x-ih),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2d02b454bc5bec308d6b40c4b1d6fd0e5177a6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:35.761ex; height:6.843ex;" alt="{\displaystyle \nabla _{h}^{n}[f](x)=\sum _{i=0}^{n}(-1)^{i}{\binom {n}{i}}f(x-ih),}" /></span></dd> <dt>Central</dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{h}^{n}[f](x)=\sum _{i=0}^{n}(-1)^{i}{\binom {n}{i}}f\left(x+\left({\frac {n}{2}}-i\right)h\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>i</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <mi>i</mi> </mrow> <mo>)</mo> </mrow> <mi>h</mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{h}^{n}[f](x)=\sum _{i=0}^{n}(-1)^{i}{\binom {n}{i}}f\left(x+\left({\frac {n}{2}}-i\right)h\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfd7b5b17a0cd910ace9cca88d7093843ccd6799" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:44.853ex; height:6.843ex;" alt="{\displaystyle \delta _{h}^{n}[f](x)=\sum _{i=0}^{n}(-1)^{i}{\binom {n}{i}}f\left(x+\left({\frac {n}{2}}-i\right)h\right).}" /></span></dd></dl> <p>These equations use <a href="/wiki/Binomial_coefficient" title="Binomial coefficient">binomial coefficients</a> after the summation sign shown as <span class="texhtml"><big><big>(</big></big><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:center"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>i</i></sub></span></span><big><big>)</big></big></span>. Each row of <a href="/wiki/Pascal%27s_triangle" title="Pascal's triangle">Pascal's triangle</a> provides the coefficient for each value of <span class="texhtml mvar" style="font-style:italic;">i</span>. </p><p>Note that the central difference will, for odd <span class="texhtml mvar" style="font-style:italic;">n</span>, have <span class="texhtml mvar" style="font-style:italic;">h</span> multiplied by non-integers. This is often a problem because it amounts to changing the interval of discretization. The problem may be remedied substituting the average of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \delta ^{n}[f](\ x-{\tfrac {\ h\ }{2}}\ )\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <msup> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mtext> </mtext> <mi>x</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mtext> </mtext> <mi>h</mi> <mtext> </mtext> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> <mtext> </mtext> <mo stretchy="false">)</mo> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \delta ^{n}[f](\ x-{\tfrac {\ h\ }{2}}\ )\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c11968b5bda24990a46f892d66b61befa9ffd5f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:16.091ex; height:3.676ex;" alt="{\displaystyle \ \delta ^{n}[f](\ x-{\tfrac {\ h\ }{2}}\ )\ }" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \delta ^{n}[f](\ x+{\tfrac {\ h\ }{2}}\ )~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <msup> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mtext> </mtext> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mtext> </mtext> <mi>h</mi> <mtext> </mtext> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> <mtext> </mtext> <mo stretchy="false">)</mo> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \delta ^{n}[f](\ x+{\tfrac {\ h\ }{2}}\ )~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c81cb79a336a879f9bbc4b1bf443b4a69625fac9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:16.737ex; height:3.676ex;" alt="{\displaystyle \ \delta ^{n}[f](\ x+{\tfrac {\ h\ }{2}}\ )~.}" /></span> </p><p>Forward differences applied to a <a href="/wiki/Sequence" title="Sequence">sequence</a> are sometimes called the <a href="/wiki/Binomial_transform" title="Binomial transform">binomial transform</a> of the sequence, and have a number of interesting combinatorial properties. Forward differences may be evaluated using the <a href="/wiki/N%C3%B6rlund%E2%80%93Rice_integral" class="mw-redirect" title="Nörlund–Rice integral">Nörlund–Rice integral</a>. The integral representation for these types of series is interesting, because the integral can often be evaluated using <a href="/wiki/Asymptotic_expansion" title="Asymptotic expansion">asymptotic expansion</a> or <a href="/wiki/Saddle-point" class="mw-redirect" title="Saddle-point">saddle-point</a> techniques; by contrast, the forward difference series can be extremely hard to evaluate numerically, because the binomial coefficients grow rapidly for large <span class="texhtml mvar" style="font-style:italic;">n</span>. </p><p>The relationship of these higher-order differences with the respective derivatives is straightforward, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d^{n}f}{dx^{n}}}(x)={\frac {\Delta _{h}^{n}[f](x)}{h^{n}}}+o(h)={\frac {\nabla _{h}^{n}[f](x)}{h^{n}}}+o(h)={\frac {\delta _{h}^{n}[f](x)}{h^{n}}}+o\left(h^{2}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mi>o</mi> <mrow> <mo>(</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d^{n}f}{dx^{n}}}(x)={\frac {\Delta _{h}^{n}[f](x)}{h^{n}}}+o(h)={\frac {\nabla _{h}^{n}[f](x)}{h^{n}}}+o(h)={\frac {\delta _{h}^{n}[f](x)}{h^{n}}}+o\left(h^{2}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55ee74cdb94f0b1cd8dd904c720643510b06652a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:69.402ex; height:6.009ex;" alt="{\displaystyle {\frac {d^{n}f}{dx^{n}}}(x)={\frac {\Delta _{h}^{n}[f](x)}{h^{n}}}+o(h)={\frac {\nabla _{h}^{n}[f](x)}{h^{n}}}+o(h)={\frac {\delta _{h}^{n}[f](x)}{h^{n}}}+o\left(h^{2}\right).}" /></span> </p><p>Higher-order differences can also be used to construct better approximations. As mentioned above, the first-order difference approximates the first-order derivative up to a term of order <span class="texhtml mvar" style="font-style:italic;">h</span>. However, the combination <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\Delta _{h}[f](x)-{\frac {1}{2}}\Delta _{h}^{2}[f](x)}{h}}=-{\frac {f(x+2h)-4f(x+h)+3f(x)}{2h}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>4</mn> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>3</mn> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>h</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\Delta _{h}[f](x)-{\frac {1}{2}}\Delta _{h}^{2}[f](x)}{h}}=-{\frac {f(x+2h)-4f(x+h)+3f(x)}{2h}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d9cddb870f225e7259dcbe96bacce30960cdb45" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:59.509ex; height:6.509ex;" alt="{\displaystyle {\frac {\Delta _{h}[f](x)-{\frac {1}{2}}\Delta _{h}^{2}[f](x)}{h}}=-{\frac {f(x+2h)-4f(x+h)+3f(x)}{2h}}}" /></span> approximates <span class="texhtml"><i>f</i>′(<i>x</i>)</span> up to a term of order <span class="texhtml"><i>h</i><sup>2</sup></span>. This can be proven by expanding the above expression in <a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a>, or by using the calculus of finite differences, explained below. </p><p>If necessary, the finite difference can be centered about any point by mixing forward, backward, and central differences. </p> <div class="mw-heading mw-heading2"><h2 id="Polynomials">Polynomials</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=4" title="Edit section: Polynomials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For a given <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> of degree <span class="texhtml"><i>n</i> ≥ 1</span>, expressed in the function <span class="texhtml"><i>P</i>(<i>x</i>)</span>, with real numbers <span class="texhtml"><i>a</i> ≠ 0</span> and <span class="texhtml"><i>b</i></span> and <i>lower order terms</i> (if any) marked as <span class="texhtml"><i>l.o.t.</i></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(x)=ax^{n}+bx^{n-1}+l.o.t.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>b</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mi>l</mi> <mo>.</mo> <mi>o</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(x)=ax^{n}+bx^{n-1}+l.o.t.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4722f0f4abe87bc3896ca3a496a4ec3bbdb83774" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.463ex; height:3.176ex;" alt="{\displaystyle P(x)=ax^{n}+bx^{n-1}+l.o.t.}" /></span> </p><p>After <span class="texhtml"><i>n</i></span> pairwise differences, the following result can be achieved, where <span class="texhtml"><i>h</i> ≠ 0</span> is a real number marking the arithmetic difference:<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{h}^{n}[P](x)=ah^{n}n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">[</mo> <mi>P</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{h}^{n}[P](x)=ah^{n}n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9aa329fa60dd1adaa02e3f417991a89ef5ae1c65" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.26ex; height:3.009ex;" alt="{\displaystyle \Delta _{h}^{n}[P](x)=ah^{n}n!}" /></span> </p><p>Only the coefficient of the highest-order term remains. As this result is constant with respect to <span class="texhtml"><i>x</i></span>, any further pairwise differences will have the value <span class="texhtml">0</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Inductive_proof">Inductive proof</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=5" title="Edit section: Inductive proof"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Base_case">Base case</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=6" title="Edit section: Base case"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml"><i>Q</i>(<i>x</i>)</span> be a polynomial of degree <span class="texhtml">1</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{h}[Q](x)=Q(x+h)-Q(x)=[a(x+h)+b]-[ax+b]=ah=ah^{1}1!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>Q</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> <mo stretchy="false">]</mo> <mo>−<!-- − --></mo> <mo stretchy="false">[</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>a</mi> <mi>h</mi> <mo>=</mo> <mi>a</mi> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mn>1</mn> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{h}[Q](x)=Q(x+h)-Q(x)=[a(x+h)+b]-[ax+b]=ah=ah^{1}1!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12f0ffaff4491b644d3cde2b6381222368037319" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:70.967ex; height:3.176ex;" alt="{\displaystyle \Delta _{h}[Q](x)=Q(x+h)-Q(x)=[a(x+h)+b]-[ax+b]=ah=ah^{1}1!}" /></span> </p><p>This proves it for the base case. </p> <div class="mw-heading mw-heading4"><h4 id="Inductive_step">Inductive step</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=7" title="Edit section: Inductive step"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml"><i>R</i>(<i>x</i>)</span> be a polynomial of degree <span class="texhtml"><i>m</i> − 1</span> where <span class="texhtml"><i>m</i> ≥ 2</span> and the coefficient of the highest-order term be <span class="texhtml"><i>a</i> ≠ 0</span>. Assuming the following holds true for all polynomials of degree <span class="texhtml"><i>m</i> − 1</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{h}^{m-1}[R](x)=ah^{m-1}(m-1)!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo stretchy="false">[</mo> <mi>R</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{h}^{m-1}[R](x)=ah^{m-1}(m-1)!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5c0ef619cccc3509b7b3211b977b0676721f8c4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:29.85ex; height:3.343ex;" alt="{\displaystyle \Delta _{h}^{m-1}[R](x)=ah^{m-1}(m-1)!}" /></span> </p><p>Let <span class="texhtml"><i>S</i>(<i>x</i>)</span> be a polynomial of degree <span class="texhtml"><i>m</i></span>. With one pairwise difference: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{h}[S](x)=[a(x+h)^{m}+b(x+h)^{m-1}+{\text{l.o.t.}}]-[ax^{m}+bx^{m-1}+{\text{l.o.t.}}]=ahmx^{m-1}+{\text{l.o.t.}}=T(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>S</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>l.o.t.</mtext> </mrow> <mo stretchy="false">]</mo> <mo>−<!-- − --></mo> <mo stretchy="false">[</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>+</mo> <mi>b</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>l.o.t.</mtext> </mrow> <mo stretchy="false">]</mo> <mo>=</mo> <mi>a</mi> <mi>h</mi> <mi>m</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>l.o.t.</mtext> </mrow> <mo>=</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{h}[S](x)=[a(x+h)^{m}+b(x+h)^{m-1}+{\text{l.o.t.}}]-[ax^{m}+bx^{m-1}+{\text{l.o.t.}}]=ahmx^{m-1}+{\text{l.o.t.}}=T(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c73f767533e0d2112cb6cc4c58c49039095a7773" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:99.077ex; height:3.176ex;" alt="{\displaystyle \Delta _{h}[S](x)=[a(x+h)^{m}+b(x+h)^{m-1}+{\text{l.o.t.}}]-[ax^{m}+bx^{m-1}+{\text{l.o.t.}}]=ahmx^{m-1}+{\text{l.o.t.}}=T(x)}" /></span> </p><p>As <span class="texhtml"><i>ahm</i> ≠ 0</span>, this results in a polynomial <span class="texhtml"><i>T</i>(<i>x</i>)</span> of degree <span class="texhtml"><i>m</i> − 1</span>, with <span class="texhtml"><i>ahm</i></span> as the coefficient of the highest-order term. Given the assumption above and <span class="texhtml"><i>m</i> − 1</span> pairwise differences (resulting in a total of <span class="texhtml"><i>m</i></span> pairwise differences for <span class="texhtml"><i>S</i>(<i>x</i>)</span>), it can be found that: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{h}^{m-1}[T](x)=ahm\cdot h^{m-1}(m-1)!=ah^{m}m!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo stretchy="false">[</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mi>h</mi> <mi>m</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mo>=</mo> <mi>a</mi> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mi>m</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{h}^{m-1}[T](x)=ahm\cdot h^{m-1}(m-1)!=ah^{m}m!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d56a6ec947597e0186d4673e02255d19e8efa919" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:44.811ex; height:3.343ex;" alt="{\displaystyle \Delta _{h}^{m-1}[T](x)=ahm\cdot h^{m-1}(m-1)!=ah^{m}m!