CINXE.COM

Search results for: external force

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: external force</title> <meta name="description" content="Search results for: external force"> <meta name="keywords" content="external force"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="external force" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="external force"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4288</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: external force</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4288</span> Introduction of the Fluid-Structure Coupling into the Force Analysis Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oc%C3%A9ane%20Grosset">Océane Grosset</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20P%C3%A9zerat"> Charles Pézerat</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Hugh%20Thomas"> Jean-Hugh Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9ric%20Ablitzer"> Frédéric Ablitzer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a method to take into account the fluid-structure coupling into an inverse method, the Force Analysis Technique (FAT). The FAT method, also called RIFF method (Filtered Windowed Inverse Resolution), allows to identify the force distribution from local vibration field. In order to only identify the external force applied on a structure, it is necessary to quantify the fluid-structure coupling, especially in naval application, where the fluid is heavy. This method can be decomposed in two parts, the first one consists in identifying the fluid-structure coupling and the second one to introduced it in the FAT method to reconstruct the external force. Results of simulations on a plate coupled with a cavity filled with water are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title="aeroacoustics">aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20coupling" title=" fluid-structure coupling"> fluid-structure coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20methods" title=" inverse methods"> inverse methods</a>, <a href="https://publications.waset.org/abstracts/search?q=naval" title=" naval"> naval</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a> </p> <a href="https://publications.waset.org/abstracts/58380/introduction-of-the-fluid-structure-coupling-into-the-force-analysis-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4287</span> Estimation of the External Force for a Co-Manipulation Task Using the Drive Chain Robot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Devie">Sylvain Devie</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre-Philippe%20Robet"> Pierre-Philippe Robet</a>, <a href="https://publications.waset.org/abstracts/search?q=Yannick%20Aoustin"> Yannick Aoustin</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxime%20Gautier"> Maxime Gautier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to show that the observation of the external effort and the sensor-less control of a system is limited by the mechanical system. First, the model of a one-joint robot with a prismatic joint is presented. Based on this model, two different procedures were performed in order to identify the mechanical parameters of the system and observe the external effort applied on it. Experiments have proven that the accuracy of the force observer, based on the DC motor current, is limited by the mechanics of the robot. The sensor-less control will be limited by the accuracy in estimation of the mechanical parameters and by the maximum static friction force, that is the minimum force which can be observed in this case. The consequence of this limitation is that industrial robots without specific design are not well adapted to perform sensor-less precision tasks. Finally, an efficient control law is presented for high effort applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control" title="control">control</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a>, <a href="https://publications.waset.org/abstracts/search?q=robot" title=" robot"> robot</a>, <a href="https://publications.waset.org/abstracts/search?q=co-manipulation" title=" co-manipulation"> co-manipulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor-less" title=" sensor-less"> sensor-less</a> </p> <a href="https://publications.waset.org/abstracts/95452/estimation-of-the-external-force-for-a-co-manipulation-task-using-the-drive-chain-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4286</span> On the Effects of External Cross-Flow Excitation Forces on the Vortex-Induced-Vibrations of an Oscillating Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abouzar%20Kaboudian">Abouzar Kaboudian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Chaithanya%20Mysa"> Ravi Chaithanya Mysa</a>, <a href="https://publications.waset.org/abstracts/search?q=Boo%20Cheong%20Khoo"> Boo Cheong Khoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Kumar%20Jaiman"> Rajeev Kumar Jaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vortex induced vibrations can significantly affect the effectiveness of structures in aerospace as well as offshore marine industries. The oscillatory nature of the forces resulting from the vortex shedding around bluff bodies can result in undesirable effects such as increased loading, stresses, deflections, vibrations and noise in the structures, and also reduced fatigue life of the structures. To date, most studies concentrate on either the free oscillations or the prescribed motion of the bluff bodies. However, the structures in operation are usually subject to the external oscillatory forces (e.g. due to the platform motions in offshore industries). In this work, we present the effects of the external cross-flow forces on the vortex-induced vibrations of an oscillating cylinder. The effects of the amplitude, as well as the frequency of the external force on the fluid-forces on the oscillating cylinder are carefully studied and presented. Moreover, we present the transition of the response to be dominated by the vortex-induced-vibrations to the range where it is mostly dictated by the external oscillatory forces. Furthermore, we will discuss how the external forces can affect the flow structures around a cylinder. All results are compared against free oscillations of the cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20cylinder" title="circular cylinder">circular cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20force" title=" external force"> external force</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex-shedding" title=" vortex-shedding"> vortex-shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=VIV" title=" VIV"> VIV</a> </p> <a href="https://publications.waset.org/abstracts/25468/on-the-effects-of-external-cross-flow-excitation-forces-on-the-vortex-induced-vibrations-of-an-oscillating-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4285</span> On the Effects of the Frequency and Amplitude of Sinusoidal External Cross-Flow Excitation Forces on the Vortex-Induced-Vibrations of an Oscillating Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abouzar%20Kaboudian">Abouzar Kaboudian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Chaithanya%20Mysa"> Ravi Chaithanya Mysa</a>, <a href="https://publications.waset.org/abstracts/search?q=Boo%20Cheong%20Khoo"> Boo Cheong Khoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Kumar%20Jaiman"> Rajeev Kumar Jaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vortex induced vibrations can significantly affect the effectiveness of structures in aerospace as well as offshore marine industries. The oscillatory nature of the forces resulting from the vortex shedding around bluff bodies can result in undesirable effects such as increased loading, stresses, deflections, vibrations and noise in the structures, and also reduced fatigue life of the structures. To date, most studies concentrate on either the free oscillations or the prescribed motion of the bluff bodies. However, the structures in operation are usually subject to the external oscillatory forces (e.g. due to the platform motions in offshore industries). Periodic forces can be considered as a combinations of sinusoids. In this work, we present the effects of sinusoidal external cross-flow forces on the vortex-induced vibrations of an oscillating cylinder. The effects of the amplitude, as well as the frequency of these sinusoidal external force on the fluid-forces on the oscillating cylinder are carefully studied and presented. Moreover, we present the transition of the response to be