CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;9 of 9 results for author: <span class="mathjax">Hrinchuk, O</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/eess" aria-role="search"> Searching in archive <strong>eess</strong>. <a href="/search/?searchtype=author&amp;query=Hrinchuk%2C+O">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Hrinchuk, O"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Hrinchuk%2C+O&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Hrinchuk, O"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13523">arXiv:2409.13523</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13523">pdf</a>, <a href="https://arxiv.org/format/2409.13523">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> EMMeTT: Efficient Multimodal Machine Translation Training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=%C5%BBelasko%2C+P">Piotr 呕elasko</a>, <a href="/search/eess?searchtype=author&amp;query=Chen%2C+Z">Zhehuai Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Wang%2C+M">Mengru Wang</a>, <a href="/search/eess?searchtype=author&amp;query=Galvez%2C+D">Daniel Galvez</a>, <a href="/search/eess?searchtype=author&amp;query=Hrinchuk%2C+O">Oleksii Hrinchuk</a>, <a href="/search/eess?searchtype=author&amp;query=Ding%2C+S">Shuoyang Ding</a>, <a href="/search/eess?searchtype=author&amp;query=Hu%2C+K">Ke Hu</a>, <a href="/search/eess?searchtype=author&amp;query=Balam%2C+J">Jagadeesh Balam</a>, <a href="/search/eess?searchtype=author&amp;query=Lavrukhin%2C+V">Vitaly Lavrukhin</a>, <a href="/search/eess?searchtype=author&amp;query=Ginsburg%2C+B">Boris Ginsburg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13523v1-abstract-short" style="display: inline;"> A rising interest in the modality extension of foundation language models warrants discussion on the most effective, and efficient, multimodal training approach. This work focuses on neural machine translation (NMT) and proposes a joint multimodal training regime of Speech-LLM to include automatic speech translation (AST). We investigate two different foundation model architectures, decoder-only G&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13523v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13523v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13523v1-abstract-full" style="display: none;"> A rising interest in the modality extension of foundation language models warrants discussion on the most effective, and efficient, multimodal training approach. This work focuses on neural machine translation (NMT) and proposes a joint multimodal training regime of Speech-LLM to include automatic speech translation (AST). We investigate two different foundation model architectures, decoder-only GPT and encoder-decoder T5, extended with Canary-1B&#39;s speech encoder. To handle joint multimodal training, we propose a novel training framework called EMMeTT. EMMeTT improves training efficiency with the following: balanced sampling across languages, datasets, and modalities; efficient sequential data iteration; and a novel 2D bucketing scheme for multimodal data, complemented by a batch size optimizer (OOMptimizer). We show that a multimodal training consistently helps with both architectures. Moreover, SALM-T5 trained with EMMeTT retains the original NMT capability while outperforming AST baselines on four-language subsets of FLORES and FLEURS. The resultant Multimodal Translation Model produces strong text and speech translation results at the same time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13523v1-abstract-full').style.display = 'none'; document.getElementById('2409.13523v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, submitted to ICASSP 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05601">arXiv:2409.05601</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.05601">pdf</a>, <a href="https://arxiv.org/format/2409.05601">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Longer is (Not Necessarily) Stronger: Punctuated Long-Sequence Training for Enhanced Speech Recognition and Translation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Koluguri%2C+N+R">Nithin Rao Koluguri</a>, <a href="/search/eess?searchtype=author&amp;query=Bartley%2C+T">Travis Bartley</a>, <a href="/search/eess?searchtype=author&amp;query=Xu%2C+H">Hainan Xu</a>, <a href="/search/eess?searchtype=author&amp;query=Hrinchuk%2C+O">Oleksii Hrinchuk</a>, <a href="/search/eess?searchtype=author&amp;query=Balam%2C+J">Jagadeesh Balam</a>, <a href="/search/eess?searchtype=author&amp;query=Ginsburg%2C+B">Boris Ginsburg</a>, <a href="/search/eess?searchtype=author&amp;query=Kucsko%2C+G">Georg Kucsko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05601v1-abstract-short" style="display: inline;"> This paper presents a new method for training sequence-to-sequence models for speech recognition and translation tasks. Instead of the traditional approach of training models on short segments containing only lowercase or partial punctuation and capitalization (PnC) sentences, we propose training on longer utterances that include complete sentences with proper punctuation and capitalization. We ac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05601v1-abstract-full').style.display = 'inline'; document.getElementById('2409.05601v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05601v1-abstract-full" style="display: none;"> This paper presents a new method for training sequence-to-sequence models for speech recognition and translation tasks. Instead of the traditional approach of training models on short segments containing only lowercase or partial punctuation and capitalization (PnC) sentences, we propose training on longer utterances that include complete sentences with proper punctuation and capitalization. We achieve this by using the FastConformer architecture which allows training 1 Billion parameter models with sequences up to 60 seconds long with full attention. However, while training with PnC enhances the overall performance, we observed that accuracy plateaus when training on sequences longer than 40 seconds across various evaluation settings. Our proposed method significantly improves punctuation and capitalization accuracy, showing a 25% relative word error rate (WER) improvement on the Earnings-21 and Earnings-22 benchmarks. Additionally, training on longer audio segments increases the overall model accuracy across speech recognition and translation benchmarks. The model weights and training code are open-sourced though NVIDIA NeMo. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05601v1-abstract-full').style.display = 'none'; document.getElementById('2409.05601v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at SLT 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19954">arXiv:2406.19954</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.19954">pdf</a>, <a href="https://arxiv.org/format/2406.19954">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> BESTOW: Efficient and Streamable Speech Language Model with the Best of Two Worlds in GPT and T5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Chen%2C+Z">Zhehuai Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Huang%2C+H">He Huang</a>, <a href="/search/eess?searchtype=author&amp;query=Hrinchuk%2C+O">Oleksii Hrinchuk</a>, <a href="/search/eess?searchtype=author&amp;query=Puvvada%2C+K+C">Krishna C. Puvvada</a>, <a href="/search/eess?searchtype=author&amp;query=Koluguri%2C+N+R">Nithin Rao Koluguri</a>, <a href="/search/eess?searchtype=author&amp;query=%C5%BBelasko%2C+P">Piotr 呕elasko</a>, <a href="/search/eess?searchtype=author&amp;query=Balam%2C+J">Jagadeesh Balam</a>, <a href="/search/eess?searchtype=author&amp;query=Ginsburg%2C+B">Boris Ginsburg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19954v1-abstract-short" style="display: inline;"> Incorporating speech understanding capabilities into pretrained large-language models has become a vital research direction (SpeechLLM). The previous architectures can be categorized as: i) GPT-style, prepend speech prompts to the text prompts as a sequence of LLM inputs like a decoder-only model; ii) T5-style, introduce speech cross-attention to each layer of the pretrained LLMs. We propose BESTO&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19954v1-abstract-full').style.display = 'inline'; document.getElementById('2406.19954v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19954v1-abstract-full" style="display: none;"> Incorporating speech understanding capabilities into pretrained large-language models has become a vital research direction (SpeechLLM). The previous architectures can be categorized as: i) GPT-style, prepend speech prompts to the text prompts as a sequence of LLM inputs like a decoder-only model; ii) T5-style, introduce speech cross-attention to each layer of the pretrained LLMs. We propose BESTOW architecture to bring the BESt features from TwO Worlds into a single model that is highly efficient and has strong multitask capabilities. Moreover, there is no clear streaming solution for either style, especially considering the solution should generalize to speech multitask. We reformulate streamable SpeechLLM as a read-write policy problem and unifies the offline and streaming research with BESTOW architecture. Hence we demonstrate the first open-source SpeechLLM solution that enables Streaming and Multitask at scale (beyond ASR) at the same time. This streamable solution achieves very strong performance on a wide range of speech tasks (ASR, AST, SQA, unseen DynamicSuperb). It is end-to-end optimizable, with lower training/inference cost, and demonstrates LLM knowledge transferability to speech. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19954v1-abstract-full').style.display = 'none'; document.getElementById('2406.19954v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68T10 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19674">arXiv:2406.19674</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.19674">pdf</a>, <a href="https://arxiv.org/format/2406.19674">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Less is More: Accurate Speech Recognition &amp; Translation without Web-Scale Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Puvvada%2C+K+C">Krishna C. Puvvada</a>, <a href="/search/eess?searchtype=author&amp;query=%C5%BBelasko%2C+P">Piotr 呕elasko</a>, <a href="/search/eess?searchtype=author&amp;query=Huang%2C+H">He Huang</a>, <a href="/search/eess?searchtype=author&amp;query=Hrinchuk%2C+O">Oleksii Hrinchuk</a>, <a href="/search/eess?searchtype=author&amp;query=Koluguri%2C+N+R">Nithin Rao Koluguri</a>, <a href="/search/eess?searchtype=author&amp;query=Dhawan%2C+K">Kunal Dhawan</a>, <a href="/search/eess?searchtype=author&amp;query=Majumdar%2C+S">Somshubra