}" /></span> </p><p>This completes the proof. </p> <div class="mw-heading mw-heading3"><h3 id="Application">Application</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=8" title="Edit section: Application"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This identity can be used to find the lowest-degree polynomial that intercepts a number of points <span class="texhtml">(<i>x</i>, <i>y</i>)</span> where the difference on the <i>x</i>-axis from one point to the next is a constant <span class="texhtml"><i>h</i> ≠ 0</span>. For example, given the following points: </p> <table class="wikitable"> <tbody><tr> <th><i>x</i></th> <th><i>y</i> </th></tr> <tr> <td>1</td> <td>4 </td></tr> <tr> <td>4</td> <td>109 </td></tr> <tr> <td>7</td> <td>772 </td></tr> <tr> <td>10</td> <td>2641 </td></tr> <tr> <td>13</td> <td>6364 </td></tr></tbody></table> <p>We can use a differences table, where for all cells to the right of the first <span class="texhtml"><i>y</i></span>, the following relation to the cells in the column immediately to the left exists for a cell <span class="texhtml">(<i>a</i> + 1, <i>b</i> + 1)</span>, with the top-leftmost cell being at coordinate <span class="texhtml">(0, 0)</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+1,b+1)=(a,b+1)-(a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>b</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+1,b+1)=(a,b+1)-(a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704317e69e3f8d9a29dde1310c958bb1af0ebbf6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.159ex; height:2.843ex;" alt="{\displaystyle (a+1,b+1)=(a,b+1)-(a,b)}" /></span> </p><p>To find the first term, the following table can be used: </p> <table class="wikitable"> <tbody><tr> <th><span class="texhtml"><i>x</i></span></th> <th><span class="texhtml"><i>y</i></span></th> <th><span class="texhtml">Δ<i>y</i></span></th> <th><span class="texhtml">Δ<sup>2</sup><i>y</i></span></th> <th><span class="texhtml">Δ<sup>3</sup><i>y</i></span> </th></tr> <tr> <th>1 </th> <td>4 </td></tr> <tr> <th>4 </th> <td>109</td> <td>105 </td></tr> <tr> <th>7 </th> <td>772</td> <td>663</td> <td>558 </td></tr> <tr> <th>10 </th> <td>2641</td> <td>1869</td> <td>1206</td> <td>648 </td></tr> <tr> <th>13 </th> <td>6364</td> <td>3723</td> <td>1854</td> <td>648 </td></tr></tbody></table> <p>This arrives at a constant <span class="texhtml">648</span>. The arithmetic difference is <span class="texhtml"><i>h</i> = 3</span>, as established above. Given the number of pairwise differences needed to reach the constant, it can be surmised this is a polynomial of degree <span class="texhtml">3</span>. Thus, using the identity above: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 648=a\cdot 3^{3}\cdot 3!=a\cdot 27\cdot 6=a\cdot 162}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>648</mn> <mo>=</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>!</mo> <mo>=</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mn>27</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>=</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mn>162</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 648=a\cdot 3^{3}\cdot 3!=a\cdot 27\cdot 6=a\cdot 162}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b84483b2a9db515d5b6200294b262dbb22a8b752" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:35.868ex; height:2.676ex;" alt="{\displaystyle 648=a\cdot 3^{3}\cdot 3!=a\cdot 27\cdot 6=a\cdot 162}" /></span> </p><p>Solving for <span class="texhtml"><i>a</i></span>, it can be found to have the value <span class="texhtml">4</span>. Thus, the first term of the polynomial is <span class="texhtml">4<i>x</i><sup>3</sup></span>. </p><p>Then, subtracting out the first term, which lowers the polynomial's degree, and finding the finite difference again: </p> <table class="wikitable"> <tbody><tr> <th><span class="texhtml mvar" style="font-style:italic;">x</span></th> <th><span class="texhtml mvar" style="font-style:italic;">y</span></th> <th><span class="texhtml">Δ<i>y</i></span></th> <th><span class="texhtml">Δ<sup>2</sup><i>y</i></span> </th></tr> <tr> <th>1 </th> <td><span class="texhtml">4 − 4(1)<sup>3</sup> = 4 − 4 = 0</span> </td></tr> <tr> <th>4 </th> <td><span class="texhtml">109 − 4(4)<sup>3</sup> = 109 − 256 = −147</span></td> <td>−147 </td></tr> <tr> <th>7 </th> <td><span class="texhtml">772 − 4(7)<sup>3</sup> = 772 − 1372 = −600</span></td> <td>−453</td> <td>−306 </td></tr> <tr> <th>10 </th> <td><span class="texhtml">2641 − 4(10)<sup>3</sup> = 2641 − 4000 = −1359</span></td> <td>−759</td> <td>−306 </td></tr> <tr> <th>13 </th> <td><span class="texhtml">6364 − 4(13)<sup>3</sup> = 6364 − 8788 = −2424</span></td> <td>−1065</td> <td>−306 </td></tr></tbody></table> <p>Here, the constant is achieved after only two pairwise differences, thus the following result: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -306=a\cdot 3^{2}\cdot 2!=a\cdot 18}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mn>306</mn> <mo>=</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>!</mo> <mo>=</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mn>18</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -306=a\cdot 3^{2}\cdot 2!=a\cdot 18}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a10585dd427fcc25d5a9bb4190fc3f57256eabf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:25.34ex; height:2.843ex;" alt="{\displaystyle -306=a\cdot 3^{2}\cdot 2!=a\cdot 18}" /></span> </p><p>Solving for <span class="texhtml"><i>a</i></span>, which is <span class="texhtml">−17</span>, the polynomial's second term is <span class="texhtml">−17<i>x</i><sup>2</sup></span>. </p><p>Moving on to the next term, by subtracting out the second term: </p> <table class="wikitable"> <tbody><tr> <th><span class="texhtml"><i>x</i></span></th> <th><span class="texhtml"><i>y</i></span></th> <th><span class="texhtml">Δ<i>y</i></span> </th></tr> <tr> <th>1 </th> <td><span class="texhtml">0 − (−17(1)<sup>2</sup>) = 0 + 17 = 17</span> </td></tr> <tr> <th>4 </th> <td><span class="texhtml">−147 − (−17(4)<sup>2</sup>) = −147 + 272 = 125</span></td> <td>108 </td></tr> <tr> <th>7 </th> <td><span class="texhtml">−600 − (−17(7)<sup>2</sup>) = −600 + 833 = 233 </span></td> <td>108 </td></tr> <tr> <th>10 </th> <td><span class="texhtml">−1359 − (−17(10)<sup>2</sup>) = −1359 + 1700 = 341 </span></td> <td>108 </td></tr> <tr> <th>13 </th> <td><span class="texhtml">−2424 − (−17(13)<sup>2</sup>) = −2424 + 2873 = 449 </span></td> <td>108 </td></tr></tbody></table> <p>Thus the constant is achieved after only one pairwise difference: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 108=a\cdot 3^{1}\cdot 1!=a\cdot 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>108</mn> <mo>=</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>!</mo> <mo>=</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 108=a\cdot 3^{1}\cdot 1!=a\cdot 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9e305169474d01217b5c0b1bbae4e66f655cbf2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:22.37ex; height:2.676ex;" alt="{\displaystyle 108=a\cdot 3^{1}\cdot 1!=a\cdot 3}" /></span> </p><p>It can be found that <span class="texhtml"><i>a</i> = 36</span> and thus the third term of the polynomial is <span class="texhtml"><b>36<i>x</i></b></span>. Subtracting out the third term: </p> <table class="wikitable"> <tbody><tr> <th><span class="texhtml"><i>x</i></span></th> <th><span class="texhtml"><i>y</i></span> </th></tr> <tr> <th>1 </th> <td><span class="texhtml">17 − 36(1) = 17 − 36 = −19</span> </td></tr> <tr> <th>4 </th> <td><span class="texhtml">125 − 36(4) = 125 − 144 = −19</span> </td></tr> <tr> <th>7 </th> <td><span class="texhtml">233 − 36(7) = 233 − 252 = −19</span> </td></tr> <tr> <th>10 </th> <td><span class="texhtml">341 − 36(10) = 341 − 360 = −19</span> </td></tr> <tr> <th>13 </th> <td><span class="texhtml">449 − 36(13) = 449 − 468 = −19</span> </td></tr></tbody></table> <p>Without any pairwise differences, it is found that the 4th and final term of the polynomial is the constant <span class="texhtml">−19</span>. Thus, the lowest-degree polynomial intercepting all the points in the first table is found: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4x^{3}-17x^{2}+36x-19}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>17</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>36</mn> <mi>x</mi> <mo>−<!-- − --></mo> <mn>19</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4x^{3}-17x^{2}+36x-19}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a984fddb9e358de4f917d2c424aca3d2d0430eed" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:22.756ex; height:2.843ex;" alt="{\displaystyle 4x^{3}-17x^{2}+36x-19}" /></span> </p> <div class="mw-heading mw-heading2"><h2 id="Arbitrarily_sized_kernels">Arbitrarily sized kernels</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=9" title="Edit section: Arbitrarily sized kernels"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Finite_difference_coefficient" title="Finite difference coefficient">Finite difference coefficient</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Five-point_stencil" title="Five-point stencil">Five-point stencil</a></div> <p>Using linear algebra one can construct finite difference approximations which utilize an arbitrary number of points to the left and a (possibly different) number of points to the right of the evaluation point, for any order derivative. This involves solving a linear system such that the <a href="/wiki/Taylor_expansion" class="mw-redirect" title="Taylor expansion">Taylor expansion</a> of the sum of those points around the evaluation point best approximates the Taylor expansion of the desired derivative. Such formulas can be represented graphically on a hexagonal or diamond-shaped grid.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> This is useful for differentiating a function on a grid, where, as one approaches the edge of the grid, one must sample fewer and fewer points on one side.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> Finite difference approximations for non-standard (and even non-integer) stencils given an arbitrary stencil and a desired derivative order may be constructed.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Properties">Properties</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=10" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>For all positive <span class="texhtml mvar" style="font-style:italic;">k</span> and <span class="texhtml mvar" style="font-style:italic;">n</span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{kh}^{n}(f,x)=\sum \limits _{i_{1}=0}^{k-1}\sum \limits _{i_{2}=0}^{k-1}\cdots \sum \limits _{i_{n}=0}^{k-1}\Delta _{h}^{n}\left(f,x+i_{1}h+i_{2}h+\cdots +i_{n}h\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>f</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo>⋯<!-- ⋯ --></mo> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>,</mo> <mi>x</mi> <mo>+</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>h</mi> <mo>+</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>h</mi> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>h</mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{kh}^{n}(f,x)=\sum \limits _{i_{1}=0}^{k-1}\sum \limits _{i_{2}=0}^{k-1}\cdots \sum \limits _{i_{n}=0}^{k-1}\Delta _{h}^{n}\left(f,x+i_{1}h+i_{2}h+\cdots +i_{n}h\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ae1f986f22e70f17167e907edbc132faaf13de3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:61.288ex; height:7.676ex;" alt="{\displaystyle \Delta _{kh}^{n}(f,x)=\sum \limits _{i_{1}=0}^{k-1}\sum \limits _{i_{2}=0}^{k-1}\cdots \sum \limits _{i_{n}=0}^{k-1}\Delta _{h}^{n}\left(f,x+i_{1}h+i_{2}h+\cdots +i_{n}h\right).}" /></span></li> <li><a href="/wiki/Leibniz_rule_(generalized_product_rule)" class="mw-redirect" title="Leibniz rule (generalized product rule)">Leibniz rule</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{h}^{n}(fg,x)=\sum \limits _{k=0}^{n}{\binom {n}{k}}\Delta _{h}^{k}(f,x)\Delta _{h}^{n-k}(g,x+kh).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>f</mi> <mi>g</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>f</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>g</mi> <mo>,</mo> <mi>x</mi> <mo>+</mo> <mi>k</mi> <mi>h</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{h}^{n}(fg,x)=\sum \limits _{k=0}^{n}{\binom {n}{k}}\Delta _{h}^{k}(f,x)\Delta _{h}^{n-k}(g,x+kh).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fadf6bac0c542733b0cc28246b373ce4f4077fa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:46.56ex; height:7.009ex;" alt="{\displaystyle \Delta _{h}^{n}(fg,x)=\sum \limits _{k=0}^{n}{\binom {n}{k}}\Delta _{h}^{k}(f,x)\Delta _{h}^{n-k}(g,x+kh).}" /></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="In_differential_equations">In differential equations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=11" title="Edit section: In differential equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Finite_difference_method" title="Finite difference method">Finite difference method</a></div> <p>An important application of finite differences is in <a href="/wiki/Numerical_analysis" title="Numerical analysis">numerical analysis</a>, especially in <a href="/wiki/Numerical_partial_differential_equations" class="mw-redirect" title="Numerical partial differential equations">numerical differential equations</a>, which aim at the numerical solution of <a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ordinary</a> and <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equations</a>. The idea is to replace the derivatives appearing in the differential equation by finite differences that approximate them. The resulting methods are called <a href="/wiki/Finite_difference_method" title="Finite difference method">finite difference methods</a>. </p><p>Common applications of the finite difference method are in computational science and engineering disciplines, such as <a href="/wiki/Thermal_engineering" title="Thermal engineering">thermal engineering</a>, <a href="/wiki/Fluid_mechanics" title="Fluid mechanics">fluid mechanics</a>, etc. </p> <div class="mw-heading mw-heading2"><h2 id="Newton's_series"><span id="Newton.27s_series"></span>Newton's series</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=12" title="Edit section: Newton's series"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b><a href="/wiki/Newton_polynomial" title="Newton polynomial">Newton series</a></b> consists of the terms of the <b>Newton forward difference equation</b>, named after <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a>; in essence, it is the <b>Gregory–Newton interpolation formula</b><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> (named after <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a> and <a href="/wiki/James_Gregory_(mathematician)" title="James Gregory (mathematician)">James Gregory</a>), first published in his <i><a href="/wiki/Philosophi%C3%A6_Naturalis_Principia_Mathematica" title="Philosophiæ Naturalis Principia Mathematica">Principia Mathematica</a></i> in 1687,<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> namely the discrete analog of the continuous Taylor expansion, </p> <div class="equation-box" style="margin: 0 0 0 1.6em;padding: 6px; border-width:2px; border-style: solid; border-color: #0073CF; color: inherit;text-align: center; display: table"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\sum _{k=0}^{\infty }{\frac {\Delta ^{k}[f](a)}{k!