dominated by the vortex-induced-vibrations to the range where it is mostly dictated by the external oscillatory forces. Furthermore, we will discuss how the external forces can affect the flow structures around a cylinder. All results are compared against free oscillations of the cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20cylinder" title="circular cylinder">circular cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20force" title=" external force"> external force</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex-shedding" title=" vortex-shedding"> vortex-shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=VIV" title=" VIV"> VIV</a> </p> <a href="https://publications.waset.org/abstracts/25480/on-the-effects-of-the-frequency-and-amplitude-of-sinusoidal-external-cross-flow-excitation-forces-on-the-vortex-induced-vibrations-of-an-oscillating-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4284</span> Research on Robot Adaptive Polishing Control Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi%20Ming%20Zhang">Yi Ming Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhan%20Xi%20Wang"> Zhan Xi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hang%20Chen"> Hang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Gang%20Wang"> Gang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manual polishing has problems such as high labor intensity, low production efficiency and difficulty in guaranteeing the consistency of polishing quality. It is more and more necessary to replace manual polishing with robot polishing. Polishing force directly affects the quality of polishing, so accurate tracking and control of polishing force is one of the most important conditions for improving the accuracy of robot polishing. The traditional force control strategy is difficult to adapt to the strong coupling of force control and position control during the robot polishing process. Therefore, based on the analysis of force-based impedance control and position-based impedance control, this paper proposed a new type of adaptive controller. Based on force feedback control of active compliance control, the controller can adaptively estimate the stiffness and position of the external environment and eliminate the steady-state force error produced by traditional impedance control. The simulation results of the model shows that the adaptive controller has good adaptability to changing environmental positions and environmental stiffness, and can accurately track and control polishing force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robot%20polishing" title="robot polishing">robot polishing</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20feedback" title=" force feedback"> force feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20control" title=" impedance control"> impedance control</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title=" adaptive control"> adaptive control</a> </p> <a href="https://publications.waset.org/abstracts/133040/research-on-robot-adaptive-polishing-control-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4283</span> Identification of Force Vector on an Elastic Solid Using an Embeded PVDF Senor Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Youssef">Andrew Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20%20Matthews"> David Matthews</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Pan"> Jie Pan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Identifying the magnitude and direction of a force on an elastic solid is highly desirable, as this allows for investigation and continual monitoring of the dynamic loading. This was traditionally conducted by connecting the solid to the supporting structure by multi-axial force transducer, providing that the transducer will not change the mounting conditions. Polyvinylidene fluoride (PVDF) film is a versatile force transducer that can be easily embedded in structures. Here a PVDF sensor array is embedded inside a simple structure in an effort to determine the force vector applied to the structure is an inverse problem. In this paper, forces of different magnitudes and directions where applied to the structure with an impact hammer, and the output of the PVDF was captured and processed to gain an estimate of the forces applied by the hammer. The outcome extends the scope of application of PVDF sensors for measuring the external or contact force vectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embedded%20sensor" title="embedded sensor">embedded sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=PVDF" title=" PVDF"> PVDF</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a> </p> <a href="https://publications.waset.org/abstracts/77890/identification-of-force-vector-on-an-elastic-solid-using-an-embeded-pvdf-senor-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4282</span> Determination of Anchor Lengths by Retaining Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belabed%20Lazhar">Belabed Lazhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dimensioning of the anchored retaining screens passes always by the analysis of their stability. The calculation of anchoring lengths is practically carried out according to the mechanical model suggested by Kranz which is often criticized. The safety is evaluated through the comparison of interior force and external force. The force of anchoring over the length cut behind the failure solid is neglected. The failure surface cuts anchoring in the medium length of sealing. In this article, one proposes a new mechanical model which overcomes these disadvantages (simplifications) and gives interesting results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retaining%20walls" title="retaining walls">retaining walls</a>, <a href="https://publications.waset.org/abstracts/search?q=anchoring" title=" anchoring"> anchoring</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20modeling" title=" mechanical modeling"> mechanical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a> </p> <a href="https://publications.waset.org/abstracts/23984/determination-of-anchor-lengths-by-retaining-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4281</span> Accurate Cortical Reconstruction in Narrow Sulci with Zero-Non-Zero Distance (ZNZD) Vector Field </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somojit%20Saha">Somojit Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20K.%20Chatterjee"> Rohit K. Chatterjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarit%20K.%20Das"> Sarit K. Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Avijit%20Kar"> Avijit Kar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new force field is designed for propagation of the parametric contour into deep narrow cortical fold in the application of knowledge based reconstruction of cerebral cortex from MR image of brain. Designing of this force field is highly inspired by the Generalized Gradient Vector Flow (GGVF) model and markedly differs in manipulation of image information in order to determine the direction of propagation of the contour. While GGVF uses edge map as its main driving force, the newly designed force field uses the map of distance between zero valued pixels and their nearest non-zero valued pixel as its main driving force. Hence, it is called Zero-Non-Zero Distance (ZNZD) force field. The objective of this force field is forceful propagation of the contour beyond spurious convergence due to partial volume effect (PVE) in to narrow sulcal fold. Being function of the corresponding non-zero pixel value, the force field has got an inherent property to determine spuriousness of the edge automatically. It is effectively applied along with some morphological processing in the application of cortical reconstruction to breach the hindrance of PVE in narrow sulci where conventional GGVF fails. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deformable%20model" title="deformable model">deformable model</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20force%20field" title=" external force field"> external force field</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20volume%20effect" title=" partial volume effect"> partial volume effect</a>, <a href="https://publications.waset.org/abstracts/search?q=cortical%20reconstruction" title=" cortical reconstruction"> cortical reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=MR%20image%20of%20brain" title=" MR image of brain"> MR image of brain</a> </p> <a href="https://publications.waset.org/abstracts/38396/accurate-cortical-reconstruction-in-narrow-sulci-with-zero-non-zero-distance-znzd-vector-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4280</span> Numerical Simulation of Plasma Actuator Using OpenFOAM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Yazdani">H. Yazdani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ghorbanian"> K. Ghorbanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with modeling and simulation of the plasma actuator with OpenFOAM. Plasma actuator is one of the newest devices in flow control techniques which can delay separation by inducing external momentum to the boundary layer of the flow. The effects of the plasma actuators on the external flow are incorporated into Navier-Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. In order to compute this body force vector, the model solves two equations: One for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The simulation result is compared to the experimental and typical values which confirms the validity of the modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20flow%20control" title="active flow control">active flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=flow-field" title=" flow-field"> flow-field</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenFOAM" title=" OpenFOAM"> OpenFOAM</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20actuator" title=" plasma actuator"> plasma actuator</a> </p> <a href="https://publications.waset.org/abstracts/55466/numerical-simulation-of-plasma-actuator-using-openfoam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4279</span> Hybrid Bimodal Magnetic Force Microscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fern%C3%A1ndez-Brito%20David">Fernández-Brito David</a>, <a href="https://publications.waset.org/abstracts/search?q=Lopez-Medina%20Javier%20Alonso"> Lopez-Medina Javier Alonso</a>, <a href="https://publications.waset.org/abstracts/search?q=Murillo-Bracamontes%20Eduardo%20Antonio"> Murillo-Bracamontes Eduardo Antonio</a>, <a href="https://publications.waset.org/abstracts/search?q=Palomino-Ovando%20Martha%20Alicia"> Palomino-Ovando Martha Alicia</a>, <a href="https://publications.waset.org/abstracts/search?q=Gervacio-Arciniega%20Jos%C3%A9%20Juan"> Gervacio-Arciniega José Juan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic Force Microscopy (MFM) is an Atomic Force Microscopy (AFM) technique that characterizes, at a nanometric scale, the magnetic properties of ferromagnetic materials. Conventional MFM works by scanning in two different AFM modes. The first one is tapping mode, in which the cantilever has short-range force interactions with the sample, with the purpose to obtain the topography. Then, the lift AFM mode starts, raising the cantilever to maintain a fixed distance between the tip and the surface of the sample, only interacting with the magnetic field forces of the sample, which are long-ranged. In recent years, there have been attempts to improve the MFM technique. Bimodal MFM was first theoretically developed and later experimentally proven. In bimodal MFM, the AFM internal piezoelectric is used to cause the cantilever oscillations in two resonance modes simultaneously, the first mode detects the topography, while the second is more sensitive to the magnetic forces between the tip and the sample. However, it has been proven that the cantilever vibrations induced by the internal AFM piezoelectric ceramic are not optimal, affecting the bimodal MFM characterizations. Moreover, the Secondary Resonance Magnetic Force Microscopy (SR-MFM) was developed. In this technique, a coil located below the sample generates an external magnetic field. This alternating magnetic field excites the cantilever at a second frequency to apply the Bimodal MFM mode. Nonetheless, for ferromagnetic materials with a low coercive field, the external field used in SR-MFM technique can modify the magnetic domains of the sample. In this work, a Hybrid Bimodal MFM (HB-MFM) technique is proposed. In HB-MFM, the bimodal MFM is used, but the first resonance frequency of the cantilever is induced by the magnetic field of the ferromagnetic sample due to its vibrations caused by a piezoelectric element placed under the sample. The advantages of this new technique are demonstrated through the preliminary results obtained by HB-MFM on a hard disk sample. Additionally, traditional two pass MFM and HB-MFM measurements were compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20force%20microscopy" title="magnetic force microscopy">magnetic force microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscopy" title=" atomic force microscopy"> atomic force microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetism" title=" magnetism"> magnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=bimodal%20MFM" title=" bimodal MFM"> bimodal MFM</a> </p> <a href="https://publications.waset.org/abstracts/172742/hybrid-bimodal-magnetic-force-microscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4278</span> Controlled Growth of Charge Transfer Complex Nanowire by Physical Vapor Deposition Method Using Dielectrophoretic Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabaya%20Basori">Rabaya Basori</a>, <a href="https://publications.waset.org/abstracts/search?q=Arup%20K.%20Raychaudhuri"> Arup K. Raychaudhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, a variety of semiconductor nanowires (NWs) has been synthesized and used as basic building blocks for the development of electronic and optoelectronic nanodevices. Dielectrophoresis (DEP) has been widely investigated as a scalable technique to trap and manipulate polarizable objects. This includes biological cells, nanoparticles, DNA molecules, organic or inorganic NWs and proteins using electric field gradients. In this article, we have used DEP force to localize nanowire growth by physical vapor deposition (PVD) method as well as control of NW diameter on field assisted growth of the NWs of CuTCNQ (Cu-tetracyanoquinodimethane); a metal-organic charge transfer complex material which is well known of resistive switching. We report a versatile analysis platform, based on a set of nanogap electrodes, for the controlled growth of nanowire. Non-uniform electric field and dielectrophoretic force is created in between two metal electrodes, patterned by electron beam lithography process. Suspended CuTCNQ nanowires have been grown laterally between two electrodes in the vicinity of electric field and dielectric force by applying external bias. Growth and diameter dependence of the nanowires on external bias has been investigated in the framework of these two forces by COMSOL Multiphysics simulation. This report will help successful in-situ nanodevice fabrication with constrained number of NW and diameter without any post treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanowire" title="nanowire">nanowire</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectrophoretic%20force" title=" dielectrophoretic force"> dielectrophoretic force</a>, <a href="https://publications.waset.org/abstracts/search?q=confined%20growth" title=" confined growth"> confined growth</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20diameter" title=" controlled diameter"> controlled diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=comsol%20multiphysics%20simulation" title=" comsol multiphysics simulation"> comsol multiphysics simulation</a> </p> <a href="https://publications.waset.org/abstracts/70925/controlled-growth-of-charge-transfer-complex-nanowire-by-physical-vapor-deposition-method-using-dielectrophoretic-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4277</span> Design of a Satellite Solar Panel Deployment Mechanism Using the Brushed DC Motor as Rotational Speed Damper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Ramezani%20Ali-Akbari">Hossein Ramezani Ali-Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an innovative method to control the rotational speed of a satellite solar panel during its deployment phase. A brushed DC motor has been utilized in the passive spring driven deployment mechanism to reduce the deployment speed. In order to use the DC motor as a damper, its connector terminals have been connected with an external resistance in a closed circuit. It means that, in this approach, there is no external power supply in the circuit. The working principle of this method is based on the back electromotive force (or back EMF) of the DC motor when an external torque (here the torque produced by the torsional springs) is coupled to the DC motor&rsquo;s