Majumdar</a>, <a href="/search/eess?searchtype=author&amp;query=Rastorgueva%2C+E">Elena Rastorgueva</a>, <a href="/search/eess?searchtype=author&amp;query=Chen%2C+Z">Zhehuai Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Lavrukhin%2C+V">Vitaly Lavrukhin</a>, <a href="/search/eess?searchtype=author&amp;query=Balam%2C+J">Jagadeesh Balam</a>, <a href="/search/eess?searchtype=author&amp;query=Ginsburg%2C+B">Boris Ginsburg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19674v1-abstract-short" style="display: inline;"> Recent advances in speech recognition and translation rely on hundreds of thousands of hours of Internet speech data. We argue that state-of-the art accuracy can be reached without relying on web-scale data. Canary - multilingual ASR and speech translation model, outperforms current state-of-the-art models - Whisper, OWSM, and Seamless-M4T on English, French, Spanish, and German languages, while b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19674v1-abstract-full').style.display = 'inline'; document.getElementById('2406.19674v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19674v1-abstract-full" style="display: none;"> Recent advances in speech recognition and translation rely on hundreds of thousands of hours of Internet speech data. We argue that state-of-the art accuracy can be reached without relying on web-scale data. Canary - multilingual ASR and speech translation model, outperforms current state-of-the-art models - Whisper, OWSM, and Seamless-M4T on English, French, Spanish, and German languages, while being trained on an order of magnitude less data than these models. Three key factors enables such data-efficient model: (1) a FastConformer-based attention encoder-decoder architecture (2) training on synthetic data generated with machine translation and (3) advanced training techniques: data-balancing, dynamic data blending, dynamic bucketing and noise-robust fine-tuning. The model, weights, and training code will be open-sourced. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19674v1-abstract-full').style.display = 'none'; document.getElementById('2406.19674v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at Interspeech-2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.09424">arXiv:2310.09424</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.09424">pdf</a>, <a href="https://arxiv.org/format/2310.09424">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> SALM: Speech-augmented Language Model with In-context Learning for Speech Recognition and Translation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Chen%2C+Z">Zhehuai Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Huang%2C+H">He Huang</a>, <a href="/search/eess?searchtype=author&amp;query=Andrusenko%2C+A">Andrei Andrusenko</a>, <a href="/search/eess?searchtype=author&amp;query=Hrinchuk%2C+O">Oleksii Hrinchuk</a>, <a href="/search/eess?searchtype=author&amp;query=Puvvada%2C+K+C">Krishna C. Puvvada</a>, <a href="/search/eess?searchtype=author&amp;query=Li%2C+J">Jason Li</a>, <a href="/search/eess?searchtype=author&amp;query=Ghosh%2C+S">Subhankar Ghosh</a>, <a href="/search/eess?searchtype=author&amp;query=Balam%2C+J">Jagadeesh Balam</a>, <a href="/search/eess?searchtype=author&amp;query=Ginsburg%2C+B">Boris Ginsburg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.09424v1-abstract-short" style="display: inline;"> We present a novel Speech Augmented Language Model (SALM) with {\em multitask} and {\em in-context} learning capabilities. SALM comprises a frozen text LLM, a audio encoder, a modality adapter module, and LoRA layers to accommodate speech input and associated task instructions. The unified SALM not only achieves performance on par with task-specific Conformer baselines for Automatic Speech Recogni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.09424v1-abstract-full').style.display = 'inline'; document.getElementById('2310.09424v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.09424v1-abstract-full" style="display: none;"> We present a novel Speech Augmented Language Model (SALM) with {\em multitask} and {\em in-context} learning capabilities. SALM comprises a frozen text LLM, a audio encoder, a modality adapter module, and LoRA layers to accommodate speech input and associated task instructions. The unified SALM not only achieves performance on par with task-specific Conformer baselines for Automatic Speech Recognition (ASR) and Speech Translation (AST), but also exhibits zero-shot in-context learning capabilities, demonstrated through keyword-boosting task for ASR and AST. Moreover, {\em speech supervised in-context training} is proposed to bridge the gap between LLM training and downstream speech tasks, which further boosts the in-context learning ability of speech-to-text models. Proposed model is open-sourced via NeMo toolkit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.09424v1-abstract-full').style.display = 'none'; document.getElementById('2310.09424v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submit to ICASSP 2024</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68T10 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05084">arXiv:2305.05084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.05084">pdf</a>, <a href="https://arxiv.org/format/2305.05084">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Rekesh%2C+D">Dima