}}\,(x-a)_{k}=\sum _{k=0}^{\infty }{\binom {x-a}{k}}\,\Delta ^{k}[f](a),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\sum _{k=0}^{\infty }{\frac {\Delta ^{k}[f](a)}{k!}}\,(x-a)_{k}=\sum _{k=0}^{\infty }{\binom {x-a}{k}}\,\Delta ^{k}[f](a),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0dcfd8646a4b3c907637c9a16dfef5fabeefac80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:54.747ex; height:7.176ex;" alt="{\displaystyle f(x)=\sum _{k=0}^{\infty }{\frac {\Delta ^{k}[f](a)}{k!}}\,(x-a)_{k}=\sum _{k=0}^{\infty }{\binom {x-a}{k}}\,\Delta ^{k}[f](a),}" /></span> </p> </div> <p>which holds for any <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> function <span class="texhtml mvar" style="font-style:italic;">f</span> and for many (but not all) <a href="/wiki/Analytic_function" title="Analytic function">analytic functions</a>. (It does not hold when <span class="texhtml mvar" style="font-style:italic;">f</span> is <a href="/wiki/Exponential_type" title="Exponential type">exponential type</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }" /></span>. This is easily seen, as the sine function vanishes at integer multiples of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }" /></span>; the corresponding Newton series is identically zero, as all finite differences are zero in this case. Yet clearly, the sine function is not zero.) Here, the expression <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\binom {x}{k}}={\frac {(x)_{k}}{k!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>x</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\binom {x}{k}}={\frac {(x)_{k}}{k!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cde80b462b069841875eb8e59d8a53e5d4b6c2f0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:12.913ex; height:6.343ex;" alt="{\displaystyle {\binom {x}{k}}={\frac {(x)_{k}}{k!}}}" /></span> is the <a href="/wiki/Binomial_coefficient" title="Binomial coefficient">binomial coefficient</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x)_{k}=x(x-1)(x-2)\cdots (x-k+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>⋯<!-- ⋯ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x)_{k}=x(x-1)(x-2)\cdots (x-k+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0c0eab4568ea37b287be10f59f1853547aa5e35" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.63ex; height:2.843ex;" alt="{\displaystyle (x)_{k}=x(x-1)(x-2)\cdots (x-k+1)}" /></span> is the "<a href="/wiki/Falling_factorial" class="mw-redirect" title="Falling factorial">falling factorial</a>" or "lower factorial", while the <a href="/wiki/Empty_product" title="Empty product">empty product</a> <span class="texhtml">(<i>x</i>)<sub>0</sub></span> is defined to be 1. In this particular case, there is an assumption of unit steps for the changes in the values of <span class="texhtml"><i>x</i>, <i>h</i> = 1</span> of the generalization below. </p><p>Note the formal correspondence of this result to <a href="/wiki/Taylor%27s_theorem" title="Taylor's theorem">Taylor's theorem</a>. Historically, this, as well as the <a href="/wiki/Chu%E2%80%93Vandermonde_identity" class="mw-redirect" title="Chu–Vandermonde identity">Chu–Vandermonde identity</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x+y)_{n}=\sum _{k=0}^{n}{\binom {n}{k}}(x)_{n-k}\,(y)_{k},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mo stretchy="false">(</mo> <mi>y</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x+y)_{n}=\sum _{k=0}^{n}{\binom {n}{k}}(x)_{n-k}\,(y)_{k},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0577d089e860225343b7a8d340270a633d164e40" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:31.59ex; height:7.009ex;" alt="{\displaystyle (x+y)_{n}=\sum _{k=0}^{n}{\binom {n}{k}}(x)_{n-k}\,(y)_{k},}" /></span> (following from it, and corresponding to the <a href="/wiki/Binomial_theorem" title="Binomial theorem">binomial theorem</a>), are included in the observations that matured to the system of <a href="/wiki/Umbral_calculus" title="Umbral calculus">umbral calculus</a>. </p><p>Newton series expansions can be superior to Taylor series expansions when applied to discrete quantities like quantum spins (see <a href="/wiki/Holstein%E2%80%93Primakoff_transformation" title="Holstein–Primakoff transformation">Holstein–Primakoff transformation</a>), <a href="/wiki/Normal_order#Bosonic_operator_functions" title="Normal order">bosonic operator functions</a> or discrete counting statistics.<sup id="cite_ref-Hucht_12-0" class="reference"><a href="#cite_note-Hucht-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p><p>To illustrate how one may use Newton's formula in actual practice, consider the first few terms of doubling the <a href="/wiki/Fibonacci_sequence" title="Fibonacci sequence">Fibonacci sequence</a> <span class="texhtml"><i>f</i> = 2, 2, 4, ...</span> One can find a <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> that reproduces these values, by first computing a difference table, and then substituting the differences that correspond to <span class="texhtml"><i>x</i><sub>0</sub></span> (underlined) into the formula as follows, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\begin{array}{|c||c|c|c|}\hline x&f=\Delta ^{0}&\Delta ^{1}&\Delta ^{2}\\\hline 1&{\underline {2}}&&\\&&{\underline {0}}&\\2&2&&{\underline {2}}\\&&2&\\3&4&&\\\hline \end{array}}&\quad {\begin{aligned}f(x)&=\Delta ^{0}\cdot 1+\Delta ^{1}\cdot {\dfrac {(x-x_{0})_{1}}{1!}}+\Delta ^{2}\cdot {\dfrac {(x-x_{0})_{2}}{2!}}\quad (x_{0}=1)\\\\&=2\cdot 1+0\cdot {\dfrac {x-1}{1}}+2\cdot {\dfrac {(x-1)(x-2)}{2}}\\\\&=2+(x-1)(x-2)\\\end{aligned}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center center center center" rowspacing="4pt" columnspacing="1em" rowlines="solid none none none none" columnlines="solid solid solid" frame="solid"> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mi>f</mi> <mo>=</mo> <msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <munder> <mn>2</mn> <mo>_<!-- _ --></mo> </munder> </mrow> </mtd> <mtd></mtd> <mtd></mtd> </mtr> <mtr> <mtd></mtd> <mtd></mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <munder> <mn>0</mn> <mo>_<!-- _ --></mo> </munder> </mrow> </mtd> <mtd></mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd></mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <munder> <mn>2</mn> <mo>_<!-- _ --></mo> </munder> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd></mtd> <mtd> <mn>2</mn> </mtd> <mtd></mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mn>4</mn> </mtd> <mtd></mtd> <mtd></mtd> </mtr> </mtable> </mrow> </mtd> <mtd> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>+</mo> <msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>!</mo> </mrow> </mfrac> </mstyle> </mrow> <mo>+</mo> <msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mstyle> </mrow> <mspace width="1em"></mspace> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd></mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>+</mo> <mn>0</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>1</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\begin{array}{|c||c|c|c|}\hline x&f=\Delta ^{0}&\Delta ^{1}&\Delta ^{2}\\\hline 1&{\underline {2}}&&\\&&{\underline {0}}&\\2&2&&{\underline {2}}\\&&2&\\3&4&&\\\hline \end{array}}&\quad {\begin{aligned}f(x)&=\Delta ^{0}\cdot 1+\Delta ^{1}\cdot {\dfrac {(x-x_{0})_{1}}{1!}}+\Delta ^{2}\cdot {\dfrac {(x-x_{0})_{2}}{2!}}\quad (x_{0}=1)\\\\&=2\cdot 1+0\cdot {\dfrac {x-1}{1}}+2\cdot {\dfrac {(x-1)(x-2)}{2}}\\\\&=2+(x-1)(x-2)\\\end{aligned}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f90c1dfd4e990a0bb22b18040fa55038c2bbcb17" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.838ex; width:90.054ex; height:20.843ex;" alt="{\displaystyle {\begin{matrix}{\begin{array}{|c||c|c|c|}\hline x&f=\Delta ^{0}&\Delta ^{1}&\Delta ^{2}\\\hline 1&{\underline {2}}&&\\&&{\underline {0}}&\\2&2&&{\underline {2}}\\&&2&\\3&4&&\\\hline \end{array}}&\quad {\begin{aligned}f(x)&=\Delta ^{0}\cdot 1+\Delta ^{1}\cdot {\dfrac {(x-x_{0})_{1}}{1!}}+\Delta ^{2}\cdot {\dfrac {(x-x_{0})_{2}}{2!}}\quad (x_{0}=1)\\\\&=2\cdot 1+0\cdot {\dfrac {x-1}{1}}+2\cdot {\dfrac {(x-1)(x-2)}{2}}\\\\&=2+(x-1)(x-2)\\\end{aligned}}\end{matrix}}}" /></span> </p><p>For the case of nonuniform steps in the values of <span class="texhtml mvar" style="font-style:italic;">x</span>, Newton computes the <a href="/wiki/Divided_differences" title="Divided differences">divided differences</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{j,0}=y_{j},\qquad \Delta _{j,k}={\frac {\Delta _{j+1,k-1}-\Delta _{j,k-1}}{x_{j+k}-x_{j}}}\quad \ni \quad \left\{k>0,\;j\leq \max \left(j\right)-k\right\},\qquad \Delta 0_{k}=\Delta _{0,k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>,</mo> <mspace width="2em"></mspace> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>,</mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>+</mo> <mi>k</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mspace width="1em"></mspace> <mo>∋<!-- ∋ --></mo> <mspace width="1em"></mspace> <mrow> <mo>{</mo> <mrow> <mi>k</mi> <mo>></mo> <mn>0</mn> <mo>,</mo> <mspace width="thickmathspace"></mspace> <mi>j</mi> <mo>≤<!-- ≤ --></mo> <mo movablelimits="true" form="prefix">max</mo> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> <mo>}</mo> </mrow> <mo>,</mo> <mspace width="2em"></mspace> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msub> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{j,0}=y_{j},\qquad \Delta _{j,k}={\frac {\Delta _{j+1,k-1}-\Delta _{j,k-1}}{x_{j+k}-x_{j}}}\quad \ni \quad \left\{k>0,\;j\leq \max \left(j\right)-k\right\},\qquad \Delta 0_{k}=\Delta _{0,k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bef477a7406a826cc4971124c9d6d392521f01d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:90.713ex; height:6.343ex;" alt="{\displaystyle \Delta _{j,0}=y_{j},\qquad \Delta _{j,k}={\frac {\Delta _{j+1,k-1}-\Delta _{j,k-1}}{x_{j+k}-x_{j}}}\quad \ni \quad \left\{k>0,\;j\leq \max \left(j\right)-k\right\},\qquad \Delta 0_{k}=\Delta _{0,k}}" /></span> the series of products, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {P_{0}}=1,\quad \quad P_{k+1}=P_{k}\cdot \left(\xi -x_{k}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="1em"></mspace> <mspace width="1em"></mspace> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mi>ξ<!-- ξ --></mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {P_{0}}=1,\quad \quad P_{k+1}=P_{k}\cdot \left(\xi -x_{k}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb91e61dacad9ef7271bf201c408299d45e56405" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.659ex; height:2.843ex;" alt="{\displaystyle {P_{0}}=1,\quad \quad P_{k+1}=P_{k}\cdot \left(\xi -x_{k}\right),}" /></span> and the resulting polynomial is the <a href="/wiki/Scalar_product" class="mw-redirect" title="Scalar product">scalar product</a>,<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\xi )=\Delta 0\cdot P\left(\xi \right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mn>0</mn> <mo>⋅<!-- ⋅ --></mo> <mi>P</mi> <mrow> <mo>(</mo> <mi>ξ<!-- ξ --></mi> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\xi )=\Delta 0\cdot P\left(\xi \right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/116a2cc0e40cd05b56dd3a08dc397053dcc371b4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18ex; height:2.843ex;" alt="{\displaystyle f(\xi )=\Delta 0\cdot P\left(\xi \right).}" /></span> </p><p>In analysis with <a href="/wiki/P-adic_number" title="P-adic number"><span class="texhtml mvar" style="font-style:italic;">p</span>-adic numbers</a>, <a href="/wiki/Mahler%27s_theorem" title="Mahler's theorem">Mahler's theorem</a> states that the assumption that <span class="texhtml mvar" style="font-style:italic;">f</span> is a polynomial function can be weakened all the way to the assumption that <span class="texhtml mvar" style="font-style:italic;">f</span> is merely continuous. </p><p><a href="/wiki/Carlson%27s_theorem" title="Carlson's theorem">Carlson's theorem</a> provides necessary and sufficient conditions for a Newton series to be unique, if it exists. However, a Newton series does not, in general, exist. </p><p>The Newton series, together with the <a href="/wiki/Stirling_series" class="mw-redirect" title="Stirling series">Stirling series</a> and the <a href="/wiki/Selberg_class" title="Selberg class">Selberg series</a>, is a special case of the general <a href="/wiki/Difference_series" class="mw-redirect" title="Difference series">difference series</a>, all of which are defined in terms of suitably scaled forward differences. </p><p>In a compressed and slightly more general form and equidistant nodes the formula reads <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\sum _{k=0}{\binom {\frac {x-a}{h}}{k}}\sum _{j=0}^{k}(-1)^{k-j}{\binom {k}{j}}f(a+jh).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mfrac> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> <mi>h</mi> </mfrac> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mi>j</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>k</mi> <mi>j</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>j</mi> <mi>h</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\sum _{k=0}{\binom {\frac {x-a}{h}}{k}}\sum _{j=0}^{k}(-1)^{k-j}{\binom {k}{j}}f(a+jh).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19bf5be68e5c3253097a4e53fc9a76659ef779ef" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:44.905ex; height:7.676ex;" alt="{\displaystyle f(x)=\sum _{k=0}{\binom {\frac {x-a}{h}}{k}}\sum _{j=0}^{k}(-1)^{k-j}{\binom {k}{j}}f(a+jh).}" /></span> </p> <div class="mw-heading mw-heading2"><h2 id="Calculus_of_finite_differences">Calculus of finite differences</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=13" title="Edit section: Calculus of finite differences"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The forward difference can be considered as an <a href="/wiki/Operator_(mathematics)" title="Operator (mathematics)">operator</a>, called the <a href="/wiki/Difference_operator" class="mw-redirect" title="Difference operator">difference operator</a>, which maps the function <span class="texhtml mvar" style="font-style:italic;">f</span> to <span class="texhtml">Δ<sub><i>h</i></sub>[<i>f</i>]</span>.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> This operator amounts to <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{h}=\operatorname {T} _{h}-\operatorname {I} \ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo>=</mo> <msub> <mi mathvariant="normal">T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi mathvariant="normal">I</mi> <mo>⁡<!