shaft. In fact, the DC motor converts to an electric generator and the current flows into the circuit and then produces the back EMF. Based on Lenz&rsquo;s law, the generated current produced a torque which acts opposite to the applied external torque, and as a result, the deployment speed of the solar panel decreases. The main advantage of this method is to set an intended damping coefficient to the system via changing the external resistance. To produce the sufficient current, a gearbox has been assembled to the DC motor which magnifies the number of turns experienced by the DC motor. The coupled electro-mechanical equations of the system have been derived and solved, then, the obtained results have been presented. A full-scale prototype of the deployment mechanism has been built and tested. The potential application of brushed DC motors as a rotational speed damper has been successfully demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=back%20electromotive%20force" title="back electromotive force">back electromotive force</a>, <a href="https://publications.waset.org/abstracts/search?q=brushed%20DC%20motor" title=" brushed DC motor"> brushed DC motor</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20speed%20damper" title=" rotational speed damper"> rotational speed damper</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20solar%20panel%20deployment%20mechanism" title=" satellite solar panel deployment mechanism"> satellite solar panel deployment mechanism</a> </p> <a href="https://publications.waset.org/abstracts/84377/design-of-a-satellite-solar-panel-deployment-mechanism-using-the-brushed-dc-motor-as-rotational-speed-damper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4276</span> Force Sensor for Robotic Graspers in Minimally Invasive Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naghmeh%20M.%20Bandari">Naghmeh M. Bandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Dargahi"> Javad Dargahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muthukumaran%20Packirisamy"> Muthukumaran Packirisamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Robot-assisted minimally invasive surgery (RMIS) has been widely performed around the world during the last two decades. RMIS demonstrates significant advantages over conventional surgery, e.g., improving the accuracy and dexterity of a surgeon, providing 3D vision, motion scaling, hand-eye coordination, decreasing tremor, and reducing x-ray exposure for surgeons. Despite benefits, surgeons cannot touch the surgical site and perceive tactile information. This happens due to the remote control of robots. The literature survey identified the lack of force feedback as the riskiest limitation in the existing technology. Without the perception of tool-tissue contact force, the surgeon might apply an excessive force causing tissue laceration or insufficient force causing tissue slippage. The primary use of force sensors has been to measure the tool-tissue interaction force in real-time in-situ. Design of a tactile sensor is subjected to a set of design requirements, e.g., biocompatibility, electrical-passivity, MRI-compatibility, miniaturization, ability to measure static and dynamic force. In this study, a planar optical fiber-based sensor was proposed to mount at the surgical grasper. It was developed based on the light intensity modulation principle. The deflectable part of the sensor was a beam modeled as a cantilever Euler-Bernoulli beam on rigid substrates. A semi-cylindrical indenter was attached to the bottom surface the beam at the mid-span. An optical fiber was secured at both ends on the same rigid substrates. The indenter was in contact with the fiber. External force on the sensor caused deflection in the beam and optical fiber simultaneously. The micro-bending of the optical fiber would consequently result in light power loss. The sensor was simulated and studied using finite element methods. A laser light beam with 800nm wavelength and 5mW power was used as the input to the optical fiber. The output power was measured using a photodetector. The voltage from photodetector was calibrated to the external force for a chirp input (0.1-5Hz). The range, resolution, and hysteresis of the sensor were studied under monotonic and harmonic external forces of 0-2.0N with 0 and 5Hz, respectively. The results confirmed the validity of proposed sensing principle. Also, the sensor demonstrated an acceptable linearity (R2 > 0.9). A minimum external force was observed below which no power loss was detectable. It is postulated that this phenomenon is attributed to the critical angle of the optical fiber to observe total internal reflection. The experimental results were of negligible hysteresis (R2 > 0.9) and in fair agreement with the simulations. In conclusion, the suggested planar sensor is assessed to be a cost-effective solution, feasible, and easy to use the sensor for being miniaturized and integrated at the tip of robotic graspers. Geometrical and optical factors affecting the minimum sensible force and the working range of the sensor should be studied and optimized. This design is intrinsically scalable and meets all the design requirements. Therefore, it has a significant potential of industrialization and mass production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=force%20sensor" title="force sensor">force sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=minimally%20invasive%20surgery" title=" minimally invasive surgery"> minimally invasive surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20sensor" title=" optical sensor"> optical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20surgery" title=" robotic surgery"> robotic surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=tactile%20sensor" title=" tactile sensor"> tactile sensor</a> </p> <a href="https://publications.waset.org/abstracts/83179/force-sensor-for-robotic-graspers-in-minimally-invasive-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4275</span> Key Technologies and Evolution Strategies for Computing Force Bearer Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhaojunfeng">Zhaojunfeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Driven by the national policy of "East Data and Western Calculation", the computing first network will attract a new wave of development. As the foundation of the development of the computing first network, the computing force bearer network has become the key direction of technology research and development in the industry. This article will analyze typical computing force application scenarios and bearing requirements and sort out the SLA indicators of computing force applications. On this basis, this article carries out research and discussion on the key technologies of computing force bearer network in a slice packet network, and finally, gives evolution policy for SPN computing force bearer network to support the development of SPN computing force bearer network technology and network deployment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=component-computing%20force%20bearing" title="component-computing force bearing">component-computing force bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20requirements%20of%20computing%20force%20application" title=" bearing requirements of computing force application"> bearing requirements of computing force application</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-SLA%20indicators%20for%20computing%20force%20applications" title=" dual-SLA indicators for computing force applications"> dual-SLA indicators for computing force applications</a>, <a href="https://publications.waset.org/abstracts/search?q=SRv6" title=" SRv6"> SRv6</a>, <a href="https://publications.waset.org/abstracts/search?q=evolution%20strategies" title=" evolution strategies"> evolution strategies</a> </p> <a href="https://publications.waset.org/abstracts/155006/key-technologies-and-evolution-strategies-for-computing-force-bearer-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4274</span> A Deep Explanation for the Formation of Force as a Foundational Law of Physics by Incorporating Unknown Degrees of Freedom into Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Farshad">Mohsen Farshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Information and force definition has been intertwined with the concept of entropy for many years. The displacement information of degrees of freedom with Brownian motions at a given temperature in space emerges as an entropic force between species. Here, we use this concept of entropy