Rekesh</a>, <a href="/search/eess?searchtype=author&amp;query=Koluguri%2C+N+R">Nithin Rao Koluguri</a>, <a href="/search/eess?searchtype=author&amp;query=Kriman%2C+S">Samuel Kriman</a>, <a href="/search/eess?searchtype=author&amp;query=Majumdar%2C+S">Somshubra Majumdar</a>, <a href="/search/eess?searchtype=author&amp;query=Noroozi%2C+V">Vahid Noroozi</a>, <a href="/search/eess?searchtype=author&amp;query=Huang%2C+H">He Huang</a>, <a href="/search/eess?searchtype=author&amp;query=Hrinchuk%2C+O">Oleksii Hrinchuk</a>, <a href="/search/eess?searchtype=author&amp;query=Puvvada%2C+K">Krishna Puvvada</a>, <a href="/search/eess?searchtype=author&amp;query=Kumar%2C+A">Ankur Kumar</a>, <a href="/search/eess?searchtype=author&amp;query=Balam%2C+J">Jagadeesh Balam</a>, <a href="/search/eess?searchtype=author&amp;query=Ginsburg%2C+B">Boris Ginsburg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05084v6-abstract-short" style="display: inline;"> Conformer-based models have become the dominant end-to-end architecture for speech processing tasks. With the objective of enhancing the conformer architecture for efficient training and inference, we carefully redesigned Conformer with a novel downsampling schema. The proposed model, named Fast Conformer(FC), is 2.8x faster than the original Conformer, supports scaling to Billion parameters witho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05084v6-abstract-full').style.display = 'inline'; document.getElementById('2305.05084v6-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05084v6-abstract-full" style="display: none;"> Conformer-based models have become the dominant end-to-end architecture for speech processing tasks. With the objective of enhancing the conformer architecture for efficient training and inference, we carefully redesigned Conformer with a novel downsampling schema. The proposed model, named Fast Conformer(FC), is 2.8x faster than the original Conformer, supports scaling to Billion parameters without any changes to the core architecture and also achieves state-of-the-art accuracy on Automatic Speech Recognition benchmarks. To enable transcription of long-form speech up to 11 hours, we replaced global attention with limited context attention post-training, while also improving accuracy through fine-tuning with the addition of a global token. Fast Conformer, when combined with a Transformer decoder also outperforms the original Conformer in accuracy and in speed for Speech Translation and Spoken Language Understanding. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05084v6-abstract-full').style.display = 'none'; document.getElementById('2305.05084v6-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at ASRU 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.01721">arXiv:2104.01721</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.01721">pdf</a>, <a href="https://arxiv.org/format/2104.01721">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Citrinet: Closing the Gap between Non-Autoregressive and Autoregressive End-to-End Models for Automatic Speech Recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Majumdar%2C+S">Somshubra Majumdar</a>, <a href="/search/eess?searchtype=author&amp;query=Balam%2C+J">Jagadeesh Balam</a>, <a href="/search/eess?searchtype=author&amp;query=Hrinchuk%2C+O">Oleksii Hrinchuk</a>, <a href="/search/eess?searchtype=author&amp;query=Lavrukhin%2C+V">Vitaly Lavrukhin</a>, <a href="/search/eess?searchtype=author&amp;query=Noroozi%2C+V">Vahid Noroozi</a>, <a href="/search/eess?searchtype=author&amp;query=Ginsburg%2C+B">Boris Ginsburg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.01721v1-abstract-short" style="display: inline;"> We propose Citrinet - a new end-to-end convolutional Connectionist Temporal Classification (CTC) based automatic speech recognition (ASR) model. Citrinet is deep residual neural model which uses 1D time-channel separable convolutions combined with sub-word encoding and squeeze-and-excitation. The resulting architecture significantly reduces the gap between non-autoregressive and sequence-to-sequen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01721v1-abstract-full').style.display = 'inline'; document.getElementById('2104.01721v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.01721v1-abstract-full" style="display: none;"> We propose Citrinet - a new end-to-end convolutional Connectionist Temporal Classification (CTC) based automatic speech recognition (ASR) model. Citrinet is deep residual neural model which uses 1D time-channel separable convolutions combined with sub-word encoding and squeeze-and-excitation. The resulting architecture significantly reduces the gap between non-autoregressive and sequence-to-sequence and transducer models. We evaluate Citrinet on LibriSpeech, TED-LIUM2, AISHELL-1 and Multilingual LibriSpeech (MLS) English speech datasets. Citrinet accuracy on these datasets is close to the best autoregressive Transducer models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01721v1-abstract-full').style.display = 'none'; document.getElementById('2104.01721v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.10697">arXiv:1910.10697</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.10697">pdf</a>, <a href="https://arxiv.org/format/1910.10697">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Correction of Automatic