-- --></mo> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{h}=\operatorname {T} _{h}-\operatorname {I} \ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0aa01fa4a0d9d1a0341ab42e3bf4b600727ad619" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.107ex; height:2.509ex;" alt="{\displaystyle \Delta _{h}=\operatorname {T} _{h}-\operatorname {I} \ ,}" /></span> where <span class="texhtml">T<sub><i>h</i></sub></span> is the <a href="/wiki/Shift_operator" title="Shift operator">shift operator</a> with step <span class="texhtml mvar" style="font-style:italic;">h</span>, defined by <span class="nowrap"><span class="texhtml">T<sub><i>h</i></sub>[<i>f</i>](<i>x</i>) = <i>f</i>(<i>x</i> + <i>h</i>)</span>,</span> and <span class="texhtml">I</span> is the <a href="/wiki/Identity_operator" class="mw-redirect" title="Identity operator">identity operator</a>. </p><p>The finite difference of higher orders can be defined in recursive manner as <span class="nowrap"><span class="texhtml">Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>h</i></sub></span></span> ≡ Δ<sub><i>h</i></sub>(Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i> − 1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>h</i></sub></span></span>)</span>.</span> Another equivalent definition is <span class="nowrap"><span class="texhtml">Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>h</i></sub></span></span> ≡ [T<sub><i>h</i></sub> − I]<sup><i>n</i></sup></span>.</span> </p><p>The difference operator <span class="texhtml">Δ<sub><i>h</i></sub></span> is a <a href="/wiki/Linear_operator" class="mw-redirect" title="Linear operator">linear operator</a>, as such it satisfies <span class="nowrap"><span class="texhtml">Δ<sub><i>h</i></sub>[<i>α f</i> + <i>β g</i>](<i>x</i>) = <i>α</i> Δ<sub><i>h</i></sub>[<i>f</i>](<i>x</i>) + <i>β</i> Δ<sub><i>h</i></sub>[<i>g</i>](<i>x</i>)</span>.</span> </p><p>It also satisfies a special <a href="/wiki/Leibniz_rule_(generalized_product_rule)" class="mw-redirect" title="Leibniz rule (generalized product rule)">Leibniz rule</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \operatorname {\Delta } _{h}{\bigl (}\ f(x)\ g(x)\ {\bigr )}\ =\ {\bigl (}\ \operatorname {\Delta } _{h}f(x)\ {\bigr )}\ g(x+h)\ +\ f(x)\ {\bigl (}\ \operatorname {\Delta } _{h}g(x)\ {\bigr )}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <msub> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mtext> </mtext> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mtext> </mtext> <mo>=</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mtext> </mtext> <msub> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mtext> </mtext> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mo>+</mo> <mtext> </mtext> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mtext> </mtext> <msub> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \operatorname {\Delta } _{h}{\bigl (}\ f(x)\ g(x)\ {\bigr )}\ =\ {\bigl (}\ \operatorname {\Delta } _{h}f(x)\ {\bigr )}\ g(x+h)\ +\ f(x)\ {\bigl (}\ \operatorname {\Delta } _{h}g(x)\ {\bigr )}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e48d9fd054eb54ba0c86c2fc2a26412477507c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:63.549ex; height:3.176ex;" alt="{\displaystyle \ \operatorname {\Delta } _{h}{\bigl (}\ f(x)\ g(x)\ {\bigr )}\ =\ {\bigl (}\ \operatorname {\Delta } _{h}f(x)\ {\bigr )}\ g(x+h)\ +\ f(x)\ {\bigl (}\ \operatorname {\Delta } _{h}g(x)\ {\bigr )}~.}" /></span></dd></dl> <p>Similar Leibniz rules hold for the backward and central differences. </p><p>Formally applying the <a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a> with respect to <span class="texhtml mvar" style="font-style:italic;">h</span>, yields the operator equation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {\Delta } _{h}=h\operatorname {D} +{\frac {1}{2!}}h^{2}\operatorname {D} ^{2}+{\frac {1}{3!}}h^{3}\operatorname {D} ^{3}+\cdots =e^{h\operatorname {D} }-\operatorname {I} \ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo>=</mo> <mi>h</mi> <mi mathvariant="normal">D</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi mathvariant="normal">D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mi mathvariant="normal">D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mi mathvariant="normal">D</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mi mathvariant="normal">I</mi> <mo>⁡<!-- --></mo> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {\Delta } _{h}=h\operatorname {D} +{\frac {1}{2!}}h^{2}\operatorname {D} ^{2}+{\frac {1}{3!}}h^{3}\operatorname {D} ^{3}+\cdots =e^{h\operatorname {D} }-\operatorname {I} \ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f74342c37f1ddae8d006543e3f50789b826176f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:48.221ex; height:5.343ex;" alt="{\displaystyle \operatorname {\Delta } _{h}=h\operatorname {D} +{\frac {1}{2!}}h^{2}\operatorname {D} ^{2}+{\frac {1}{3!}}h^{3}\operatorname {D} ^{3}+\cdots =e^{h\operatorname {D} }-\operatorname {I} \ ,}" /></span> where <span class="texhtml">D</span> denotes the conventional, continuous derivative operator, mapping <span class="texhtml mvar" style="font-style:italic;">f</span> to its derivative <span class="nowrap"><span class="texhtml"><i>f</i>′</span>.</span> The expansion is valid when both sides act on <a href="/wiki/Analytic_function" title="Analytic function">analytic functions</a>, for sufficiently small <span class="texhtml mvar" style="font-style:italic;">h</span>; in the special case that the series of derivatives terminates (when the function operated on is a finite <a href="/wiki/Polynomial" title="Polynomial">polynomial</a>) the expression is exact, for <i>all</i> finite stepsizes, <span class="nowrap"> <span class="texhtml mvar" style="font-style:italic;">h</span> .</span> Thus <span class="nowrap"><span class="texhtml"> T<sub><i>h</i></sub> = <i>e</i><sup><i>h</i> D</sup></span>,</span> and formally inverting the exponential yields <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\operatorname {D} =\ln(1+\Delta _{h})=\Delta _{h}-{\tfrac {1}{2}}\,\Delta _{h}^{2}+{\tfrac {1}{3}}\,\Delta _{h}^{3}-\cdots ~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mi mathvariant="normal">D</mi> <mo>=</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mspace width="thinmathspace"></mspace> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> <mspace width="thinmathspace"></mspace> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <mo>⋯<!-- ⋯ --></mo> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h\operatorname {D} =\ln(1+\Delta _{h})=\Delta _{h}-{\tfrac {1}{2}}\,\Delta _{h}^{2}+{\tfrac {1}{3}}\,\Delta _{h}^{3}-\cdots ~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17eb81d31aa4f39b659d66999cdd7b04acc841ce" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:46.859ex; height:3.676ex;" alt="{\displaystyle h\operatorname {D} =\ln(1+\Delta _{h})=\Delta _{h}-{\tfrac {1}{2}}\,\Delta _{h}^{2}+{\tfrac {1}{3}}\,\Delta _{h}^{3}-\cdots ~.}" /></span> This formula holds in the sense that both operators give the same result when applied to a polynomial. </p><p>Even for analytic functions, the series on the right is not guaranteed to converge; it may be an <a href="/wiki/Asymptotic_series" class="mw-redirect" title="Asymptotic series">asymptotic series</a>. However, it can be used to obtain more accurate approximations for the derivative. For instance, retaining the first two terms of the series yields the second-order approximation to <span class="texhtml"><i>f</i> ′(<i>x</i>)</span> mentioned at the end of the section <i><a href="#Higher-order_differences">§ Higher-order differences</a></i>. </p><p>The analogous formulas for the backward and central difference operators are <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\operatorname {D} =-\ln(1-\nabla _{h})\quad {\text{ and }}\quad h\operatorname {D} =2\operatorname {arsinh} \left({\tfrac {1}{2}}\,\delta _{h}\right)~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mi mathvariant="normal">D</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msub> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mtext> and </mtext> </mrow> <mspace width="1em"></mspace> <mi>h</mi> <mi mathvariant="normal">D</mi> <mo>=</mo> <mn>2</mn> <mi>arsinh</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mspace width="thinmathspace"></mspace> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h\operatorname {D} =-\ln(1-\nabla _{h})\quad {\text{ and }}\quad h\operatorname {D} =2\operatorname {arsinh} \left({\tfrac {1}{2}}\,\delta _{h}\right)~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f36f9f489799e7735270bf69fdfae62f7c83970" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:51.202ex; height:3.509ex;" alt="{\displaystyle h\operatorname {D} =-\ln(1-\nabla _{h})\quad {\text{ and }}\quad h\operatorname {D} =2\operatorname {arsinh} \left({\tfrac {1}{2}}\,\delta _{h}\right)~.}" /></span> </p><p>The calculus of finite differences is related to the <a href="/wiki/Umbral_calculus" title="Umbral calculus">umbral calculus</a> of combinatorics. This remarkably systematic correspondence is due to the identity of the <a href="/wiki/Commutators" class="mw-redirect" title="Commutators">commutators</a> of the umbral quantities to their continuum analogs (<span class="texhtml"><i>h</i> → 0</span> limits), </p> <div class="equation-box" style="margin: 0 0 0 1.6em;padding: 6px; border-width:2px; border-style: solid; border-color: #0073CF; color: inherit;text-align: center; display: table"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[{\frac {\Delta _{h}}{h}},x\,\operatorname {T} _{h}^{-1}\right]=[\operatorname {D} ,x]=I.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mi>h</mi> </mfrac> </mrow> <mo>,</mo> <mi>x</mi> <mspace width="thinmathspace"></mspace> <msubsup> <mi mathvariant="normal">T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mo stretchy="false">[</mo> <mi mathvariant="normal">D</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>I</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[{\frac {\Delta _{h}}{h}},x\,\operatorname {T} _{h}^{-1}\right]=[\operatorname {D} ,x]=I.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dae337f5d41a42cb62f6f6345662b9ef59285d88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.003ex; height:6.176ex;" alt="{\displaystyle \left[{\frac {\Delta _{h}}{h}},x\,\operatorname {T} _{h}^{-1}\right]=[\operatorname {D} ,x]=I.}" /></span> </p> </div> <p>A large number of formal differential relations of standard calculus involving functions <span class="texhtml"><i>f</i>(<i>x</i>)</span> thus <i>systematically map to umbral finite-difference analogs</i> involving <span class="nowrap"><span class="texhtml"><i>f</i>( <i>x</i> T<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">−1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>h</i></sub></span></span> )</span>.</span> </p><p>For instance, the umbral analog of a monomial <span class="texhtml mvar" style="font-style:italic;">x<sup>n</sup></span> is a generalization of the above falling factorial (<a href="/wiki/Pochhammer_k-symbol" title="Pochhammer k-symbol">Pochhammer k-symbol</a>), <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ (x)_{n}\equiv \left(\ x\ \operatorname {T} _{h}^{-1}\right)^{n}=x\left(x-h\right)\left(x-2h\right)\cdots {\bigl (}x-\left(n-1\right)\ h{\bigr )}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mo stretchy="false">(</mo> <mi>x</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>≡<!-- ≡ --></mo> <msup> <mrow> <mo>(</mo> <mrow> <mtext> </mtext> <mi>x</mi> <mtext> </mtext> <msubsup> <mi mathvariant="normal">T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>h</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>h</mi> </mrow> <mo>)</mo> </mrow> <mo>⋯<!-- ⋯ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mtext> </mtext> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ (x)_{n}\equiv \left(\ x\ \operatorname {T} _{h}^{-1}\right)^{n}=x\left(x-h\right)\left(x-2h\right)\cdots {\bigl (}x-\left(n-1\right)\ h{\bigr )}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ca3e7729c08dc621a13edbfe884b8a8db28cb96" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:59.814ex; height:3.343ex;" alt="{\displaystyle \ (x)_{n}\equiv \left(\ x\ \operatorname {T} _{h}^{-1}\right)^{n}=x\left(x-h\right)\left(x-2h\right)\cdots {\bigl (}x-\left(n-1\right)\ h{\bigr )}\ ,}" /></span> so that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ {\frac {\Delta _{h}}{h}}(x)_{n}=n\ (x)_{n-1}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mi>h</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>n</mi> <mtext> </mtext> <mo stretchy="false">(</mo> <mi>x</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ {\frac {\Delta _{h}}{h}}(x)_{n}=n\ (x)_{n-1}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fe3e8addc0a24f22e749f1104037d3e7a262b96" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:21.648ex; height:5.509ex;" alt="{\displaystyle \ {\frac {\Delta _{h}}{h}}(x)_{n}=n\ (x)_{n-1}\ ,}" /></span> hence the above Newton interpolation formula (by matching coefficients in the expansion of an arbitrary function <span class="texhtml"><i>f</i>(<i>x</i>)</span> in such symbols), and so on. </p><p>For example, the umbral sine is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \sin \left(x\ \operatorname {T} _{h}^{-1}\right)=x-{\frac {(x)_{3}}{3!}}+{\frac {(x)_{5}}{5!}}-{\frac {(x)_{7}}{7!}}+\cdots \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mtext> </mtext> <msubsup> <mi mathvariant="normal">T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mrow> <mrow> <mn>5</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> </mrow> <mrow> <mn>7</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \sin \left(x\ \operatorname {T} _{h}^{-1}\right)=x-{\frac {(x)_{3}}{3!}}+{\frac {(x)_{5}}{5!}}-{\frac {(x)_{7}}{7!}}+\cdots \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b37b06825b2219480cdfd7f69234a5d08bd6972" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:46.83ex; height:5.843ex;" alt="{\displaystyle \ \sin \left(x\ \operatorname {T} _{h}^{-1}\right)=x-{\frac {(x)_{3}}{3!}}+{\frac {(x)_{5}}{5!}}-{\frac {(x)_{7}}{7!}}+\cdots \ }" /></span> </p><p>As in the <a href="/wiki/Continuum_limit" title="Continuum limit">continuum limit</a>, the eigenfunction of  <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035" /><span class="sfrac">⁠<span class="tion"><span class="num">Δ<sub><i>h</i></sub></span><span class="sr-only">/</span><span class="den"><i>h</i></span></span>⁠</span></span>  also happens to be an exponential, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ {\frac {\Delta _{h}}{h}}(1+\lambda h)^{\frac {x}{h}}={\frac {\Delta _{h}}{h}}e^{\ln(1+\lambda h){\frac {x}{h}}}=\lambda e^{\ln(1+\lambda h){\frac {x}{h}}}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mi>h</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>λ<!