to understand the underlying physics behind the formation of attractive and repulsive forces by imagining that space is filled with free Brownian degrees of freedom. We incorporate the radius of bodies and the distance between them into entropic force relation systematically. Using this modified gravitational entropic force, we derive the attractive entropic force between bodies without considering their spin. We further hypothesize a possible mechanism for the formation of the repulsive force between two bodies. We visually elaborate that the repulsive entropic force will be manifested through the rotation of degrees of freedom around the spinning particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy" title="entropy">entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=information" title=" information"> information</a>, <a href="https://publications.waset.org/abstracts/search?q=force" title=" force"> force</a>, <a href="https://publications.waset.org/abstracts/search?q=Brownian%20Motions" title=" Brownian Motions"> Brownian Motions</a> </p> <a href="https://publications.waset.org/abstracts/150175/a-deep-explanation-for-the-formation-of-force-as-a-foundational-law-of-physics-by-incorporating-unknown-degrees-of-freedom-into-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4273</span> An Optimal Control Model to Determine Body Forces of Stokes Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuanhao%20Gao">Yuanhao Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Pin%20Lin"> Pin Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kees%20Weijer"> Kees Weijer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we will determine the external body force distribution with analysis of stokes fluid motion using mathematical modelling and numerical approaching. The body force distribution is regarded as the unknown variable and could be determined by the idea of optimal control theory. The Stokes flow motion and its velocity are generated by given forces in a unit square domain. A regularized objective functional is built to match the numerical result of flow velocity with the generated velocity data. So that the force distribution could be determined by minimizing the value of objective functional, which is also the difference between the numerical and experimental velocity. Then after utilizing the Lagrange multiplier method, some partial differential equations are formulated consisting the optimal control system to solve. Finite element method and conjugate gradient method are used to discretize equations and deduce the iterative expression of target body force to compute the velocity numerically and body force distribution. Programming environment FreeFEM++ supports the implementation of this model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20control%20model" title="optimal control model">optimal control model</a>, <a href="https://publications.waset.org/abstracts/search?q=Stokes%20equation" title=" Stokes equation"> Stokes equation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugate%20gradient%20method" title=" conjugate gradient method"> conjugate gradient method</a> </p> <a href="https://publications.waset.org/abstracts/54716/an-optimal-control-model-to-determine-body-forces-of-stokes-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4272</span> Mathematical Properties of the Resonance of the Inner Waves in Rotating Stratified Three-Dimensional Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Giniatoulline">A. Giniatoulline</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider the internal oscillations of the ocean which are caused by the gravity force and the Coriolis force, for different models with changeable density, heat transfer, and salinity. Traditionally, the mathematical description of the resonance effect is related to the growing amplitude as a result of input vibrations. We offer a different approach: the study of the relation between the spectrum of the internal oscillations and the properties of the limiting amplitude of the solution for the harmonic input vibrations of the external forces. Using the results of the spectral theory of self-adjoint operators in Hilbert functional spaces, we prove that there exists an explicit relation between the localization of the frequency of the external input vibrations with respect to the essential spectrum of proper inner oscillations and the non-uniqueness of the limiting amplitude. The results may find their application in various problems concerning mathematical modeling of turbulent flows in the ocean. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20spectrum" title=" essential spectrum"> essential spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=limiting%20amplitude" title=" limiting amplitude"> limiting amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20fluid" title=" rotating fluid"> rotating fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20theory" title=" spectral theory"> spectral theory</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20fluid" title=" stratified fluid"> stratified fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20uniqueness%20of%20solutions%20of%20PDE%20equations" title=" the uniqueness of solutions of PDE equations"> the uniqueness of solutions of PDE equations</a> </p> <a href="https://publications.waset.org/abstracts/90400/mathematical-properties-of-the-resonance-of-the-inner-waves-in-rotating-stratified-three-dimensional-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4271</span> An Investigation of How Pre-Service Physics Teachers Perceived the Results of Buoyancy Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ersin%20Bozkurt">Ersin Bozkurt</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9E%C3%BCkran%20Erdo%C4%9Fan"> Şükran Erdoğan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the study is to explore how pre-service teachers perceive buoyancy force effecting an object in a liquid and identify their misconceptions. Pre-service teachers were interviewed to reveal their understandings of an object's floating, suspending and sinking in a liquid. In addition, they were asked about how an object -given its features- moved when it is provided with an external force and when it is released. The so-called circumstances were questioned in a different planet contexts. For this aim, focused group interview method was used. Six focused groups were formed and video recorded during the interval. Each focused group comprised of five pre-service teachers. It was found out pre-service teachers have common misunderstanding and misconceptions. In order to eliminate this conceptual misunderstandings, conceptual change texts were developed and further suggestions were made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20simulations" title="computer simulations">computer simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=conceptual%20change%20texts" title=" conceptual change texts"> conceptual change texts</a>, <a href="https://publications.waset.org/abstracts/search?q=physics%20education" title=" physics education"> physics education</a>, <a href="https://publications.waset.org/abstracts/search?q=students%E2%80%99%20misconceptions%20in%20physics" title=" students’ misconceptions in physics"> students’ misconceptions in physics</a> </p> <a href="https://publications.waset.org/abstracts/31713/an-investigation-of-how-pre-service-physics-teachers-perceived-the-results-of-buoyancy-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4270</span> Governing External Innovation: Lessons from Apple’s iOS and Google’s Android</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Mohagheghzadeh">Amir Mohagheghzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Solaleh%20Salimi"> Solaleh Salimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Tafazzoli"> Ramin Tafazzoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ecosystem and networks plays significant roles in product innovation. External innovation within developing firms can bring a wide range of advantages for a firm in a competitive market. Using external innovation can be mentioned as one of the most significant concepts regarding the firm’s transition phase into openness. Derivative concepts such as open or shared platform and app stores are the main result of this thinking within the firms. However, adopting this concept and leverage the defined advantages of external innovation should be aligned with other strategies and policies of a firm. Consequently, one of the key aspects that have been raised while using external