Speech Recognition with Transformer Sequence-to-sequence Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Hrinchuk%2C+O">Oleksii Hrinchuk</a>, <a href="/search/eess?searchtype=author&amp;query=Popova%2C+M">Mariya Popova</a>, <a href="/search/eess?searchtype=author&amp;query=Ginsburg%2C+B">Boris Ginsburg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.10697v1-abstract-short" style="display: inline;"> In this work, we introduce a simple yet efficient post-processing model for automatic speech recognition (ASR). Our model has Transformer-based encoder-decoder architecture which &#34;translates&#34; ASR model output into grammatically and semantically correct text. We investigate different strategies for regularizing and optimizing the model and show that extensive data augmentation and the initializatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10697v1-abstract-full').style.display = 'inline'; document.getElementById('1910.10697v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.10697v1-abstract-full" style="display: none;"> In this work, we introduce a simple yet efficient post-processing model for automatic speech recognition (ASR). Our model has Transformer-based encoder-decoder architecture which &#34;translates&#34; ASR model output into grammatically and semantically correct text. We investigate different strategies for regularizing and optimizing the model and show that extensive data augmentation and the initialization with pre-trained weights are required to achieve good performance. On the LibriSpeech benchmark, our method demonstrates significant improvement in word error rate over the baseline acoustic model with greedy decoding, especially on much noisier dev-other and test-other portions of the evaluation dataset. Our model also outperforms baseline with 6-gram language model re-scoring and approaches the performance of re-scoring with Transformer-XL neural language model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10697v1-abstract-full').style.display = 'none'; document.getElementById('1910.10697v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.09577">arXiv:1909.09577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.09577">pdf</a>, <a href="https://arxiv.org/format/1909.09577">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> NeMo: a toolkit for building AI applications using Neural Modules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Kuchaiev%2C+O">Oleksii Kuchaiev</a>, <a href="/search/eess?searchtype=author&amp;query=Li%2C+J">Jason Li</a>, <a href="/search/eess?searchtype=author&amp;query=Nguyen%2C+H">Huyen Nguyen</a>, <a href="/search/eess?searchtype=author&amp;query=Hrinchuk%2C+O">Oleksii Hrinchuk</a>, <a href="/search/eess?searchtype=author&amp;query=Leary%2C+R">Ryan Leary</a>, <a href="/search/eess?searchtype=author&amp;query=Ginsburg%2C+B">Boris Ginsburg</a>, <a href="/search/eess?searchtype=author&amp;query=Kriman%2C+S">Samuel Kriman</a>, <a href="/search/eess?searchtype=author&amp;query=Beliaev%2C+S">Stanislav Beliaev</a>, <a href="/search/eess?searchtype=author&amp;query=Lavrukhin%2C+V">Vitaly Lavrukhin</a>, <a href="/search/eess?searchtype=author&amp;query=Cook%2C+J">Jack Cook</a>, <a href="/search/eess?searchtype=author&amp;query=Castonguay%2C+P">Patrice Castonguay</a>, <a href="/search/eess?searchtype=author&amp;query=Popova%2C+M">Mariya Popova</a>, <a href="/search/eess?searchtype=author&amp;query=Huang%2C+J">Jocelyn Huang</a>, <a href="/search/eess?searchtype=author&amp;query=Cohen%2C+J+M">Jonathan M. Cohen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.09577v1-abstract-short" style="display: inline;"> NeMo (Neural Modules) is a Python framework-agnostic toolkit for creating AI applications through re-usability, abstraction, and composition. NeMo is built around neural modules, conceptual blocks of neural networks that take typed inputs and produce typed outputs. Such modules typically represent data layers, encoders, decoders, language models, loss functions, or methods of combining activations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09577v1-abstract-full').style.display = 'inline'; document.getElementById('1909.09577v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.09577v1-abstract-full" style="display: none;"> NeMo (Neural Modules) is a Python framework-agnostic toolkit for creating AI applications through re-usability, abstraction, and composition. NeMo is built around neural modules, conceptual blocks of neural networks that take typed inputs and produce typed outputs. Such modules typically represent data layers, encoders, decoders, language models, loss functions, or methods of combining activations. NeMo makes it easy to combine and re-use these building blocks while providing a level of semantic correctness checking via its neural type system. The toolkit comes with extendable collections of pre-built modules for automatic speech recognition and natural language processing. Furthermore, NeMo provides built-in support for distributed training and mixed precision on latest NVIDIA GPUs. NeMo is open-source https://github.com/NVIDIA/NeMo <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09577v1-abstract-full').style.display = 'none'; document.getElementById('1909.09577v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages plus references</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10