-- λ --></mi> <mi>h</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>h</mi> </mfrac> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mi>h</mi> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>λ<!-- λ --></mi> <mi>h</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>h</mi> </mfrac> </mrow> </mrow> </msup> <mo>=</mo> <mi>λ<!-- λ --></mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>λ<!-- λ --></mi> <mi>h</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>h</mi> </mfrac> </mrow> </mrow> </msup> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ {\frac {\Delta _{h}}{h}}(1+\lambda h)^{\frac {x}{h}}={\frac {\Delta _{h}}{h}}e^{\ln(1+\lambda h){\frac {x}{h}}}=\lambda e^{\ln(1+\lambda h){\frac {x}{h}}}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75b5690bab9a5da940581bdbed28380ec01d20c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:46.76ex; height:5.509ex;" alt="{\displaystyle \ {\frac {\Delta _{h}}{h}}(1+\lambda h)^{\frac {x}{h}}={\frac {\Delta _{h}}{h}}e^{\ln(1+\lambda h){\frac {x}{h}}}=\lambda e^{\ln(1+\lambda h){\frac {x}{h}}}\ ,}" /></span></dd></dl> <p>and hence <i>Fourier sums of continuum functions are readily, faithfully mapped to umbral Fourier sums</i>, i.e., involving the same Fourier coefficients multiplying these umbral basis exponentials.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> This umbral exponential thus amounts to the exponential <a href="/wiki/Generating_function" title="Generating function">generating function</a> of the <a href="/wiki/Pochhammer_symbol" class="mw-redirect" title="Pochhammer symbol">Pochhammer symbols</a>. </p><p>Thus, for instance, the <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a> maps to its umbral correspondent, the <a href="/wiki/Sinc_function" title="Sinc function">cardinal sine function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \delta (x)\mapsto {\frac {\sin \left[{\frac {\pi }{2}}\left(1+{\frac {x}{h}}\right)\right]}{\pi (x+h)}}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">↦<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>h</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mrow> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \delta (x)\mapsto {\frac {\sin \left[{\frac {\pi }{2}}\left(1+{\frac {x}{h}}\right)\right]}{\pi (x+h)}}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132d19a452781239067dc13d50672d2d0a37d929" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:26.223ex; height:8.343ex;" alt="{\displaystyle \ \delta (x)\mapsto {\frac {\sin \left[{\frac {\pi }{2}}\left(1+{\frac {x}{h}}\right)\right]}{\pi (x+h)}}\ ,}" /></span> and so forth.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Difference_equation" class="mw-redirect" title="Difference equation">Difference equations</a> can often be solved with techniques very similar to those for solving <a href="/wiki/Differential_equation" title="Differential equation">differential equations</a>. </p><p>The inverse operator of the forward difference operator, so then the umbral integral, is the <a href="/wiki/Indefinite_sum" title="Indefinite sum">indefinite sum</a> or antidifference operator. </p> <div class="mw-heading mw-heading3"><h3 id="Rules_for_calculus_of_finite_difference_operators">Rules for calculus of finite difference operators</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=14" title="Edit section: Rules for calculus of finite difference operators"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Analogous to <a href="/wiki/Differentiation_rules" title="Differentiation rules">rules for finding the derivative</a>, we have: </p> <ul><li><b>Constant rule</b>: If <span class="texhtml mvar" style="font-style:italic;">c</span> is a <a href="/wiki/Constant_(mathematics)" title="Constant (mathematics)">constant</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \Delta c=0\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>c</mi> <mo>=</mo> <mn>0</mn> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \Delta c=0\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad4c9a9f5a9778e48e3f0081d741a54584a398fc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.365ex; height:2.176ex;" alt="{\displaystyle \ \Delta c=0\ }" /></span></li> <li><b><a href="/wiki/Linearity_of_differentiation" title="Linearity of differentiation">Linearity</a></b>: If <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> are <a href="/wiki/Constant_(mathematics)" title="Constant (mathematics)">constants</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \Delta (a\ f+b\ g)=a\ \Delta f+b\ \Delta g\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mtext> </mtext> <mi>f</mi> <mo>+</mo> <mi>b</mi> <mtext> </mtext> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mtext> </mtext> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>f</mi> <mo>+</mo> <mi>b</mi> <mtext> </mtext> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>g</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \Delta (a\ f+b\ g)=a\ \Delta f+b\ \Delta g\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e593ad269f369395495a605beacf08e6889e5c4f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.124ex; height:2.843ex;" alt="{\displaystyle \ \Delta (a\ f+b\ g)=a\ \Delta f+b\ \Delta g\ }" /></span></li></ul> <p>All of the above rules apply equally well to any difference operator as to <span class="texhtml">Δ</span>, including <span class="texhtml">δ</span> and <span class="nowrap"> <span class="texhtml">∇</span> .</span> </p> <ul><li><b><a href="/wiki/Product_rule" title="Product rule">Product rule</a></b>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\ \Delta (fg)&=f\,\Delta g+g\,\Delta f+\Delta f\,\Delta g\\[4pt]\nabla (fg)&=f\,\nabla g+g\,\nabla f-\nabla f\,\nabla g\ \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mtext> </mtext> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mi>g</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>g</mi> <mo>+</mo> <mi>g</mi> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>f</mi> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>f</mi> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>g</mi> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mi>g</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>g</mi> <mo>+</mo> <mi>g</mi> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>f</mi> <mo>−<!-- − --></mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>f</mi> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>g</mi> <mtext> </mtext> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\ \Delta (fg)&=f\,\Delta g+g\,\Delta f+\Delta f\,\Delta g\\[4pt]\nabla (fg)&=f\,\nabla g+g\,\nabla f-\nabla f\,\nabla g\ \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa7ca1ad1827a69f52c511fa0d967d50bdbff396" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:32.92ex; height:7.176ex;" alt="{\displaystyle {\begin{aligned}\ \Delta (fg)&=f\,\Delta g+g\,\Delta f+\Delta f\,\Delta g\\[4pt]\nabla (fg)&=f\,\nabla g+g\,\nabla f-\nabla f\,\nabla g\ \end{aligned}}}" /></span></li> <li><b><a href="/wiki/Quotient_rule" title="Quotient rule">Quotient rule</a></b>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \nabla \left({\frac {f}{g}}\right)=\left.\left(\det {\begin{bmatrix}\nabla f&\nabla g\\f&g\end{bmatrix}}\right)\right/\left(g\cdot \det {\begin{bmatrix}g&\nabla g\\1&1\end{bmatrix}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>f</mi> <mi>g</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow> <mo>(</mo> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>f</mi> </mtd> <mtd> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>g</mi> </mtd> </mtr> <mtr> <mtd> <mi>f</mi> </mtd> <mtd> <mi>g</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mo fence="true" stretchy="true" symmetric="true">/</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>g</mi> <mo>⋅<!-- ⋅ --></mo> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>g</mi> </mtd> <mtd> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>g</mi> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \nabla \left({\frac {f}{g}}\right)=\left.\left(\det {\begin{bmatrix}\nabla f&\nabla g\\f&g\end{bmatrix}}\right)\right/\left(g\cdot \det {\begin{bmatrix}g&\nabla g\\1&1\end{bmatrix}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b8eb23cbd1951361a98ccf44b91eb51dcbe2a07" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:52.761ex; height:6.176ex;" alt="{\displaystyle \ \nabla \left({\frac {f}{g}}\right)=\left.\left(\det {\begin{bmatrix}\nabla f&\nabla g\\f&g\end{bmatrix}}\right)\right/\left(g\cdot \det {\begin{bmatrix}g&\nabla g\\1&1\end{bmatrix}}\right)}" /></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \left({\frac {f}{g}}\right)={\frac {g\,\nabla f-f\,\nabla g}{g\cdot (g-\nabla g)}}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>f</mi> <mi>g</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>g</mi> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>f</mi> <mo>−<!-- − --></mo> <mi>f</mi> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>g</mi> </mrow> <mrow> <mi>g</mi> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo>−<!-- − --></mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>g</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \left({\frac {f}{g}}\right)={\frac {g\,\nabla f-f\,\nabla g}{g\cdot (g-\nabla g)}}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/053f34119b48ca85b681ac695f6b86727aea40b7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:24.65ex; height:6.343ex;" alt="{\displaystyle \nabla \left({\frac {f}{g}}\right)={\frac {g\,\nabla f-f\,\nabla g}{g\cdot (g-\nabla g)}}\ }" /></span></li> <li><b><a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">Summation rules</a></b>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\ \sum _{n=a}^{b}\Delta f(n)&=f(b+1)-f(a)\\\sum _{n=a}^{b}\nabla f(n)&=f(b)-f(a-1)\ \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mtext> </mtext> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </munderover> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </munderover> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mtext> </mtext> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\ \sum _{n=a}^{b}\Delta f(n)&=f(b+1)-f(a)\\\sum _{n=a}^{b}\nabla f(n)&=f(b)-f(a-1)\ \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b04ba91f4d8e278c46b09d4c5baa295004732060" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:30.805ex; height:14.843ex;" alt="{\displaystyle {\begin{aligned}\ \sum _{n=a}^{b}\Delta f(n)&=f(b+1)-f(a)\\\sum _{n=a}^{b}\nabla f(n)&=f(b)-f(a-1)\ \end{aligned}}}" /></span></li></ul> <p>See references.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Generalizations">Generalizations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=15" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>A <b>generalized finite difference</b> is usually defined as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{h}^{\mu }[f](x)=\sum _{k=0}^{N}\mu _{k}f(x+kh),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msubsup> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>k</mi> <mi>h</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{h}^{\mu }[f](x)=\sum _{k=0}^{N}\mu _{k}f(x+kh),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28abc7dcba38138a34d65f0e23df02ea91bbbcad" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:28.656ex; height:7.509ex;" alt="{\displaystyle \Delta _{h}^{\mu }[f](x)=\sum _{k=0}^{N}\mu _{k}f(x+kh),}" /></span> where <span class="texhtml"><i>μ</i> = (<i>μ</i><sub>0</sub>, …, <i>μ<sub>N</sub></i>)</span> is its coefficient vector. An <b>infinite difference</b> is a further generalization, where the finite sum above is replaced by an <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">infinite series</a>. Another way of generalization is making coefficients <span class="texhtml"><i>μ<sub>k</sub></i></span> depend on point <span class="texhtml mvar" style="font-style:italic;">x</span>: <span class="texhtml"><i>μ<sub>k</sub></i> = <i>μ<sub>k</sub></i>(<i>x</i>)</span>, thus considering <b>weighted finite difference</b>. Also one may make the step <span class="texhtml mvar" style="font-style:italic;">h</span> depend on point <span class="texhtml mvar" style="font-style:italic;">x</span>: <span class="texhtml"><i>h</i> = <i>h</i>(<i>x</i>)</span>. Such generalizations are useful for constructing different <a href="/wiki/Modulus_of_continuity" title="Modulus of continuity">modulus of continuity</a>.</li> <li>The generalized difference can be seen as the polynomial rings <span class="texhtml"><i>R</i>[<i>T<sub>h</sub></i>]</span>. It leads to difference algebras.</li> <li>Difference operator generalizes to <a href="/wiki/M%C3%B6bius_inversion" class="mw-redirect" title="Möbius inversion">Möbius inversion</a> over a <a href="/wiki/Partially_ordered_set" title="Partially ordered set">partially ordered set</a>.</li> <li>As a convolution operator: Via the formalism of <a href="/wiki/Incidence_algebra" title="Incidence algebra">incidence algebras</a>, difference operators and other Möbius inversion can be represented by <a href="/wiki/Convolution" title="Convolution">convolution</a> with a function on the poset, called the <a href="/wiki/M%C3%B6bius_function_(combinatorics)" class="mw-redirect" title="Möbius function (combinatorics)">Möbius function</a> <span class="texhtml mvar" style="font-style:italic;">μ</span>; for the difference operator, <span class="texhtml mvar" style="font-style:italic;">μ</span> is the sequence <span class="nowrap">(1, −1, 0, 0, 0, …)</span>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Multivariate_finite_differences">Multivariate finite differences</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=16" title="Edit section: Multivariate finite differences"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Finite differences can be considered in more than one variable. They are analogous to <a href="/wiki/Partial_derivative" title="Partial derivative">partial derivatives</a> in several variables. </p><p>Some partial derivative approximations are: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f_{x}(x,y)&\approx {\frac {f(x+h,y)-f(x-h,y)}{2h}}\\f_{y}(x,y)&\approx {\frac {f(x,y+k)-f(x,y-k)}{2k}}\\f_{xx}(x,y)&\approx {\frac {f(x+h,y)-2f(x,y)+f(x-h,y)}{h^{2}}}\\f_{yy}(x,y)&\approx {\frac {f(x,y+k)-2f(x,y)+f(x,y-k)}{k^{2}}}\\f_{xy}(x,y)&\approx {\frac {f(x+h,y+k)-f(x+h,y-k)-f(x-h,y+k)+f(x-h,y-k)}{4hk}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>h</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>h</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>+</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>k</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>h</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>+</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo>,</mo> <mi>y</mi> <mo>+</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo>,</mo> <mi>y</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>h</mi> <mo>,</mo> <mi>y</mi> <mo>+</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>h</mi> <mo>,</mo> <mi>y</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>4</mn> <mi>h</mi> <mi>k</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f_{x}(x,y)&\approx {\frac {f(x+h,y)-f(x-h,y)}{2h}}\\f_{y}(x,y)&\approx {\frac {f(x,y+k)-f(x,y-k)}{2k}}\\f_{xx}(x,y)&\approx {\frac {f(x+h,y)-2f(x,y)+f(x-h,y)}{h^{2}}}\\f_{yy}(x,y)&\approx {\frac {f(x,y+k)-2f(x,y)+f(x,y-k)}{k^{2}}}\\f_{xy}(x,y)&\approx {\frac {f(x+h,y+k)-f(x+h,y-k)-f(x-h,y+k)+f(x-h,y-k)}{4hk}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc455c54536691669cf12b085b9e05568ee79e45" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -14.338ex; width:81.786ex; height:29.843ex;" alt="{\displaystyle {\begin{aligned}f_{x}(x,y)&\approx {\frac {f(x+h,y)-f(x-h,y)}{2h}}\\f_{y}(x,y)&\approx {\frac {f(x,y+k)-f(x,y-k)}{2k}}\\f_{xx}(x,y)&\approx {\frac {f(x+h,y)-2f(x,y)+f(x-h,y)}{h^{2}}}\\f_{yy}(x,y)&\approx {\frac {f(x,y+k)-2f(x,y)+f(x,y-k)}{k^{2}}}\\f_{xy}(x,y)&\approx {\frac {f(x+h,y+k)-f(x+h,y-k)-f(x-h,y+k)+f(x-h,y-k)}{4hk}}.