innovation is how to govern external innovation within a developing firm. This paper describes the frameworks that two pioneer companies in mobile operating system development have used in order to control and govern external innovation through platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=external%20innovation" title="external innovation">external innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20innovation" title=" open innovation"> open innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=governance" title=" governance"> governance</a>, <a href="https://publications.waset.org/abstracts/search?q=governance%20mechanisms" title=" governance mechanisms"> governance mechanisms</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=Apple" title=" Apple"> Apple</a>, <a href="https://publications.waset.org/abstracts/search?q=iOS" title=" iOS"> iOS</a>, <a href="https://publications.waset.org/abstracts/search?q=Google" title=" Google"> Google</a>, <a href="https://publications.waset.org/abstracts/search?q=Android" title=" Android"> Android</a> </p> <a href="https://publications.waset.org/abstracts/15277/governing-external-innovation-lessons-from-apples-ios-and-googles-android" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4269</span> Advances in Axonal Biomechanics and Mechanobiology: A Nanotechnology-Based Approach to the Study of Mechanotransduction of Axonal Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Falconieri">Alessandro Falconieri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20De%20Vincentiis"> Sara De Vincentiis</a>, <a href="https://publications.waset.org/abstracts/search?q=Vittoria%20Raffa"> Vittoria Raffa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mechanical force regulates axonal growth, elongation and maturation processes. This force is opening new frontiers in the field, contributing to a general understanding of the mechanisms of axon growth that, in the past, was thought to be governed exclusively by the growth cone and its ability to influence axonal growth in response to chemical signals. A method recently developed in our laboratory allows, through the labeling of neurons with magnetic nanoparticles (MNPs) and the use of permanent magnets, to apply extremely low mechanical forces, similar to those generated endogenously by the growth cone or by the increase of body mass during the organism growth. We found that these extremely low forces strongly enhance the spontaneous axonal elongation rate as well as neuronal sprouting. Data obtained don’t exclude that local phenomena, such as local transport and local translation, may be involved. These new advances could shed new light on what happens when the cell is subjected to external mechanical forces, opening new interesting scenarios in the field of mechanobiology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axon" title="axon">axon</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20mechanical%20forces" title=" external mechanical forces"> external mechanical forces</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanotransduction" title=" mechanotransduction"> mechanotransduction</a> </p> <a href="https://publications.waset.org/abstracts/112124/advances-in-axonal-biomechanics-and-mechanobiology-a-nanotechnology-based-approach-to-the-study-of-mechanotransduction-of-axonal-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4268</span> Usage of Military Spending, Debt Servicing and Growth for Dealing with Emergency Plan of Indian External Debt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahbi%20Farhani">Sahbi Farhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the relationship between external debt and military spending in case of India over the period of 1970–2012. In doing so, we have applied the structural break unit root tests to examine stationarity properties of the variables. The Auto-Regressive Distributed Lag (ARDL) bounds testing approach is used to test whether cointegration exists in presence of structural breaks stemming in the series. Our results indicate the cointegration among external debt, military spending, debt servicing, and economic growth. Moreover, military spending and debt servicing add in external debt. Economic growth helps in lowering external debt. The Vector Error Correction Model (VECM) analysis and Granger causality test reveal that military spending and economic growth cause external debt. The feedback effect also exists between external debt and debt servicing in case of India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=external%20debt" title="external debt">external debt</a>, <a href="https://publications.waset.org/abstracts/search?q=military%20spending" title=" military spending"> military spending</a>, <a href="https://publications.waset.org/abstracts/search?q=ARDL%20approach" title=" ARDL approach"> ARDL approach</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a> </p> <a href="https://publications.waset.org/abstracts/47057/usage-of-military-spending-debt-servicing-and-growth-for-dealing-with-emergency-plan-of-indian-external-debt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4267</span> Evaluation of Dynamic and Vibrational Analysis of the Double Chambered Cylinder along Thermal Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Akbari">Mohammadreza Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Abdollahpour"> Leila Abdollahpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Akbari"> Sara Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooya%20Soleimani"> Pooya Soleimani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transferring thermo at the field of solid materials for instance tube-shaped structures, causing dynamical vibration at them. Majority of thermal and fluid processes are done engineering science at solid materials, for example, thermo-transferred pipes, fluids, chemical and nuclear reactors, include thermal processes, so, they need to consider the moment solid-fundamental structural strength unto these thermal interactions. Fluid and thermo retentive materials in front of external force to it like thermodynamical force, hydrodynamical force and static force continuously according to a function of time vibrated, and this action causes relative displacement of the structural materials elements, as a result, the moment resistance analysis preservation materials in thermal processes, the most important parameters for design are discussed. Including structural substrate holder temperature and fluid of the administrative and industrial center, is a cylindrical tube that for vibration analysis of cylindrical cells with heat and fluid transfer requires the use of vibration differential equations governing the structure of a tubular and thermal differential equations as the vibrating motive force at double-glazed cylinders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=elements%20in%20cylindrical%20coordinates" title=" elements in cylindrical coordinates"> elements in cylindrical coordinates</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20solving%20the%20governing%20equations" title=" analytical solving the governing equations"> analytical solving the governing equations</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20vibration" title=" structural vibration"> structural vibration</a> </p> <a href="https://publications.waset.org/abstracts/50948/evaluation-of-dynamic-and-vibrational-analysis-of-the-double-chambered-cylinder-along-thermal-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4266</span> Tensile Force Estimation for Real-Size Pre-Stressed Concrete Girder using Embedded Elasto-Magnetic Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junkyeong%20Kim">Junkyeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jooyoung%20Park"> Jooyoung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Aoqi%20Zhang"> Aoqi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tensile force of Pre-Stressed Concrete (PSC) girder is the most important factor for evaluating the performance of PSC girder bridges. To measure the tensile force of PSC girder, several NDT methods were studied. However, conventional NDT method cannot be applied to the real-size PSC girder because the PS tendons could not be approached. To measure the tensile force of real-size PSC girder, this study proposed embedded EM sensor based tensile force estimation method. The embedded EM sensor could be installed inside of PSC girder as a sheath joint before the concrete casting. After curing process, the PS tendons were installed, and the tensile force was induced step by step using hydraulic jacking machine. The B-H loop was measured using embedded EM sensor at each tensile force steps and to compare with actual tensile force, the load cell was installed at each end of girder. The magnetization energy loss, that is the closed area of B-H loop, was decreased according to the increase of tensile force with regular pattern. Thus, the tensile force could be estimated by the tracking the change of magnetization energy loss of PS tendons. Through the experimental result, the proposed method can be used to estimate the tensile force of the in-situ real-size PSC girder bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tensile%20force%20estimation" title="tensile force estimation">tensile force estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20EM%20sensor" title=" embedded EM sensor"> embedded EM sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization%20energy%20loss" title=" magnetization energy loss"> magnetization energy loss</a>, <a href="https://publications.waset.org/abstracts/search?q=PSC%20girder" title=" PSC girder"> PSC girder</a> </p> <a href="https://publications.waset.org/abstracts/57237/tensile-force-estimation-for-real-size-pre-stressed-concrete-girder-using-embedded-elasto-magnetic-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4265</span> On the Main Factor That Causes the Instabilities of the Earth Rotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Sim">Jin Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwan%20U.%20Kim"> Kwan U. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryong%20Jin%20Jang"> Ryong Jin Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Duk%20Kim"> Sung Duk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earth rotation is one of astronomical phenomena without which it is impossible to think of human life. That is why the investigation of the Earth's rotation is very important, and it has a long history of study. The invention of quartz clocks in the 1930s and atomic time 1950s and the introduction of modern technology into astronomic observation in recent years resulted in rapid development of the study of Earth’s rotation. The theory of the Earth rotation, however, has not been up to the high level of astronomic observation due to limitation of the time such as impossibility of quantitative calculation of moment of external force for Euler’s dynamical equation based on Newtonian mechanics. As a typical example, we can take the problems that cover the instabilities of the Earth’s rotation proved completely by the astronomic observations as well as polar motion, the precession and nutation of the Earth rotation axis which have not been described in a single equation in a quantitative way from the unique law of Earth rotation. In particular, at present the problem of what the main factor causing the instabilities of the Earth rotation is has not been solved clearly in quantitative ways yet. Therefore, this paper addresses quantitative proof that the main factor which causes the instabilities of the Earth rotation is the moment of external force rather than variations in the relative atmospheric angular momentum and in moment of inertia of the Earth’s body due to the time limitation and under some assumptions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20angular%20momentum" title="atmospheric angular momentum">atmospheric angular momentum</a>, <a href="https://publications.waset.org/abstracts/search?q=instabilities%20of%20the%20Earth%E2%80%99s%20rotation" title=" instabilities of the Earth’s rotation"> instabilities of the Earth’s rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=law%20of%20the%20Earth%E2%80%99s%20rotation%20change" title=" law of the Earth’s rotation change"> law of the Earth’s rotation change</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20of%20%20%20%20inertia%20of%20the%20Earth" title=" moment of inertia of the Earth"> moment of inertia of the Earth</a> </p> <a href="https://publications.waset.org/abstracts/192592/on-the-main-factor-that-causes-the-instabilities-of-the-earth-rotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4264</span> Design and Optimization of a Customized External Fixation Device for Lower Limb Injuries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20S.%20Alqahtani">Mohammed S. Alqahtani</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20J.%20Bartolo"> Paulo J. Bartolo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> External fixation is a common technique for the treatment and stabilization of bone fractures. Different designs have been proposed by companies and research groups, but all of them present limitations such as high weight, not comfortable to use, and not customized to individual patients. This paper proposes a lightweight customized external fixator, overcoming some of these limitations. External fixators are designed using a set of techniques such as medical imaging, CAD modelling, finite element analysis, and full factorial design of experiments. Key design parameters are discussed, and the optimal set of parameters is used to design the final external fixator. Numerical simulations are used to validate design concepts. Results present an optimal external fixation design with weight reduction of 13% without compromising its stiffness and structural integrity. External fixators are also designed to be additively manufactured, allowing to develop a strategy for personalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20design%20modelling" title="computer-aided design modelling">computer-aided design modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20fixation" title=" external fixation"> external fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20factorial" title=" full factorial"> full factorial</a>, <a href="https://publications.waset.org/abstracts/search?q=personalization" title=" personalization"> personalization</a> </p> <a href="https://publications.waset.org/abstracts/132633/design-and-optimization-of-a-customized-external-fixation-device-for-lower-limb-injuries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4263</span> A Method to Determine Cutting Force Coefficients in Turning Using Mechanistic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20C.%20Bera">T. C. Bera</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bansal"> A. Bansal</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nema"> D. Nema</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During performing turning operation, cutting force plays a significant role in metal cutting process affecting tool-work piece deflection, vibration and eventually part quality. The present research work aims to develop a mechanistic cutting force model and to study the mechanistic constants used in the force model in case of turning operation. The proposed model can be used for the reliable and accurate estimation of the cutting forces establishing relationship of various force components (cutting force and feed force) with uncut chip thickness. The accurate estimation of cutting force is required to improve thin-walled part accuracy by controlling the tool-work piece deflection induced surface errors and tool-work piece vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turning" title="turning">turning</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20forces" title=" cutting forces"> cutting forces</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20constants" title=" cutting constants"> cutting constants</a>, <a href="https://publications.waset.org/abstracts/search?q=uncut%20chip%20thickness" title=" uncut chip thickness"> uncut chip thickness</a> </p> <a href="https://publications.waset.org/abstracts/30832/a-method-to-determine-cutting-force-coefficients-in-turning-using-mechanistic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4262</span> Study of Parameters Affecting the Electrostatic Attractions Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Sabermand">Vahid Sabermand</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Hojjat"> Yousef Hojjat</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Hasanzadeh"> Majid Hasanzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper contains two main parts. In the first part of paper we simulated and studied three type of electrode patterns used in various industries for suspension and handling of the semiconductor and glass and we selected the best pattern by evaluating the electrostatic force, which was comb pattern electrode. In the second part, we investigated the parameters