\end{aligned}}}" /></span> </p><p>Alternatively, for applications in which the computation of <span class="texhtml mvar" style="font-style:italic;">f</span> is the most costly step, and both first and second derivatives must be computed, a more efficient formula for the last case is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{xy}(x,y)\approx {\frac {f(x+h,y+k)-f(x+h,y)-f(x,y+k)+2f(x,y)-f(x-h,y)-f(x,y-k)+f(x-h,y-k)}{2hk}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo>,</mo> <mi>y</mi> <mo>+</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>+</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>h</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>h</mi> <mo>,</mo> <mi>y</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>h</mi> <mi>k</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{xy}(x,y)\approx {\frac {f(x+h,y+k)-f(x+h,y)-f(x,y+k)+2f(x,y)-f(x-h,y)-f(x,y-k)+f(x-h,y-k)}{2hk}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f04e749083f6e4643334ce44975fa523d31734f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:110.416ex; height:5.843ex;" alt="{\displaystyle f_{xy}(x,y)\approx {\frac {f(x+h,y+k)-f(x+h,y)-f(x,y+k)+2f(x,y)-f(x-h,y)-f(x,y-k)+f(x-h,y-k)}{2hk}},}" /></span> since the only values to compute that are not already needed for the previous four equations are <span class="texhtml"><i>f</i>(<i>x</i> + <i>h</i>, <i>y</i> + <i>k</i>)</span> and <span class="texhtml"><i>f</i>(<i>x</i> − <i>h</i>, <i>y</i> − <i>k</i>)</span>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=17" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 20em;"> <ul><li><a href="/wiki/Discrete_calculus" title="Discrete calculus">Discrete calculus</a></li> <li><a href="/wiki/Divided_differences" title="Divided differences">Divided differences</a></li> <li><a href="/wiki/Finite-difference_time-domain_method" title="Finite-difference time-domain method">Finite-difference time-domain method</a> (FDTD)</li> <li><a href="/wiki/Finite_volume_method" title="Finite volume method">Finite volume method</a></li> <li><a href="/wiki/FTCS_scheme" title="FTCS scheme">FTCS scheme</a></li> <li><a href="/wiki/Gilbreath%27s_conjecture" title="Gilbreath's conjecture">Gilbreath's conjecture</a></li> <li><a href="/wiki/Sheffer_sequence" title="Sheffer sequence">Sheffer sequence</a></li> <li><a href="/wiki/Summation_by_parts" title="Summation by parts">Summation by parts</a></li> <li><a href="/wiki/Time_scale_calculus" class="mw-redirect" title="Time scale calculus">Time scale calculus</a></li> <li><a href="/wiki/Upwind_differencing_scheme_for_convection" title="Upwind differencing scheme for convection">Upwind differencing scheme for convection</a></li></ul></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=18" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-WilmottHowison1995-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-WilmottHowison1995_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-WilmottHowison1995_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-WilmottHowison1995_1-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFPaul_WilmottSam_HowisonJeff_Dewynne1995" class="citation book cs1">Paul Wilmott; Sam Howison; Jeff Dewynne (1995). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/mathematicsoffin00wilm/page/137"><i>The Mathematics of Financial Derivatives: A Student Introduction</i></a></span>. Cambridge University Press. p. <a rel="nofollow" class="external text" href="https://archive.org/details/mathematicsoffin00wilm/page/137">137</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-49789-3" title="Special:BookSources/978-0-521-49789-3"><bdi>978-0-521-49789-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Mathematics+of+Financial+Derivatives%3A+A+Student+Introduction&rft.pages=137&rft.pub=Cambridge+University+Press&rft.date=1995&rft.isbn=978-0-521-49789-3&rft.au=Paul+Wilmott&rft.au=Sam+Howison&rft.au=Jeff+Dewynne&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmathematicsoffin00wilm%2Fpage%2F137&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFinite+difference" class="Z3988"></span></span> </li> <li id="cite_note-Olver2013-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Olver2013_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Olver2013_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Olver2013_2-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFPeter_Olver2013" class="citation book cs1"><a href="/wiki/Peter_J._Olver" title="Peter J. Olver">Peter Olver</a> (2013). <i>Introduction to Partial Differential Equations</i>. Springer Science & Business Media. p. 182. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-02099-0" title="Special:BookSources/978-3-319-02099-0"><bdi>978-3-319-02099-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Partial+Differential+Equations&rft.pages=182&rft.pub=Springer+Science+%26+Business+Media&rft.date=2013&rft.isbn=978-3-319-02099-0&rft.au=Peter+Olver&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFinite+difference" class="Z3988"></span></span> </li> <li id="cite_note-Chaudhry2007-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-Chaudhry2007_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Chaudhry2007_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Chaudhry2007_3-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFM_Hanif_Chaudhry2007" class="citation book cs1">M Hanif Chaudhry (2007). <i>Open-Channel Flow</i>. Springer. p. 369. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-68648-6" title="Special:BookSources/978-0-387-68648-6"><bdi>978-0-387-68648-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Open-Channel+Flow&rft.pages=369&rft.pub=Springer&rft.date=2007&rft.isbn=978-0-387-68648-6&rft.au=M+Hanif+Chaudhry&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFinite+difference" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">Jordán, op. cit., p. 1 and Milne-Thomson, p. xxi. Milne-Thomson, Louis Melville (2000): <i>The Calculus of Finite Differences</i> (Chelsea Pub Co, 2000) <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0821821077" title="Special:BookSources/978-0821821077">978-0821821077</a></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://divisbyzero.com/2018/02/13/finite-differences-of-polynomials/">"Finite differences of polynomials"</a>. February 13, 2018.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Finite+differences+of+polynomials&rft.date=2018-02-13&rft_id=https%3A%2F%2Fdivisbyzero.com%2F2018%2F02%2F13%2Ffinite-differences-of-polynomials%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFinite+difference" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFFraser1909" class="citation journal cs1">Fraser, Duncan C. (January 1, 1909). <a rel="nofollow" class="external text" href="https://archive.org/stream/journal43instuoft#page/236/mode/2up">"On the Graphic Delineation of Interpolation Formulæ"</a>. <i>Journal of the Institute of Actuaries</i>. <b>43</b> (2): <span class="nowrap">235–</span>241. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS002026810002494X">10.1017/S002026810002494X</a><span class="reference-accessdate">. Retrieved <span class="nowrap">April 17,</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Institute+of+Actuaries&rft.atitle=On+the+Graphic+Delineation+of+Interpolation+Formul%C3%A6&rft.volume=43&rft.issue=2&rft.pages=%3Cspan+class%3D%22nowrap%22%3E235-%3C%2Fspan%3E241&rft.date=1909-01-01&rft_id=info%3Adoi%2F10.1017%2FS002026810002494X&rft.aulast=Fraser&rft.aufirst=Duncan+C.&rft_id=https%3A%2F%2Farchive.org%2Fstream%2Fjournal43instuoft%23page%2F236%2Fmode%2F2up&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFinite+difference" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><a class="external text" href="https://commons.wikimedia.org/wiki/File:FDnotes.djvu">notes</a></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://web.media.mit.edu/~crtaylor/calculator.html">Finite Difference Coefficients Calculator</a></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><a href="/wiki/Burkard_Polster" title="Burkard Polster">Burkard Polster</a>/Mathologer (2021). <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=4AuV93LOPcE&t=964s">" Why don't they teach Newton's calculus of 'What comes next?' " on YouTube</a></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">Newton, Isaac, (1687). <a rel="nofollow" class="external text" href="https://archive.org/details/bub_gb_KaAIAAAAIAAJ/page/n459"><i>Principia</i>, Book III, Lemma V, Case 1</a></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFIaroslav_V._Blagouchine2018" class="citation journal cs1">Iaroslav V. Blagouchine (2018). <a rel="nofollow" class="external text" href="http://math.colgate.edu/~integers/sjs3/sjs3.pdf">"Three notes on Ser's and Hasse's representations for the zeta-functions"</a> <span class="cs1-format">(PDF)</span>. <i>Integers (Electronic Journal of Combinatorial Number Theory)</i>. <b>18A</b>: <span class="nowrap">1–</span>45. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1606.02044">1606.02044</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.5281%2Fzenodo.10581385">10.5281/zenodo.10581385</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Integers+%28Electronic+Journal+of+Combinatorial+Number+Theory%29&rft.atitle=Three+notes+on+Ser%27s+and+Hasse%27s+representations+for+the+zeta-functions&rft.volume=18A&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E45&rft.date=2018&rft_id=info%3Aarxiv%2F1606.02044&rft_id=info%3Adoi%2F10.5281%2Fzenodo.10581385&rft.au=Iaroslav+V.+Blagouchine&rft_id=http%3A%2F%2Fmath.colgate.edu%2F~integers%2Fsjs3%2Fsjs3.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFinite+difference" class="Z3988"></span></span> </li> <li id="cite_note-Hucht-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hucht_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFKönigHucht2021" class="citation journal cs1">König, Jürgen; Hucht, Fred (2021). <a rel="nofollow" class="external text" href="https://doi.org/10.21468%2FSciPostPhys.10.1.007">"Newton series expansion of bosonic operator functions"</a>. <i>SciPost Physics</i>. <b>10</b> (1): 007. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2008.11139">2008.11139</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021ScPP...10....7K">2021ScPP...10....7K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.21468%2FSciPostPhys.10.1.007">10.21468/SciPostPhys.10.1.007</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:221293056">221293056</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=SciPost+Physics&rft.atitle=Newton+series+expansion+of+bosonic+operator+functions&rft.volume=10&rft.issue=1&rft.pages=007&rft.date=2021&rft_id=info%3Aarxiv%2F2008.11139&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A221293056%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.21468%2FSciPostPhys.10.1.007&rft_id=info%3Abibcode%2F2021ScPP...10....7K&rft.aulast=K%C3%B6nig&rft.aufirst=J%C3%BCrgen&rft.au=Hucht%2C+Fred&rft_id=https%3A%2F%2Fdoi.org%2F10.21468%252FSciPostPhys.10.1.007&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFinite+difference" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><a href="/wiki/Robert_D._Richtmyer" title="Robert D. Richtmyer">Richtmeyer, D.</a> and Morton, K.W., (1967). <i>Difference Methods for Initial Value Problems</i>, 2nd ed., Wiley, New York.</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBoole1872" class="citation book cs1"><a href="/wiki/George_Boole" title="George Boole">Boole, George</a> (1872). <a rel="nofollow" class="external text" href="https://archive.org/details/cu31924031240934"><i>A Treatise on the Calculus of Finite Differences</i></a> (2nd ed.). Macmillan and Company – via <a href="/wiki/Internet_Archive" title="Internet Archive">Internet Archive</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Treatise+on+the+Calculus+of+Finite+Differences&rft.edition=2nd&rft.pub=Macmillan+and+Company&rft.date=1872&rft.aulast=Boole&rft.aufirst=George&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcu31924031240934&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFinite+difference" class="Z3988"></span> Also, a Dover reprint edition, 1960.</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFJordan1965" class="citation book cs1">Jordan, Charles (1965) [1939]. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=3RfZOsDAyQsC&pg=PA1"><i>Calculus of Finite Differences</i></a>. Chelsea Publishing. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8284-0033-6" title="Special:BookSources/978-0-8284-0033-6"><bdi>978-0-8284-0033-6</bdi></a> – via Google books.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus+of+Finite+Differences&rft.pub=Chelsea+Publishing&rft.date=1965&rft.isbn=978-0-8284-0033-6&rft.aulast=Jordan&rft.aufirst=Charles&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D3RfZOsDAyQsC%26pg%3DPA1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFinite+difference" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFZachos2008" class="citation journal cs1"><a href="/wiki/Cosmas_Zachos" title="Cosmas Zachos">Zachos, C.</a> (2008). "Umbral deformations on discrete space-time". <i>International Journal of Modern Physics A</i>. <b>23</b> (13): <span class="nowrap">200–</span>214. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0710.2306">0710.2306</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008IJMPA..23.2005Z">2008IJMPA..23.2005Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS0217751X08040548">10.1142/S0217751X08040548</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16797959">16797959</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Modern+Physics+A&rft.atitle=Umbral+deformations+on+discrete+space-time&rft.volume=23&rft.issue=13&rft.pages=%3Cspan+class%3D%22nowrap%22%3E200-%3C%2Fspan%3E214&rft.date=2008&rft_id=info%3Aarxiv%2F0710.2306&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16797959%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1142%2FS0217751X08040548&rft_id=info%3Abibcode%2F2008IJMPA..23.2005Z&rft.aulast=Zachos&rft.aufirst=C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFinite+difference" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFCurtrightZachos2013" class="citation journal cs1">Curtright, T. L.; Zachos, C. K. (2013). <a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffphy.2013.00015">"Umbral Vade Mecum"</a>. <i>Frontiers in Physics</i>. <b>1</b>: 15. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1304.0429">1304.0429</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013FrP.....1...15C">2013FrP.....1...15C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffphy.2013.00015">10.3389/fphy.2013.00015</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14106142">14106142</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Frontiers+in+Physics&rft.atitle=Umbral+Vade+Mecum&rft.volume=1&rft.pages=15&rft.date=2013&rft_id=info%3Aarxiv%2F1304.0429&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14106142%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.3389%2Ffphy.2013.00015&rft_id=info%3Abibcode%2F2013FrP.....1...15C&rft.aulast=Curtright&rft.aufirst=T.+L.&rft.au=Zachos%2C+C.+K.&rft_id=https%3A%2F%2Fdoi.org%2F10.3389%252Ffphy.2013.00015&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFinite+difference" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFLevyLessman1992" class="citation book cs1">Levy, H.; Lessman, F. (1992). <i>Finite Difference Equations</i>. Dover. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-67260-3" title="Special:BookSources/0-486-67260-3"><bdi>0-486-67260-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Finite+Difference+Equations&rft.pub=Dover&rft.date=1992&rft.isbn=0-486-67260-3&rft.aulast=Levy&rft.aufirst=H.&rft.au=Lessman%2C+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFinite+difference" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFAmes1977" class="citation book cs1">Ames, W.F. (1977). <i>Numerical Methods for Partial Differential Equations</i>. New York, NY: Academic Press. Section 1.6. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-12-056760-1" title="Special:BookSources/0-12-056760-1"><bdi>0-12-056760-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Numerical+Methods+for+Partial+Differential+Equations&rft.place=New+York%2C+NY&rft.pages=Section-1.6&rft.pub=Academic+Press&rft.date=1977&rft.isbn=0-12-056760-1&rft.aulast=Ames&rft.aufirst=W.F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFinite+difference" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFHildebrand1968" class="citation book cs1"><a href="/wiki/Francis_B._Hildebrand" title="Francis B. Hildebrand">Hildebrand, F.B.</a> (1968). <i>Finite-Difference Equations and Simulations</i>. Englewood Cliffs, NJ: Prentice-Hall. Section 2.2.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Finite-Difference+Equations+and+Simulations&rft.place=Englewood+Cliffs%2C+NJ&rft.pages=Section-2.2&rft.pub=Prentice-Hall&rft.date=1968&rft.aulast=Hildebrand&rft.aufirst=F.B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFinite+difference" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFFlajoletSedgewick1995" class="citation journal cs1">Flajolet, Philippe; <a href="/wiki/Robert_Sedgewick_(computer_scientist)" title="Robert Sedgewick (computer scientist)">Sedgewick, Robert</a> (1995). <a rel="nofollow" class="external text" href="http://algo.inria.fr/flajolet/Publications/FlSe95.pdf">"Mellin transforms and asymptotics: Finite differences and Rice's integrals"</a> <span class="cs1-format">(PDF)</span>. <i>Theoretical Computer Science</i>. <b>144</b> (<span class="nowrap">1–</span>2): <span class="nowrap">101–</span>124. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0304-3975%2894%2900281-M">10.1016/0304-3975(94)00281-M</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Theoretical+Computer+Science&rft.atitle=Mellin+transforms+and+asymptotics%3A+Finite+differences+and+Rice%27s+integrals&rft.volume=144&rft.issue=%3Cspan+class%3D%22nowrap%22%3E1%E2%80%93%3C%2Fspan%3E2&rft.pages=%3Cspan+class%3D%22nowrap%22%3E101-%3C%2Fspan%3E124&rft.date=1995&rft_id=info%3Adoi%2F10.1016%2F0304-3975%2894%2900281-M&rft.aulast=Flajolet&rft.aufirst=Philippe&rft.au=Sedgewick%2C+Robert&rft_id=http%3A%2F%2Falgo.inria.fr%2Fflajolet%2FPublications%2FFlSe95.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFinite+difference" class="Z3988"></span></span> </li> </ol></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li>Richardson, C. H. (1954): <i>An Introduction to the Calculus of Finite Differences</i> (Van Nostrand (1954) <a rel="nofollow" class="external text" href="http://babel.hathitrust.org/cgi/pt?id=mdp.39015000982945;view=1up;seq=5">online copy</a></li> <li>Mickens, R. E. (1991): <i>Difference Equations: Theory and Applications</i> (Chapman and Hall/CRC) <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0442001360" title="Special:BookSources/978-0442001360">978-0442001360</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Finite_difference&action=edit&section=19" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Finite-difference_calculus">"Finite-difference calculus"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Finite-difference+calculus&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DFinite-difference_calculus&rfr_id=info%3Asid%2Fen.wikipedia.org%3AFinite+difference" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://reference.wolfram.com/mathematica/tutorial/NDSolvePDE.html#c:4">Table of useful finite difference formula generated using Mathematica</a></li> <li>D. Gleich (2005), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090419132601/http://www.stanford.edu/~dgleich/publications/finite-calculus.pdf"><i>Finite Calculus: A Tutorial for Solving Nasty Sums</i></a></li> <li><a rel="nofollow" class="external text" href="http://mathformeremortals.wordpress.com/2013/01/12/a-numerical-second-derivative-from-three-points/">Discrete Second Derivative from Unevenly Spaced Points</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Calculus249" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Calculus_topics" title="Template:Calculus topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Calculus_topics" title="Template talk:Calculus topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Calculus_topics" title="Special:EditPage/Template:Calculus topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Calculus249" style="font-size:114%;margin:0 4em"><a href="/wiki/Calculus" title="Calculus">Calculus</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Precalculus" title="Precalculus">Precalculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Binomial_theorem" title="Binomial theorem">Binomial theorem</a></li> <li><a href="/wiki/Concave_function" title="Concave function">Concave function</a></li> <li><a href="/wiki/Continuous_function" title="Continuous function">Continuous function</a></li> <li><a href="/wiki/Factorial" title="Factorial">Factorial</a></li> <li><a class="mw-selflink selflink">Finite difference</a></li> <li><a href="/wiki/Free_variables_and_bound_variables" title="Free variables and bound variables">Free variables and bound variables</a></li> <li><a href="/wiki/Graph_of_a_function" title="Graph of a function">Graph of a function</a></li> <li><a href="/wiki/Linear_function" title="Linear function">Linear function</a></li> <li><a href="/wiki/Radian" title="Radian">Radian</a></li> <li><a href="/wiki/Rolle%27s_theorem" title="Rolle's theorem">Rolle's theorem</a></li> <li><a href="/wiki/Secant_line" title="Secant line">Secant</a></li> <li><a href="/wiki/Slope" title="Slope">Slope</a></li> <li><a href="/wiki/Tangent" title="Tangent">Tangent</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">Limits</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Indeterminate_form" title="Indeterminate form">Indeterminate form</a></li> <li><a href="/wiki/Limit_of_a_function" title="Limit of a function">Limit of a function</a> <ul><li><a href="/wiki/One-sided_limit" title="One-sided limit">One-sided limit</a></li></ul></li> <li><a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">Limit of a sequence</a></li> <li><a href="/wiki/Order_of_approximation" title="Order of approximation">Order of approximation</a></li> <li><a href="/wiki/(%CE%B5,_%CE%B4)-definition_of_limit" class="mw-redirect" title="(ε, δ)-definition of limit">(ε, δ)-definition of limit</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Differential_calculus" title="Differential calculus">Differential calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Derivative" title="Derivative">Derivative</a></li> <li><a href="/wiki/Second_derivative" title="Second derivative">Second derivative</a></li> <li><a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a></li> <li><a href="/wiki/Differential_(mathematics)" title="Differential (mathematics)">Differential</a></li> <li><a href="/wiki/Differential_operator" title="Differential operator">Differential operator</a></li> <li><a href="/wiki/Mean_value_theorem" title="Mean value theorem">Mean value theorem</a></li> <li><a href="/wiki/Notation_for_differentiation" title="Notation for differentiation">Notation</a> <ul><li><a href="/wiki/Leibniz%27s_notation" title="Leibniz's notation">Leibniz's notation</a></li> <li><a href="/wiki/Newton%27s_notation_for_differentiation" class="mw-redirect" title="Newton's notation for differentiation">Newton's notation</a></li></ul></li> <li><a href="/wiki/Differentiation_rules" title="Differentiation rules">Rules of differentiation</a> <ul><li><a href="/wiki/Linearity_of_differentiation" title="Linearity of differentiation">linearity</a></li> <li><a href="/wiki/Power_rule" title="Power rule">Power</a></li> <li><a href="/wiki/Sum_rule_in_differentiation" class="mw-redirect" title="Sum rule in differentiation">Sum</a></li> <li><a href="/wiki/Chain_rule" title="Chain rule">Chain</a></li> <li><a href="/wiki/L%27H%C3%B4pital%27s_rule" title="L'Hôpital's rule">L'Hôpital's</a></li> <li><a href="/wiki/Product_rule" title="Product rule">Product</a> <ul><li><a href="/wiki/General_Leibniz_rule" title="General Leibniz rule">General Leibniz's rule</a></li></ul></li> <li><a href="/wiki/Quotient_rule" title="Quotient rule">Quotient</a></li></ul></li> <li>Other techniques <ul><li><a href="/wiki/Implicit_differentiation" class="mw-redirect" title="Implicit differentiation">Implicit differentiation</a></li> <li><a href="/wiki/Inverse_functions_and_differentiation" class="mw-redirect" title="Inverse functions and differentiation">Inverse functions and differentiation</a></li> <li><a href="/wiki/Logarithmic_derivative" title="Logarithmic derivative">Logarithmic derivative</a></li> <li><a href="/wiki/Related_rates" title="Related rates">Related rates</a></li></ul></li> <li><a href="/wiki/Stationary_point" title="Stationary point">Stationary points</a> <ul><li><a href="/wiki/First_derivative_test" class="mw-redirect" title="First derivative test">First derivative test</a></li> <li><a href="/wiki/Second_derivative_test" class="mw-redirect" title="Second derivative test">Second derivative test</a></li> <li><a href="/wiki/Extreme_value_theorem" title="Extreme value theorem">Extreme value theorem</a></li> <li><a href="/wiki/Maximum_and_minimum" title="Maximum and minimum">Maximum and minimum</a></li></ul></li> <li>Further applications <ul><li><a href="/wiki/Newton%27s_method" title="Newton's method">Newton's method</a></li> <li><a href="/wiki/Taylor%27s_theorem" title="Taylor's theorem">Taylor's theorem</a></li></ul></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Differential equation</a> <ul><li><a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">Ordinary differential equation</a></li> <li><a href="/wiki/Partial_differential_equation" title="Partial differential equation">Partial differential equation</a></li> <li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">Stochastic differential equation</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Integral_calculus" class="mw-redirect" title="Integral calculus">Integral calculus</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Antiderivative" title="Antiderivative">Antiderivative</a></li> <li><a href="/wiki/Arc_length" title="Arc length">Arc length</a></li> <li><a href="/wiki/Riemann_integral" title="Riemann integral">Riemann integral</a></li> <li><a href="/wiki/Integral#Properties" title="Integral">Basic properties</a></li> <li><a href="/wiki/Constant_of_integration" title="Constant of integration">Constant of integration</a></li> <li><a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">Fundamental theorem of calculus</a> <ul><li><a href="/wiki/Leibniz_integral_rule" title="Leibniz integral rule">Differentiating under the integral sign</a></li></ul></li> <li><a href="/wiki/Integration_by_parts" title="Integration by parts">Integration by parts</a></li> <li><a href="/wiki/Integration_by_substitution" title="Integration by substitution">Integration by substitution</a> <ul><li><a href="/wiki/Trigonometric_substitution" title="Trigonometric substitution">trigonometric</a></li> <li><a href="/wiki/Euler_substitution" title="Euler substitution">Euler</a></li> <li><a href="/wiki/Tangent_half-angle_substitution" title="Tangent half-angle substitution">Tangent half-angle substitution</a></li></ul></li> <li><a href="/wiki/Partial_fractions_in_integration" class="mw-redirect" title="Partial fractions in integration">Partial fractions in integration</a> <ul><li><a href="/wiki/Quadratic_integral" title="Quadratic integral">Quadratic integral</a></li></ul></li> <li><a href="/wiki/Trapezoidal_rule" title="Trapezoidal rule">Trapezoidal rule</a></li> <li>Volumes <ul><li><a href="/wiki/Disc_integration" title="Disc integration">Washer method</a></li> <li><a href="/wiki/Shell_integration" title="Shell integration">Shell method</a></li></ul></li> <li><a href="/wiki/Integral_equation" title="Integral equation">Integral equation</a></li> <li><a href="/wiki/Integro-differential_equation" title="Integro-differential