affecting the amount of electrostatic force such as the gap between surface and electrode (g), the electrode width (w), the gap between electrodes (t), the surface permittivity and electrode Length and methods of improvement of adhesion force by changing these values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20force" title="electrostatic force">electrostatic force</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20adhesion" title=" electrostatic adhesion"> electrostatic adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20chuck" title=" electrostatic chuck"> electrostatic chuck</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20application%20in%20industry" title=" electrostatic application in industry"> electrostatic application in industry</a>, <a href="https://publications.waset.org/abstracts/search?q=electroadhesive%20grippers" title=" electroadhesive grippers"> electroadhesive grippers</a> </p> <a href="https://publications.waset.org/abstracts/16573/study-of-parameters-affecting-the-electrostatic-attractions-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4261</span> Internal and External Validity in Experimental Economics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helena%20Chytilova">Helena Chytilova</a>, <a href="https://publications.waset.org/abstracts/search?q=Robin%20Maialeh"> Robin Maialeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental economics is subject to criticism with regards to frequently discussed trade-off between internal and external validity requirements, which seems to be critically flawed. Incompatibility of trade-off condition and condition of internal validity as a prerequisite for external validity is presented. In addition, the imprecise concept of artificiality found to be rather improving external validity, seems to strengthen illusory status of external versus internal validity tension. Internal validity will be further analysed with regards to Duhem-Quine problem, where unpredictability argument is significantly weakened trough application of inductivism within the illustrative hypothetical-deductive model. Discussion outlined above partially weakens critical arguments related to robustness of results in experimental economics, if perfectly controlled experimental environment is secured. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duhem-Quine%20problem" title="Duhem-Quine problem">Duhem-Quine problem</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20validity" title=" external validity"> external validity</a>, <a href="https://publications.waset.org/abstracts/search?q=inductivism" title=" inductivism"> inductivism</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20validity" title=" internal validity"> internal validity</a> </p> <a href="https://publications.waset.org/abstracts/31128/internal-and-external-validity-in-experimental-economics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4260</span> The Effect of Main Factors on Forces during FSJ Processing of AA2024 Aluminum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dunwen%20Zuo">Dunwen Zuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongfang%20Deng"> Yongfang Deng</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Song"> Bo Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An attempt is made here to measure the forces of three directions, under conditions of different feed speeds, different tilt angles of tool and without or with the pin on the tool, by using octagonal ring dynamometer in the AA2024 aluminum FSJ (Friction Stir Joining) process, and investigate how four main factors influence forces in the FSJ process. It is found that, high feed speed lead to small feed force and small lateral force, but high feed speed leads to large feed force in the stable joining stage of process. As the rotational speed increasing, the time of axial force drop from the maximum to the minimum required increased in the push-up process. In the stable joining stage, the rotational speed has little effect on the feed force; large rotational speed leads to small lateral force and axial force. The maximum axial force increases as the tilt angle of tool increases at the downward movement stage. At the moment of start feeding, as tilt angle of tool increases, the amplitudes of the axial force increasing become large. In the stable joining stage, with the increase of tilt angle of tool, the axial force is increased, the lateral force is decreased, and the feed force almost unchanged. The tool with pin will decrease axial force in the downward movement stage. The feed force and lateral force will increase, but the axial force will reduced in the stable joining stage by using the tool with pin compare to by using the tool without pin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FSJ" title="FSJ">FSJ</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20factor" title=" force factor"> force factor</a>, <a href="https://publications.waset.org/abstracts/search?q=AA2024%20aluminum" title=" AA2024 aluminum"> AA2024 aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20joining" title=" friction stir joining"> friction stir joining</a> </p> <a href="https://publications.waset.org/abstracts/22273/the-effect-of-main-factors-on-forces-during-fsj-processing-of-aa2024-aluminum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4259</span> Multilayer Ceramic Capacitors: Based Force Sensor Array for Occlusal Force Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng-Che%20Chen">Sheng-Che Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Keng-Ren%20Lin"> Keng-Ren Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Che-Hsin%20Lin"> Che-Hsin Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao-Yuan%20Tseng"> Hao-Yuan Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Han%20Chang"> Chih-Han Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Teeth play an important role in providing the essential nutrients. The force loading of chewing on the crow is important condition to evaluate long-term success of many dental treatments. However, the quantification of the force regarding forces are distributed over the dental crow is still not well recognized. This study presents an industrial-grade piezoelectric-based multilayer ceramic capacitors (MLCCs) force sensor for measuring the distribution of the force distribute over the first molar. The developed sensor array is based on a flexible polyimide electrode and barium titanate-based MLCCs. MLCCs are commonly used in the electronic industry and it is a typical electric component composed of BaTiO₃, which is used as a capacitive material. The most important is that it also can be used as a force-sensing component by its piezoelectric property. In this study, to increase the sensitivity as well as to reduce the variation of different MLCCs, a treatment process is utilized. The MLCC force sensors are able to measure large forces (above 500 N), making them suitable for measuring the bite forces on the tooth crown. Moreover, the sensors also show good force response and good repeatability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=force%20sensor%20array" title="force sensor array">force sensor array</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20ceramic%20capacitors" title=" multilayer ceramic capacitors"> multilayer ceramic capacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=occlusal%20force" title=" occlusal force"> occlusal force</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a> </p> <a href="https://publications.waset.org/abstracts/45572/multilayer-ceramic-capacitors-based-force-sensor-array-for-occlusal-force-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=external%20force&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=external%20force&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=external%20force&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=external%20force&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=external%20force&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=external%20force&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=external%20force&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=external%20force&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=external%20force&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=external%20force&amp;page=142">142</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=external%20force&amp;page=143">143</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=external%20force&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10