equation">Integro-differential equation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Vector_calculus" title="Vector calculus">Vector calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Derivatives <ul><li><a href="/wiki/Curl_(mathematics)" title="Curl (mathematics)">Curl</a></li> <li><a href="/wiki/Directional_derivative" title="Directional derivative">Directional derivative</a></li> <li><a href="/wiki/Divergence" title="Divergence">Divergence</a></li> <li><a href="/wiki/Gradient" title="Gradient">Gradient</a></li> <li><a href="/wiki/Laplace_operator" title="Laplace operator">Laplacian</a></li></ul></li> <li>Basic theorems <ul><li><a href="/wiki/Fundamental_Theorem_of_Line_Integrals" class="mw-redirect" title="Fundamental Theorem of Line Integrals">Line integrals</a></li> <li><a href="/wiki/Green%27s_theorem" title="Green's theorem">Green's</a></li> <li><a href="/wiki/Stokes%27_theorem" title="Stokes' theorem">Stokes'</a></li> <li><a href="/wiki/Divergence_theorem" title="Divergence theorem">Gauss'</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Multivariable_calculus" title="Multivariable calculus">Multivariable calculus</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Divergence_theorem" title="Divergence theorem">Divergence theorem</a></li> <li><a href="/wiki/Geometric_calculus" title="Geometric calculus">Geometric</a></li> <li><a href="/wiki/Hessian_matrix" title="Hessian matrix">Hessian matrix</a></li> <li><a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian matrix and determinant</a></li> <li><a href="/wiki/Lagrange_multiplier" title="Lagrange multiplier">Lagrange multiplier</a></li> <li><a href="/wiki/Line_integral" title="Line integral">Line integral</a></li> <li><a href="/wiki/Matrix_calculus" title="Matrix calculus">Matrix</a></li> <li><a href="/wiki/Multiple_integral" title="Multiple integral">Multiple integral</a></li> <li><a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a></li> <li><a href="/wiki/Surface_integral" title="Surface integral">Surface integral</a></li> <li><a href="/wiki/Volume_integral" title="Volume integral">Volume integral</a></li> <li>Advanced topics <ul><li><a href="/wiki/Differential_form" title="Differential form">Differential forms</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Generalized_Stokes%27_theorem" class="mw-redirect" title="Generalized Stokes' theorem">Generalized Stokes' theorem</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sequences and series</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arithmetico-geometric_sequence" title="Arithmetico-geometric sequence">Arithmetico-geometric sequence</a></li> <li>Types of series <ul><li><a href="/wiki/Alternating_series" title="Alternating series">Alternating</a></li> <li><a href="/wiki/Binomial_series" title="Binomial series">Binomial</a></li> <li><a href="/wiki/Fourier_series" title="Fourier series">Fourier</a></li> <li><a href="/wiki/Geometric_series" title="Geometric series">Geometric</a></li> <li><a href="/wiki/Harmonic_series_(mathematics)" title="Harmonic series (mathematics)">Harmonic</a></li> <li><a href="/wiki/Infinite_series" class="mw-redirect" title="Infinite series">Infinite</a></li> <li><a href="/wiki/Power_series" title="Power series">Power</a> <ul><li><a href="/wiki/Maclaurin_series" class="mw-redirect" title="Maclaurin series">Maclaurin</a></li> <li><a href="/wiki/Taylor_series" title="Taylor series">Taylor</a></li></ul></li> <li><a href="/wiki/Telescoping_series" title="Telescoping series">Telescoping</a></li></ul></li> <li>Tests of convergence <ul><li><a href="/wiki/Abel%27s_test" title="Abel's test">Abel's</a></li> <li><a href="/wiki/Alternating_series_test" title="Alternating series test">Alternating series</a></li> <li><a href="/wiki/Cauchy_condensation_test" title="Cauchy condensation test">Cauchy condensation</a></li> <li><a href="/wiki/Direct_comparison_test" title="Direct comparison test">Direct comparison</a></li> <li><a href="/wiki/Dirichlet%27s_test" title="Dirichlet's test">Dirichlet's</a></li> <li><a href="/wiki/Integral_test_for_convergence" title="Integral test for convergence">Integral</a></li> <li><a href="/wiki/Limit_comparison_test" title="Limit comparison test">Limit comparison</a></li> <li><a href="/wiki/Ratio_test" title="Ratio test">Ratio</a></li> <li><a href="/wiki/Root_test" title="Root test">Root</a></li> <li><a href="/wiki/Term_test" class="mw-redirect" title="Term test">Term</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Special functions<br />and numbers</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bernoulli_number" title="Bernoulli number">Bernoulli numbers</a></li> <li><a href="/wiki/E_(mathematical_constant)" title="E (mathematical constant)">e (mathematical constant)</a></li> <li><a href="/wiki/Exponential_function" title="Exponential function">Exponential function</a></li> <li><a href="/wiki/Natural_logarithm" title="Natural logarithm">Natural logarithm</a></li> <li><a href="/wiki/Stirling%27s_approximation" title="Stirling's approximation">Stirling's approximation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/History_of_calculus" title="History of calculus">History of calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adequality" title="Adequality">Adequality</a></li> <li><a href="/wiki/Brook_Taylor" title="Brook Taylor">Brook Taylor</a></li> <li><a href="/wiki/Colin_Maclaurin" title="Colin Maclaurin">Colin Maclaurin</a></li> <li><a href="/wiki/Generality_of_algebra" title="Generality of algebra">Generality of algebra</a></li> <li><a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Gottfried Wilhelm Leibniz</a></li> <li><a href="/wiki/Infinitesimal" title="Infinitesimal">Infinitesimal</a></li> <li><a href="/wiki/Infinitesimal_calculus" class="mw-redirect" title="Infinitesimal calculus">Infinitesimal calculus</a></li> <li><a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a></li> <li><a href="/wiki/Fluxion" title="Fluxion">Fluxion</a></li> <li><a href="/wiki/Law_of_Continuity" class="mw-redirect" title="Law of Continuity">Law of Continuity</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><i><a href="/wiki/Method_of_Fluxions" title="Method of Fluxions">Method of Fluxions</a></i></li> <li><i><a href="/wiki/The_Method_of_Mechanical_Theorems" title="The Method of Mechanical Theorems">The Method of Mechanical Theorems</a></i></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Lists</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Integrals32" scope="row" class="navbox-group" style="width:1%;text-align:left"><a href="/wiki/Lists_of_integrals" title="Lists of integrals">Integrals</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_integrals_of_rational_functions" title="List of integrals of rational functions">rational functions</a></li> <li><a href="/wiki/List_of_integrals_of_irrational_functions" title="List of integrals of irrational functions">irrational functions</a></li> <li><a href="/wiki/List_of_integrals_of_exponential_functions" title="List of integrals of exponential functions">exponential functions</a></li> <li><a href="/wiki/List_of_integrals_of_logarithmic_functions" title="List of integrals of logarithmic functions">logarithmic functions</a></li> <li><a href="/wiki/List_of_integrals_of_hyperbolic_functions" title="List of integrals of hyperbolic functions">hyperbolic functions</a> <ul><li><a href="/wiki/List_of_integrals_of_inverse_hyperbolic_functions" title="List of integrals of inverse hyperbolic functions">inverse</a></li></ul></li> <li><a href="/wiki/List_of_integrals_of_trigonometric_functions" title="List of integrals of trigonometric functions">trigonometric functions</a> <ul><li><a href="/wiki/List_of_integrals_of_inverse_trigonometric_functions" title="List of integrals of inverse trigonometric functions">inverse</a></li> <li><a href="/wiki/Integral_of_the_secant_function" title="Integral of the secant function">Secant</a></li> <li><a href="/wiki/Integral_of_secant_cubed" title="Integral of secant cubed">Secant cubed</a></li></ul></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_limits" title="List of limits">List of limits</a></li> <li><a href="/wiki/Differentiation_rules" title="Differentiation rules">List of derivatives</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Miscellaneous topics</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Complex calculus <ul><li><a href="/wiki/Contour_integral" class="mw-redirect" title="Contour integral">Contour integral</a></li></ul></li> <li>Differential geometry <ul><li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Curvature" title="Curvature">Curvature</a></li> <li><a href="/wiki/Differential_geometry_of_curves" class="mw-redirect" title="Differential geometry of curves">of curves</a></li> <li><a href="/wiki/Differential_geometry_of_surfaces" title="Differential geometry of surfaces">of surfaces</a></li> <li><a href="/wiki/Tensor" title="Tensor">Tensor</a></li></ul></li> <li><a href="/wiki/Euler%E2%80%93Maclaurin_formula" title="Euler–Maclaurin formula">Euler–Maclaurin formula</a></li> <li><a href="/wiki/Gabriel%27s_horn" title="Gabriel's horn">Gabriel's horn</a></li> <li><a href="/wiki/Integration_Bee" title="Integration Bee">Integration Bee</a></li> <li><a href="/wiki/Proof_that_22/7_exceeds_%CF%80" title="Proof that 22/7 exceeds π">Proof that 22/7 exceeds π</a></li> <li><a href="/wiki/Regiomontanus%27_angle_maximization_problem" title="Regiomontanus' angle maximization problem">Regiomontanus' angle maximization problem</a></li> <li><a href="/wiki/Steinmetz_solid" title="Steinmetz solid">Steinmetz solid</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐ext.eqiad.main‐6f64965956‐vcjht Cached time: 20250320175005 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.132 seconds Real time usage: 1.534 seconds Preprocessor visited node count: 8850/1000000 Post‐expand include size: 114680/2097152 bytes Template argument size: 16877/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 10/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 83424/5000000 bytes Lua time usage: 0.536/10.000 seconds Lua memory usage: 7921631/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1164.129 1 -total 17.11% 199.197 112 Template:Math 13.67% 159.125 8 Template:Cite_book 11.97% 139.318 1 Template:Short_description 10.39% 120.914 1 Template:Calculus_topics 9.81% 114.173 2 Template:Navbox 7.11% 82.782 2 Template:Pagetype 6.60% 76.887 1 Template:More_citations_needed 6.29% 73.216 1 Template:Ambox 5.61% 65.358 123 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:39147:|#|:idhash:canonical and timestamp 20250320175028 and revision id 1281487624. Rendering was triggered because: page-edit --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Finite_difference&oldid=1281487624">https://en.wikipedia.org/w/index.php?title=Finite_difference&oldid=1281487624</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Finite_differences" title="Category:Finite differences">Finite differences</a></li><li><a href="/wiki/Category:Numerical_differential_equations" title="Category:Numerical differential equations">Numerical differential equations</a></li><li><a href="/wiki/Category:Mathematical_analysis" title="Category:Mathematical analysis">Mathematical analysis</a></li><li><a href="/wiki/Category:Factorial_and_binomial_topics" title="Category:Factorial and binomial topics">Factorial and binomial topics</a></li><li><a href="/wiki/Category:Linear_operators_in_calculus" title="Category:Linear operators in calculus">Linear operators in calculus</a></li><li><a href="/wiki/Category:Numerical_analysis" title="Category:Numerical analysis">Numerical analysis</a></li><li><a href="/wiki/Category:Non-Newtonian_calculus" title="Category:Non-Newtonian calculus">Non-Newtonian calculus</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Use_American_English_from_March_2019" title="Category:Use American English from March 2019">Use American English from March 2019</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_written_in_American_English" title="Category:All Wikipedia articles written in American English">All Wikipedia articles written in American English</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Use_mdy_dates_from_September_2011" title="Category:Use mdy dates from September 2011">Use mdy dates from September 2011</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_December_2017" title="Category:Articles with unsourced statements from December 2017">Articles with unsourced statements from December 2017</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_July_2018" title="Category:Articles needing additional references from July 2018">Articles needing additional references from July 2018</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 20 March 2025, at 17:50<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Finite_difference&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" lang="en" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Finite difference</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>23 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="mw-portlet mw-portlet-dock-bottom emptyPortlet" id="p-dock-bottom"> <ul> </ul> </div> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.eqiad.main-557fb88f9f-q4rgb","wgBackendResponseTime":296,"wgPageParseReport":{"limitreport":{"cputime":"1.132","walltime":"1.534","ppvisitednodes":{"value":8850,"limit":1000000},"postexpandincludesize":{"value":114680,"limit":2097152},"templateargumentsize":{"value":16877,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":10,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":83424,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1164.129 1 -total"," 17.11% 199.197 112 Template:Math"," 13.67% 159.125 8 Template:Cite_book"," 11.97% 139.318 1 Template:Short_description"," 10.39% 120.914 1 Template:Calculus_topics"," 9.81% 114.173 2 Template:Navbox"," 7.11% 82.782 2 Template:Pagetype"," 6.60% 76.887 1 Template:More_citations_needed"," 6.29% 73.216 1 Template:Ambox"," 5.61% 65.358 123 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.536","limit":"10.000"},"limitreport-memusage":{"value":7921631,"limit":52428800}},"cachereport":{"origin":"mw-api-ext.eqiad.main-6f64965956-vcjht","timestamp":"20250320175005","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Finite difference","url":"https:\/\/en.wikipedia.org\/wiki\/Finite_difference","sameAs":"http:\/\/www.wikidata.org\/entity\/Q2068418","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q2068418","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-02-14T11:39:12Z","dateModified":"2025-03-20T17:50:04Z","headline":"discrete analog of a derivative"}</script> </body> </html>